
 



 - 1 -

Core J2EE™ Patterns: Best Practices and Design Strategies 
 
Foreword 

 

Preface 

   Sun Java Center and the J2EE Pattern Catalog 

   What This Book is About? 

   What This Book Is Not? 

   Who Should Read this Book? 

   How This Book is Organized 

   Companion Website and Contact Information 

 

Acknowledgments 

 

I: PATTERNS AND J2EE 

 

1. INTRODUCTION 

   What Is J2EE ? 

   What Are Patterns? 

   J2EE Pattern Catalog 

   Patterns, Frameworks, and Reuse 

   Summary 

 

2. J2EE PLATFORM OVERVIEW 

   A Brief Perspective 

   J2EE Platform 

   J2EE Patterns and J2EE Platform 

   Summary 

 

II: DESIGN CONSIDERATIONS, BAD PRACTICES, AND REFACTORINGS 

 

3. PRESENTATION TIER DESIGN CONSIDERATIONS AND BAD PRACTICES 

   Presentation Tier Design Considerations 

   Presentation Tier Bad Practices 

 

4. BUSINESS TIER DESIGN CONSIDERATIONS AND BAD PRACTICES 

   Business Tier Design Considerations 

   Business and Integration Tiers Bad Practices 

 

5. J2EE REFACTORINGS 

   Presentation Tier Refactorings 

   Business and Integration Tier Refactorings 

   General Refactorings 

 

III: J2EE PATTERN CATALOG 



 - 2 -

   Part 3 includes the following four chapters: 

 

6. J2EE PATTERNS OVERVIEW 

   What Is a Pattern? 

   Identifying a Pattern 

   The Tiered Approach 

   J2EE Patterns 

   Guide to the Catalog 

   J2EE Pattern Relationships 

   Relationship to Known Patterns 

   Patterns Roadmap 

   Summary 

 

7. PRESENTATION TIER PATTERNS 

   Intercepting Filter 

   Front Controller 

   View Helper 

   Consequences 

   Related Patterns 

   Composite View 

   Service to Worker 

   Dispatcher View 

 

8. BUSINESS TIER PATTERNS 

   Business Delegate 

   Value Object 

   Session Facade 

   Composite Entity 

   Value Object Assembler 

   Value List Handler 

   Service Locator 

 

9. INTEGRATION TIER PATTERNS 

   Data Access Object 

   Service Activator 

 

Epilogue J2EE PATTERNS APPLIED 

   PSA Overview 

   Use Case Model 

   Use Cases, Patterns, and Pattern Frameworks 

   Create Project Use Case 

   Reserve Resource Use Case 

   Find Available Resources Use Case 

 

BIBLIOGRAPHY 



 - 3 -

Foreword 

In the world of software, a pattern is a tangible manifestation of an 
organization's tribal memory. A pattern provides a common solution 
to a common problem and so, within the culture of one specific 
organization or within one domain, naming and then specifying a 
pattern represents the codification of a common solution, drawn from 
proven, prior experience. Having a good language of patterns at your 
disposal is like having an extended team of experts sitting at your side 
during development: by applying one of their patterns, you in effect 
take the benefit of their hard-won knowledge. As such, the best 
patterns are not so much invented as they are discovered and then 
harvested from existing, successful systems. Thus, at its most mature 
state, a pattern is full of things that work, absent of things that don't 
work, and revealing of the wisdom and rationale of its designers. 

Deep, really useful, patterns are typically ancient: you see one and 
will often remark, “Hey, I've done that before.” However, the very 
naming of the pattern gives you a vocabulary that you didn't have 
previously and so helps you apply that pattern in ways you otherwise 
might have not have realized. Ultimately, the effect of such a pattern 
will be to make your system simpler. 

Patterns not only help you build simpler systems that work, but they 
also help you build beautiful programs. In a culture of time starvation, 
writing beautiful software is often impossible. That's sad, for as 
professionals, we strive to build things of quality. By applying a good 
set of patterns, it is possible to bring a degree of elegance in to your 
systems that might otherwise have been lacking. 

The authors of Core J2EE Patterns have harvested a really useful set 
of patterns. Don't get me wrong: J2EE is certainly an important 
platform, enabling teams to build some very powerful systems. 
However, reality is, there is still a wide semantic gap between the 
abstractions and services that J2EE provides and the final application 
that a team must build. Patterns such as specified in this book 
represent solutions that appear again and again in filling that gap. By 
applying these patterns, you thus carry out the primary means of 
reducing software risk: you write less software. Rather than 
discovering these solutions on your own, apply these patterns, which 
have already proven their utility in existing systems. 

More than just naming a set of patterns, the authors make them 
approachable by specifying their semantics using the UML. 



 - 4 -

Additionally, they show you how to apply these patterns and how to 
refactor your system to take advantage of them. Again, it's just like 
having a team of experts sitting at your side. 

Grady Booch 
Chief Scientist 
Rational Software Corporation 



 - 5 -

Preface 

This book is about patterns for the Java 2 platform, Enterprise Edition (J2EE). These 

J2EE patterns provide solutions for problems typically encountered by designers of 

software applications for the J2EE platform. All the patterns documented in the 

catalog have been discovered in the field, where they have been used to create 

successful J2EE applications for our customers. 

This book describes proven solutions for the J2EE platform with a particular 

emphasis on such key J2EE technologies as: Java Server Pages (JSP), Servlets, 

Enterprise JavaBeans (EJB) components, Java Message Service (JMS), JDBC, and 

Java Naming and Directory Interface (JNDI). We offer solutions for recurring 

problems for the J2EE platform through the J2EE Pattern Catalog and J2EE 

refactorings. You can apply these ideas when developing new systems or when 

improving the design of existing systems. The patterns in this book will help you 

quickly gain the proficiency and skills to build robust, efficient enterprise 

applications. 

Today, as in the past, many of us naively assume that learning a technology is 

synonymous with learning to design with the technology. Certainly learning the 

technology is an important part to being successful in designing with the technology. 

Many existing Java books are excellent at explaining technology details, such as API 

specifics and so forth, but at the same time they give no insight on applying the 

technology. Learning to design comes from experience and from sharing knowledge 

on best practices and bad practices. 

The experiences we have conveyed in this book are derived from the work we have 

done in the field. We are part of Sun Microsystems, Inc.'s Sun Java Center (SJC) 

consulting organization. In our work, we often encounter situations where, because 

technology is moving so quickly, designers and developers are still struggling to 

understand the technology, let alone how to design with the technology. 

It is not good enough to tell designers and developers to write good code, nor is it 

sufficient to suggest using Servlets and JSP for developing the presentation tier and 

EJB components[1] for developing the business tier. 

[1] If you are new to the J2EE platform, we discuss the platform and these technologies in Chapter 2, “J2EE 

Platform Overview”. 

So, given this scenario, where does an aspiring J2EE architect learn not only what to 

do, but what not to do? What are the best practices? What are the bad practices? 

How do you go from problem to design to implementation? 



 - 6 -

Sun Java Center and the J2EE Pattern Catalog 

Since its inception, SJC architects have been working with clients all over the world 

to successfully design, architect, build, and deploy various types of systems based 

on Java and J2EE. The SJC is a rapidly growing consulting organization constantly 

adding new hires to its ranks of experienced architects. 

Recognizing the need to capture and share proven designs and architectures, we 

started to document our work on the J2EE platform in the form of patterns in 1999. 

Although we looked in the existing literature, we could not find a catalog of patterns 

that dealt specifically with the J2EE platform. We found many books dealing with 

one or more of the J2EE technologies, and these books do an excellent job of 

explaining the technology and unraveling the nuances of the specifications. Some 

books offered extra help by providing some design considerations. 

Since we first publicly presented our ideas on J2EE patterns at the JavaOne 

Conference in June 2000, we have received an overwhelming response from 

architects and developers. While some individuals expressed great interest in 

learning more about the patterns, others confirmed that they had applied the 

patterns, but had never named or documented them. This interest in patterns for 

the J2EE platform further motivated us to continue our work. 

Thus, we put together the J2EE Pattern Catalog., which was initially made available 

to the entire J2EE community in beta form via the Java Developer Connection in 

March, 2001. Based largely on community feedback, the beta documentation 

evolved into the release you see in this book. 

We hope these patterns, best practices, strategies, bad practices, and refactorings 

for the J2EE platform, provide the same benefits to you as they do for us. 

What This Book is About? 

This book is about: 

• Using patterns for the J2EE Platform. 

Based on our collective J2EE platform experience, we have assembled the 

pattern catalog in this book. The J2EE Pattern Catalog describes various best 

practices related to architecting and designing applications for the J2EE 

platform. This book focuses on the following four J2EE technologies: Servlets, 

JSP, EJB components, and JMS. 

• Using best practices to design applications that use JSP, Servlet, EJB 

components, and JMS technologies. 



 - 7 -

It is not sufficient to merely learn the technology and the APIs. It is equally 

important to learn to design with the technology. We have documented what 

we have experienced to be the best practices for these technologies. 

• Preventing re-inventing-the-wheel when it comes to design and architecture 

for the J2EE platform. 

Patterns promote design reuse. Reusing known solutions reduces the cycle 

time for designing and developing applications, including J2EE applications. 

• Identifying bad practices in existing designs and refactoring these designs to 

move to a better solution using the J2EE patterns. 

Knowing what works well is good. Knowing what does not work is equally 

important. We have documented some of the bad practices we have 

experienced when designing applications for the J2EE platform. 

What This Book Is Not? 

This book is not about: 

• How to program with Java or J2EE technologies 

This book is not about programming. While this book is heavily based on the 

J2EE technologies, we do not describe the specific APIs. If you wish to learn 

about programming using Java or using any of the J2EE technologies, there 

are a number of excellent books and online resources from which to learn. 

The online tutorials on the official Java home page at http://java.sun.com 

are highly recommended if you wish to learn about individual technologies. 

The official specifications for J2EE technologies are also available from the 

Java home page. 

• What process and methodology to use 

We do not suggest any type of process or methodology to use since the 

material presented in this book is not related to either. Hence, this book does 

not teach you about a process or methodology to follow in your projects. If 

you would like to learn more about processes and methodologies, there are 

a good number of books that deal with various object-oriented 

methodologies and new books on lightweight processes, such as Extreme 

Programming. 

• How to use Unified Modeling Language (UML) 



 - 8 -

This book is not going to teach you about UML. We use UML extensively 

(specifically class and sequence diagrams) to document the patterns and 

describe the static and dynamic interactions. If you want to learn more about 

UML, please refer to the UML User Guide [Booch] and the UML Reference 

Manual [Rumbaugh] by Grady Booch, Ivar Jacobson and James Rumbaugh. 

Who Should Read this Book? 

This book is for all J2EE enthusiasts, programmers, architects, developers, and 

technical managers. In short, anyone who is remotely interested in designing, 

architecting and developing applications for the J2EE platform. 

We have attempted to distinguish this book as a training guide for J2EE architects 

and designers. We all recognize the importance of good designs and 

well-architected projects, and that we need good architects to get there. 

The use of well-documented patterns, best practices, and bad practices to share and 

transfer knowledge and experience can prove invaluable for teams with varied 

experience levels, and we hope that this book answers some of these needs. 

How This Book is Organized 

This book is organized into three parts. 

Part 1—“Patterns and J2EE”, consists of Chapter 1 and Chapter 2. 

Chapter 1: “Introduction” is a brief discussion on various topics, including patterns, 

J2EE platform, defining a pattern, and pattern categorization. It ends by introducing 

the J2EE Pattern Catalog. 

Chapter 2 : “J2EE Platform Overview” provides a high level overview of the J2EE 

platform for those readers unfamiliar with J2EE, or who wish to refresh their 

knowledge of the J2EE platform. 

Part 2—“Design Considerations, Bad Practices, and Refactorings” deals with design 

considerations for JSP, Servlets, and enterprise beans. This part also includes bad 

practices and refactorings for the J2EE platform. This part is comprised of Chapter 3, 

4, and 5. 

Chapter 3 “Presentation Tier Design Considerations and Bad Practices” and Chapter 

4 “Business Tier Design Considerations and Bad Practices” discuss the design 

considerations and bad practices for the presentation tier and business/integration 

tiers respectively. The design considerations are issues that a J2EE 

developer/designer/architect needs to consider while working with the J2EE 



 - 9 -

platform. The topics presented in these chapters point the reader to other sources 

(such as official specifications and well written books on these topics) for more 

detailed information on these issues. 

Chapter 5: “J2EE Refactorings” includes some of the refactorings we have 

experienced in our work in the field that has enabled us to move our design from a 

less optimal solution to a better solution. The refactorings provide another way to 

think about the material in the rest of the book, providing what we believe to be 

valuable companion material to the pattern catalog. This chapter shows how we 

have been influenced by Martin Fowler and his book "Refactoring" [Fowler]. For 

those readers who are familiar with the Refactoring book, the format of this chapter 

will be very familiar. However, the content of this chapter is entirely in the context 

of J2EE technologies, whereas Martin Fowler addresses refactoring at a different 

level. 

Part 3—“J2EE Pattern Catalog” presents the J2EE pattern catalog. The catalog 

contains the fifteen patterns that form the core of this book. This part is comprised 

of Chapter 6, 7, 8, and 9. 

Chapter 6: “J2EE Patterns Overview” provides an overview of the J2EE pattern 

catalog. This chapter begins with a high level discussion of the pattern ideas and 

explains the way the patterns are categorized into tiers. It also explains the J2EE 

pattern template, which is used to present all patterns in this book. The chapter 

discusses all the J2EE patterns and uses a diagram to show their inter-relationships. 

It also provides what we have termed a roadmap to the pattern catalog. This 

roadmap presents common J2EE design and architecture-related questions with 

references to patterns or refactorings that provide solutions to these questions. 

Understanding the pattern relationships and the roadmap is key to using these 

patterns. 

Chapter 7: “Presentation Tier Patterns” presents six patterns that pertain to using 

Servlets, JSP, JavaBeans, and custom tags to design web-based applications for the 

J2EE platform. The patterns describe numerous implementation strategies, and 

address common problems such as request handling, application partitioning, and 

generating composite displays. 

Chapter 8: “Business Tier Patterns” presents seven patterns that pertain to using 

EJB technology to design business components for the J2EE platform. The patterns 

in this chapter provide the best practices for using the EJB and JMS technologies. 

Where relevant, these patterns include discussion on other technologies, such as 

JNDI and JDBC. 

Chapter 9: “Integration Tier Patterns” presents two patterns that pertain to 

integrating J2EE applications with the resource tier and external systems. The 

patterns deal with using JDBC and JMS to enable integration between business tier 

and resource tier components. 



 - 10 -

Epilogue: “J2EE Patterns Applied” discusses realizing sample use cases with the 

patterns. This chapter discusses and demonstrates how patterns are combined and 

work together. This chapter reinforces the idea that patterns exist in a community, 

and that each pattern supports, and is supported by, other patterns. 

Companion Website and Contact Information 

The official companion website where we will provide updates and other material is 

http://www.phptr.com/corej2eepatterns. 

The J2EE Patterns interest group, j2eepatterns-interest@java.sun.com is available 

for public subscription and participation. To subscribe to the interest group and 

review the discussion archives, please visit: 

http://archives.java.sun.com/archives/j2eepatterns-interest.html 



 - 11 -

Acknowledgments 

We wish to thank Stu Stern, Director of Global Sun Java Center and Mark Bauhaus, 

VP of .COM Consulting without whose support, vision, and belief in our work this 

effort would never have been realized. 

We wish to thank Ann Betser, without whose support, encouragement and skilled 

advice, we would have been lost. 

We wish to express our sincere thanks to the PSA/iWorkflow reference 

implementation team of SJC architects: Fred Bloom, Narayan Chintalapati, Anders 

Eliasson, Kartik Ganeshan, Murali Kalyanakrishnan, Kamran Khan, Rita El Khoury, 

Rajmohan Krishnamurty, Ragu Sivaraman, Robert Skoczylas, Minnie Tanglao, and 

Basant Verma. 

We wish to thank the Sun Java Center J2EE Patterns Working Group members: 

Mohammed Akif, Thorbiörn Fritzon, Beniot Garbinato, Paul Jatkowski, Karim 

Mazouni, Nick Wilde, and Andrew X. Yang. 

We wish to thank Brendan McCarthy, SJC Chief Methodologist for keeping us in 

balance and for all the advice. 

We wish to thank Jennifer Helms and John Kapson for introducing the patterns to 

customers. 

We wish to express our gratitude to the following SJC architects from around the 

world for their support, feedback, and advice: Mark Cade, Mark Cao, Torbjörn 

Dahlén, Peter Gratzer, Bernard Van Haecke, Patricia de las Heras, Scott Herndon, 

Grant Holland, Girish Ippadi, Murali Kaundinya, Denys Kim, Stephen Kirkham, Todd 

Lasseigne, Sunil Mathew, Fred Muhlenberg, Vivek Pande, John Prentice, Alexis Roos, 

Gero Vermaas, Miguel Vidal. 

We wish to thank our management Hank Harris, Dan Hushon, Jeff Johnson, Nimish 

Radia, Chris Steel, and Alex Wong for their support and encouragement. 

We wish to thank the following Sun colleagues for their collaboration: 

Bruce Delagi from Software Systems group; Mark Hapner, Vlada Matena from Java 

Software Engineering; Paul Butterworth and Jim Dibble from Forte Products Group; 

Deepak Balakrishna from iPlanet Products Group; Larry Freeman, Cori Kaylor, Rick 

Saletta, and Inderjeet Singh from the J2EE Blueprints Team; Heidi Dailey; Dana 

Nourie, Laureen Hudson, Edward Ort, Margaret Ong, and Jenny Pratt from Java 

Developer Connection. 

We wish to thank the following for their feedback, advice, and support: 



 - 12 -

Martin Fowler and Josh Mackenzie from ThoughtWorks, Inc.; Richard 

Monson-Haefel; Phil Nosonowitz and Carl Reed from Goldman Sachs; Jack 

Greenfield, Wojtek Kozaczynski, and Jon Lawrence from Rational Software; 

Alexander Aptus from TogetherSoft; Kent Mitchell from Zaplets.com; Bill Dudney; 

David Geary; Hans Bergsten; Members of the J2EE Patterns Interest group 

(j2eepatterns-interest@java.sun.com). 

We wish to express our special thanks and gratitude to our lead technical editor Beth 

Stearns, transforming our manuscripts and making them readable, at the same 

time keeping us on track, and working with us all the way with a heavily demanding 

schedule. 

We wish to thank the technical editors Daniel S. Barclay, Steven J. Halter, Spencer 

Roberts, and Chris Taylor for their expertise, meticulous review and feedback. 

We wish to thank Greg Doench, Lisa Iarkowski, Mary Sudul, and Debby Van Dijk 

from Prentice Hall; Michael Alread and Rachel Borden from Sun Microsystems Press, 

for doing everything it took to produce this book. 

We thank Bill Jirsa, John Hathaway, and Darlene Khosrowpour from Sun Educational 

Services for their effort creating the SunEd J2EE Patterns course (SL-500), John 

Sharp and Andy Longshaw from Content Master Ltd., as well as all the course 

reviewers for SL-500. 

We wish to thank the patterns and the Java communities on whose work we have 

built. 

The authors wish to thank their families for their support. 

Deepak Alur wishes to thank: 

Kavya, Shivaba and Samiksha—for your support, understanding, and inspiration; 

My Parents and Ajay. 

John Crupi wishes to thank: 

Ellen and Rachel—for your support , understanding and love. 

Casey and Smokey—two great dogs will be forever missed. 

Dan Malks wishes to thank: 

Beth, Sarah, and Jonathan—for your support and for bringing special meaning to 

everything in my life. 



 - 13 -

Part I: PATTERNS AND J2EE 

Part I includes the following two chapters: 

• Chapter 1—Introduction 
• Chapter 2—J2EE Platform Overview 

Chapter 1 presents a high-level discussion on patterns and the J2EE. 
The chapter presents numerous pattern definitions, information on 
pattern categorization, and some benefits of using patterns. This 
chapter sets the context for our J2EE Patterns work and provides the 
rationale and motivation behind the J2EE Pattern Catalog. 

Chapter 2 provides a high level overview of the J2EE, its background, 
and the platform's value proposition. The chapter also discusses the 
relation between the J2EE Platform and the J2EE Pattern Catalog. 



 - 14 -

Chapter 1. INTRODUCTION 

Topics in This Chapter 

• What Is J2EE? 
• What Are Patterns? 
• J2EE Pattern Catalog 
• Patterns, Frameworks, and Reuse 



 - 15 -

The last few years have been extraordinary with respect to the 
changing landscape of enterprise software development. At the 
center of this change is the Java 2 Platform, Enterprise Edition (J2EE), 
which provides a unified platform for developing distributed, 
server-centric applications. The widespread adoption of the strategic, 
enabling technologies of the J2EE have provided the development 
community with open standards on which to build service-based 
architectures for the enterprise. 

At the same time, learning J2EE technologies is too often confused 
with learning to design with J2EE technologies. Many existing Java 
books do an excellent job of explaining specific aspects of the 
technology, but are not always clear on how to apply it. 

A J2EE architect needs to understand more than the relevant APIs, 
including 

• What are the best practices? 
• What are the bad practices? 
• What are the common recurring problems and proven solutions 

to these problems? 
• How is code refactored from a less optimal scenario, or bad 

practice, to a better one typically described by a pattern? 

That is what this book is all about. Good designs are discovered from 
experience. When these designs are communicated as patterns using 
a standard pattern template, they become a powerful mechanism for 
communication exchange and reuse, and can be leveraged to improve 
the way we design and build software. 

What Is J2EE? 

J2EE is a platform for developing distributed enterprise software 
applications. Since the inception of the Java language, it has 
undergone tremendous adoption and growth. More and more 
technologies have become part of the Java platform, and new APIs 
and standards have been developed to address various needs. 
Eventually, Sun and a group of industry leaders, under the auspices of 
the open Java Community Process (JCP), unified all these 
enterprise-related standards and APIs into the J2EE Platform. 

The J2EE Platform offers numerous advantages to the enterprise: 

• J2EE establishes standards for areas of enterprise computing 
needs such as database connectivity, enterprise business 



 - 16 -

components, message-oriented middleware (MOM), 
Web-related components, communication protocols, and 
interoperability. 

• J2EE promotes best-of-breed implementations based on open 
standards, protecting technological investment. 

• J2EE provides a standard platform for building software 
components that are portable across vendor implementations, 
avoiding vendor lock-in. 

• J2EE increases time-to-market since much of the infrastructure 
and plumbing is provided by the vendors' products that are 
implemented according to the standard J2EE specification. IT 
organizations can now get out of the middleware business and 
concentrate on building applications for their business. 

• J2EE increases programmer productivity, since Java 
programmers can relatively easily learn J2EE technologies 
based on the Java language. All enterprise software 
development can be accomplished under the J2EE platform, 
using Java as the programming language. 

• J2EE promotes interoperability within existing heterogenous 
environments. 

We discuss the J2EE Platform in greater detail in Chapter 2, so refer to 
that chapter for more information. Now we will take a brief look at 
patterns, their history, and the types of patterns in the J2EE Pattern 
Catalog that you will find in Part 3 of this book. 

What Are Patterns? 

Historical References 

In the 1970s, Christopher Alexander [Alex, Alex2] wrote a number of 
books documenting patterns in civil engineering and architecture. The 
software community subsequently adopted the idea of patterns based 
on his work, though there was burgeoning interest in the software 
community in these ideas already. 

Patterns in software were popularized by the book Design Patterns: 
Elements of Reusable Object-Oriented Software by Erich Gamma, 
Richard Helm, Ralph Johnson, and John Vlissides (also known as the 
Gang of Four, or GoF). Of course, while the Gang of Four work 
resulted in patterns becoming a common discussion topic in software 
development teams around the world, the important point to 
remember is that the patterns they describe were not invented by 



 - 17 -

these authors. Instead, having recognized recurring designs in 
numerous projects, the authors identified and documented this 
collection. 

Many software patterns books have been published since the GoF 
book, covering patterns for various domains and purposes. We 
provide references to a selected list of these titles and encourage you 
to investigate the other types of patterns described in these books. 

Defining a Pattern 

Patterns are about communicating problems and solutions. Simply 
put, patterns enable us to document a known recurring problem and 
its solution in a particular context, and to communicate this 
knowledge to others. One of the key elements in the previous 
statement is the word recurring, since the goal of the pattern is to 
foster conceptual reuse over time. 

We explore this in more detail in Chapter 6, in the section “What Is a 
Pattern?”. 

Here we examine some well-known definitions of patterns, beginning 
with one from Christopher Alexander in A Pattern Language [Alex2]: 

Each pattern is a three-part rule, which expresses a relation between 
a certain context, a problem, and a solution. 

—Christopher Alexander 

Alexander expands his definition further, and noted patterns figure 
Richard Gabriel [Gabriel] discusses this definition in more detail 
[Hillside2]. Gabriel offers his own version of Alexander's definition as 
applied to software: 

Each pattern is a three-part rule, which expresses a relation between 
a certain context, a certain system of forces which occurs repeatedly 
in that context, and a certain software configuration which allows 
these forces to resolve themselves. [See A Timeless Way of Hacking.] 

—Richard Gabriel 

This is a fairly rigorous definition, but there are also much looser ones. 
For example, Martin Fowler offers the following definition in Analysis 
Patterns [Fowler2]: 



 - 18 -

A pattern is an idea that has been useful in one practical context and 
will probably be useful in others. 

—Martin Fowler 

As you can see, there are many definitions for a pattern, but all these 
definitions have a common theme relating to the recurrence of a 
problem/solution pair in a particular context. 

Some of the common characteristics of patterns are 

• Patterns are observed through experience. 
• Patterns are typically written in a structured format (see 

“Pattern Template”). 
• Patterns prevent reinventing the wheel. 
• Patterns exist at different levels of abstraction. 
• Patterns undergo continuous improvement. 
• Patterns are reusable artifacts. 
• Patterns communicate designs and best practices. 
• Patterns can be used together to solve a larger problem. 

Many great minds have spent a significant amount of time attempting 
to define and refine the notion of a software pattern. Suffice it to say, 
we do not presume to be great minds, nor do we wish to spend time 
expanding these discussions. Instead, we attempt to be true to 
aspects of these various definitions, focusing on the most simple and 
recurring theme in each. 

Categorizing Patterns 

Patterns, then, represent expert solutions to recurring problems in a 
context and thus have been captured at many levels of abstraction 
and in numerous domains. Numerous categories have been 
suggested for classifying software patterns, with some of the most 
common being 

• design patterns 
• architectural patterns 
• analysis patterns 
• creational patterns 
• structural patterns 
• behavioral patterns 

Even within this brief list of categories, we see numerous levels of 
abstraction and orthogonal classification schemes. Thus, while many 



 - 19 -

taxonomies have been suggested, there is no one right way to 
document these ideas. 

We refer to the patterns in the catalog simply as “J2EE patterns”. Each 
pattern hovers somewhere between a design pattern and an 
architectural pattern, while the strategies document portions of each 
pattern at a lower level of abstraction. The only scheme we have 
introduced is to classify each pattern within one of the following three 
logical architectural tiers: 

• presentation tier 
• business tier 
• integration tier 

At some point in the evolution of the pattern catalog, perhaps it will 
grow to a size that will warrant its being classified using a more 
sophisticated scheme. Currently, however, we prefer to keep things 
simple and not to introduce any new terms unnecessarily. 

J2EE Pattern Catalog 

Continuous Evolution 

The J2EE patterns described in this book are based on our collective 
experience of working on the J2EE platform with Sun Java Center 
clients around the world. The Sun Java Center, a part of Sun 
Professional Services, is a consulting organization focused on building 
Java technology-based solutions for customers. We have been 
creating solutions for the J2EE platform since the platform's inception, 
focusing on achieving Quality of Service goals such as scalability, 
availability, and performance. 

During the early days, as we designed, developed, and implemented 
various systems on the J2EE platform, we started documenting our 
experiences in an informal way as design considerations, ideas, and 
notes. As the knowledge base grew, we recognized a need for a 
slightly more formal documentation to capture and communicate this 
knowledge. We transitioned to documenting these ideas as patterns, 
since patterns are ideally suited to capturing and communicating 
knowledge related to recurring problems and solutions. 

The first order of business was to sort out the level of abstraction with 
which the patterns were to be documented. Some problems and 
solutions overlapped others in that the core of the problem was the 



 - 20 -

same, but the solution was implemented in a different manner. To 
address this overlap, we had to tackle the issue of the level of 
abstraction and the granularity with which we defined each pattern. 
As you will see in the J2EE pattern catalog, we eventually settled on a 
level of abstraction that hovers somewhere between design pattern 
and architectural pattern. The details related to the solutions that deal 
with implementation at a lower level of abstraction are addressed in 
the “Strategies” sections in our pattern template (see “Pattern 
Template”). This allows us to describe each pattern at a higher level of 
abstraction and at the same time discuss the implementation details. 

Each pattern has been named and renamed many times. Additionally, 
each pattern has been rewritten many times, based on community 
feedback. Needless to say, these patterns, like all patterns, are 
subject to continuous improvement and will certainly evolve as the 
technology and specifications change. 

The J2EE pattern catalog currently includes 15 patterns and is 
presented in three chapters: Chapter 7, “Presentation Tier Patterns,” 
Chapter 8, “Business Tier Patterns,” and Chapter 9, “Integration Tier 
Patterns.” Each pattern is documented in our pattern template. 

Table 1-1 lists the patterns included in the catalog. 

Table 1-1. Patterns in the J2EE Pattern Catalog 

Tier  Pattern Name  

Presentation 

Tier 
“Intercepting Filter” “Front Controller” “View Helper” “Composite

View” “Service to Worker” “Dispatcher View”  

Business Tier “Business Delegate” “Value Object” “Session Facade” “Composite

Entity” “Value Object Assembler” “Value List Handler” “Service

Locator”  

Integration 

Tier 
“Data Access Object” “Service Activator”  

How to Use the J2EE Pattern Catalog 

One of the challenges when using any set of patterns is understanding 
how to best use the patterns in combination. As Christopher 
Alexander says in his book, A Pattern Language [Alex2]: 



 - 21 -

In short, no pattern is an isolated entity. Each pattern can exist in the 
world, only to the extent that is supported by other patterns: the 
larger patterns in which it is embedded, and the patterns of the same 
size that surround it, and the smaller patterns which are embedded in 
it. 

—Christopher Alexander 

The patterns in the J2EE pattern catalog are no exception to this rule. 
The pattern relationships diagram, explained in Chapter 6, “J2EE 
Patterns Overview,” describes how each pattern is supported by other 
patterns in the catalog. Chapter 6 also provides a roadmap to the J2EE 
pattern catalog, presented in tabular form, with common J2EE design 
and architecture-related questions paired with pattern or refactoring 
references, providing solutions to each question. To gain the 
maximum benefit from using these patterns, it is recommended that 
the pattern relationships and the pattern roadmap be well 
understood. 

As you study each pattern in detail, you will see the patterns and 
strategies that are embedded within it, in which it is contained, and 
which it supports. Sometimes the pattern builds on other patterns 
from the J2EE pattern catalog or from other patterns described in 
well-known literature such as Design Patterns: Elements of Reusable 
Object-Oriented Software [GoF] or Patterns of Software Architecture 
[POSA1, POSA2]. 

In an attempt to aid you in further understanding the patterns, their 
interrelationships, pattern selection, and pattern usage, we have 
provided supporting chapters in Part 2 of the book. 

In Part 2 of the book, we present bad practices and refactorings for 
the J2EE platform. For each bad practice that has been listed in these 
chapters, we provide links to refactorings or patterns that offer 
solutions to alleviate the problems created by that bad practice. In 
Chapter 5, “J2EE Refactorings,” we present refactorings that describe 
the steps involved in moving from a less optimal solution to a 
preferred one. The mechanics section of each refactoring provides 
references to patterns and design considerations that influence the 
direction of the refactoring. 

Finally, in Epilogue, “J2EE Patterns Applied,” we demonstrate an 
example of an application based on the J2EE patterns. We present 
some use cases to show how these patterns interact and work 
together to help realize a use case. 



 - 22 -

Benefits of Using Patterns 

You can use the J2EE patterns in this book to improve your system 
design, and you can apply them at any point in a project life cycle. The 
patterns in the catalog are documented at a relatively high level of 
abstraction and will provide great benefit when applied early in a 
project. Alternatively, if you apply a pattern during the 
implementation phase, you may have to rework existing code. In this 
case, the refactorings in Chapter 5 may prove quite useful. 

Patterns are often quite simple to use, though not always easy to 
understand. However, patterns can be difficult and time consuming to 
document, since this effort requires an examination of the essence of 
what constitutes a good practice. Recognizing good practices is 
typically a long-term effort. It involves distilling a large volume of 
knowledge down to its basics and putting it into words. We have tried 
to ensure that our documentation is clear and that it relates well to 
real world issues. At the same time, we recognize that this effort will 
continue to evolve and to be refined and improved over time. 

What are the benefits of using patterns? We describe in the following 
sections some of the benefits of using and applying patterns in a 
project. In brief, patterns 

• Leverage a proven solution. 
• Provide a common vocabulary. 
• Constrain solution space. 

Leverage a Proven Solution 

A pattern is documented based on the fact that the solution it offers 
has been used over and over again to solve similar problems at 
different times in different projects. Thus, patterns provide a powerful 
mechanism for reuse, helping developers and architects to avoid 
reinventing the wheel. 

Common Vocabulary 

Patterns provide software designers with a common vocabulary. As 
designers, we use patterns not only to help us leverage and duplicate 
successful designs, but also to help us convey a common vocabulary 
and format to developers. 



 - 23 -

A designer who does not rely on patterns needs to expend more effort 
to communicate his design to other designers or developers. Software 
designers use the pattern vocabulary to communicate effectively. This 
is similar to the real world, where we use a common vocabulary to 
communicate and exchange ideas. Just as in the real world, 
developers can build their vocabulary by learning and understanding 
patterns, increasing their design vocabulary as new patterns are 
documented. 

Once you start to use these patterns, you'll notice that you'll quickly 
begin to incorporate the pattern names into your vocabulary—and 
that you use the names of the patterns to replace lengthy descriptions. 
For example, suppose your problem solution entails use of a Value 
Object pattern. At first, you might describe the problem without 
putting a label on it. You may describe the need for your application to 
exchange data with enterprise beans, the need to maximize 
performance given the network overhead with remote invocations, 
and so forth. Later, once you've learned how to apply the Value Object 
pattern to the problem, you may refer to a similar situation in terms of 
a “Value Object” solution and build from there. 

To understand the impact of the pattern vocabulary, consider this 
exercise after you and another team member are familiar with the 
pattern catalog. Without using pattern names, try to explain what can 
be conveyed by simple sentences such as the following, in which the 
pattern names from the J2EE pattern catalog are italicized: 

• We should use Data Access Objects in our servlets and session 
beans. 

• How about using Value Object for transferring data to and from 
enterprise beans, and encapsulating all business services with 
Business Delegates? 

• Let's use Front Controller and Service to Worker. We may have 
to use Composite Views for some complex pages. 

Constrains Solution Space 

Pattern application introduces a major design 
component—constraints. Using a pattern constrains or creates 
boundaries within a solution space to which a design and 
implementation can be applied. Thus, a pattern strongly suggests to a 
developer boundaries to which an implementation might adhere. 
Going outside of these boundaries breaks the adherence to the 



 - 24 -

pattern and design, and may lead to the unwanted introduction of an 
anti-pattern. 

However, patterns do not stifle creativity. Instead, they describe a 
structure or shape at some level of abstraction. Designers and 
developers still have many options open to them for implementing the 
patterns within these boundaries. 

Patterns, Frameworks, and Reuse 

We have been chasing the illustrious software reuse goal for years 
now and have only had moderate success. In fact, most of the 
commercial reuse success has been in the user interface area, not in 
business components, which is our focus. As business system 
architects, we strive to promote reuse, but have really been 
concentrating on reuse at the design and architecture levels. The 
pattern catalog has proven a powerful way to promote this level of 
reuse. 

There are numerous relationships between each of the patterns in the 
catalog, and these relationships are sometimes referred to as being 
part of a pattern language. We provide a diagram of these 
relationships in Chapter 6, Figure 6.2. Another way to describe these 
relationships is in terms of a pattern framework, or a collection of 
patterns in a united scenario. This concept is key to identifying 
end-to-end solutions and wiring components together at the pattern 
level. 

Developers must understand more than discrete patterns in isolation, 
and have been asking for best practices as to how to link patterns 
together to form larger solutions. Combining the patterns from the 
catalog in this manner is what we refer to as leveraging a J2EE pattern 
framework. A framework, in this context, is about linking patterns 
together to form a solution to address a set of requirements. We think 
that this type of usage will drive the next generation of tools in J2EE 
development. Such automation of a pattern-driven process requires 

• Identifying scenarios and offering patterns that apply for each 
tier. 

• Identifying pattern combinations, or motifs, to provide pattern 
frameworks. 

• Selecting implementation strategies for each role. 

We provide a bit more information on this evolving area of 
development in Epilogue. 



 - 25 -

Summary 

By now you should have a good understanding of what constitutes a 
pattern and what this book is all about. The next chapter provides an 
introduction to the J2EE Platform and its various technologies. 



 - 26 -

Chapter 2. J2EE PLATFORM OVERVIEW 

Topics in This Chapter 

• A Brief Perspective 
• J2EE Platform 
• J2EE Patterns and J2EE Platform 

This chapter presents a high level overview of the Java™ 2 Platform, 
Enterprise Edition (J2EE) and its technologies. If you already 
understand the J2EE platform and its technologies and APIs, you may 
wish to skip this chapter. However, we suggest at a minimum that you 
read the section “J2EE Patterns and J2EE Platform”to understand 
what J2EE patterns are all about. 

Read on if you wish to refresh your memory on J2EE. 



 - 27 -

 

A Brief Perspective 

From its introduction to the world in 1994 to current day, the Java™ programming 

language has revolutionized the software industry. Java has been used in a myriad 

of ways to implement various types of systems. As Java started becoming more and 

more ubiquitous, spreading from browsers to phones to all kinds of devices, we saw 

it gradually hone in on one particular area and establish its strength and value 

proposition: That area is the use of Java on servers. Over time, Java has become the 

chosen platform for programming servers. 

Java provides its Write Once Run Anywhere™ advantage to IT organizations, 

application developers, and product vendors. IT organizations leverage the benefits 

of vendor independence and portability of their applications. The increasing 

availability of skilled Java programmers promoted Java's adoption in the industry. 

Unbelievably, the number of Java programmers has rocketed to 2.5 million 

developers in only five years. 

The simplicity of the language and the explosive growth of its use on the Internet 

and the intranet urged numerous developers and IT organizations to embrace Java 

as the de facto programming language for their projects. 

The client-server application architecture, a two-tier architecture, over time evolved 

to a multitier architecture. This natural progression occurred as additional tiers were 

introduced between the end-user clients and backend systems. Although a multitier 

architecture brings greater flexibility in design, it also increases the complexity for 

building, testing, deploying, administering, and maintaining application 

components. The J2EE platform is designed to support a multitier architecture, and 

thus it reduces this complexity. 

During this time, corporate Internet usage changed. Corporations transitioned from 

providing a simple corporate Web site to exposing some of their not-so-critical 

applications to the external world. In this first phase of Internet experimentation, IT 

managers were still skeptical and the security police were adamantly unfriendly to 

the idea of using the Internet to run and expose business services. 

Before long, more and more companies started to embrace the power of the 

Internet. For example, customer service organizations began to provide service on 

the Web, in addition to the traditional methods of supporting customers by phone 

and email. Such organizations recognized the major cost implications of providing 

online service. Customers could now help themselves for most problems, and call a 

customer service agent only for more serious issues. 



 - 28 -

Customers liked using the Web too, as it improved their productivity. Soon, 

customers started expecting more and more online services from companies, and 

companies had to step up and provide these services. If they did not, someone else 

would. 

Since then, almost everything has gone online—banking, bill payment, travel, 

ticketing, auctioning, car buying services, mortgages and loans, pharmacies, and 

even pet food! New companies were created that had no business model (now we 

know) other than opening shop online. They thrived and they thrashed. Established 

companies had to make their online presence felt to face the challenges of these 

new kids on the block. This tremendous growth fueled the need for a robust, 

enterprise class, Web-centric application infrastructure. 

Application Servers—The New Breed 

As the acceptance and adoption of Java on the server side became more established, 

and the demand for Web-centric application infrastructure rose, we saw an 

emergence of a new breed of infrastructure applications—application servers. 

Application servers provided the basic infrastructure required for developing and 

deploying multitiered enterprise applications. 

These application servers had numerous benefits. One important benefit was that IT 

organizations no longer needed to develop their proprietary infrastructure to 

support their applications. Instead, they could now rely on the application server 

vendor to provide the infrastructure. This not only reduced the cost of their 

applications, but also reduced the time-to-market. 

Each application server had its own benefits and disadvantages. Because there were 

no standards for application servers, no two application servers were completely 

alike. Some application servers were based on Java, and these allowed you to write 

only Java components to run on that server, while others used different languages 

for development. 

Convergence of Java Technologies 

In the area of Web applications, there were significant developments in Java as well. 

The Common Gateway Interface (CGI) approach for developing Web-centric 

applications was resource-intensive and did not scale well. With the introduction of 

servlet technology, Java developers had an elegant and efficient mechanism to 

write Web-centric applications that generated dynamic content. However, writing 

servlets still took some effort and Java expertise. 

Then, the Java Server Pages (JSP) technology was introduced, particularly for Web 

and graphic designers accustomed to Hypertext Markup Language (HTML) and 



 - 29 -

JavaScript scripting. JSP technology made it easier for Web front developers to write 

Web-centric applications. One need not know Java and servlet programming to 

develop pages in JSP. 

JSP technology addresses the need for a scripting language for Web application 

clients. Web designers skilled at HTML and JavaScript can quickly learn JSP 

technology and use it to write Web applications. Of course, the Web server 

translates JSPs into servlets, but that happens “under the wraps.” Effectively, 

servlets and JSPs separate Web application development roles. 

The standard approach for database access in Java applications is Java Database 

Connectivity (JDBC). The JDBC API (application programming interface) gives 

programmers the ability to make their Java applications independent of the 

database vendor. One can write a JDBC application that accesses a database using 

standard Structured Query Language (SQL). If the underlying database changes 

from one vendor's product to another, the JDBC application works without any code 

change, provided that the code is properly written and does not use any proprietary 

extensions from the first vendor. JDBC API is offered as part of the core APIs in the 

Java ™ 2 Platform, Standard Edition (J2SE™). 

J2SE (formerly known as Java Development Kit or JDK) is the foundation for all Java 

APIs. J2SE consists of a set of core APIs that define the Java programming language 

interfaces and libraries. Java developers use the J2SE as the primary API for 

developing Java applications. As requirements expand and the Java language 

matures over the years, the J2SE offers additional APIs as standard extensions. 

As Java established its permanent role on the server side, and the adoption of 

various Java APIs became widespread, Sun put together an initiative to unify 

standards for various Java technologies into a single platform. The initiative to 

develop standards for enterprise Java APIs was formed under the open Java 

Community Process (JCP). Enterprise Java APIs are a collection of various APIs that 

provide vendor-independent programming interfaces to access various types of 

systems and services. The enterprise Java APIs emerged as the Java ™ 2 Platform, 

Enterprise Edition (J2EE™). 

The Rise of the J2EE Platform 

The Enterprise Java Beans™ (EJB™) technology is one of the prominent, promising 

technologies in the J2EE platform. The EJB architecture provides a standard for 

developing reusable Java server components that run in an application server. The 

EJB specification and APIs provide a vendor-independent programming interface for 

application servers. EJB components, called enterprise beans, provide for 

persistence, business processing, transaction processing, and distributed 

processing capabilities for enterprise applications. In short, the EJB technology 

offers portability of business components. 



 - 30 -

Various application vendors, having come together with Sun under the open JCP to 

develop this standard, adopted and implemented the EJB specification into their 

application server products. Similar to JDBC application portability, EJB applications 

are portable from one application server vendor to another. Again, this is true if the 

application does not use any vendor-dependent feature of the application server. 

J2EE technologies are now a proven and established platform for distributed 

computing for the enterprise. 

Java Message Service (JMS) is another standard API in the J2EE platform. It brings 

the same kind of standardization to messaging as JDBC brought for databases. JMS 

provides a standard Java API for using message-oriented middleware (MOM) for 

point-to-point and publish/subscribe types of enterprise messaging. As with the 

other technologies, JMS brings vendor independence in the MOM products for Java. 

In each of these areas, Sun and other companies collaborated in coming up with an 

acceptable standard under the auspices of the open JCP. The JCP coordinated the 

activities to develop these standards. This cooperation is a foundation for the 

success of these APIs. 

J2EE Value Proposition 

The J2EE platform, built on the Java programming language and Java technologies, 

is the application architecture that is best suited for an enterprise-distributed 

environment. The J2EE platform is a standard that brings the following benefits to IT 

organizations, application developers, and product vendors: 

• Vendors develop products that can run on any system that supports the J2EE 

platform. With virtually no extra effort, their products are available on a wide 

range of system platforms. 

• Corporate IT developers benefit from the advantages of portable component 

technology. IT applications become vendor-independent and release the IT 

organizations from the clutches of vendor lock-in. 

• IT developers can focus on supporting business process requirements rather 

than building in-house application infrastructure. The application servers 

handle the complex issues of multithreading, synchronization, transactions, 

resource allocation, and life-cycle management. 

• IT organizations can take advantage of the best available products built on a 

standard platform. They can choose among products and select the most 

suitable and cost-effective development products, deployment products, 

and deployment platforms based on their requirements. 

• Adopting the J2EE platform results in a significant productivity increase. Java 

developers can quickly learn the J2EE APIs. 



 - 31 -

• Companies protect their investment by adopting the J2EE platform, since it 

is an industry-supported standard and not a vendor-defined lock-in 

architecture. 

• Development teams can build new applications and systems more rapidly. 

This decreases time-to-market and reduces the cost of development. 

• A standard development platform for distributed computing ensures that 

robust applications are built on a proven platform. 

• The J2EE platform provides a clear, logical, and physical partitioning of 

applications into various tiers, thus naturally addressing multitiered 

application requirements. 

• Developers can either build their own J2EE component or procure it from the 

rapidly growing third-party components market. Vendors are able to offer 

their components individually, and customers are able to buy these software 

parts as needed. 

J2EE Platform 

The previous section described the core technology components of the J2EE 

platform, such as servlet, JSP, EJB, JDBC, and JMS. In this section, we take a look 

at the J2EE architecture model and describe other aspects of the J2EE platform that 

complete the platform definition. 

J2EE Architecture 

The J2EE architecture is a multitiered architecture. See Figure 2.1. 



 - 32 -

Figure 2.1. J2EE architecture 

 

The J2EE architecture consists of the following tiers: 

• Client tier—  The client tier interacts with the user and displays information 

from the system to the user. The J2EE platform supports different types of 

clients, including HTML clients, Java applets, and Java applications. 

• Web tier—  The Web tier generates presentation logic and accepts user 

responses from the presentation clients, which are typically HTML clients, 

Java applets, and other Web clients. Based on the received client request, 

The presentation tier generates the appropriate response to a client request 

that it receives. In the J2EE platform, servlets and JSPs in a Web container 

implement this tier. 

• Business tier—  This tier handles the core business logic of the application. 

The business tier provides the necessary interfaces to the underlying 

business service components. The business components are typically 

implemented as EJB components with support from an EJB container that 

facilitates the component life cycle and manages persistence, transactions, 

and resource allocation. 

• EIS tier—  This tier is responsible for the enterprise information systems, 

including database systems, transaction processing systems, legacy 

systems, and enterprise resource planning systems. The EIS tier is the point 

where J2EE applications integrate with non-J2EE or legacy systems. 



 - 33 -

Java 2 Standard Edition 

J2SE is the underlying base platform for J2EE, hence a brief discussion on the J2SE 

platform is relevant to the J2EE platform. The J2SE platform includes two 

deliverables: 

• Java 2 SDK, Standard Edition (J2SE SDK) 

• Java 2 Runtime Environment, Standard Edition (JRE) 

J2SE SDK, formerly the JDK, is the Java programming language's core API set. J2SE 

provides the Java language functionality as well as the core libraries required for 

Java development. The core libraries are the classes within the java.* packages. In 

addition, J2SE provides auxiliary interfaces and libraries as extensions. It makes 

these standard extensions available as javax.* packages. 

J2SE includes tools and APIs for developing applications with graphical user 

interfaces (GUIs), database access, directory access, Common Object Request 

Broker Architecture (CORBA), fine-grained security, input/output functions, and 

many other functions. See Table 2-1 . 

Table 2-1.  

Function  Package Name  

Graphical user interface java.awt.*, javax.swing.*  

Database access java.sql.*  

Directory access javax.naming.*  

CORBA  javax.rmi.CORBA.*  

Security java.security.*  

Input/output java.io.*  

Figure 2.2 shows the various components of the J2SE platform. 



 - 34 -

Figure 2.2. J2SE platform 

 

J2EE Application Components and Containers 

The J2EE component container supports application components in the J2EE 

platform. A container is a service that provides the necessary infrastructure and 

support for a component to exist and for the component to provide its own services 

to clients. A container usually provides its services to the components as a Java 

compatible runtime environment. 

The core application components in the J2EE platform are as follows: 

• Java application components—  standalone Java programs that run 

inside an application container. 

• Applet components—  Java applets that run inside an applet container, 

and which are usually supported via a Web browser. 

• Servlets and JSPs—  Web-tier components that run in a Web container. 

Servlets and JSPs provide mechanisms for dynamic content preparation, 

processing, and formatting related to presentation. 

• EJB components—  Coarse-grained business components that are run 

inside an EJB container (usually bundled in an application server product). 

EJB components, or enterprise beans, come in two types: session beans and 

entity beans. Session beans are enterprise beans that are suitable for 

processing or workflow. Session beans come in two flavors: stateful and 

stateless. A stateful session bean retains client state between method 

invocations. A stateless session bean does not retain client-specific state 

between client-invoked methods. Stateless session beans are used when no 

state needs to be stored between method invocations, and they may offer 

performance benefits over stateful session beans, which must be used when 

some state needs to be retained between invocations. Session bean 

instances pertain to a single user session and are not shared between users. 



 - 35 -

Entity beans are used when a business component needs to be persisted and 

shared among multiple users. Entity bean persistence can be managed in 

two ways: bean-managed persistence (BMP) and container-managed 

persistence (CMP). BMP is used when the bean developer implements all 

mechanisms for persisting the state in the bean. CMP is used when the bean 

developer does not implement the persistence mechanisms in the bean. 

Instead, the bean developer specifies the necessary mapping between the 

bean attributes and the persistent storage and lets the container do the job. 

The core focus of the J2EE patterns in this book is the design and architecture of 

applications using servlets, JSPs, and enterprise bean components. 

Standard Services 

The J2EE platform specifies the following standard services that every J2EE product 

supports. These services include APIs, which every J2EE product must also provide 

to application components so that the components may access the services. 

• HTTP—  Standard protocol for Web communications. Clients can access 

HTTP via the java.net package 

• HTTP over Secure Socket Layer (HTTPS)—  Same as HTTP, but the 

protocol is used over Secure Socket Layer for security. 

• JDBC—  A standard API to access database resources in a 

vendor-independent manner. 

• JavaMail—  An API that provides a platform-independent and 

protocol-independent framework to build mail and messaging applications in 

Java. 

• Java Activation Framework (JAF)—  APIs for an activation framework 

that is used by other packages, such as JavaMail. Developers can use JAF to 

determine the type of an arbitrary piece of data, encapsulate access to it, 

discover the operations available on it, and instantiate the appropriate bean 

to perform these operations. For example, JavaMail uses JAF to determine 

what object to instantiate depending on the mime type of the object. 

• Remote Method Invocation/Internet Inter-ORB Protocol 

(RMI/IIOP)—  Protocol that enables Remote Method Invocation (RMI) 

programmers to combine the benefits of using the RMI APIs and robust 

CORBA IIOP communications protocol to communicate with 

CORBA-compliant clients that have been developed using any language 

compliant with CORBA. 

• Java Interface Definition Language (JavaIDL)—  A service that 

incorporates CORBA into the Java platform to provide interoperability using 

standard IDL defined by the Object Management Group. Runtime 

components include Java ORB (Object Request Broker) for distributed 

computing using IIOP communication. 



 - 36 -

• Java Transaction API (JTA)—  A set of APIs that allows transaction 

management. Applications can use the JTA APIs to start, commit, and abort 

transactions. JTA APIs also allow the container to communicate with the 

transaction manager, and allow the transaction manager to communicate 

with the resource manager. 

• JMS—  An API to communicate with MOM to enable point-to-point and 

publish/subscribe messaging between systems. JMS offers vendor 

independence for using MOMs in Java applications. 

• Java Naming and Directory Interface (JNDI)—  A unified interface to 

access different types of naming and directory services. JNDI is used to 

register and look up business components and other service-oriented 

objects in a J2EE environment. JNDI includes support for Lightweight 

Directory Access Protocol (LDAP), the CORBA Object Services (COS) Naming 

Service, and the Java RMI Registry. 

J2EE Platform Roles 

The J2EE platform uses a set of defined roles to conceptualize the tasks related to 

the various workflows in the development and deployment life cycle of an enterprise 

application. These role definitions provide a logical separation of responsibilities for 

team members involved in the development, deployment, and management of a 

J2EE application. See Figure 2.3. 



 - 37 -

Figure 2.3. J2EE platform roles 

 

The J2EE roles are as follows: 

• J2EE product provider—  Provides component containers, such as 

application servers and Web servers, that are built to conform to the J2EE 

specification. The product provider must also provide tools to deploy 

components into the component containers. These tools are typically used 

by the deployer. In addition, the product provider must provide tools to 

manage and monitor the applications in the container. The system 

administrator typically uses these latter tools. This role is fulfilled by the 

product vendors. 

• Application component provider—  Provides business components built 

using the J2EE APIs. These components include components for Web 

applications as well as for EJB applications. This role is fulfilled by 

programmers, developers, Web designers, and so forth. 

• Application assembler—  Assembles, or puts together, a set of 

components into a deployable application. The assembler obtains the 

application components from the component providers. The application 



 - 38 -

assembler packages the application and provides the necessary assembly 

and deployment instructions to the deployer. 

• Application deployer—  Deploys the assembled application into a J2EE 

container. The deployer may deploy Web applications into containers—Web 

containers, EJB containers, and so on—using the tools provided by the J2EE 

product provider. The deployer is responsible for installation, configuration, 

and execution of the J2EE application. 

• System administrator—  Has the responsibility of monitoring the 

deployed J2EE applications and the J2EE containers. The system 

administrator uses the management and monitoring tools provided by the 

J2EE product provider. 

• Tool provider—  Provides tools used for development, deployment, and 

packaging of components. 

Deployment Descriptors 

An application assembler puts a J2EE application together for deployment, and at 

the same time provides the assembly and deployment instructions in special files 

called deployment descriptors. The J2EE specification defines deployment 

descriptors as the contract between the application assembler and the deployer. 

Deployment descriptors are XML documents that include all the necessary 

configuration parameters required to deploy the J2EE application or J2EE 

components. Such configuration parameters specify external resource 

requirements, security requirements, environment parameters, and other 

component-specific and application-specific parameters. The deployer may use a 

deployment tool provided by the J2EE product provider to inspect, modify, 

customize, and add configuration parameters in these deployment descriptors to 

tailor the deployment to the capabilities of the deployment environment. 

Deployment descriptors offer flexibility for the development and deployment of 

J2EE application components by allowing changes to configurations and 

dependencies as needed during the different application phases: the development, 

deployment, and administration phases. Much of this flexibility is due to descriptors 

defining parameters in a declarative fashion, rather than having the parameters be 

embedded in the program code. 

J2EE Patterns and J2EE Platform 

As you can see from the overview, the J2EE platform standardizes a 
number of different technologies to provide a robust platform for 
building distributed multitier enterprise class applications. The J2EE 
platform is built on the J2SE platform. Since the J2SE platform forms 



 - 39 -

the foundation of the J2EE platform, a Java developer can learn the 
J2EE technologies with relative ease. 

However, there is a belief that learning a new technology by itself is 
sufficient to make us adept at designing systems based on that new 
technology. We respectfully disagree with this. We believe that in 
addition to learning the technology, we need other insights to build 
successful systems. Patterns can help facilitate the process of 
knowledge accumulation and knowledge transfer. Patterns help us to 
document and communicate proven solutions to recurring problems 
in different environments. Using patterns effectively, we can prevent 
the “re-invent the wheel” syndrome. 

Our J2EE patterns are derived from our experience with the J2EE 
platform and technologies. The J2EE patterns described in this book 
address different requirements spread across all the J2EE tiers. In our 
tiered approach (see “The Tiered Approach”), we have modeled the 
J2EE multiple tiers as five tiers: client, presentation, business, 
integration, and resource tiers. This model allows us to logically 
separate responsibilities into individual tiers. In our model, for 
example, we separate the EIS tier into an integration tier and a 
resource tier. By doing so, we make it easier to separately address the 
requirements of integration and resources. Thus, the tiers in our 
model are a logical separation of concerns. 

We've categorized the J2EE patterns described in this book into three 
of these five tiers—presentation, business, and integration. In our 
opinion, the client and resource tiers are not direct concerns of the 
J2EE platform. The patterns related to servlets and JSP technologies 
are described in Chapter 7, “Presentation Tier Patterns.” The patterns 
related to enterprise beans and JNDI technologies, and those related 
to bridging the presentation and business tier components, are 
described in Chapter 8, “Business Tier Patterns.” Finally, the patterns 
related to JDBC and JMS technologies, aimed at bridging the business 
tier with the resource tier, are described in Chapter 9, “Integration 
Tier Patterns.” 

Because our most intensive work has been in these core areas of the 
J2EE platform, we currently do not address patterns other than these 
aforementioned technologies. We feel that the developer community 
gains a huge benefit if we first document the patterns in these core 
areas. We also believe that this categorization allows us to be flexible, 
and as new patterns are observed, we will categorize and document 
them. 



 - 40 -

We believe that these patterns will prove useful to you as they did to 
us and our fellow architects. They may be reused as solutions to the 
problems you may encounter during your J2EE design and 
architecture experience. We are also aware that patterns evolve over 
time, and we expect that our patterns are no exception. The patterns 
presented here have been refined many times. They have been 
written and rewritten to make them better. This process of evolution 
will continue. 

Summary 

While this chapter provided an overview of the J2EE platform, it also 
included a flurry of terminologies and acronyms. If you are interested 
in learning more, the following online resources are recommended: 

• The Story of the Java 
Platform—http://java.sun.com/nav/whatis/storyofjava.html 

• Java Technology—An Early 
History—http://java.sun.com/features/1998/05/birthday.html 

• Java Community 
Process—http://java.sun.com/aboutJava/communityprocess/ 

• J2SE Platform 
Documentation—http://java.sun.com/docs/index.html 

• J2EE home page—http://java.sun.com/j2ee 
• J2EE 

Blueprints—http://java.sun.com/j2ee/blueprints/index.html 
• EJB home page—http://java.sun.com/products/ejb 
• Servlets home 

page—http://www.java.sun.com/products/servlet 
• JSP home page—http://www.java.sun.com/products/jsp 
• JDBC home page—http://www.java.sun.com/products/jdbc 
• JMS home page—http://www.java.sun.com/products/jms 
• JNDI home page—http://java.sun.com/products/jndi 
• Connector home page—http://java.sun.com/j2ee/connector 



 - 41 -

Part II: DESIGN CONSIDERATIONS, BAD 

PRACTICES, AND REFACTORINGS 

Part II includes the following three chapters: 

• Chapter 3—Presentation Tier Design Considerations and 
Bad Practices 

• Chapter 4—Business Tier Design Considerations and Bad 
Practices 

• Chapter 5—J2EE Refactorings 

Chapter 3 and 4, as their names suggest, discuss various design 
considerations and bad practices. 

When applying the patterns from the catalog, developers will need to 
consider numerous adjunct design issues, such as the ones discussed 
in these chapters. These include issues affecting numerous aspects of 
the system, including security, data integrity, manageability, and 
scalability. 

Many of these design issues could be captured in pattern form, as well, 
although they primarily focus on issues at a lower level of abstraction 
than those described in the J2EE Pattern Catalog. Instead of 
documenting each as a pattern, we have chosen to document them 
more informally, simply describing each as a design issue to be 
considered when implementing systems based on the pattern catalog. 
While a complete discussion of each issue is outside the scope of this 
book, we wanted to mention these concerns, and encourage the 
reader to investigate these issues. 

Chapter 3 and 4 also highlight less than optimal ways to solve certain 
problems—solutions which we term bad practices. Each bad practice 
provides a brief problem summary accompanied by a list of solution 
references. The solution references are a list of pointers to other 
sections of the book with related material, suggesting preferred ways 
to solve these problems. Typically, these references are to a pattern 
in the catalog, to a refactoring, or to a combination of the two. 

Chapter 5 presents refactorings for the J2EE Platform. The 
presentation format of this chapter is based on that in Martin Fowler's 
book Refactoring [Fowler], an excellent guide for those wishing to 
learn more about software design. Each refactoring identifies a simple 
problem and solution statement, offers motivations for improving the 
problem, and suggests mechanics for doing so. 



 - 42 -



 - 43 -

Chapter 3. PRESENTATION TIER DESIGN 

CONSIDERATIONS AND BAD PRACTICES 

Topics in This Chapter 

• Presentation Tier Design Considerations 

• Presentation Tier Bad Practices 



 - 44 -

Presentation Tier Design Considerations 

When developers apply the presentation patterns that appear in the catalog in this 

book, there will be adjunct design issues to consider. These issues relate to 

designing with patterns at a variety of levels, and they may affect numerous aspects 

of a system, including security, data integrity, manageability, and scalability. We 

discuss these issues in this chapter. 

Although many of these design issues could be captured in pattern form, we chose 

not to do so because they focus on issues at a lower level of abstraction than the 

presentation patterns in the catalog. Rather than documenting each issue as a 

pattern, we have chosen to document them more informally: We simply describe 

each issue as one that you should consider when implementing systems based on 

the pattern catalog. 

Session Management 

The term user session describes a conversation that spans multiple requests 

between a client and a server. We rely on the concept of user session in the 

discussion in the following sections. 

Session State on Client 

Saving session state on the client involves serializing and embedding the session 

state within the view markup HTML page that is returned to the client. 

There are benefits to persisting session state on the client: 

• It is relatively easy to implement. 

• It works well when saving minimal amounts of state. 

Additionally, this strategy virtually eliminates the problem of replicating state across 

servers in those situations that implement load balancing across physical machines. 

There are two common strategies for saving session state on the client—HTML 

hidden fields and HTTP cookies—and we describe these strategies below. A third 

strategy entails embedding the session state directly into the URIs referenced in 

each page (for example, <form action=someServlet?var1=x&var2=y 

method=GET>). Although this third strategy is less common, it shares many of the 

limitations of the following two methods. 



 - 45 -

HTML Hidden Fields 

Although it is relatively easy to implement this strategy, there are numerous 

drawbacks to using HTML hidden fields to save session state on the client. These 

drawbacks are especially apparent when saving large amounts of state. Saving 

large amounts of state negatively affects performance. Since all view markup now 

embeds or contains the state, it must traverse the network with each request and 

response. 

Additionally, when you utilize hidden fields to save session state, the persisted state 

is limited to string values, so any object references must be “stringified”. It is also 

exposed in clear text in the generated HTML source, unless specifically encrypted. 

HTTP Cookies 

Similar to the hidden fields strategy, it is relatively easy to implement the HTTP 

cookies strategy. This strategy unfortunately shares many of the same drawbacks 

as well. In particular, saving large amounts of state causes performance to suffer, 

because all the session state must traverse the network for each request and 

response. 

We also run into size and type limitations when saving session state on the client. 

There are limitations on the size of cookie headers, and this limits the amount of 

data that can be persisted. Moreover, as with hidden fields, when you use cookies to 

save session state, the persisted state is limited to stringified values. 

Security Concerns of Client-Side Session State 

When you save session state on the client, security issues are introduced that you 

must consider. If you do not want your data exposed to the client, then you need to 

employ some method of encryption to secure the data. 

Although saving session state on the client is relatively easy to implement initially, 

it has numerous drawbacks that take time and thought to overcome. For projects 

that deal with large amounts of data, as is typical with enterprise systems, these 

drawbacks far outweigh the benefits. 

Session State in the Presentation Tier 

When session state is maintained on the server, it is retrieved using a session ID 

and typically persists until one of the following occurs: 



 - 46 -

• A predefined session timeout is exceeded. 

• The session is manually invalidated. 

• The state is removed from the session. 

