

Alistair Rooney

Foundations of Java for
ABAP Programmers

6250FM.qxd 2/22/06 4:44 PM Page i

Foundations of Java for ABAP Programmers

Copyright © 2006 by Alistair Rooney

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13: 978-1-59059-625-8

ISBN-10: 1-59059-625-0

Library of Congress Cataloging-in-Publication data is available upon request.

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Steve Anglin
Technical Reviewers: Gene Ames, Stefan Keuker
Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Jason Gilmore,

Jonathan Hassell, Chris Mills, Dominic Shakeshaft, Jim Sumser
Project Manager: Richard Dal Porto
Copy Edit Manager: Nicole LeClerc
Copy Editor: Andy Carroll
Assistant Production Director: Kari Brooks-Copony
Production Editor: Janet Vail
Compositor: Dina Quan
Proofreader: April Eddy
Indexer: Toma Mulligan/Book Indexers
Artist: April Milne
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precau-
tion has been taken in the preparation of this work, neither the author(s) nor Apress shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code section.

6250FM.qxd 2/22/06 4:44 PM Page ii

To Lisa, Samantha, & Justin.

6250FM.qxd 2/22/06 4:44 PM Page iii

Contents at a Glance

About the Author . xiii

Acknowledgments . xv

Introduction . xvii

PART 1 ■ ■ ■ Introducing Java
■LESSON 1 Your First Java Program . 3

■LESSON 2 Object Orientation in a Nutshell . 7

■LESSON 3 The Primitive Data Types . 13

■LESSON 4 Comments . 17

■LESSON 5 Naming Standards and Conventions . 19

■LESSON 6 The Java Operators . 21

■LESSON 7 Strings with Java . 29

■LESSON 8 Control Flow . 35

■LESSON 9 Jump Statements . 41

■LESSON 10 Arrays and Collections in Java . 43

■LESSON 11 Object Orientation in Java . 49

■LESSON 12 More OO in Java—Interfaces and Abstract Classes 57

■LESSON 13 Inner, Nested, and Anonymous Classes . 61

■LESSON 14 Errors and Exceptions . 65

■LESSON 15 Threads, Daemons, and Garbage Collection . 71

■LESSON 16 Basic Swing Using Default Layouts . 79

■LESSON 17 Event Handling . 83

■LESSON 18 Layout Managers and Other Components . 87

iv

6250FM.qxd 2/22/06 4:44 PM Page iv

PART 2 ■ ■ ■ Enterprise Java
■LESSON 19 JDBC Technology . 97

■LESSON 20 The Java Connector (JCo) . 107

■LESSON 21 Servlets . 115

■LESSON 22 JavaServer Pages (JSP) . 133

■LESSON 23 Extensible Markup Language (XML) . 145

■LESSON 24 Java Messaging Services . 165

■LESSON 25 Enterprise JavaBeans 3.0 . 171

■INDEX . 193

v

6250FM.qxd 2/22/06 4:44 PM Page v

6250FM.qxd 2/22/06 4:44 PM Page vi

Contents

About the Author . xiii

Acknowledgments . xv

Introduction . xvii

PART 1 ■ ■ ■ Introducing Java

■LESSON 1 Your First Java Program . 3

Hello World of Abapers . 3

■LESSON 2 Object Orientation in a Nutshell . 7

The Nutshell—Encapsulation . 7
Inheritance and Polymorphism . 8

The Conceptual Model (A Glimpse of UML) . 10

■LESSON 3 The Primitive Data Types . 13

Boolean . 13

Byte . 