Note that after a server shutdown, some in-memory session management 

mechanisms may not be recoverable. 

It is clearly preferable for applications with large amounts of session state to save 

their session state on the server. When state is saved on the server, you are not 

constrained by the size or type limitations of client-side session management. 

Additionally, you avoid raising the security issues associated with exposing session 

state to the client, and you do not have the performance impact of passing the 

session state across the network on each request. 

You also benefit from the flexibility offered by this strategy. By persisting your 

session state on the server, you have the flexibility to trade off simplicity versus 

complexity and to address scalability and performance. 

If you save session state on the server, you must decide how to make this state 

available to each server from which you run the application. This issue is one that 

requires you to deal with the replication of session state among clustered software 

instances across load-balanced hardware, and it is a multidimensional problem. 

However, numerous application servers now provide a variety of out-of-the-box 

solutions. There are solutions available that are above the application server level. 

One such solution is to maintain a “sticky” user experience, where you use traffic 

management software, such as that available from Resonate [Resonate], to route 

users to the same server to handle each request in their session. This is also 

referred to as server affinity. 

Another alternative is to store session state in either the business tier or the 

resource tier. Enterprise JavaBeans components may be used to hold session state 

in the business tier, and a relational database may be used in the resource tier. For 

more information on the business-tier option, please refer to “Using Session Beans”. 

Controlling Client Access 

There are numerous reasons to restrict or control client access to certain application 

resources. In this section, we examine two of these scenarios. 

One reason to restrict or control client access is to guard a view, or portions of a 

view, from direct access by a client. This issue may occur, for example, when only 

registered or logged-in users should be allowed access to a particular view, or if 

access to portions of a view should be restricted to users based on role. 



 - 47 -

After describing this issue, we discuss a secondary scenario relating to controlling 

the flow of a user through the application. The latter discussion points out concerns 

relating to duplicate form submissions, since multiple submissions could result in 

unwanted duplicate transactions. 

Guarding a View 

In some cases, a resource is restricted in its entirety from being accessed by certain 

users. There are several strategies that accomplish this goal. One is including 

application logic that executes when the controller or view is processed, disallowing 

access. A second strategy is to configure the runtime system to allow access to 

certain resources only via an internal invocation from another application resource. 

In this case, access to these resources must be routed through another 

presentation-tier application resource, such as a servlet controller. Access to these 

restricted resources is not available via a direct browser invocation. 

One common way of dealing with this issue is to use a controller as a delegation 

point for this type of access control. Another common variation involves embedding 

a guard directly within a view. We cover controller-based resource protection in 

“Presentation Tier Refactorings” and in the pattern catalog, so we will focus here on 

view-based control strategies. We describe these strategies first, before considering 

the alternative strategy of controlling access through configuration. 

Embedding Guard Within View 

There are two common variations for embedding a guard within a view's processing 

logic. One variation blocks access to an entire resource, while the other blocks 

access to portions of that resource. 

Including an All-or-Nothing Guard per View 

In some cases, the logic embedded within the view processing code allows or denies 

access on an all-or-nothing basis. In other words, this logic prevents a particular 

user from accessing a particular view in its entirety. Typically, this type of guard is 

better encapsulated within a centralized controller, so that the logic is not sprinkled 

throughout the code. This strategy is reasonable to use when only a small fraction 

of pages need a guard. Typically, this scenario occurs when a nontechnical 

individual needs to rotate a small number of static pages onto a site. If the client 

must still be logged into the site to view these pages, then add a custom tag helper 

to the top of each page to complete the access check, as shown in Example 3.1. 



 - 48 -

Example 3.1 Including an All-or-Nothing Guard per 

View 

<%@ taglib uri="/WEB-INF/corej2eetaglibrary.tld" 

  prefix="corePatterns" %> 

 

<corePatterns:guard/> 

<HTML> 

. 

. 

. 

</HTML> 

Including a Guard for Portions of a View 

In other cases, the logic embedded within the view processing code simply denies 

access to portions of a view. This secondary strategy can be used in combination 

with the previously mentioned all-or-nothing strategy. To clarify this discussion, 

let's use an analogy of controlling access to a room in a building. The all-or-nothing 

guard tells users whether they can walk into the room or not, while the secondary 

guard logic tells users what they are allowed to see once they are in the room. 

Following are some examples of why you might want to utilize this strategy. 

Portions of View Not Displayed Based on User Role 

A portion of the view might not be displayed based on the user's role. For example, 

when viewing her organizational information, a manager has access to a subview 

dealing with administering review materials for her employees. An employee might 

only see his own organizational information, and be restricted from the portions of 

the user interface that allow access to any review-related information, as shown in 

Example 3.2. 

Example 3.2 Portions of View Not Displayed Based on 

User Role 

<%@ taglib uri="/WEB-INF/corej2eetaglibrary.tld" 

  prefix="corePatterns" %> 

 

<HTML> 

. 



 - 49 -

. 

. 

<corePatterns:guard role="manager"> 

<b>This should be seen only by managers!</b> 

<corePatterns:guard/> 

. 

. 

. 

</HTML> 

Portions of View Not Displayed Based on System 

State or Error Conditions 

Depending on the system environment, the display layout may be modified. For 

example, if a user interface for administering hardware CPUs is used with a 

single-CPU hardware device, portions of the display that relate solely to multiple 

CPU devices may not be shown. 

Guarding by Configuration 

To restrict the client from directly accessing particular views, you can configure the 

presentation engine to allow access to these resources only via other internal 

resources, such as a servlet controller using a RequestDispatcher. Additionally, you 

can leverage the security mechanisms that are built into the Web container, based 

on the servlet specification, version 2.2 and later. Security constraints are defined in 

the deployment descriptor, called web.xml. 

The basic and form-based authentication methods, also described in the Servlet 

specification, rely on this security information. Rather than repeat the specification 

here, we refer you to the current specification for details on these methods. (See 

http://java.sun.com/products/servlet/index.html.) 

So that you understand what to expect when adding declarative security constraints 

to your environment, we present a brief discussion of this topic and how it relates to 

all-or-nothing guarding by configuration. Finally, we describe one simple and 

generic alternative for all-or-nothing protection of a resource. 

Resource Guards via Standard Security Constraints 

Applications may be configured with a security constraint, and this declarative 

security may be used programmatically to control access based on user roles. 

Resources can be made available to certain roles of users and disallowed to others. 



 - 50 -

Moreover, as described in “Embedding Guard Within View”, portions of a view can 

be restricted based on these user roles as well. If there are certain resources that 

should be disallowed in their entirety for all direct browser requests, as in the 

all-or-nothing scenario described in the previous section, then those resources can 

be constrained to a security role that is not assigned to any users. Resources 

configured in this manner remain inaccessible to all direct browser requests, as long 

as the security role remains unassigned. See Example 3.3 for an excerpt of a 

web.xml configuration file that defines a security role to restrict direct browser 

access. 

The role name is “sensitive” and the restricted resources are named 

sensitive1.jsp, sensitive2.jsp, and sensitive3.jsp. Unless a user or group is 

assigned the “sensitive” role, then clients will not be able to directly access these 

Java Server Pages (JSPs). At the same time, since internally dispatched requests 

are not restricted by these security constraints, a request that is handled initially by 

a servlet controller and then forwarded to one of these three resources will indeed 

receive access to these JSPs. 

Finally, note that there is some inconsistency in the implementation of this aspect of 

the Servlet specification version 2.2 across vendor products. Servers supporting 

Servlet 2.3 should all be consistent on this issue. 

Example 3.3 Unassigned Security Role Provides 

All-or-Nothing Control 

<security-constraint> 

      <web-resource-collection> 

      <web-resource-name>SensitiveResources 

  </web-resource-name> 

      <description>A Collection of Sensitive Resources 

  </description> 

        <url-pattern>/trade/jsp/internalaccess/ 

  sensitive1.jsp</url-pattern> 

    <url-pattern>/trade/jsp/internalaccess/ 

  sensitive2.jsp</url-pattern> 

    <url-pattern>/trade/jsp/internalaccess/ 

  sensitive3.jsp</url-pattern> 

        <http-method>GET</http-method> 

      <http-method>POST</http-method> 

    </web-resource-collection> 

    <auth-constraint> 

      <role-name>sensitive</role-name> 

    </auth-constraint> 



 - 51 -

  </security-constraint> 

Resource Guards via Simple and Generic 

Configuration 

There is a simple and generic way to restrict a client from directly accessing a 

certain resource, such as a JSP. This method requires no configuration file 

modifications, such as those shown in Example 3.3. This method simply involves 

placing the resource under the /WEB-INF/ directory of the Web application. For 

example, to block direct browser access to a view called info.jsp in the 

securityissues Web application, we could place the JSP source file in the following 

subdirectory: /securityissues/WEB-INF/internalaccessonly/info.jsp. 

Direct public access is disallowed to the /WEB-INF/ directory, its subdirectories, and 

consequently to info.jsp. On the other hand, a controller servlet can still forward 

to this resource, if desired. This is an all-or-nothing method of control, since 

resources configured in this manner are disallowed in their entirety to direct 

browser access. 

For an example, please refer to “Hide Resource From a Client”. 

Duplicate Form Submissions 

Users working in a browser client environment may use the Back button and 

inadvertently resubmit the same form they had previously submitted, possibly 

invoking a duplicate transaction. Similarly, a user might click the Stop button on the 

browser before receiving a confirmation page, and subsequently resubmit the same 

form. In most cases, we want to trap and disallow these duplicate submissions, and 

using a controlling servlet provides a control point for addressing this problem. 

This strategy addresses the problem of duplicate form submissions. A synchronizer 

token is set in a user's session and included with each form returned to the client. 

When that form is submitted, the synchronizer token in the form is compared to the 

synchronizer token in the session. The tokens should match the first time the form 

is submitted. If the tokens do not match, then the form submission may be 

disallowed and an error returned to the user. Token mismatch may occur when the 

user submits a form, then clicks the Back button in the browser and attempts to 

resubmit the same form. 

On the other hand, if the two token values match, then we are confident that the 

flow of control is exactly as expected. At this point, the token value in the session is 

modified to a new value and the form submission is accepted. 



 - 52 -

You may also use this strategy to control direct browser access to certain pages, as 

described in the sections on resource guards. For example, assume a user 

bookmarks page A of an application, where page A should only be accessed from 

page B and C. When the user selects page A via the bookmark, the page is accessed 

out of order and the synchronizer token will be in an unsynchronized state, or it may 

not exist at all. Either way, the access can be disallowed if desired. 

Please refer to “Introduce Synchronizer Token in the “Presentation Tier Refactorings 

section for an example of this strategy. 

Validation 

It is often desirable to perform validation both on the client and on the server. 

Although client validation processing is typically less sophisticated than server 

validation, it provides high-level checks, such as whether a form field is empty. 

Server-side validation is often much more comprehensive. While both types of 

processing are appropriate in an application, it is not recommended to include only 

client-side validation. One major reason not to rely solely on client-side validation is 

that client-side scripting languages are user-configurable and thus may be disabled 

at any time. 

Detailed discussion of validation strategies is outside the scope of this book. At the 

same time, we want to mention these issues as ones to consider while designing 

your systems, and hope you will refer to the existing literature in order to 

investigate further. 

Validation on Client 

Input validation is performed on the client. Typically, this involves embedding 

scripting code, such as JavaScript, within the client view. As stated, client-side 

validation is a fine complement for server-side validation, but should not be used 

alone. 

Validation on Server 

Input validation is performed on the server. There are several typical strategies for 

doing server validation. These strategies are form-centric validation and validation 

based on abstract types. 



 - 53 -

Form-Centric Validation 

The form-centric validation strategy forces an application to include lots of methods 

that validate various pieces of state for each form submitted. Typically, these 

methods overlap with respect to the logic they include, such that reuse and 

modularity suffer. Since there is a validation method that is specific to each Web 

form that is posted, there is no central code to handle required fields or 

numeric-only fields. In this case, although there may be a field on multiple different 

forms that is considered a required field, each is handled separately and 

redundantly in numerous places in the application. This strategy is relatively easy to 

implement and is effective, but it leads to duplication of code as an application 

grows. 

To provide a more flexible, reusable, and maintainable solution, the model data may 

be considered at a different level of abstraction. This approach is considered in the 

following alternative strategy, “Validation Based on Abstract Types. An example of 

form-centric validation is shown in the listing in Example 3.4. 

Example 3.4 Form-Centric Validation 

/**If the first name or last name fields were left 

  blank, then an error will be returned to client. 

  With this strategy, these checks for the existence 

  of a required field are duplicated. If this valida- 

  tion logic were abstracted into a separate compo- 

  nent, it could be reused across forms (see 

  Validation Based on Abstract Types strategy)**/ 

public Vector validate() 

{ 

Vector errorCollection = new Vector(); 

    if ((firstname == null) || 

   (firstname.trim.length() < 1)) 

     errorCollection.addElement("firstname required"); 

    if ((lastname == null) || (lastname.trim.length() 

  < 1)) 

     errorCollection.addElement("lastname required"); 

return errorCollection; 

} 



 - 54 -

Validation Based on Abstract Types 

This strategy could be utilized on either the client or server, but is preferred on the 

server in a browser-based or thin-client environment. 

The typing and constraints information is abstracted out of the model state and into 

a generic framework. This separates the validation of the model from the application 

logic in which the model is being used, thus reducing their coupling. 

Model validation is performed by comparing the metadata and constraints to the 

model state. The metadata and constraints about the model are typically accessible 

from some sort of simple data store, such as a properties file. A benefit of this 

approach is that the system becomes more generic, because it factors the state 

typing and constraint information out of the application logic. 

An example is to have a component or subsystem that encapsulates validation logic, 

such as deciding whether a string is empty, whether a certain number is within a 

valid range, whether a string is formatted in a particular way, and so on. When 

various disparate application components want to validate different aspects of a 

model, each component does not write its own validation code. Rather, the 

centralized validation mechanism is used. The centralized validation mechanism will 

typically be configured either programmatically, through some sort of factory, or 

declaratively, using configuration files. 

Thus, the validation mechanism is more generic, focusing on the model state and its 

requirements, independent of the other parts of the application. A drawback to 

using this strategy is the potential reduction in efficiency and performance. Also, 

more generic solutions, although often powerful, are sometimes less easily 

understood and maintained. 

An example scenario follows. An XML-based configuration file describes a variety of 

validations, such as “required field,” “all-numeric field,” and so on. Additionally, 

handler classes can be designated for each of these validations. Finally, a mapping 

links HTML form values to a specific type of validation. The code for validating a 

particular form field simply becomes something similar to the code snippet shown in 

Example 3.5. 

Example 3.5 Validation Based on Abstract Types 

//firstNameString="Dan" 

//formFieldName="form1.firstname" 

Validator.getInstance().validate(firstNameString, 

  formFieldName); 



 - 55 -

Helper Properties—Integrity and Consistency 

JavaBean helper classes are typically used to hold intermediate state when it is 

passed in with a client request. JSP runtime engines provide a mechanism for 

automatically copying parameter values from a servlet request object into 

properties of these JavaBean helpers. The JSP syntax is as follows: 

 

<jsp:setProperty name="helper" property="*"/> 

This tells the JSP engine to copy all matching parameter values into the 

corresponding properties in a JavaBean called “helper,” shown in Example 3.6: 

Example 3.6 Helper Properties - A Simple JavaBean 

Helper 

public class Helper 

{ 

  private String first; 

  private String last; 

 

  public String getFirst() 

  { 

    return first; 

  } 

 

  public void setFirst(String aString) 

  { 

    first=aString; 

  } 

 

  public String getLast() 

  { 

    return last; 

  } 

 

 

  public void setLast(String aString) 

  { 

    last=aString; 

  } 

 



 - 56 -

} 

How is a match determined, though? If a request parameter exists with the same 

name and same type as the helper bean property, then it is considered a match. 

Practically, then, each parameter is compared to each bean property name and the 

type of the bean property setter method. 

Although this mechanism is simple, it can produce some confusing and unwanted 

side effects. First of all, it is important to note what happens when a request 

parameter has an empty value. Many developers assume that a request parameter 

with an empty string value should, if matched to a bean property, cause that bean 

property to take on the value of an empty string, or null. The spec-compliant 

behavior is actually to make no changes to the matching bean property in this case, 

though. Furthermore, since JavaBean helper instances are typically reused across 

requests, such confusion can lead to data values being inconsistent and incorrect. 

Figure 3.1 shows the sort of problem that this might cause. 

Figure 3.1. Helper properties 

 

Request 1 includes values for the parameter named “first” and the one named 

“last,” and each of the corresponding bean properties is set. Request 2 includes a 

value only for the “last” parameter, causing only that one property to be set in the 

bean. The value for the “first” parameter is unchanged. It is not reset to an empty 

string, or null, simply because there is no value in the request parameter. As you 



 - 57 -

can see in Figure 3.1, this may lead to inconsistencies if the bean values are not 

reset manually between requests. 

Another related issue to consider when designing your application is the behavior of 

HTML form interfaces when controls of the form are not selected. For example, if a 

form has multiple checkboxes, it is not unreasonable to expect that unchecking 

every checkbox would result in clearing out these values on the server. In the case 

of the request object created based on this interface, however, there would simply 

not be a parameter included in this request object for any of the checkbox values. 

Thus, no parameter values relating to these checkboxes are sent to the server (see 

http://www.w3.org for full HTML specification). 

Since there is no parameter passed to the server, the matching bean property will 

remain unchanged when using the <jsp:setProperty> action, as described. So, in 

this case, unless the developer manually modifies these values, there is the 

potential for inconsistent and incorrect data values to exist in the application. As 

stated, a simple design solution to this problem is to reset all state in the JavaBean 

between requests. 

Presentation Tier Bad Practices 

Bad practices are less than optimal solutions that conflict with many of the patterns' 

recommendations. When we documented the patterns and best practices, we 

naturally discarded those practices that were less than optimal. 

In this part of the book, we highlight what we consider to be bad practices in the 

presentation tier. 

In each section, we briefly describe the bad practice and provide numerous 

references to design issues, refactorings, and patterns that provide further 

information and preferable alternatives. We do not provide an in-depth discussion of 

each bad practice, but rather present a brief synopsis as a starting point for further 

investigation. 

The “Problem Summary” section provides a quick description of a less than optimal 

situation, while the “Solution Reference” section includes references to: 

• Patterns that provide information on context and trade-offs; 

• Design considerations that provide related details; 

• Refactorings that describe the journey from the less than optimal situation 

(bad practice) to a more optimal one, a best practice, or pattern. 

Consider this part of the book as a roadmap, using the references to locate further 

detail and description in other parts of the book. 



 - 58 -

Control Code in Multiple Views 

Problem Summary 

Custom tag helpers may be included at the top of a JSP View to perform access 

control and other types of checks. If a large number of views include similar helper 

references, maintaining this code becomes difficult, since changes must be made in 

multiple places. 

Solution Reference 

Consolidate control code, introducing a controller and associated Command helpers. 

Refactoring  • See “Introduce a Controller”.  

Refactoring  • See “Localize Disparate Logic”.  

Pattern  • See “Front Controller – “Command and Controller Strategy”.  

When there is a need to include similar control code in multiple places, such as when 

only a portion of a JSP View is to be restricted from a particular user, delegate the 

work to a reusable helper class. 

Pattern  • See “View Helper”  

Design  • See “Guarding a View”.  

Exposing Presentation-Tier Data Structures to 

Business Tier 

Problem Summary 

Presentation-tier data structures, such as HttpServletRequest, should be confined 

to the presentation tier. Sharing these details with the business tier, or any other 

tier, increases coupling between these tiers, dramatically reducing the reusability of 

the available services. If the method signature in the business service accepts a 

parameter of type HttpServletRequest, then any other clients to this service (even 

those outside of the Web space) must wrap their request state in an 

HttpServletRequest object. Additionally, in this case the business-tier services need 

to understand how to interact with these presentation tier-specific data structures, 

increasing the complexity of the business-tier code and increasing the coupling 

between the tiers. 



 - 59 -

Solution Reference 

Instead of sharing data structures specific to the presentation tier with the business 

tier, copy the relevant state into more generic data structures and share those. 

Alternatively, extract and share the relevant state from the presentation 

tier-specific data structure as individual parameters. 

Refactoring •See “Hide Presentation Tier-Specific Details From the BusinessTier”.

Exposing Presentation-Tier Data Structures to 

Domain Objects 

Problem Summary 

Sharing request handling data structures, such as HttpServletRequest, with domain 

objects needlessly increases the coupling between these two distinct aspects of the 

application. Domain objects should be reusable components, and if their 

implementation relies on protocol or tier-specific details, their potential for reuse is 

reduced. Furthermore, maintaining and debugging tightly coupled applications is 

more difficult. 

Solution Reference 

Instead of passing an HttpServletRequest object as a parameter, copy the state 

from the request object into a more generic data structure and share this object 

with the domain object. Alternatively, extract the relevant state from the 

HttpServletRequest object and provide each piece of state as an individual 

parameter to the domain object. 

Refactoring • See “Hide Presentation Tier-Specific Details From the Business Tier”.

Allowing Duplicate Form Submissions 

Problem Summary 

One of the limitations of the browser-client environment is the lack of control an 

application has over client navigation. A user might submit an order form that 

results in a transaction that debits a credit card account and initiates shipment of a 



 - 60 -

product to a residence. If after receiving the confirmation page, the user clicks the 

Back button, then the same form could be resubmitted. 

Solution Reference 

To address these issues, monitor and control the request flow. 

Refactoring  • See “Introduce Synchronizer Token”.  

Refactoring  • See “Controlling Client Access”.  

Design  • See “Synchronizer (or Déjà vu) Token”.  

Exposing Sensitive Resources to Direct Client Access 

Problem Summary 

Security is one of the most important issues in enterprise environments. If there is 

no need for a client to have direct access to certain information, then this 

information must be protected. If specific configuration files, property files, JSPs, 

and class files are not secured appropriately, then clients may inadvertently or 

maliciously retrieve sensitive information. 

Solution Reference 

Protect sensitive resources, disallowing direct client access 

Refactoring  • See “Hide Resource From a Client”.  

Refactoring  • See “Controlling Client Access”.  

Assuming <jsp:setProperty> Will Reset Bean 

Properties 

Problem Summary 

While the expected behavior of the <jsp:setProperty> standard tag is to copy 

request parameter values into JavaBean helper properties of the same name, its 

behavior when dealing with parameters that have empty values is often confusing. 

For example, a parameter with an empty value is ignored, although many 



 - 61 -

developers incorrectly assume that the matching JavaBean property will be 

assigned a null or empty string value. 

Solution Reference 

Take into account the less than intuitive nature of how properties are set when using 

the <jsp:setProperty> tag, and initialize bean properties before use. 

Design  • See “Helper Properties—Integrity and Consistency”.  

Creating Fat Controllers 

Problem Summary 

Control code that is duplicated in multiple JSP views should, in many cases, be 

refactored into a controller. If too much code is added to a controller, though, it 

becomes too heavyweight and cumbersome to maintain, test, and debug. For 

example, unit testing a servlet controller, particularly a “fat controller,” is more 

complicated than unit testing individual helper classes that are independent of the 

HTTP protocol. 

Solution Reference 

A controller is typically the initial contact point for handling a request, but it should 

also be a delegation point, working in coordination with other control classes. 

Command objects are used to encapsulate control code to which the controller 

delegates. It is much easier to unit test these JavaBean command objects, 

independent of the servlet engine, than it is to test less modular code. 

Refactoring  • See “Introduce a Controller”.  

Pattern  • See “Front Controller–“Command and Controller Strategy”.  

Refactoring  • See “Localize Disparate Logic”.  

Pattern  • See “View Helper”.  

 



 - 62 -

Chapter 4. BUSINESS TIER DESIGN 

CONSIDERATIONS AND BAD PRACTICES 

Topics in This Chapter 

• Business Tier Design Considerations 

• Business and Integration Tiers Bad Practices 



 - 63 -

Business Tier Design Considerations 

When developers apply the business tier and integration tier patterns that appear in 

the catalog in this book, there may be adjunct design issues about which they may 

be concerned. These issues relate to designing with patterns at a variety of levels, 

and they may affect numerous aspects of a system. We discuss these issues in this 

chapter. 

The discussions in this chapter simply describe each issue as a design issue that you 

should consider when implementing systems based on the J2EE pattern catalog. 

Using Session Beans 

Session beans are distributed business components with the following 

characteristics, per the EJB specification: 

• A session bean is dedicated to a single client or user. 

• A session bean lives only for the duration of the client's session. 

• A session bean does not survive container crashes. 

• A session bean is not a persistent object. 

• A session bean can time out. 

• A session bean can be transaction-aware. 

• A session bean can be used to model stateful or stateless conversations 

between the client and the business tier components. 

Note 

In this section, we use the term "workflow" in the context of EJB to represent the 

logic associated with the enterprise beans communication. For example, workflow 

encompasses how session bean A calls session bean B, then entity bean C. 

 

Session Bean—Stateless Versus Stateful 

Session beans come in two flavors—stateless and stateful. A stateless session bean 

does not hold any conversational state. Hence, once a client's method invocation on 

a stateless session beans is completed, the container is free to reuse that session 

bean instance for another client. This allows the container to maintain a pool of 

session beans and to reuse session beans among multiple clients. The container 

pools stateless session beans so that it can reuse them more efficiently by sharing 

them with multiple clients. The container returns a stateless session bean to the 



 - 64 -

pool after the client completes its invocation. The container may allocate a different 

instance from the pool to subsequent client invocations. 

A stateful session bean holds conversational state. A stateful session bean may be 

pooled, but since the session bean is holding state on behalf of a client, the bean 

cannot simultaneously be shared with and handle requests from another client. 

The container does not pool stateful session beans in the same manner as it pools 

stateless session beans because stateful session beans hold client session state. 

Stateful session beans are allocated to a client and remain allocated to the client as 

long as the client session is active. Thus, stateful session beans need more resource 

overhead than stateless session beans, for the added advantage of maintaining 

conversational state. 

Many designers believe that using stateless session beans is a more viable session 

bean design strategy for scalable systems. This belief stems from building 

distributed object systems with older technologies, because without an inherent 

infrastructure to manage component life cycle, such systems rapidly lost scalability 

characteristics as resource demands increased. Scalability loss was due to the lack 

of component life cycle, causing the service to continue to consume resources as the 

number of clients and objects increased. 

An EJB container manages the life cycle of enterprise beans and is responsible for 

monitoring system resources to best manage enterprise bean instances. The 

container manages a pool of enterprise beans and brings enterprise beans in and 

out of memory (called activation and passivation, respectively) to optimize 

invocation and resource consumption. 

Scalability problems are typically due to the misapplication of stateful and stateless 

session beans. The choice of using stateful or stateless session beans must depend 

upon the business process being implemented. A business process that needs only 

one method call to complete the service is a non-conversational business process. 

Such processes are suitably implemented using a stateless session bean. A business 

process that needs multiple method calls to complete the service is a conversational 

business process. It is suitably implemented using a stateful session bean. 

However, some designers choose stateless session beans, hoping to increase 

scalability, and they may wrongly decide to model all business processes as 

stateless session beans. When using stateless session beans for conversational 

business processes, every method invocation requires the state to be passed by the 

client to the bean, reconstructed at the business tier, or retrieved from a persistent 

store. These techniques could result in reduced scalability due to the associated 

overheads in network traffic, reconstruction time, or access time respectively. 



 - 65 -

Session Beans as Business-Tier Facades 

In our patterns in the J2EE Pattern Catalog and best practices, one application of 

session beans is to use them as facades to the business tier. Session bean facades, 

or simply session facades, can be viewed as a coarse-grained controller layer for the 

business tier. Clients of the session beans are typically Business Delegates. 

• See “Session Facade”. 

• See “Business Delegate”. 

• See also “Mapping Each Use Case to a Session Bean”. 

Storing State on the Business Tier 

Some design considerations for storing state on the Web server are discussed in 

“Session State in the Presentation Tier”. 

Here we continue that discussion to explore when it is appropriate to store state in 

a stateful session bean instead of in an HttpSession. One of the considerations is to 

determine what types of clients access the business services in your system. If the 

architecture is solely a Web-based application, where all the clients come through a 

Web server either via a servlet or a JSP, then conversational state may be 

maintained in an HttpSession in the Web tier. This scenario is shown in Figure 4.1. 



 - 66 -

Figure 4.1. Storing state in HttpSession 

 

On the other hand, if your application supports various types of clients, including 

Web clients, Java applications, other applications, and even other enterprise beans, 

then conversational state may be maintained in the EJB layer using stateful session 

beans. This is shown in Figure 4.2. 

Figure 4.2. Storing state in session beans 

 

We have presented some basic discussion on the subject of state management here 

and in the previous chapter (see “Session State on Client”). A full-scale discussion is 



 - 67 -

outside the scope of this book, since the problem is multi-dimensional and depends 

very much on the deployment environment, including: 

• Hardware 

• Traffic management 

• Clustering of Web container 

• Clustering of EJB container 

• Server affinity 

• Session replication 

• Session persistence 

We touch on this issue because it is one that should be considered during 

development and deployment. 

Using Entity Beans 

Using entity beans appropriately is a question of design heuristics, experience, need, 

and technology. Entity beans are best suited as coarse-grained business 

components. Entity beans are distributed objects and have the following 

characteristics, per the EJB specification: 

• Entity beans provide an object view of persistent data. 

• Entity beans are transactional. 

• Entity beans are multiuser. 

• Entity beans are long-lived. 

• Entity beans survive container crashes. Such crashes are typically 

transparent to the clients. 

Summarizing this definition, the appropriate use of an entity bean is as a distributed, 

shared, transactional, and persistent object. In addition, EJB containers provide 

other infrastructure necessary to support such system qualities as scalability, 

security, performance, clustering, and so forth. All together, this makes for a very 

reliable and robust platform to implement and deploy applications with distributed 

business components. 

Entity Bean Primary Keys 

Entity beans are uniquely identified by their primary keys. A primary key can be a 

simple key, made up of a single attribute, or it can be a composite key, made up of 

a group of attributes from the entity bean. For entity beans with a single-field 

primary key, where the primary key is a primitive type, it is possible to implement 

the entity bean without defining an explicit primary key class. The deployer can 

specify the primary key field in the deployment descriptor for the entity bean. 

However, when the primary key is a composite key, a separate class for the primary 



 - 68 -

key must be specified. This class must be a simple Java class that implements the 

serializable interface with the attributes that define the composite key for the entity 

bean. The attribute names and types in the primary key class must match those in 

the entity bean, and also must be declared public in both the bean implementation 

class and primary key class. 

As a suggested best practice, the primary key class must implement the optional 

java.lang.Object methods, such as equals and hashCode. 

• Override the equals() method to properly evaluate the equality of two 

primary keys by comparing values for each part of the composite key. 

• Override the Object.hashCode() method to return a unique number 

representing the hash code for the primary key instance. Ensure that the 

hash code is indeed unique when you use your primary key attribute values 

to compute the hash code. 

Business Logic in Entity Beans 

A common question in entity bean design is what kind of business logic it should 

contain. Some designers feel that entity beans should contain only persistence logic 

and simple methods to get and set data values. They feel that entity beans should 

not contain business logic, which is often misunderstood to mean that only code 

related to getting and setting data must be included in the entity bean. 

Business logic generally includes any logic associated with providing some service. 

For this discussion, consider business logic to include all logic related to processing, 

workflow, business rules, data, and so forth. The following is a list of sample 

questions to explore the possible results of adding business logic into an entity: 

• Will the business logic introduce entity-entity relationships? 

• Will the entity bean become responsible for managing workflow of user 

interaction? 

• Will the entity bean take on the responsibilities that should belong in some 

other business component? 

• Will the entity bean include code related to data access logic, such as Java 

Database Connectivity (JDBC) code when implemented using 

bean-managed persistence? 

A “yes” answer to any of these questions helps identify whether introducing 

business logic into the entity bean can have an adverse impact. It is desirable to 

investigate the design to avoid inter-entity-bean dependencies as much as possible, 

since such dependences create overheads that may impede overall application 

performance. 



 - 69 -

In general, the entity bean should contain business logic that is self-contained to 

manage its data and its dependent objects' data. Thus, it may be necessary to 

identify, extract, and move business logic that introduces 

entity-bean-to-entity-bean interaction from the entity bean into a session bean by 

applying the Session Facade pattern. The Composite Entity pattern and some of the 

refactorings discuss the issues related to entity bean design. 

If any workflow associated with multiple entity beans is identified, then such 

workflow can be suitably implemented in a session bean instead of in an entity bean. 

Such workflow can be consolidated into a session facade. 

• See “Merge Session Beans”. 

• See “Eliminate Inter-Entity Bean Communication”. 

• See “Move Business Logic to Session”. 

• See “Session Facade”. 

• See “Composite Entity”. 

For bean-managed persistence in entity beans, data access code is best 

implemented outside entity beans. 

• See “Separate Data Access Code”. 

• See “Data Access Object”. 

Caching Enterprise Bean Remote References and 

Handles 

When clients use an enterprise bean, they may need to cache some reference to an 

enterprise bean for future use. You will encounter this when using business 

delegates (see “Business Delegate”), where a delegate connects to a session bean 

and invokes the necessary business methods on the bean on behalf of the client. 

When the client uses the business delegate for the first time, the delegate needs to 

perform a lookup using the EJB Home object to obtain a remote reference to the 

session bean. For subsequent requests, the business delegate can avoid lookups by 

caching a remote reference or its handle as necessary. The EJB Home handle can 

also be cached to avoid an additional Java Naming and Directory Interface (JNDI) 

lookup for the enterprise bean home. For more details on using an EJB Handle or the 

EJB Home Handle, please refer to the current EJB specification. 



 - 70 -

Business and Integration Tiers Bad Practices 

Mapping Object Model Directly to Entity Bean Model 

Problem Summary 

One of the common practices in designing an EJB application is to map the object 

model directly into entity beans; that is, each class in the object model is 

transformed into an entity bean. This results in a large number of fine-grained entity 

beans. 

The container and network overhead increases as the number of enterprise beans 

increases. Such mapping also transforms object relationships into 

entity-bean-to-entity-bean relationships. This is best avoided, since 

entity-bean-to-entity-bean relationships introduce severe performance 

implications. 

Solution Reference 

Identify the parent-dependent object relationships in the object model and design 

them as coarse-grained entity beans. This results in fewer entity beans, where each 

entity bean composes a group of related objects from the object model. 

Refactoring  • See “Eliminate Inter-Entity Bean Communication”.  

Pattern  • See “Composite Entity”.  

Consolidate related workflow operations into session beans to provide a uniform 

coarse-grained service access layer. 

Refactoring  • See “Merge Session Beans”.  

Pattern  • See “Session Facade”.  



 - 71 -

Mapping Relational Model Directly to Entity Bean 

Model 

Problem Summary 

When designing an EJB model, it is bad practice to model each row in a table as an 

entity bean. While entity beans are best designed as coarse-grained objects, this 

mapping results in a large number of fine-grained entity beans, and it affects 

scalability. 

Such mapping also implements inter-table (i.e., primary key/foreign key) 

relationships as entity-bean-to-entity-bean relationships. 

Solution Reference 

Design your enterprise bean application using an object-oriented approach instead 

of relying on the preexisting relational database design to produce the EJB model. 

Bad 

Practice  
• See solution reference for “Mapping Object Model Directly to Entity

Bean Model”.  

Avoid inter-entity relationships by designing coarse-grained business objects by 

identifying parent-dependent objects. 

Refactoring  • See “Eliminate Inter-Entity Bean Communication”.  

Refactoring  • See “Move Business Logic to Session”.  

Pattern  • See “Composite Entity”.  

Mapping Each Use Case to a Session Bean 

Problem Summary 

Some designers implement each use case with its own unique session bean. This 

creates fine-grained controllers responsible for servicing only one type of interaction. 

The drawback of this approach is that it may result in a large number of session 

beans and significantly increase the complexity of the application. 



 - 72 -

Solution Reference 

Apply the Session Facade pattern to aggregate a group of the related interactions 

into a single session bean. This results in fewer session beans for the application, 

and leverages the advantages of applying the Session Facade pattern. 

Refactoring  • See “Merge Session Beans”.  

Pattern  • See “Session Facade”.  

Exposing All Enterprise Bean Attributes via 

Getter/Setter Methods 

Problem Summary 

Exposing each enterprise bean attribute using getter/setter methods is a bad 

practice. This forces the client to invoke numerous fine-grained remote invocations 

and creates the potential to introduce a significant amount of network chattiness 

across the tiers. Each method call is potentially remote and carries with it a certain 

network overhead that impacts performance and scalability. 

Solution Reference 

Use a value object to transfer aggregate data to and from the client instead of 

exposing the getters and setters for each attribute. 

Pattern  • See “Value Object”.  

Embedding Service Lookup in Clients 

Problem Summary 

Clients and presentation tier objects frequently need to look up the enterprise beans. 

In an EJB environment, the container uses JNDI to provide this service. 

Putting the burden of locating services on the application client can introduce a 

proliferation of lookup code in the application code. Any change to the lookup code 

propagates to all clients that look up the services. Also, embedding lookup code in 



 - 73 -

clients exposes them to the complexity of the underlying implementation and 

introduces dependency on the lookup code. 

Solution Reference 

Encapsulate implementation details of the lookup mechanisms using a Service 

Locator. 

Pattern  • See “Service Locator”.  

Encapsulate the implementation details of business-tier components, such as 

session and entity beans, using Business Delegates. This simplifies client code since 

they no longer deal with enterprise beans and services. Business Delegates may in 

turn use the Service Locator. 

Refactoring  • See “Introduce Business Delegate”.  

Pattern  • See “Business Delegate”.  

Using Entity Bean as Read-Only Object 

Problem Summary 

Any entity bean method is subject to transaction semantics based on its transaction 

isolation levels specified in the deployment descriptor. Using an entity bean as a 

read-only object simply wastes expensive resources and results in unnecessary 

update transactions to the persistent store. This is due to the invocation of the 

ejbStore() methods by the container during the entity bean's life cycle. Since the 

container has no way of knowing if the data was changed during a method 

invocation, it must assume that it has and invoke the ejbStore() operation. Thus, 

the container makes no distinction between read-only and read-write entity beans. 

However, some containers may provide read-only entity beans, but these are 

vendor proprietary implementations. 

Solution Reference 

Encapsulate all access to the data source using Data Access Object pattern. This 

provides a centralized layer of data access code and also simplifies entity bean code. 

Pattern  • See “Data Access Object”.  



 - 74 -

Implement access to read-only functionality using a session bean, typically as a 

Session Facade that uses a DAO. 

Pattern  • See “Session Facade”.  

For obtaining a list of value objects, Value List Handler pattern may be 

implemented. 

Pattern  • See “Value List Handler”.  

For obtaining a complex data model from the business tier, the Value Object 

Assembler pattern may be implemented. 

Pattern  • See “Value Object Assembler”.  

Using Entity Beans as Fine-Grained Objects 

Problem Summary 

Entity beans are meant to represent coarse-grained transactional persistent 

business components. Using an entity bean to represent fine-grained objects 

increases the overall network communication and container overhead. This impacts 

application performance and scalability. 

A fine-grained object is best thought of as an object that has little meaning without 

its association to another object (typically a coarse-grained parent object). For 

example, an item object can be thought of as a fined-grained object because it has 

little value until it is associated with an order object. In this example, the order 

object is the coarse-grained object and the item object is the fine-grained 

(dependent) object. 

Solution Reference 

When designing enterprise beans based on a preexisting RDBMS schema, 

Bad Practice • See “Mapping Relational Model Directly to Entity Bean Model”.  

When designing enterprise beans using an object model, 

Bad Practice  • See “Mapping Object Model Directly to Entity Bean Model”.  



 - 75 -

Design coarse-grained entity beans and session beans. Apply the following patterns 

and refactorings that promote coarse-grained enterprise beans design. 

Pattern  • See “Composite Entity”.  

Pattern  • See “Session Facade”.  

Refactoring  • See “Eliminate Inter-Entity Bean Communication”.  

Refactoring  • See “Move Business Logic to Session”.  

Refactoring  • See “Business Logic in Entity Beans”.  

Refactoring  • See “Merge Session Beans”.  

Storing Entire Entity Bean-Dependent Object Graph 

Problem Summary 

When a complex tree structure of dependent objects is used in an entity bean, 

performance can degrade rapidly when loading and storing an entire tree of 

dependent objects. When the container invokes the entity bean's ejbLoad() 

method, either for the initial load or for reloads to synchronize with the persistent 

store, loading the entire tree of dependent objects can prove wasteful. Similarly, 

when the container invokes the entity bean's ejbStore() method at any time, 

storing the entire tree of objects can be quite expensive and unnecessary. 

Solution Reference 

Identify the dependent objects that have changed since the previous store 

operation and store only those objects to the persistent store. 

Pattern • See “Composite Entity” and “Store Optimization (Dirty Marker) Strategy”.

Implement a strategy to load only data that is most accessed and required. Load the 

remaining dependent objects on demand. 

Pattern  • See “Composite Entity” and “Lazy Loading Strategy”.  

By applying these strategies, it is possible to prevent loading and storing an entire 

tree of dependent objects. 



 - 76 -

Exposing EJB-related Exceptions to Non-EJB Clients 

Problem Summary 

Enterprise beans can throw business application exceptions to clients. When an 

application throws an application exception, the container simply throws the 

exception to the client. This allows the client to gracefully handle the exception and 

possibly take another action. It is reasonable to expect the application developer to 

understand and handle such application-level exceptions. 

However, despite employing such good programming practices as designing and 

using application exceptions, the clients may still receive EJB-related exceptions, 

such as a java.rmi.RemoteException. This can happen if the enterprise bean or the 

container encounters a system failure related to the enterprise bean. 

The burden is on the application developer, who may not even be aware of or 

knowledgeable about EJB exceptions and semantics, to understand the 

implementation details of the non-application exceptions that may be thrown by 

business tier components. In addition, non-application exceptions may not provide 

relevant information to help the user rectify the problem. 

Solution Reference 

Decouple the clients from the business tier and hide the business-tier 

implementation details from clients, using business delegates. Business delegates 

intercept all service exceptions and may throw an application exception. Business 

delegates are plain Java objects that are local to the client. Typically, business 

delegates are developed by the EJB developers and provided to the client 

developers. 

Refactoring  • See “Introduce Business Delegate”.  

Pattern  • See “Business Delegate”.  



 - 77 -

Using Entity Bean Finder Methods to Return a Large 

Results Set 

Problem Summary 

Frequently, applications require the ability to search and obtain a list of values. 

Using an EJB finder method to look up a large collection of entity beans will return a 

collection of remote references. Consequently, the client has to invoke a method on 

each remote reference to get the data. This is a remote call and can become very 

expensive, especially impacting performance, when the caller invokes remote calls 

on each entity bean reference in the collection. 

Solution Reference 

Implement queries using session beans and DAOs to obtain a list of value objects 

instead of remote references. Use a DAO to perform searches instead of EJB finder 

methods. 

Pattern  • See “Value List Handler”.  

Pattern  • See “Data Access Object”.  

Client Aggregates Data from Business Components 

Problem Summary 

The application clients (in the client or presentation tier) typically need the data 

model for the application from the business tier. Since the model is implemented by 

business components—such as entity beans, session beans, and arbitrary objects in 

the business tier—the client must locate, interact with, and extract the necessary 

data from various business components to construct the data model. 

These client actions introduce network overhead due to multiple invocations from 

the client into the business tier. In addition, the client becomes tightly coupled with 

the application model. In applications where there are various types of clients, this 

coupling problem multiplies: A change to the model requires changes to all clients 

that contain code to interact with those model elements comprised of business 

components. 



 - 78 -

Solution Reference 

Decouple the client from model construction. Implement a business-tier component 

that is responsible for the construction of the required application model. 

Pattern  • See “Value Object Assembler”.  

Using Enterprise Beans for Long-Lived Transactions 

Problem Summary 

Enterprise beans (pre-EJB 2.0) are suitable for synchronous processing. 

Furthermore, enterprise beans do well if each method implemented in a bean 

produces an outcome within a predictable and acceptable time period. 

If an enterprise bean method takes a significant amount of time to process a client 

request, or if it blocks while processing, this also blocks the container resources, 

such as memory and threads, used by the bean. This can severely impact 

performance and deplete system resources. 

An enterprise bean transaction that takes a long time to complete potentially locks 

out resources from other enterprise bean instances that need those resources, 

resulting in performance bottlenecks. 

Solution Reference 

Implement asynchronous processing service using a message-oriented middleware 

(MOM) with a Java Message Service (JMS) API to facilitate long-lived transactions. 

Pattern  • See “Service Activator”.  

Stateless Session Bean Reconstructs Conversational 

State for Each Invocation 

Problem Summary 

Some designers choose stateless session beans to increase scalability. They may 

inadvertently decide to model all business processes as stateless session beans 

even though the session beans require conversational state. But, since the session 



 - 79 -

bean is stateless, it must rebuild conversational state in every method invocation. 

The state may have to be rebuilt by retrieving data from a database. This completely 

defeats the purpose of using stateless session beans to improve performance and 

scalability and can severely degrade performance. 

Solution Reference 

Analyze the interaction model before choosing the stateless session bean mode. The 

choice of stateful or stateless session bean depends on the need for maintaining 

conversational state across method invocations in stateful session bean versus the 

cost of rebuilding the state during each invocation in stateless session bean. 

Pattern • See “Session Facade”, “Stateless Session Facade Strategy”, and “Stateful

Session Facade Strategy”.  

Design • See “Session Bean—Stateless Versus Stateful” and “Storing State on the

Business Tier”.  

 



 - 80 -

Chapter 5. J2EE REFACTORINGS 

Topics in This Chapter 

• Presentation Tier Refactorings 

• Business and Integration Tier Refactorings 

• General Refactorings 

This chapter discusses refactoring for the presentation, business, and integration 

tiers. 



 - 81 -

 

Presentation Tier Refactorings 

The refactorings in this section apply to the presentation tier. 

Introduce a Controller 

Control logic is scattered throughout the application, typically duplicated in multiple 

Java Server Page (JSP) views. 

Extract control logic into one or more controller classes that serve as the initial 

contact point for handling a client request. 

Figure 5.1. Introduce a controller 

 

Motivation 

Control code that is duplicated in multiple JSPs also needs to be maintained in each 

JSP. Extracting this code into one or more centralized controller class improves the 

modularity, reusability, and maintainability of the application. 



 - 82 -

Mechanics 

• Use the Front Controller pattern as a guide for applying Extract Class [Fowler] 

to create a controller class, moving duplicate control logic from individual 

JSPs into this controller. 

o See “Front Controller”. 

o Remember that the controller is a delegation point for controlling the 

request handling. Partition the code with an eye toward modularity 

and reuse. Do not necessarily embed all the control code directly 

within a single controller, but rather consider creating helper 

components to which it may delegate. See “Creating Fat Controllers”. 

• Control code may also be encapsulated in command objects that work in 

coordination with the controller, utilizing the Command pattern [GoF]. 

o See “Front Controller”, “Command and Controller Strategy.” 

Example 

Assume we have the structure shown in Example 5.1 in many of our JSPs. 

Example 5.1 Introduce a Controller – JSP Structure 

<HTML> 

<BODY> 

  <control:grant_access/> 

. 

. 

. 

 

</BODY> 

  </HTML> 

The three vertical dots represent the body of each JSP, which is not being shown in 

this example. While this body portion differs for each JSP, the helper at the top of 

the page, implemented as a custom tag, is the same. This helper is responsible for 

controlling access to this page. It is an “all-or-nothing” type of control, meaning that 

a client is either granted access to the whole page or is denied access entirely. 

If we change the design and introduce a controller, as described in the mechanics, 

then each of our JSPs will no longer include the <control:grant_access/> tag, as 

seen in Example 5.1. 



 - 83 -

Instead, we have a centralized controller that manages this behavior, handling the 

access control check that we removed from each JSP. Example 5.2 is a snippet of 

code from the controller, which is implemented as a servlet. 

Example 5.2 Introduce a Controller - Controller 

Structure 

if (grantAccess()) 

{ 

    dispatchToNextView(); 

} 

else 

{ 

    dispatchToAccessDeniedView(); 

} 

Of course, there are some cases where helpers are suitable for control code. For 

example, if only a small fraction of our JSPs need this type of access control, then it 

is not unreasonable to include a custom tag helper in each of these few pages to 

accomplish this goal. Another reason we might use custom tags in individual JSPs is 

to control access to specific subviews of a composite view (see “Composite View”). 

If we are already using a controller, then we still might want to add this behavior in 

this centralized place, since the number of pages we want to protect might grow 

over time. To handle the case of an existing controller, we simply extract control 

code from our views and add it to the existing controller. In effect, we are moving 

methods (using Move Method [Fowler]) instead of extracting a new class. 

Introduce Synchronizer Token 

Clients make duplicate resource requests that should be monitored and controlled, 

or clients access certain views out of order by returning to previously bookmarked 

pages. 

Use a shared token to monitor and control the request flow and client access to 

certain resources. 



 - 84 -

Figure 5.2. Introduce synchronizer token 

 

Motivation 

There are a number of scenarios in which control of an incoming request is desired. 

One of the most common reasons is the desire to control duplicate request 

submissions from a client. Such duplicate submissions may occur when the user 

clicks the Back or Stop browser buttons and resubmits a form. 

While this issue is mainly one of controlling the order or flow of the requests, there 

is also the issue of controlling access based on permissions. For introducing 

permission-based control, see “Hide Resource From a Client” . 

Mechanics 

• Create one or more helper classes responsible for generating and comparing 

one-time-use, unique tokens. 

o Alternatively, this logic may be added to already existing control 

components. 

o The component managing this activity (typically a controller, but 

possibly a JSP) delegates to these helpers, managing the temporary 

storage of a fresh token for each client submission. 

o A copy of the token is stored per user on the server and on the client 

browser. The token is typically stored on the client browser as a 

hidden field and on the server in a user session. 

When Is a Token Generated and 



 - 85 -

Stored? When Is a Token Checked? 

A synchronizer token is compared for a match before 
processing an arriving request. A new token value is generated
and stored after processing this request, but before the 
response is prepared and sent to the client. 

For more information, see “Introduce Synchronizer Token” and
Figure 5.3. 

Figure 5.3. Synchronizer token life cycle 

 

• Add logic to check whether the token arriving with the client request 

matches the token in the user session. 

o The token arriving from the client in the current request should be the 

same token that the server sent to the client with its last response. 

Thus a match of these two values confirms that this is not a duplicate 

submission, while a mismatch suggests this possibility. 

o As stated, a mismatch might also occur for other reasons, such as a 

user navigating directly to a bookmarked page, but a duplicate 

request submission is the most common reason. (See Presentation 



 - 86 -

Tier Design Considerations - Controlling Client Access” for more 

information.) 

• A controller typically manages token generation and comparison. Consider 

introducing a controller, if one does not already exist. 

o See “Introduce a Controller” . 

o Without a controller to centralize management of token generation 

and comparison, this behavior must be referenced from each JSP. 

o Typically, the JSP delegates to a helper component, implemented as 

either a JavaBean or custom tag (see “View Helper” ), which 

encapsulates the responsibilities token management. 

The source code excerpts in Introduce Synchronizer Token are reprinted with 

permission under the Apache Software License, Version 1.1. See page 425 to view 

the terms of this license. 

Example 

The Struts presentation framework applies several of the J2EE patterns and 

refactorings. It introduces this exact type of request flow control, and we use 

excerpts from this open source framework in our example. 

Instead of creating a separate utility class to encapsulate the token generation and 

matching logic, Struts simply adds this functionality to a preexisting class that is 

part of its control mechanism. The class is called Action, and it is a common 

superclass for all actions. Actions are Command objects that extend the controller 

functionality. This is an application of the Front Controller pattern, Command and 

Controller strategy. 

As shown in Example 5.3, the saveToken() method, which is part of the Action class, 

generates and stores token values. 

Example 5.3 Generate and Store Token 

/** 

* Save a new transaction token in the 

* user's current session, creating 

* a new session if necessary. 

* 

* @param request The servlet request we are processing 

*/ 

protected void saveToken(HttpServletRequest request) { 

 

HttpSession session = request.getSession(); 

String token = generateToken(request); 



 - 87 -

if (token != null) 

  session.setAttribute(TRANSACTION_TOKEN_KEY, token); 

} 

Copyright (c) 1999 The Apache Software Foundation. All rights reserved. 

This method generates a unique token, calculated using the session ID and the 

current time, and stores this value into the user session. 

At some point (usually immediately) prior to generating the HTML display for the 

client responsible for submitting a request that we do not want to duplicate (this 

display typically includes a form to be posted back to the server), a one-time token 

value is set, as previously described, by making the following method invocation: 

 

saveToken(request); 

Additionally, the JSP responsible for generating this HTML display also includes logic 

that delegates to a helper class to generate a hidden field that includes this token 

value. Thus, the page sent to the client, which typically includes a form that will be 

submitted back to the server, includes a hidden field of the following form: 

 

<input type="hidden" 

  name="org.apache.struts.taglib.html.TOKEN" 

  value="8d2c392e93a39d299ec45a22"> 

The value attribute of this hidden field is the value of the token that was generated 

by the saveToken() method. 

When the client submits the page that includes this hidden field, the controller 

delegates to a Command object (again, a subclass of the Action class) that 

compares the token value in the user session with the value in the request object 

parameter that came from the hidden field in the page. The Command object uses 

the method shown in Example 5.4, also excerpted from its superclass (the Action 

class again), to compare the values. 

Example 5.4 Check For a Valid Token 

/** 

* Return <code>true</code> if there is a transaction 

* token stored in the user's current session, and 

* the value submitted as a request request parameter 

* with this action matches it. 

* 



 - 88 -

* Returns <code>false</code> 

* under any of the following circumstances: 

* <ul> 

* <li>No session associated with this request</li> 

* <li>No transaction token saved in the session</li> 

* <li>No transaction token included as a request 

* parameter</li> 

* <li>The included transaction token value does not 

*     match the transaction token in the user's 

*     session</li> 

* </ul> 

* 

* @param request The servlet request we are processing 

*/ 

 

protected boolean isTokenValid(HttpServletRequest 

  request) { 

 

    // Retrieve the saved transaction token from our 

    // session 

    HttpSession session = request.getSession(false); 

    if (session == null) 

        return (false); 

    String saved = (String) 

        session.getAttribute(TRANSACTION_TOKEN_KEY); 

    if (saved == null) 

        return (false); 

    // Retrieve the transaction token included in this 

    // request 

    String token = (String) 

        request.getParameter(Constants.TOKEN_KEY); 

    if (token == null) 

        return (false); 

 

    // Do the values match? 

    return (saved.equals(token)); 

 

} 

Copyright (c) 1999 The Apache Software Foundation. All rights reserved. 

If there is a match, then we are certain that this request submission is not a 

duplicate. If the tokens do not match, then we are able to take appropriate action to 

deal with this potentially duplicate form submission. 



 - 89 -

Localize Disparate Logic 

Business logic and presentation formatting are intermingled within a JSP view. 

Extract business logic into one or more helper classes that can be used by the JSP or 

by a controller. 

Figure 5.4 shows logic being extracted from a view and into helpers. 

Figure 5.4. Localize Disparate Logic: Factor Back 

 

Figure 5.5 shows logic being extracted from a view and into a controller, a command 

object, and helpers. 

Figure 5.5. Localize Disparate Logic: Factor Forward 

 



 - 90 -

Motivation 

To create cleaner abstractions, increase cohesion and reduce coupling, which 

improves modularity and reusability. Well-partitioned, modular applications also 

provide better separation of developer roles, since Web developers own formatting 

code, while software developers own business logic. 

Mechanics 

• Use the View Helper pattern as a guide for applying Extract Class [Fowler] to 

create new helper classes, moving business logic from the JSP into these 

helpers. 

• Delegate to these helper classes from the JSP. 

o See “View Helper” . 

o The initial contact point for handling the client request could be the 

view, as shown in the Factor Back diagram in Figure 5.4. See 

“Dispatcher View” . 

• Consider introducing a controller, if one does not already exist. 

o See “Introduce a Controller” . 

o As shown in the Factor Forward diagram in Figure 5.5, the controller 

may use a command helper. 

o The initial contact point for handling the client request could be the 

controller, as shown in the Factor Forward diagram. See “Service to 

Worker” . 

Example 

We start with the sample code listed in Example 5.5. It is a JSP that includes lots of 

scriptlet code, intermingling business logic with the view. 

Example 5.5 JSP with Scriptlet Code 

<html> 

<head><title>Employee List</title></head> 

<body> 

<%-- Display All employees belonging to a department 

  and earning at most the given salary --%> 

 

<% 

 

    // Get the department for which the employees are 

    // to be listed 



 - 91 -

    String deptidStr = request.getParameter( 

        Constants.REQ_DEPTID); 

 

    // Get the max salary constraint 

    String salaryStr = request.getParameter( 

        Constants.REQ_SALARY); 

 

    // validate parameters 

 

    // if salary or department not specified, go to 

    // error page 

    if ( (deptidStr == null) || (salaryStr == null ) ) 

    { 

       request.setAttribute(Constants.ATTR_MESSAGE, 

        "Insufficient query parameters specified" + 

        "(Department and Salary)"); 

       request.getRequestDispatcher("/error.jsp"). 

         forward(request, response); 

    } 

 

    // convert to numerics 

    int deptid = 0; 

    float salary = 0; 

    try 

    { 

        deptid = Integer.parseInt(deptidStr); 

        salary = Float.parseFloat(salaryStr); 

    } 

    catch(NumberFormatException e) 

    { 

       request.setAttribute(Constants.ATTR_MESSAGE, 

          "Invalid Search Values" + 

          "(department id and salary )"); 

       request.getRequestDispatcher("/error.jsp"). 

          forward(request, response); 

    } 

 

    // check if they within legal limits 

    if ( salary < 0  ) 

    { 

      request.setAttribute(Constants.ATTR_MESSAGE, 

        "Invalid Search Values" + 

        "(department id and salary )"); 

      request.getRequestDispatcher("/error.jsp"). 

        forward(request, response); 



 - 92 -

    } 

 

%> 

 

<h3><center> List of employees in department # 

  <%=deptid%> earning at most <%= salary %>. </h3> 

 

<% 

    Iterator employees = new EmployeeDelegate(). 

                            getEmployees(deptid); 

%> 

 

<table border="1" > 

    <tr> 

        <th> First Name </th> 

        <th> Last Name </th> 

        <th> Designation </th> 

        <th> Employee Id </th> 

        <th> Tax Deductibles </th> 

        <th> Performance Remarks </th> 

        <th> Yearly Salary</th> 

    </tr> 

<% 

    while ( employees.hasNext() ) 

    { 

        EmployeeVO employee = (EmployeeVO) 

                                employees.next(); 

 

        // display only if search criteria is met 

        if ( employee.getYearlySalary() <= salary ) 

        { 

%> 

        <tr> 

          <td> <%=employee.getFirstName()%></td> 

          <td> <%=employee.getLastName()%></td> 

          <td> <%=employee.getDesignation()%></td> 

          <td> <%=employee.getId()%></td> 

          <td> <%=employee.getNoOfDeductibles()%></td> 

          <td> <%=employee.getPerformanceRemarks()%> 

                </td> 

          <td> <%=employee.getYearlySalary()%></td> 

        </tr> 

<% 

        } 

    } 



 - 93 -

%> 

</table> 

 

<%@ include file="/jsp/trace.jsp" %> 

<P> <B>Business logic and presentation formatting are 

  intermingled within this JSP view. </B> 

 

</body> 

</html> 

This JSP generates an HTML table that lists employees at a certain salary level. The 

JSP encapsulates formatting and business logic, as shown in Figure 5.6. 

Figure 5.6. View with intermingled business logic and 

formatting code 

 

As Example 5.6 shows, we apply the View Helper pattern, changing the design and 

extracting scriptlet code from the JSP view. 

Example 5.6 JSP with Scriptlet Code Extracted 

<%@ taglib uri="/WEB-INF/corepatternstaglibrary.tld" 

    prefix="corepatterns" %> 

<html> 

<head><title>Employee List</title></head> 

<body> 

 

<corepatterns:employeeAdapter /> 

 

<h3><center>List of employees in 

  <corepatterns:department attribute="id"/> 

  department - Using Custom Tag Helper Strategy </h3> 

 



 - 94 -

<table border="1" > 

    <tr> 

        <th> First Name </th> 

        <th> Last Name </th> 

        <th> Designation </th> 

        <th> Employee Id </th> 

        <th> Tax Deductibles </th> 

        <th> Performance Remarks </th> 

        <th> Yearly Salary</th> 

    </tr> 

    <corepatterns:employeelist id="employeelist_key"> 

    <tr> 

      <td><corepatterns:employee 

            attribute="FirstName"/></td> 

      <td><corepatterns:employee 

            attribute="LastName"/></td> 

      <td><corepatterns:employee 

            attribute="Designation"/> </td> 

        <td><corepatterns:employee 

            attribute="Id"/></td> 

        <td><corepatterns:employee 

            attribute="NoOfDeductibles"/></td> 

        <td><corepatterns:employee 

            attribute="PerformanceRemarks"/></td> 

        <td><corepatterns:employee 

            attribute="YearlySalary"/></td> 

        <td> 

     </tr> 

    </corepatterns:employeelist> 

</table> 

 

</body> 

</html> 

Additionally, we have written two custom tag helpers to encapsulate our business 

and presentation formatting processing logic by adapting the data model into the 

rows and columns of our HTML table. 

The two helpers are the <corepatterns:employeelist> tag and the 

<corepatterns:employee> tag. 

Figure 5.7 shows that we have moved from the design represented by the left side 

of the arrow to the one represented on the right side. 



 - 95 -

Figure 5.7. Extracting business logic into helper 

classes 

 

Business logic has been extracted into helper classes instead of being embedded 

directly within the JSP. These helpers handle a variety of tasks, including content 

retrieval, access control, and adapting model state for display. In the second case, 

the helper actually encapsulates some of the presentation processing logic, such as 

formatting a result set into an HTML table. See also “Remove Conversions from 

View” . This helps us meet our goal of extracting as much programming logic from 

the view as possible, thus using the JSP to ask the helper for the completed table, 

instead of including scriptlet code in the JSP to generate the table. 

Helper components may be implemented as JavaBeans or custom tags (see “View 

Helper” ). JavaBean helpers are well suited to encapsulating content retrieval logic 

and storing the results, while custom tag helpers are well suited to the 

aforementioned task of converting the model for display, such as creating a table 

from a result set. There is quite a bit of overlap, though, so other factors, such as 

developer experience and manageability issues, may affect the decision about how 

to implement a helper. 

Applying the second bullet of the mechanics, we simply delegate the work to the 

helpers, as shown in Figure 5.8. 

Figure 5.8. Delegate work to helpers 

 

The JSP view uses the helper classes to perform the view processing and generation. 

Typically, a controller is used in front of the JSP as the initial contact point for client 



 - 96 -

requests (see “Front Controller” and “Introduce a Controller”). The controller 

dispatches to the view, but prior to doing so, the controller may also delegate work 

to the helper components (see “Service to Worker” ). Having introduced a controller, 

we have made the transition shown in Figure 5.9. 

Figure 5.9. Introducing a controller 

 

Hide Presentation Tier-Specific Details From the 

Business Tier 

Request handling and/or protocol-related data structures are exposed from the 

presentation tier to the business tier. 

Remove all references to request handling and protocol-related presentation tier 

data structures from the business tier. Pass values between tiers using more generic 

data structures. 

Figure 5.10. Hide presentation tier-specific details 

from the business tier 

 



 - 97 -

Motivation 

Implementation details specific to one tier should not be introduced in another tier. 

The service API exposed by the business tier to the presentation tier will likely be 

used by other clients as well. If the service API accepts parameters with types, such 

as HttpServletRequest, then every client to the service is forced to package its data 

in a servlet request data structure. This drastically reduces the service's reusability. 

Mechanics 

• Replace all references to presentation-tier data structures in the business 

tier with references to more generic data structures and types. 

o These are typically business-tier methods accepting parameters with 

types such as HttpServletRequest that might be replaced with 

parameters of more generic types, such as String, int, or UserInfo. 

• Modify client code in the presentation tier that invokes these methods. 

o Pieces of the presentation tier data structure may be passed to the 

business tier methods as individual arguments. For example, if the 

HttpServletRequest has parameters x, y, and z, a method in the 

business tier, instead of accepting the HttpServletRequest as a 

parameter, might accept these three arguments individually as 

Strings. One drawback of passing fine-grained, individual arguments 

is that this strategy more tightly couples the details of the 

presentation tier with the business service API. Thus, if the state 

required by the service changes, then the service API must change. 

o A slightly more flexible alternative is to copy the relevant state from 

the presentation tier data structure into a more generic data 

structure, such as a value object, which is passed into the business 

tier. In this case the service API continues to accept this object, even 

if its implementation details change. 

• Alternatively, implement a strategy of overlaying interface types, if a 

presentation-tier framework, such as the popular Struts project [Struts], is 

used. 

o When handling a request, frameworks typically create numerous data 

structures. For example, typically a framework will transparently 

complete the step of copying the relevant state from the 

HttpServletRequest data structure to a more generic data structure, 

massaging request parameters into a framework-specific data type. 

While this data type may fulfill the same basic role as a value object, 

it is a framework-specific data type. Thus, passing this data structure 

into the business tier introduces coupling between the 

request-handling framework and the business services. In this case, 

one could still take the approach just described and copy the 



 - 98 -

framework-specific data structure into a generic structure before 

passing it to the business tier. Instead, a more efficient solution is to 

simply create a generic type of interface that mirrors the methods of 

the framework-specific type. If this interface type is overlaid onto the 

framework-specific object, then this object can be shared with the 

business tier without any coupling to the specific framework. 

o For example, if the framework instantiates a subclass of 

a.framework.StateBean called my.stuff.MyStateBean, it will be of 

type StateBean: 
o  

o //Note:Instance creation is typically done via a factory 

o //Note:Parameters not shown for simplicity 

o a.framework.StateBean bean = new my.stuff.MyState- 

o   Bean(...); 

o If the business tier accepted this bean as a parameter, the type would 

be StateBean: 
o  

o public void aRemoteBizTierMethod(a.framework.StateBean 

o                                       bean) 

o Instead of passing the bean of type StateBean into the business tier, 

introduce a new Interface called my.stuff.MyStateVO, implemented 

by my.stuff.MyStateBean: 
o  

o public class MyStateBean extends a.framework.StateBean 

o   implements MyStateVO 

o Now the business tier can include the following method signature: 
o  

o public void aRemoteBizTierMethod(my.stuff.MyStateVO 

o                                       bean) 

o There is no need to copy parameters into a more generic value object, 

and the framework type is no longer exposed across tiers. 

• Finally, on a separate note, remember that you can further reduce the 

coupling among the logically unrelated parts of the application by applying 

this refactoring to presentation-tier domain objects, as well. 

o Visually, we are describing something similar to Figure 5.11. 



 - 99 -

Figure 5.11. Hiding presentation 

tier-specific details from domain objects 

 

o The same motivation and mechanics apply to this situation, since we 

don't want to reduce the reusability of our basic domain objects, such 

as Customer objects. 

o This localizes all references to protocol-related data structures in and 

around the request handling components, such as the controller. An 

example of decoupling the HttpServletRequest from a domain object 

is shown in Example 5.7 and Example 5.8 in the “Example” section. 

Example 

The Customer class in Example 5.7 accepts an HttpServletRequest instance as a 

parameter, which greatly reduces the generic nature of this domain object. If a 

non-web client wanted to use this Customer class, it would somehow need to first 

generate an HttpServletRequest object, which is inappropriate. 

Example 5.7 Tight Coupling between a Domain Object 

and HttpServletRequest object 

/** The following excerpt shows a domain object that 

  is 

  too tightly coupled with HttpServletRequest **/ 

public class Customer 

{ 

  public Customer ( HttpServletRequest request ) 

  { 

       firstName = request.getParameter("firstname"); 

       lastName = request.getParameter("lastname "); 

  } 

} 



 - 100 -

Instead of exposing the HttpServletRequest object to a general Customer object, 

simply decouple the two, as shown in Example 5.8 : 

Example 5.8 Reduced Coupling between a Domain 

Object and HttpServletRequest object 

// Domain Object not coupled with HttpServletRequest 

public class Customer 

{ 

  public Customer ( String first, String last ) 

  { 

    firstName = first; 

    lastName = last; 

  } 

} 

Remove Conversions from View 

Portions of the model are converted for display within a view component. 

Extract all conversion code from view and encapsulate it in one or more helper 

classes. 

Figure 5.12. Remove conversions from view 

 

Motivation 

Directly embedding logic that converts the model for display in the JSP view reduces 

the application's modularity and reusability. Since such conversions might occur in 



 - 101 -

multiple JSPs, the code would need to be duplicated, creating a copy-and-paste type 

of reuse that is a maintenance headache. 

Mechanics 

• Apply Extract Class [Fowler] to move the converting and adapting logic from 

individual JSPs into helper classes. 

o An example is adapting a database result set into an HTML table via 

some application code. 

• Invoke these helpers from the JSPs to process the conversions and 

adaptations as desired. 

o The conversion is performed by the helper class to which the JSP 

delegates. 

Example 

In this example, we examine logic that converts a collection of items, such as a 

result set, into an HTML table. While this is indeed formatting logic in one sense, it 

is also conversion code, generating a table of results from an intermediate model. 

The implementation of this dynamic conversion is reusable if it is encapsulated in a 

custom tag instead of being embedded directly within a JSP. 

Example 5.9 is an example of a JSP that includes this type of conversion logic 

embedded directly in its source. 

Example 5.9 Conversion Logic Embedded Within View 

<html> 

<head><title>Employee List</title></head> 

<body> 

 

<h3><head><center> List of employees</h3> 

 

<% 

    String firstName = 

      (String)request.getParameter("firstName"); 

    String lastName  = 

      (String)request.getParameter("lastName"); 

    if ( firstName == null ) 

      // if none specific, fetch all 

      firstName = ""; 

    if ( lastName == null ) 

      lastName = ""; 



 - 102 -

 

    EmployeeDelegate empDelegate = new 

            EmployeeDelegate(); 

    Iterator employees = 

        empDelegate.getEmployees( 

          EmployeeDelegate.ALL_DEPARTMENTS); 

%> 

 

<table border="1" > 

    <tr> 

        <th> First Name </th> 

        <th> Last Name </th> 

        <th> Designation </th> 

    </tr> 

<% 

    while ( employees.hasNext() ) 

    { 

        EmployeeVO employee = (EmployeeVO) 

                              employees.next(); 

 

        if ( employee.getFirstName(). 

              startsWith(firstName) && 

             employee.getLastName(). 

              startsWith(lastName) ) { 

%> 

 <tr> 

  <td><%=employee.getFirstName().toUpperCase() %></td> 

  <td> <%=employee.getLastName().toUpperCase() %></td> 

  <td> <%=employee.getDesignation()%></td> 

 </tr> 

<% 

        } 

    } 

%> 

</table> 

The first step is to extract this logic into helper classes. Custom tag helpers make 

the most sense in this case, since we want to remove as much scriptlet code from 

the JSP as possible (see See “Note on Helpers:” .). The JSP is then modified to 

delegate to these helpers to complete the processing. Example 5.10 shows how the 

JSP might look after these steps. 



 - 103 -

Example 5.10 Logic Extracted into Helper Classes 

<html> 

<head><title>Employee List - Refactored </title> 

</head> 

<body> 

 

<h3> <center>List of employees</h3> 

 

<corepatterns:employeeAdapter /> 

 

<table border="1" > 

    <tr> 

        <th> First Name </th> 

        <th> Last Name </th> 

        <th> Designation </th> 

    </tr> 

<corepatterns:employeelist id="employeelist" 

    match="FirstName, LastName"> 

<tr> 

 

    <td><corepatterns:employee attribute= "FirstName" 

  case="Upper" /> </td> 

    <td><corepatterns:employee attribute= "LastName" 

  case="Upper" /></td> 

    <td><corepatterns:employee attribute= 

  "Designation" /> </td> 

    <td> 

 </tr> 

</corepatterns:employeelist> 

</table> 

Now let us examine another type of conversion. In some cases, portions of the 

model are converted to HTML via XSL transformations. This can also be 

accomplished using custom tag helpers. Once again, this allows us to extract the 

logic from the JSP itself, providing us with more modular and reusable components. 

Here is an example of a JSP that uses custom tag helpers to perform its conversions, 

instead of performing such conversions inline: 

 

<%@taglib uri="http://jakarta.apache.org/taglibs/xsl-1.0" 

  prefix="xsl" %> 

<xsl:apply nameXml="model" propertyXml="xml" 

  xsl="/stylesheet/transform.xsl"/> 



 - 104 -

The Jakarta taglibs [JakartaTaglibs] XSL apply tag is used to generate the entire 

output of this page. It could be used to simply generate component pieces of the 

page in the same manner. The tag invocation relies on the fact that a bean exists in 

a page scope called “model,” with a property named “xml.” In other words, there is 

an instance of a bean in a page scope that has a method with the following 

signature: 

 

public String getXml() 

It is worth noting that these types of conversions can be performed entirely 

independent of JSP. Depending on numerous factors, such as the storage format of 

the content and existence of various legacy technologies, one might choose this 

route. 

Hide Resource From a Client 

Certain resources, such as JSP views, should not be directly accessible to a client 

browser. 

Hide certain resources via container configuration or by using a control component. 

Figure 5.13. Restricted via container configuration 

 



 - 105 -

Motivation 

Control of an incoming request is often desired. This refactoring describes 

permission-based control and protection. 

If the order or flow of the client requests must be controlled, then apply Introduce 

Synchronizer Token (see “Introduce Synchronizer Token” ). 

Mechanics 

• Restrict access to certain resources (such as Web resources, servlets, among 

others) via configuration, by moving these resources into a subdirectory of 

the /WEB-INF/ subdirectory of the Web application. 

o For example, to block direct browser access to a view called info.jsp, 

in the securityissues Web application, we could place the JSP 

source file in the following subdirectory: 

/securityissues/WEB-INF/internalaccessonly/ info.jsp. 

• Restrict access using a control component. 

o Introduce a controller (see “Introduce a Controller” ) may be applied 

and the controller can manage access to protected resources. 

o Additionally, each resource to be protected can manage its own 

access control, meaning it would delegate to a helper class to perform 

this processing. 

• Create one or more helper classes. 

o Depending on the implementation, either the controller or each JSP 

itself delegates to these helper classes to check whether the resource 

should be served. 

Example 

Restricted by Container Configuration 

We can make a JSP called info.jsp inaccessible to our client, except via a controller, 

by moving the JSP under the /WEB-INF/ directory. 

If we have a Web application called corepatterns, then we might start with the 

following configuration under our server root directory: 

 

/corepatterns/secure_page.jsp 



 - 106 -

By default, this allows direct client access to this resource, as shown in the following 

URL: 

http://localhost:8080/corepatterns/secure_page.jsp 

To restrict direct access, we can simply move the JSP file to a subdirectory of the 

/WEB-INF/ directory, giving us the following under our server root: 

 

/corepatterns/WEB-INF/privateaccess/secure_page.jsp 

The /WEB-INF/ directory hierarchy is accessible only indirectly via internal requests, 

such as those coming through a controller and a RequestDispatcher. Thus, a 

browser client can only access this file now using a URL similar to the following: 

http://localhost:8080/corepatterns/controller?view=/corepatterns/WEB-INF/priva

teaccess/secure_page.jsp 

Note:The above URL is for example purposes only and is not a recommended way to 

pass path information to the server. The view query parameter should not expose 

the server's directory structure. It does so in this example only to clarify the 

example's intent. 

If this request is handled by a servlet controller, then it can forward the request to 

secure_page.jsp, using the RequestDispatcher. 

On the other hand, if an attempt is made to access the resource directly, as follows, 

http://localhost:8080/corepatterns/WEB-INF/privateaccess/secure_page.jsp 

the server responds that the requested resource is not available, as shown in Figure 

5.15. 

Figure 5.15. Screen shot: Restricting direct browser 

access via simple file configuration 

 



 - 107 -

Restricted by Using a Control Component 

Another option for restricting access is to delegate to a control component, as 

shown in Figure 5.14 and Example 5.11. 

Figure 5.14. Restricted by using a control component 

 

Example 5.11 Controlling Access Using a Control 

Component 

<%@ taglib uri="/WEB-INF/corepatternstaglibrary.tld" 

  prefix="corepatterns" %> 

<corepatterns:guard/> 

<html> 

<head><title>Hide Resource from Client</title></head> 

<body> 

 

<h2>This view is shown to the client only if the 

control component allows access. The view delegates 

the control check to the guard tag at the top of the 

page.</h2> 

</body> 

</html> 



 - 108 -

Business and Integration Tier Refactorings 

Wrap Entities With Session 

Entity beans from the business tier are exposed to clients in another tier. 

Use a Session Facade to encapsulate the entity beans. 

Figure 5.16. Wrap Entities With Session 

 

Motivation 

Entity beans are coarse-grained distributed persistent objects. Exposing the entity 

bean to clients in a different tier results in network overhead and performance 

degradation. Each client invocation on the entity bean is a remote network method 

call, which is expensive. 

Entity beans mandate container-managed transaction. Exposing the entity bean to 

the clients may put the burden on the client developer to understand, design, and 

demarcate transactions when dealing with multiple entity beans. The client 

developer has to obtain a user transaction from the transaction manager and code 

the interaction with entity beans to occur within the context of that transaction. 

Since the client implements the transaction management, it is not possible to use 

the benefits of container-managed transaction demarcation. 



 - 109 -

Mechanics 

• Move the business logic to interact with the entity beans out of the 

application client. 

o Use Extract Class [Fowler] to extract the logic from the client. 

• Use a session bean as a facade to the entity beans. 

o This session bean can contain the entity bean interaction logic and 

associated workflow logic. 

o See “Session Facade” for details. 

• Implement session beans to provide a consolidated uniform access layer to 

the entity beans by applying the Session facade pattern. 

o The number of interactions between the client and the entity beans is 

now moved into the Session facade in the business tier. 

o Thus, the number of remote method invocations from the client is 

reduced. 

• Implement transaction logic in session beans if using bean-managed 

transactions. For container-managed transactions, specify the transaction 

attributes for the session bean in the deployment descriptor. 

o Since the session bean interacts with the entity beans, the client is no 

longer responsible for demarcating transactions. 

o Thus, all transaction demarcation is now delegated to either the 

session bean or the container, depending on whether the designer 

has chosen user-managed or container-managed transactions. 

Introduce Business Delegate 

Session beans in the business tier are exposed to clients in other tiers. 

Use a business delegate to decouple the tiers and to hide the implementation 

details. 



 - 110 -

Figure 5.17. Introduce Business Delegate 

 

Motivation 

Session beans are used to implement facades for entity beans, as discussed in 

“Wrap Entities With Session” . Session beans provide coarse-grained interfaces to 

business services. But, exposing the session bean directly to the application client 

creates a tight coupling between the application client code and the session bean. 

Exposing the session bean to the application client increases the prevalence of 

session bean calls throughout the client code. Thus, any change to the session bean 

interface impacts every point in the application client code where the session bean 

is called, and thus creates highly brittle code. The clients also are exposed to service 

level exceptions encountered when dealing with enterprise beans. This effect is 

further exaggerated if you consider applications with different types of clients, 

where each such client uses the session bean interface to obtain some service. 

Mechanics 

• For each session bean that is directly exposed to clients across the tier, 

introduce a business delegate. 

o Business delegates are plain Java classes that encapsulate the 

business tier details and intercept service level exceptions on behalf 

of the client. 

o See “Business Delegate”. 

• Implement each Business Delegate to deal with its session bean, typically as 

a facade. A business delegate is designed with a one-to-one relationship with 

its session facade. 



 - 111 -

o Business delegates reduce the coupling between the client tier and 

the business services (session beans) by hiding the implementation 

details. 

o The clients deal with the business delegates by invoking methods on 

them locally. 

• Encapsulate code related to lookup services and caching in business 

delegates. 

o Business delegates can use a service locator to look up business 

services. 

o See “Service Loctor” 

Merge Session Beans 

Create a one-to-one mapping between session bean and entity bean. 

Map coarse-grained business services to session beans. Eliminate or combine 

session beans that act solely as entity bean proxies into session beans that 

represent coarse-grained business services. 

Motivation 

A one-to-one mapping of a session bean to an entity bean does not yield any 

benefits. Such mapping only introduces a layer of session beans acting as proxies. 

Typically this happens when developers create session beans to front entity beans, 

rather than to represent coarse-grained services. 

Some designers interpret “Wrap Entities With Session” to mean that every entity 

bean should be protected by its own session bean. This is not a correct 

interpretation, since it results in design of session beans as proxies rather than as 

facades. The drawbacks of exposing the entity beans to clients is discussed in “Wrap 

Entities With Session”. 

In Figure 5.18, different clients are servicing different interactions. Each interaction 

involves one or more entity beans. With a one-to-one mapping of a session bean to 

an entity bean, the client has to interact with each session bean fronting an entity 

bean. Since the session bean is essentially a proxy to the entity, this scenario is 

similar to exposing the entity bean directly to the client. 



 - 112 -

Figure 5.18. Merge Session Beans 

 

Mechanics 

• Implement session beans as facades to entity beans. Thus, each session 

bean provides a coarse-grained business service interface to the clients. 

• Consolidate fine-grained session beans or a set of session beans that are 

proxies to entity beans into a single session bean. 

o Session beans represent coarse-grained business service. 

o Entity beans represent coarse-grained, transactional persistent data. 

o See “Session Facade” . 

• Consolidate a set of related interactions that involve one or more entity 

beans into a single session facade instead of implementing each interaction 

using a unique session bean. 

o This results in a fewer number of session beans that provide a 

uniform coarse-grained business service access to entity beans. 

o The number of Session facades is related to the grouping of 

interactions and not to the number of entity beans. 

Eliminate Inter-Entity Bean Communication 

Inter-entity bean relationships introduce overhead in the model. 

Reduce or eliminate the inter-entity bean relationships by using coarse-grained 

entity bean (Composite Entity) with dependent objects. 



 - 113 -

Figure 5.19. Eliminate Inter-Entity Bean 

Communication 

 

Motivation 

Entity beans have significantly more overhead than plain Java objects. Calls to 

entity bean methods are remote and incur network overhead. Also, entity beans 

must interact with an external data source. 

Even if two entity beans are in the same container, remote method invocation 

semantics apply (the container is involved in the communication) when one entity 

bean calls the other bean. Some container implementations may optimize such calls, 

because they recognize that the call comes from an object within the same 

container, but this is vendor-specific and cannot be relied upon. 

Another issue is the inability for the entity bean to demarcate a transaction. When 

using entity beans, you are only allowed to have container-managed transactions. 

This means that, depending on the transaction attribute of the entity bean method, 

the container may start a new transaction, participate in the current transaction, or 

do neither. When a client invokes a method on an entity bean, the transaction 

includes the chain of dependent entity beans and binds them into the transaction's 

context. This reduces the performance throughput of the entity beans as a whole, 

because any transaction may lock multiple entity beans and possibly introduce 

deadlock situations. 

Mechanics 

• Design and implement entity beans as coarse-grained objects with root and 

dependent objects. 



 - 114 -

o Transform an entity-bean-to-entity-bean relationship into an 

entity-bean-to-dependent-object relationship. 

o Dependent objects are not entity beans. Rather, they are objects 

contained within an entity bean. A relationship between an entity 

bean and its dependent objects is a local relationship with no network 

overhead. 

o Optimize load and store operations for Composite Entity using the 

Lazy Loading Strategy and Store Optimization (Dirty Marker) 

Strategy respectively. 

o See “Composite Entity” . 

• Extract and move business logic related to working with other entities from 

the entity bean into a session bean. 

o Use Extract Method [Fowler] and/or Move Method [Fowler] to move 

such business logic into a session bean, applying the Session facade 

pattern. 

o See “Session Facade” . 

Move Business Logic to Session 

Inter-entity bean relationships introduce overhead in the model. 

Encapsulate the workflow related to inter-entity bean relationships in a session bean 

(Session Facade). 

Figure 5.20. Move Business Logic to Session 

 



 - 115 -

Motivation 

In “Eliminate Inter-Entity Bean Communication” , we discussed the problems 

associated with direct inter-entity-bean dependencies. The problem is that an entity 

may contain business logic that deals with other entity beans. This creates a direct 

or indirect dependency on another entity bean. The same problems discussed in 

Eliminate Inter-Entity Bean Communication apply to this scenario too. 

Mechanics 

• Extract and move business logic related to working with other entities from 

the entity bean into a session bean. 

o Use Extract Method [Fowler] and/or Move Method [Fowler] to move 

such business logic into a session bean applying the Session facade 

pattern. 

o See “Session Facade” . 

o See “Wrap Entities With Session” . 

General Refactorings 

Separate Data Access Code 

Data access code is embedded directly within a class that has other unrelated 

responsibilities. 

Extract the data access code into a new class and move the new class logically 

and/or physically closer to the Data Source. 

Figure 5.21. Separate Data Access Code 

 

Motivation 

Create cleaner abstractions, increase cohesion, and reduce coupling, thus 

improving modularity and reusability. 



 - 116 -

Mechanics 

• Identify and extract the data access logic from the controller object. 

o Use Extract Class [Fowler] to create a new class and move data 

access code from the original class into the new Data Access Object 

(DAO) class. 

o Consider including the DAO as part of the name of the new class in 

order to flag its role as a Data Access Object. 

o See “Data Access Object” . 

• Use the new DAO from the controller to access data. 

• For related information on application partitioning, see “Refactor 

Architecture by Tiers” . 

Example 

Consider an example where a servlet has embedded data access code to access 

some user information. Applying the first two bullets, assume we change the design, 

as shown in Figure 5.22. 

Figure 5.22. Separate Data Access Code – Servlet 

example 

 

We now have two classes: one for the servlet, which acts as a controller, and the 

other a new object called “UserDAO,” which acts as a data access object to access 

user information. The UserDAO encapsulates all Java Database Connectivity (JDBC) 

code and decouples the servlet from the implementation details. The servlet code is 

much simpler as a result. 

Consider another example where the persistence logic is embedded in an enterprise 

bean using bean-managed persistence. Combining the persistence code with the 

enterprise bean code creates brittle, tightly coupled code. When the persistence 



 - 117 -

code is part of the enterprise bean, any change to the persistence store requires 

changing the bean's persistence code. Such coupling has a negative impact on 

enterprise bean code maintenance. This is another example of how this refactoring 

can help. 

Applying this refactoring, we change the design as shown in Figure 5.23. 

Figure 5.23. Separate Data Access Code – Enterprise 

bean example 

 

Refactor Architecture by Tiers 

Increasing architectural sophistication requires changing the localization of data 

access logic and processing logic. 

Move Data Access code logically and/or physically closer to the actual Data Source. 

Move processing logic out of the client and presentation tiers into the business tier. 



 - 118 -

Figure 5.24. Refactor Architecture by Tiers 

 

Motivation 

“Separate Data Access Code” demonstrates refactoring data access logic, while this 

refactoring discusses other types of business logic in an application. 

The J2EE platform offers clear separation of concerns into the roles of servlets, JSPs, 

and EJB components to provide maximum benefits in terms of scalability, flexibility, 

transactions, security, and so forth. 



 - 119 -

As business requirements become more sophisticated, the design needs to better 

address issues related to persistence, transactions, security, and scalability of 

business services. At some point in this increasing complexity, session beans and 

entity beans are introduced to provide centralized business processing for all clients 

and to leverage the benefits of the EJB container. 

Some designers use heavyweight components like enterprise beans without 

ensuring that the application requirements warrant their use. Some sophisticated 

application requirements that influence this decision are transactions, security, 

scalability, and distributed processing. 

Mechanics 

• Separate data access code from control and entity objects into data access 

objects. 

o See “Separate Data Access Code”. 

• Separate presentation and business processing. Introduce session beans for 

business processing. Retain presentation processing in servlets and JSPs. 

o Apply this step when application requirements become more 

sophisticated, and as business logic consolidation is required at the 

business tier to offer the same business service to all clients (i.e., not 

only to presentation clients). 

o Introducing session beans as business service processing 

components enables this functionality. Session beans access the 

persistent storage via the data access objects. 

o Container-managed or bean-managed transaction demarcation can 

be utilized as appropriate for the session beans. 

o See “Session Facade”. 

• Introduce entity beans to model-shared, transactional, coarse-grained 

persistent business objects. If requirements do not warrant using entity 

beans, then skip this step. 

o Apply this step when the persistent business components become 

increasingly complex and you wish to leverage the entity bean 

benefits, including container-managed transactions and 

container-managed persistence (CMP). 

o Entity beans offer container-managed transaction for transaction 

demarcation. This allows declarative programming for transaction 

demarcation without hardcoding the transaction logic into the 

enterprise beans. 

o See “Value Object and “Composite Entity”. 

• Decouple presentation-tier and business-tier components, using business 

delegates. 



 - 120 -

o Business Delegate decouples the presentation-tier components from 

business-tier components and hides the complexity of lookup and 

other implementation details. 

o See “Business Delegate”. 

Use A Connection Pool 

Database connections are not shared. Instead, clients manage their own 

connections for making database invocations. 

Use a Connection Pool to pre-initialize multiple Connections, improving scalability 

and performance. 

Figure 5.25. Use A Connection Pool 

 

Motivation 

Opening a connection to a database is a fairly expensive operation that takes time 

and resources to perform. Both performance and scalability are affected. Since 

database connections are limited, if each client manages its own connection, the 

total number of connections will likely be exhausted far sooner than desired. 

This issue arises in the presentation tier on projects that use a phased approach to 

introducing EJB technology. In this case, components in the presentation tier 

initially interact directly with a database, and the data access code is later moved 

into the business tier and encapsulated in an EJB layer. See “Separate Data Access 

Code” and “Refactor Architecture by Tiers” . 



 - 121 -

Mechanics 

• Create an interface for connection management, including methods for 

retrieving and returning a connection. 

• Apply Extract Class [Fowler] and/or Move Method [Fowler], moving the 

existing connection retrieval code into a class that implements the 

connection management interface. 

o At the points from which the connection code was extracted, 

substitute invocations to an instance of this new class; that is, 

connectionMgr.getConnection() and 

connectionMgr.returnConnection(conn). 

o Note that the JDBC specification, version 2, includes a standard 

mechanism for introducing connection pooling. This mechanism, if 

available, is the recommended way to introduce connection pooling. 

In the JDBC specification version 2, the management interface is 

named javax.sql.DataSource and it provides a factory for pooled 

Connection objects. 

o At this point, only the structure and interface has been standardized, 

but the functionality is the same. 

o Still no pooling is implemented, unless the JDBC 2.0 DataSource 

factory is utilized, which is recommended. 

• Modify the implementation of the connection retrieval methods within the 

connection manager implementation to pre-initialize some Connection 

instances and share them among users, thus introducing pooling. 

o There are numerous publicly available implementations from which 

to choose. 

o Clients of these connection manager instances are typically DAOs. 

See “Separate Data Access Code”. 

o Data access code typically migrates logically closer to the database as 

a project evolves. See “Refactor Architecture by Tiers”. 



 - 122 -

Part III: J2EE PATTERN CATALOG 

Chapter 6 provides an overview of the J2EE Pattern Catalog with a discussion on our 

tiered approach. The chapter provides a guide to the pattern catalog and describes 

the terminology and UML Stereotypes used to describe each pattern. The template 

used to document each pattern is also defined and discussed. One of the important 

aspects of the chapter is the discussion of the relationships among various patterns 

in the catalog - both with each other, as well as with patterns in other literature such 

as Design Patterns [GoF], Patterns of Software Architecture, Volume 1 [POSA1] and 

Volume 2 [POSA2]. Another useful artifact in this chapter is the J2EE Patterns 

roadmap, which presents a table of common requirements mapped to various 

patterns and refactorings. 

Chapter 7, 8 and 9 describe the patterns in the J2EE Pattern Catalog. 

Chapter 7 provides six patterns for the presentation tier dealing with Servlets and 

Java Server Pages (JSP) technologies. 

Chapter 8 provides seven business-tier patterns related to the use of Enterprise 

JavaBeans (EJB), Java Database Connectivity (JDBC), Java Naming and Directory 

Interface (JNDI) technologies. 

Chapter 9 provides 2 patterns related to the use of Java Database Connectivity 

(JDBC) and Java Messaging Service (JMS) technologies. 

Epilogue presents a brief discussion on pattern selection and usage with sample use 

cases. It also discusses and demonstrates how multiple patterns work together to 

create a solution. 

Part 3 J2EE PATTERN CATALOG  

Chapter 6—J2EE Patterns Overview 

Chapter 7—Presentation Tier Patterns 

Chapter 8—Business Tier Patterns 

Chapter 9—Integration Tier Patterns 

Epilogue—J2EE Patterns Applied 



 - 123 -

Chapter 6. J2EE PATTERNS OVERVIEW 

Topics in This Chapter 

• The Tiered Approach 

• J2EE Patterns 

• J2EE Pattern Relationships 

• Relationship to Known Patterns 

• Patterns Roadmap 

The J2EE patterns are a collection of J2EE-based solutions to common problems. 

They reflect the collective expertise and experience of Java architects at the Sun 

Java Center, gained from successfully executing numerous J2EE engagements. The 

Sun Java Center is Sun's consulting organization, focused on architecting Java 

technology-based solutions for customers. The Sun Java Center has been 

architecting solutions for the J2EE platform since its early days, focusing on 

achieving Quality of Service (QoS) qualities such as scalability, availability, 

performance, securability, reliability, and flexibility. 

These J2EE patterns describe typical problems encountered by enterprise 

application developers and provide solutions for these problems. We have 

formulated these solutions based on our ongoing work with numerous J2EE 

customers and on exchanges with other Java architects experiencing similar 

problems. The patterns capture the essence of these solutions, and they represent 

the solution refinement that takes place over the course of time and from collective 

experience. To put it another way, they extract the core issues of each problem, 

offering solutions that represent an applicable distillation of theory and practice. 

Our work has focused on the J2EE area, especially regarding such J2EE components 

as Enterprise Java Beans (EJB), Java Server Pages (JSP), and servlets. During our 

work with J2EE customers implementing the various components, we have come to 

recognize the common problems and difficult areas that may impede a good 

implementation. We've also developed effective best practices and approaches for 

using the J2EE components in combination. 

The patterns presented here extract these “best practice” approaches and present 

them to you in a way that enables you to apply the patterns to your own particular 

application and to accommodate your own needs. The patterns clearly and simply 

express proven techniques. They make it easier for you to reuse successful designs 

and architectures. Simply put, you can use the patterns to design your J2EE system 

successfully and quickly. 



 - 124 -

What Is a Pattern? 

In Chapter 1, we discussed how different experts define a pattern. We also 

discussed some of the peripheral issues around patterns including the benefits of 

using patterns. Here, we revisit this discussion in the context of the J2EE Pattern 

Catalog. 

As discussed in Chapter 1, some experts define a pattern as a recurring solution to 

a problem in a context. These terms—context, problem, and solution—deserve a bit 

of explanation. First, what is a context? A context is the environment, surroundings, 

situation, or interrelated conditions within which something exists. Second, what is 

a problem? A problem is an unsettled question, something that needs to be 

investigated and solved. Typically, the problem is constrained by the context in 

which it occurs. Finally, the solution refers to the answer to the problem in a context 

that helps resolve the issues. 

So, if we have a solution to a problem in a context, is it a pattern? Not necessarily. 

The characteristic of recurrence also needs to be associated with the definition of a 

pattern. That is, a pattern is only useful if it can be applied repeatedly. Is that all? 

Perhaps not. As you can see, while the concept of a pattern is fairly simple, actually 

defining the term is more complex. 

We point you to the references so that you can dig more deeply into the pattern 

history and learn about patterns in other areas. In our catalog, a pattern is 

described according to its main characteristics: context, problem, and solution, 

along with other important aspects, such as forces and consequences. The section 

describing the pattern template (see “Pattern Template”) explains these 

characteristics in more detail. 

Identifying a Pattern 

We have handled many J2EE projects at the Sun Java Center, and over time we 

have noticed that similar problems recur across these projects. We have also seen 

similar solutions emerge for these problems. While the implementation strategies 

varied, the overall solutions were quite similar. Let us discuss, in brief, our pattern 

identification process. 

When we see a problem and solution recur, we try to identify and document its 

characteristics using the pattern template. At first, we consider these initial 

documents to be candidate patterns. However, we do not add candidate patterns to 

the pattern catalog until we are able to observe and document their usage multiple 

times on different projects. We also undertake the process of pattern mining by 

looking for patterns in implemented solutions. 



 - 125 -

As part of the pattern validation process, we use the Rule of Three, as it is known in 

the pattern community. This rule is a guide for transitioning a candidate pattern into 

the pattern catalog. According to this rule, a solution remains a candidate pattern 

until it has been verified in at least three different systems. Certainly, there is much 

room for interpretation with rules such as this, but they help provide a context for 

pattern identification. 

Often, similar solutions may represent a single pattern. When deciding how to form 

the pattern, it is important to consider how to best communicate the solution. 

Sometimes, a separate name improves communication among developers. If so, 

then consider documenting two similar solutions as two different patterns. On the 

other hand, it might be better to communicate the solution by distilling the similar 

ideas into a pattern/strategy combination. 

Patterns Versus Strategies 

When we started documenting the J2EE patterns, we made the decision to 

document them at a relatively high level of abstraction. At the same time, each 

pattern includes various strategies that provide lower level implementation details. 

Through the strategies, each pattern documents a solution at multiple levels of 

abstraction. We could have documented some of these strategies as patterns in 

their own right; however, we feel that our current template structure most clearly 

communicates the relationship of the strategies to the higher level pattern structure 

in which they are included. 

While we continue to have lively debates about converting these strategies to 

patterns, we have deferred these decisions for now, believing the current 

documentation to be clear. We have noted some of the issues with respect to the 

relationship of the strategies to the patterns: 

• The patterns exist at a higher level of abstraction than the strategies. 

• The patterns include the most recommended or most common 

implementations as strategies. 

• Strategies provide an extensibility point for each pattern. Developers 

discover and invent new ways to implement the patterns, producing new 

strategies for well-known patterns. 

• Strategies promote better communication by providing names for lower level 

aspects of a particular solution. 

The Tiered Approach 

Since this catalog describes patterns that help you build applications that run on the 

J2EE platform, and since a J2EE platform (and application) is a multitiered system, 

we view the system in terms of tiers. A tier is a logical partition of the separation of 



 - 126 -

concerns in the system. Each tier is assigned its unique responsibility in the system. 

We view each tier as logically separated from one another. Each tier is loosely 

coupled with the adjacent tier. We represent the whole system as a stack of tiers. 

See Figure 6.1. 

Figure 6.1. Tiered approach 

 

Client Tier 

This tier represents all device or system clients accessing the system or the 

application. A client can be a Web browser, a Java or other application, a Java applet, 

a WAP phone, a network application, or some device introduced in the future. It 

could even be a batch process. 

Presentation Tier 

This tier encapsulates all presentation logic required to service the clients that 

access the system. The presentation tier intercepts the client requests, provides 

single sign-on, conducts session management, controls access to business services, 

constructs the responses, and delivers the responses to the client. Servlets and JSPs 

reside in this tier. Note that servlets and JSPs are not themselves UI elements, but 

they produce UI elements. 



 - 127 -

Business Tier 

This tier provides the business services required by the application clients. The tier 

contains the business data and business logic. Typically, most business processing 

for the application is centralized into this tier. It is possible that, due to legacy 

systems, some business processing may occur in the resource tier. Enterprise bean 

components are the usual and preferred solution for implementing the business 

objects in the business tier. 

Integration Tier 

This tier is responsible for communicating with external resources and systems such 

as data stores and legacy applications. The business tier is coupled with the 

integration tier whenever the business objects require data or services that reside in 

the resource tier. The components in this tier can use JDBC, J2EE connector 

technology, or some proprietary middleware to work with the resource tier. 

Resource Tier 

This is the tier that contains the business data and external resources such as 

mainframes and legacy systems, business-to-business (B2B) integration systems, 

and services such as credit card authorization. 

J2EE Patterns 

We used the tiered approach to divide the J2EE patterns according to functionality, 

and our pattern catalog follows this approach. The presentation tier patterns contain 

the patterns related to servlets and JSP technology. The business tier patterns 

contain the patterns related to the EJB technology. The integration tier patterns 

contain the patterns related to JMS and JDBC. See Figure 6.2. 



 - 128 -

Figure 6.2. J2EE pattern relationships 

 

Presentation Tier Patterns 

Table 6-1 lists the presentation tier patterns, along with a brief description of each 

pattern. 



 - 129 -

Table 6-1. Presentation Tier Patterns 

Pattern Name  Synopsis  

Intercepting 

Filter 
Facilitates preprocessing and post-processing of a request. 

Front 

Controller 
Provides a centralized controller for managing the handling of a

request. 

View Helper Encapsulates logic that is not related to presentation formatting into

Helper components. 

Composite 

View 
Creates an aggregate View from atomic subcomponents. 

Service To 

Worker 
Combines a Dispatcher component with the FrontController and

View Helper Patterns. 

Dispatcher 

View 
Combines a Dispatcher component with the FrontController and

View Helper Patterns, deferring many activities to View processing.

Business Tier Patterns 

Table 6-2 lists the business tier patterns, along with a brief synopsis of each pattern. 

Table 6-2. Business Tier Patterns 

Pattern Name  Synopsis  

Business 

Delegate 
Decouples presentation and service tiers, and provides a facade

and proxy interface to the services. 

Value Object Facilitates data exchange between tiers by reducing network

chattiness. 

Session Facade Hides business object complexity; centralizes workflow handling. 

Composite 

Entity 
Represents a best practice for designing coarse-grained entity

beans by grouping parent-dependent objects into a single entity

bean. 

Value Object 

Assembler 
Assembles a composite value object from multiple data sources. 

Value List 

Handler 
Manages query execution, results caching, and results processing.

Service Locator Encapsulates complexity of business service lookup and creation;

locates business service factories. 



 - 130 -

Integration Tier Patterns 

Table 6-3 lists the integration tier patterns and provides a brief description of each 

pattern. 

Table 6-3. Integration Tier Patterns 

Pattern Name  Synopsis  

Data Access Object Abstracts data sources; provides transparent access to data. 

Service Activator Facilitates asynchronous processing for EJB components.  

Guide to the Catalog 

To help you effectively understand and use the J2EE patterns in the catalog, we 

suggest that you familiarize yourself with this section before reading the individual 

patterns. Here we introduce the pattern terminology and explain our use of the 

Unified Modeling Language (UML), stereotypes, and the pattern template. In short, 

we explain how to use these patterns. We also provide a high-level roadmap to the 

patterns in the catalog. 

Terminology 

Players in the enterprise computing area, and particularly establishments using 

Java-based systems, have incorporated a number of terms and acronyms into their 

language. While many readers are familiar with these terms, sometimes their use 

varies from one setting to another. To avoid misunderstandings and to keep things 

consistent, we define in Table 6-4 how we use these terms and acronyms. 

Table 6-4. Terminology 

Term  Description/Definition  Used in  

BMP  Bean-managed persistence: a strategy for entity 

beans where the bean developer implements the 

persistence logic for entity beans. 

Business tier

patterns 

Business Object An object that implements business logic and/or 

business data. Business data and business logic 

are implemented in coarse-grained objects called 

Business tier

patterns 



 - 131 -

business objects. In J2EE, business objects are 

implemented as session or entity beans. In some 

cases, a business object could be an arbitrary 

Java object that provides some service.  

CMP  Container-managed persistence: a strategy for 

entity beans where the container services 

transparently manage the persistence of entity 

beans. 

Business tier

patterns 

Composite A complex object that holds other objects. Also 

related to the Composite pattern described in the 

GoF book. (See GoF below.) 

Composite View,

Composite 

Entity 

Controller Interacts with a client, controlling and managing 

the handling of each request. 
Presentation and

business tier

patterns 

Data Access 

Object 
An object that encapsulates and abstracts access 

to data from a persistent store or an external 

system. Currently, Data Access Objects are 

closely related to bean-managed persistence. 

Business and

integration tier

patterns 

Delegate A stand-in, or surrogate, object for another 

component; an intermediate layer. A Delegate 

has qualities of a proxy and facade. 

Business 

Delegate and

many other

patterns 

Dependent 

Object 
An object that does not exist by itself and whose 

lifecycle is managed by another object. 
Composite 

Entity pattern 

Dispatcher Some of the responsibilities of a Controller 

include managing the choice of and dispatching 

to an appropriate View. This behavior may be 

partitioned into a separate component, referred 

to as a Dispatcher. 

Dispatcher View,

Service To

Worker 

Enterprise Bean Refers to an Enterprise JavaBean component; 

can be a session or entity bean instance. When 

this term is used, it means that the bean instance 

can be either an entity or a session bean. 

Many places in

this literature 

Entity Bean Refers to an entity bean. May also refer 

collectively to the entity bean's home interface, 

remote object, bean implementation, and 

primary key objects. 

Many places in

this literature 

Facade A pattern for hiding underlying complexities; 

described in the GoF book. 
Session Facade

pattern 

Factory 

(Abstract 

Factory or 

Patterns described in the GoF book for creating 

objects or families of objects. 
Business tier

patterns: Data

Access Object,



 - 132 -

Factory 

Method) 
Value Object 

Iterator A pattern to provide accessors to underlying 

collection facilities; described in the GoF book. 
Value List

Handler 

GoF Gang of Four—refers to the authors of the 

popular design patterns book, Design Patterns: 

Elements of Reusable Object-Oriented Software, 

by Erich Gamma, Richard Helm, Ralph Johnson, 

and John Vlissides. [GoF]  

Many places in

this literature 

Helper Responsible for helping the Controller and/or 

View. For example, the Controller and View may 

delegate the following to a Helper: content 

retrieval, validation, storing the model or 

adapting it for use by the display. 

Presentation tier

patterns, 

Business 

Delegate 

Independent 

Object 
An object that can exist by itself and may 

manage the lifecycles of its dependent objects. 
Composite 

Entity pattern 

Locator An object that aids in locating service and 

business objects. 
Service Locator

pattern 

Model A physical or logical representation of the system 

or its subsystem. 
Presentation and

business tier

patterns 

Persistent Store Represents persistent storage systems such as 

RDBMSs, ODBMSs, file systems, and so forth. 
Business and

integration tier

patterns 

Proxy A pattern to provide a placeholder for another 

object to control access to it; described in the 

GoF book. 

Many places in

this literature 

Scriptlet Application logic embedded directly within a JSP. Presentation tier

patterns 

Session Bean Refers to a stateless or stateful session bean. 

May also refer collectively to the session bean's 

home, remote object, and bean implementation.

Business tier

patterns 

Singleton A pattern that provides a single instance of an 

object, as described in the GoF book. 
Many places in

this literature 

Template Template text refers to the literal text 

encapsulated within a JSP View. Additionally, a 

template may refer to a specific layout of 

components in a display.  

Presentation tier

patterns 

Value Object An arbitrary Java object that is used to carry data 

from one object/tier to another. Usually does not 

contain any business methods. May be designed 

with public attributes or provided with get 

Business tier

patterns 



 - 133 -

methods to obtain attribute values. 

View The View manages the graphics and text that 

make up the display. It interacts with Helpers to 

get data values with which to populate the 

display. Additionally, it may delegate activities, 

such as content retrieval, to its Helpers. 

Presentation tier

patterns 

Use of UML 

We have used UML extensively in the pattern catalog, particularly as follows: 

• Class diagrams.  We use the class diagrams to show the structure of the 

pattern solution and the structure of the implementation strategies. This 

provides the static view of the solution. 

• Sequence (or Interaction) diagrams.  We use these diagrams to show the 

interactions between different participants in a solution or a strategy. This 

provides the dynamic view of the solution. 

• Stereotypes.  We use stereotypes to indicate different types of objects and 

roles in the class and interaction diagrams. The list of stereotypes and their 

meanings is included in Table 6-5. 

Each pattern in the pattern catalog includes a class diagram that shows the 

structure of the solution and a sequence diagram that shows the interactions for the 

pattern. In addition, patterns with multiple strategies use class and sequence 

diagrams to explain each strategy. 

To learn more about UML, please see the Bibliography. 

UML Stereotypes 

While reading the patterns and their diagrams, you will encounter certain 

stereotypes. Stereotypes are terms coined or used by designers and architects. We 

created and used these stereotypes in order to present the diagrams in a concise 

and easy to understand manner. Note that some of the stereotypes relate to the 

terminology explained in the previous section. 

Table 6-5. UML Stereotypes 

Stereotype  Meaning  

EJB  Represents an enterprise bean component; associated with a business

object. This is a role that is usually fulfilled by a session or entity bean.



 - 134 -

SessionEJB Represents a session bean as a whole without specifying the session

bean remote interface, home interface, or the bean implementation. 

EntityEJB Represents an entity bean as a whole without specifying the entity bean

remote interface, home interface, the bean implementation, or the

primary key. 

View A View represents and displays information to the client. 

JSP  A Java Server Page; a View is typically implemented as a JSP.  

Servlet A Java servlet; a Controller is typically implemented as a Servlet. 

Singleton A class that has a single instance in accordance with the Singleton

pattern. 

Custom 

Tag 
JSP Custom Tags are used to implement Helper objects, as are

JavaBeans. A Helper is responsible for such activities as gathering data

required by the View and for adapting this data model for use by the

View. Helpers can service requests for data from the View by simply

providing access to the raw data or by formatting the data as Web

content.  

Pattern Template 

The J2EE patterns are all structured according to a defined pattern template. The 

pattern template consists of sections presenting various attributes for a given 

pattern. You'll also notice that we've tried to give each J2EE pattern a descriptive 

pattern name. While it is difficult to fully encompass a single pattern in its name, the 

pattern names are intended to provide sufficient insight into the function of the 

pattern. Just as with names in real life, those assigned to patterns affect how the 

reader will interpret and eventually use that pattern. 

We have adopted a pattern template that consists of the following sections: 

• Context:  Sets the environment under which the pattern exists. 

• Problem:  Describes the design issues faced by the developer. 

• Forces:  Lists the reasons and motivations that affect the problem and the 

solution. The list of forces highlights the reasons why one might choose to 

use the pattern and provides a justification for using the pattern. 

• Solution:  Describes the solution approach briefly and the solution elements 

in detail. The solution section contains two subsections: 

o Structure:  Uses UML class diagrams to show the basic structure of 

the solution. The UML Sequence diagrams in this section present the 

dynamic mechanisms of the solution. There is a detailed explanation 

of the participants and collaborations. 

o Strategies:  Describes different ways a pattern may be implemented. 

Please see “Patterns Versus Strategies” to gain a better 

understanding of strategies. Where a strategy can be demonstated 



 - 135 -

using code, we include a code snippet in this section. If the code is 

more elaborate and lengthier than a snippet, we include it in the 

“Sample Code” section of the pattern template. 

• Consequences:  Here we describe the pattern trade-offs. Generally, this 

section focuses on the results of using a particular pattern or its strategy, 

and notes the pros and cons that may result from the application of the 

pattern. 

• Sample Code:  This section includes example implementations and code 

listings for the patterns and the strategies. This section is rendered optional 

if code samples can be adequately included with the discussion in the 

“Strategies” section. 

• Related Patterns:  This section lists other relevant patterns in the J2EE 

Pattern Catalog or from other external resources, such as the GoF design 

patterns. For each related pattern, there is a brief description of its 

relationship to the pattern being described. 

J2EE Pattern Relationships 

A recent focus group of architects and designers raised a major concern: There 

seems to be a lack of understanding of how to apply patterns in combination to form 

larger solutions. We address this problem with a high-level visual of the patterns 

and their relationships. This diagram is called the J2EE Pattern Relationships 

Diagram and is shown in Figure 6.2. In Epilogue “J2EE Patterns Applied,” we explore 

example use cases to demonstrate how many patterns come together to form a 

patterns framework to realize a use case. 

Individual patterns offer their context, problem, and solution when addressing a 

particular need. However, it is important to step back and grasp the big picture to 

put the patterns to their best use. This grasping the big picture results in better 

application of the patterns in a J2EE application. 

Reiterating Christopher Alexander's quote from Chapter 1, a pattern does not exist 

in isolation and needs the support of other patterns to bring meaning and usefulness. 

Virtually every pattern in the catalog has a relationship to other patterns. 

Understanding these relationships when designing and architecting a solution helps 

in the following ways: 

• Enables you to consider what other new problems may be introduced when 

you consider applying a pattern to solve your problem. This is the domino 

effect: What new problems are introduced when a particular pattern is 

introduced into the architecture? It is critical to identify these conflicts before 

coding begins. 

• Enables you to revisit the pattern relationships to determine alternate 

solutions. After possible problems are identified, revisit the pattern 



 - 136 -

relationships and collect alternate solutions. Perhaps the new problems can 

be addressed by selecting a different pattern or by using another pattern in 

combination with the one you have already chosen. 

Figure 6.2 shows the relationships between the patterns. 

Intercepting Filter intercepts incoming requests and outgoing responses and applies 

a filter. These filters may be added and removed in a declarative manner, allowing 

them to be applied unobtrusively in a variety of combinations. After this 

preprocessing and/or post-processing is complete, the final filter in the group 

vectors control to the original target object. For an incoming request, this is often a 

Front Controller, but may be a View. 

Front Controller is a container to hold the common processing logic that occurs 

within the presentation tier and that may otherwise be erroneously placed in a View. 

A controller handles requests and manages content retrieval, security, view 

management, and navigation, delegating to a Dispatcher component to dispatch to 

a View. 

View Helper encourages the separation of formatting-related code from other 

business logic. It suggests using Helper components to encapsulate logic relating to 

initiating content retrieval, validation, and adapting and formatting the model. The 

View component is then left to encapsulate the presentation formatting. Helper 

components typically delegate to the Business Services via a Business Delegate, 

while a View may be composed of multiple subcomponents to create its template. 

Composite View suggests composing a View from numerous atomic pieces. Multiple 

smaller views, both static and dynamic, are pieced together to create a single 

template. 

Business Delegate reduces coupling between tiers and provides an entry point for 

accessing the services that are provided by another tier. The Delegate may also 

provide results caching for common requests to improve performance. A Business 

Delegate typically uses a Service Locator to locate service objects, such as an EJB 

Home object and JMS Connection factory. 

The Service to Worker and Dispatcher View patterns represent a common 

combination of other patterns from the catalog. The two patterns share a common 

structure, consisting of a controller working with a Dispatcher, Views, and Helpers. 

The Service to Worker and the Dispatcher View patterns are identical with respect to 

the components involved, but differ in the division of labor among those 

components. Unlike the Service to Worker pattern, the Dispatcher View pattern 

suggests deferring content retrieval and error handling to the time of View 

Processing. Also, the Dispatcher View pattern suggests the Dispatcher plays a more 

limited role in View Management, as the choice of View is typically already included 

in the request. 



 - 137 -

The Session Façade provides coarse-grained services to the clients by hiding the 

complexities of the business object interactions. The Session Façade may use the 

Service Locator pattern to locate services. The Session façade may also use other 

patterns to provide its services: Value Object, Value Object Assembler, Value List 

Handler, Service Activator, and Data Access Object. 

The Value Object pattern provides the best techniques and strategies to exchange 

data across tiers (that is, across system boundaries). This pattern attempts to 

reduce the network overhead by minimizing the number of network calls to get data 

from the business tier. 

The Value Object Assembler constructs a composite value object from various 

sources. These sources could be EJB components, Data Access Objects, or other 

arbitrary Java objects. This pattern is most useful when the client needs to obtain 

data for the application model or part of the model. 

The Value List Handler uses the GoF iterator pattern to provide query execution and 

processing services. The Value List Handler may also cache the results and return 

subsets of the result to the clients as requested. By using this pattern, it is possible 

to avoid overheads associated with finding large numbers of entity beans. 

The Composite Entity pattern groups parent-dependent objects into a coarse 

grained entity bean. It shows how to aggregate objects into a tree with a parent 

object that manages its dependent objects. 

The Service Activator pattern enables asynchronous processing for enterprise bean 

components. The EJB specification version 2.0 defines a new type of enterprise bean 

called message-driven bean that provides similar functionality. However, this 

pattern can be leveraged by all EJB applications that have a need for asynchronous 

processing with enterprise bean components. 

The Data Access Object pattern provides loose coupling between the business and 

resource tiers for enterprise beans that use bean-managed persistence. The Data 

Access Object intercepts and services all access to the resource tier, making the 

implementation details of the resource tiers transparent to the clients. The data in 

the resource tier can reside in database systems, proprietary systems, other 

external systems and services. By using this pattern, you can build applications that 

are more flexible and portable. 

Relationship to Known Patterns 

There is a wealth of software pattern documentation available today. The patterns 

in these different books are at various levels of abstraction. There are architecture 

patterns, design patterns, analysis patterns, and programming patterns. The most 

popular and influential of these books is Design Patterns: Elements of Reusable 



 - 138 -

Object-Oriented Software, [GoF] better known as the Gang of Four, or GoF book. 

The patterns in the GoF book describe expert solutions for object design. 

Our pattern catalog includes patterns that describe the structure of an application 

and others that describe design elements. 

The unifying theme of the pattern catalog is its support of the J2EE platform. In 

some cases, the patterns in the catalog are based on or related to an existing 

pattern in the literature. In these cases, we communicate this relationship by 

referencing the existing pattern in the name of the J2EE pattern and/or including a 

reference and citation in the “Related Patterns” section at the end of each pattern 

description. For example, some patterns are based on GoF patterns but are 

considered in a J2EE context. In those cases, the J2EE pattern name includes the 

GoF pattern name as well as a reference to the GoF pattern in the related patterns 

section. 

Patterns Roadmap 

Here we present a list of common requirements that architects encounter when 

creating solutions with the J2EE. We present the requirement or motivation in a 

brief statement, followed by a list of one or more patterns addressing that 

requirement. While this requirements list is not exhaustive, we hope that it helps 

you to quickly identify the relevant patterns based on your needs. 

Table 6-6 shows the functions typically handled by the presentation tier patterns 

and indicates which pattern provides a solution. 

Table 6-6. Presentation Tier Patterns 

If you are looking for this  Find it here    

Preprocessing or post-processing 

of your requests 
“Intercepting Filter”  Pattern  

Centralizing control for request 

handling 
“Front Controller”, “Intercepting 

Filter”  
Pattern  

Adding logging, debugging, or 

some other behavior to be 

completed for each request 

“Front Controller”, “Intercepting 

Filter”  
Pattern  

Creating a generic command 

interface for delegating processing 

from a controller to helper 

components 

“Front Controller”  Pattern  



 - 139 -

Whether to implement your 

Controller as a servlet or JSP  
“Front Controller”  Pattern  

Creating a View from numerous 

sub-Views 
“Composite View”  Pattern  

Whether to implement your View 

as a servlet or JSP  
“View Helper”  Pattern  

How to partition your View and 

Model 
“View Helper”  Pattern  

Where to encapsulate your 

presentation-related data 

formatting logic 

“View Helper”  Pattern  

Whether to implement your Helper 

components as JavaBeans or 

Custom tags 

“View Helper”  Pattern  

Combining multiple presentation 

patterns 
“Service to Worker”, “Dispatcher 

View”  
Pattern  

Where to encapsulate View 

Management and Navigation logic, 

which involves choosing a View 

and dispatching to it 

“Service to Worker”, “Dispatcher 

View”  
Pattern  

Where to store session state “Session State on Client”, 

“Session State in the Presentation 

Tier”, and “Storing State on the 

Business Tier”  

Design  

Controlling client access to a 

certain View or sub-View 
“Controlling Client Access” Design 

  “Hide Resource From a Client” Refactoring

Controlling the flow of requests 

into the application 
“Duplicate Form Submissions” Design 

  “Introduce Synchronizer Token” Refactoring

Controlling duplicate form 

submissions 
“Duplicate Form Submissions” Design 

  “Introduce Synchronizer Token” refactoring 

Design issues using JSP standard 

property auto-population 

mechanism via <jsp:setProperty> 

“Helper Properties—Integrity and 

Consistency”  
Refactoring

Reducing coupling between 

presentation tier and business tier 
“Hide Presentation Tier-Specific 

Details From the Business Tier” 

“Introduce Business Delegate”  

Design  

Partitioning Data Access Code “Separate Data Access Code”  Refactoring



 - 140 -

Table 6-7 shows the functions handled by the business tier patterns and indicates 

where you can find the particular pattern or patterns that may provide solutions. 

Table 6-7. Business Tier Patterns 

If you are looking for this  Find it here    

Minimize coupling between presentation and 

business tiers 
“Business Delegate”  

Pattern  

Cache business services for clients “Business Delegate”  Pattern  

Hide implementation details of business 

service lookup/creation/access 
“Business Delegate”, 

“Service Locator”  
Pattern  

Isolate vendor and technology dependencies 

for services lookup 
“Service Locator”  

Pattern  

Provide uniform method for business service 

lookup and creation 
“Service Locator”  

Pattern  

Hide the complexity and dependencies for 

enterprise bean and JMS component lookup  
“Service Locator”  

Pattern  

Transfer data between business objects and 

clients across tiers 
“Value Object”  

Pattern  

Minimize code duplication between entity 

beans and Value Object classes 
“Value Object”  

Pattern  

Provide simpler uniform interface to clients “Business Delegate”  Pattern  

Reduce remote method invocations by 

providing coarse-grained method access to 

business tier components 

“Session Facade”  
Pattern  

Manage relationships between enterprise 

bean components and hide the complexity of 

interactions 

“Session Facade”  
Pattern  

Protect the business tier components from 

direct exposure to clients 
“Session Facade”, 

“Business Delegate”  
Pattern  

Provide uniform boundary access to business 

tier components 
“Session Facade”  

Pattern  

Design complex entity beans “Composite Entity”  Pattern  

Identify coarse-grained objects and 

dependent objects for entity bean design 
“Composite Entity”  

Pattern  

Design for coarse-grained entity beans “Composite Entity”  Pattern  

Reduce or eliminate the entity bean clients' 

dependency on the database schema 
“Composite Entity”  

Pattern  

Reduce or eliminate entity bean to entity bean “Composite Entity”, Pattern  



 - 141 -

relationships “Session Facade”  

Reduce number of entity beans and improve 

manageability 
“Composite Entity”  

Pattern  

Obtain the data model for the application 

from various business tier components 
“Value Object 

Assembler”  
Pattern  

On the fly construction of the data model “Value Object 

Assembler”  
Pattern  

Hide the complexity of data model 

construction from the clients 
“Value Object 

Assembler”  
Pattern  

Provide business tier query and results list 

processing facility 
“Value List Handler”  

Pattern  

Minimize the overhead of using enterprise 

bean finder methods 
“Value List Handler”  

Pattern  

Provide query-results caching for clients on 

the server side with forward and backward 

navigation 

“Value List Handler”  
Pattern  

Use session beans as business tier facades “Session Beans as 

Business-Tier Facades” 
Design  

Trade-offs between using stateful and 

stateless session beans 
“Session 

Bean—Stateless 

Versus Stateful”  
Design  

Provide protection to entity beans from direct 

client access 
“Wrap Entities With 

Session”  
Refactoring

Encapsulate business services to hide the 

implementation details of the business tier 
“Introduce Business 

Delegate”  
Refactoring

Coding business logic in entity beans “Business Logic in 

Entity Beans” 
Design 

  “Move Business Logic 

to Session”  
Refactoring

Provide session beans as coarse-grained 

business services 
“Merge Session Beans”

Refactoring

  “Wrap Entities With 

Session”  
Refactoring

Minimize and/or eliminate network and 

container overhead due to 

entity-bean-to-entity-bean communication 

“Eliminate Inter-Entity 

Bean Communication” Refactoring

Partitioning Data Access Code “Separate Data Access 

Code”  
Refactoring

Table 6-8 shows the functions typically handled by the presentation tier patterns 

and indicates which pattern provides a solution. 



 - 142 -

Table 6-8. Integration Tier Patterns 

If you are looking for this  Find it here    

Minimize coupling between business and resource tiers “Data Access 

Object”  
Pattern

Centralize access to resource tiers “Data Access 

Object”  
Pattern

Minimize complexity of resource access in business tier 

components 
“Data Access 

Object”  
Pattern

Provide asynchronous processing for enterprise bean 

components 
“Service 

Activator”  
Pattern

Send a message to an enterprise bean component “Service 

Activator”  
Pattern

Summary 

So far, we have seen the basic concepts behind the J2EE patterns, understood the 

tiers for pattern categorization, explored the relationships between different 

patterns, and taken a look at the roadmap to help guide you to a particular pattern. 

In the following chapters, we present the patterns individually. They are grouped 

into chapters based on the tier into which each has been categorized. 



 - 143 -

Chapter 7. PRESENTATION TIER 

PATTERNS 

Topics in This Chapter 

• Intercepting Filter 

• Front Controller 

• View Helper 

• Composite View 

• Service to Worker 

• Dispatcher View 



 - 144 -

Intercepting Filter 

Context 

The presentation-tier request handling mechanism receives many different types of 

requests, which require varied types of processing. Some requests are simply 

forwarded to the appropriate handler component, while other requests must be 

modified, audited, or uncompressed before being further processed. 

Problem 

Preprocessing and post-processing of a client Web request and response are 

required. 

When a request enters a Web application, it often must pass several entrance tests 

prior to the main processing stage. For example, 

• Has the client been authenticated? 

• Does the client have a valid session? 

• Is the client's IP address from a trusted network? 

• Does the request path violate any constraints? 

• What encoding does the client use to send the data? 

• Do we support the browser type of the client? 

Some of these checks are tests, resulting in a yes or no answer that determines 

whether processing will continue. Other checks manipulate the incoming data 

stream into a form suitable for processing. 

The classic solution consists of a series of conditional checks, with any failed check 

aborting the request. Nested if/else statements are a standard strategy, but this 

solution leads to code fragility and a copy-and-paste style of programming, because 

the flow of the filtering and the action of the filters is compiled into the application. 

The key to solving this problem in a flexible and unobtrusive manner is to have a 

simple mechanism for adding and removing processing components, in which each 

component completes a specific filtering action. 

Forces 

• Common processing, such as checking the data-encoding scheme or logging 

information about each request, completes per request. 

• Centralization of common logic is desired. 



 - 145 -

• Services should be easy to add or remove unobtrusively without affecting 

existing components, so that they can be used in a variety of combinations, 

such as 

o Logging and authentication 

o Debugging and transformation of output for a specific client 

o Uncompressing and converting encoding scheme of input 

Solution 

Create pluggable filters to process common services in a standard manner 

without requiring changes to core request processing code. The filters 

intercept incoming requests and outgoing responses, allowing 

preprocessing and post-processing. We are able to add and remove these 

filters unobtrusively, without requiring changes to our existing code. 

We are able, in effect, to decorate our main processing with a variety of common 

services, such as security, logging, debugging, and so forth. These filters are 

components that are independent of the main application code, and they may be 

added or removed declaratively. For example, a deployment configuration file may 

be modified to set up a chain of filters. The same configuration file might include a 

mapping of specific URLs to this filter chain. When a client requests a resource that 

matches this configured URL mapping, the filters in the chain are each processed in 

order before the requested target resource is invoked. 

Structure 

Figure 7.1 represents the Intercepting Filter pattern. 



 - 146 -

Figure 7.1. Intercepting Filter pattern class diagram 

 

Participants and Responsibilities 

Figure 7.2 represents the Intercepting Filter pattern. 

Figure 7.2. Intercepting Filter sequence diagram 

 



 - 147 -

FilterManager 

The FilterManager manages filter processing. It creates the FilterChain with the 

appropriate filters, in the correct order, and initiates processing. 

FilterChain 

The FilterChain is an ordered collection of independent filters. 

FilterOne, FilterTwo, FilterThree 

These are the individual filters that are mapped to a target. The FilterChain 

coordinates their processing. 

Target 

The Target is the resource requested by the client. 

Strategies 

Custom Filter Strategy 

Filter is implemented via a custom strategy defined by the developer. This is less 

flexible and less powerful than the preferred Standard Filter Strategy, which is 

presented in the next section and is only available in containers supporting the 2.3 

servlet specification. The Custom Filter Strategy is less powerful because it cannot 

provide for the wrapping of request and response objects in a standard and portable 

way. Additionally, the request object cannot be modified, and some sort of buffering 

mechanism must be introduced if filters are to control the output stream. To 

implement the Custom Filter Strategy, the developer could use the Decorator 

pattern [GoF] to wrap filters around the core request processing logic. For example, 

there may be a debugging filter that wraps an authentication filter. Example 7.1 and 

Example 7.2 show how this mechanism might be created programmatically: 

Example 7.1 Implementing a Filter – Debugging Filter 

public class DebuggingFilter implements Processor { 

  private Processor target; 

 



 - 148 -

  public DebuggingFilter(Processor myTarget) { 

    target = myTarget; 

  } 

 

  public void execute(ServletRequest req, 

    ServletResponse res) throws IOException, 

      ServletException { 

    //Do some filter processing here, such as 

    // displaying request parameters 

    target.execute(req, res); 

  } 

} 

Example 7.2 Implementing a Filter – Core Processor 

public class CoreProcessor implements Processor { 

  private Processor target; 

  public CoreProcessor()   { 

    this(null); 

  } 

 

  public CoreProcessor(Processor myTarget)   { 

    target = myTarget; 

  } 

 

  public void execute(ServletRequest req, 

      ServletResponse res) throws IOException, 

      ServletException   { 

    //Do core processing here 

  } 

} 

In the servlet controller, we delegate to a method called process-Request to 

handle incoming requests, as shown in Example 7.3. 

Example 7.3 Handling Requests 

public void processRequest(ServletRequest req, 

  ServletResponse res) 

  throws IOException, ServletException { 

  Processor processors = new DebuggingFilter( 

    new AuthenticationFilter(new CoreProcessor())); 

  processors.execute(req, res); 



 - 149 -

 

  //Then dispatch to next resource, which is probably 

  // the View to display 

  dispatcher.dispatch(req, res); 

} 

For example purposes only, imagine that each processing component writes to 

standard output when it is executed. Example 7.4 shows the possible execution 

output. 

Example 7.4 Messages Written to Standard Output 

Debugging filter preprocessing completed... 

Authentication filter processing completed... 

Core processing completed... 

Debugging filter post-processing completed... 

A chain of processors is executed in order. Each processor, except for the last one in 

the chain, is considered a filter. The final processor component is where we 

encapsulate the core processing we want to complete for each request. Given this 

design, we will need to change the code in the CoreProcessor class, as well as in any 

filter classes, when we want to modify how we handle requests. 

Figure 7.3 is a sequence diagram describing the flow of control when using the filter 

code of Example 7.1, Example 7.2, and Example 7.3. 

Figure 7.3. Sequence diagram for Custom Filter 

Strategy, decorator implementation 

 



 - 150 -

Notice that when we use a decorator implementation, each filter invokes on the next 

filter directly, though using a generic interface. Alternatively, this strategy can be 

implemented using a FilterManager and FilterChain. In this case, these two 

components coordinate and manage filter processing and the individual filters do 

not communicate with one another directly. This design approximates that of a 

servlet 2.3-compliant implementation, though it is still a custom strategy. Example 

7.5 is the listing of just such a FilterManager class that creates a FilterChain, which 

is shown in Example 7.6. The FilterChain adds filters to the chain in the appropriate 

order (for the sake of brevity, this is done in the FilterChain constructor, but would 

normally be done in place of the comment), processes the filters, and finally 

processes the target resource. Figure 7.4 is a sequence diagram for this code. 

Figure 7.4. Sequence diagram for Custom Filter 

Strategy, nondecorator implementation 

 

Example 7.5 FilterManager–Custom Filter Strategy 

public class FilterManager { 

  public void processFilter(Filter target, 

    javax.servlet.http.HttpServletRequest request, 

    javax.servlet.http.HttpServletResponse response) 

    throws javax.servlet.ServletException, 

      java.io.IOException { 

    FilterChain filterChain = new FilterChain(); 

 

    // The filter manager builds the filter chain here 



 - 151 -

    // if necessary 

 

    // Pipe request through Filter Chain 

    filterChain.processFilter(request, response); 

 

    //process target resource 

    target.execute(request, response); 

  } 

} 

Example 7.6 FilterChain–Custom Filter Strategy 

public class FilterChain { 

  // filter chain 

  private Vector myFilters = new Vector(); 

 

  // Creates new FilterChain 

  public FilterChain() { 

    // plug-in default filter services for example 

    // only. This would typically be done in the 

    // FilterManager, but is done here for example 

    // purposes 

    addFilter(new DebugFilter()); 

    addFilter(new LoginFilter()); 

    addFilter(new AuditFilter()); 

  } 

 

  public void processFilter( 

    javax.servlet.http.HttpServletRequest request, 

    javax.servlet.http.HttpServletResponse response) 

  throws javax.servlet.ServletException, 

    java.io.IOException { 

    Filter filter; 

 

    // apply filters 

    Iterator filters = myFilters.iterator(); 

    while (filters.hasNext()) 

    { 

      filter = (Filter)filters.next(); 

      // pass request & response through various 

      // filters 

      filter.execute(request, response); 

    } 

  } 



 - 152 -

 

  public void addFilter(Filter filter) { 

    myFilters.add(filter); 

  } 

} 

This strategy does not allow us to create filters that are as flexible or as powerful as 

we would like. For one, filters are added and removed programmatically. While we 

could write a proprietary mechanism for handling adding and removing filters via a 

configuration file, we still would have no way of wrapping the request and response 

objects. Additionally, without a sophisticated buffering mechanism, this strategy 

does not provide flexible postprocessing. 

The Standard Filter Strategy provides solutions to these issues, leveraging features 

of the 2.3 Servlet specification, which has provided a standard solution to the filter 

dilemma. 

Note 

As of this writing, the Servlet 2.3 specification is in final draft form. 

 

Standard Filter Strategy 

Filters are controlled declaratively using a deployment descriptor, as described in 

the servlet specification version 2.3, which, as of this writing, is in final draft form. 

The servlet 2.3 specification includes a standard mechanism for building filter chains 

and unobtrusively adding and removing filters from those chains. Filters are built 

around interfaces, and added or removed in a declarative manner by modifying the 

deployment descriptor for a Web application. 

Our example for this strategy will be to create a filter that preprocesses requests of 

any encoding type such that each request may be handled similarly in our core 

request handling code. Why might this be necessary? HTML forms that include a file 

upload use a different encoding type than that of most forms. Thus, form data that 

accompanies the upload is not available via simple getParameter() invocations. So, 

we create two filters that preprocess requests, translating all encoding types into a 

single consistent format. The format we choose is to have all form data available as 

request attributes. 

One filter handles the standard form encoding of type 

application/x-www-form-urlencoded and the other handles the less common 

encoding type multipart/form-data, which is used for forms that include file 

uploads. The filters translate all form data into request attributes, so the core 



 - 153 -

request handling mechanism can work with every request in the same manner, 

instead of with special casing for different encodings. 

Example 7.8 shows a filter that translates requests using the common application 

form encoding scheme. Example 7.9 shows the filter that handles the translation of 

requests that use the multipart form encoding scheme. The code for these filters is 

based on the final draft of the servlet specification, version 2.3. A base filter is used 

as well, from which both of these filters inherit (see the section “Base Filter 

Strategy”). The base filter, shown in Example 7.7, provides default behavior for the 

standard filter callback methods. 

Example 7.7 Base Filter–Standard Filter Strategy 

public class BaseEncodeFilter implements 

      javax.servlet.Filter { 

  private javax.servlet.FilterConfig myFilterConfig; 

 

  public BaseEncodeFilter()     {  } 

 

  public void doFilter( 

    javax.servlet.ServletRequest servletRequest, 

    javax.servlet.ServletResponse servletResponse, 

    javax.servlet.FilterChain filterChain) 

  throws java.io.IOException, 

    javax.servlet.ServletException { 

    filterChain.doFilter(servletRequest, 

        servletResponse); 

  } 

 

  public javax.servlet.FilterConfig getFilterConfig() { 

    return myFilterConfig; 

  } 

 

  public void setFilterConfig( 

    javax.servlet.FilterConfig filterConfig) { 

      myFilterConfig = filterConfig; 

  } 

} 



 - 154 -

Example 7.8 StandardEncodeFilter–Standard Filter 

Strategy 

public class StandardEncodeFilter 

  extends BaseEncodeFilter { 

  // Creates new StandardEncodeFilter 

  public StandardEncodeFilter()   {  } 

 

  public void doFilter(javax.servlet.ServletRequest 

    servletRequest,javax.servlet.ServletResponse 

    servletResponse,javax.servlet.FilterChain 

    filterChain) 

  throws java.io.IOException, 

    javax.servlet.ServletException { 

 

    String contentType = 

      servletRequest.getContentType(); 

    if ((contentType == null) || 

      contentType.equalsIgnoreCase( 

        "application/x-www-form-urlencoded"))     { 

      translateParamsToAttributes(servletRequest, 

        servletResponse); 

    } 

 

    filterChain.doFilter(servletRequest, 

      servletResponse); 

  } 

 

  private void translateParamsToAttributes( 

   ServletRequest request, ServletResponse response) 

  { 

    Enumeration paramNames = 

        request.getParameterNames(); 

 

    while (paramNames.hasMoreElements())     { 

      String paramName = (String) 

          paramNames.nextElement(); 

 

      String [] values; 

 

      values = request.getParameterValues(paramName); 

      System.err.println("paramName = " + paramName); 

      if (values.length == 1) 



 - 155 -

        request.setAttribute(paramName, values[0]); 

      else 

        request.setAttribute(paramName, values); 

    } 

  } 

} 

Example 7.9 MultipartEncodeFilter–Standard Filter 

Strategy 

public class MultipartEncodeFilter extends 

  BaseEncodeFilter { 

  public MultipartEncodeFilter() { } 

  public void doFilter(javax.servlet.ServletRequest 

    servletRequest, javax.servlet.ServletResponse 

    servletResponse,javax.servlet.FilterChain 

    filterChain) 

  throws java.io.IOException, 

    javax.servlet.ServletException { 

    String contentType = 

      servletRequest.getContentType(); 

    // Only filter this request if it is multipart 

    // encoding 

    if (contentType.startsWith( 

             "multipart/form-data")){ 

      try { 

        String uploadFolder = 

          getFilterConfig().getInitParameter( 

              "UploadFolder"); 

        if (uploadFolder == null) uploadFolder = "."; 

 

        /** The MultipartRequest class is: 

        * Copyright (C) 2001 by Jason Hunter 

        * <jhunter@servlets.com>. All rights reserved. 

        **/ 

        MultipartRequest multi = new 

          MultipartRequest(servletRequest, 

                            uploadFolder, 

                            1 * 1024 * 1024 ); 

        Enumeration params = 

            multi.getParameterNames(); 

        while (params.hasMoreElements()) { 

          String name = (String)params.nextElement(); 



 - 156 -

          String value = multi.getParameter(name); 

          servletRequest.setAttribute(name, value); 

        } 

 

        Enumeration files = multi.getFileNames(); 

        while (files.hasMoreElements()) { 

          String name = (String)files.nextElement(); 

          String filename = 

            multi.getFilesystemName(name); 

          String type = multi.getContentType(name); 

          File f = multi.getFile(name); 

          // At this point, do something with the 

          // file, as necessary 

        } 

      } 

      catch (IOException e) 

      { 

        LogManager.logMessage( 

          "error reading or saving file"+ e); 

      } 

    } // end if 

    filterChain.doFilter(servletRequest, 

                          servletResponse); 

  } // end method doFilter() 

} 

The following excerpt in Example 7.10 is from the deployment descriptor for the 

Web application containing this example. It shows how these two filters are 

registered and then mapped to a resource, in this case a simple test servlet. 

Additionally, the sequence diagram for this example is shown in Figure 7.5. 

Example 7.10 Deployment Descriptor-Standard Filter 

Strategy 

. 

. 

. 

<filter> 

    <filter-name>StandardEncodeFilter</filter-name> 

    <display-name>StandardEncodeFilter</display-name> 

    <description></description> 

    <filter-class> corepatterns.filters.encodefilter. 

            StandardEncodeFilter</filter-class> 



 - 157 -

  </filter> 

  <filter> 

    <filter-name>MultipartEncodeFilter</filter-name> 

    <display-name>MultipartEncodeFilter</display-name> 

    <description></description> 

    <filter-class>corepatterns.filters.encodefilter. 

            MultipartEncodeFilter</filter-class> 

    <init-param> 

      <param-name>UploadFolder</param-name> 

      <param-value>/home/files</param-value> 

    </init-param> 

 </filter> 

. 

. 

. 

<filter-mapping> 

    <filter-name>StandardEncodeFilter</filter-name> 

    <url-pattern>/EncodeTestServlet</url-pattern> 

  </filter-mapping> 

  <filter-mapping> 

    <filter-name>MultipartEncodeFilter</filter-name> 

    <url-pattern>/EncodeTestServlet</url-pattern> 

  </filter-mapping> 

. 

. 

. 



 - 158 -

Figure 7.5. Sequence diagram for Intercepting Filter, 

Standard Filter Strategy – encoding conversion 

example 

 

The StandardEncodeFilter and the MultiPartEncodeFilter intercept control when a 

client makes a request to the controller servlet. The container fulfills the role of filter 

manager and vectors control to these filters by invoking their doFilter methods. 

After completing its processing, each filter passes control to its containing 

FilterChain, which it instructs to execute the next filter. Once both of the filters have 

received and subsequently relinquished control, the next component to receive 

control is the actual target resource, in this case the controller servlet. 

Filters, as supported in version 2.3 of the servlet specification, also support 

wrapping the request and response objects. This feature provides for a much more 

powerful mechanism than can be built using the custom implementation suggested 

by the Custom Filter Strategy. Of course, a hybrid approach combining the two 

strategies could be custom built as well, but would still lack the power of the 

Standard Filter Strategy as supported by the servlet specification. 

Base Filter Strategy 

A base filter serves as a common superclass for all filters. Common features can be 

encapsulated in the base filter and shared among all filters. For example, a base 

filter is a good place to include default behavior for the container callback methods 

in the Declared Filter Strategy. Example 7.11 shows how this can be done. 



 - 159 -

Example 7.11 Base Filter Strategy 

public class BaseEncodeFilter implements 

  javax.servlet.Filter { 

  private javax.servlet.FilterConfig myFilterConfig; 

 

  public BaseEncodeFilter() {} 

 

  public void doFilter(javax.servlet.ServletRequest 

    servletRequest,javax.servlet.ServletResponse 

    servletResponse, javax.servlet.FilterChain 

    filterChain) throws java.io.IOException, 

    javax.servlet.ServletException { 

 

    filterChain.doFilter(servletRequest, 

      servletResponse); 

  } 

 

  public javax.servlet.FilterConfig getFilterConfig() { 

    return myFilterConfig; 

  } 

 

  public void 

  setFilterConfig(javax.servlet.FilterConfig 

    filterConfig) { 

    myFilterConfig = filterConfig; 

  } 

} 

Template Filter Strategy 

Using a base filter from which all others inherit (see “Base Filter Strategy” in this 

chapter) allows the base class to provide template method [Gof] functionality. In 

this case, the base filter is used to dictate the general steps that every filter must 

complete, while leaving the specifics of how to complete that step to each filter 

subclass. Typically, these would be coarsely defined, basic methods that simply 

impose a limited structure on each template. This strategy can be combined with 

any other filter strategy, as well. The listings in Example 7.12 and Example 7.13 

show how to use this strategy with the Declared Filter Strategy. 

Example 7.12 shows a base filter called TemplateFilter, as follows. 



 - 160 -

Example 7.12 Using a Template Filter Strategy 

public abstract class TemplateFilter implements 

  javax.servlet.Filter { 

  private FilterConfig filterConfig; 

 

  public void setFilterConfig(FilterConfig fc) { 

    filterConfig=fc; 

  } 

 

  public FilterConfig getFilterConfig() { 

    return filterConfig; 

  } 

 

  public void doFilter(ServletRequest request, 

    ServletResponse response, FilterChain chain) 

    throws IOException, ServletException { 

    // Common processing for all filters can go here 

    doPreProcessing(request, response, chain); 

 

    // Common processing for all filters can go here 

    doMainProcessing(request, response, chain); 

 

    // Common processing for all filters can go here 

    doPostProcessing(request, response, chain); 

 

    // Common processing for all filters can go here 

 

    // Pass control to the next filter in the chain or 

    // to the target resource 

    chain.doFilter(request, response); 

  } 

  public void doPreProcessing(ServletRequest request, 

    ServletResponse response, FilterChain chain) { 

  } 

 

  public void doPostProcessing(ServletRequest request, 

    ServletResponse response, FilterChain chain) { 

  } 

 

  public abstract void doMainProcessing(ServletRequest 

  request, ServletResponse response, FilterChain 

  chain); 

} 



 - 161 -

Given this class definition for TemplateFilter, each filter is implemented as a 

subclass that must only implement the doMainProcessing method. These 

subclasses have the option, though, of implementing all three methods if they 

desire. Example 7.13 is an example of a filter subclass that implements the one 

mandatory method (dictated by our template filter) and the optional preprocessing 

method. Additionally, a sequence diagram for using this strategy is shown in Figure 

7.6. 

Example 7.13 Debugging Filter 

public class DebuggingFilter extends TemplateFilter { 

  public void doPreProcessing(ServletRequest req, 

    ServletResponse res, FilterChain chain) { 

    //do some preprocessing here 

  } 

 

  public void doMainProcessing(ServletRequest req, 

    ServletResponse res, FilterChain chain) { 

    //do the main processing; 

  } 

} 



 - 162 -

Figure 7.6. Intercepting Filter, Template Filter 

Strategy sequence diagram 

 

In the sequence diagram in Figure 7.6, filter subclasses, such as DebuggingFilter, 

define specific processing by overriding the abstract doMainProcessing method 

and, optionally, doPreProcessing and doPostProcessing. Thus, the template filter 

imposes a structure to each filter's processing, as well as providing a place for 

encapsulating code that is common to every filter. 

Consequences 

• Centralizes Control with Loosely Coupled Handlers 

Filters provide a central place for handling processing across multiple 

requests, as does a controller. Filters are better suited to massaging 

requests and responses for ultimate handling by a target resource, such as a 

controller. Additionally, a controller often ties together the management of 

numerous unrelated common services, such as authentication, logging, 

encryption, and so forth, while filtering allows for much more loosely coupled 

handlers, which can be combined in various combinations. 

• Improves Reusability 



 - 163 -

Filters promote cleaner application partitioning and encourages reuse. These 

pluggable interceptors are transparently added or removed from existing 

code, and due to their standard interface, they work in any combination and 

are reusable for varying presentations. 

• Declarative and Flexible Configuration 

Numerous services are combined in varying permutations without a single 

recompile of the core code base. 

• Information Sharing is Inefficient 

Sharing information between filters can be inefficient, since by definition 

each filter is loosely coupled. If large amounts of information must be shared 

between filters, then this approach may prove to be costly. 

Related Patterns 

• Front Controller 

The controller solves some similar problems, but is better suited to handling 

core processing. 

• Decorator [GoF] 

The Intercepting Filter pattern is related to the Decorator pattern, which 

provides for dynamically pluggable wrappers. 

• Template Method [GoF] 

The Template Method pattern is used to implement the Template Filter 

Strategy. 

• Interceptor [POSA2] 

The Intercepting Filter pattern is related to the Interceptor pattern, which 

allows services to be added transparently and triggered automatically. 

• Pipes and Filters [POSA1] 

The Intercepting Filter pattern is related to the Pipes and Filters pattern. 



 - 164 -

Front Controller 

Context 

The presentation-tier request handling mechanism must control and coordinate 

processing of each user across multiple requests. Such control mechanisms may be 

managed in either a centralized or decentralized manner. 

Problem 

The system requires a centralized access point for presentation-tier request 

handling to support the integration of system services, content retrieval, view 

management, and navigation. When the user accesses the view directly without 

going through a centralized mechanism, two problems may occur: 

• Each view is required to provide its own system services, often resulting in 

duplicate code. 

• View navigation is left to the views. This may result in commingled view 

content and view navigation. 

Additionally, distributed control is more difficult to maintain, since changes will 

often need to be made in numerous places. 

Forces 

• Common system services processing completes per request. For example, 

the security service completes authentication and authorization checks. 

• Logic that is best handled in one central location is instead replicated within 

numerous views. 

• Decision points exist with respect to the retrieval and manipulation of data. 

• Multiple views are used to respond to similar business requests. 

• A centralized point of contact for handling a request may be useful, for 

example, to control and log a user's progress through the site. 

• System services and view management logic are relatively sophisticated. 

Solution 

Use a controller as the initial point of contact for handling a request. The 

controller manages the handling of the request, including invoking 

security services such as authentication and authorization, delegating 



 - 165 -

business processing, managing the choice of an appropriate view, handling 

errors, and managing the selection of content creation strategies. 

The controller provides a centralized entry point that controls and manages Web 

request handling. By centralizing decision points and controls, the controller also 

helps reduce the amount of Java code, called scriptlets, embedded in the JSP. 

Centralizing control in the controller and reducing business logic in the view 

promotes code reuse across requests. It is a preferable approach to the 

alternative—embedding code in multiple views—because that approach may lead to 

a more error-prone, reuse-by-copy- and-paste environment. 

Typically, a controller coordinates with a dispatcher component. Dispatchers are 

responsible for view management and navigation. Thus, a dispatcher chooses the 

next view for the user and vectors control to the resource. Dispatchers may be 

encapsulated within the controller directly or can be extracted into a separate 

component. 

While the Front Controller pattern suggests centralizing the handling of all requests, 

it does not limit the number of handlers in the system, as does a Singleton. An 

application may use multiple controllers in a system, each mapping to a set of 

distinct services. 

Structure 

Figure 7.7 represents the Front Controller class diagram pattern. 

Figure 7.7. Front Controller class diagram 

 



 - 166 -

Participants and Responsibilities 

Figure 7.8 shows the sequence diagram representing the Front Controller pattern. It 

depicts how the controller handles a request. 

Figure 7.8. Front Controller sequence diagram 

 

Controller 

The controller is the initial contact point for handling all requests in the system. The 

controller may delegate to a helper to complete authentication and authorization of 

a user or to initiate contact retrieval. 

Dispatcher 

A dispatcher is responsible for view management and navigation, managing the 

choice of the next view to present to the user, and providing the mechanism for 

vectoring control to this resource. 

A dispatcher can be encapsulated within a controller or can be a separate 

component working in coordination. The dispatcher provides either a static 

dispatching to the view or a more sophisticated dynamic dispatching mechanism. 



 - 167 -

The dispatcher uses the RequestDispatcher object (supported in the servlet 

specification) and encapsulates some additional processing. 

Helper 

A helper is responsible for helping a view or controller complete its processing. Thus, 

helpers have numerous responsibilities, including gathering data required by the 

view and storing this intermediate model, in which case the helper is sometimes 

referred to as a value bean. Additionally, helpers may adapt this data model for use 

by the view. Helpers can service requests for data from the view by simply providing 

access to the raw data or by formatting the data as Web content. 

A view may work with any number of helpers, which are typically implemented as 

JavaBeans (JSP 1.0+) and custom tags (JSP 1.1+). Additionally, a helper may 

represent a Command object, a delegate (see “Business Delegate”), or an XSL 

Transformer, which is used in combination with a stylesheet to adapt and convert 

the model into the appropriate form. 

View 

A view represents and displays information to the client. The view retrieves 

information from a model. Helpers support views by encapsulating and adapting the 

underlying data model for use in the display. 

Strategies 

There are several strategies for implementing a controller. 

Servlet Front Strategy 

This strategy suggests implementing the controller as a servlet. Though 

semantically equivalent, it is preferred to the JSP Front Strategy. The controller 

manages the aspects of request handling that are related to business processing 

and control flow. These responsibilities are related to, but logically independent of, 

display formatting, and are more appropriately encapsulated in a servlet rather than 

in a JSP. 

The Servlet Front Strategy does have some potential drawbacks. In particular, it 

does not leverage some of the JSP runtime environment utilities, such as automatic 

population of request parameters into helper properties. Fortunately, this drawback 

is minimal because it is relatively easy to create or obtain similar utilities for general 

use. There is also the possibility that the functionality of some of the JSP utilities 



 - 168 -

may be included as standard servlet features in a future version of the servlet 

specification. Example 7.14 is an example of the Servlet Front Strategy. 

Example 7.14 Servlet Front Strategy Sample Code 

public class EmployeeController extends HttpServlet { 

  // Initializes the servlet. 

  public void init(ServletConfig config) throws 

    ServletException { 

    super.init(config); 

  } 

 

  // Destroys the servlet. 

  public void destroy() { 

  } 

 

  /** Processes requests for both HTTP 

   * <code>GET</code> and <code>POST</code> methods. 

   * @param request servlet request 

   * @param response servlet response 

   */ 

  protected void processRequest(HttpServletRequest 

    request, HttpServletResponse response) 

    throws ServletException, java.io.IOException { 

    String page; 

 

    /**ApplicationResources provides a simple API 

     * for retrieving constants and other 

     * preconfigured values**/ 

    ApplicationResources resource = 

      ApplicationResources.getInstance(); 

    try { 

 

      // Use a helper object to gather parameter 

      // specific information. 

      RequestHelper helper = new 

         RequestHelper(request); 

 

      Command cmdHelper= helper.getCommand(); 

 

      // Command helper perform custom operation 

      page = cmdHelper.execute(request, response); 

 

    } 



 - 169 -

    catch (Exception e) { 

      LogManager.logMessage( 

        "EmployeeController:exception : " + 

        e.getMessage()); 

      request.setAttribute(resource.getMessageAttr(), 

        "Exception occurred : " + e.getMessage()); 

      page = resource.getErrorPage(e); 

    } 

    // dispatch control to view 

    dispatch(request, response, page); 

  } 

 

  /** Handles the HTTP <code>GET</code> method. 

   * @param request servlet request 

   * @param response servlet response 

   */ 

  protected void doGet(HttpServletRequest request, 

    HttpServletResponse response) 

    throws ServletException, java.io.IOException { 

      processRequest(request, response); 

  } 

 

  /** Handles the HTTP <code>POST</code> method. 

   * @param request servlet request 

   * @param response servlet response 

   */ 

  protected void doPost(HttpServletRequest request, 

    HttpServletResponse response) 

    throws ServletException, java.io.IOException { 

        processRequest(request, response); 

  } 

 

  /** Returns a short description of the servlet */ 

  public String getServletInfo() { 

    return "Front Controller Pattern" + 

      " Servlet Front Strategy Example"; 

  } 

 

  protected void dispatch(HttpServletRequest request, 

    HttpServletResponse response, 

    String page) 

  throws  javax.servlet.ServletException, 

    java.io.IOException { 

    RequestDispatcher dispatcher = 

      getServletContext().getRequestDispatcher(page); 



 - 170 -

    dispatcher.forward(request, response); 

  } 

} 

JSP Front Strategy 

This strategy suggests implementing the controller as a JSP. Though semantically 

equivalent, the Servlet Front Strategy is preferred to the JSP Front Strategy. Since 

the controller handles processing that is not specifically related to display formatting, 

it is a mismatch to implement this component as a JSP. 

Implementing the controller as a JSP is clearly not preferred for another reason: It 

requires a software developer to work with a page of markup in order to modify 

request handling logic. Thus, a software developer will typically find the JSP Front 

Strategy more cumbersome when completing the cycle of coding, compilation, 

testing, and debugging. Example 7.15 is an example of the JSP Front Strategy. 

Example 7.15 JSP Front Strategy Sample Code 

<%@page contentType="text/html"%> 

<%@ page import="corepatterns.util.*" %> 

<html> 

<head><title>JSP Front Controller</title></head> 

<body> 

 

<h3><center> Employee Profile </h3> 

 

<% 

/**Control logic goes here... 

  At some point in this code block we retrieve 

  employee information, encapsulate it within a value 

  object and place this bean in request scope with the 

  key "employee". This code has been omitted. 

 

  We either dispatch to another JSP at this point or 

  simply allow the remaining portions of scriptlet 

  code toexecute**/ 

%> 

  <jsp:useBean id="employee" scope="request" 

    class="corepatterns.util.EmployeeVO"/> 

<FORM method=POST > 

<table width="60%"> 

<tr> 



 - 171 -

    <td>  First Name : </td> 

<td>  <input type="text" 

        name="<%=Constants.FLD_FIRSTNAME%>" 

        value="<jsp:getProperty name="employee" 

        property="firstName"/>"> </td> 

</tr> 

 

<tr> 

    <td>  Last Name : </td> 

    <td>    <input type="text" 

        name="<%=Constants.FLD_LASTNAME%>" 

        value="<jsp:getProperty name="employee" 

        property="lastName"/>"></td> 

</tr> 

<tr> 

    <td>  Employee ID : </td> 

    <td>    <input type="text" 

        name="<%=Constants.FLD_EMPID%>" 

        value="<jsp:getProperty name="employee" 

        property="id"/>"> </td> 

</tr> 

<tr> 

    <td>    <input type="submit" 

        name="employee_profile"> </td> 

    <td> </td> 

</tr> 

</table> 

</FORM> 

 

</body> 

</html> 

Command and Controller Strategy 

Based on the Command pattern [GoF], the Command and Controller Strategy 

suggests providing a generic interface to the helper components to which the 

controller may delegate responsibility, minimizing the coupling among these 

components (see “View Helper” for more information on helper components). 

Adding to or changing the work that needs to be completed by these helpers does 

not require any changes to the interface between the controller and the helpers, but 

rather to the type and/or content of the commands. This provides a flexible and 

easily extensible mechanism for developers to add request handling behaviors. 



 - 172 -

Finally, because the command processing is not coupled to the command invocation, 

the command processing mechanism may be reused with various types of clients, 

not just with Web browsers. This strategy also facilitates the creation of composite 

commands (see Composite pattern [GoF]). See Example 7.16 for sample code and 

Figure 7.9 for a sequence diagram. 

Example 7.16 Command and Controller Strategy 

Sample Code 

/** This processRequest method is invoked from both 

  * the servlet doGet and doPost methods **/ 

protected void processRequest(HttpServletRequest 

  request, HttpServletResponse response) 

  throws ServletException, java.io.IOException { 

 

  String resultPage; 

  try { 

    RequestHelper helper = new RequestHelper(request); 

 

    /** the getCommand() method internally uses a 

     factory to retrieve command objects as follows: 

     Command command = CommandFactory.create( 

        request.getParameter("op")); 

    **/ 

     Command command =  helper.getCommand(); 

 

    // delegate request to a command object helper 

    resultPage = command.execute(request, response); 

  } 

  catch (Exception e) { 

    LogManager.logMessage("EmployeeController", 

      e.getMessage() ); 

    resultPage = ApplicationResources.getInstance(). 

                       getErrorPage(e); 

  } 

 

  dispatch(request, response, resultPage); 

} 



 - 173 -

Figure 7.9. Command and Controller Strategy 

sequence diagram 

 

Physical Resource Mapping Strategy 

All requests are made to specific physical resource names rather than logical names. 

An example is the following URL: http://some.server.com/resource1.jsp. In 

the case of a controller, an example URL might be 

http://some.server.com/servlet/Controller. The Logical Resource Mapping 

Strategy is typically preferred over this strategy because it provides much greater 

flexibility. The Logical Resource Mapping Strategy lets you modify resource 

mappings in a declarative manner, via a configuration file. This is much more 

flexible than the Physical Resource Mapping Strategy, which requires that you make 

changes to each resource, as is necessary when implementing this strategy. 

Logical Resource Mapping Strategy 

Requests are made to logical resource names rather than to specific physical names. 

The physical resources to which these logical names refer may then be modified in 

a declarative manner. 

For example, the URL http://some.server.com/process may be mapped as 

follows: 



 - 174 -

 

process=resource1.jsp 

    OR 

process=resource2.jsp 

    OR 

process=servletController 

Multiplexed Resource Mapping Strategy 

This is actually a substrategy of Logical Resource Naming Strategy. This strategy 

maps not just a single logical name, but an entire set of logical names, to a single 

physical resource. For example, a wildcard mapping might map all requests that end 

with .ctrl to a specific handler. 

A request and mapping might look as shown in Table 7-1 

Table 7-1.  

Request  Mapping  

http://some.server.com/action.ctrl  *.ctrl = servletController 

In fact, this is the strategy JSP engines use in order to ensure that requests for JSP 

resources (that is, resources whose names end in .jsp) are processed by a specific 

handler. 

Additional information can also be added to a request, providing further details to 

leverage for this logical mapping. See Table 7-2. 

Table 7-2.  

Request  Mapping  

http://some.server.com/profile.ctrl?usecase= 

create  
*.ctrl =

servletController 

A key benefit of using this strategy is that it provides great flexibility when designing 

your request handling components. When combined with other strategies, such as 

the Command and Controller Strategy, you can create a powerful request handling 

framework. 



 - 175 -

Consider a controller that handles all requests ending in .ctrl, as described above. 

Also, consider the left side of this dot-delimited resource name (profile in the 

above example) to be one part of the name of a use case. Now combine this name 

with the query parameter value (create in the above example). We are signaling 

our request handler that we want to process a use case called create profile. Our 

multiplexed resource mapping sends the request to our servletController, which is 

part of the mapping shown in Table 7-2 . Our controller creates the appropriate 

command object, as described in the Command and Controller Strategy. How does 

the controller know the command object to which it should delegate? Leveraging the 

additional information in the request URI, the controller delegates to the command 

object that handles profile creation. This might be a ProfileCommand object that 

services requests for Profile creation and modification, or it might be a more specific 

ProfileCreationCommand object. 

Dispatcher in Controller Strategy 

When the dispatcher functionality is minimal, it can be folded into the controller, as 

shown in Figure 7.10. 

Figure 7.10. Dispatcher in the Controller sequence 

diagram 

 



 - 176 -

Base Front Strategy 

Used in combination with the Servlet Front Strategy, this strategy suggests 

implementing a controller base class, whose implementation other controllers may 

extend. The base front may contain common and default implementations, while 

each subclass can override these implementations. The drawback of this strategy is 

the fact that any shared superclass, while promoting reuse and sharing, raises the 

issue of creating a fragile hierarchy, where changes necessary for one subclass 

affect all subclasses. 

Filter Controller Strategy 

Filters provide similar support for centralizing request processing control (see 

Intercepting Filter pattern). Thus, some aspects of a controller can reasonably be 

implemented as a filter. At the same time, filters primarily focus on request 

interception and decoration, not request processing and response generation. While 

there are overlapping responsibilities, such as managing logging or debugging, each 

component complements the other when used appropriately. 

Consequences 

• Centralizes Control 

A controller provides a central place to handle system services and business 

logic across multiple requests. A controller manages business logic 

processing and request handling. Centralized access to an application means 

that requests are easily tracked and logged. Keep in mind, though, that as 

control centralizes, it is possible to introduce a single point of failure. In 

practice, this rarely is a problem, though, since multiple controllers typically 

exist, either within a single server or in a cluster. 

• Improves Manageability of Security 

A controller centralizes control, providing a choke point for illicit access 

attempts into the Web application. In addition, auditing a single entrance 

into the application requires fewer resources than distributing security 

checks across all pages. 

• Improves Reusability 

A controller promotes cleaner application partitioning and encourages reuse, 

as code that is common among components moves into a controller or is 

managed by a controller. 



 - 177 -

Related Patterns 

• View Helper 

The Front Controller pattern, in conjunction with the View Helper pattern, 

describes factoring business logic out of the view and providing a central 

point of control and dispatch. Flow logic is factored forward into the 

controller and data handling code moves back into the helpers. 

• Intercepting Filter 

Both Intercepting Filter and Front Controller describe ways to centralize 

control of certain types of request processing, suggesting different 

approaches to this issue. 

• Dispatcher View and Service to Worker 

The Dispatcher View and Service to Worker patterns are another way to 

name the combination of the View Helper pattern with a dispatcher, and 

Front Controller pattern. Dispatcher View and Service to Worker, while 

structurally the same, describe different divisions of labor among 

components. 

View Helper 

Context 

The system creates presentation content, which requires processing of dynamic 

business data. 

Problem 

Presentation tier changes occur often and are difficult to develop and maintain when 

business data access logic and presentation formatting logic are interwoven. This 

makes the system less flexible, less reusable, and generally less resilient to change. 

Intermingling the business and systems logic with the view processing reduces 

modularity and also provides a poor separation of roles among Web production and 

software development teams. 



 - 178 -

Forces 

• Business data assimilation requirements are nontrivial. 

• Embedding business logic in the view promotes a copy-and-paste type of 

reuse. This causes maintenance problems and bugs because a piece of logic 

is reused in the same or different view by simply duplicating it in the new 

location. 

• It is desirable to promote a clean separation of labor by having different 

individuals fulfill the roles of software developer and Web production team 

member. 

• One view is commonly used to respond to a particular business request. 

Solution 

A view contains formatting code, delegating its processing responsibilities 

to its helper classes, implemented as JavaBeans or custom tags. Helpers 

also store the view's intermediate data model and serve as business data 

adapters. 

There are multiple strategies for implementing the view component. The JSP View 

Strategy suggests using a JSP as the view component. This is the preferred strategy, 

and it is the one most commonly used. The other principal strategy is the Servlet 

View Strategy, which utilizes a servlet as the view (see the section “Strategies” for 

more information). 

Encapsulating business logic in a helper instead of a view makes our application 

more modular and facilitates component reuse. Multiple clients, such as controllers 

and views, may leverage the same helper to retrieve and adapt similar model state 

for presentation in multiple ways. The only way to reuse logic embedded in a view is 

by copying and pasting it elsewhere. Furthermore, copy-and-paste duplication 

makes a system harder to maintain, since the same bug potentially needs to be 

corrected in multiple places. 

A signal that one may need to apply this pattern to existing code is when scriptlet 

code dominates the JSP view. The overriding goal when applying this pattern, then, 

is the partitioning of business logic outside of the view. While some logic is best 

encapsulated within helper objects, other logic is better placed in a centralized 

component that sits in front of the views and the helpers—this might include logic 

that is common across multiple requests, such as authentication checks or logging 

services, for example. Refer to the “Intercepting Filter” and “Front Controller” for 

more information on these issues. 

If a separate controller is not employed in the architecture, or is not used to handle 

all requests, then the view component becomes the initial contact point for handling 



 - 179 -

some requests. For certain requests, particularly those involving minimal 

processing, this scenario works fine. Typically, this situation occurs for pages that 

are based on static information, such as the first of a set of pages that will be served 

to a user to gather some information (see “Dispatcher View”). Additionally, this 

scenario occurs in some cases when a mechanism is employed to create composite 

pages (see “Composite View”). 

The View Helper pattern focuses on recommending ways to partition your 

application responsibilities. For related discussions about issues dealing with 

directing client requests directly to a view, please refer to the section “Dispatcher 

View”. 

Structure 

Figure 7.11 is the class diagram representing the View Helper pattern. 

Figure 7.11. View Helper class diagram 

 

Participants and Responsibilities 

Figure 7.12 shows the sequence diagram representing the View Helper pattern. A 

controller typically mediates between the client and the view. In some cases, 

though, a controller is not used and the view becomes the initial contact point for 

handling the request. (Also, see Dispatcher View pattern.) 



 - 180 -

Figure 7.12. View Helper sequence diagram 

 

As noted in the class diagram, there may be no helpers associated with a view. In 

this simple case, the page may be entirely static or include very small amounts of 

inline scriptlet code. This scenario is described in the sequence diagram in Figure 

7.13. 

Figure 7.13. View Helper simple sequence diagram 

 



 - 181 -

View 

A view represents and displays information to the client. The information that is 

used in a dynamic display is retrieved from a model. Helpers support views by 

encapsulating and adapting a model for use in a display. 

Helper 

A helper is responsible for helping a view or controller complete its processing. Thus, 

helpers have numerous responsibilities, including gathering data required by the 

view and storing this intermediate model, in which case the helper is sometimes 

referred to as a value bean. Additionally, helpers may adapt this data model for use 

by the view. Helpers can service requests for data from the view by simply providing 

access to the raw data or by formatting the data as Web content. 

A view may work with any number of helpers, which are typically implemented as 

JavaBeans (JSP 1.0+) and custom tags (JSP 1.1+). Additionally, a helper may 

represent a Command object, a delegate (see “Business Delegate”), or an XSL 

Transformer, which is used in combination with a stylesheet to adapt and convert 

the model into the appropriate form. 

ValueBean 

A value bean is another name for a helper that is responsible for holding 

intermediate model state for use by a view. A typical case, as shown in the sequence 

diagram in Figure 7.12, has the business service returning a value bean in response 

to a request. In this case, ValueBean fulfills the role of a Value Object (see “Value 

Object”). 

BusinessService 

The business service is a role that is fulfilled by the service the client is seeking to 

access. Typically, the business service is accessed via a Business delegate. The 

business delegate's role is to provide control and protection for the business service 

(see the “Business Delegate”). 



 - 182 -

Strategies 

JSP View Strategy 

The JSP View Strategy suggests using a JSP as the view component. This is the 

preferred strategy to the Servlet View Strategy. While it is semantically equivalent 

to the Servlet View Strategy, it is a more elegant solution and is more commonly 

used. Views are the domain of Web designers, who prefer markup to Java code. 

Example 7.17 shows a code sample for this strategy. The excerpt is from a source 

file called welcome.jsp, to which a servlet controller dispatches after placing the 

WelcomeHelper JavaBean in request scope. 

Example 7.17 JSP View Strategy Sample Code 

<jsp:useBean id="welcomeHelper" scope="request" 

  class="corepatterns.util.WelcomeHelper" /> 

 

<HTML> 

<BODY bgcolor="FFFFFF"> 

<% if (welcomeHelper.nameExists()) 

{ 

%> 

<center><H3> Welcome <b> 

<jsp:getProperty name="welcomeHelper" property="name" 

  /> 

</b><br><br> </H3></center> 

<% 

} 

%> 

 

<H4><center>Glad you are visiting our 

  site!</center></H4> 

 

</BODY> 

</HTML> 

The alternative Servlet View Strategy is typically implemented by embedding HTML 

markup directly within Java Servlet code. Intermingling Java code and markup tags 

creates a poor separation of user roles within a project and increases the 

dependencies on the same resources among multiple members of different teams. 

When an individual works on a template containing unfamiliar code or tags, it 

increases the likelihood of an accidental change introducing problems into the 



 - 183 -

system. There is also a reduction in work environment efficiency (too many people 

sharing the same physical resource) and an increase in source control management 

complexity. These problems are more likely to occur in larger enterprise 

environments that have more complicated system requirements and that use teams 

of developers. They are less likely to occur with small systems that have simple 

business requirements and use few developers, because the same individual may 

likely fill the roles mentioned above. However, keep in mind that projects often start 

small—with simple requirements and few developers—but may ultimately evolve to 

become sophisticated enough to benefit from these suggestions. 

Servlet View Strategy 

The Servlet View Strategy utilizes a servlet as the view. It is semantically equivalent 

to the preferred JSP View Strategy. However, the Servlet View Strategy, as seen in 

Example 7.18, is often more cumbersome for the software development and Web 

production teams because it embeds markup tags directly within the Java code. 

When tags are embedded within the code, the view template is more difficult to 

update and modify. 

Example 7.18 Servlet View Strategy Sample Code 

public class Controller extends HttpServlet { 

  public void init(ServletConfig config) throws 

    ServletException { 

    super.init(config); 

  } 

 

  public void destroy() { } 

 

  /** Processes requests for both HTTP 

   * <code>GET</code> and <code>POST</code> methods. 

   * @param request servlet request 

   * @param response servlet response 

   */ 

  protected void processRequest(HttpServletRequest 

    request, HttpServletResponse response) 

    throws ServletException, java.io.IOException { 

    String title = "Servlet View Strategy"; 

    try { 

      response.setContentType("text/html"); 

      java.io.PrintWriter out = response.getWriter(); 

      out.println("<html><title>"+title+"</title>"); 

      out.println("<body>"); 



 - 184 -

      out.println("<h2><center>Employees List</h2>"); 

      EmployeeDelegate delegate = 

          new EmployeeDelegate(); 

 

      /** ApplicationResources provides a simple API 

        * for retrieving constants and other 

        * preconfigured values**/ 

      Iterator employees = delegate.getEmployees( 

            ApplicationResources.getInstance(). 

                getAllDepartments()); 

      out.println("<table border=2>"); 

      out.println("<tr><th>First Name</th>" + 

        "<th>Last Name</th>" + 

          "<th>Designation</th><th>Id</th></tr>"); 

      while (employees.hasNext()) { 

        out.println("<tr>"); 

        EmployeeVO emp = (EmployeeVO)employees.next(); 

        out.println("<td>"+emp.getFirstName()+ 

            "</td>"); 

        out.println("<td>"+emp.getLastName()+ 

            "</td>"); 

        out.println("<td>"+emp.getDesignation()+ 

            "</td>"); 

        out.println("<td>"+emp.getId()+"</td>"); 

        out.println("</tr>"); 

      } 

      out.println("</table>"); 

      out.println("<br><br>"); 

      out.println("</body>"); 

      out.println("</html>"); 

      out.close(); 

    } 

    catch (Exception e) { 

      LogManager.logMessage("Handle this exception", 

        e.getMessage() ); 

    } 

  } 

 

  /** Handles the HTTP <code>GET</code> method. 

    * @param request servlet request 

    * @param response servlet response 

    */ 

  protected void doGet(HttpServletRequest request, 

    HttpServletResponse response) 

    throws ServletException, java.io.IOException { 



 - 185 -

        processRequest(request, response); 

  } 

 

  /** Handles the HTTP <code>POST</code> method. 

    * @param request servlet request 

    * @param response servlet response 

    */ 

  protected void doPost(HttpServletRequest request, 

    HttpServletResponse response) 

    throws ServletException, java.io.IOException { 

        processRequest(request, response); 

  } 

 

  /** Returns a short description of the servlet. */ 

  public String getServletInfo() { 

    return "Example of Servlet View. " + 

              "JSP View is preferable."; 

  } 

 

  /** dispatcher method **/ 

  protected void dispatch(HttpServletRequest request, 

      HttpServletResponse response, String page) 

  throws javax.servlet.ServletException, 

      java.io.IOException { 

    RequestDispatcher dispatcher = 

      getServletContext().getRequestDispatcher(page); 

    dispatcher.forward(request, response); 

  } 

} 

JavaBean Helper Strategy 

The helper is implemented as a JavaBean. Using helpers results in a cleaner 

separation of the view from the business processing in an application, since 

business logic is factored out of the view and into the helper component. In this case 

the business logic is encapsulated in a JavaBean, which aids in content retrieval and 

adapts and stores the model for use by the view. 

Using the JavaBean Helper Strategy requires less upfront work than does the 

Custom Tag Helper Strategy, since JavaBeans are more easily constructed and 

integrated into a JSP environment. Additionally, even novice developers understand 

JavaBeans. This strategy is also easier from a manageability standpoint, since the 

only resulting artifacts are the completed JavaBeans. An example of this strategy is 

shown in Example 7.19. 



 - 186 -

Example 7.19 JavaBean Helper Strategy Code Sample 

<jsp:useBean id="welcomeHelper" scope="request" 

  class="corepatterns.util.WelcomeHelper" /> 

 

<HTML> 

<BODY bgcolor="FFFFFF"> 

<% if (welcomeHelper.nameExists()) 

{ 

%> 

<center><H3> Welcome <b> 

<jsp:getProperty name="welcomeHelper" property="name" 

  /> 

</b><br><br> </H3></center> 

<% 

} 

%> 

 

<H4><center>Glad you are visiting our 

  site!</center></H4> 

 

</BODY> 

</HTML> 

Custom Tag Helper Strategy 

The helper is implemented as a custom tag (JSP 1.1+ only). Using helpers results in 

a cleaner separation of the view from the business processing in an application, 

since business logic is factored out of the view and into the helper component. In 

this case the business logic is encapsulated in a custom tag component, which may 

aid in content retrieval and adapts the model for use by the view. 

Using the Custom Tag Helper Strategy requires more upfront work than does the 

JavaBean Helper Strategy, since custom tag development is moderately 

complicated relative to JavaBean development. Not only is there more complexity in 

the development process, but there is much more complexity with respect to 

integrating and managing the completed tags. To use this strategy, the 

environment must be configured with numerous generated artifacts, including the 

tag itself, a tag library descriptor, and configuration files. An excerpt of a JSP View 

using this strategy is shown in Example 7.20. 



 - 187 -

Example 7.20 Custom Tag Helper Strategy Sample 

Code 

<%@ taglib uri="/web-INF/corepatternstaglibrary.tld" 

  prefix="corepatterns" %> 

<html> 

<head><title>Employee List</title></head> 

<body> 

 

<div align="center"> 

<h3> List of employees in <corepatterns:department 

  attribute="id"/> department - UsingCustom Tag Helper 

  Strategy. </h3> 

<table border="1" > 

    <tr> 

        <th> First Name </th> 

        <th> Last Name </th> 

        <th> Designation </th> 

        <th> Employee Id </th> 

        <th> Tax Deductibles </th> 

        <th> Performance Remarks </th> 

        <th> Yearly Salary</th> 

    </tr> 

    <corepatterns:employeelist id="employeelist_key"> 

    <tr> 

        <td><corepatterns:employee 

            attribute="FirstName"/> </td> 

        <td><corepatterns:employee 

            attribute= "LastName"/></td> 

        <td><corepatterns:employee 

            attribute= "Designation"/> </td> 

        <td><corepatterns:employee 

            attribute= "Id"/></td> 

        <td><corepatterns:employee 

            attribute="NoOfDeductibles"/></td> 

        <td><corepatterns:employee 

            attribute="PerformanceRemarks"/></td> 

        <td><corepatterns:employee 

            attribute="YearlySalary"/></td> 

        <td> 

     </tr> 

    </corepatterns:employeelist> 

</table> 



 - 188 -

</div> 

</body> 

</html> 

Business Delegate as Helper Strategy 

Helper components often make distributed invocations to the business tier. We 

suggest using a business delegate in order to hide the underlying implementation 

details of this request, such that the helper simply invokes a business service 

without knowing details about its physical implementation and distribution (see 

“Business Delegate”). 

Both a helper and a business delegate may be implemented as a JavaBean. Thus, 

one could combine the notion of the helper component and the business delegate 

and implement the business delegate as a specialized type of helper. One major 

distinction between a helper and a business delegate, though, is as follows: A helper 

component is written by a developer working in the presentation tier, while the 

delegate is typically written by a developer working on the services in the business 

tier. (Note: The delegate may also be provided as part of a framework.) Thus, this 

strategy is as much about who actually writes the delegate as it is about the 

implementation. If there is some overlap in developer roles, then the business 

delegate as helper is a strategy to consider. 

Example 7.21 Business Delegate as Helper Strategy 

Sample Code 

/**A servlet delegates to a command object helper, as 

  shown in the following excerpt:**/ 

String resultPage = command.execute(request, 

  response); 

 

/**The command object helper uses the business 

  delegate, which is simply implemented as another 

  JavaBean helper, as shown in the following 

  excerpt:**/ 

 

  AccountDelegate accountDelegate = new 

  AccountDelegate(); 

Note on Helpers: 

JavaBean helpers are best used for aiding in content retrieval 



 - 189 -

and storing and adapting the model for the view. JavaBean 
helpers are often used as command objects as well. 

Like JavaBean helpers, custom tag helpers may fulfill each of 
these roles, except for acting as a command object. Unlike 
JavaBean helpers, custom tag helpers are well suited to control
flow and iteration within a view. Custom tag helpers used in 
this way encapsulate logic that would otherwise be embedded
directly within the JSP as scriptlet code. Another area where 
custom tag helpers are preferred is formatting raw data for 
display. A custom tag is able to iterate over a collection of 
results, format those results into an HTML table, and embed 
the table within a JSP View without requiring any Java Scriptlet
code. 

Consider an example in which a Web client is requesting 
account information from a system, as shown in Figure 7.14. 
There are five helpers shown in this diagram. The four 
JavaBean helpers are the AccountCommand object, Account 
object, AccountDAO, and AccountDetails. The sole custom tag
helper is the TableFormatter object. 

Figure 7.14. Using helpers 

The controller handles the request. It creates or looks up the 
appropriate command object, which is implemented as a 
JavaBean helper. In this case, it is a command object that 
processes requests for account information. The controller 



 - 190 -

invokes the Command object, which asks a JavaBean Account
object for information about the account. The Account object 
invokes the business service, asking for these details, which 
are returned in the form of a Value object (see “Value Object”),
implemented as a JavaBean. 

So how does the Account object access the business services?
Let us examine two cases, one simple and the other more 
sophisticated. In the simple case, imagine that a project is 
taking a phased approach, phasing Enterprise JavaBeans (EJB)
into the business tier over time. Assume at the moment that 
the database is being accessed via JDBC calls from the 
presentation tier. In this case, the Account object uses a Data
Access object (see “Data Access Object”), hiding the 
underlying implementation details of accessing the database. 
The Data Access object knows what SQL queries are necessary
to retrieve the information. These details are hidden from the 
rest of the application, reducing coupling and making each 
component more modular and reusable. This case is described
in the previous sequence diagram. 

When the architecture becomes more sophisticated, and EJB is
introduced in the business tier, then the Data Access object is
replaced with a business delegate (see “Business Delegate”), 
typically written by the developers of the business service. The
delegate hides the implementation details of EJB lookup, 
invocation, and exception handling from its client. It might also
improve performance by providing caching services. Again, the
object reduces coupling between tiers, improving the 
reusability and modularity of the various components. 
Regardless of the specific implementation of this object, its 
interface may remain unchanged during this transition. Figure
7.15 describes this scenario after the transition to the business
delegate. 

Figure 7.15. Accessing Business Services 



 - 191 -

The command object now has a handle to the AccountDetails 
object, which it stores before returning control to the 
controller. The Controller dispatches to the appropriate view, 

called AccountView.jsp. The view then grabs a combination of

raw data and formatted data from the AccountDetails helper 
and the TableFormatter helper, respectively. The 
TableFormatter helper is implemented as a custom tag that 
cycles through the raw data and formats it into an HTML table
for display. As stated, this conversion requires no scriptlet code
in the view, which would be necessary to perform the same 
functionality with a JavaBean helper. 

Additionally, the Account object or the AccountDetails helper 
could provide convenient methods to adapt the raw data in 
other ways. While such methods would not introduce HTML 
markup into the data, they might provide different 
combinations of data. An example is to return the full name of
the user in various formats, such as “Lastname, Firstname” or
“Firstname Lastname”, and so forth. 

The completed view is then displayed to the user. 

Transformer Helper Strategy 

The helper is implemented as an eXtensible Stylesheet Language Transformer. This 

is particularly useful with models that exist as structured markup, such as 

eXtensible Markup Language (XML), either natively within legacy systems or via 



 - 192 -

some form of conversion. Using this strategy can help to enforce the separation of 

the model from the view, since much of the view markup must be factored into a 

separate stylesheet. 

Figure 7.16 describes a potential implementation of this strategy. 

Figure 7.16. Sequence diagram for Transformer 

Helper Strategy 

 

The controller handles the request and invokes a Command object, implemented as 

a JavaBean helper. The Command object initiates the retrieval of Account data. The 

Account object invokes the business service, which returns the data in the form of a 

Value Object (see “Value Object”), implemented as a JavaBean. 

Content retrieval is complete and control is dispatched to the AccountView, which 

uses its custom tag transformer to manipulate the model state. The transformer 

relies on a stylesheet, which describes how to transform the model, typically 

describing how to format it with markup for display to the client. The stylesheet is 

usually retrieved as a static file, though it may also be dynamically generated. 

An example of how the custom tag helper might look in AccountView follows: 

 

<xsl:transform model="accounthelper" 

  stylesheet="/transform/styles/basicaccount.xsl"/> 

The integration of eXtensible Stylesheets and XML with JSP is evolving, as tag 

libraries in this area continue to mature. For now, it is a less preferred strategy, 

given the immature state of the supporting libraries and the additional sophisticated 

skills necessary to generate and maintain the stylesheets. 



 - 193 -

Consequences 

• Improves Application Partitioning, Reuse, and Maintainability 

Using helpers results in a cleaner separation of the view from the business 

processing in an application. The helpers, in the form of JavaBeans (JSP 

1.0+) and custom tags (JSP 1.1+), provide a place external to the view to 

encapsulate business logic. Otherwise, scriptlet code clutters the JSP, a 

cumbersome and unwieldy situation, especially in larger projects. 

Additionally, business logic that is factored out of JSPs and into JavaBeans 

and custom tags is reused, reducing duplication and easing maintenance. 

• Improves Role Separation 

Separating formatting logic from application business logic reduces 

dependencies that individuals fulfilling different roles might have on the 

same resources. For example, a software developer might own code that is 

embedded within HTML markup, while a Web production team member 

might need to modify page layout and design components that are 

intermingled with business logic. Neither individual fulfilling these roles may 

be familiar with the implementation specifics of the other individual's work, 

thus raising the likelihood of accidental modifications introducing bugs into 

the system. 

Related Patterns 

• Business Delegate 

The helper components need to access methods in the business service API. 

It is also important to reduce the coupling among helpers in the presentation 

tier and among business services in the business tier. It is recommended 

that a delegate be used because these tiers may be physically distributed 

across a network. The delegate hides from the client the underlying details of 

looking up and accessing the business services, and it may also provide 

intermediate caching to reduce network traffic. 

• Dispatcher View and Service to Worker 

When centralized control becomes desirable to handle such issues as 

security, workflow management, content retrieval, and navigation, consider 

the Dispatcher View or Service to Worker patterns. 

• Front Controller 



 - 194 -

This pattern is paired with the View Helper pattern to create the Dispatcher 

View pattern or Service to Worker pattern. 

Composite View 

Context 

Sophisticated Web pages present content from numerous data sources, using 

multiple subviews that comprise a single display page. Additionally, a variety of 

individuals with different skill sets contribute to the development and maintenance 

of these Web pages. 

Problem 

Instead of providing a mechanism to combine modular, atomic portions of a view 

into a composite whole, pages are built by embedding formatting code directly 

within each view. 

Modification to the layout of multiple views is difficult and error prone, due to the 

duplication of code. 

Forces 

• Atomic portions of view content change frequently. 

• Multiple composite views use similar subviews, such as a customer inventory 

table. These atomic portions are decorated with different surrounding 

template text, or they appear in a different location within the page. 

• Layout changes are more difficult to manage and code harder to maintain 

when subviews are directly embedded and duplicated in multiple views. 

• Embedding frequently changing portions of template text directly into views 

also potentially affects the availability and administration of the system. The 

server may need to be restarted before clients see the modifications or 

updates to these template components. 

Solution 

Use composite views that are composed of multiple atomic subviews. Each 

component of the template may be included dynamically into the whole 

and the layout of the page may be managed independently of the content. 



 - 195 -

This solution provides for the creation of a composite view based on the inclusion 

and substitution of modular dynamic and static template fragments. It promotes the 

reuse of atomic portions of the view by encouraging modular design. It is 

appropriate to use a composite view to generate pages containing display 

components that may be combined in a variety of ways. This scenario occurs, for 

example, with portal sites that include numerous independent subviews, such as 

news feeds, weather information, and stock quotes on a single page. The layout of 

the page is managed and modified independent of the subview content. 

Another benefit of this pattern is that Web designers can prototype the layout of a 

site, plugging static content into each of the template regions. As site development 

progresses, the actual content is substituted for these placeholders. 

Figure 7.17 shows a screen capture of Sun's Java homepage, java.sun.com. Four 

regions are identified: Navigation, Search, Feature Story, and Headlines. While the 

content for each of these component subviews may originate from different data 

sources, they are laid out seamlessly to create a single composite page. 

Figure 7.17. Screen shot of a modular page, including 

Search, Navigation, Feature Story, and Headlines 

regions 

 

This pattern is not without its drawbacks. There is a runtime overhead associated 

with it, a tradeoff for the increased flexibility that it provides. Also, the use of a more 

sophisticated layout mechanism brings with it some manageability and 

development issues, since there are more artifacts to maintain and a level of 

implementation indirection to understand. 



 - 196 -

Structure 

Figure 7.18 shows the class diagram that represents the Composite View pattern. 

Figure 7.18. Composite View class diagram 

 

Participants and Responsibilities 

Figure 7.19 shows the sequence diagram for the Composite View pattern. 

Figure 7.19. Composite View sequence diagram 

 



 - 197 -

Composite View 

A composite view is a view that is an aggregate of multiple subviews. 

View Manager 

The View Manager manages the inclusion of portions of template fragments into the 

composite view. The View Manager may be part of a standard JSP runtime engine, 

in the form of the standard JSP include tag (<jsp:include>), or it may be 

encapsulated in a JavaBean helper (JSP 1.0+) or custom tag helper (JSP 1.1+) to 

provide more robust functionality. 

A benefit of using a mechanism other than the standard include tag is that 

conditional inclusion is easily done. For example, certain template fragments may 

be included only if the user fulfills a particular role or certain system conditions are 

satisfied. Furthermore, using a helper component as a View Manager allows for 

more sophisticated control of the page structure as a whole, which is useful for 

creating reusable page layouts. 

Included View 

An included view is a subview that is one atomic piece of a larger whole view. This 

included view could also potentially be a composite, itself including multiple 

subviews. 

Strategies 

JSP View Strategy 

See “JSP View Strategy”. 

Servlet View Strategy 

See “Servlet View Strategy”. 

JavaBean View Management Strategy 

View management is implemented using JavaBeans, as shown in Example 7.22. The 

view delegates to the JavaBean, which implements the custom logic to control view 



 - 198 -

layout and composition. The decisions on page layout may be based on user roles or 

security policies, making it much more powerful than the standard JSP include 

functionality. While it is semantically equivalent to the Custom Tag View 

Management Strategy, it is not nearly as elegant, since it introduces scriptlet code 

into the view. 

Using the JavaBean View Management Strategy requires less up-front work than 

using the preferred Custom Tag View Management Strategy, since it is easier to 

construct JavaBeans and integrate them into a JSP environment. Additionally, even 

novice developers understand JavaBeans. This strategy is also easier from a 

manageability standpoint, because the completed JavaBeans are the only resulting 

artifacts to manage and configure. 

Example 7.22 JavaBean View Management Strategy 

<%@page 

  import="corepatterns.compositeview.beanhelper.Conten 

  tHelper" %> 

 

<% ContentHelper personalizer = new 

  ContentHelper(request); %> 

 

 

<table valign="top" cellpadding="30%"  width="100%"> 

     <% if (personalizer.hasWorldNewsInterest() ) { %> 

        <tr> 

            <td><jsp:getProperty name="feeder" 

               property="worldNews"/></td> 

        </tr> 

        <% 

        } 

        if ( personalizer.hasCountryNewsInterest() ) { 

        %> 

        <tr> 

            <td><jsp:getProperty name="feeder" 

               property="countryNews"/></td> 

        </tr> 

        <% 

        } 

 

        if ( personalizer.hasCustomNewsInterest() ) { 

        %> 

        <tr> 

            <td><jsp:getProperty name="feeder" 



 - 199 -

               property="customNews"/></td> 

        </tr> 

        <% 

        } 

 

        if ( personalizer.hasAstronomyInterest() ) { 

        %> 

 

        <tr> 

            <td><jsp:getProperty name="feeder" 

                property="astronomyNews"/></td> 

            </tr> 

        <% 

        } 

        %> 

    </table> 

Standard Tag View Management Strategy 

View management is implemented using standard JSP tags, such as the 

<jsp:include> tag. Using standard tags for managing the layout and composition 

of views is an easy strategy to implement, but does not provide the power and 

flexibility of the preferred Custom Tag View Management Strategy, since the layout 

for individual pages remains embedded within that page. Thus, while this strategy 

allows for the underlying content to vary dynamically, any site-wide layout changes 

would require individual modifications to numerous JSPs. This is shown in Example 

7.23. 

Example 7.23 Standard Tag View Management 

Strategy 

<html> 

<body> 

<jsp:include 

  page="/jsp/CompositeView/javabean/banner.html" 

  flush="true"/> 

<table width="100%"> 

  <tr align="left" valign="middle"> 

    <td width="20%"> 

    <jsp:include 

    page="/jsp/CompositeView/javabean/ProfilePane.jsp" 

      flush="true"/> 



 - 200 -

    </td> 

    <td width="70%" align="center"> 

    <jsp:include 

      page="/jsp/CompositeView/javabean/mainpanel.jsp" 

      flush="true"/> 

    </td> 

  </tr> 

</table> 

<jsp:include 

  page="/jsp/CompositeView/javabean/footer.html" 

    flush="true"/> 

</body> 

</html> 

When creating a composite display using standard tags, both static content, such as 

an HTML file, and dynamic content, such as a JSP, can be included. Additionally, the 

content can be included at translation time or at runtime. If the content is included 

at translation time, then the page display will remain unchanged until the JSP is 

recompiled, at which point any modifications to included content will be visible. In 

other words, the page is laid out and generated once, each time the JSP is 

recompiled. Example 7.24 shows an excerpt of a JSP that generates a composite 

page in this way, using the standard JSP include directive <%@ include %>, which 

includes content at translation time. 

Runtime inclusion of content means that changes to underlying subviews are visible 

in the composite page the next time a client accesses the page. This is much more 

dynamic and can be accomplished using the standard JSP include tag 

<jsp:include>, as shown in Example 7.25. There is of course some runtime 

overhead associated with this type of view generation, but it is the tradeoff for the 

increased flexibility of on-the-fly content modifications. 

Example 7.24 Composite View with 

Translation--Time Content Inclusion 

<table border=1 valign="top" cellpadding="2%" 

    width="100%"> 

    <tr> 

       <td><%@ file="news/worldnews.html" %> </td> 

    </tr> 

    <tr> 

       <td><%@ file="news/countrynews.html" %> </td> 

    </tr> 

    <tr> 



 - 201 -

       <td><%@ file="news/customnews.html" %> </td> 

    </tr> 

    <tr> 

       <td><%@ file="news/astronomy.html" %> </td> 

    </tr> 

</table> 

Example 7.25 Composite View with Runtime Content 

Inclusion 

<table border=1 valign="top" cellpadding="2%" 

  width="100%"> 

    <tr> 

        <td><jsp:include page="news/worldnews.jsp" 

            flush="true"/> </td> 

    </tr> 

    <tr> 

        <td><jsp:include page="news/countrynews.jsp" 

            flush="true"/> </td> 

    </tr> 

    <tr> 

        <td><jsp:include page="news/customnews.jsp" 

            flush="true"/> </td> 

    </tr> 

    <tr> 

        <td><jsp:include page="news/astronomy.jsp" 

            flush="true"/> </td> 

    </tr> 

</table> 

Custom Tag View Management Strategy 

View management is implemented using custom tags (JSP 1.1+), which is the 

preferred strategy. Logic implemented within the tag controls view layout and 

composition. These tags are much more powerful and flexible than the standard JSP 

include tag, but also require a higher level of effort. Custom actions can base page 

layout and composition on such things as user roles or security policies. 

Using this strategy requires more upfront work than do the other view management 

strategies, since custom tag development is more complicated than simply using 

JavaBeans or standard tags. Not only is there more complexity in the development 

process, but there is much more complexity with respect to integrating and 



 - 202 -

managing the completed tags. Using this strategy requires the generation of 

numerous artifacts, including the tag itself, a tag library descriptor, configuration 

files, and configuring the environment with these artifacts. 

The following JSP excerpt shows a possible implementation of this strategy and is 

excerpted from Example 7.26. Please refer to that code sample for more detail. 

 

<region:render 

    template='/jsp/CompositeView/templates/portal.jsp'> 

 

<region:put section='banner' 

    content='/jsp/CompositeView/templates/banner.jsp' 

  /> 

 

<region:put section='controlpanel' content= 

    '/jsp/CompositeView/templates/ProfilePane.jsp' /> 

 

<region:put section='mainpanel' content= 

    '/jsp/CompositeView/templates/mainpanel.jsp' /> 

 

<region:put section='footer' content= 

    '/jsp/CompositeView/templates/footer.jsp' /> 

</region:render> 

Transformer View Management Strategy 

View management is implemented using an XSL Transformer. This strategy would 

typically be combined with the Custom Tag View Management Strategy, using 

custom tags to implement and delegate to the appropriate components. Using this 

strategy can help to enforce the separation of the model from the view, since much 

of the view markup must be factored into a separate stylesheet. At the same time, 

it involves technologies that require new and sophisticated skill sets to implement 

correctly, an issue that makes this strategy impractical in many environments 

where these technologies are not already established. 

The following excerpt shows the use of a custom tag from within a JSP to convert a 

model using a stylesheet and transformer: 

 

<xsl:transform model="portfolioHelper" 

   stylesheet="/transform/styles/generalPortfolio.xsl"/> 



 - 203 -

Early-Binding Resource Strategy 

This is another name for translation-time content inclusion, as described in the 

Standard Tag View Management Strategy and shown in Example 7.24. It is 

appropriate for maintaining and updating a relatively static template and is 

recommended if a view includes headers and footers that change infrequently. 

Late-Binding Resource Strategy 

This is another name for runtime-content inclusion, as described in the Standard 

Tag View Management Strategy and shown in Example 7.25. It is appropriate for 

composite pages that may change frequently. One note: If the subview included at 

runtime is a dynamic resource, such as a JSP, then this subview may also be a 

composite view, including more runtime content. The flexibility offered by such 

nested composite structures should be weighed against their runtime overhead and 

considered in light of specific project requirements. 

Consequences 

• Improves Modularity and Reuse 

The pattern promotes modular design. It is possible to reuse atomic portions 

of a template, such as a table of stock quotes, in numerous views and to 

decorate these reused portions with different information. This pattern 

permits the table to be moved into its own module and simply included 

where necessary. This type of dynamic layout and composition reduces 

duplication, fosters reuse, and improves maintainability. 

• Enhances Flexibility 

A sophisticated implementation may conditionally include view template 

fragments based on runtime decisions, such as user role or security policy. 

• Enhances Maintainability and Manageability 

It is much more efficient to manage changes to portions of a template when 

the template is not hardcoded directly into the view markup. When kept 

separate from the view, it is possible to modify modular portions of template 

content independent of the template layout. Additionally, these changes are 

available to the client immediately, depending on the implementation 

strategy. Modifications to the layout of a page are more easily managed as 

well, since changes are centralized. 



 - 204 -

• Reduces Manageability 

Aggregating atomic pieces of the display together to create a single view 

introduces the potential for display errors, since subviews are page 

fragments. This is a limitation that can become a manageability issue. For 

example, if a JSP page is generating an HTML page using a main page that 

includes three subviews, and the subviews each include the HTML open and 

close tag (that is, <HTML> and </HTML>), then the composed page will be 

invalid. Thus, it is important when using this pattern to be aware that 

subviews must not be complete views. Tag usage must be accounted for 

quite strictly in order to create valid composite views, and this can become a 

manageability issue. 

• Performance Impact 

Generating a display that includes numerous subviews may slow 

performance. Runtime inclusion of subviews will result in a delay each time 

the page is served to the client. In an environment with strict Service Level 

Agreements that mandate specific response times, such performance 

slowdowns, though typically extremely minimal, may not be acceptable. An 

alternative is to move the subview inclusion to translation time, though this 

limits the subview to changing when the page is retranslated. 

Sample Code 

The Composite View pattern can be implemented using any number of strategies, 

but one of the more popular is the Custom Tag View Management Strategy. In fact, 

there are a number of custom tag libraries currently available for implementing 

composite views that separate view layout from view content and provide for 

modular and pluggable template subviews. 

This sample will use a template library written by David Geary and featured in detail 

in “Advanced JavaServer Pages” [Geary]. 

The template library describes three basic components: sections, regions, and 

templates. 

• A section is a reusable component that renders HTML or JSP. 

• A region describes content by defining sections. 

• A template controls the layout of regions and sections in a rendered page. 

A region can be defined and rendered as shown in Example 7.26. 



 - 205 -

Example 7.26 A Region and Sections 

<region:render template='portal.jsp'> 

  <region:put section='banner' content = 'banner.jsp' 

  /> 

  <region:put section = 'controlpanel' content = 

      'ProfilePane.jsp' /> 

  <region:put section='mainpanel' content = 

      'mainpanel.jsp' /> 

  <region:put section='footer' content='footer.jsp' /> 

</region:render> 

A region defines its content by matching logical section names with a portion of 

content, such as banner.jsp. 

The layout for the region and its sections is defined by a template, to which each 

region is associated. In this case, the template is named portal.jsp, as defined in 

Example 7.27. 

Example 7.27 Template Definition 

<region:render section='banner'/> 

<table width="100%"> 

    <tr align="left" valign="middle"> 

        <td width="20%"> 

      <!-- menu region --> 

      <region:render section='controlpanel' /> 

        </td> 

        <td width="70%" align="center"> 

      <!-- contents --> 

      <region:render section='mainpanel' /> 

        </td> 

    </tr> 

</table> 

A site with numerous views and a single consistent layout has one JSP containing 

code that looks similar to the template definition in Example 7.27, and many JSPs 

that look similar to Example 7.26, defining alternate regions and sections. 

Sections are JSP fragments that are used as subviews to build a composite whole as 

defined by a template. The banner.jsp section is shown in Example 7.28. 



 - 206 -

Example 7.28 Section Subview-banner.jsp 

<table width="100%" bgcolor="#C0C0C0"> 

<tr align="left" valign="middle"> 

  <td width="100%"> 

 

  <TABLE ALIGN="left" BORDER=1 WIDTH="100%"> 

  <TR ALIGN="left" VALIGN="middle"> 

    <TD>Logo</TD> 

    <TD><center>Sun Java Center</TD> 

  </TR> 

  </TABLE> 

 

  </td> 

</tr> 

</table> 

Composite views are a modular, flexible and extensible way to build JSP views for 

your J2EE application. 

Related Patterns 

• View Helper 

The Composite View pattern may be used as the view in the View Helper 

pattern. 

• Composite [GoF] 

The Composite View pattern is based on the Composite pattern, which 

describes part-whole hierarchies where a composite object is comprised of 

numerous pieces, all of which are treated as logically equivalent. 

Service to Worker 

Context 

The system controls flow of execution and access to business data, from which it 

creates presentation content. 

Note 



 - 207 -

The Service to Worker pattern, like the Dispatcher View pattern, describes a 

common combination of other patterns from the catalog. Both of these macro 

patterns describe the combination of a controller and dispatcher with views and 

helpers. While describing this common structure, they emphasize related but 

different usage patterns. 

 

Problem 

The problem is a combination of the problems solved by the Front Controller and 

View Helper patterns in the presentation tier. There is no centralized component for 

managing access control, content retrieval, or view management, and there is 

duplicate control code scattered throughout various views. Additionally, business 

logic and presentation formatting logic are intermingled within these views, making 

the system less flexible, less reusable, and generally less resilient to change. 

Intermingling business logic with view processing also reduces modularity and 

provides a poor separation of roles among Web production and software 

development teams. 

Forces 

• Authentication and authorization checks are completed per request. 

• Scriptlet code within views should be minimized. 

• Business logic should be encapsulated in components other than the view. 

• Control flow is relatively complex and based on values from dynamic 

content. 

• View management logic is relatively sophisticated, with multiple views 

potentially mapping to the same request. 

Solution 

Combine a controller and dispatcher with views and helpers (see “Front 

Controller” and “View Helper”) to handle client requests and prepare a 

dynamic presentation as the response. Controllers delegate content 

retrieval to helpers, which manage the population of the intermediate 

model for the view. A dispatcher is responsible for view management and 

navigation and can be encapsulated either within a controller or a separate 

component. 

Service to Worker describes the combination of the Front Controller and View Helper 

patterns with a dispatcher component. 



 - 208 -

While this pattern and the Dispatcher View pattern describe a similar structure, the 

two patterns suggest a different division of labor among the components. In Service 

to Worker, the controller and the dispatcher have more responsibilities. 

Since the Service to Worker and Dispatcher View patterns represent a common 

combination of other patterns from the catalog, each warrants its own name to 

promote efficient communication among developers. Unlike the Service to Worker 

pattern, the Dispatcher View pattern suggests deferring content retrieval to the 

time of view processing. 

In the Dispatcher View pattern, the dispatcher typically plays a limited to moderate 

role in view management. In the Service to Worker pattern, the dispatcher typically 

plays a moderate to large role in view management. 

A limited role for the dispatcher occurs when no outside resources are utilized in 

order to choose the view. The information encapsulated in the request is sufficient 

to determine the view to dispatch the request. For example, 

http://some.server.com/servlet/Controller?next=login.jsp 

The sole responsibility of the dispatcher component in this case is to dispatch to the 

view login.jsp. 

An example of the dispatcher playing a moderate role is the case where the client 

submits a request directly to a controller with a query parameter that describes an 

action to be completed: 

http://some.server.com/servlet/Controller?action=login 

The responsibility of the dispatcher component here is to translate the logical name 

login into the resource name of an appropriate view, such as login.jsp, and 

dispatch to that view. To accomplish this translation, the dispatcher may access 

resources such as an XML configuration file that specifies the appropriate view to 

display. 

On the other hand, in the Service to Worker pattern, the dispatcher might be more 

sophisticated. The dispatcher may invoke a business service to determine the 

appropriate view to display. 

The shared structure of Service to Worker and Dispatcher View consists of a 

controller working with a dispatcher, views, and helpers. 

Structure 

The class diagram in Figure 7.20 represents the Service to Worker pattern. 



 - 209 -

Figure 7.20. Service to Worker class diagram 

 

Participants and Responsibilities 

Figure 7.21 shows the sequence diagram that represents the Service to Worker 

pattern. 

Figure 7.21. Service to Worker sequence diagram 

 

As stated, Service to Worker and Dispatcher View represent a similar structure. The 

main difference is that Service to Worker describes architectures with more 

behavior “up front” in the controller and dispatcher, while Dispatcher View describes 

architectures with more behavior moved back to the time of view processing. Thus, 

the two patterns suggest a continuum, where behavior is either encapsulated closer 

to the front or moved farther back in the process flow. 



 - 210 -

Controller 

The controller is typically the initial contact point for handling a request. It works 

with a dispatcher to complete view management and navigation. The controller 

manages authentication, authorization, content retrieval, validation, and other 

aspects of request handling. It delegates to helpers to complete portions of this 

work. 

Dispatcher 

A dispatcher is responsible for view management and navigation, managing the 

choice of the next view to present to the user and providing the mechanism for 

vectoring control to this resource. 

A dispatcher can be encapsulated within a controller (see “Front Controller”) or it 

can be a separate component working in coordination with the controller. The 

dispatcher can provide static dispatching to the view or it may provide a more 

sophisticated dynamic dispatching mechanism. 

The dispatcher uses the RequestDispatcher object (supported in the servlet 

specification), but it also typically encapsulates some additional processing. The 

more responsibilities that this component encapsulates, the more it fits into the 

Service to Worker pattern. Conversely, when the dispatcher plays a more limited 

role, it fits more closely into the Dispatcher View pattern. 

View 

A View represents and displays information to the client. The information that is 

used in a display is retrieved from a model. Helpers support views by encapsulating 

and adapting a model for use in a display. 

Helper 

A helper is responsible for helping a view or controller complete its processing. Thus, 

helpers have numerous responsibilities, including gathering data required by the 

view and storing this intermediate model, in which case the helper is sometimes 

referred to as a value bean. Additionally, helpers may adapt this data model for use 

by the view. Helpers can service requests for data from the view by simply providing 

access to the raw data or by formatting the data as Web content. 



 - 211 -

A view may work with any number of helpers, which are typically implemented as 

JavaBeans (JSP 1.0+) and custom tags (JSP 1.1+). Additionally, a helper may 

represent a Command object or a delegate (see “Business Delegate”). 

ValueBean 

A value bean is another name for a helper that is responsible for holding 

intermediate model state for use by a view. A typical case, as shown in the sequence 

diagram in Figure 7.12, has the business service returning a value bean in response 

to a request. In this case, ValueBean fulfills the role of a Value Object (see “Value 

Object”). 

BusinessService 

The business service is a role that is fulfilled by the service the client is seeking to 

access. Typically, the business service is accessed via a Business delegate. The 

business delegate's role is to provide control and protection for the business service 

(see the “Business Delegate”). 

Strategies 

Servlet Front Strategy 

See “Servlet Front Strategy”. 

JSP Front Strategy 

See “JSP Front Strategy”. 

JSP View Strategy 

See “JSP View Strategy”. 

Servlet View Strategy 

See “Servlet View Strategy”. 



 - 212 -

JavaBean Helper Strategy 

See “JavaBean Helper Strategy”. 

Custom Tag Helper Strategy 

See “Custom Tag Helper Strategy”. 

Dispatcher in Controller Strategy 

See “Dispatcher in Controller Strategy”. 

As stated, the Service to Worker and Dispatcher View patterns suggest a continuum, 

where behavior is encapsulated closer to the front or moved farther back in the 

process flow. Figure 7.22 describes a scenario in which the controller is heavily 

loaded with upfront work, but the dispatcher functionality is minimal. 

Figure 7.22. Folding the dispatcher into the controller 

 

Transformer Helper Strategy 

See “Transformer Helper Strategy”. 



 - 213 -

Consequences 

• Centralizes Control and Improves Modularity and Reuse 

This pattern suggests providing a central place to handle system services 

and business logic across multiple requests. The controller manages 

business logic processing and request handling. Keep in mind, though, that 

as control centralizes, it is possible to introduce a single point of failure. 

The pattern also promotes cleaner application partitioning and encourages 

reuse. Common code is moved into a controller and reused per request and 

moved into helper components, to which controllers and views delegate. The 

improved modularity and reuse means less duplication, which typically 

means a more bug-free environment. 

• Improves Application Partitioning 

Using helpers results in a cleaner separation of the view from the business 

processing in an application. Helpers, in the form of JavaBeans (JSP 1.0+) 

and Custom tags (JSP 1.1+), provide a place for business logic to be factored 

out of the JSP. If the business logic is left in a JSP, large projects result in 

cumbersome and unwieldy scriptlet code. 

• Improves Role Separation 

Separating the formatting logic from the application business logic also 

reduces dependencies on the same resources among individuals fulfilling 

different roles. Without this separation, for example, a software developer 

would own code that is embedded within HTML markup, while a Web 

production team member would need to modify page layout and design 

components that are intermingled with business logic. Because neither 

individual fulfilling these roles is familiar with the implementation specifics of 

the other individual's work, it raises the likelihood of modifications 

accidentally introducing bugs into the system. 

Sample Code 

The following sample code shows an implementation of the Service to Worker 

pattern, using a controller servlet, a command helper, a dispatcher component, and 

a view. The implementation includes the Servlet Front Strategy, Command and 

Controller Strategy, JSP View Strategy, and JavaBean Helper Strategy. A very basic 

composite view is used as well. A screen shot of the resulting display is shown in 

Figure 7.23. 



 - 214 -

Figure 7.23. Service to Worker sample screen shot 

 

Example 7.29 shows the controller servlet, which delegates to a Command object 

(Command and Controller Strategy) to complete the control processing. The 

Command object is retrieved via a factory invocation, which returns the generic 

Command type, an interface shown in Example 7.30. The sample code uses a 

LogManager to log messages. The screen shots in Figure 7.23 and Figure 7.28 show 

these messages displayed at the bottom of the page, for the purposes of this 

example. 

Example 7.29 Controller Servlet with Command and 

Controller Strategy 

public class Controller extends HttpServlet { 

  /** Processes requests for both HTTP 

   * <code>GET</code> and <code>POST</code> methods. 

   * @param request servlet request 

   * @param response servlet response 

   */ 

  protected void processRequest(HttpServletRequest 

    request, HttpServletResponse response) 

    throws ServletException, java.io.IOException { 

    String next; 



 - 215 -

 

    try { 

      // Log pattern info 

      LogManager.recordStrategy(request, 

        "Service To Worker", 

        " ServletFront Strategy;" + 

      " JSPView Strategy; JavaBean helper Strategy"); 

 

      LogManager.logMessage(request, getSignature(), 

        "Process incoming request. "); 

 

      // Use a helper object to gather parameter 

      // specific information. 

      RequestHelper helper = new 

        RequestHelper(request,response); 

 

      LogManager.logMessage(request, getSignature(), 

          "Getting command object helper"); 

 

      // Get command object helper 

      Command command = helper.getCommand(); 

      // delegate processing to the command object, 

      // passing request and response objects along 

      next = command.execute(helper); 

 

      /** If the above command returns a value, we 

        * will dispatch from the controller. In this 

        * example, though, the command will use a 

        * separate dispatcher component to choose a 

        * view and dispatch to that view. The command 

        * object delegates to this dispatcher 

        * component in its execute method, above, and 

        * control should not return to this point **/ 

    } 

    catch (Exception e) { 

      LogManager.logMessage( 

        "EmployeeController(CommandStrategy)", 

        e.getMessage() ); 

 

      /** ApplicationResources provides a simple API 

        * for retrieving constants and other 

        * preconfigured values**/ 

      next = ApplicationResources.getInstance(). 

                    getErrorPage(e); 

    } 



 - 216 -

 

    dispatch(request, response, next); 

 

  } 

 

  /** Handles the HTTP <code>GET</code> method. 

   * @param request servlet request 

   * @param response servlet response 

   */ 

  protected void doGet(HttpServletRequest request, 

    HttpServletResponse response) 

    throws ServletException, java.io.IOException { 

      processRequest(request, response); 

  } 

 

  /** Handles the HTTP <code>POST</code> method. 

   * @param request servlet request 

   * @param response servlet response 

   */ 

  protected void doPost(HttpServletRequest request, 

    HttpServletResponse response) 

    throws ServletException, java.io.IOException { 

      processRequest(request, response); 

  } 

 

  /** Returns a short description of the servlet. */ 

  public String getServletInfo() { 

    return getSignature(); 

  } 

 

  /** dispatcher method */ 

  protected void dispatch(HttpServletRequest request, 

    HttpServletResponse response, 

    String page) throws javax.servlet.ServletException, 

    java.io.IOException { 

      RequestDispatcher dispatcher = 

       getServletContext().getRequestDispatcher(page); 

      dispatcher.forward(request, response); 

  } 

 

  public void init(ServletConfig config) throws 

      ServletException { 

    super.init(config); 

  } 

 



 - 217 -

  public void destroy() { } 

 

  private String getSignature() { 

    return "ServiceToWorker--Controller"; 

  } 

} 

Example 7.30 Command Interface 

public interface Command { 

 

    public String execute(RequestHelper helper) throws 

  javax.servlet.ServletException, java.io.IOException; 

} 

Figure 7.28. Dispatcher View sample screen shot 

 

Each Command Object helper implements this generic interface, which is an 

example of the GoF Command pattern. The Command object is an instance of the 

ViewAccountDetails class, which is shown in Example 7.31. The command instance 

delegates to an AccountingAdapter to make an invocation to the business tier via 

business delegate. The adapter class is shown in Example 7.32. It uses a separate 

dispatcher component to determine the next view to which control should be 

dispatched and to actually dispatch to this view. 



 - 218 -

Example 7.31 ViewAccountDetailsCommand 

public class ViewAccountDetailsCommand implements 

  Command { 

  public ViewAccountDetailsCommand() { } 

 

  // view account details operation 

  public String execute(RequestHelper helper) 

    throws javax.servlet.ServletException, 

  java.io.IOException { 

    /** This will tell the user that a system error 

      * has occured and will typically not be seen. It 

      * should be stored in a resource file **/ 

    String systemerror = 

      "/jspdefaultprocessingerror.jsp"; 

 

    LogManager.logMessage(helper.getRequest(), 

      "ViewAccountDetailsCommand", 

      "Get Account Details from an adapter object"); 

 

    /** Use an adapter to retrieve data from business 

      * service, and store it in a request attribute. 

      * Note: Object creation could be avoided via 

      * factory, but for example purposes object 

      * instantiation is shown **/ 

    AccountingAdapter adapter = new 

                          AccountingAdapter(); 

    adapter.setAccountInfo(helper); 

 

    LogManager.logMessage(helper.getRequest(), 

  "ViewAccountDetailsCommand", "processing complete"); 

 

    /** Note: Object creation could be avoided via 

      * factory, but for example purposes object 

      * instantiation is shown**/ 

    Dispatcher dispatcher = new Dispatcher(); 

    dispatcher.dispatch(helper); 

    /** This return string will not be sent in a 

      * normal execution of this scenario, because 

      * control is forwarded to another resource 

      * before reaching  this point. Some commands do 

      * return a String,  though, so the return value 

      * is included for  correctness. **/ 

    return systemerror; 



 - 219 -

  } 

} 

Example 7.32 AccountingAdapter 

public class AccountingAdapter { 

    public void setAccountInfo( 

      RequestHelper requestHelper) { 

        LogManager.logMessage( 

          requestHelper.getRequest(), 

          "Retrieving data from business tier"); 

 

        // retrieve data from business tier via 

        // delegate. Omit try/catch block for brevity. 

        AccountDelegate delegate = 

                new AccountDelegate(); 

        AccountVO account = 

          delegate.getAccount( 

            requestHelper.getCustomerId(), 

            requestHelper.getAccountKey()); 

 

        LogManager.logMessage( 

          requestHelper.getRequest(), 

  "Store account value object in request attribute"); 

 

      // transport data using request object 

      requestHelper.getRequest().setAttribute( 

        "account", account); 

    } 

} 

The invocation on the business service via the delegate yields an Account Value 

object, which the adapter stores in a request attribute for use by the view. Example 

7.33 shows accountdetails.jsp, the JSP to which the request is dispatched. The 

Value object is imported via the standard <jsp:useBean> tag and its properties 

accessed with the standard <jsp:getProperty> tag. Also, the view uses a very 

simple composite strategy, doing a translation-time inclusion of the trace.jsp 

subview, which is responsible for displaying log information on the display solely for 

example purposes. 

Example 7.33 View - accountdetails.jsp 

<html> 



 - 220 -

<head><title>AccountDetails</title></head> 

<body> 

 

<jsp:useBean id="account" scope="request" 

  class="corepatterns.util.AccountVO" /> 

 

 

<h2><center> Account Detail for <jsp:getProperty 

  name="account" property="owner" /> 

</h2> <br><br> 

<table border=3> 

<tr> 

<td> 

Account Number : 

</td> 

<td> 

<jsp:getProperty name="account" property="number" /> 

</td> 

</tr> 

 

<tr> 

<td> 

Account Type: 

</td> 

<td> 

<jsp:getProperty name="account" property="type" /> 

</td> 

</tr> 

 

<tr> 

<td> 

Account Balance: 

</td> 

<td> 

<jsp:getProperty name="account" property="balance" /> 

</td> 

</tr> 

 

<tr> 

<td> 

OverDraft Limit: 

</td> 

<td> 

<jsp:getProperty name="account" 

  property="overdraftLimit" /> 



 - 221 -

</td> 

</tr> 

 

</table> 

 

 

<br> 

<br> 

 

</center> 

<%@ include file="/jsp/trace.jsp" %> 

</body> 

</html> 

Related Patterns 

• Front Controller and View Helper 

The Service to Worker pattern is the result of combining the View Helper 

pattern with a dispatcher, in coordination with the Front Controller pattern. 

• Dispatcher View 

The Dispatcher View pattern is another name for the combination of the 

Front Controller pattern with a dispatcher, and the View Helper pattern. The 

Service to Worker and the Dispatcher View patterns are identical with 

respect to the components involved, but differ in the division of labor among 

those components. The Dispatcher View pattern suggests deferring content 

retrieval to the time of view processing. Also, the dispatcher plays a more 

limited role in view management, as the choice of view is typically already 

included in the request. 

Dispatcher View 

Context 

System controls flow of execution and access to presentation processing, which is 

responsible for generating dynamic content. 

Note 

The Dispatcher View pattern, like the Service to Worker pattern, describes a 

common combination of other patterns from the catalog. Both of these macro 



 - 222 -

patterns describe the combination of a controller and dispatcher with views and 

helpers. While describing this common structure, they emphasize related but 

different usage patterns. 

 

Problem 

The problem is a combination of the problems solved by the Front Controller and 

View Helper patterns in the presentation tier. There is no centralized component for 

managing access control, content retrieval or view management, and there is 

duplicate control code scattered throughout various views. Additionally, business 

logic and presentation formatting logic are intermingled within these views, making 

the system less flexible, less reusable, and generally less resilient to change. 

Intermingling business logic with view processing also reduces modularity and 

provides a poor separation of roles among Web production and software 

development teams. 

Forces 

• Authentication and authorization checks are completed per request. 

• Scriptlet code within views should be minimized. 

• Business logic should be encapsulated in components other than the view. 

• Control flow is relatively simple and is typically based on values 

encapsulated with the request. 

• View management logic is limited in complexity. 

Solution 

Combine a controller and dispatcher with views and helpers (see “Front 

Controller” and “View Helper”) to handle client requests and prepare a 

dynamic presentation as the response. Controllers do not delegate content 

retrieval to helpers, because these activities are deferred to the time of 

view processing. A dispatcher is responsible for view management and 

navigation and can be encapsulated either within a controller, a view, or a 

separate component. 

Dispatcher View describes the combination of the Front Controller and View Helper 

patterns with a dispatcher component. While this pattern and the Service to Worker 

pattern describe a similar structure, the two patterns suggest a different division of 

labor among the components. The controller and the dispatcher typically have 

limited responsibilities, as compared to the Service to Worker pattern, since the 



 - 223 -

upfront processing and view management logic are basic. Furthermore, if 

centralized control of the underlying resources is considered unnecessary, then the 

controller is removed and the dispatcher may be moved into a view. 

Since the Service to Worker and Dispatcher View patterns represent a common 

combination of other patterns from the catalog, each warrants its own name to 

promote efficient communication among developers. Unlike the Service to Worker 

pattern, the Dispatcher View pattern suggests deferring content retrieval to the 

time of view processing. 

In the Dispatcher View pattern, the dispatcher typically plays a limited to moderate 

role in view management. In the Service to Worker pattern, the dispatcher typically 

plays a moderate to large role in view management. 

A limited role for the dispatcher occurs when no outside resources are utilized in 

order to choose the view. The information encapsulated in the request is sufficient 

to determine the view to dispatch the request. For example: 

http://some.server.com/servlet/Controller?next=login.jsp 

The sole responsibility of the dispatcher component in this case is to dispatch to the 

view login.jsp. 

An example of the dispatcher playing a moderate role is the case where the client 

submits a request directly to a controller with a query parameter that describes an 

action to be completed: 

http://some.server.com/servlet/Controller?action=login 

The responsibility of the dispatcher component here is to translate the logical name 

login into the resource name of an appropriate view, such as login.jsp, and 

dispatch to that view. To accomplish this translation, the dispatcher may access 

resources such as an XML configuration file that specifies the appropriate view to 

display. 

On the other hand, in the Service to Worker pattern, the dispatcher might be more 

sophisticated. The dispatcher may invoke a business service to determine the 

appropriate view to display. 

The shared structure of these two patterns, as mentioned above, consists of a 

controller working with a dispatcher, views, and helpers. 

Structure 

Figure 7.24 shows the class diagram that represents the Dispatcher View pattern. 



 - 224 -

Figure 7.24. Dispatcher View class diagram 

 

Participants and Responsibilities 

Figure 7.25 shows the Dispatcher View sequence pattern. 

Figure 7.25. Dispatcher View sequence diagram 

 

While the controller responsibilities are limited to system services, such as 

authentication and authorization, it is often still beneficial to centralize these 

aspects of the system. Notice also that, unlike in Service to Worker, the dispatcher 

does not make invocations on a business service in order to complete its view 

management processing. 

The dispatcher functionality may be encapsulated in its own component. At the 

same time, when the responsibilities of the dispatcher are limited, as described by 

this pattern, the dispatcher functionality is often folded into another component, 



 - 225 -

such as the controller or the view (see “Dispatcher in Controller Strategy” and 

“Dispatcher in View Strategy”). 

In fact, the dispatcher functionality may even be completed by the container, in the 

case where there is no extra application-level logic necessary. An example is a view 

called main.jsp that is given the alias name first. The container will process the 

following request, translate the alias name to the physical resource name, and 

dispatch directly to that resource: 

http://some.server.com/first --> /mywebapp/main.jsp 

In this case, we are left with the View Helper pattern, with the request being 

handled directly by the view. Since the view is the initial contact point for handling 

a request, custom tag helpers are typically used in these cases to perform business 

processing or to delegate this processing to other components. See the listing in 

Example 7.35 in the “Sample Code” section for an implementation sample. 

Thus, the Dispatcher View pattern describes a continuum of related scenarios, 

moving from a scenario that is very structurally similar to Service to Worker to one 

that is similar to View Helper. 

Controller 

The controller is typically the initial contact point for handling a request. The 

controller manages authentication and authorization, and delegates to a dispatcher 

to do view management. 

Dispatcher 

A dispatcher is responsible for view management and navigation, managing the 

choice of the next view to present to the user and providing the mechanism for 

vectoring control to this resource. 

A dispatcher can be encapsulated within a controller (see “Front Controller”) or can 

be a separate component working in coordination. The dispatcher can provide static 

dispatching to the view or may provide a more sophisticated dynamic dispatching 

mechanism. 

View 

A view represents and displays information to the client. The information that is 

used in a display is retrieved from a model. Helpers support views by encapsulating 

and adapting a model for use in a display. 



 - 226 -

Helper 

A helper is responsible for helping a view or controller complete its processing. Thus, 

helpers have numerous responsibilities, including gathering data required by the 

view and storing this intermediate model, in which case the helper is sometimes 

referred to as a value bean. Additionally, helpers may adapt this data model for use 

by the view. Helpers can service requests for data from the view by simply providing 

access to the raw data or by formatting the data as Web content. 

A view may work with any number of helpers, which are typically implemented as 

JavaBeans (JSP 1.0+) and custom tags (JSP 1.1+). Additionally, a helper may 

represent a Command object or a Delegate (see “Business Delegate”). 

ValueBean 

A value bean is another name for a helper that is responsible for holding 

intermediate model state for use by a view. A typical case, as shown in the sequence 

diagram in Figure 7.12, has the business service returning a value bean in response 

to a request. In this case, ValueBean fulfills the role of a Value Object (see “Value 

Object”). 

BusinessService 

The business service is a role that is fulfilled by the service the client is seeking to 

access. Typically, the business service is accessed via a business delegate. The 

business delegate's role is to provide control and protection for the business service 

(see “Business Delegate”). 

Strategies 

Servlet Front Strategy 

See “Servlet Front Strategy”. 

JSP Front Strategy 

See “JSP Front Strategy”. 



 - 227 -

JSP View Strategy 

See “JSP View Strategy”. 

Servlet View Strategy 

See “Servlet View Strategy”. 

JavaBean Helper Strategy 

See “JavaBean Helper Strategy”. 

Custom Tag Helper Strategy 

See “Custom Tag Helper Strategy”. 

Dispatcher in Controller Strategy 

See “Dispatcher in Controller Strategy”. 

As stated, the Service to Worker and Dispatcher View patterns suggest a continuum, 

where behavior is encapsulated closer to the front in Service to Worker or moved 

farther back in Dispatcher View. 

Figure 7.26 shows the interactions for this strategy. 



 - 228 -

Figure 7.26. Dispatcher in Controller Strategy 

 

The controller does not create an explicit dispatcher object. Instead, the controller 

takes care of dispatching to the view. Alternatively, one could implement a 

dispatcher to which the controller can delegate the dispatching function. 

Dispatcher in View Strategy 

If the controller is removed due to its limited role, the dispatcher may be moved into 

a view. This design can be useful in cases where there is typically one view that 

maps to a specific request, but where a secondary view may be used on an 

infrequent basis. For example, based on some information in the request or results 

of some processing in a view, a custom tag helper in the view might vector control 

to a secondary view. A typical case is when a client request is submitted to a specific 

view, and will be serviced by that view in almost every case. Consider the case 

where the user has not been authenticated, but requests access to one of the few 

protected JSPs on a site. Since the site has only a few protected pages, and limited 

dynamic content, authentication can be performed within those JSPs, instead of 

using a site-wide centralized controller. Those pages that need authentication 

include a custom tag helper at the top of the page. This helper performs the 

authentication check and either displays the page for the user or forwards the user 

to an authentication page. 

Figure 7.27 represents this scenario. 



 - 229 -

Figure 7.27. Dispatcher in View Strategy 

 

Transformer Helper Strategy 

See “Transformer Helper Strategy”. 

Consequences 

• Centralizes Control and Improves Reuse and Maintainability 

Control processing is handled in a central place for multiple requests. It is 

easier to manage these activities and perform dispatching from a centralized 

point, since a central access point means code is reused across multiple 

requests, reducing duplication and easing maintenance. 

• Improves Application Partitioning 

Use of helpers results in a cleaner separation of the view from an 

application's business processing. The helpers, in the form of JavaBeans 

(JSP 1.0+) and Custom tags (JSP 1.1+), provide a place for business logic to 

be factored out of the JSP, where scriptlet code quickly becomes 

cumbersome and unwieldy in large projects. 

• Improves Role Separation 

Separating the formatting logic from the application business logic also 

reduces dependencies that individuals fulfilling different roles might have on 

the same resources. For example, a software developer would own code that 



 - 230 -

is embedded within HTML markup, while a Web production team member 

would need to modify page layout and design components that are 

intermingled with business logic. Because neither individual fulfilling these 

roles may be familiar with the implementation specifics of the other 

individual's work, there is the likelihood of inadvertent modifications 

introducing bugs into the system. 

Sample Code 

The following sample code shows an implementation of the Dispatcher View pattern, 

using a controller servlet and a view with JavaBean and custom tag helpers. The 

implementation includes the Servlet Front Strategy, Dispatcher in Controller 

Strategy, JSP View Strategy, and custom tag and JavaBean helper strategies. A 

very basic composite view is used as well. A screen shot of the resulting display is 

shown in Figure 7.28. 

Example 7.34 shows the controller servlet, which simply completes an 

authentication check and passes control to the appropriate view. Notice that the 

controller does not directly delegate to any helper components in order to make 

invocations to the business tier via a Delegate. These responsibilities are deferred to 

the view, which is called accountdetails.jsp and can be seen in Example 7.35. 

The sample code uses a LogManager to log messages. These messages are 

displayed at the bottom of the output page, for the purposes of this example, and 

can be seen in the screen shots in Figure 7.23 and Figure 7.28. 

Example 7.34 Dispatcher View Controller Servlet 

public class Controller extends HttpServlet { 

 

  /** Processes requests for both HTTP 

    * <code>GET</code> and <code>POST</code> methods. 

    * @param request servlet request 

    * @param response servlet response 

    */ 

  protected void processRequest(HttpServletRequest 

    request, HttpServletResponse response) 

    throws ServletException, java.io.IOException { 

    String nextview; 

    try { 

      LogManager.recordStrategy(request, 

        "Dispatcher View", 

        " Servlet Front Strategy; " + 

    "JSP View Strategy; Custom tag helper Strategy"); 



 - 231 -

      LogManager.logMessage(request, getSignature(), 

        "Process incoming request. "); 

 

      // Use a helper object to gather parameter 

      // specific information. 

      RequestHelper helper = new 

          RequestHelper(request, response); 

      LogManager.logMessage(request, 

        getSignature(), " Authenticate user"); 

 

      Authenticator auth = new BasicAuthenticator(); 

      auth.authenticate(helper); 

 

      //This is an oversimplification for the sake of 

      // simplicity. Typically, there will be a 

      // mapping from logical name to resource name at 

      // this point 

      LogManager.logMessage(request, getSignature(), 

        "Getting nextview"); 

      nextview = request.getParameter("nextview"); 

 

      LogManager.logMessage(request, getSignature(), 

        "Dispatching to view: " + nextview); 

  } 

  catch (Exception e) { 

    LogManager.logMessage( 

      "Handle exception appropriately", 

      e.getMessage() ); 

      /** ApplicationResources provides a simple API 

        * for retrieving constants and other 

        * preconfigured values**/ 

      nextview = ApplicationResources.getInstance(). 

          getErrorPage(e); 

    } 

    dispatch(request, response, nextview); 

  } 

 

  /** Handles the HTTP <code>GET</code> method. 

    * @param request servlet request 

    * @param response servlet response 

    */ 

  protected void doGet(HttpServletRequest request, 

    HttpServletResponse response) 

  throws ServletException, java.io.IOException { 

    processRequest(request, response); 



 - 232 -

  } 

 

  /** Handles the HTTP <code>POST</code> method. 

    * @param request servlet request 

    * @param response servlet response 

    */ 

  protected void doPost(HttpServletRequest request, 

    HttpServletResponse response) 

  throws ServletException, java.io.IOException { 

    processRequest(request, response); 

  } 

 

  /** Returns a short description of the servlet. */ 

  public String getServletInfo() { 

      return getSignature(); 

  } 

 

  public void init(ServletConfig config) throws 

    ServletException { 

    super.init(config); 

  } 

 

  public void destroy() { } 

 

  /** 

    * dispatcher method 

    */ 

  protected void dispatch(HttpServletRequest request, 

    HttpServletResponse response, String page) 

    throws javax.servlet.ServletException, 

    java.io.IOException { 

        RequestDispatcher dispatcher = 

          getServletContext(). 

            getRequestDispatcher(page); 

        dispatcher.forward(request, response); 

  } 

 

  private String getSignature() { 

    return "DispatcherView-Controller"; 

  } 

} 

Notice that the view uses custom tag helpers to manage content retrieval, since this 

activity was not completed in the controller. When custom tags are used in this 

manner, they typically become thin facades for standalone components to which 



 - 233 -

they delegate to complete this processing. This way, the general processing logic is 

loosely coupled to the tag implementation. If custom tags are not used with 

Dispatcher View, then too much scriptlet code typically ends up in the JSP, a 

situation to be avoided. 

Example 7.35 View – accountdetails.jsp 

<%@ taglib uri="/web--INF/corepatternstaglibrary.tld" 

  prefix="corepatterns" %> 

 

<html> 

<head><title>AccountDetails</title></head> 

<body> 

 

<corepatterns:AccountQuery 

  queryParams="custid,acctkey" scope="request" /> 

 

<h2><center> Account Detail for <corepatterns:Account 

  attribute="owner" /></h2> <br><br> 

 

<tr> 

  <td>Account Number :</td> 

  <td><corepatterns:Account attribute="number" /></td> 

</tr> 

<tr> 

  <td>Account Type:</td> 

  <td><corepatterns:Account attribute="type" /></td> 

</tr> 

 

<tr> 

  <td>Account Balance:</td> 

  <td><corepatterns:Account attribute="balance" 

  /></td> 

</tr> 

 

<tr> 

  <td>OverDraft Limit:</td> 

  <td><corepatterns:Account attribute="overdraftLimit" 

  /></td> 

</tr> 

<table border=3> 

</table> 

</corepatterns:AccountQuery> 

 



 - 234 -

<br> 

<br> 

 

</center> 

<%@ include file="/jsp/trace.jsp" %> 

</body> 

</html> 

Related Patterns 

• Front Controller 

The Service to Worker pattern is the result of combining the View Helper 

pattern with a dispatcher in coordination with the Front Controller pattern. 

• View Helper 

The Service to Worker pattern is the result of combining the View Helper 

pattern with a dispatcher in coordination with the Front Controller pattern. 

• Service to Worker 

The Service to Worker pattern is another name for the combination of the 

Front Controller pattern with a dispatcher and the View Helper pattern. The 

Service to Worker and Dispatcher View patterns are identical with respect to 

the components involved, but differ in the division of labor among those 

components. The Dispatcher View pattern suggests deferring content 

retrieval to the time of view processing. Also, the dispatcher plays a more 

limited role in view management, as the choice of view is typically already 

included in the request. 



 - 235 -

Chapter 8. BUSINESS TIER PATTERNS 

Topics in This Chapter 

• Business Delegate 

• Value Object 

• Session Facade 

• Composite Entity 

• Value Object Assembler 

• Value List Handler 

• Service Locator 



 - 236 -

Business Delegate 

Context 

A multitiered, distributed system requires remote method invocations to send and 

receive data across tiers. Clients are exposed to the complexity of dealing with 

distributed components. 

Problem 

Presentation-tier components interact directly with business services. This direct 

interaction exposes the underlying implementation details of the business service 

application program interface (API) to the presentation tier. As a result, the 

presentation-tier components are vulnerable to changes in the implementation of 

the business services: When the implementation of the business services change, 

the exposed implementation code in the presentation tier must change too. 

Additionally, there may be a detrimental impact on network performance because 

presentation-tier components that use the business service API make too many 

invocations over the network. This happens when presentation-tier components use 

the underlying API directly, with no client-side caching mechanism or aggregating 

service. 

Lastly, exposing the service APIs directly to the client forces the client to deal with 

the networking issues associated with the distributed nature of EJB technology. 

Forces 

• Presentation-tier clients need access to business services. 

• Different clients, such as devices, Web clients, and thick clients, need access 

to business service. 

• Business services APIs may change as business requirements evolve. 

• It is desirable to minimize coupling between presentation-tier clients and the 

business service, thus hiding the underlying implementation details of the 

service, such as lookup and access. 

• Clients may need to implement caching mechanisms for business service 

information. 

• It is desirable to reduce network traffic between client and business services. 



 - 237 -

Solution 

Use a Business Delegate to reduce coupling between presentation-tier 

clients and business services. The Business Delegate hides the underlying 

implementation details of the business service, such as lookup and access 

details of the EJB architecture. 

The Business Delegate acts as a client-side business abstraction; it provides an 

abstraction for, and thus hides, the implementation of the business services. Using 

a Business Delegate reduces the coupling between presentation-tier clients and the 

system's business services. Depending on the implementation strategy, the 

Business Delegate may shield clients from possible volatility in the implementation 

of the business service API. Potentially, this reduces the number of changes that 

must be made to the presentation-tier client code when the business service API or 

its underlying implementation changes. 

However, interface methods in the Business Delegate may still require modification 

if the underlying business service API changes. Admittedly, though, it is more likely 

that changes will be made to the business service rather than to the Business 

Delegate. 

Often, developers are skeptical when a design goal such as abstracting the business 

layer causes additional upfront work in return for future gains. However, using this 

pattern or its strategies results in only a small amount of additional upfront work 

and provides considerable benefits. The main benefit is hiding the details of the 

underlying service. For example, the client can become transparent to naming and 

lookup services. The Business Delegate also handles the exceptions from the 

business services, such as java.rmi.Remote exceptions, JMS exceptions and so on. 

The Business Delegate may intercept such service level exceptions and generate 

application level exceptions instead. Application level exceptions are easier to 

handle by the clients, and may be user friendly. The Business Delegate may also 

tranparently perform any retry or recovery operations necessary in the event of a 

service failure without exposing the client to the problem until it is determined that 

the problem is not resolvable. These gains present a compelling reason to use the 

pattern. 

Another benefit is that the delegate may cache results and references to remote 

business services. Caching can significantly improve performance, because it limits 

unnecessary and potentially costly round trips over the network. 

A Business Delegate uses a component called the Lookup Service. The Lookup 

Service is responsible for hiding the underlying implementation details of the 

business service lookup code. The Lookup Service may be written as part of the 

Delegate, but we recommend that it be implemented as a separate component, as 

outlined in the Service Locator pattern (See “Service Locator”.). 



 - 238 -

When the Business Delegate is used with a Session Facade, typically there is a 

one-to-one relationship between the two. This one-to-one relationship exists 

because logic that might have been encapsulated in a Business Delegate relating to 

its interaction with multiple business services (creating a one-to-many relationship) 

will often be factored back into a Session Facade. 

Finally, it should be noted that this pattern could be used to reduce coupling 

between other tiers, not simply the presentation and the business tiers. 

Structure 

Figure 8.1 shows the class diagram representing the Business Delegate pattern. The 

client requests the BusinessDelegate to provide access to the underlying business 

service. The BusinessDelegate uses a LookupService to locate the required 

BusinessService component. 

Figure 8.1. BusinessDelegate class diagram 

 

Participants and Responsibilities 

Figure 8.2 and Figure 8.3 show sequence diagrams that illustrate typical 

interactions for the Business Delegate pattern. 



 - 239 -

Figure 8.2. BusinessDelegate sequence diagram 

 



 - 240 -

Figure 8.3. BusinessDelegate with ID sequence 

diagram 

 

The BusinessDelegate uses a LookupService for locating the business service. The 

business service is used to invoke the business methods on behalf of the client. The 

Get ID method shows that the BusinessDelegate can obtain a String version of the 

handle (such as EJBHandle object) for the business service and return it to the client 

as a String. The client can use the String version of the handle at a later time to 

reconnect to the business service it was using when it obtained the handle. This 

technique will avoid new lookups, since the handle is capable of reconnecting to its 

business service instance. It should be noted that handle objects are implemented 

by the container provider and may not be portable across containers from different 

vendors. 

The sequence diagram in Figure 8.3 shows obtaining a BusinessService (such as a 

session or an entity bean) using its handle. 



 - 241 -

BusinessDelegate 

The BusinessDelegate's role is to provide control and protection for the business 

service. The BusinessDelegate can expose two types of constructors to clients. One 

type of request instantiates the BusinessDelegate without an ID, while the other 

instantiates it with an ID, where ID is a String version of the reference to a remote 

object, such as EJBHome or EJBObject. 

When initialized without an ID, the BusinessDelegate requests the service from the 

Lookup Service, typically implemented as a Service Locator (see “Service Locator”), 

which returns the Service Factory, such as EJBHome. The BusinessDelegate 

requests that the Service Factory locate, create, or remove a BusinessService, such 

as an enterprise bean. 

When initialized with an ID string, the BusinessDelegate uses the ID string to 

reconnect to the BusinessService. Thus, the BusinessDelegate shields the client 

from the underlying implementation details of BusinessService naming and lookup. 

Furthermore, the presentation-tier client never directly makes a remote invocation 

on a BusinessSession; instead, the client uses the BusinessDelegate. 

LookupService 

The BusinessDelegate uses the LookupService to locate the BusinessService. The 

LookupService encapsulates the implementation details of BusinessService lookup. 

BusinessService 

The BusinessService is a business-tier component, such as an enterprise bean or a 

JMS component, that provides the required service to the client. 

Strategies 

Delegate Proxy Strategy 

The Business Delegate exposes an interface that provides clients access to the 

underlying methods of the business service API. In this strategy, a Business 

Delegate provides proxy function to pass the client methods to the session bean it is 

encapsulating. The Business Delegate may additionally cache any necessary data, 

including the remote references to the session bean's home or remote objects to 

improve performance by reducing the number of lookups. The Business Delegate 



 - 242 -

may also convert such references to String versions (IDs) and vice versa, using the 

services of a Service Locator. 

The example implementation for this strategy is discussed in the “Sample Code” 

section of this pattern. 

Delegate Adapter Strategy 

The Business Delegate proves to be a nice fit in a B2B environment when 

communicating with J2EE services. Disparate systems may use an XML as the 

integration language. Integrating one system to another typically requires an 

Adapter [GoF] to meld the two disparate systems. Figure 8.4 gives an example. 

Figure 8.4. Using the Business Delegate pattern with 

an Adapter strategy 

 

Consequences 

• Reduces Coupling, Improves Manageability 



 - 243 -

The Business Delegate reduces coupling between the presentation tier and 

the business tier by hiding all business-tier implementation details. It is 

easier to manage changes because they are centralized in one place, the 

Business Delegate. 

• Translates Business Service Exceptions 

The Business Delegate is responsible for translating any network or 

infrastructure-related exceptions into business exceptions, shielding clients 

from knowledge of the underlying implementation specifics. 

• Implements Failure Recovery and Thread Synchronization 

The Business Delegate on encountering a business service failure, may 

implement automatic revovery features without exposing the problem to the 

client. If the recovery succeeds, the client need not know about the failure. 

If the recovery attempt does not succeed, then the Business Delegate needs 

to inform the client of the failure. Additionally, the business delegate 

methods may be synchronized, if necessary. 

• Exposes Simpler, Uniform Interface to Business Tier 

The Business Delegate, to better serve its clients, may provide a variant of 

the interface provided by the underlying enterprise beans. 

• Impacts Performance 

The Business Delegate may provide caching services (and better 

performance) to the presentation tier for common service requests. 

• Introduces Additional Layer 

The Business Delegate may be seen as adding an unnecessary layer between 

the client and the service, thus introducing added complexity and decreasing 

flexibility. Some developers may feel that it is an extra effort to develop 

Business Delegates with implementations that use the Delegate Proxy 

strategy. At the same time, the benefits of the pattern typically outweigh 

such drawbacks. 

• Hides Remoteness 

While location transparency is one of the benefits of this pattern, a different 

problem may arise due to the developer treating a remote service as if it was 

a local one. This may happen if the client developer does not understand that 

the Business Delegate is a client side proxy to a remote service. Typically, a 

method invocations on the Business Delegate results in a remote method 



 - 244 -

invocation under the wraps. Ignoring this, the developer may tend to make 

numerous method invocations to perform a single task, thus increasing the 

network traffic. 

Sample Code 

Implementing the Business Delegate Pattern 

Consider a Professional Services Application (PSA), where a Web-tier client needs to 

access a session bean that implements the Session Facade pattern. The Business 

Delegate pattern can be applied to design a Delegate class ResourceDelegate, which 

encapsulates the complexity of dealing with the session bean ResourceSession. The 

ResourceDelegate implementation for this example is shown in Example 8.1, and 

the corresponding remote interface for the Session Facade bean ResourceSession is 

shown in Example 8.2. 

Example 8.1 Implementing Business Delegate 

Pattern - ResourceDelegate 

// imports 

... 

 

public class ResourceDelegate { 

 

  // Remote reference for Session Facade 

  private ResourceSession session; 

 

  // Class for Session Facade's Home object 

  private static final Class homeClazz = 

  corepatterns.apps.psa.ejb.ResourceSessionHome.class; 

 

  // Default Constructor. Looks up home and connects 

  // to session by creating a new one 

  public ResourceDelegate() throws ResourceException { 

    try { 

      ResourceSessionHome home = (ResourceSessionHome) 

        ServiceLocator.getInstance().getHome( 

          "Resource", homeClazz); 

      session = home.create(); 

    } catch(ServiceLocatorException ex) { 

      // Translate Service Locator exception into 



 - 245 -

      // application exception 

      throw new ResourceException(...); 

    } catch(CreateException ex) { 

      // Translate the Session create exception into 

      // application exception 

      throw new ResourceException(...); 

    } catch(RemoteException ex) { 

      // Translate the Remote exception into 

      // application exception 

      throw new ResourceException(...); 

    } 

  } 

 

  // Constructor that accepts an ID (Handle id) and 

  // reconnects to the prior session bean instead 

  // of creating a new one 

  public BusinessDelegate(String id) 

    throws ResourceException { 

    super(); 

    reconnect(id); 

  } 

 

  // Returns a String ID the client can use at a 

  // later time to reconnect to the session bean 

  public String getID() { 

    try { 

      return ServiceLocator.getId(session); 

    } catch (Exception e) { 

      // Throw an application exception 

    } 

  } 

 

  // method to reconnect using String ID 

  public void reconnect(String id) 

    throws ResourceException { 

    try { 

      session = (ResourceSession) 

                ServiceLocator.getService(id); 

    } catch (RemoteException ex) { 

      // Translate the Remote exception into 

      // application exception 

      throw new ResourceException(...); 

    } 

  } 

 



 - 246 -

  // The following are the business methods 

  // proxied to the Session Facade. If any service 

  // exception is encountered, these methods convert 

  // them into application exceptions such as 

  // ResourceException, SkillSetException, and so 

  // forth. 

 

  public ResourceVO setCurrentResource( 

    String resourceId) 

    throws ResourceException { 

    try { 

      return session.setCurrentResource(resourceId); 

    } catch (RemoteException ex) { 

      // Translate the service exception into 

      // application exception 

      throw new ResourceException(...); 

    } 

  } 

 

  public ResourceVO getResourceDetails() 

    throws ResourceException { 

 

    try { 

      return session.getResourceDetails(); 

    } catch(RemoteException ex) { 

      // Translate the service exception into 

      // application exception 

      throw new ResourceException(...); 

    } 

  } 

 

  public void setResourceDetails(ResourceVO vo) 

    throws ResourceException { 

    try { 

      session.setResourceDetails(vo); 

    } catch(RemoteException ex) { 

      throw new ResourceException(...); 

    } 

  } 

 

  public void addNewResource(ResourceVO vo) 

    throws ResourceException { 

    try { 

      session.addResource(vo); 

    } catch(RemoteException ex) { 



 - 247 -

      throw new ResourceException(...); 

    } 

  } 

 

  // all other proxy method to session bean 

  ... 

} 

Example 8.2 Remote Interface for ResourceSession 

// imports 

... 

public interface ResourceSession extends EJBObject { 

 

  public ResourceVO setCurrentResource( 

    String resourceId) throws 

    RemoteException, ResourceException; 

 

  public ResourceVO getResourceDetails() 

      throws RemoteException, ResourceException; 

  public void setResourceDetails(ResourceVO resource) 

      throws RemoteException, ResourceException; 

 

  public void addResource(ResourceVO resource) 

      throws RemoteException, ResourceException; 

 

  public void removeResource() 

      throws RemoteException, ResourceException; 

 

  // methods for managing blockout time by the 

  // resource 

  public void addBlockoutTime(Collection blockoutTime) 

      throws RemoteException, BlockoutTimeException; 

 

  public void updateBlockoutTime( 

    Collection blockoutTime) 

      throws RemoteException, BlockoutTimeException; 

 

  public void removeBlockoutTime( 

    Collection blockoutTime) 

    throws RemoteException, BlockoutTimeException; 

 

  public void removeAllBlockoutTime() 

      throws RemoteException, BlockoutTimeException; 



 - 248 -

 

  // methods for resource skillsets time by the 

  //resource 

  public void addSkillSets(Collection skillSet) 

      throws RemoteException, SkillSetException; 

 

  public void updateSkillSets(Collection skillSet) 

      throws RemoteException, SkillSetException; 

 

  public void removeSkillSet(Collection skillSet) 

      throws RemoteException, SkillSetException; 

 

  ... 

} 

Related Patterns 

• Service Locator 

The Service Locator pattern may be used to create the Business Delegate's 

Service Locator, hiding the implementation details of any business service 

lookup and access code. 

• Proxy [GoF] 

A Business Delegate may act as a proxy, providing a stand-in for objects in 

the business tier. 

• Adapter [GoF] 

A Business Delegate may use the Adapter pattern to provide coupling for 

disparate systems. 

• Broker [POSA1] 

A Business Delegate performs the role of a broker to decouple the business 

tier objects from the clients in other tiers. 

Value Object 

Context 

Application clients need to exchange data with enterprise beans. 



 - 249 -

Problem 

J2EE applications implement server-side business components as session beans 

and entity beans. Some methods exposed by the business components return data 

to the client. Often, the client invokes a business object's get methods multiple 

times until it obtains all the attribute values. 

Session beans represent the business services and are not shared between users. A 

session bean provides coarse-grained service methods when implemented per the 

Session Facade pattern. 

Entity beans, on the other hand, are multiuser, transactional objects representing 

persistent data. An entity bean exposes the values of attributes by providing an 

accessor method (also referred to as a getter or get method) for each attribute it 

wishes to expose. 

Every method call made to the business service object, be it an entity bean or a 

session bean, is potentially remote. Thus, in an EJB application such remote 

invocations use the network layer regardless of the proximity of the client to the 

bean, creating a network overhead. Enterprise bean method calls may permeate the 

network layers of the system even if the client and the EJB container holding the 

entity bean are both running in the same JVM, OS, or physical machine. Some 

vendors may implement mechanisms to reduce this overhead by using a more 

direct access approach and bypassing the network. 

As the usage of these remote methods increases, application performance can 

significantly degrade. Therefore, using multiple calls to get methods that return 

single attribute values is inefficient for obtaining data values from an enterprise 

bean. 

Forces 

• All access to an enterprise bean is performed via remote interfaces to the 

bean. Every call to an enterprise bean is potentially a remote method call 

with network overhead. 

• Typically, applications have a greater frequency of read transactions than 

update transactions. The client requires the data from the business tier for 

presentation, display, and other read-only types of processing. The client 

updates the data in the business tier much less frequently than it reads the 

data. 

• The client usually requires values for more than one attribute or dependent 

object from an enterprise bean. Thus, the client may invoke multiple remote 

calls to obtain the required data. 



 - 250 -

• The number of calls made by the client to the enterprise bean impacts 

network performance. Chattier applications—those with increased traffic 

between client and server tiers—often degrade network performance. 

Solution 

Use a Value Object to encapsulate the business data. A single method call 

is used to send and retrieve the value object. When the client requests the 

enterprise bean for the business data, the enterprise bean can construct 

the value object, populate it with its attribute values, and pass it by value 

to the client. 

Clients usually require more than one value from an enterprise bean. To reduce the 

number of remote calls and to avoid the associated overhead, it is best to use value 

objects to transport the data from the enterprise bean to its client. 

When an enterprise bean uses a value object, the client makes a single remote 

method invocation to the enterprise bean to request the value object instead of 

numerous remote method calls to get individual attribute values. The enterprise 

bean then constructs a new value object instance, copies values into the object and 

returns it to the client. The client receives the value object and can then invoke 

accessor (or getter) methods on the value object to get the individual attribute 

values from the value object. Or, the implementation of the value object may be 

such that it makes all attributes public. Because the value object is passed by value 

to the client, all calls to the value object instance are local calls instead of remote 

method invocations. 

Structure 

Figure 8.5 shows the class diagram that represents the Value Object pattern in its 

simplest form. 



 - 251 -

Figure 8.5. Value Object class diagram 

 

As shown in this class diagram, the value object is constructed on demand by the 

enterprise bean and returned to the remote client. However, the Value Object 

pattern can adopt various strategies, depending on requirements. The “Strategies” 

section explains these approaches. 

Participants and Responsibilities 

Figure 8.6 contains the sequence diagram that shows the interactions for the Value 

Object pattern. 



 - 252 -

Figure 8.6. Value Object sequence diagram 

 

Client 

This represents the client of the enterprise bean. The client can be an end-user 

application, as in the case of a rich client application that has been designed to 

directly access the enterprise beans. The client can be Business Delegates (see 

“Business Delegate”) or a different BusinessObject 

BusinessObject 

The BusinessObject represents a role in this pattern that can be fulfilled by a session 

bean, an entity bean, or a Data Access Object (DAO). The BusinessObject is 

responsible for creating the value object and returning it to the client upon request. 

The BusinessObject may also receive data from the client in the form of a value 

object and use that data to perform an update. 

ValueObject 

The ValueObject is an arbitrary serializable Java object referred to as a value object. 

A value object class may provide a constructor that accepts all the required 

attributes to create the value object. The constructor may accept all entity bean 

attribute values that the value object is designed to hold. Typically, the members in 

the value object are defined as public, thus eliminating the need for get and set 



 - 253 -

methods. If some protection is necessary, then the members could be defined as 

protected or private, and methods are provided to get the values. By offering no 

methods to set the values, a value object is protected from modification after its 

creation. If only a few members are allowed to be modified to facilitate updates, 

then methods to set the values can be provided. Thus, the value object creation 

varies depending on an application's requirements. It is a design choice as to 

whether the value object's attributes are private and accessed via getters and 

setters, or all the attributes are made public. 

Strategies 

The first two strategies discussed are applicable when the enterprise bean is 

implemented as a session bean or as an entity bean. These strategies are called 

Updatable Value Objects Strategy and Multiple Value Objects Strategy 

The following strategies are applicable only when the BusinessObject is 

implemented as an entity bean: Entity Inherits Value Object Strategy and Value 

Object Factory Strategy 

Updatable Value Objects Strategy 

In this strategy, the value object not only carries the values from the 

BusinessObject to the client, but also can carry the changes required by the client 

back to the business object. 

Figure 8.7 is a class diagram showing the relationship between the BusinessObject 

and the value object. 



 - 254 -

Figure 8.7. Updatable Value Object strategy – class 

diagram 

 

The BusinessObject creates the value object. Recall that a client may need to access 

the BusinessObject values not only to read them but to modify these values. For the 

client to be able to modify the BusinessObject attribute values, the BusinessObject 

must provide mutator methods. Mutator methods are also referred to as setters or 

set methods. 

Instead of providing fine-grained set methods for each attribute, which results in 

network overhead, the BusinessObject can expose a coarse-grained setData() 

method that accepts a value object as an argument. The value object passed to this 

method holds the updated values from the client. Since the value object has to be 

mutable, the value object class has to provide set methods for each attribute that 

can be modified by the client. The set methods for the value object can include field 

level validations and integrity checks as needed. Once the client obtains a value 

object from the BusinessObject, the client invokes the necessary set methods 

locally to change the attribute values. Such local changes do not impact the 

BusinessObject until the setData() method is invoked. 

The setData() method serializes the client's copy of the value object and sends it to 

the BusinessObject. The BusinessObject receives the modified value object from the 

client and merges the changes into its own attributes. The merging operation may 

complicate the design of the BusinessObject and the value object; the 

“Consequences” section discusses these potential complications. One strategy to 

use here is to update only attributes that have changed, rather than updating all 

attributes. A change flag placed in the value object can be used to determine the 

attributes to update, rather than doing a direct comparison. 



 - 255 -

There is an impact on the design using the updatable value objects in terms of 

update propagation, synchronization, and version control. 

Figure 8.8 shows the sequence diagram for the entire update interaction. 

Figure 8.8. Updatable Value Object strategy – 

sequence diagram 

 

Multiple Value Objects Strategy 

Some application business objects can be very complex. In such cases, it is possible 

that a single business object produces different value objects, depending on the 

client request. There exists a one-to-many relationship between the business object 

and the many value objects it can produce. In these circumstances, this strategy 

may be considered. 

For instance, when the business object is implemented as a session bean, typically 

applying the Session Facade pattern, the bean may interact with numerous other 

business components to provide the service. The session bean produces its value 

object from different sources. Similarly, when the BusinessObject is implemented 

as a coarse-grained entity bean, typically applying the Composite Entity pattern, 

the entity bean will have complex relationships with a number of dependent objects. 

In both these cases, it is good practice to provide mechanisms to produce value 

objects that actually represent parts of the underlying coarse-grained components. 



 - 256 -

For example, in a trading application, a Composite Entity that represents a 

customer portfolio can be a very coarse-grained complex component that can 

produce value objects that provide data for parts of the portfolio, like customer 

information, lists of stocks held, and so on. A similar example is a customer 

manager session bean that provides services by interacting with a number of other 

BusinessObjects and components to provide its service. The customer manager 

bean can produce discrete small value objects, like customer address, contact list, 

and so on, to represent parts of its model. 

For both these scenarios, it is possible to adopt and apply the Multiple Value Objects 

Strategy so that the business component, whether a session bean or an entity bean, 

can create multiple types of value objects. In this strategy, the business entity 

provides various methods to get different value objects. Each such method creates 

and returns a different type of value object. The class diagram for this strategy is 

shown Figure 8.9. 

Figure 8.9. Multiple Value Objects strategy class 

diagram 

 



 - 257 -

When a client needs a value object of type ValueObjectA, it invokes the entity's 

getDataA() method requesting ValueObjectA. When it needs a value object of type 

ValueObjectB, it invokes the entity's getDataB() method requesting ValueObjectB, 

and so on. This is shown in the sequence diagram in Figure 8.10. 

Figure 8.10. Multiple Value Objects strategy 

sequence diagram 

 

Entity Inherits Value Object Strategy 

When the BusinessObject is implemented as an entity bean and the clients typically 

need to access all the data from the entity bean, then the entity bean and the value 

object both have the same attributes. In this case, since there exists a one-to-one 

relationship between the entity bean and its value object, the entity bean may be 

able to use inheritance to avoid code duplication. 

In this strategy, the entity bean extends (or inherits from) the value object class. 

The only assumption is that the entity bean and the value object share the same 

attribute definitions. The class diagram for this strategy is shown in Figure 8.11. 



 - 258 -

Figure 8.11. Entity Inherits Value Object strategy 

class diagram 

 

The ValueObject implements one or more getData() methods as discussed in the 

Multiple Value Objects Strategy. When the entity inherits this value object class, the 

client invokes an inherited getData() method on the entity bean to obtain a value 

object. 

Thus, this strategy eliminates code duplication between the entity and the value 

object. It also helps manage changes to the value object requirements by isolating 

the change to the value object class and preventing the changes from affecting the 

entity bean. 

This strategy has a trade-off related to inheritance. If the value object is shared 

through inheritance, then changes to this value object class will affect all its 

subclasses, potentially mandating other changes to the hierarchy. 

The sequence diagram in Figure 8.12 demonstrates this strategy. 



 - 259 -

Figure 8.12. Entity Inherits Value Object strategy 

sequence diagram 

 

The sample implementation for the Entity Inherits Value Object Strategy is shown in 

Example 8.10 (ContactVO – Value Object Class) and Example 8.11 (ContactEntity – 

Entity Bean Class). 

Value Object Factory Strategy 

The Entity Inherits Value Object Strategy can be further extended to support 

multiple value objects for an entity bean by employing a value object factory to 

create value objects on demand using reflection. This results in an even more 

dynamic strategy for value object creation. 

To achieve this, define a different interface for each type of value object that must 

be returned. The entity bean implementation of value object superclass must 

implement all these interfaces. Furthermore, you must create a separate 

implementation class for each defined interface, as shown in the class diagram for 

this strategy in Figure 8.13. 



 - 260 -

Figure 8.13. Value Object Factory strategy class 

diagram 

 

Once all interfaces have been defined and implemented, create a method in the 

ValueObjectFactory that is passed two arguments: 

• The entity bean instance for which a value object must be created. 

• The interface that identifies the kind of value object to create. 

The ValueObjectFactory can then instantiate an object of the correct class, set its 

values, and return the newly created value object instance. 



 - 261 -

The sequence diagram for this strategy is shown in Figure 8.14. 

Figure 8.14. Value Object Factory strategy sequence 

diagram 

 

The client requests the value object from the BusinessEntity. The BusinessEntity 

passes the required value object's class to the ValueObjectFactory, which creates a 

new value object of that given class. The ValueObjectFactory uses reflection to 

dynamically obtain the class information for the value object class and construct a 

new value object instance. Getting values from and setting values into the 

BusinessEntity by the ValueObjectFactory is accomplished by using dynamic 

invocation. 

An example implementation for this strategy is shown in the “Sample Code” section 

for “Implementing Value Object Factory Strategy”. 

The benefits of applying the Value Object Factory Strategy are as follows: 

There is less code to write in order to create value objects. The same value object 

factory class can be reused by different enterprise beans. When a value object class 

definition changes, the value object factory automatically handles this change 

without any additional coding effort. This increases maintainability and is less error 

prone to changes in value object definitions. 



 - 262 -

The Value Object Factory Strategy has the following consequences: 

It is based on the fact that the enterprise bean implementation extends (inherits) 

from the complete value object. The complete value object needs to implement all 

the interfaces defined for different value objects that the entity bean needs to 

supply. Naming conventions must be adhered to in order to make this strategy work. 

Since reflection is used to dynamically inspect and construct value objects, there is 

a slight performance loss in construction. However, when the overall 

communication time is considered, such loss may be negligible in comparison. 

There is a trade-off associated with this strategy. Its power and flexibility must be 

weighed against the performance overhead associated with runtime reflection. 

Consequences 

• Simplifies Entity Bean and Remote Interface 

The entity bean provides a getData() method to get the value object 

containing the attribute values. This may eliminate having multiple get 

methods implemented in the bean and defined in the bean's remote 

interface. Similarly, if the entity bean provides a setData() method to 

update the entity bean attribute values in a single method call, it may 

eliminate having multiple set methods implemented in the bean and defined 

in the bean's remote interface. 

• Transfers More Data in Fewer Remote Calls 

Instead of multiple client calls over the network to the BusinessObject to get 

attribute values, this solution provides a single method call. At the same 

time, this one method call returns a greater amount of data to the client than 

the individual accessor methods each returned. When considering this 

pattern, you must consider the trade-off between fewer network calls versus 

transmitting more data per call. Alternatively, you can provide both 

individual attribute accessor methods (fine-grained get and set methods) 

and value object methods (coarse-grained get and set methods). The 

developer can choose the appropriate technique depending on the 

requirement. 

• Reduces Network Traffic 

A value object transfers the values from the entity bean to the client in one 

remote method call. The value object acts as a data carrier and reduces the 

number of remote network method calls required to obtain the attribute 

values from the entity beans. The reduced chattiness of the application 

results in better network performance. 



 - 263 -

• Reduces Code Duplication 

By using the Entity Inherits Value Object Strategy and the Value Object 

Factory Strategy, it is possible to reduce or eliminate the duplication of code 

between the entity and its value object. However, with the use of Value 

Object Factory Strategy, there could be increased complexity in 

implementation. There is also a runtime cost associated with this strategy 

due to the use of dynamic reflection. In most cases, the Entity Inherits Value 

Object Strategy may be sufficient to meet the needs. 

• May Introduce Stale Value Objects 

Adopting the Updatable Value Objects Strategy allows the client to perform 

modifications on the local copy of the value object. Once the modifications 

are completed, the client can invoke the entity's setData() method and 

pass the modified value object to the entity. The entity receives the 

modifications and merges the new (modified) values with its attributes. 

However, there may be a problem with stale value objects. The entity 

updates its values, but it is unaware of other clients that may have 

previously requested the same value object. These clients may be holding in 

their local cache value object instances that no longer reflect the current 

copy of the entity's data. Because the entity is not aware of these clients, it 

is not possible to propagate the update to the stale value objects held by 

other clients. 

• May Increase Complexity due to Synchronization and Version 

Control 

The entity merges modified values into its own stored values when it 

receives a mutable value object from a client. However, the entity must 

handle the situation where two or more clients simultaneously request 

conflicting updates to the entity's values. Allowing such updates may result 

in data conflicts. 

Version control is one way of avoiding such conflict. As one of its attributes, 

the entity can include a version number or a last-modified time stamp. The 

version number or time stamp is copied over from the entity bean into the 

value object. An update transaction can resolve conflicts using the time 

stamp or version number attribute. If a client holding a stale value object 

tries to update the entity, the entity can detect the stale version number or 

time stamp in the value object and inform the client of this error condition. 

The client then has to obtain the latest value object and retry the update. In 

extreme cases this can result in client starvation—the client might never 

accomplish its updates. 

• Concurrent Access and Transactions 



 - 264 -

When two or more clients concurrently access the BusinessObject, the 

container applies the transaction semantics of the EJB architecture. If, for an 

Enterprise bean, the transaction isolation level is set to 

TRANSACTION_SERIALIZED in the deployment descriptor, the container 

provides the maximum protection to the transaction and ensures its integrity. 

For example, suppose the workflow for the first transaction involves 

obtaining a value object, then subsequently modifying the BusinessObject 

attributes in the process. The second transaction, since it is isolated to 

serialized transactions, will obtain the value object with the correct (most 

recently updated) values. However, for transactions with lesser restrictions 

than serialized, protection is less rigid, leading to inconsistencies in the value 

objects obtained by competing accesses. In addition, problems related to 

synchronization, stale value objects, and version control will have to be dealt 

with. 

Sample Code 

Implementing the Value Object Pattern 

Consider an example where a business object called Project is modeled and 

implemented as an entity bean. The Project entity bean needs to send data to its 

clients in a value object when the client invokes its getProjectData() method. The 

value object class for this example, ProjectVO, is shown in Example 8.3 

Example 8.3 Implementing the Value Object Pattern - 

Value Object Class 

// Value Object to hold the details for Project 

public class ProjectVO implements java.io.Serializable 

  { 

    public String projectId; 

    public String projectName; 

    public String managerId; 

    public String customerId; 

    public Date startDate; 

    public Date endDate; 

    public boolean started; 

    public boolean completed; 

    public boolean accepted; 

    public Date acceptedDate; 

    public String projectDescription; 



 - 265 -

    public String projectStatus; 

 

    // Value object constructors... 

} 

The sample code for the entity bean that uses this value object is shown in Example 

8.4. 

Example 8.4 Implementing the Value Object Pattern - 

Entity Bean Class 

... 

public class ProjectEntity implements EntityBean { 

    private EntityContext context; 

    public String projectId; 

    public String projectName; 

    public String managerId; 

    public String customerId; 

    public Date startDate; 

    public Date endDate; 

    public boolean started; 

    public boolean completed; 

    public boolean accepted; 

    public Date acceptedDate; 

    public String projectDescription; 

    public String projectStatus; 

    private boolean closed; 

 

    // other attributes... 

    private ArrayList commitments; 

    ... 

 

    // Method to get value object for Project data 

    public ProjectVO getProjectData() { 

      return createProjectVO(); 

    } 

 

    // method to create a new value object and 

    // copy data from entity bean into the value 

    // object 

    private ProjectVO createProjectVO() { 

       ProjectVO proj = new ProjectVO(); 

       proj.projectId = projectId; 



 - 266 -

       proj.projectName = projectName; 

       proj.managerId = managerId; 

       proj.startDate = startDate; 

       proj.endDate = endDate; 

       proj.customerId = customerId; 

       proj.projectDescription = projectDescription; 

       proj.projectStatus = projectStatus; 

       proj.started = started; 

       proj.completed = completed; 

       proj.accepted = accepted; 

       proj.closed = closed; 

       return proj; 

    } 

    ... 

} 

Implementing the Updatable Value Objects Strategy 

Example 8.4 can be extended to implement Updatable Value Objects Strategy. In 

this case, the entity bean would provide a setProjectData() method to update the 

entity bean by passing a value object that contains the data to be used to perform 

the update. The sample code for this strategy is shown in Example 8.5. 

Example 8.5 Implementing Updatable Value Objects 

Strategy 

... 

public class ProjectEntity implements EntityBean { 

    private EntityContext context; 

  ... 

  // attributes and other methods as in Example 8.4 

  ... 

 

  // method to set entity values with a value object 

  public void setProjectData(ProjectVO updatedProj) { 

    mergeProjectData(updatedProj); 

  } 

 

  // method to merge values from the value object into 

  // the entity bean attributes 

  private void mergeProjectData(ProjectVO updatedProj) 

  { 



 - 267 -

    // version control check may be necessary here 

    // before merging changes in order to 

    // prevent losing updates by other clients 

    projectId = updatedProj.projectId; 

    projectName = updatedProj.projectName; 

    managerId = updatedProj.managerId; 

    startDate = updatedProj.startDate; 

    endDate = updatedProj.endDate; 

    customerId = updatedProj.customerId; 

    projectDescription = 

        updatedProj.projectDescription; 

    projectStatus = updatedProj.projectStatus; 

    started = updatedProj.started; 

    completed = updatedProj.completed; 

    accepted = updatedProj.accepted; 

    closed = updatedProj.closed; 

  } 

  ... 

} 

Implementing the Multiple Value Objects Strategy 

Consider an example where a Resource entity bean is accessed by clients to request 

different value objects. The first type of value object, ResourceVO, is used to 

transfer data for a small set of attributes. The second type of value object, 

ResourceDetailsVO, is used to transfer data for a larger set of attributes. The client 

can use the former value object if it needs only the most basic data represented by 

that value object, and can use the latter if it needs more detailed information. Note 

that this strategy can be applied in producing two or more value objects that contain 

different data, and not just subset-superset as shown here. 

The sample code for the two value objects for this example are shown in Example 

8.6 and Example 8.7. The sample code for the entity bean that produces these value 

objects is shown in Example 8.8, and finally the entity bean client is shown in 

Example 8.9. 

Example 8.6 Multiple Value Objects Strategy - 

ResourceVO 

// ResourceVO: This class holds basic information 

// about the resource 

public class ResourceVO implements 



 - 268 -

  java.io.Serializable { 

  public String resourceId; 

  public String lastName; 

  public String firstName; 

  public String department; 

  public String grade; 

  ... 

} 

Example 8.7 Multiple Value Objects Strategy - 

ResourceDetailsVO 

// ResourceDetailsVO This class holds detailed 

// information about resource 

public class ResourceDetailsVO { 

  public String resourceId; 

  public String lastName; 

  public String firstName; 

  public String department; 

  public String grade; 

  // other data... 

  public Collection commitments; 

  public Collection blockoutTimes; 

  public Collection skillSets; 

} 

Example 8.8 Multiple Value Objects Strategy - 

Resource Entity Bean 

// imports 

... 

public class ResourceEntity implements EntityBean { 

  // entity bean attributes 

  ... 

 

  // entity bean business methods 

  ... 

 

  // Multiple Value Object method : Get ResourceVO 

  public ResourceVO getResourceData() { 

 



 - 269 -

    // create new ResourceVO instance and copy 

    // attribute values from entity bean into VO 

    ... 

    return createResourceVO(); 

  } 

 

  // Multiple Value Object method : Get 

  // ResourceDetailsVO 

  public ResourceDetailsVO getResourceDetailsData() { 

 

    // create new ResourceDetailsVO instance and copy 

    // attribute values from entity bean into VO 

    ... 

    return createResourceDetailsVO(); 

  } 

 

  // other entity bean methods 

  ... 

} 

Example 8.9 Multiple Value Objects Strategy - Entity 

Bean Client 

... 

private ResourceEntity resourceEntity; 

private static final Class homeClazz = 

 

corepatterns.apps.psa.ejb.ResourceEntityHome.class; 

... 

try { 

  ResourceEntityHome home = 

    (ResourceEntityHome) 

      ServiceLocator.getInstance().getHome( 

          "Resource", homeClazz); 

      resourceEntity = home.findByPrimaryKey( 

                          resourceId); 

} catch(ServiceLocatorException ex) { 

  // Translate Service Locator exception into 

  // application exception 

  throw new ResourceException(...); 

} catch(FinderException ex) { 

  // Translate the entity bean finder exception into 

  // application exception 



 - 270 -

  throw new ResourceException(...); 

} catch(RemoteException ex) { 

  // Translate the Remote exception into 

  // application exception 

  throw new ResourceException(...); 

} 

... 

// retrieve basic Resource data 

ResourceVO vo = resourceEntity.getResourceData(); 

... 

// retrieve detailed Resource data 

ResourceDetailsVO = 

  resourceEntity.getResourceDetailsData(); 

... 

Implementing the Entity Inherits Value Object 

Strategy 

Consider an example where an entity bean ContactEntity inherits all its properties 

from a value object ContactVO. Example 8.10 shows the code sample for an 

example value object ContactVO that illustrates this strategy. 

Example 8.10 Entity Inherits Value Object Strategy – 

Value Object Class 

// This is the value object class inherited by 

// the entity bean 

public class ContactVO 

  implements java.io.Serializable { 

 

  // public members 

  public String firstName; 

  public String lastName; 

  public String address; 

  // default constructor 

  public ContactVO() {} 

 

  // constructor accepting all values 

  public ContactVO(String firstName, 

    String lastName, String address){ 

      init(firstName, lastName, address); 



 - 271 -

  } 

 

  // constructor to create a new VO based 

  // using an existing VO instance 

  public ContactVO(ContactVO contact) { 

    init (contact.firstName, 

      contact.lastName, contact.address); 

  } 

 

  // method to set all the values 

  public void init(String firstName, String 

              lastName, String address) { 

    this.firstName = firstName; 

    this.lastName = lastName; 

    this.address = address; 

  } 

 

  // create a new value object 

  public ContactVO getData() { 

    return new ContactVO(this); 

  } 

} 

The entity bean sample code relevant to this pattern strategy is shown in Example 

8.11. 

Example 8.11 Entity Inherits Value Object Strategy - 

Entity Bean Class 

public class ContactEntity extends ContactVO 

  implements javax.ejb.EntityBean { 

  ... 

  // the client calls the getData method 

  // on the ContactEntity bean instance. 

  // getData() is inherited from the value object 

  // and returns the ContactVO value object 

  ... 

} 



 - 272 -

Implementing Value Object Factory Strategy 

Example 8.12 demonstrates the Value Object Factory strategy. The entity bean 

extends a complete value object called CustomerContactVO. The 

CustomerContactVO value object implements two interfaces, Customer and Contact. 

The CustomerVO value object implements Customer, and the ContactVO value 

object implements Contact. 

Example 8.12 Value Object Factory Strategy – Value 

Objects and Interfaces 

public interface Contact 

  extends java.io.Serializable { 

  public String getFirstName(); 

  public String getLastName(); 

  public String getContactAddress(); 

  public void setFirstName(String firstName); 

  public void setLastName(String lastName); 

  public void setContactAddress(String address); 

} 

 

public class ContactVO implements Contact { 

  // member attributes 

  public String firstName; 

  public String LastName; 

  public String contactAddress; 

 

  // implement get and set methods per the 

  // Contact interface here. 

  ... 

        } 

public interface Customer 

  extends java.io.Serializable { 

  public String getCustomerName(); 

  public String getCustomerAddress(); 

  public void setCustomerName(String customerName); 

  public void setCustomerAddress(String 

      customerAddress); 

} 

 

public class CustomerVO implements Customer { 

  public String customerName; 



 - 273 -

  public String customerAddress; 

 

// implement get and set methods per the 

// Customer interface here. 

  ... 

} 

 

public class CustomerContactVO implements Customer, 

  Contact { 

  public String firstName; 

  public String lastName; 

  public String contactAddress; 

  public String customerName; 

  public String customerAddress; 

 

  // implement get and set methods per the 

  // Customer and Contact interfaces here. 

  ... 

} 

The entity bean code sample to obtain these three different value objects is shown 

Example 8.13. 

Example 8.13 Value Object Factory Strategy - Entity 

Bean Class 

public class CustomerContactEntity extends 

  CustomerContactVO implements javax.ejb.EntityBean { 

 

  // implement other entity bean methods...not shown 

 

  // define constant to hold class name 

  // complete value object. This is required by 

  // the ValueObjectFactory.createValueObject(...) 

  public static final String COMPLETE_VO_CLASSNAME = 

      "CustomerContactVO"; 

 

  // method to return CustomerContactVO value object 

  public CustomerContactVO getCustomerContact() { 

    return (CustomerContactVO) 

      ValueObjectFactory.createValueObject( 

        this, "CustomerContactVO", 

        COMPLETE_VO_CLASSNAME); 



 - 274 -

  } 

 

// method to return CustomerVO value object 

  public CustomerVO getCustomer() { 

    return (CustomerVO) 

      ValueObjectFactory.createValueObject( 

        this, "CustomerVO", 

        COMPLETE_VO_CLASSNAME); 

  } 

 

  // method to return ContactVO value object 

  public ContactVO getContact() { 

    return (ContactVO) 

      ValueObjectFactory.createValueObject( 

        this, "ContactVO", 

        COMPLETE_VO_CLASSNAME); 

  } 

 

  // other entity bean business methods 

  ... 

} 

The ValueObjectFactory class is shown in Example 8.14. 

Example 8.14 Value Object Factory Strategy - Factory 

Class 

import java.util.HashMap; 

import java.lang.*; 

 

/** 

* The factory class that creates a value object for a 

* given EJB. 

*/ 

public class ValueObjectFactory { 

 

/** 

* Use a HashMap to cache class information for 

* value object classes 

*/ 

private static HashMap classDataInfo = new HashMap(); 

 

/** 



 - 275 -

* Create a value object for the given object. The 

* given object must be an EJB Implementation and have 

* a superclass that acts as the class for the entity's 

* value object. Only the fields defined in this 

* superclass are copied in to the value object. 

*/ 

public static java.io.Serializable 

  createValueObject(Object ejb, 

    String whichVOType, 

    String completeVOType) { 

      try { 

      // Get the class data for the complete 

      // value object type 

      ClassData cData = getClassData (completeVOType); 

 

      // Get class data for the requested VO type 

      ClassData voCData = getClassData (whichVOType); 

 

      // Create the value object of the requested 

      // value object type... 

      java.lang.Object whichVO = 

          Class.forName(whichVOType).newInstance(); 

 

      // get the VO fields for the requested VO 

      // from the ClassData for the requested VO 

      java.lang.reflect.Field[] voFields = 

                  voCData.arrFields; 

 

      // get all fields for the complete VO 

      // from the ClassData for complete VO 

      java.lang.reflect.Field[] beanFields = 

                  cData.arrFields; 

 

      // copy the common fields from the complete VO 

      // to the fields of the requested VO 

      for (int i = 0; i < voFields.length; i++) { 

        try { 

          String voFieldName = voFields[i].getName(); 

          for (int j=0; j < beanFields.length; j++) { 

            // if the field names are same, copy value 

            if ( voFieldName.equals( 

                  beanFields[j].getName())) { 

              // Copy value from matching field 

              // from the bean instance into the new 

              // value object created earlier 



 - 276 -

              voFields[i].set(whichVO, 

                    beanFields[j].get(ejb)); 

              break; 

            } 

          } 

        } catch (Exception e) { 

          // handle exceptions that may be thrown 

          // by the reflection methods... 

        } 

      } 

    // return the requested value object 

    return (java.io.Serializable)whichVO; 

  } catch (Exception ex) { 

    // Handle all exceptions here... 

  } 

  return null; 

} 

 

/** 

* Return a ClassData object that contains the 

* information needed to create 

* a value object for the given class. This information 

* is only obtained from the 

* class using reflection once, after that it will be 

* obtained from the classDataInfo HashMap. 

*/ 

private static ClassData getClassData(String 

  className){ 

 

  ClassData cData = 

    (ClassData)classDataInfo.get(className); 

 

  try { 

    if (cData == null) { 

      // Get the class of the given object and the 

      // value object to be created 

      java.lang.reflect.Field[] arrFields ; 

      java.lang.Class ejbVOClass = 

          Class.forName(className); 

 

      // Determine the fields that must be copied 

      arrFields = ejbVOClass.getDeclaredFields(); 

 

      cData = new ClassData(ejbVOClass, arrFields); 

      classDataInfo.put(className, cData); 



 - 277 -

    } 

  } catch (Exception e) { 

    // handle exceptions here... 

  } 

  return cData; 

  } 

} 

 

/** 

* Inner Class that contains class data for the 

* value object classes 

*/ 

class ClassData { 

  // value object Class 

  public Class    clsValueObject; 

 

  // value object fields 

  public java.lang.reflect.Field[] arrFields; 

 

  // Constructor 

  public ClassData(Class cls, 

      java.lang.reflect.Field[] fields) { 

    clsValueObject = cls; 

    arrFields = fields; 

  } 

} 

Related Patterns 

• Session Facade 

The Session Facade, which is the business interface for clients of J2EE 

applications, frequently uses value objects as an exchange mechanism with 

participating entity beans. When the facade acts as a proxy to the underlying 

business service, the value object obtained from the entity beans can be 

passed to the client. 

• Value Object Assembler 

The Value Object Assembler is a pattern that builds composite value objects 

from different data sources. The data sources are usually session beans or 

entity beans that may be requested to provide their data to the Value Object 

Assembler as value objects. These value objects are considered to be parts 

of the composite object that the Value Object Assembler assembles. 



 - 278 -

• Value List Handler 

The Value List Handler is another pattern that provides lists of value objects 

constructed dynamically by accessing the persistent store at request time. 

• Composite Entity 

The Value Object pattern addresses the need of getting data from 

BusinessObjects across tiers. This certainly is one aspect of design 

considerations for entity beans. The Composite Entity pattern discusses 

issues involved in designing coarse-grained entity beans. The Composite 

Entity pattern addresses complex requirements and discusses other factors 

and considerations involved in entity bean design. 

Session Facade 

Context 

Enterprise beans encapsulate business logic and business data and expose their 

interfaces, and thus the complexity of the distributed services, to the client tier. 

Problem 

In a multitiered J2EE application environment, the following problems arise: 

• Tight coupling, which leads to direct dependence between clients and 

business objects; 

• Too many method invocations between client and server, leading to network 

performance problems; 

• Lack of a uniform client access strategy, exposing business objects to 

misuse. 

A multitiered J2EE application has numerous server-side objects that are 

implemented as enterprise beans. In addition, some other arbitrary objects may 

provide services, data, or both. These objects are collectively referred to as 

business objects, since they encapsulate business data and business logic. 

J2EE applications implement business objects that provide processing services as 

session beans. Coarse-grained business objects that represent an object view of 

persistent storage and are shared by multiple users are usually implemented as 

entity beans. 



 - 279 -

Application clients need access to business objects to fulfill their responsibilities and 

to meet user requirements. Clients can directly interact with these business objects 

because they expose their interfaces. When you expose business objects to the 

client, the client must understand and be responsible for the business data object 

relationships, and must be able to handle business process flow. 

However, direct interaction between the client and the business objects leads to 

tight coupling between the two, and such tight coupling makes the client directly 

dependent on the implementation of the business objects. Direct dependence 

means that the client must represent and implement the complex interactions 

regarding business object lookups and creations, and must manage the 

relationships between the participating business objects as well as understand the 

responsibility of transaction demarcation. 

As client requirements increase, the complexity of interaction between various 

business objects increases. The client grows larger and more complex to fulfill these 

requirements. The client becomes very susceptible to changes in the business 

object layer; in addition, the client is unnecessarily exposed to the underlying 

complexity of the system. 

Tight coupling between objects also results when objects manage their relationship 

within themselves. Often, it is not clear where the relationship is managed. This 

leads to complex relationships between business objects and rigidity in the 

application. Such lack of flexibility makes the application less manageable when 

changes are required. 

When accessing the enterprise beans, clients interact with remote objects. Network 

performance problems may result if the client directly interacts with all the 

participating business objects. When invoking enterprise beans, every client 

invocation is potentially a remote method call. Each access to the business object is 

relatively fine-grained. As the number of participants increases in a scenario, the 

number of such remote method calls increases. As the number of remote method 

calls increases, the chattiness between the client and the server-side business 

objects increases. This may result in network performance degradation for the 

application, because the high volume of remote method calls increases the amount 

of interaction across the network layer. 

A problem also arises when a client interacts directly with the business objects. 

Since the business objects are directly exposed to the clients, there is no unified 

strategy for accessing the business objects. Without such a uniform client access 

strategy, the business objects are exposed to clients and may reduce consistent 

usage. 



 - 280 -

Forces 

• Provide a simpler interface to the clients by hiding all the complex 

interactions between business components. 

• Reduce the number of business objects that are exposed to the client across 

the service layer over the network. 

• Hide from the client the underlying interactions and interdependencies 

between business components. This provides better manageability, 

centralization of interactions (responsibility), greater flexibility, and greater 

ability to cope with changes. 

• Provide a uniform coarse-grained service layer to separate business object 

implementation from business service abstraction. 

• Avoid exposing the underlying business objects directly to the client to keep 

tight coupling between the two tiers to a minimum. 

Solution 

Use a session bean as a facade to encapsulate the complexity of 

interactions between the business objects participating in a workflow. The 

Session Facade manages the business objects, and provides a uniform 

coarse-grained service access layer to clients. 

The Session Facade abstracts the underlying business object interactions and 

provides a service layer that exposes only the required interfaces. Thus, it hides 

from the client's view the complex interactions between the participants. The 

Session Facade manages the interactions between the business data and business 

service objects that participate in the workflow, and it encapsulates the business 

logic associated with the requirements. Thus, the session bean (representing the 

Session Facade) manages the relationships between business objects. The session 

bean also manages the life cycle of these participants by creating, locating (looking 

up), modifying, and deleting them as required by the workflow. In a complex 

application, the Session Facade may delegate this lifestyle management to a 

separate object. For example, to manage the lifestyle of participant session and 

entity beans, the Session Facade may delegate that work to a Service Locator object 

(see “Service Locator” ). 

It is important to examine the relationship between business objects. Some 

relationships between business objects are transient, which means that the 

relationship is applicable to only that interaction or scenario. Other relationships 

may be more permanent. Transient relationships are best modeled as workflow in a 

facade, where the facade manages the relationships between the business objects. 

Permanent relationships between two business objects should be studied to 

determine which business object (if not both objects) maintains the relationship. 



 - 281 -

Use Cases and Session Facades 

So, how do you identify the Session Facades through studying
use cases? Mapping every use case to a Session Facade will 
result in too many Session Facades. This defeats the intention
of having fewer coarse-grained session beans. Instead, as you
derive the Session Facades during your modeling, look to 
consolidate them into fewer numbers of session beans based 
on some logical partitioning. 

For example, for a banking application, you may group the 
interactions related to managing an account into a single 
facade. The use cases Create New Account, Change Account 
Information, View Account information, and so on all deal with
the coarse-grained entity object Account. Creating a session 
bean facade for each use case is not recommended. Thus, the
functions required to support these related use cases could be
grouped into a single Session Facade called 
AccountSessionFacade. 

In this case, the Session Facade will become a highly 
coarse-grained controller with high-level methods that can 

facilitate each interaction (that is, createNewAccount, 

changeAccount, getAccount). Therefore, we recommend that

you design Session Facades to aggregate a group of the 
related interactions into a single Session Facade. This results in
fewer Session Facades for the application, and leverages the 
benefits of the Session Facade pattern. 

Structure 

Figure 8.15 shows the class diagram representing the Session Facade pattern. 



 - 282 -

Figure 8.15. Session Facade class diagram 

 

Participants and Collaborations 

Figure 8.16 contains the sequence diagram that shows the interactions of a Session 

Facade with two entity beans, one session bean, and a DAO, all acting as 

participants in fulfilling the request from the client. 

Figure 8.16. Session Facade sequence diagram 

 

Client 

This represents the client of the Session Facade, which needs access to the business 

service. This client can be another session bean (Session Facade) in the same 

business tier or a business delegate (see “Business Delegate”) in another tier 



 - 283 -

SessionFacade 

The SessionFacade is implemented as a session bean. The SessionFacade manages 

the relationships between numerous BusinessObjects and provides a higher level 

abstraction to the client. The SessionFacade offers coarse-grained access to the 

participating BusinessObject represented by the Invoke invocation to the session 

bean. 

BusinessObject 

The BusinessObject is a role object that facilitates applying different strategies, 

such as session beans entity beans and a DAO (see the next section, “Strategies”). 

A BusinessObject provides data and/or some service in the class diagram. The 

SessionFacade interacts with multiple BusinessObject instances to provide the 

service. 

Strategies 

The Session Facade is a business-tier controller object that controls the interactions 

between the client and the participant business data and business service objects. 

In a complex application, there may be numerous Session Facades that can 

intermediate between the client and these objects. You can identify where a Session 

Facade might be useful by studying the client requirements and interactions 

typically documented in use cases and scenarios. This analysis enables you to 

identify a controller layer—composed of Session Facades—that can act as facades 

for these scenarios. 

This section explains different strategies for implementing a Session Facade. 

Session Facade Strategies 

Stateless Session Facade Strategy 

When implementing the Session Facade, you must first decide whether the facade 

session bean is a stateful or a stateless session bean. Base this decision on the 

business process that the Session Facade is modeling. 

A business process that needs only one method call to complete the service is a 

nonconversational business process. Such processes are suitably implemented 

using a stateless session bean. 



 - 284 -

A careful study of the use cases and scenarios enables you to determine the Session 

Facade definitions. If the use case is nonconversational, then the client initiates the 

use case, using a single method in the Session Facade. When the method completes, 

the use case completes too. There is no need to save the conversational state 

between one method invocation and the next. In this scenario, the Session Facade 

can be implemented as a stateless session bean. 

Stateful Session Facade Strategy 

A business process that needs multiple method calls to complete the service is a 

conversational business process. The conversational state must be saved between 

each client method invocation. In this scenario, a stateful session bean may be a 

more suitable approach for implementing the Session Facade. 

In both the Stateless Session Facade and the Stateful Session Facade strategies, 

the business object's role can be fulfilled in different ways, as explained next. 

Business Objects Strategies 

You can implement a business object as a session bean, entity bean, DAO, or 

regular Java object. The following strategies discuss each of these choices. 

Session Bean Strategy 

The business object can be implemented as a session bean. The session bean 

typically provides a business service and, in some cases, it may also provide 

business data. When such a session bean needs access to data, it may use a DAO to 

manipulate the data. The Session Facade can wrap one or more such 

service-oriented or data-oriented session beans acting as business objects. 

Entity Bean Strategy 

Representing the business object by an entity bean is the most common use of the 

Session Facade. When multiple entity beans participate in the use case, it is not 

necessary to expose all the entity beans to the clients. Instead, the Session Facade 

can wrap these entity beans and provide a coarse-grained method to perform the 

required business function, thus hiding the complexity of entity bean interactions. 



 - 285 -

Data Access Object Strategy 

The Session Facade can directly use one or more DAOs to represent the business 

data. This is done when the application is so simple that it requires no entity beans, 

or when the application's architecture is based only on session beans and does not 

use entity beans. Using DAOs inside session beans partially simulates the persistent 

nature of entity beans. 

The application might need the services provided by an arbitrary Java object (that is, 

an object that is not an enterprise bean or a DAO, though a DAO can be viewed as 

a type of arbitrary Java object). In such cases, the Session Facade accesses this 

arbitrary Java object to provide the necessary functionality. 

Consequences 

• Introduces Business-Tier Controller Layer 

Session Facades can represent a control layer between clients and the 

business tier, as identified through analysis modeling. A Session Facade 

encompasses the interactions between the client and the business 

components. In a sophisticated application, you can identify numerous 

Session Facades that can intermediate between the client and the 

participating business-tier objects. For simpler applications, one might feel 

that a Session Facade is not adding much value, as it may act to mostly 

proxy the client requests to a single business component. However, as 

applications grow more complex over time, using a Session Facade up front 

will yield benefit at a later stage. 

• Exposes Uniform Interface 

The underlying interactions between the business components can be very 

complex. A Session Facade pattern abstracts this complexity and presents 

the client a simpler interface that is easy to understand and to use. By 

applying a Session Facade, you can design a service layer that exposes 

simpler interfaces to the system as a whole. Thus a facade provides a 

uniform coarse-grained access layer to all types of clients and can protect 

and hide the underlying participant business components. 

• Reduces Coupling, Increases Manageability 

Using a Session Facade decouples the business objects from the clients, thus 

reducing tight coupling and the client's dependency on the business objects. 

It is best to use a Session Facade to manage workflow among business 

objects, rather than making the business objects aware of each other. A 



 - 286 -

business object should only be responsible for its own (data and logic) 

management. Inter-business object interactions can be abstracted into a 

workflow in a facade. This provides better manageability, centralization of 

interactions (responsibility and workflow), greater flexibility, and greater 

ability to cope with changes. 

Separating workflow into a Session Facade eliminates the direct dependency 

of the client on the participant objects and promotes design flexibility. 

Although changes to participants may require changes in the Session Facade, 

centralizing the workflow in the facade makes such changes more 

manageable. You change only the Session Facade rather than having to 

change all the clients. Client code is also simpler because it now delegates 

the workflow responsibility to the Session Facade. The client no longer 

manages the complex workflow interactions between business objects, nor 

is the client aware of interdependencies between business objects. 

• Improves Performance, Reduces Fine-Grained Methods 

The Session Facade also impacts performance. The Session Facade reduces 

network overhead between the client and the server because its use 

eliminates the direct interaction between the client and the business data 

and business service objects. Instead, all interactions are routed via the 

Session Facade in a coarse-grained manner. The Session Facade and its 

participants are closer to each other, making it more efficient for the facade 

to manage interactions between the participant objects. All data transfer and 

method invocations from the facade to the participants are presumably on a 

relatively high-speed network. The network performance can be further 

tuned to provide maximum throughput by applying the Value Object pattern 

for the participant objects where applicable. 

• Provides Coarse-Grained Access 

A Session Facade is meant to be a highly coarse-grained abstraction of the 

workflow. Thus, it is not desirable to have one Session Facade per entity 

bean interaction, which would represent a fine-grained abstraction rather 

than a coarse-grained one. Analyze the interaction between the client and 

the application services, using use cases and scenarios to determine the 

coarseness of the facade. Determine the optimal granularity of the Session 

Facade for the application by partitioning the application into logical 

subsystems and providing a Session Facade for each subsystem. However, 

providing a single facade for the entire system can result in a very large 

Session Facade whose numerous methods make it inefficient. A single 

facade may be sufficient for very simple applications that do not warrant 

subsystems. 

• Centralizes Security Management 



 - 287 -

Security policies for the application can be managed at the Session Facade 

level, since this is the tier presented to the clients. Because of the Session 

Facade's coarse-grained access, it is easier and more manageable to define 

security policies at this level rather than at the participating business 

component level. Business components offer fine-grained control points. It is 

easier to manage security for Session Facades that provide coarse-grained 

access, because there are relatively fewer coarse-grained methods to be 

securely managed. 

• Centralizes Transaction Control 

Because the Session Facade represents the workflow for the use cases, it is 

more logical to apply transaction management at the Session Facade level. 

Centralized transaction control has advantages similar to centralized 

security. The facade offers a central place for managing and defining 

transaction control in a coarse-grained fashion. It is much more work to do 

transaction management individually on participant business components, 

especially since they are more fine-grained than the facade. Also, not using 

a Session Facade, but rather having the client access the enterprise beans 

directly, puts the transaction demarcation burden on the client and can 

produce unwanted results. 

• Exposes Fewer Remote Interfaces to Clients 

Clients that interact directly with the business data and business service 

objects cause an increase in chattiness between the client and the server. 

Increased chattiness may degrade network performance. All access to the 

business object must be via the higher level of abstraction represented by a 

facade. Since the facade presents a coarse-grained access mechanism to the 

business components, this reduces the number of business components that 

are exposed to the client. Thereby, the scope for application performance 

degradation is reduced due to the limited number of interactions between 

the clients and the Session Facade when compared to direct interaction by 

the client to the individual business components. 

Sample Code 

Implementing the Session Facade 

Consider a Professional Services Application (PSA), where the workflow related to 

entity beans (such as Project, Resource) is encapsulated in 

ProjectResourceManagerSession, implemented using the Session Facade pattern. 

Example 8.15 shows the interaction with Resource and Project entity beans, as well 



 - 288 -

as other business components, like Value List Handlers (see “Value List Handler”) 

and Value Object Assemblers (see “Value Object Assembler” ). 

Example 8.15 Implementing Session Facade – 

Session Bean 

package corepatterns.apps.psa.ejb; 

 

import java.util.*; 

import java.rmi.RemoteException; 

import javax.ejb.*; 

import javax.naming.*; 

import corepatterns.apps.psa.core.*; 

import corepatterns.util.ServiceLocator; 

import corepatterns.util.ServiceLocatorException; 

 

// Note: all try/catch details not shown for brevity. 

 

public class ProjectResourceManagerSession 

  implements SessionBean { 

 

  private SessionContext context; 

 

  // Remote references for the 

  // entity Beans encapsulated by this facade 

  private Resource resourceEntity = null; 

  private Project projectEntity = null; 

  ... 

 

  // default create 

  public void ejbCreate() 

  throws CreateException { 

  } 

 

  // create method to create this facade and to 

  // establish connections to the required entity 

  // beans 

  // using primary key values 

  public void ejbCreate( 

    String resourceId, String projectId, ...) 

  throws CreateException, ResourceException { 

 

    try { 



 - 289 -

      // locate and connect to entity beans 

      connectToEntities(resourceId, projectId, ...); 

    } catch(...) { 

      // Handle exceptions 

    } 

  } 

 

  // method to connect the session facade to its 

  // entity beans using the primary key values 

  private void connectToEntities ( 

    String resourceId, String projectId) 

  throws ResourceException { 

    resourceEntity = getResourceEntity(resourceId); 

    projectEntity = getProjectEntity(projectId); 

    ... 

  } 

 

  // method to reconnect the session facade to a 

  // different set of entity beans using primary key 

  // values 

  public resetEntities(String resourceId, 

    String projectId, ...) 

  throws PSAException { 

 

    connectToEntities(resourceId, projectId, ...); 

  } 

 

  // private method to get Home for Resource 

  private ResourceHome getResourceHome() 

  throws ServiceLocatorException { 

    return ServiceLocator.getInstance().getHome( 

        "ResourceEntity", ResourceHome.class); 

  } 

 

  // private method to get Home for Project 

  private ProjectHome getProjectHome() 

  throws ServiceLocatorException { 

    return ServiceLocator.getInstance().getHome( 

        "ProjectEntity", ProjectHome.class); 

  } 

 

  // private method to get Resource entity 

  private Resource getResourceEntity( 

    String resourceId) throws ResourceException { 

    try { 



 - 290 -

      ResourceHome home = getResourceHome(); 

      return (Resource) 

        home.findByPrimaryKey(resourceId); 

    } catch(...) { 

      // Handle exceptions 

    } 

  } 

 

  // private method to get Project entity 

  private Project getProjectEntity(String projectId) 

  throws ProjectException { 

    // similar to getResourceEntity 

    ... 

  } 

 

  // Method to encapsulate workflow related 

  // to assigning a resource to a project. 

  // It deals with Project and Resource Entity beans 

  public void assignResourceToProject(int numHours) 

  throws PSAException { 

 

    try { 

      if ((projectEntity == null) || 

          (resourceEntity == null)) { 

 

        // SessionFacade not connected to entities 

        throw new PSAException(...); 

      } 

 

      // Get Resource data 

      ResourceVO resourceVO = 

          resourceEntity.getResourceData(); 

 

      // Get Project data 

      ProjectVO projectVO = 

        projectEntity.getProjectData(); 

      // first add Resource to Project 

      projectEntity.addResource(resourceVO); 

      // Create a new Commitment for the Project 

      CommitmentVO commitment = new 

        CommitmentVO(...); 

 

      // add the commitment to the Resource 

      projectEntity.addCommitment(commitment); 

 



 - 291 -

    } catch(...) { 

      // Handle exceptions 

    } 

  } 

 

  // Similarly implement other business methods to 

  // facilitate various use cases/interactions 

  public void unassignResourceFromProject() 

  throws PSAException { 

    ... 

  } 

 

  // Methods working with ResourceEntity 

  public ResourceVO getResourceData() 

  throws ResourceException { 

    ... 

  } 

 

  // Update Resource Entity Bean 

  public void setResourceData(ResourceVO resource) 

  throws ResourceException { 

    ... 

  } 

 

  // Create new Resource Entity bean 

  public ResourceVO createNewResource(ResourceVO 

    resource) throws ResourceException { 

    ... 

  } 

 

  // Methods for managing resource's blockout time 

  public void addBlockoutTime(Collection blockoutTime) 

  throws RemoteException,BlockoutTimeException { 

    ... 

  } 

 

  public void updateBlockoutTime( 

    Collection blockoutTime) 

    throws RemoteException, BlockoutTimeException { 

    ... 

  } 

 

  public Collection getResourceCommitments() 

  throws RemoteException, ResourceException { 

    ... 



 - 292 -

  } 

 

  // Methods working with ProjectEntity 

  public ProjectVO getProjectData() 

  throws ProjectException { 

    ... 

  } 

 

  // Update Project Entity Bean 

  public void setProjectData(ProjectVO project) 

  throws ProjectException { 

    ... 

  } 

 

  // Create new Project Entity bean 

  public ProjectVO createNewProject(ProjectVO project) 

  throws ProjectException { 

    ... 

  } 

 

  ... 

 

  // Other session facade method examples 

 

  // This proxies a call to a Value Object Assembler 

  // to obtain a composite value object. 

  // See Value Object Assembler pattern 

  public ProjectCVO getProjectDetailsData() 

  throws PSAException { 

    try { 

      ProjectVOAHome projectVOAHome = (ProjectVOAHome) 

        ServiceLocator.getInstance().getHome( 

          "ProjectVOA", ProjectVOAHome.class); 

      // Value Object Assembler session bean 

      ProjectVOA projectVOA = 

          projectVOAHome.create(...); 

      return projectVOA.getData(...); 

    } catch (...) { 

      // Handle / throw exceptions 

    } 

  } 

 

  // These method proxies a call to a ValueListHandler 

  // to get a list of projects. See Value List Handler 

  // pattern. 



 - 293 -

  public Collection getProjectsList(Date start, 

  Date end) throws PSAException { 

    try { 

      ProjectListHandlerHome projectVLHHome = 

        (ProjectVLHHome) 

          ServiceLocator.getInstance().getHome( 

            "ProjectListHandler", 

            ProjectVLHHome.class); 

      // Value List Handler session bean 

      ProjectListHandler projectListHandler = 

        projectVLHHome.create(); 

      return projectListHandler.getProjects( 

                    start, end); 

    } catch (...) { 

        // Handle / throw exceptions 

    } 

  } 

 

  ... 

 

  public void ejbActivate() { 

    ... 

  } 

 

  public void ejbPassivate() { 

    context = null; 

  } 

 

  public void setSessionContext(SessionContext ctx) { 

       this.context = ctx; 

  } 

 

  public void ejbRemove() { 

    ... 

  } 

} 

The remote interface for the Session Facade is listed in Example 8.16. 

Example 8.16 Implementing Session Facade - 

Remote Interface 

package corepatterns.apps.psa.ejb; 



 - 294 -

 

import java.rmi.RemoteException; 

import javax.ejb.*; 

import corepatterns.apps.psa.core.*; 

 

// Note: all try/catch details not shown for brevity. 

 

public interface ProjectResourceManager 

  extends EJBObject { 

 

  public resetEntities(String resourceId, 

  String projectId, ...) 

  throws RemoteException, ResourceException ; 

 

  public void assignResourceToProject(int numHours) 

  throws RemoteException, ResourceException ; 

 

  public void unassignResourceFromProject() 

  throws RemoteException, ResourceException ; 

 

  ... 

 

  public ResourceVO getResourceData() 

  throws RemoteException, ResourceException ; 

 

  public void setResourceData(ResourceVO resource) 

  throws RemoteException, ResourceException ; 

 

  public ResourceVO createNewResource(ResourceVO 

  resource) 

  throws ResourceException ; 

 

  public void addBlockoutTime(Collection blockoutTime) 

  throws RemoteException,BlockoutTimeException ; 

 

  public void updateBlockoutTime(Collection blockoutTime) 

  throws RemoteException,BlockoutTimeException ; 

 

  public Collection getResourceCommitments() 

  throws RemoteException, ResourceException; 

 

  public ProjectVO getProjectData() 

  throws RemoteException, ProjectException ; 

 

  public void setProjectData(ProjectVO project) 



 - 295 -

  throws RemoteException, ProjectException ; 

 

  public ProjectVO createNewProject(ProjectVO project) 

  throws RemoteException, ProjectException ; 

 

  ... 

 

  public ProjectCVO getProjectDetailsData() 

  throws RemoteException, PSAException ; 

 

  public Collection getProjectsList(Date start, 

  Date end) throws RemoteException, PSAException ; 

 

  ... 

} 

The Home interface for the Session Facade is shown in Example 8.17. 

Example 8.17 Implementing Session Facade - Home 

Interface 

package corepatterns.apps.psa.ejb; 

 

import javax.ejb.EJBHome; 

import java.rmi.RemoteException; 

import corepatterns.apps.psa.core.ResourceException; 

import javax.ejb.*; 

 

public interface ProjectResourceManagerHome 

extends EJBHome { 

 

    public ProjectResourceManager create() 

            throws RemoteException,CreateException; 

    public ProjectResourceManager create(String 

        resourceId, String projectId, ...) 

            throws RemoteException,CreateException; 

} 

Related Patterns 

• Facade [GoF] 

The Session Facade is based on the Facade Design pattern. 



 - 296 -

• Data Access Object 

One of the strategies for the business component in the Session Facade 

pattern is to use the DAO. This can be the case in simpler applications 

designed using session beans and DAOs instead of entity beans. 

• Service Locator 

The Session Facade is a coarse-grained object that allows encapsulation of 

the workflow by managing business data and business service objects 

interactions. Business data objects can be entity beans or DAOs, and the 

business service objects can be session beans and other objects that provide 

service. The Session Facade can use the Service Locator pattern to reduce 

the code complexity and to exploit the benefits offered by the Service 

Locator. 

• Business Delegate 

The Session Facade is used by the Business Delegate when the client 

requests access to business services. The Business Delegate proxies or 

adapts the client request to a Session Facade that provides the requested 

service. 

• Broker [POSA1] 

The Session Facade performs the role of a broker to decouple the entity 

beans from their clients. 

Composite Entity 

Context 

Entity beans are not intended to represent every persistent object in the object 

model. Entity beans are better suited for coarse-grained persistent business 

objects. 

Problem 

In a J2EE application, clients (applications, JSPs, servlets, JavaBeans) access entity 

beans via their remote interfaces. Thus, every client invocation potentially routes 

through network stubs and skeletons, even if the client and the enterprise bean are 

in the same JVM, OS, or machine. When entity beans are fine-grained objects, 



 - 297 -

clients tend to invoke more individual entity bean methods, resulting in high 

network overhead. 

Entity beans represent distributed persistent business objects. Whether developing 

or migrating an application to the J2EE platform, object granularity is very 

important when deciding what to implement as an entity bean. Entity beans should 

represent coarse-grained business objects, such as those that provide complex 

behavior beyond simply getting and setting field values. These coarse-grained 

objects typically have dependent objects. A dependent object is an object that has 

no real domain meaning when not associated with its coarse-grained parent. 

A recurring problem is the direct mapping of the object model to an EJB model 

(specifically entity beans). This creates a relationship between the entity bean 

objects without consideration of coarse-grained versus fine-grained (or dependent) 

objects. Determining what to make coarse-grained versus fine-grained is typically 

difficult and can best be done via modeling relationships in Unified Modeling 

Language (UML) models. 

There are a number of areas impacted by the fine-grained entity bean design 

approach: 

• Entity Relationships—  Directly mapping an object model to an EJB model 

does not take into account the impact of relationships between the objects. 

The inter-object relationships are directly transformed into inter-entity bean 

relationships. As a result, an entity bean might contain or hold a remote 

reference to another entity bean. However, maintaining remote references 

to distributed objects involves different techniques and semantics than 

maintaining references to local objects. Besides increasing the complexity of 

the code, it reduces flexibility, because the entity bean must change if there 

are any changes in its relationships. 

Also, there is no guarantee as to the validity of the entity bean references to 

other entity beans over time. Such references are established dynamically 

using the entity's home object and the primary key for that entity bean 

instance. This implies a high maintenance overhead of reference validity 

checking for each such entity-bean-to-entity-bean reference. 

• Manageability—  Implementing fine-grained objects as entity beans 

results in a large number of entity beans in the system. An entity bean is 

defined using several classes. For each entity bean component, the 

developer must provide classes for the home interface, the remote interface, 

the bean implementation, and the primary key. 

In addition, the container may generate classes to support the entity bean 

implementation. When the bean is created, these classes are realized as real 

objects in the container. In short, the container creates a number of objects 



 - 298 -

to support each entity bean instance. Large numbers of entity beans result in 

more classes and code to maintain for the development team. It also results 

in a large number of objects in the container. This can negatively impact the 

application performance. 

• Network Performance—  Fine-grained entity beans potentially have more 

inter-entity bean relationships. Entity beans are distributed objects. When 

one entity bean invokes a method on another entity bean, the call is 

potentially treated as a remote call by the container, even if both entity 

beans are in the same container or JVM. If the number of 

entity-bean-to-entity-bean relationships increases, then this decreases 

system scalability due to heavy network overhead. 

• Database Schema Dependency—  When the entity beans are 

fine-grained, each entity bean instance usually represents a single row in a 

database. This is not a proper application of the entity bean design, since 

entity beans are more suitable for coarse-grained components. Fine-grained 

entity bean implementation typically is a direct representation of the 

underlying database schema in the entity bean design. When clients use 

these fine-grained entity beans, they are essentially operating at the row 

level in the database, since each entity bean is effectively a single row. 

Because the entity bean directly models a single database row, the clients 

become dependent on the database schema. When the schema changes, the 

entity bean definitions must change as well. Further, since the clients are 

operating at the same granularity, they must observe and react to this 

change. This schema dependency causes a loss of flexibility and increases 

the maintenance overhead whenever schema changes are required. 

• Object Granularity (Coarse-Grained versus Fine-Grained)—  Object 

granularity impacts data transfer between the enterprise bean and the client. 

In most applications, clients typically need a larger chunk of data than one or 

two rows from a table. In such a case, implementing each of these 

fine-grained objects as an entity bean means that the client would have to 

manage the relationships between all these fine-grained objects. Depending 

on the data requirements, the client might have to perform many lookups of 

a number of entity beans to obtain the required information. 

Forces 

• Entity beans are best implemented as coarse-grained objects due to the high 

overhead associated with each entity bean. Each entity bean is implemented 

using several objects, such as EJB home object, remote object, bean 

implementation, and primary key, and each is managed by the container 

services. 

• Applications that directly map relational database schema to entity beans 

(where each row in a table is represented by an entity bean instance) tend to 



 - 299 -

have a large number of fine-grained entity beans. It is desirable to keep the 

entity beans coarse-grained and reduce the number of entity beans in the 

application. 

• Direct mapping of object model to EJB model yields fine-grained entity beans. 

Fine-grained entity beans usually map to the database schema. This 

entity-to-database row mapping causes problems related to performance, 

manageability, security, and transaction handling. Relationships between 

tables are implemented as relationships between entity beans, which means 

that entity beans hold references to other entity beans to implement the 

fine-grained relationships. It is very expensive to manage inter-entity bean 

relationships, because these relationships must be established dynamically, 

using the entity home objects and the enterprise beans' primary keys. 

• Clients do not need to know the implementation of the database schema to 

use and support the entity beans. With fine-grained entity beans, the 

mapping is usually done so that each entity bean instance maps to a single 

row in the database. This fine-grained mapping creates a dependency 

between the client and the underlying database schema, since the clients 

deal with the fine-grained beans and they are essentially a direct 

representation of the underlying schema. This results in tight coupling 

between the database schema and entity beans. A change to the schema 

causes a corresponding change to the entity bean, and in addition requires a 

corresponding change to the clients. 

• There is an increase in chattiness of applications due to intercommunication 

among fine-grained entity beans. Excessive inter-entity bean 

communication often leads to a performance bottleneck. Every method call 

to the entity bean is made via the network layer, even if the caller is in the 

same address space as the called bean (that is, both the client, or caller 

entity bean, and the called entity bean are in the same container). While 

some container vendors optimize for this scenario, the developer cannot rely 

on this optimization in all containers. 

• Additional chattiness can be observed between the client and the entity 

beans because the client may have to communicate with many fine-grained 

entity beans to fulfill a requirement. It is desirable to reduce the 

communication between or among entity beans and to reduce the chattiness 

between the client and the entity bean layer. 

Solution 

Use Composite Entity to model, represent, and manage a set of interrelated 

persistent objects rather than representing them as individual 

fine-grained entity beans. A Composite Entity bean represents a graph of 

objects. 



 - 300 -

In order to understand this solution, let us first define what is meant by persistent 

objects and discuss their relationships. 

A persistent object is an object that is stored in some type of data store. Multiple 

clients usually share persistent objects. Persistent objects can be classified into two 

types: coarse-grained objects and dependent objects. 

A coarse-grained object is self-sufficient. It has its own life cycle and manages its 

relationships to other objects. Each coarse-grained object may reference or contain 

one or more other objects. The coarse-grained object usually manages the lifestyles 

of these objects. Hence, these objects are called dependent objects. A dependent 

object can be a simple self-contained object or may in turn contain other dependent 

objects. 

The life cycle of a dependent object is tightly coupled to the life cycle of the 

coarse-grained object. A client may only indirectly access a dependent object 

through the coarse-grained object. That is, dependent objects are not directly 

exposed to clients because their parent (coarse-grained) object manages them. 

Dependent objects cannot exist by themselves. Instead, they always need to have 

their coarse-grained (or parent) object to justify their existence. 

Typically, you can view the relationship between a coarse-grained object and its 

dependent objects as a tree. The coarse-grained object is the root of the tree (the 

root node). Each dependent object can be a standalone dependent object (a leaf 

node) that is a child of the coarse-grained object. Or, the dependent object can have 

parent-child relationships with other dependent objects, in which case it is 

considered a branch node. 

A Composite Entity bean can represent a coarse-grained object and all its related 

dependent objects. Aggregation combines interrelated persistent objects into a 

single entity bean, thus drastically reducing the number of entity beans required by 

the application. This leads to a highly coarse-grained entity bean that can better 

leverage the benefits of entity beans than can fine-grained entity beans. 

Without the Composite Entity approach, there is a tendency to view each 

coarse-grained and dependent object as a separate entity bean, leading to a large 

number of entity beans. 

Structure 

While there are many strategies in implementing the Composite Entity pattern, the 

first one we discuss is represented by the class diagram in Figure 8.17. Here the 

Composite Entity contains the coarse-grained object, and the coarse-grained object 

contains dependent objects. 



 - 301 -

Figure 8.17. Composite Entity class diagram 

 

The sequence diagram in Figure 8.18 shows the interactions for this pattern. 

Figure 8.18. Composite Entity sequence diagram 

 

Participants and Responsibilities 

CompositeEntity 

CompositeEntity is the coarse-grained entity bean. The CompositeEntity may be the 

coarse-grained object, or it may hold a reference to the coarse-grained object. The 



 - 302 -

“Strategies” section explains the different implementation strategies for a 

Composite Entity. 

Coarse-Grained Object 

A coarse-grained object is an object that has its own life cycle and manages its own 

relationships to other objects. A coarse-grained object can be a Java object 

contained in the Composite Entity. Or, the Composite Entity itself can be the 

coarse-grained object that holds dependent objects. These strategies are explained 

in the “Strategies” section. 

DependentObject1, DependentObject2, and 

DependentObject3 

A dependent object is an object that depends on the coarse-grained object and has 

its life cycle managed by the coarse-grained object. A dependent object can contain 

other dependent objects; thus there may be a tree of objects within the Composite 

Entity. 

Strategies 

This section explains different strategies for implementing a Composite Entity. The 

strategies consider possible alternatives and options for persistent objects 

(coarse-grained and dependent) and the use of value objects. 

Composite Entity Contains Coarse-Grained Object 

Strategy 

In this strategy, the Composite Entity holds or contains the coarse-grained object. 

The coarse-grained object continues to have relationships with its dependent 

objects. The structure section of this pattern describes this as the main strategy. 

Composite Entity Implements Coarse-Grained Object 

Strategy 

In this strategy, the Composite Entity itself is the coarse-grained object and it has 

the coarse-grained object's attributes and methods. The dependent objects are 

attributes of the Composite Entity. Since the Composite Entity is the coarse-grained 



 - 303 -

object, the entity bean expresses and manages all relationships between the 

coarse-grained object and the dependent objects. 

Figure 8.19 is the class diagram for this strategy. 

Figure 8.19. Composite Entity Implements 

Coarse-Grained Object class diagram 

 

The sequence diagram for this strategy is shown in Figure 8.20. 

Figure 8.20. Composite Entity Implements 

Coarse-Grained Object sequence diagram 

 

Lazy Loading Strategy 

A Composite Entity can be composed of many levels of dependent objects in its tree 

of objects. Loading all the dependent objects when the Composite Entity's ejbLoad() 

method is called by the EJB Container may take considerable time and resources. 

One way to optimize this is by using a lazy loading strategy for loading the 

dependent objects. When the ejbLoad() method is called, at first only load those 



 - 304 -

dependent objects that are most crucial to the Composite Entity clients. 

Subsequently, when the clients access a dependent object that has not yet been 

loaded from the database, the Composite Entity can perform a load on demand. 

Thus, if some dependent objects are not used, they are not loaded on initialization. 

However, when the clients subsequently need those dependent objects, they get 

loaded at that time. Once a dependent object is loaded, subsequent container calls 

to the ejbLoad() method must include those dependent objects for reload to 

synchronize the changes with the persistent store. 

Store Optimization (Dirty Marker) Strategy 

A common problem with bean-managed persistence occurs when persisting the 

complete object graph during an ejbStore() operation. Since the EJB Container 

has no way of knowing what data has changed in the entity bean and its dependent 

objects, it puts the burden on the developer to determine what and how to persist 

the data. Some EJB containers provide a feature to identify what objects in 

Composite Entity's graph need to be stored due to a prior update. This may be done 

by having the developers implement a special method in the dependent objects, 

such as isDirty(), that is called by the container to check if the object has been 

updated since the previous ejbStore() operation. 

A generic solution may be to use an interface, DirtyMarker, as shown in the class 

diagram in Figure 8.21. The idea is to have dependent objects implement the 

DirtyMarker interface to let the caller (typically the ejbStore() method) know if the 

state of the dependent object has changed. This way, the caller can choose to obtain 

the data for subsequent storage. 



 - 305 -

Figure 8.21. Store Optimization Strategy class 

diagram 

 

Figure 8.22 contains a sequence diagram showing an example interaction for this 

strategy. 



 - 306 -

Figure 8.22. Store Optimization Strategy sequence 

diagram 

 

The client performs an update to the Composite Entity, which results in a change to 

DependentObject3. DependentObject3 is accessed via its parent DependentObject2. 

The Composite Entity is the parent of DependentObject2. When this update is 

performed, the setDirty() method is invoked in the DependentObject3. 

Subsequently, when the container invokes the ejbStore() method on this 

Composite Entity instance, the ejbStore() method can check which dependent 

objects have gone dirty and selectively save those changes to the database. The 

dirty marks are reset once the store is successful. 

The DirtyMarker interface can also include methods that can recognize other the 

persistence status of the dependent object. For example, if a new dependent object 

is included into the Composite Entity, the ejbStore() method should be able to 

recognize what operation to use—in this case, the dependent object is not dirty, but 

is a new object. By extending the DirtyMarker interface to include a method called 

isNew(), the ejbStore() method can invoke an insert operation instead of an 

update operation. Similarly, by including a method called isDeleted(), the 

ejbStore() method can invoke delete operation as required. 

In cases where ejbStore() is invoked with no intermediate updates to the 

Composite Entity, none of the dependent objects have been updated. 

This strategy avoids the huge overhead of having to persist the entire dependent 

objects graph to the database whenever the ejbStore() method is invoked by the 

container. 



 - 307 -

Note 

The EJB 2.0 specification addresses the Lazy Loading strategy and the Store 

Optimization strategy. The 2.0 specification is in final draft at the time of this writing. 

However, it is possible to use these strategies in pre-EJB 2.0 implementations. 

Please follow the EJB 2.0 developments to understand how these strategies will be 

finalized in the specification. 

 

Composite Value Object Strategy 

With a Composite Entity, a client can obtain all required information with just one 

remote method call. Because the Composite Entity either implements or holds the 

coarse-grained object and the hierarchy (or tree) of dependent objects, it can create 

the required value object and return it to the client by applying the Value Object 

pattern (see “Value Object”). The sequence diagram for this strategy is shown in 

Figure 8.23. 

Figure 8.23. Composite Value Object Strategy 

sequence diagram 

 

The value object can be a simple object or a composite object that has subobjects (a 

graph), depending on the data requested by the client. The value object is 

serializable and it is passed by value to the client. The value object functions only as 

a data transfer object; it has no responsibility with respect to security, transaction, 

and business logic. The value object packages all information into one object, 

obtaining the information with one remote call rather than multiple remote calls. 

Once the client receives the value object, all further calls from the client to the value 

object are local to the client. 



 - 308 -

This discussion points to how the entity can package all its data into a composite 

value object and return it to the client. However, this strategy also allows the entity 

bean to return only the required data to the client. If the client needs data only from 

a subset of dependent objects, then the composite value object returned can 

contain data derived from only those required parts and not from all the dependent 

objects. This would be an application of the Multiple Value Objects Strategy from the 

Value Object pattern (see “Value Object”). 

Consequences 

• Eliminates Inter-Entity Relationships 

Using the Composite Entity pattern, the dependent objects are composed 

into a single entity bean, eliminating all inter-entity-bean relationships. This 

pattern provides a central place to manage both relationships and object 

hierarchy. 

• Improves Manageability by Reducing Entity Beans 

As discussed, implementing persistent objects as fine-grained entity beans 

results in a large number of classes that need to be developed and 

maintained. Using a Composite Entity reduces the number of EJB classes and 

code, and makes maintenance easier. It improves the manageability of the 

application by having fewer coarse-grained components instead of many 

more fine-grained components. 

• Improves Network Performance 

Aggregation of the dependent objects improves overall performance. 

Aggregation eliminates all fine-grained communications between dependent 

objects across the network. If each dependent object were designed as a 

fine-grained entity bean, a huge network overhead would result due to 

inter-entity bean communications. 

• Reduces Database Schema Dependency 

When the Composite Entity pattern is used, it results in coarse-grained 

entity bean implementations. The database schema is hidden from the 

clients, since the mapping of the entity bean to the schema is internal to the 

coarse-grained entity bean. Changes to the database schema may require 

changes to the Composite Entity beans. However, the clients are not affected 

since the Composite Entity beans do not expose the schema to the external 

world. 

• Increases Object Granularity 



 - 309 -

With a Composite Entity, the client typically looks up a single entity bean 

instead of a large number of fine-grained entity beans. The client requests 

the Composite Entity for data. The Composite Entity can create a composite 

value object that contains all the data from the entity bean and return the 

value object to the client in a single remote method call. This reduces the 

chattiness between the client and the business tier. 

• Facilitates Composite Value Object Creation 

By using this strategy, chattiness of the communication between the client 

and the entity bean is reduced, since the Composite Entity bean can return a 

composite value object by providing a mechanism to send serialized value 

objects from the Composite Entity bean. Although a value object returns all 

data in one remote call, the amount of data returned with this one call is 

much larger than the amount of data returned by separate remote calls to 

obtain individual entity bean properties. This trade-off works well when the 

goal is to avoid repeated remote calls and multiple lookups. 

• Overhead of Multi-level Dependent Object Graphs 

If the dependent objects graph managed by the Composite Entity has many 

levels, then the overhead of loading and storing the dependent objects 

increases. This can be reduced by using the optimization strategies for load 

and store, but then there may be an overhead associated with checking the 

dirty objects to store and loading the required objects. 

Sample Code 

Consider a Professional Service Automation application (PSA) where a Resource 

business object is implemented using the Aggregate Entity pattern. The Resource 

represents the employee resource that is assigned to projects. Each Resource 

object can have different dependent objects as follows: 

• BlockOutTime—  This dependent object represents the time period the 

Resource is unavailable for reasons such as training, vacation, timeoffs, etc. 

Since each resource can have multiple blocked out times, the 

Resource-to-BlockOutTime relationship is a one-to-many relationship. 

• SkillSet—  This dependent object represents the Skill that a Resource 

possesses. Since each resource can have multiple skills, the 

Resource-to-SkillSet relationship is a one-to-many relationship. 



 - 310 -

Implementing the Composite Entity Pattern 

The pattern for the Resource business object is implemented as a Composite Entity 

(ResourceEntity), as shown in Example 8.18. The one-to-many relationship with its 

dependent objects (BlockOutTime and SkillSet objects) are implemented using 

collections. 

Example 8.18 Entity Implements Coarse--Grained 

Object 

package corepatterns.apps.psa.ejb; 

 

import corepatterns.apps.psa.core.*; 

import corepatterns.apps.psa.dao.*; 

import java.sql.*; 

import javax.sql.*; 

import java.util.*; 

import javax.ejb.*; 

import javax.naming.*; 

 

public class ResourceEntity implements EntityBean { 

  public String employeeId; 

  public String lastName; 

  public String firstName; 

  public String departmentId; 

  public String practiceGroup; 

  public String title; 

  public String grade; 

  public String email; 

  public String phone; 

  public String cell; 

  public String pager; 

  public String managerId; 

 

  // Collection of BlockOutTime Dependent objects 

  public Collection blockoutTimes; 

 

  // Collection of SkillSet Dependent objects 

  public Collection skillSets; 

 

  ... 

 



 - 311 -

  private EntityContext context; 

// Entity Bean methods implementation 

public String ejbCreate(ResourceVO resource) throws 

  CreateException { 

    try { 

      this.employeeId = resource.employeeId; 

      setResourceData(resource); 

      getResourceDAO().create(resource); 

    } catch(Exception ex) { 

      throw new EJBException("Reason:" + ...); 

    } 

    return this.employeeId; 

} 

 

public String ejbFindByPrimaryKey(String primaryKey) 

  throws FinderException { 

    boolean result; 

    try { 

    ResourceDAO resourceDAO = getResourceDAO(); 

    result = 

      resourceDAO.selectByPrimaryKey(primaryKey); 

  } catch(Exception ex) { 

    throw new EJBException("Reason:" + ...); 

  } 

  if(result) { 

    return primaryKey; 

  } 

  else { 

    throw new ObjectNotFoundException(...); 

  } 

} 

 

public void ejbRemove() { 

  try { 

    // Remove dependent objects 

    if(this.skillSets != null) { 

 

      SkillSetDAO skillSetDAO = getSkillSetDAO(); 

      skillSetDAO.setResourceID(employeeId); 

      skillSetDAO.deleteAll(); 

      skillSets = null; 

    } 

    if(this.blockoutTime != null) { 

      BlockOutTimeDAO blockouttimeDAO = 

          getBlockOutTimeDAO(); 



 - 312 -

      blockouttimeDAO.setResourceID(employeeId); 

      blockouttimeDAO.deleteAll(); 

      blockOutTimes = null; 

    } 

 

    // Remove the resource from the persistent store 

    ResourceDAO resourceDAO = new 

      ResourceDAO(employeeId); 

    resourceDAO.delete(); 

  } catch(ResourceException ex) { 

    throw new EJBException("Reason:"+...); 

  } catch(BlockOutTimeException ex) { 

    throw new EJBException("Reason:"+...); 

  } catch(Exception exception) { 

    ... 

  } 

} 

public void setEntityContext(EntityContext context) { 

  this.context = context; 

} 

 

public void unsetEntityContext() { 

  context = null; 

} 

 

public void ejbActivate() { 

  employeeId = (String)context.getPrimaryKey(); 

} 

 

public void ejbPassivate() { 

  employeeId = null; 

} 

 

public void ejbLoad() { 

  try { 

   // load the resource info from 

    ResourceDAO resourceDAO = getResourceDAO(); 

    setResourceData((ResourceVO) 

      resourceDAO.load(employeeId)); 

 

    // Load other dependent objects, if necessary 

    ... 

  } catch(Exception ex) { 

    throw new EJBException("Reason:" + ...); 

  } 



 - 313 -

} 

 

public void ejbStore() { 

  try { 

    // Store resource information 

    getResourceDAO().update(getResourceData()); 

 

    // Store dependent objects as needed 

    ... 

  } catch(SkillSetException ex) { 

    throw new EJBException("Reason:" + ...); 

  } catch(BlockOutTimeException ex) { 

    throw new EJBException("Reason:" + ...); 

  } 

  ... 

} 

public void ejbPostCreate(ResourceVO resource) { 

} 

 

// Method to Get Resource value object 

public ResourceVO getResourceVO() { 

  // create a new Resource value object 

  ResourceVO resourceVO = new 

      ResourceVO(employeeId); 

 

  // copy all values 

  resourceVO.lastName = lastName; 

  resourceVO.firstName = firstName; 

  resourceVO.departmentId = departmentId; 

  ... 

  return resourceVO; 

} 

 

public void setResourceData(ResourceVO resourceVO) { 

  // copy values from value object into entity bean 

  employeeId = resourceVO.employeeId; 

  lastName = resourceVO.lastName; 

  ... 

} 

 

// Method to get dependent value objects 

public Collection getSkillSetsData() { 

  // If skillSets is not loaded, load it first. 

  // See Lazy Load strategy implementation. 

 



 - 314 -

  return skillSets; 

} 

  ... 

 

// other get and set methods as needed 

  ... 

 

// Entity bean business methods 

public void addBlockOutTimes(Collection moreBOTs) 

throws BlockOutTimeException { 

  // Note: moreBOTs is a collection of 

  // BlockOutTimeVO objects 

  try { 

    Iterator moreIter = moreBOTs.iterator(); 

    while(moreIter.hasNext()) { 

        BlockOutTimeVO botVO = (BlockOutTimeVO) 

                          moreIter.next(); 

        if (! (blockOutTimeExists(botVO))) { 

          // add BlockOutTimeVO to collection 

          botVO.setNew(); 

          blockOutTime.add(botVO); 

        } else { 

          // BlockOutTimeVO already exists, cannot add 

          throw new BlockOutTimeException(...); 

        } 

      } 

    } catch(Exception exception) { 

      throw new EJBException(...); 

    } 

} 

 

public void addSkillSet(Collection moreSkills) 

throws SkillSetException { 

    // similar to addBlockOutTime() implementation 

    ... 

  } 

 

  ... 

 

public void updateBlockOutTime(Collection updBOTs) 

throws BlockOutTimeException { 

    try { 

      Iterator botIter = blockOutTimes.iterator(); 

      Iterator updIter = updBOTs.iterator(); 

      while (updIter.hasNext()) { 



 - 315 -

        BlockOutTimeVO botVO = (BlockOutTimeVO) 

          updIter.next(); 

        while (botIter.hasNext()) { 

          BlockOutTimeVO existingBOT = 

            (BlockOutTimeVO) botIter.next(); 

          // compare key values to locate BlockOutTime 

          if (existingBOT.equals(botVO)) { 

            // Found BlockOutTime in collection 

            // replace old BlockOutTimeVO with new one 

            botVO.setDirty(); //modified old dependent 

            botVO.resetNew(); //not a new dependent 

            existingBOT = botVO; 

          } 

        } 

      } 

    } catch (Exception exc) { 

      throw new EJBException(...); 

    } 

  } 

 

  public void updateSkillSet(Collection updSkills) 

  throws CommitmentException { 

    // similar to updateBlockOutTime... 

    ... 

  } 

 

  ... 

 

} 

Implementing the Lazy Loading Strategy 

When the Composite Entity is first loaded in the ejbLoad() method by the container, 

let us assume that only the resource data is to be loaded. This includes the 

attributes listed in the ResourceEntity bean, excluding the dependent object 

collections. The dependent objects can then be loaded only if the client invokes a 

business method that needs these dependent objects to be loaded. Subsequently, 

the ejbLoad() needs to keep track of the dependent objects loaded in this manner 

and include them for reloading. 

The relevant methods from the ResourceEntity class are shown in Example 8.19. 



 - 316 -

Example 8.19 Implementing Lazy Loading Strategy 

... 

public Collection getSkillSetsData() { 

throws SkillSetException { 

  checkSkillSetLoad(); 

  return skillSets; 

} 

 

private void checkSkillSetLoad() 

throws SkillSetException { 

  try { 

    // Lazy Load strategy...Load on demand 

    if (skillSets == null) 

        skillSets = 

          getSkillSetDAO(resourceId).loadAll(); 

    } catch(Exception exception) { 

      // No skills, throw an exception 

      throw new SkillSetException(...); 

    } 

  } 

 

  ... 

 

public void ejbLoad() { 

  try { 

    // load the resource info from 

    ResourceDAO resourceDAO = new 

      ResourceDAO(employeeId); 

    setResourceData((ResourceVO)resourceDAO.load()); 

 

    // If the lazy loaded objects are already 

    // loaded, they need to be reloaded. 

    // If there are not loaded, do not load them 

    // here...lazy load will load them later. 

    if (skillSets != null) { 

      reloadSkillSets(); 

  } 

    if (blockOutTimes != null) { 

      reloadBlockOutTimes(); 

    } 

    ... 

    throw new EJBException("Reason:"+...); 

  } 



 - 317 -

} 

 

 

... 

Implementing the Store Optimization (Dirty Marker) 

Strategy 

To use the Store Optimization strategy, the dependent objects need to have 

implemented the DirtyMarker interface, as shown in Example 8.20. The ejbStore() 

method to optimize using this strategy is listed in Example 8.21. 

Example 8.20 SkillSet Dependent Object Implements 

DirtyMarker Interface 

public class SkillSetVO implements DirtyMarker, 

  java.io.Serializable { 

  private String skillName; 

  private String expertiseLevel; 

  private String info; 

  ... 

 

  // dirty flag 

  private boolean dirty = false; 

 

  // new flag 

  private boolean isnew = true; 

 

  // deleted flag 

  private boolean deleted = false; 

 

  public SkillSetVO(...) { 

    // initialization 

    ... 

    // is new VO 

    setNew(); 

  } 

 

  // get, set and other methods for SkillSet 

  // all set methods and modifier methods 

  // must call setDirty() 



 - 318 -

  public setSkillName(String newSkillName) { 

    skillName = newSkillName; 

    setDirty(); 

  } 

  ... 

 

  // DirtyMarker methods 

  // used for modified value objects only 

  public void setDirty() { 

    dirty = true; 

  } 

  public void resetDirty() { 

    dirty = false; 

  } 

  public boolean isDirty() { 

    return dirty; 

  } 

 

  // used for new value objects only 

  public void setNew() { 

    isnew = true; 

  } 

  public void resetNew() { 

    isnew = false; 

  } 

  public boolean isNew() { 

    return isnew; 

  } 

 

  // used for deleted objects only 

  public void setDeleted() { 

    deleted = true; 

  } 

  public boolean isDeleted() { 

    return deleted; 

  } 

  public void resetDeleted() { 

    deleted = false; 

  } 

 

} 



 - 319 -

Example 8.21 Implementing Store Optimization 

... 

 

public void ejbStore() { 

  try { 

    // Load the mandatory data 

    getResourceDAO().update(getResourceData()); 

 

    // Store optimization for dependent objects 

    // check dirty and store 

    // Check and store commitments 

    if (skillSets != null) { 

      // Get the DAO to use to store 

      SkillSetDAO skillSetDAO = getSkillSetDAO(); 

      Iterator skillIter = skillSet.iterator(); 

      while(skillIter.hasNext()) { 

        SkillSetVO skill = 

          (SkillSetVO) skillIter.next(); 

        if (skill.isNew()) { 

          // This is a new dependent, insert it 

          skillSetDAO.insert(skill); 

          skill.resetNew(); 

          skill.resetDirty(); 

        } 

        else if (skill.isDeleted()) { 

          // delete Skill 

          skillSetDAO.delete(skill); 

          // Remove from dependents list 

          skillSets.remove(skill); 

        } 

        else if (skill.isDirty()) { 

          // Store Skill, it has been modified 

          skillSetDAO.update(skill); 

          // Saved, reset dirty. 

          skill.resetDirty(); 

          skill.resetNew(); 

        } 

      } 

    } 

 

    // Similarly, implement store optimization 

    // for other dependent objects such as 

 



 - 320 -

    // BlockOutTime, ... 

    ... 

  } catch(SkillSetException ex) { 

      throw new EJBException("Reason:"+...); 

    } catch(BlockOutTimeException ex) { 

      throw new EJBException("Reason:"+...); 

    } catch(CommitmentException ex) { 

      throw new EJBException("Reason:"+...); 

    } 

  } 

 

  ... 

Implementing the Composite Value Object Strategy 

Now consider the requirement where the client needs to obtain all the data from the 

ResourceEntity, and not just one part. This can be done using the Composite Value 

Object Strategy, as shown in Example 8.22. 

Example 8.22 Implementing the Composite Value 

Object 

public class ResourceCompositeVO { 

  private ResourceVO resourceData; 

  private Collection skillSets; 

  private Collection blockOutTimes; 

 

  // value object constructors 

  ... 

 

  // get and set methods 

  ... 

} 

The ResourceEntity provides a getResourceDetailsData() method to return the 

ResourceCompositeVO composite value object, as shown in Example 8.23. 

Example 8.23 Creating the Composite Value Object 

... 

public ResourceCompositeVO getResourceDetailsData() { 

  ResourceCompositeVO compositeVO = 



 - 321 -

    new ResourceCompositeVO (getResourceData(), 

        getSkillsData(), getBlockOutTimesData()); 

  return compositeVO; 

} 

... 

Related Patterns 

• Value Object 

The Composite Entity pattern uses the Value Object pattern for creating the 

value object and returning it to the client. The Value Object pattern is used to 

serialize the coarse-grained and dependent objects tree, or part of the tree, 

as required. 

• Session Facade 

If dependent objects tend to be entity beans rather than the arbitrary Java 

objects, try to use the Session Facade pattern to manage the 

inter-entity-bean relationships. 

• Value Object Assembler 

When it comes to obtaining a composite value object from the Composite 

Entity (see the “Facilitates Composite Value Object Creation” under the 

“Consequences” section), this pattern is similar to the Value Object 

Assembler pattern. However, in this case, the data sources for all the value 

objects in the composite are parts of the Composite Entity itself, whereas for 

the Value Object Assembler, the data sources can be different entity beans, 

session beans, DAOs, Java objects, and so on. 

Entity Bean as a Dependent Object: 

Issues and Recommendations 

Typically, we design dependent objects as Java objects that 
have a direct relationship with the parent coarse-grained 
object. However, there may be situations when a dependent 
object may appear as an entity bean itself. This can happen 

1. If the dependent object appears to be depending on two
different parent objects (as is the case with association 
classes). 

2. If the dependent object already exists as an entity bean



 - 322 -

in the same application or is imported from a different 
application. 

In these cases, the lifestyle of the dependent object may not 
appear to be directly related to and managed by a single parent
coarse-grained object. So, what do you do when a dependent 
object is an entity bean? When you see a dependent object that
is not totally dependent on its parent object? Or when you 
cannot identify its sole parent object? 

Let's consider each case in a little more detail. 

Case 1: The Dependent Object Depends on Two Parent 
Objects 

Let us explore this with the following example. A Commitment
represents an association between a Resource and a Project. 

Figure 8.24 shows an example class diagram with relationships
between Project, Resource and Commitment. 

Figure 8.24. Example: Dependent object with 

two parent objects 

 

Commitment is a dependent object. Both Projects and 
Resources are coarse-grained objects. Each Project has a 



 - 323 -

one-to-many relationship with Commitment objects. Each 
Resource also has a one-to-many relationship with 
Commitment objects. So, is Commitment a dependent object 
of Project or of Resource? The answer lies in analyzing the 
interactions for the use cases that involve these three objects.
If you make the Commitment a dependent of the Project, then
when the Resource accesses its list Commitment objects, it has
to do so through the Project object. On the other hand, if the 
Commitment is a dependent of a Resource, when the Project 
accesses its list of Commitment objects, it has to do so via the
Resource. Both these choices will introduce 
entity-bean-to-entity-bean relationships in the design. 

But, what if the Commitment is made an entity bean instead of
a dependent object? Then the relationships between the 
Project and its list of Commitment objects, and between a 
Resource and its list of Commitment objects, will be 
entity-to-entity bean relationships. This just worsens the 
problem in that now there are two entity-bean-to-entity-bean 
relationships. 

Entity-bean-to-entity-bean relationships are not 
recommended due to the overhead associated with managing 
and sustaining such a relationship. 

Case 2: The Dependent Object Already Exists as an 
Entity Bean 

In this case, it may seem that one way to model this 
relationship is to store the primary key of the dependent object
in the coarse-grained object. When the coarse-grained object 
needs to access the dependent object, it results in an 
entity-bean-to-entity-bean invocation. The class diagram for 
this example is shown in Figure 8.25. 

Figure 8.25. Dependent Object is an Entity Bean

class diagram 



 - 324 -

The sequence diagram for this scenario is shown in Figure 8.26.
The Composite Entity uses the dependent object references to
look up the required dependent entity beans. The dependent 
object in this case is a proxy to the dependent entity bean, as
shown. 

Figure 8.26. Dependent Object is an Entity Bean

sequence diagram 

While this may address the requirement of using a dependent 
entity bean from a parent entity bean, it is not an elegant 
solution. Instead, to avoid the complexity of designing and 
managing inter-entity relationships, consider using a session 
bean to help manage the relationships among entity beans. In
our experience, we have found that the Session Facade pattern



 - 325 -

helps us to avoid this problem and provides a better way of 
managing entity-bean-to-entity-bean relationships. 

So, we recommend avoiding entity-bean-to-entity-bean 
relationships as a best practice and to factor out such 
relationships into a session bean, using the Session Facade 
pattern (see “Session Facade”). 

Value Object Assembler 

Context 

In a J2EE application, the server-side business components are implemented using 

session beans, entity beans, DAOs, and so forth. Application clients frequently need 

to access data that is composed from multiple objects. 

Problem 

Application clients typically require the data for the model or parts of the model to 

present to the user or to use for an intermediate processing step before providing 

some service. The application model is an abstraction of the business data and 

business logic implemented on the server side as business components. A model 

may be expressed as a collection of objects put together in a structured manner 

(tree or graph). In a J2EE application, the model is a distributed collection of objects 

such as session beans, entity beans, or DAOs and other objects. For a client to 

obtain the data for the model, such as to display to the user or to perform some 

processing, it must access individually each distributed object that defines the 

model. This approach has several drawbacks: 

• Because the client must access each distributed component individually, 

there is a tight coupling between the client and the distributed components 

of the model over the network 

• The client accesses the distributed components via the network layer, and 

this can lead to performance degradation if the model is complex with 

numerous distributed components. Network and client performance 

degradation occur when a number of distributed business components 

implement the application model and the client directly interacts with these 

components to obtain model data from that component. Each such access 

results in a remote method call that introduces network overhead and 

increases the chattiness between the client and the business tier. 

• The client must reconstruct the model after obtaining the model's parts from 

the distributed components. The client therefore needs to have the 



 - 326 -

necessary business logic to construct the model. If the model construction is 

complex and numerous objects are involved in its definition, then there may 

be an additional performance overhead on the client due to the construction 

process. In addition, the client must contain the business logic to manage 

the relationships between the components, which results in a more complex, 

larger client. When the client constructs the application model, the 

construction happens on the client side. Complex model construction can 

result in a significant performance overhead on the client side for clients with 

limited resources. 

• Because the client is tightly coupled to the model, changes to the model 

require changes to the client. Furthermore, if there are different types of 

clients, it is more difficult to manage the changes across all client types. 

When there is tight coupling between the client and model implementation, 

which occurs when the client has direct knowledge of the model and 

manages the business component relationships, then changes to the model 

necessitate changes to the client. There is the further problem of code 

duplication for model access, which occurs when an application has many 

types of clients. This duplication makes client (code) management difficult 

when the model changes. 

Forces 

• Separation of business logic is required between the client and the 

server-side components. 

• Because the model consists of distributed components, access to each 

component is associated with a network overhead. It is desirable to minimize 

the number of remote method calls over the network. 

• The client typically needs only to obtain the model to present it to the user. 

If the client must interact with multiple components to construct the model 

on the fly, the chattiness between the client and the application increases. 

Such chattiness may reduce the network performance. 

• Even if the client wants to perform an update, it usually updates only certain 

parts of the model and not the entire model. 

• Clients do not need to be aware of the intricacies and dependencies in the 

model implementation. It is desirable to have loose coupling between the 

clients and the business components that implement the application model. 

• Clients do not otherwise need to have the additional business logic required 

to construct the model from various business components. 

Solution 

Use a Value Object Assembler to build the required model or submodel. The 

Value Object Assembler uses value objects to retrieve data from various 



 - 327 -

business objects and other objects that define the model or part of the 

model. 

The Value Object Assember constructs a composite value object that represents 

data from different business components. The value object caries the data for the 

model to the client in a single method call. Since the model data can be complex, it 

is recommended that this value object be immutable. That is, the client obtains such 

value objects with the sole purpose of using them for presentation and processing in 

a read-only manner. Clients are not allowed to make changes to the value objects. 

When the client needs the model data, and if the model is represented by a single 

coarse-grained component (such as a Composite Entity), then the process of 

obtaining the model data is simple. The client simply requests the coarse-grained 

component for its composite value object. However, most real-world applications 

have a model composed of a combination of many coarse-grained and fine-grained 

components. In this case, the client must interact with numerous such business 

components to obtain all the data necessary to represent the model. The immediate 

drawbacks of this approach can be seen in that the clients become tightly coupled to 

the model implementation (model elements) and that the clients tend to make 

numerous remote method invocations to obtain the data from each individual 

component. 

In some cases, a single coarse-grained component provides the model or parts of 

the model as a single value object (simple or composite). However, when multiple 

components represent the model, a single value object (simple or composite) may 

not represent the entire model. To represent the model, it is necessary to obtain 

value objects from various components and assemble them into a new composite 

value object. The server, not the client, should perform such “on-the-fly” 

construction of the model. 

Structure 

Figure 8.27 shows the class diagram representing the relationships for the Value 

Object Assembler pattern. 



 - 328 -

Figure 8.27. Value Object Assembler class diagram 

 

Participants and Responsibilities 

The sequence diagram in Figure 8.28 shows the interaction between the various 

participants in the Value Object Assembler pattern. 



 - 329 -

Figure 8.28. Value Object Assembler sequence 

diagram 

 

ValueObjectAssembler 

The ValueObjectAssembler is the main class of this pattern. The 

ValueObjectAssembler constructs a new value object based on the requirements of 

the application when the client requests a composite value object. The 

ValueObjectAssembler then locates the required BusinessObject instances to 

retrieve data to build the composite value object. BusinessObjects are business-tier 

components such as entity beans and session beans, DAOs, and so forth. 

Client 

If the ValueObjectAssembler is implemented as an arbitrary Java object, then the 

client is typically a Session Facade that provides the controller layer to the business 

tier. If the ValueObjectAssembler is implemented as a session bean, then the client 

can be a Session Facade or a Business Delegate. 

BusinessObject 

The BusinessObject participates in the construction of the new value object by 

providing the required data to the ValueObjectAssembler. Therefore, the 

BusinessObject is a role that can be fulfilled by a session bean, an entity bean, a 

DAO, or a regular Java object. 



 - 330 -

ValueObject 

The ValueObject is a composite value object that is constructed by the 

ValueObjectAssembler and returned to the client. This represents the complex data 

from various components that define the application model. 

BusinessObject 

BusinessObject is a role that can be fulfilled by a session bean, entity bean, or DAO. 

When the assembler needs to obtain data directly from the persistent storage to 

build the value object, it can use a DAO. This is shown as the DataAccessObject 

object in the diagrams. 

Strategies 

This section explains different strategies for implementing a Value Object Assembler 

pattern. 

Java Object Strategy 

The ValueObjectAssembler can be an arbitrary Java object and need not be an 

enterprise bean. In such implementations, a session bean usually fronts the 

ValueObjectAssembler. This session bean is typically a Session Facade that 

performs its other duties related to providing business services. The 

ValueObjectAssembler runs in the business tier, regardless of the implementation 

strategies. The motivation for this is to prevent the remote invocations from the 

ValueObjectAssembler to the source objects from crossing the tier. 

Session Bean Strategy 

This strategy implements the ValueObjectAssembler as a session bean (as shown in 

the class diagram). If a session bean implementation is preferred to provide the 

ValueObjectAssembler as a business service, it is typically implemented as a 

stateless session bean. The business components that make up the application 

model are constantly involved in transactions with various clients. As a result, when 

a ValueObjectAssembler constructs a new composite value object from various 

business components, it produces a snapshot of the model at the time of 

construction. The model could change immediately thereafter if another client 

changes one or more business components, effectively changing the business 

application model. 



 - 331 -

Therefore, implementing ValueObjectAssembler as a stateful session bean provides 

no benefits over implementing it as a stateless session bean, as preserving the state 

of the composite model data value when the underlying model is changing is futile. 

If the underlying model changes, it causes the value object held by the assembler to 

become stale. The ValueObjectAssembler, when next asked for the value object, 

either returns a stale state or reconstructs the value object to obtain the most 

recent snapshot. Therefore, it is recommended that the assembler be a stateless 

session bean to leverage the benefits of stateless over stateful session beans. 

However, if the underlying model rarely changes, then the assembler may be a 

stateful session bean and retain the newly constructed value object. In this case, 

the ValueObjectAssembler must include mechanisms to recognize changes to the 

underlying model and to reconstruct the model for the next client request. 

Business Object Strategy 

The BusinessObject role in this pattern can be supported by different types of 

objects, as explained below. 

• The BusinessObject can be a session bean. The Value Object Assembler may 

use a Service Locator (see “Service Locator”) to locate the required session 

bean. The Value Object Assembler requests this session bean to provide the 

data to construct the composite value object. 

• The BusinessObject can be an entity bean. The Value Object Assembler may 

use a Service Locator to locate the required entity bean. The Value Object 

Assembler requests this entity bean to provide the data to construct the 

composite value object. 

• The BusinessObject can be a DAO. The Value Object Assembler requests this 

DAO to provide the data to construct the composite value object. 

• The BusinessObject can be an arbitrary Java object. The Value Object 

Assembler requests this Java object to provide the data to construct the 

composite value object. 

• The BusinessObject can be another Value Object Assembler. The first Value 

Object Assembler requests the second Value Object Assembler to provide 

the data to construct the composite value object. 

Consequences 

• Separates Business Logic 

When the client includes logic to manage the interactions with distributed 

components, it becomes difficult to clearly separate business logic from the 

client tier. The Value Object Assembler contains the business logic to 

maintain the object relationships and to construct the composite value 



 - 332 -

object representing the model. The client needs no knowledge of how to 

construct the model or the different components that provide data to 

assemble the model. 

• Reduces Coupling Between Clients and the Application Model 

The Value Object Assembler hides the complexity of the construction of 

model data from the clients and establishes a loose coupling between clients 

and the model. With loose coupling, if the model changes, then the Value 

Object Assembler requires a corresponding change. However, the client is 

not dependent on the model construction and interrelationships between 

model business components, so model changes do not directly affect the 

client. In general, loose coupling is preferred to tight coupling. 

• Improves Network Performance 

The Value Object Assembler drastically reduces the network overhead of 

remote method calls and chattiness. The client can request the data for the 

application model from the Value Object Assembler in a single remote 

method call. The assembler constructs and returns the composite value 

object for the model. However, the composite value object may contain a 

large amount of data. Thus, while use of the Value Object Assembler reduces 

the number of network calls, there is an increase in the amount of data 

transported in a single call. This trade-off should be considered in applying 

this pattern. 

• Improves Client Performance 

The server-side Value Object Assembler constructs the model as a 

composite value object without using any client resources. The client spends 

no time assembling the model. 

• Improves Transaction Performance 

Typically, updates are isolated to a very small part of the model and can be 

performed by fine-grained transactions. These transactions focus on isolated 

parts of the model instead of locking up the coarse-grained object (model). 

After the client obtains the model and displays or processes it locally, the 

user (or the client) may need to update or otherwise modify the model. The 

client can interact directly with a Session Facade to accomplish this at a 

suitable granularity level. The Value Object Assembler is not involved in the 

transaction to update or modify the model. There is better performance 

control because transactional work with the model happens at the 

appropriate level of granularity. 

• May Introduce Stale Value Objects 



 - 333 -

The Value Object Assembler constructs value objects on demand. These 

value objects are snapshots of the current state of the model, represented 

by various business components. Once the client obtains a value object from 

the assembler, that value object is entirely local to the client. Since the value 

objects are not network-aware, other changes made to the business 

components used to construct the value object are not reflected in the value 

objects. Therefore, after the value object is obtained, it can quickly become 

stale if there are transactions on the business components. 

Sample Code 

Implementing the Value Object Assembler 

Consider a Project Management application where a number of business-tier 

components define the complex model. Suppose a client wants to obtain the model 

data composed of data from various business objects, such as: 

• Project Information from the Project component 

• Project Manager information from the ProjectManager component 

• List of Project Tasks from the Project component 

• Resource Information from the Resource component 

A composite value object to contain this data can be defined as shown in Example 

8.24. A Value Object Assembler pattern can be implemented to assemble this 

composite value object. The Value Object Assembler sample code is listed in 

Example 8.28. 

Example 8.24 Composite Value Object Class 

public class ProjectDetailsData { 

  public ProjectVO projectData; 

  public ProjectManagerVO projectManagerData; 

  public Collection listOfTasks; 

  ... 

} 

The list of tasks in the ProjectDetailsData is a collection of TaskResourceVO objects. 

The TaskResourceVO is a combination of TaskVO and ResourceVO. These classes 

are shown in Example 8.25, Example 8.26, and Example 8.27. 



 - 334 -

Example 8.25 TaskResourceVO Class 

public class TaskResourceVO { 

  public String projectId; 

  public String taskId; 

  public String name; 

  public String description; 

  public Date startDate; 

  public Date endDate; 

  public ResourceVO assignedResource; 

  ... 

 

  public TaskResourceVO(String projectId, 

    String taskId, String name, String description, 

    Date startDate, Date endDate, ResourceVO 

    assignedResource) { 

        this.projectId = projectId; 

        this.taskId = taskId; 

        ... 

        this.assignedResource = assignedResource; 

    } 

    ... 

} 

Example 8.26 TaskVO Class 

public class TaskVO { 

  public String projectId; 

  public String taskId; 

  public String name; 

  public String description; 

  public Date startDate; 

  public Date endDate; 

  public assignedResourceId; 

 

  public TaskVO(String projectId, String taskId, 

      String name, String description, Date startDate, 

      Date endDate, String assignedResourceId) { 

        this.projectId = projectId; 

        this.taskId = taskId; 

        ... 

        this.assignedResource = assignedResource; 

    } 



 - 335 -

    ... 

} 

Example 8.27 ResourceVO Class 

public class ResourceVO { 

  public String resourceId; 

  public String resourceName; 

  public String resourceEmail; 

  ... 

 

  public ResourceVO (String resourceId, String 

    resourceName, String resourceEmail, ...) { 

      this.resourceId = resourceId; 

      this.resourceName = resourceName; 

      this.resourceEmail = resourceEmail; 

      ... 

  } 

} 

The ProjectDetailsAssembler class that assembles the ProjectDetailsData object is 

listed in Example 8.28. 

Example 8.28 Implementing the Value Object 

Assembler 

public class ProjectDetailsAssembler 

  implements javax.ejb.SessionBean { 

 

  ... 

 

  public ProjectDetailsData getData(String projectId){ 

 

    // Construct the composite value object 

    ProjectDetailsData pData = new 

                      ProjectDetailsData(); 

 

    //get the project details; 

    ProjectHome projectHome = 

        ServiceLocator.getInstance().getHome( 

          "Project", ProjectEntityHome.class); 

    ProjectEntity project = 



 - 336 -

      projectHome.findByPrimaryKey(projectId); 

    ProjectVO projVO = project.getData(); 

 

    // Add Project Info to ProjectDetailsData 

    pData.projectData = projVO; 

 

    //get the project manager details; 

    ProjectManagerHome projectManagerHome = 

      ServiceLocator.getInstance().getHome( 

        "ProjectManager", ProjectEntityHome.class); 

 

    ProjectManagerEntity projectManager = 

      projectManagerHome.findByPrimaryKey( 

        projVO.managerId); 

 

    ProjectManagerVO projMgrVO = 

      projectManager.getData(); 

 

    // Add ProjectManager info to ProjectDetailsData 

    pData.projectManagerData = projMgrVO; 

 

    // Get list of TaskVOs from the Project 

    Collection projTaskList = project.getTasksList(); 

 

    // construct a list of TaskResourceVOs 

    ArrayList listOfTasks = new ArrayList(); 

 

    Iterator taskIter = projTaskList.iterator(); 

    while (taskIter.hasNext()) { 

      TaskVO task = (TaskVO) taskIter.next(); 

 

      //get the Resource details; 

      ResourceHome resourceHome = 

      ServiceLocator.getInstance().getHome( 

        "Resource", ResourceEntityHome.class); 

 

      ResourceEntity resource = 

        resourceHome.findByPrimaryKey( 

          task.assignedResourceId); 

 

      ResourceVO resVO = resource.getResourceData(); 

 

      // construct a new TaskResourceVO using Task 

      // and Resource data 

      TaskResourceVO trVO = new TaskResourceVO( 



 - 337 -

              task.projectId, task.taskId, 

              task.name, task.description, 

              task.startDate, task.endDate, 

              resVO); 

 

      // add TaskResourceVO to the list 

      listOfTasks.add(trVO); 

    } 

    // add list of tasks to ProjectDetailsData 

    pData.listOfTasks = listOfTasks; 

 

    // add any other data to the value object 

    ... 

 

    // return the composite value object 

    return pData; 

 

  } 

 

  ... 

} 

Related Patterns 

• Value Object 

The Value Object Assembler uses the Value Object pattern in order to create 

and transport value objects to the client. The value objects created carry the 

data representing the application model from the business tier to the clients 

requesting the data. 

• Composite Entity 

The Composite Entity pattern promotes a coarse-grained entity bean design, 

where entities can produce composite value objects similar to the one 

produced by the Value Object Assembler. However, the Value Object 

Assembler is more applicable when the composite value object constructed 

is derived from a number of components (session beans, entity beans, DAOs, 

and so forth), whereas the Composite Entity pattern constructs the value 

object from its own data (that is, a single entity bean).  

• Session Facade 

The Value Object Assembler is typically implemented as a stateless session 

bean. As such, it could be viewed as a limited special application of the 



 - 338 -

Session Facade pattern. More importantly, Value Object Assembler 

constructs composite value objects that are immutable. Therefore, the client 

receiving this composite value object can only use the data for its 

presentation and processing purposes. The client cannot update the value 

object. If the client needs to update the business objects that derive the 

composite value object, it may have to access the Session Facade (session 

bean) that provides that business service. 

• Data Access Object 

A possible strategy for the Value Object Assembler involves obtaining data 

for the composite value object from the persistent store without enterprise 

bean involvement. The Data Access Object pattern can be applied, thus 

leveraging its benefits to provide persistent storage access to the Value 

Object Assembler. 

• Service Locator 

The Value Object Assembler needs to locate and use various business 

objects. The Service Locator pattern can be used in conjunction with the 

Value Object Assembler pattern whenever a business object or a service 

needs to be located. 

Value List Handler 

Context 

The client requires a list of items from the service for presentation. The number of 

items in the list is unknown and can be quite large in many instances. 

Problem 

Most J2EE applications have a search and query requirement to search and list 

certain data. In some cases, such a search and query operation could yield results 

that can be quite large. It is impractical to return the full result set when the client's 

requirements are to traverse the results, rather than process the complete set. 

Typically, a client uses the results of a query for read-only purposes, such as 

displaying the result list. Often, the client views only the first few matching records, 

and then may discard the remaining records and attempt a new query. The search 

activity often does not involve an immediate transaction on the matching objects. 

The practice of getting a list of values represented in entity beans by calling an 

ejbFind() method, which returns a collection of remote objects, and then calling 



 - 339 -

each entity bean to get the value, is very network expensive and is considered a bad 

practice. 

There are consequences associated with using EJB finder methods that result in 

large results sets. Every container implementation has a certain amount of finder 

method overhead for creating a collection of EJBObject references. Finder method 

behavior performance varies, depending on a vendor's container implementation. 

According to the EJB specification, a container may invoke ejbActivate() methods 

on entities found by a finder method. At a minimum, a finder method returns the 

primary keys of the matching entities, which the container returns to the client as a 

collection of EJBObject references. This behavior applies for all container 

implementations. Some container implementations may introduce additional finder 

method overhead by associating the entity bean instances to these EJBObject 

instances to give the client access to those entity beans. However, this is a poor use 

of resources if the client is not interested in accessing the bean or invoking its 

methods. This overhead can significantly impede application performance if the 

application includes queries that produce many matching results. 

Forces 

• The application client needs an efficient query facility to avoid having to call 

the entity bean's ejbFind() method and invoking each remote object 

returned. 

• A server-tier caching mechanism is needed to serve clients that cannot 

receive and process the entire results set. 

• A query that is repeatedly executed on reasonably static data can be 

optimized to provide faster results. This depends on the application and on 

the implementation of this pattern. 

• EJB finder methods are not suitable for browsing entire tables in the 

database or for searching large result sets from a table. 

• Finder methods may have considerable overhead when used to find large 

numbers of result objects. The container may create a large number of 

infrastructure objects to facilitate the finders. 

• EJB finder methods are not suitable for caching results. The client may not be 

able to handle the entire result set in a single call. If so, the client may need 

server-side caching and navigation functions to traverse the result set. 

• EJB finder methods have predetermined query constructs and offer 

minimum flexibility. The EJB specification 2.0 allows a query language, EJB 

QL, for container-managed entity beans. EJB QL makes it easier to write 

portable finders and offers greater flexibility for querying. 

• Client wants to scroll forward and backward within a result set. 



 - 340 -

Solution 

Use a Value List Handler to control the search, cache the results, and 

provide the results to the client in a result set whose size and traversal 

meets the client's requirements. 

This pattern creates a ValueListHandler to control query execution functionality and 

results caching. The ValueListHandler directly accesses a DAO that can execute the 

required query. The ValueListHandler stores the results obtained from the DAO as a 

collection of value objects. The client requests the ValueListHandler to provide the 

query results as needed. The ValueListHandler implements an Iterator pattern [GoF] 

to provide the solution. 

Structure 

The class diagram in Figure 8.29 illustrates the Value List Handler pattern. 

Figure 8.29. Value List Handler Class Diagram 

 



 - 341 -

Participants and Collaborations 

The sequence diagram in Figure 8.30 shows the interactions for the Value List 

Handler. 

Figure 8.30. Value List Handler Sequence Diagram 

 

ValueListIterator 

This interface may provide iteration facility with the following example methods: 



 - 342 -

• getSize() obtains the size of the result set. 

• getCurrentElement()obtains the current value object from the list. 

• getPreviousElements(int howMany) obtains a collection of value objects 

that are in the list prior to the current element. 

• getNextElements(int howMany) obtains a collection of value objects that 

are in the list after the current element. 

• resetIndex() resets the index to the start of the list. 

Depending on the need, other convenience methods can be included to be part of 

the ValueListIterator interface. 

ValueListHandler 

This is a list handler object that implements the ValueListIterator interface. The 

ValueListHandler executes the required query when requested by the client. The 

ValueListHandler obtains the query results, which it manages in a privately held 

collection represented by the ValueList object. The ValueListHandler creates and 

manipulates the ValueList collection. When the client requests the results, the 

ValueListHandler obtains the value objects from the cached ValueList, creates a new 

collection of value objects, serializes the collection, and sends it back to the client. 

The ValueListHandler also tracks the current index and size of the list. 

DataAccessObject 

The ValueListHandler can make use of a DataAccessObject to keep separate the 

implementation of the database access. The DataAccessObject provides a simple 

API to access the database (or any other persistent store), execute the query, and 

retrieve the results. 

ValueList 

The ValueList is a collection (a list) that holds the results of the query. The results 

are stored as value objects. If the query fails to return any matching results, then 

this list is empty. The ValueListHandler session bean caches ValueList to avoid 

repeated, unnecessary execution of the query. 

ValueObject 

The ValueObject represents an object view of the individual record from the query's 

results. It is an immutable serializable object that provides a placeholder for the 

data attributes of each record. 



 - 343 -

Strategies 

Java Object Strategy 

The ValueListHandler can be implemented as an arbitrary Java object. In this case, 

the ValueListHandler can be used by any client that needs the listing functionality. 

For applications that do not use enterprise beans, this strategy is useful. For 

example, simpler applications may be built using servlets, JSPs, Business Delegates, 

and DAOs. In this scenario, the Business Delegates can use a ValueListHandler 

implemented as a Java object to obtain list of values. 

Stateful Session Bean Strategy 

When an application uses enterprise beans in the business tier, it may be preferable 

to implement a session bean that uses the ValueListHandler. In this case, the 

session bean simply fronts an instance of a ValueListHandler. Thus, the session 

bean may be implemented as a stateful session bean to hold on to the list handler as 

its state, and thus may simply act as a facade (see “Session Facade”) or as a pro 

Consequences 

• Provides Alternative to EJB Finders for Large Queries 

Typically, an EJB finder method is a resource-intensive and an expensive 

way of obtaining a list of items, since it involves a number of EJBObject 

references. The Value List Handler implements a session bean that uses a 

DAO to perform the query and to create a collection of value objects that 

match the query criteria. Because value objects have relatively low overhead 

compared to EJBObject references and their associated infrastructure, this 

pattern provides benefits when application clients require queries resulting 

in large result sets. 

• Caches Query Results on Server Side 

The result set obtained from a query execution needs to be cached when a 

client must display the results in small subsets rather than in one large list. 

However, not all browser-based clients can perform such caching. When 

they cannot, the server must provide this functionality. The Value List 

Handler pattern provides a caching facility in the Value List Handler session 

bean to hold the result set obtained from a query execution. The result set is 

a collection of value objects that can be serialized if required. 



 - 344 -

When the client requests a collection, or a subset of a collection, the handler 

bean returns the requested results as a serialized collection of value objects. 

The client receives the collection and now has a local copy of the requested 

information, which the client can display or process. When the client needs 

an additional subset of the results, it requests the handler to return another 

serialized collection containing the required results. The client can process 

the query results in smaller, manageable chunks. The handler bean also 

provides the client with navigation facilities (previous and next) so that the 

results may be traversed forward and backward as necessary. 

• Provides Better Querying Flexibility 

Adding a new query may require creating a new finder method or modifying 

an existing method, especially when using bean-managed entity beans. 

(With bean-managed entity beans, the developer implements the finder 

methods in the bean implementation.) With a container-managed entity 

bean, the deployer specifies the entity bean finder methods in the bean's 

deployment descriptor. Changes to a query for a container-managed bean 

require changes to the finder method specification in the deployment 

descriptor. Therefore, finder methods are ill-suited to handle query 

requirements that change dynamically. You can implement a Value List 

Handler to be more flexible than EJB finder methods by providing ad hoc 

query facilities, constructing runtime query arguments using template 

methods, and so forth. In other words, a Value List Handler developer can 

implement intelligent searching and caching algorithms without being 

limited by the finder methods. 

• Improves Network Performance 

Network performance may improve because only requested data, rather 

than all data, is shipped (serialized) to the client on an as-needed basis. If 

the client displays the first few results and then abandons the query, the 

network bandwidth is not wasted, since the data is cached on the server side 

and never sent to the client. However, if the client processes the entire result 

set, it makes multiple remote calls to the server for the result set. When the 

client knows in advance that it needs the entire result set, the handler bean 

can provide a method that sends the client the entire result set in one 

method call, and the pattern's caching feature is not used. 

• Allows Deferring Entity Bean Transactions 

Caching results on the server side and minimizing finder overhead may 

improve transaction management. When the client is ready to further 

process an entity bean, it accesses the bean within a transaction context 

defined by the use case. For example, a query to display a list of books uses 



 - 345 -

a Value List Handler to obtain the list. When the user wants to view a book in 

detail, it involves the book's entity bean in a transaction. 

Sample Code 

Implementing the Value List Handler as a Java Object 

Consider an example where a list of Project business objects are to be retrieved and 

displayed. The Value List Handler pattern can be applied in this case. The sample 

code for this implementation is listed in Example 8.29 as ProjectListHandler, which 

is responsible to provide the list of Projects. This class extends the 

ValueListHandler base class, which provides the generic iteration functionality for 

all Value List Handler implementations in this application. The ValueListHandler 

sample code is listed in Example 8.30. The ValueListHandler implements the 

generic iterator interface ValueListIterator, which is shown in Example 8.32. The 

relevant code sample from the data access object ProjectDAO, used by 

ValueListHandler to execute the query and obtain matching results, is shown in 

Example 8.31. 

Example 8.29 Implementing Value List Handler 

Pattern 

package corepatterns.apps.psa.handlers; 

 

import java.util.*; 

import corepatterns.apps.psa.dao.*; 

import corepatterns.apps.psa.util.*; 

import corepatterns.apps.psa.core.*; 

 

public class ProjectListHandler 

extends ValueListHandler { 

 

  private ProjectDAO dao = null; 

  // use ProjectVO as a template to determine 

  // search criteria 

  private ProjectVO projectCriteria = null; 

 

  // Client creates a ProjectVO instance, sets the 

  // values to use for search criteria and passes 

  // the ProjectVO instance as projectCriteria 

  // to the constructor and to setCriteria() method 



 - 346 -

  public ProjectListHandler(ProjectVO projectCriteria) 

  throws ProjectException, ListHandlerException { 

    try { 

      this.projectCriteria = projectCriteria; 

      this.dao = PSADAOFactory.getProjectDAO(); 

      executeSearch(); 

    } catch (Exception e) { 

      // Handle exception, throw ListHandlerException 

    } 

  } 

 

  public void setCriteria(ProjectVO projectCriteria) { 

    this.projectCriteria = projectCriteria; 

  } 

 

  // executes search. Client can invoke this 

  // provided that the search criteria has been 

  // properly set. Used to perform search to refresh 

  // the list with the latest data. 

  public void executeSearch() 

  throws ListHandlerException { 

    try { 

      if (projectCriteria == null) { 

        throw new ListHandlerException( 

          "Project Criteria required..."); 

      } 

      List resultsList = 

        dao.executeSelect(projectCriteria); 

      setList(resultsList); 

    } catch (Exception e) { 

      // Handle exception, throw ListHandlerException 

    } 

  } 

} 

The Value List Handler is a generic iterator class that provides the iteration 

functionality. 

Example 8.30 Implementing Generic 

ValueListHandler class 

package corepatterns.apps.psa.util; 

 



 - 347 -

import java.util.*; 

 

public class ValueListHandler 

implements ValueListIterator { 

 

  protected List list; 

  protected ListIterator listIterator; 

 

  public ValueListHandler() { 

  } 

 

  protected void setList(List list) 

  throws IteratorException { 

    this.list = list; 

    if(list != null) 

      listIterator =  list.listIterator(); 

    else 

      throw new IteratorException("List empty"); 

  } 

 

  public Collection getList(){ 

    return list; 

  } 

 

  public int getSize() throws IteratorException{ 

    int size = 0; 

 

    if (list != null) 

      size = list.size(); 

    else 

      throw new IteratorException(...); //No Data 

 

    return size; 

  } 

 

  public Object getCurrentElement() 

  throws IteratorException { 

 

    Object obj = null; 

    // Will not advance iterator 

    if (list != null) 

    { 

      int currIndex = listIterator.nextIndex(); 

      obj = list.get(currIndex); 

    } 



 - 348 -

    else 

      throw new IteratorException(...); 

    return obj; 

 

  } 

 

  public List getPreviousElements(int count) 

  throws IteratorException { 

    int i = 0; 

    Object object = null; 

    LinkedList list = new LinkedList(); 

    if (listIterator != null) { 

      while (listIterator.hasPrevious() && (i < 

  count)){ 

        object = listIterator.previous(); 

        list.add(object); 

        i++; 

      } 

    }// end if 

    else 

      throw new IteratorException(...); // No data 

 

    return list; 

  } 

 

  public List getNextElements(int count) 

  throws IteratorException { 

    int i = 0; 

    Object object = null; 

    LinkedList list = new LinkedList(); 

    if(listIterator != null){ 

      while(  listIterator.hasNext() && (i < count) ){ 

        object = listIterator.next(); 

        list.add(object); 

        i++; 

      } 

    } // end if 

    else 

      throw new IteratorException(...); // No data 

    return list; 

  } 

 

  public void resetIndex() throws IteratorException{ 

    if(listIterator != null){ 

      listIterator = list.ListIterator(); 



 - 349 -

    } 

    else 

      throw new IteratorException(...); // No data 

  } 

  ... 

} 

Example 8.31 ProjectDAO class 

package corepatterns.apps.psa.dao; 

 

public class ProjectDAO { 

  final private String tableName = "PROJECT"; 

 

  // select statement uses fields 

  final private String fields = "project_id, name," + 

      "project_manager_id, start_date, end_date, " + 

      " started, completed, accepted, acceptedDate," + 

      " customer_id, description, status"; 

 

  // the methods relevant to the ValueListHandler 

  // are shown here. 

  // See Data Access Object pattern for other details. 

  ... 

  private List executeSelect(ProjectVO projCriteria) 

  throws SQLException { 

 

    Statement stmt= null; 

    List list = null; 

    Connection con = getConnection(); 

    StringBuffer selectStatement = new StringBuffer(); 

    selectStatement.append("SELECT "+ fields + 

          " FROM " + tableName + "where 1=1"); 

 

    // append additional conditions to where clause 

    // depending on the values specified in 

    // projCriteria 

    if (projCriteria.projectId != null) { 

      selectStatement.append (" AND PROJECT_ID = '" + 

        projCriteria.projectId + "'"); 

    } 

    // check and add other fields to where clause 

    ... 

 



 - 350 -

    try { 

      stmt = con.prepareStatement(selectStatement); 

      stmt.setString(1, resourceID); 

      ResultSet rs = stmt.executeQuery(); 

      list = prepareResult(rs); 

      stmt.close(); 

    } 

    finally { 

      con.close(); 

    } 

    return list; 

  } 

 

  private List prepareResult(ResultSet rs) 

  throws SQLException { 

    ArrayList list = new ArrayList(); 

    while(rs.next()) { 

      int i = 1; 

      ProjectVO proj = new 

        ProjectVO(rs.getString(i++)); 

      proj.projectName = rs.getString(i++); 

      proj.managerId = rs.getString(i++); 

      proj.startDate = rs.getDate(i++); 

      proj.endDate = rs.getDate(i++); 

      proj.started = rs.getBoolean(i++); 

      proj.completed = rs.getBoolean(i++); 

      proj.accepted = rs.getBoolean(i++); 

      proj.acceptedDate = rs.getDate(i++); 

      proj.customerId = rs.getString(i++); 

      proj.projectDescription = rs.getString(i++); 

      proj.projectStatus = rs.getString(i++); 

      list.add(proj); 

 

    } 

    return list; 

  } 

  ... 

} 

Example 8.32 ValueListIterator class 

package corepatterns.apps.psa.util; 

 

import java.util.List; 



 - 351 -

 

public interface ValueListIterator { 

 

  public int getSize() 

    throws IteratorException; 

 

  public Object getCurrentElement() 

    throws IteratorException; 

 

  public List getPreviousElements(int count) 

    throws IteratorException; 

 

  public List getNextElements(int count) 

    throws IteratorException; 

 

  public void resetIndex() 

    throws IteratorException; 

 

  // other common methods as required 

  ... 

} 

Related Patterns 

• Iterator [GoF] 

This Value List Handler pattern is based on Iterator pattern, described in the 

GoF book, Design Patterns: Elements of Reusable Object-Oriented Software. 

• Session Facade 

Since the Value List Handler is a session bean, it may appear as a specialized 

Session Facade. However, in isolation, it is a specialized session bean rather 

than a specialized Session Facade. A Session Facade has other motivations 

and characteristics (explained in the Session Facade pattern), and it is much 

coarser grained. 

Service Locator 

Context 

Service lookup and creation involves complex interfaces and network operations. 



 - 352 -

Problem 

J2EE clients interact with service components, such as EJB and JMS components, 

which provide business services and persistence capabilities. To interact with these 

components, clients must either locate the service component (referred to as a 

lookup operation) or create a new component. For instance, an EJB client must 

locate the enterprise bean's home object, which the client then uses either to find an 

object or to create or remove one or more enterprise beans. Similarly, a JMS client 

must first locate the JMS Connection Factory to obtain a JMS Connection or a JMS 

Session. 

All J2EE application clients use the JNDI common facility to look up and create EJB 

and JMS components. The JNDI API enables clients to obtain an initial context object 

that holds the component name to object bindings. The client begins by obtaining 

the initial context for a bean's home object. The initial context remains valid while 

the client session is valid. The client provides the JNDI registered name for the 

required object to obtain a reference to an administered object. In the context of an 

EJB application, a typical administered object is an enterprise bean's home object. 

For JMS applications, the administered object can be a JMS Connection Factory (for 

a Topic or a Queue) or a JMS Destination (a Topic or a Queue). 

So, locating a JNDI-administered service object is common to all clients that need to 

access that service object. That being the case, it is easy to see that many types of 

clients repeatedly use the JNDI service, and the JNDI code appears multiple times 

across these clients. This results in an unnecessary duplication of code in the clients 

that need to look up services. 

Also, creating a JNDI initial context object and performing a lookup on an EJB home 

object utilizes significant resources. If multiple clients repeatedly require the same 

bean home object, such duplicate effort can negatively impact application 

performance. 

Let us examine the lookup and creation process for various J2EE components. 

1. The lookup and creation of enterprise beans relies upon the following: 

o A correct setup of the JNDI environment so that it connects to the 

naming and directory service used by the application. Setup entails 

providing the location of the naming service and the necessary 

authentication credentials to access that service. 

o The JNDI service can then provide the client with an initial context 

that acts as a placeholder for the component name-to-object 

bindings. The client requests this initial context to look up the 

EJBHome object for the required enterprise bean by providing the 

JNDI name for that EJBHome object. 



 - 353 -

o Find the EJBHome object using the initial context's lookup 

mechanism. 

o After obtaining the EJBHome object, create, remove, or find the 

enterprise bean, using the EJBHome object's create, move, and find 

(for entity beans only). 

2. The lookup and creation of JMS components (Topic, Queue, 

QueueConnection, QueueSession, TopicConnection, TopicSession, and so 

forth) involves the following steps. Note that in these steps, Topic refers to 

the publish/subscribe messaging model and Queue refers to the 

point-to-point messaging model. 

o Set up the JNDI environment to the naming service used by the 

application. Setup entails providing the location of the naming service 

and the necessary authentication credentials to access that service. 

o Obtain the initial context for the JMS service provider from the JNDI 

naming service. 

o Use the initial context to obtain a Topic or a Queue by supplying the 

JNDI name for the topic or the queue. Topic and Queue are 

JMSDestination objects. 

o Use the initial context to obtain a TopicConnectionFactory or a 

QueueConnectionFactory by supplying the JNDI name for the topic or 

queue connection factory. 

o Use the TopicConnectionFactory to obtain a TopicConnection or 

QueueConnectionFactory to obtain a QueueConnection. 

o Use the TopicConnection to obtain a TopicSession or a 

QueueConnection to obtain a QueueSession. 

o Use the TopicSession to obtain a TopicSubscriber or a TopicPublisher 

for the required Topic. Use the QueueSession to obtain a 

QueueReceiver or a QueueSender for the required Queue. 

The process to look up and create components involves a vendor-supplied context 

factory implementation. This introduces vendor dependency in the application 

clients that need to use the JNDI lookup facility to locate the enterprise beans and 

JMS components, such as topics, queues, and connection factory objects. 

Forces 

• EJB clients need to use the JNDI API to look up EJBHome objects by using the 

enterprise bean's registered JNDI name. 

• JMS clients need to use JNDI API to look up JMS components by using the 

JNDI names registered for JMS components, such as connection factories, 

queues, and topics. 

• The context factory to use for the initial JNDI context creation is provided by 

the service provider vendor and is therefore vendor- dependent. The context 



 - 354 -

factory is also dependent on the type of object being looked up. The context 

for JMS is different from the context for EJB, with different providers. 

• Lookup and creation of service components could be complex and may be 

used repeatedly in multiple clients in the application. 

• Initial context creation and service object lookups, if frequently required, can 

be resource-intensive and may impact application performance. This is 

especially true if the clients and the services are located in different tiers. 

• EJB clients may need to reestablish connection to a previously accessed 

enterprise bean instance, having only its Handle object. 

Solution 

Use a Service Locator object to abstract all JNDI usage and to hide the 

complexities of initial context creation, EJB home object lookup, and EJB 

object re-creation. Multiple clients can reuse the Service Locator object to 

reduce code complexity, provide a single point of control, and improve 

performance by providing a caching facility. 

This pattern reduces the client complexity that results from the client's dependency 

on and need to perform lookup and creation processes, which are 

resource-intensive. To eliminate these problems, this pattern provides a 

mechanism to abstract all dependencies and network details into the Service 

Locator. 

Structure 

Figure 8.31 shows the class diagram representing the relationships for the Service 

Locator pattern. 



 - 355 -

Figure 8.31. Service Locator class diagram 

 

Participants and Responsibilities 

Figure 8.32 contains the sequence diagram that shows the interaction between the 

various participants of the Service Locator pattern. 

Figure 8.32. Service Locator Sequence diagram 

 



 - 356 -

Client 

This is the client of the Service Locator. The client is an object that typically requires 

access to business objects such as a Business Delegate (see “Business Delegate” ) 

Service Locator 

The Service Locator abstracts the API lookup (naming) services, vendor 

dependencies, lookup complexities, and business object creation, and provides a 

simple interface to clients. This reduces the client's complexity. In addition, the 

same client or other clients can reuse the Service Locator. 

InitialContext 

The InitialContext object is the start point in the lookup and creation process. 

Service providers provide the context object, which varies depending on the type of 

business object provided by the Service Locator's lookup and creation service. A 

Service Locator that provides services for multiple types of business objects (such 

as enterprise beans, JMS components, and so forth) utilizes multiple types of 

context objects, each obtained from a different provider (e.g., context provider for 

an EJB application server may be different from the context provider for JMS 

service). 

ServiceFactory 

The ServiceFactory object represents an object that provides life cycle management 

for the BusinessService objects. The ServiceFactory object for enterprise beans is 

an EJBHome object. The ServiceFactory for JMS components can be a JMS 

ConnectionFactory object, such as a TopicConnectionFactory (for publish/subscribe 

messaging model) or a QueueConnectionFactory (for point-to-point messaging 

model). 

BusinessService 

The BusinessService is a role that is fulfilled by the service the client is seeking to 

access. The BusinessService object is created or looked up or removed by the 

ServiceFactory. The BusinessService object in the context of an EJB application is an 

enterprise bean. The BusinessService object in the context of a JMS application can 

be a TopicConnection or a QueueConnection. The TopicConnection and 

QueueConnection can then be used to produce a JMSSession object, such as 

TopicSession or a QueueSession respectively. 



 - 357 -

Strategies 

EJB Service Locator Strategy 

The Service Locator for enterprise bean components uses EJBHome object, shown 

as BusinessHome in the role of the ServiceFactory. Once the EJBHome object is 

obtained, it can be cached in the ServiceLocator for future use to avoid another JNDI 

lookup when the client needs the home object again. Depending on the 

implementation, the home object can be returned to the client, which can then use 

it to look up, create, and remove enterprise beans. Otherwise, the ServiceLocator 

can retain (cache) the home object and gain the additional responsibility of proxying 

all client calls to the home object. The class diagram for the EJB Service Locator 

strategy is shown in Figure 8.33 

Figure 8.33. EJB Service Locator Strategy class 

diagram 

 

The interaction between the participants in a Service Locator for an enterprise bean 

is shown in Figure 8.34. 



 - 358 -

Figure 8.34. EJB Service Locator Strategy sequence 

diagram 

 

JMS Queue Service Locator Strategy 

This strategy is applicable to point-to-point messaging requirements. The Service 

Locator for JMS components uses QueueConnectionFactory objects in the role of the 

ServiceFactory. The QueueConnectionFactory is looked up using its JNDI name. The 

QueueConnectionFactory can be cached by the ServiceLocator for future use. This 

avoids repeated JNDI calls to look it up when the client needs it again. The 

ServiceLocator may otherwise hand over the QueueConnectionFactory to the client. 

The Client can then use it to create a QueueConnection. A QueueConnection is 

necessary in order to obtain a QueueSession or to create a Message, a QueueSender 

(to send messages to the queue), or a QueueReceiver (to receive messages from a 

queue). The class diagram for the JMS Queue Service Locator strategy is shown in 

Figure 8.35. In this diagram, the Queue is a JMS Destination object registered as a 

JNDI-administered object representing the queue. The Queue object can be directly 

obtained from the context by looking it up using its JNDI name. 



 - 359 -

Figure 8.35. JMS Queue Service Locator strategy 

class diagram 

 

The interaction between the participants in a Service Locator for point-to-point 

messaging using JMS Queues is shown in Figure 8.36. 



 - 360 -

Figure 8.36. JMS Queue Service Locator Strategy 

sequence diagram 

 

JMS Topic Service Locator Strategy 

This strategy is applicable to publish/subscribe messaging requirements. The 

Service Locator for JMS components uses TopicConnectionFactory objects in the 

role of the ServiceFactory. The TopicConnectionFactory is looked up using its JNDI 

name. The TopicConnectionFactory can be cached by the ServiceLocator for future 

use. This avoids repeated JNDI calls to look it up when the client needs it again. The 

ServiceLocator may otherwise hand over the TopicConnectionFactory to the client. 

The Client can then use it to create a TopicConnection. A TopicConnection is 

necessary in order to obtain a TopicSession or to create a Message, a TopicPublisher 

(to publish messages to a topic), or a TopicSubscriber (to subscribe to a topic). The 

class diagram for the JMS Topic Service Locator strategy is shown in Figure 8.37. In 

this diagram, the Topic is a JMS Destination object registered as a 

JNDI-administered object representing the topic. The Topic object can be directly 

obtained from the context by looking it up using its JNDI name 



 - 361 -

Figure 8.37. JMS Topic Service Locator strategy 

 

The interaction between the participants in a Service Locator for publish/subscribe 

messaging using JMS Topics is shown in Figure 8.38. 

Figure 8.38. JMS Topic Service Locator Strategy 

sequence diagram 

 



 - 362 -

Combined EJB and JMS Service Locator Strategy 

These strategies for EJB and JMS can be used to provide separate Service Locator 

implementations, since the clients for EJB and JMS may more likely be mutually 

exclusive. However, if there is a need to combine these strategies, it is possible to 

do so to provide the Service Locator for all objects—enterprise beans and JMS 

components. 

Type Checked Service Locator Strategy 

The diagrams in Figures 8.37 and 8.38 provide lookup facilities by passing in the 

service lookup name. For an enterprise bean lookup, the Service Locator needs a 

class as a parameter to the PortableRemoteObject.narrow() method. The Service 

Locator can provide a getHome() method, which accepts as arguments the JNDI 

service name and the EJBHome class object for the enterprise bean. Using this 

method of passing in JNDI service names and EJBHome class objects can lead to 

client errors. Another approach is to statically define the services in the 

ServiceLocator, and instead of passing in string names, the client passes in a 

constant. Example 8.34 illustrates such a strategy 

This strategy has trade-offs. It reduces the flexibility of lookup, which is in the 

Services Property Locator strategy, but add the type checking of passing in a 

constant to the ServiceLocator.getHome() method. 

Service Locator Properties Strategy 

This strategy helps to address the trade-offs of the type checking strategy. This 

strategy suggests the use of property files and/or deployment descriptors to specify 

the JNDI names and the EJBHome class name. For presentation-tier clients, such 

properties can be specified in the presentation-tier deployment descriptors or 

property files. When the presentation tier accesses the business tier, it typically 

uses the Business Delegate pattern. 

The Business Delegate interacts with the Service Locator to locate business 

components. If the presentation tier loads the properties on initialization and can 

provide a service to hand out the JNDI names and the EJB class names for the 

required enterprise bean, then the Business Delegate could request this service to 

obtain them. Once the Business Delegate has the JNDI name and the EJBHome 

Class name, it can request the Service Locator for the EJBHome by passing these 

properties as arguments. 

The Service Locator can in turn use Class.forName(EJBHome ClassName) to obtain 

the EJBHome Class object and go about its business of looking up the EJBHome and 



 - 363 -

using the Portable RemoteObject.narrow() method to cast the object, as shown 

by the getHome() method in the ServiceLocator sample code in Example 8.33. The 

only thing that changes is where the JNDI name and the Class objects are coming 

from. Thus, this strategy avoids hardcoded JNDI names in the code and provides for 

flexibility of deployment. However, due to the lack of type checking, there is scope 

for avoiding errors and mismatches in specifying the JNDI names in different 

deployment descriptors. 

Consequences 

• Abstracts Complexity 

The Service Locator pattern encapsulates the complexity of this lookup and 

creation process (described in the problem) and keeps it hidden from the 

client. The client does not need to deal with the lookup of component factory 

objects (EJBHome, QueueConnectionFactory, and TopicConnectionFactory, 

among others) because the ServiceLocator is delegated that responsibility. 

• Provides Uniform Service Access to Clients 

The Service Locator pattern abstracts all the complexities, as explained 

previously. In doing so, it provides a very useful and precise interface that all 

clients can use. The pattern interface ensures that all types of clients in the 

application uniformly access business objects, in terms of lookup and 

creation. This uniformity reduces development and maintenance overhead. 

• Facilitates Adding New Business Components 

Because clients of enterprise beans are not aware of the EJBHome objects, 

it's possible to add new EJBHome objects for enterprise beans developed and 

deployed at a later time without impacting the clients. JMS clients are not 

directly aware of the JMS connection factories, so new connection factories 

can be added without impacting the clients. 

• Improves Network Performance 

The clients are not involved in JNDI lookup and factory/home object creation. 

Because the Service Locator performs this work, it can aggregate the 

network calls required to look up and create business objects. 

• Improves Client Performance by Caching 

The Service Locator can cache the initial context objects and references to 

the factory objects (EJBHome, JMS connection factories) to eliminate 



 - 364 -

unnecessary JNDI activity that occurs when obtaining the initial context and 

the other objects. This improves the application performance. 

Sample Code 

Implementing Service Locator Pattern 

A sample implementation of the Service Locator pattern is shown in Example 8.33. 

An example for implementing the Type Checked Service Locator strategy is listed in 

Example 8.34 

Example 8.33 Implementing Service Locator 

package corepatterns.apps.psa.util; 

import java.util.*; 

import javax.naming.*; 

import java.rmi.RemoteException; 

import javax.ejb.*; 

import javax.rmi.PortableRemoteObject; 

import java.io.*; 

 

public class ServiceLocator { 

  private static ServiceLocator me; 

  InitialContext context = null; 

 

  private ServiceLocator() 

  throws ServiceLocatorException { 

    try { 

      context = new InitialContext(); 

    } catch(NamingException ne) { 

      throw new ServiceLocatorException(...); 

    } 

  } 

 

  // Returns the instance of ServiceLocator class 

  public static ServiceLocator getInstance() 

  throws ServiceLocatorException { 

    if (me == null) { 

      me = new ServiceLocator(); 

    } 

    return me; 

  } 



 - 365 -

 

  // Converts the serialized string into EJBHandle 

  // then to EJBObject. 

  public EJBObject getService(String id) 

  throws ServiceLocatorException { 

    if (id == null) { 

      throw new ServiceLocatorException(...); 

    } 

    try { 

      byte[] bytes = new String(id).getBytes(); 

      InputStream io = new 

        ByteArrayInputStream(bytes); 

      ObjectInputStream os = new 

        ObjectInputStream(io); 

      javax.ejb.Handle handle = 

        (javax.ejb.Handle)os.readObject(); 

      return handle.getEJBObject(); 

    } catch(Exception ex) { 

      throw new ServiceLocatorException(...); 

    } 

  } 

 

  // Returns the String that represents the given 

  // EJBObject's handle in serialized format. 

  protected String getId(EJBObject session) 

  throws ServiceLocatorException { 

    try { 

      javax.ejb.Handle handle = session.getHandle(); 

      ByteArrayOutputStream fo = new 

        ByteArrayOutputStream(); 

      ObjectOutputStream so = new 

        ObjectOutputStream(fo); 

      so.writeObject(handle); 

      so.flush(); 

      so.close(); 

      return new String(fo.toByteArray()); 

    } catch(RemoteException ex) { 

      throw new ServiceLocatorException(...); 

    } catch(IOException ex) { 

      throw new ServiceLocatorException(...); 

    } 

    return null; 

  } 

 

  // Returns the EJBHome object for requested service 



 - 366 -

  // name. Throws ServiceLocatorException If Any Error 

  // occurs in lookup 

  public EJBHome getHome(String name, Class clazz) 

  throws ServiceLocatorException { 

    try { 

      Object objref = context.lookup(name); 

      EJBHome home = (EJBHome) 

        PortableRemoteObject.narrow(objref, clazz); 

      return home; 

    } catch(NamingException ex) { 

      throw new ServiceLocatorException(...); 

    } 

  } 

} 

Implementing Type Checked Service Locator 

Strategy 

Example 8.34 Implementing Type Checked Service 

Locator Strategy 

package corepatterns.apps.psa.util; 

// imports 

... 

 

public class ServiceLocator { 

  // singleton's private instance 

  private static ServiceLocator me; 

 

  static { 

    me = new ServiceLocator(); 

  } 

 

  private ServiceLocator() {} 

 

  // returns the Service Locator instance 

  static public ServiceLocator getInstance() { 

    return me; 

  } 

 

 



 - 367 -

  // Services Constants Inner Class - service objects 

  public class Services { 

    final public static int PROJECT  = 0; 

    final public static int RESOURCE = 1; 

  } 

 

  // Project EJB related constants 

  final static Class  PROJECT_CLASS = 

  ProjectHome.class; 

  final static String PROJECT_NAME  = "Project"; 

 

  // Resource EJB related constants 

 

  final static Class  RESOURCE_CLASS = 

    ResourceHome.class; 

  final static String RESOURCE_NAME  = "Resource"; 

 

  // Returns the Class for the required service 

  static private Class getServiceClass(int service){ 

    switch( service ) { 

      case Services.PROJECT: 

       return PROJECT_CLASS; 

      case Services.RESOURCE: 

       return RESOURCE_CLASS; 

    } 

    return null; 

  } 

 

  // returns the JNDI name for the required service 

  static private String getServiceName(int service){ 

    switch( service ) { 

      case Services.PROJECT: 

        return PROJECT_NAME; 

      case Services.RESOURCE: 

        return RESOURCE_NAME; 

    } 

    return null; 

  } 

 

  /* gets the EJBHome for the given service using the 

  ** JNDI name and the Class for the EJBHome 

  */ 

  public EJBHome getHome( int s ) 

    throws ServiceLocatorException { 

    EJBHome home = null; 



 - 368 -

    try { 

        Context initial  = new InitialContext(); 

 

      // Look up using the service name from 

      // defined constant 

      Object objref = 

        initial.lookup(getServiceName(s)); 

 

      // Narrow using the EJBHome Class from 

      // defined constant 

      Object obj = PortableRemoteObject.narrow( 

                objref, getServiceClass(s)); 

      home = (EJBHome)obj; 

    } 

    catch( NamingException ex ) { 

        throw new ServiceLocatorException(...); 

    } 

    catch( Exception ex ) { 

        throw new ServiceLocatorException(...); 

    } 

    return home; 

  } 

} 

The client code to use the Service Locator for this strategy may look like the code in 

Example 8.35. 

Example 8.35 Client Code for Using the Service 

Locator 

public class ServiceLocatorTester { 

  public static void main( String[] args ) { 

    ServiceLocator serviceLocator = 

      ServiceLocator.getInstance(); 

    try { 

      ProjectHome projectHome = (ProjectHome) 

        serviceLocator.getHome( 

          ServiceLocator.Services.PROJECT ); 

    } 

    catch( ServiceException ex ) { 

      // client handles exception 

      System.out.println( ex.getMessage( )); 

    } 



 - 369 -

  } 

} 

This strategy is about applying type checking to client lookup. It encapsulates the 

static service values inside the ServiceLocator and creates an inner class Services, 

which declares the service constants (PROJECT and RESOURCE). The Tester client 

gets an instance to the ServiceLocator singleton and calls getHome(), passing in the 

PROJECT. ServiceLocator in turn gets the JNDI entry name and the Home class and 

returns the EJBHome. 

Related Patterns 

• Business Delegate 

The Business Delegate pattern uses Service Locator to gain access to the 

business service objects such as EJB objects, JMS topics, and JMS queues. 

This separates the complexity of service location from the Business Delegate, 

leading to loose coupling and increased manageability. 

• Session Facade 

The Session Facade pattern uses Service Locator to gain access to the 

enterprise beans that are involved in a workflow. The Session Facade could 

directly use the Service Locator or delegate the work to a Business Delegate 

(See “Business Delegate” .). 

• Value Object Assembler  

The Value Object Assembler pattern uses Service Locator to gain access to 

the various enterprise beans it needs to access to build its composite value 

object. The Value Object Assembler could directly use the Service Locator or 

delegate the work to a Business Delegate (See “Business Delegate”.) 



 - 370 -

Chapter 9. INTEGRATION TIER 

PATTERNS 

Topics in This Chapter 

• Data Access Object 

• Service Activator 



 - 371 -

Data Access Object 

Context 

Access to data varies depending on the source of the data. Access to persistent 

storage, such as to a database, varies greatly depending on the type of storage 

(relational databases, object-oriented databases, flat files, and so forth) and the 

vendor implementation. 

Problem 

Many real-world J2EE applications need to use persistent data at some point. For 

many applications, persistent storage is implemented with different mechanisms, 

and there are marked differences in the APIs used to access these different 

persistent storage mechanisms. Other applications may need to access data that 

resides on separate systems. For example, the data may reside in mainframe 

systems, Lightweight Directory Access Protocol (LDAP) repositories, and so forth. 

Another example is where data is provided by services through external systems 

such as business-to-business (B2B) integration systems, credit card bureau service, 

and so forth. 

Typically, applications use shared distributed components such as entity beans to 

represent persistent data. An application is considered to employ bean-managed 

persistence (BMP) for its entity beans when these entity beans explicitly access the 

persistent storage—the entity bean includes code to directly access the persistent 

storage. An application with simpler requirements may forego using entity beans 

and instead use session beans or servlets to directly access the persistent storage to 

retrieve and modify the data. Or, the application could use entity beans with 

container-managed persistence, and thus let the container handle the transaction 

and persistent details. 

Applications can use the JDBC API to access data residing in a relational database 

management system (RDBMS). The JDBC API enables standard access and 

manipulation of data in persistent storage, such as a relational database. JDBC 

enables J2EE applications to use SQL statements, which are the standard means for 

accessing RDBMS tables. However, even within an RDBMS environment, the actual 

syntax and format of the SQL statements may vary depending on the particular 

database product. 

There is even greater variation with different types of persistent storage. Access 

mechanisms, supported APIs, and features vary between different types of 

persistent stores such as RDBMS, object-oriented databases, flat files, and so forth. 

Applications that need to access data from a legacy or disparate system (such as a 



 - 372 -

mainframe, or B2B service) are often required to use APIs that may be proprietary. 

Such disparate data sources offer challenges to the application and can potentially 

create a direct dependency between application code and data access code. When 

business components—entity beans, session beans, and even presentation 

components like servlets and helper objects for Java Server Pages (JSPs)—need to 

access a data source, they can use the appropriate API to achieve connectivity and 

manipulate the data source. But including the connectivity and data access code 

within these components introduces a tight coupling between the components and 

the data source implementation. Such code dependencies in components make it 

difficult and tedious to migrate the application from one type of data source to 

another. When the data source changes, the components need to be changed to 

handle the new type of data source. 

Forces 

• Components such as bean-managed entity beans, session beans, servlets, 

and other objects like helpers for JSPs need to retrieve and store information 

from persistent stores and other data sources like legacy systems, B2B, 

LDAP, and so forth. 

• Persistent storage APIs vary depending on the product vendor. Other data 

sources may have APIs that are nonstandard and/or proprietary. These APIs 

and their capabilities also vary depending on the type of storage—RDBMS, 

object-oriented database management system (OODBMS), XML documents, 

flat files, and so forth. There is a lack of uniform APIs to address the 

requirements to access such disparate systems. 

• Components typically use proprietary APIs to access external and/or legacy 

systems to retrieve and store data. 

• Portability of the components is directly affected when specific access 

mechanisms and APIs are included in the components. 

• Components need to be transparent to the actual persistent store or data 

source implementation to provide easy migration to different vendor 

products, different storage types, and different data source types. 

Solution 

Use a Data Access Object (DAO) to abstract and encapsulate all access to 

the data source. The DAO manages the connection with the data source to 

obtain and store data. 

The DAO implements the access mechanism required to work with the data source. 

The data source could be a persistent store like an RDBMS, an external service like 

a B2B exchange, a repository like an LDAP database, or a business service accessed 

via CORBA Internet Inter-ORB Protocol (IIOP) or low-level sockets. The business 



 - 373 -

component that relies on the DAO uses the simpler interface exposed by the DAO for 

its clients. The DAO completely hides the data source implementation details from 

its clients. Because the interface exposed by the DAO to clients does not change 

when the underlying data source implementation changes, this pattern allows the 

DAO to adapt to different storage schemes without affecting its clients or business 

components. Essentially, the DAO acts as an adapter between the component and 

the data source. 

Structure 

Figure 9.1 shows the class diagram representing the relationships for the DAO 

pattern. 

Figure 9.1. Data Access Object 

 

Participants and Responsibilities 

Figure 9.2 contains the sequence diagram that shows the interaction between the 

various participants in this pattern. 



 - 374 -

Figure 9.2. Data Access Object sequence diagram 

 

BusinessObject 

The BusinessObject represents the data client. It is the object that requires access 

to the data source to obtain and store data. A BusinessObject may be implemented 

as a session bean, entity bean, or some other Java object, in addition to a servlet or 

helper bean that accesses the data source. 

DataAccessObject 

The DataAccessObject is the primary object of this pattern. The DataAccessObject 

abstracts the underlying data access implementation for the BusinessObject to 

enable transparent access to the data source. The BusinessObject also delegates 

data load and store operations to the DataAccessObject. 



 - 375 -

DataSource 

This represents a data source implementation. A data source could be a database 

such as an RDBMS, OODBMS, XML repository, flat file system, and so forth. A data 

source can also be another system (legacy/mainframe), service (B2B service or 

credit card bureau), or some kind of repository (LDAP). 

ValueObject 

This represents a value object used as a data carrier. The DataAccessObject may 

use a value object to return data to the client. The DataAccessObject may also 

receive the data from the client in a value object to update the data in the data 

source. 

Strategies 

Automatic DAO Code Generation Strategy 

Since each BusinessObject corresponds to a specific DAO, it is possible to establish 

relationships between the BusinessObject, DAO, and underlying implementations 

(such as the tables in an RDBMS). Once the relationships are established, it is 

possible to write a simple application-specific code-generation utility that generates 

the code for all DAOs required by the application. The metadata to generate the 

DAO can come from a developer-defined descriptor file. Alternatively, the code 

generator can automatically introspect the database and provide the necessary 

DAOs to access the database. If the requirements for DAOs are sufficiently complex, 

consider using third-party tools that provide object-to-relational mapping for 

RDBMS databases. These tools typically include GUI tools to map the business 

objects to the persistent storage objects and thereby define the intermediary DAOs. 

The tools automatically generate the code once the mapping is complete, and may 

provide other value-added features such as results caching, query caching, 

integration with application servers, integration with other third-party products 

(e.g., distributed caching), and so forth. 

Factory for Data Access Objects Strategy 

The DAO pattern can be made highly flexible by adopting the Abstract Factory [GoF] 

and the Factory Method [GoF] patterns (see “Related Patterns” in this chapter). 

When the underlying storage is not subject to change from one implementation to 

another, this strategy can be implemented using the Factory Method pattern to 



 - 376 -

produce a number of DAOs needed by the application. The class diagram for this 

case is shown in Figure 9.3. 

Figure 9.3. Factory for Data Access Object strategy 

using Factory Method 

 

When the underlying storage is subject to change from one implementation to 

another, this strategy may be implemented using the Abstract Factory pattern. The 

Abstract Factory can in turn build on and use the Factory Method implementation, as 

suggested in Design Patterns: Elements of Reusable Object-Oriented Software 

[GoF]. In this case, this strategy provides an abstract DAO factory object (Abstract 

Factory) that can construct various types of concrete DAO factories, each factory 

supporting a different type of persistent storage implementation. Once you obtain 

the concrete DAO factory for a specific implementation, you use it to produce DAOs 

supported and implemented in that implementation. 

The class diagram for this strategy is shown in Figure 9.4. This class diagram shows 

a base DAO factory, which is an abstract class that is inherited and implemented by 

different concrete DAO factories to support storage implementation-specific access. 



 - 377 -

The client can obtain a concrete DAO factory implementation such as 

RdbDAOFactory and use it to obtain concrete DAOs that work with that specific 

storage implementation. For example, the data client can obtain an RdbDAOFactory 

and use it to get specific DAOs such as RdbCustomerDAO, RdbAccountDAO, and so 

forth. The DAOs can extend and implement a generic base class (shown as DAO1 

and DAO2) that specifically describe the DAO requirements for the business object 

it supports. Each concrete DAO is responsible for connecting to the data source and 

obtaining and manipulating data for the business object it supports. 

Figure 9.4. Factory for Data Access Object strategy 

using Abstract Factory 

 

The sample implementation for the DAO pattern and its strategies is shown in the 

“Sample Code” section of this chapter. 

The sequence diagram describing the interactions for this strategy is shown in 

Figure 9.5. 



 - 378 -

Figure 9.5. Factory for Data Access Objects using 

Abstract Factory sequence diagram 

 

Consequences 

• Enables Transparency 

Business objects can use the data source without knowing the specific details 

of the data source's implementation. Access is transparent because the 

implementation details are hidden inside the DAO. 

• Enables Easier Migration 

A layer of DAOs makes it easier for an application to migrate to a different 

database implementation. The business objects have no knowledge of the 

underlying data implementation. Thus, the migration involves changes only 

to the DAO layer. Further, if employing a factory strategy, it is possible to 

provide a concrete factory implementation for each underlying storage 

implementation. In this case, migrating to a different storage 



 - 379 -

implementation means providing a new factory implementation to the 

application. 

• Reduces Code Complexity in Business Objects 

Because the DAOs manage all the data access complexities, it simplifies the 

code in the business objects and other data clients that use the DAOs. All 

implementation-related code (such as SQL statements) is contained in the 

DAO and not in the business object. This improves code readability and 

development productivity. 

• Centralizes All Data Access into a Separate Layer 

Because all data access operations are now delegated to the DAOs, the 

separate data access layer can be viewed as the layer that can isolate the 

rest of the application from the data access implementation. This 

centralization makes the application easier to maintain and manage. 

• Not Useful for Container-Managed Persistence 

Because the EJB container manages entity beans with container-managed 

persistence (CMP), the container automatically services all persistent 

storage access. Applications using container-managed entity beans do not 

need a DAO layer, since the application server transparently provides this 

functionality. However, DAOs are still useful when a combination of CMP (for 

entity beans) and BMP (for session beans, servlets) is required. 

• Adds Extra Layer 

The DAOs create an additional layer of objects between the data client and 

the data source that need to be designed and implemented to leverage the 

benefits of this pattern. But the benefit realized by choosing this approach 

pays off for the additional effort. 

• Needs Class Hierarchy Design 

When using a factory strategy, the hierarchy of concrete factories and the 

hierarchy of concrete products produced by the factories need to be 

designed and implemented. This additional effort needs to be considered if 

there is sufficient justification warranting such flexibility. This increases the 

complexity of the design. However, you can choose to implement the factory 

strategy starting with the Factory Method pattern first, and then move 

towards the Abstract Factory if necessary. 



 - 380 -

Sample Code 

Implementing Data Access Object pattern 

An example DAO code for a persistent object that represents Customer information 

is shown in Example 9.4. The CloudscapeCustomerDAO creates a Customer value 

object when the findCustomer() method is invoked. 

The sample code to use the DAO is shown in Example 9.6. The class diagram for this 

example is shown in Figure 9.6. 

Figure 9.6. Implementing the DAO pattern 

 

Implementing Factory for Data Access Objects 

Strategy 

Using Factory Method Pattern 

Consider an example where we are implementing this strategy in which a DAO 

factory produces many DAOs for a single database implementation (e.g., Oracle). 

The factory produces DAOs such as CustomerDAO, AccountDAO, OrderDAO, and so 

forth. The class diagram for this example is shown in Figure 9.7. 



 - 381 -

Figure 9.7. Implementing the Factory for DAO 

strategy using Factory Method 

 

The example code for the DAO factory (CloudscapeDAOFactory) is listed in Example 

9.2. 

Using Abstract Factory Pattern 

Consider an example where we are considering implementing this strategy for three 

different databases. In this case, the Abstract Factory pattern can be employed. The 

class diagram for this example is shown in Figure 9.8. The sample code in Example 

9.1 shows code excerpt for the abstract DAOFactory class. This factory produces 

DAOs such as CustomerDAO, AccountDAO, OrderDAO, and so forth. This strategy 

uses the Factory Method implementation in the factories produced by the Abstract 

Factory. 



 - 382 -

Figure 9.8. Implementing the Factory for DAO 

strategy using Abstract Factory 

 

Example 9.1 Abstract DAOFactory Class 

// Abstract class DAO Factory 

public abstract class DAOFactory { 

 

  // List of DAO types supported by the factory 

  public static final int CLOUDSCAPE = 1; 

  public static final int ORACLE = 2; 

  public static final int SYBASE = 3; 

  ... 

 

  // There will be a method for each DAO that can be 

  // created. The concrete factories will have to 



 - 383 -

  // implement these methods. 

  public abstract CustomerDAO getCustomerDAO(); 

  public abstract AccountDAO getAccountDAO(); 

  public abstract OrderDAO getOrderDAO(); 

  ... 

 

  public static DAOFactory getDAOFactory( 

      int whichFactory) { 

 

    switch (whichFactory) { 

      case CLOUDSCAPE: 

          return new CloudscapeDAOFactory(); 

      case ORACLE    : 

          return new OracleDAOFactory(); 

      case SYBASE    : 

          return new SybaseDAOFactory(); 

      ... 

      default           : 

          return null; 

    } 

  } 

} 

The sample code for CloudscapeDAOFactory is shown in Example 9.2. The 

implementation for OracleDAOFactory and SybaseDAOFactory are similar except for 

specifics of each implementation, such as JDBC driver, database URL, and 

differences in SQL syntax, if any. 

Example 9.2 Concrete DAOFactory Implementation 

for Cloudscape 

// Cloudscape concrete DAO Factory implementation 

import java.sql.*; 

 

public class CloudscapeDAOFactory extends DAOFactory { 

  public static final String DRIVER= 

    "COM.cloudscape.core.RmiJdbcDriver"; 

  public static final String DBURL= 

    "jdbc:cloudscape:rmi://localhost:1099/CoreJ2EEDB"; 

 

  // method to create Cloudscape connections 

  public static Connection createConnection() { 

    // Use DRIVER and DBURL to create a connection 



 - 384 -

    // Recommend connection pool implementation/usage 

  } 

  public CustomerDAO getCustomerDAO() { 

    // CloudscapeCustomerDAO implements CustomerDAO 

    return new CloudscapeCustomerDAO(); 

  } 

  public AccountDAO getAccountDAO() { 

    // CloudscapeAccountDAO implements AccountDAO 

    return new CloudscapeAccountDAO(); 

  } 

  public OrderDAO getOrderDAO() { 

    // CloudscapeOrderDAO implements OrderDAO 

    return new CloudscapeOrderDAO(); 

  } 

  ... 

} 

The CustomerDAO interface shown in Example 9.3 defines the DAO methods for 

Customer persistent object that are implemented by all concrete DAO 

implementations, such as CloudscapeCustomerDAO, OracleCustomerDAO, and 

SybaseCustomerDAO. Similar, but not listed here, are AccountDAO and OrderDAO 

interfaces that define the DAO methods for Account and Order business objects 

respectively. 

Example 9.3 Base DAO Interface for Customer 

// Interface that all CustomerDAOs must support 

public interface CustomerDAO { 

  public int insertCustomer(...); 

  public boolean deleteCustomer(...); 

  public Customer findCustomer(...); 

  public boolean updateCustomer(...); 

  public RowSet selectCustomersRS(...); 

  public Collection selectCustomersVO(...); 

  ... 

} 

The CloudscapeCustomerDAO implements the CustomerDAO as shown in Example 

9.4. The implementation of other DAOs, such as CloudscapeAccountDAO, 

CloudscapeOrderDAO, OracleCustomerDAO, OracleAccountDAO, and so forth, are 

similar. 



 - 385 -

Example 9.4 Cloudscape DAO Implementation for 

Customer 

// CloudscapeCustomerDAO implementation of the 

// CustomerDAO interface. This class can contain all 

// Cloudscape specific code and SQL statements. 

// The client is thus shielded from knowing 

// these implementation details. 

 

import java.sql.*; 

 

public class CloudscapeCustomerDAO implements 

    CustomerDAO { 

 

  public CloudscapeCustomerDAO() { 

    // initialization 

  } 

 

  // The following methods can use 

  // CloudscapeDAOFactory.createConnection() 

  // to get a connection as required 

 

  public int insertCustomer(...) { 

    // Implement insert customer here. 

    // Return newly created customer number 

    // or a -1 on error 

  } 

  public boolean deleteCustomer(...) { 

    // Implement delete customer here 

    // Return true on success, false on failure 

  } 

 

  public Customer findCustomer(...) { 

    // Implement find a customer here using supplied 

    // argument values as search criteria 

    // Return a value object if found, 

    // return null on error or if not found 

  } 

 

  public boolean updateCustomer(...) { 

    // implement update record here using data 

    // from the customerData value object 

    // Return true on success, false on failure or 



 - 386 -

    // error 

  } 

 

  public RowSet selectCustomersRS(...) { 

    // implement search customers here using the 

    // supplied criteria. 

    // Return a RowSet. 

  } 

 

  public Collection selectCustomersVO(...) { 

    // implement search customers here using the 

    // supplied criteria. 

    // Alternatively, implement to return a Collection 

    // of value objects. 

  } 

  ... 

} 

The Customer value object class is shown in Example 9.5. This is used by the DAOs 

to send and receive data from the clients. The usage of value objects is discussed in 

detail in the Value Object pattern. 

Example 9.5 Customer Value Object 

public class Customer implements java.io.Serializable 

  { 

  // member variables 

  int CustomerNumber; 

  String name; 

  String streetAddress; 

  String city; 

  ... 

 

  // getter and setter methods... 

  ... 

} 

Example 9.6 shows the usage of the DAO factory and the DAO. If the 

implementation changes from Cloudscape to another product, the only required 

change is the getDAOFactory() method call to the DAO factory to obtain a different 

factory. 



 - 387 -

Example 9.6 Using a DAO and DAO Factory – Client 

Code 

... 

// create the required DAO Factory 

DAOFactory cloudscapeFactory = 

  DAOFactory.getDAOFactory(DAOFactory.DAOCLOUDSCAPE); 

 

// Create a DAO 

CustomerDAO custDAO = 

  cloudscapeFactory.getCustomerDAO(); 

 

// create a new customer 

int newCustNo = custDAO.insertCustomer(...); 

 

// Find a customer object. Get the value object. 

Customer cust = custDAO.findCustomer(...); 

 

// modify the values in the value object. 

cust.setAddress(...); 

cust.setEmail(...); 

// update the customer object using the DAO 

custDAO.updateCustomer(cust); 

 

// delete a customer object 

custDAO.deleteCustomer(...); 

// select all customers in the same city 

Customer criteria=new Customer(); 

criteria.setCity("New York"); 

Collection customersList = 

  custDAO.selectCustomersVO(criteria); 

// returns customersList - collection of Customer 

// value objects. iterate through this collection to 

// get values. 

 

... 

Related Patterns 

• Value Object 

A DAO uses value objects to transport data to and from its clients. 



 - 388 -

• Factory Method [GoF] and Abstract Factory [GoF] 

The Factory for Data Access Objects Strategy uses the Factory Method 

pattern to implement the concrete factories and its products (DAOs). For 

added flexibility, the Abstract Factory pattern may be employed as discussed 

in the strategies. 

• Broker [POSA1] 

The DAO pattern is related to the Broker pattern, which describes 

approaches for decoupling clients and servers in distributed systems. The 

DAO pattern more specifically applies this pattern to decouple the resource 

tier from clients in another tier, such as the business or presentation tier. 

Service Activator 

Context 

Enterprise beans and other business services need a way to be activated 

asynchronously. 

Problem 

When a client needs to access an enterprise bean, it first looks up the bean's home 

object. The client requests the EJB home to provide a remote reference to the 

required enterprise bean. The client then invokes business method calls on the 

remote reference to access the enterprise bean services. All these method calls, 

such as lookup and remote method calls, are synchronous. The client has to wait 

until these methods return. 

Another factor to consider is the life cycle of an enterprise bean. The EJB 

specification permits the container to passivate an enterprise bean to secondary 

storage. As a result, the EJB container has no mechanism by which it can provide a 

process-like service to keep an enterprise bean constantly in an activated and ready 

state. Because the client must interact with the enterprise bean using the bean's 

remote interface, even if the bean is in an activated state in the container, the client 

still needs to obtain its remote interface via the lookup process and still interacts 

with the bean in a synchronous manner. 

If an application needs synchronous processing for its server-side business 

components, then enterprise beans are an appropriate choice. Some application 

clients may require asynchronous processing for the server-side business objects 

because the clients do not need to wait or do not have the time to wait for the 



 - 389 -

processing to complete. In cases where the application needs a form of 

asynchronous processing, enterprise beans do not offer this capability in 

implementations prior to EJB 2.0. 

EJB 2.0 provides integration by introducing message-driven bean, which is a special 

type of stateless session bean that offers asynchronous invocation capabilities. 

However, the new specification does not offer asynchronous invocation for other 

types of enterprise beans, such as stateful or entity beans. 

In general, a business service such as a session or entity bean provides only 

synchronous processing and thus presents a challenge to implementing 

asynchronous processing. 

Forces 

• Enterprise beans are exposed to their clients via their remote interfaces, 

which allow only synchronous access. 

• The container manages enterprise beans, allowing interactions only via the 

remote references. The EJB container does not allow direct access to the 

bean implementation and its methods. Thus, implementing the JMS 

message listener in an enterprise bean is not feasible, since this violates the 

EJB specification by permitting direct access to the bean implementation. 

• An application needs to provide a publish/subscribe or point-to-point 

messaging framework where clients can publish requests to enterprise 

beans for asynchronous processing. 

• Clients need asynchronous processing capabilities from the enterprise beans 

and other business components that can only provide synchronous access, 

so that the client can send a request for processing without waiting for the 

results. 

• Clients want to use the message-oriented middleware (MOM) interfaces 

offered by the Java Messaging Service (JMS). These interfaces are not 

integrated into EJB server products that are based on the pre-EJB 2.0 

specification. 

• An application needs to provide daemon-like service so that an enterprise 

bean can be in a quiet mode until an event (or a message) triggers its 

activity. 

• Enterprise beans are subject to the container life cycle management, which 

includes passivation due to time-outs, inactivity and resource management. 

The client will have to invoke on an enterprise bean to activate it again. 

• EJB 2.0 introduces a message-driven bean as a stateless session bean, but it 

is not possible to invoke other types of enterprise beans asynchronously. 



 - 390 -

Solution 

Use a Service Activator to receive asynchronous client requests and 

messages. On receiving a message, the Service Activator locates and 

invokes the necessary business methods on the business service 

components to fulfill the request asynchronously. 

The ServiceActivator is a JMS Listener and delegation service that requires 

implementing the JMS message listener—making it a JMS listener object that can 

listen to JMS messages. The ServiceActivator can be implemented as a standalone 

service. Clients act as the message generator, generating events based on their 

activity. 

Any client that needs to asynchronously invoke a business service, such as an 

enterprise bean, may create and send a message to the Service Activator. The 

Service Activator receives the message and parses it to interpret the client request. 

Once the client's request is parsed or unmarshalled, the Service Activator identifies 

and locates the necessary business service component and invokes business 

methods to complete processing of the client's request asynchronously. 

The Service Activator may optionally send an acknowledgement to the client after 

successfully completing the request processing. The Service Activator may also 

notify the client or other services on failure events if it fails to complete the 

asynchronous request processing. 

The Service Activator may use the services of a Service Locator to locate a business 

component. See “Service Locator”. 

Structure 

Figure 9.9 represents the class relationships for the Service Activator pattern. 



 - 391 -

Figure 9.9. Service Activator class diagram 

 

Participants and Responsibilities 

Figure 9.10 shows the interactions between the various participants in the Service 

Activator pattern. 

Figure 9.10. Service Activator sequence diagram 

 



 - 392 -

Client 

The client requires an asynchronous processing facility from the business objects 

participating in a workflow. The client can be any type of application that has the 

capability to create and send JMS messages. The client can also be an EJB 

component that needs to invoke another EJB component's business methods in an 

asynchronous manner. The client can use the services offered by the Service 

Locator pattern to look up or create EJB components, JMS services, and JMS objects, 

as necessary. 

Request 

The Request is the message object created by the client and sent to the 

ServiceActivator via the MOM. According to the JMS specification, the Request is an 

object that implements the javax.jms.Message interface. The JMS API provides 

several message types, such as TextMessage, ObjectMessage, and so forth, that 

can be used as request objects. 

ServiceActivator 

The ServiceActivator is the main class of the pattern. It implements the 

javax.jms.MessageListener interface, which is defined by the JMS specification. The 

ServiceActivator implements an onMessage() method that is invoked when a new 

message arrives. The ServiceActivator parses (unmarshals) the message (request) 

to determine what needs to be done. The ServiceActivator may use the services 

offered by a Service Locator (see Service Locator) pattern to look up or create 

Business Service components such as enterprise beans. 

BusinessObject 

BusinessObject is the target object to which the client needs access in an 

asynchronous mode. The business object is a role fulfilled by either a session or 

entity bean. It is also possible that the BusinessObject is an external service instead 

of an entity bean. 



 - 393 -

Strategies 

Entity Bean Strategy 

Both session and entity beans can fulfill the role of a BusinessObject. When J2EE 

applications implement a Session Fa ade pattern to provide coarse-grained access 

to entity beans and to encapsulate the workflow, then the session bean from the 

Session Fa ade fulfills the BusinessObject role. 

In simple applications with minimal workflow, an entity bean may fulfill the 

BusinessObject role. However, for complex workflow involving multiple entity beans 

and other business objects, the ServiceActivator typically interacts with a Session 

Facade which encapsulates such workflow. 

Session Bean Strategy 

When a session bean fulfills the role of the BusinessObject, the business 

requirements determine whether the bean should be stateful or stateless. Since the 

client for the BusinessObject is a ServiceActivator that activates the BusinessObject 

on receiving a new message, the workflow to process the message can define 

whether the bean should be stateful or not. In most cases, a message delivery 

simply activates a single method in the BusinessObject that delegates the 

processing of the message within. A stateless session bean can be used in these 

cases. If the ServiceActivator needs to invoke multiple methods in the 

BusinessObject or to work with more than one BusinessObject to fulfill the 

processing requirements for a message, it may be useful to consider a stateful 

session bean to retain state between multiple invocations. See “Stateless Session 

Facade Strategy” and “Stateful Session Facade Strategy”. 

ServiceActivator Server Strategy 

The most straightforward strategy for implementing the listener or ServiceActivator 

is as a standalone JMS application that listens and processes JMS messages. 

An alternative is to implement the ServiceActivator as a service of the application 

server. This may make it easier to manage the ServiceActivator, because it uses the 

application server features to monitor the ServiceActivator state and to start, 

restart, and stop the ServiceActivator as needed, either manually or automatically. 



 - 394 -

Enterprise Bean as Client Strategy 

The Client can be any client, including another enterprise bean that requires 

asynchronous processing from the enterprise bean. When integrating legacy 

applications to the J2EE platform, it is logical to choose Java application clients to 

act as the message generators based on the activity in the legacy system. The 

ServiceActivator can receive messages and perform the necessary enterprise bean 

invocations to process the request from the legacy system. 

Consequences 

• Integrates JMS into Pre-EJB 2.0 Implementations 

Prior to the EJB 2.0 specification, there was no integration between 

enterprise bean and JMS components. This pattern provides a means to 

integrate JMS into an EJB application and enable asynchronous processing. 

The EJB 2.0 specification defines a new type of session bean, called a 

message-driven bean, to integrate JMS and EJB components. This special 

bean implements the JMS Message Listener interface and it receives 

asynchronous messages. In this case, the application server plays the role of 

the Service Activator. This pattern makes it possible to run applications in 

EJB 2.0 implementations as well as pre-EJB 2.0 implementations. 

• Provides Asynchronous Processing for any Enterprise Beans 

In EJB 2.0, the message-driven bean is a stateless session bean. Using the 

Service Activator pattern, it is possible to provide asynchronous invocation 

on all types of enterprise beans, including stateless session beans, stateful 

session beans, and entity beans. As previously explained, since the Service 

Activator is implemented in its own right, without any limitations of the 

message-driven bean, the Service Activator can perform asynchronous 

invocations on any type of business service. Thus, this pattern provides a 

way to enable asynchronous processing for clients that either have no need 

to wait for the results or do not want to wait for processing to complete. The 

processing can be deferred and performed at a later time, enabling the client 

to complete the service in less time. 

• Standalone Process 

The Service Activator can be run as a standalone process. However, in a 

critical application, Service Activator needs to be monitored to ensure 

availability. The additional management and maintenance of this process 

can add to application support overhead. 



 - 395 -

Sample Code 

Consider an order processing application where the customers shop online and the 

order fulfillment process happens in the background. In some cases, order 

fulfillment may be outsourced to a third-party warehouse. In such cases, the online 

store needs to invoke these fulfillment services asynchronously. This is an example 

that demonstrates usage of point-to-point (PTP) messaging to accomplish 

asynchronous processing. However, using publish/subscribe messaging would be 

similar, except that Topic is used instead of a Queue. Choosing which method to use, 

PTP or publish/subscribe, depends on the business and application requirements, 

and hence is outside the scope of this pattern. 

The class diagram with only the relevant methods for this example is shown in 

Figure 9.11. 

Figure 9.11. Service Activator for Order Processing 

example – class diagram 

 

The code excerpt shown in Example 9.7 demonstrates a sample Service Activator 

implementation. This is the class that can be instantiated in an application server or 

run in a stand-alone server, as explained in the Service Activator Server strategy. 

Example 9.7 Order Service Activator 

public class OrderServiceActivator implements 

  javax.jms.MessageListener{ 

 

  // Queue session and receiver: see JMS API for 



 - 396 -

  // details 

  private QueueSession orderQueueSession; 

  private QueueReceiver orderQueueReceiver; 

 

  // Note: values should come from property files or 

  // environment instead of hard coding. 

  private String connFactoryName = 

    "PendingOrdersQueueFactory"; 

  private String queueName = "PendingOrders"; 

 

  // use a service locator to locate administered 

  // JMS components such as a Queue or a Queue 

  // Connection factory 

  private JMSServiceLocator serviceLocator; 

 

  public OrderServiceActivator(String connFactoryName, 

      String queueName) { 

    super(); 

    this.connFactoryName = connFactoryName; 

    this.queueName = queueName; 

    startListener(); 

  } 

 

  private void startListener() { 

    try { 

      serviceLocator = new JMSServiceLocator 

            (connFactoryName); 

      qConnFactory = 

          serviceLocator.getQueueConnectionFactory(); 

      qConn = qConnFactory.createQueueConnection(); 

 

      // See JMS API for method usage and arguments 

      orderQueueSession = qConn.createQueueSession 

  (...); 

      Queue ordersQueue = 

              serviceLocator.getQueue(queueName); 

      orderQueueReceiver = 

        orderQueueSession.createReceiver(ordersQueue); 

      orderQueueReceiver.setMessageListener(this); 

    } 

    catch (JMSException excp) { 

      // handle error 

    } 

  } 

 



 - 397 -

  // The JMS API specifies the onMessage method in the 

  // javax.jms.MessageListener interface. 

  // This method is asynchronously invoked 

  // when a message arrives on the Queue being 

  // listened to by the ServiceActivator. 

  // See JMS Specification and API for more details. 

  public void onMessage(Message msg) { 

    try { 

        // parse Message msg. See JMS API for Message. 

        ... 

 

        // Invoke business method on an enterprise 

        // bean using the bean's business delegate. 

        // OrderProcessorDelegate is the business 

        // delegate for OrderProcessor Session bean. 

        // See Business Delegate pattern for details. 

          OrderProcessorDelegate orderProcDeleg = 

            new OrderProcessorDelegate(); 

 

        // Use data values from the parsed message to 

        // invoke business method on bean via delegate 

        orderProcDeleg.fulfillOrder(...); 

 

        // send any acknowledgement here... 

    } 

    catch (JMSException jmsexcp) { 

      // Handle JMSExceptions, if any 

    } 

    catch (Exception excp) { 

      // Handle any other exceptions 

    } 

  } 

 

  public void close() { 

    try { 

      // cleanup before closing 

      orderQueueReceiver.setMessageListener (null); 

      orderQueueSession.close(); 

    } 

    catch(Exception excp) { 

      // Handle exception - Failure to close 

    } 

  } 

} 



 - 398 -

This example demonstrates using the Business Delegate pattern between business 

and integration tiers. OrderProcessorDelegate logically resides in the integration 

tier and accesses the Order Processor session bean, which resides in the business 

tier. 

The sample session facade code responsible to dispatch orders to this asynchronous 

service is shown in the code excerpt in Example 9.8. The Service Activator client can 

be a session bean that implements the Session Fa ade pattern to provide order 

processing services to the online store application. When the session bean's 

createOrder() method is called, after successfully validating and creating a new 

order, it invokes sendOrder() to dispatch the new order to the backend order 

fulfillment service. 

Example 9.8 Session Facade as Client for Service 

Activator 

// imports... 

public class OrderDispatcherFacade 

  implements javax.ejb.SessionBean { 

  ... 

  // business method to create new Order 

  public int createOrder(...) throws OrderException { 

 

    // create new business order entity bean 

    ... 

 

    // successfully created Order. send Order to 

    // asynchronous backend processing 

    OrderSender orderSender = new OrderSender(); 

    orderSender.sendOrder(order); 

 

    // close the sender, if done... 

    orderSender.close(); 

 

    // other processing 

    ... 

  } 

} 

The JMS code can be separated into a different class so that it can be reused by 

different clients. This JMS delegate class is shown as OrderSender in the Example 

9.9 code listing. 



 - 399 -

Example 9.9 OrderSender: Used to Dispatch Orders to 

Queue 

// imports... 

public class OrderSender { 

  // Queue session and sender: see JMS API for details 

  private QueueSession orderQueueSession; 

  private QueueSender orderQueueSender; 

 

  // These values could come from some property files 

  private String connFactoryName = 

    "PendingOrdersQueueFactory"; 

  private String queueName = "PendingOrders"; 

 

  // use a service locator to locate administered 

  // JMS components such as a Queue or a Queue. 

  // Connection factory 

  private JMSServiceLocator serviceLocator; 

  ... 

  // method to initialize and create queue sender 

  private void createSender() { 

    try { 

      // using ServiceLocator and getting Queue 

      // Connection Factory is similar to the 

      // Service Activator code. 

      serviceLocator = new JMSServiceLocator 

            (connFactoryName); 

      qConnFactory = 

          serviceLocator.getQueueConnectionFactory(); 

      qConn = qConnFactory.createQueueConnection(); 

 

      // See JMS API for method usage and arguments 

      orderQueueSession = qConn.createQueueSession 

          (...); 

      Queue ordersQueue = 

              serviceLocator.getQueue(queueName); 

      orderQueueSender = 

          orderQueueSession.createSender(ordersQueue); 

    catch(Exception excp) { 

      // Handle exception - Failure to create sender 

    } 

  } 

 



 - 400 -

  // method to dispatch order to fulfillment service 

  // for asynchronous processing 

  public void sendOrder(Order newOrder) { 

 

      // create a new Message to send Order object 

      ObjectMessage objMessage = 

        queueSession.createObjectMessage(order); 

 

      // set object message properties and delivery 

      // mode as required. 

      // See JMS API for ObjectMessage 

 

      // Set the Order into the object message 

       objMessage.setObject(order); 

 

      // send the message to the Queue 

      orderQueueSender.send(objMessage); 

 

      ... 

    } catch (Exception e) { 

      // Handle exceptions 

    } 

    ... 

  } 

  ... 

  public void close() { 

    try { 

      // cleanup before closing 

      orderQueueReceiver.setMessageListener (null); 

      orderQueueSession.close(); 

    } 

    catch(Exception excp) { 

      // Handle exception - Failure to close 

    } 

  } 

} 

Related Patterns 

• Session Facade 

The Session Facade pattern encapsulates the complexity of the system and 

provides coarse-grained access to business objects. This Service Activator 

pattern may access a Session Fa ade as the primary business object to 



 - 401 -

invoke business service methods in the Session Fa ade asynchronously on 

behalf of the client. 

• Business Delegate 

The Service Activator pattern may use a Business Delegate to access the 

Session Fa ade or other enterprise bean implementations. This results in 

simpler code for the Service Activator and results in Business Delegate reuse 

across different tiers, as intended by the Business Delegate pattern. 

• Service Locator 

The client can use the Service Locator pattern to look up and create 

JMS-related service objects. The Service Activator can use the Service 

Locator pattern to look up and create enterprise bean components. 

• Half-Sync/Half-Async [POSA2] 

The Service Activator pattern is related to the Half-Sync/Half-Async pattern, 

which describes architectural decoupling of synchronous and asynchronous 

processing by suggesting different layers for synchronous, asynchronous 

and an intermediate queueing layer inbetween. 

Epilogue J2EE PATTERNS APPLIED 

Topics in This Chapter 

• PSA Overview 

• Use Case Model 

• Use Cases, Patterns, and Pattern Frameworks 

• Create Project Use Case 

• Reserve Resource Use Case 

• Find Available Resources Use Case 

In this chapter we present an example of using the J2EE patterns in an application. 

Our experiences have shown us that using the pattern catalog can improve the 

efficiency and quality of your software development process. It is important to 

understand how to leverage the pattern catalog, and that's what we illustrate in this 

chapter. Leveraging the pattern catalog does not in itself require a new 

development process or a new methodology. Rather, it shows how to integrate the 

patterns in the catalog into your present design process or approach, so that your 

approach improves and produces a better, more robust solution. 

This chapter shows you a sampling of ways to apply the patterns to real-world 

examples. We go directly to the patterns and pattern realizations to describe how 



 - 402 -

the patterns are applied to an example. We want to emphasize that these ideas are 

a sampling of many possibilities. They are meant to get you thinking creatively with 

the patterns. You will benefit by applying approaches similar to ours, and you will 

gain confidence in applying the patterns to your own design problems in new and 

unique ways. 

PSA Overview 

This example deals with the domain of professional services automation, also known 

as PSA. PSA is a set of software and services used by professional services 

organizations to help operate more effectively. PSA may cover a wide range of 

processes, including project bidding and team, skill, project, and customer 

management. 

Our intention with this example is to address a small set of basic requirements of a 

professional services organization. The PSA system must be flexible, providing 

different services based on the particular role of the user. 

• Project managers will search the PSA system for matching resources, check 

on the availability of a particular resource, and schedule an available 

resource for a specific project. 

• Consultants (hereafter known as “resources”) accept and manage their 

assignments, their availability, and the listing of their current skill set. 

• Project administrators are “super” project managers, as they can act on 

behalf of a project manager. In addition, they perform administrative tasks, 

such as creating new projects and managing the care and feeding of project 

information over its lifetime. 

Each of the three roles share common functional requirements: 

• Searching based on projects, resources, skills. 

• Managing resource information (address, email, phone, etc.). 

• Other packaged and ad hoc reports and queries. 

Use Case Model 

The following use case model is derived from the functional requirements for the 

PSA application. In the model, we've identified the following actors for the PSA 

application, as shown in Table E-1. 



 - 403 -

Table E-1. PSA Actors 

Actor  Description  

Resource An employee who can be assigned to work on a project. 

Project Manager An employee who can be assigned to manage and execute a

project. 

Administrator An employee who provides administrative support to the PS

organization. 

Resource 

Manager 
An employee who is responsible to manage a group of resources.

Figure E.1 shows the use case model for the PSA application. 



 - 404 -

Figure E.1. Use case model 

 

Use Cases, Patterns, and Pattern Frameworks 

In this section we apply the patterns based on the use cases. The goal of this section 

is to focus on the realized patterns, not the process from which we arrived at the 

pattern selection. The approach we take is to show the pattern framework and then 

the realized pattern framework. We define a pattern framework as a set of patterns 

commonly used in combination to solve a problem. 

We are confident that as you see these examples and begin applying the J2EE 

patterns to your solutions, you will be able to quickly identify the proper patterns. 



 - 405 -

Create Project Use Case 

In this use case, the administrator creates a project. See Figure E.2. The project 

contains information such as the start and end dates, customer name, and skills 

required. 

Figure E.2. Create Project use case 

 

Pattern Identification 

We use the following presentation patterns: 

• Intercepting Filter—  A filter checks user privileges for creating a project. 

• Front Controller—  A controller acts as the initial point of contact for 

generating the form for project creation, and subsequently handles 

submission of this form. The controller delegates project creation-related 

processing to its helpers, which in turn delegate much of this processing to 

the business tier. 

• View Helper—  The view delegates to its helpers in order to generate 

dynamic portions of the display. 

• Composite View—  The view includes a header and a footer to create the 

Create Project page. This is a very simple example of a composite view. 

We use the following business patterns: 

• Business Delegate—  A business delegate interacts with the business tier for 

creating a project. 

• Service Locator—  A business delegate uses a service locator to look up the 

project components. 

• Session Facade—  The business delegate interacts with a session bean, 

which interacts with the project entity when creating a project. 

• Value Object—  A project value object encapsulates the project data, which 

is passed from the presentation tier to the business tier. 

We use the following integration pattern: 



 - 406 -

• Data Access Object—  A data access object abstracts and encapsulates 

access to the project tables. 

Figure E.3 shows the pattern framework for the Create Project use case. It shows 

the patterns used in presentation, business, and integration. 

Figure E.3. Create Project pattern framework 

 

Pattern Realization 

Figure E.4 shows the realized patterns for the Create Project use case. This diagram 

provides a breakdown by tiers. The following list matches the name of an 

implementation class with the pattern from which it is realized 

• Presentation—The Create Project form is shown in Figure E.5. 

Class Pattern 

LoginCheckFilter Intercepting Filter 

PSAController Front Controller 

CreateProject, header, footer Composite View 

Project View, current Date, list Customers View Helper 

• Business 

Class Pattern 

ProjectDelegate Business Delegate 

PSAServiceLocator Service Locator 

ProjectManagerSession Session Facade 

ProjectEntity Session Facade 

ProjectVO Value Object 



 - 407 -

• Integration 

Class Pattern 

ProjectDAO Data Access Object 

Figure E.4. Create Project realized patterns 

 

Figure E.5. Create Project Form 

 



 - 408 -

Reserve Resource Use Case 

In the Reserve Resource use case, the project manager must reserve a resource for 

use on a project. See Figure E.6. The reservation is comprised of a length of time 

and a number of hours per week. After the resource is reserved, the resource 

manager must approve him. Once the resource manager approves the resource, the 

resource is officially assigned to the project. 

Figure E.6. Reserve Resource use case 

 

Pattern Identification 

Figure E.7 contains the pattern framework for the Reserve Resource use case. It 

shows the patterns used in presentation, business, and integration. We use the 

following presentation patterns: 

• Intercepting Filter—  A filter checks user privileges for reserving a resource. 

• Front Controller—  A controller acts as the initial point of contact for 

reserving a resource. The controller delegates resource reservation-related 

processing to its helpers, which in turn delegate much of this processing to 

the business tier. 

• View Helper—  The view delegates to its helpers in order to generate 

dynamic portions of the display. 

• Composite View—  The view includes a header and a footer to create the 

Reserve Resource page. This is a very simple example of a composite view. 

We use the following business patterns: 

• Business Delegate—  A business delegate interacts with the business tier for 

reserving a resource. 

• Service Locator—  A business delegate uses a service locator to look up the 

resource components. 

• Session Facade—  The business delegate interacts with a session bean, 

which interacts with the project entity when reserving a resource. 



 - 409 -

• Value Object—  A commitment value object encapsulates the commitment 

data, which is passed from the presentation tier to the business tier. 

• Composite Entity—  A project entity acts as a coarse-grained object to the 

dependent commitment objects. 

We use the following integration patterns: 

• Data Access Object—  A data access object abstracts and encapsulates 

access to the resource and commitment tables. 

Figure E.7. Reserve Resource pattern framework 

 

Pattern Realization 

Figure Figure E.8 shows the realized patterns for the Reserve Resource use case. 

The following list matches the name of an implementation class with the pattern 

from which it is realized 

• Presentation—The Reserve Resource form is shown in Figure E.9. 

Class Pattern 

LoginCheckFilter Intercepting Filter 

PSAController Front Controller 

ReserveResourceForm, header, footer Composite View 

ReserveResourceForm, ResourceHelper View Helper 

• Business 

Class Pattern 

ProjectDelegate Business Delegate 

PSAServiceLocator Service Locator 

ProjectManagerSession Session Façade 

ProjectEntity Session Facade, Composite Entity 

Commitment Composite Entity 



 - 410 -

CommitmentVO Value Object 

• Integration 

Class Pattern 

ProjectDAO Data Access Object 

CommitmentsDAO Data Access Object 

• Figure E.8. Reserve Resource realized patterns 

•  

• Figure E.9. Reserve Resources Form 



 - 411 -

•  

Find Available Resources Use Case 

In the Find Available Resources use case, the project manager searches for 

available resources for a project by start date, end date, and skills. See Figure E.10. 

Figure E.10. Reserve Resource use case 

 

Pattern Identification 

For this use case, we use the following presentation patterns: 

• Intercepting Filter—  A filter checks user privileges for searching for 

available resources. 



 - 412 -

• Front Controller—  A controller acts as the initial point of contact for 

searching for resources. The controller delegates resource availabilityrelated 

processing to its helpers, which in turn delegate much of this processing to 

the business tier. 

• View Helper—  The view delegates to its helpers in order to generate 

dynamic portions of the display. 

• Composite View—  The view includes a header and a footer to create the 

search for available resources page. This is a very simple example of a 

composite view. 

We use the following business patterns: 

• Business Delegate—  A business delegate interacts with the business tier 

when searching for available resources. 

• Service Locator—  A business delegate uses a service locator to look up the 

resource components. 

• Session Facade—  The business delegate interacts with a session bean, 

which interacts with the list handler when searching for available resources. 

• Value Object—  The commitment value object encapsulates the 

commitment data, which is passed from the presentation tier to the business 

tier. 

• Composite Entity—  A project entity acts as a coarse-grained object to the 

dependent commitment objects. 

• Value List Handler—  A value list handler controls the lookup, cache, and 

iteration of the resources. 

We use the following integration patterns: 

• Data Access Object—  A data access object abstracts and encapsulates 

access to commitments and resource tables. 

Figure E.11 is the pattern framework for the Find Available Resources use case. It 

shows the patterns used in presentation, business, and integration. 



 - 413 -

Figure E.11. Find Available Resources pattern 

framework 

 

Pattern Realization 

Figure E.12 shows the realized patterns for the Find Available Resources use case. 

The following list matches the name of an implementation class with the pattern 

from which it is realized: 

• Presentation—The Find Available Resources form is shown in Figure E.13. 

Class Pattern 

LoginCheckFilter Intercepting Filter 

PSAController Front Controller 

FindAvailableResourcesForm, ResourceHelper View Helper 

FindAvailableResourcesForm, header, footer Composite View 

• Business 

Class Pattern 

ResourceDelegate Business Delegate 

PSAServiceLocator Service Locator 

ResourceAdminSession Session Facade 

ResourceListHandler, ResourcesList Value List Handler 

ResourceVO Value Object 

• Integration 

Class Pattern 



 - 414 -

ResourceDAO Session Facade, Data Access Object 

Figure E.12. Find Available Resources realized 

patterns 

 



 - 415 -

Figure E.13. Find Available Resources Form 

 



 - 416 -

BIBLIOGRAPHY 

[Alex] Christopher Alexander, “The Timeless Way of Building”, Oxford University 

Press, New York, 1979 

[Alex2] Christopher Alexander Sara Ishikawa Murray Silverstein Max Jacobson 

Ingrid Fiksdahl-King Shlomo Angel “A Pattern Language”, Oxford University Press, 

New York, 1977 

[Arnold] Ken Arnold David Holmes James Gosling “The Java Programming Language, 

Third Edition: The Java Series”, Addison Wesley, 2000 

[Bergsten] Hans Bergsten, “JavaServer Pages”, O'Reilly & Associates, Inc., 2001. 

[Booch] Grady Booch James Rumbaugh Ivar Jacobson “The Unified Modeling 

Language User Guide”, Addison Wesley, 1998. 

[Brown] William H. Brown Raphael C. Malveau Hays W. "Skip" McCormick III 

Thomas J. Mowbray “Anti-Patterns: Refactoring Software, Architectures and 

Projects in Crisis”, Wiley Press, 1998 

[Coplien] Jim O. Coplien, Douglas C. Schmidt (Editors), “Pattern Languages of 

Program Design”, Addison Wesley, 1995 

[Fowler] Martin Fowler, “Refactorings - Improving the Design Of Existing Code”, 

Addison Wesley, 1999 

[Fowler2] Martin Fowler, “Analysis Patterns: Reusable Object Models”, Addison 

Wesley, 1997 

[Fowler3] Martin Fowler Kendall Scott “UML Distilled : A Brief Guide to the Standard 

Object Modeling Language, Second Edition”, Addison Wesley, 2000. 

[Gabriel] Richard P. Gabriel, “Patterns of Software: Tales from the Software 

Community”, Oxford University Press, 1998 

[Geary] David M. Geary, “Advanced JavaServer Pages”, Sun Microsystems 

Press/Prentice Hall PTR, 2001 

[GoF] Erich Gamma Richard Helm Ralph Johnson John Vlissides “Design Patterns: 

Elements of Reusable Object-Oriented Software”, Addison Wesley, 1994 

[Gosling] James Gosling Bill Joy Guy Steele Gilad Bracha “The Java Language 

Specification, Second Edition: The Java Series”, Addison Wesley, 2000 



 - 417 -

[Haefel] Richard Monson-Haefel, “Enterprise JavaBeans, Second Edition”, O'Reilly & 

Associates, Inc., 2000 

[Harrison] Niel Harrison, Brian Foote and Hans Rohnert (Editors), “Pattern 

Languages of Program Design 4”, Addison Wesley, 1999 

[Jacobsen] Ivar Jacobson Magnus Christerson Patrik Jonsson Gunnar Overgaard 

“Object-Oriented Software Engineering-A Use Case Driven Approach”, 

Addison-Wesley, ACM Press, 1992-98 

[POSA1] Frank Buschmann Regine Meunier Hans Rohnert Peter Sommerlad Michael 

Stal “Pattern-Oriented Software Architecture-A System of patterns”, Wiley Press, 

1996-2000 

[POSA2] Douglas Schmidt Michael Stal Hans Rohnert Frank Buschmann 

“Pattern-Oriented Software Architecture-Volume 2: Patterns for Concurrent and 

Networked Objects”, Wiley Press, 2000 

[Shannon] Bill Shannon Mark Hapner Vlada Matena James Davidson Eduardo 

Pelegri-Llopart Larry Cable and the Enterprise Team, “Java 2 Platform, Enterprise 

Edition: Platform and Component Specifications”, Addison Wesley, 2000 

[Martin] Robert Martin, Dirk Riehle, and Frank Buschmann (Editors), “Pattern 

Languages of Program Design 3”, Addison Wesley, 1998 

[Rosenberg] Doug Rosenberg Kendall Scott “Use Case Driven Object Modeling with 

UML”, Addison Wesley, 1999. 

[Rumbaugh] James Rumbaugh Ivar Jacobson Grady Booch “The Unified Modeling 

Language Reference Manual”, Addison Wesley, 1999. 

[Vlissides] John M. Vlissides, Jim O. Coplien, and Norman L. Kerth (Editors), 

“Pattern Languages of Program Design 2”, Addison Wesley, 1996 

[Vlissides2] John Vlissides, “Pattern Hatching: Design Patterns Applied”, Addison 

Wesley, 1998 

Online References 

[EJBHome] Enterprise Java Beans (EJB) Home Page and Specification 

http://java.sun.com/products/ejb/ 

EJB 2.0 (Final Draft) Specification: 

http://java.sun.com/products/ejb/2.0.html 



 - 418 -

[Hillside] Hillside.net - Patterns Home Page 

http://hillside.net/patterns 

[JakartaTaglibs] The Jakarta “Taglibs” Project 

http://www.jakarta.apache.org/taglibs/index.html 

[JavaHome] Java Home Page 

http://java.sun.com 

[J2EEHome] Java 2 Enterprise Edition (J2EE) Home Page 

http://java.sun.com/j2ee/ 

[JDBCHome] Java Database Connectivity (JDBC) Technology Home page and 

Specification 

http://java.sun.com/products/jdbc/ 

[JNDIHome] Java Naming and Directory Interface (JNDI) Home page and 

Specification 

http://java.sun.com/products/jndi/ 

[JSPHome] Java Server Pages (JSP) Home page and Specification 

http://java.sun.com/products/jsp/ 

[JMSHome] Java Message Service (JMS) Home page and Specification 

http://java.sun.com/products/jms/ 

[Portland] The Portland Pattern Repository 

http://www.c2.com/cgi/wiki?PortlandPatternRepository 

[Resonate] 

http://www.resonate.com 

[ServletHome] Java Servlet Technology Home page and Specification 

http://java.sun.com/products/servlet/ 

[Struts] http://jakarta.apache.org/struts/index.html 



 - 419 -

[TS1341] Daniel Malks and Deepak Alur, “Prototyping Patterns for the J2EE 

Platform”, JavaOne 2000, San Francisco 

http://jsp.java.sun.com/javaone/javaone2000/event.jsp?eventId=1341 

 

 


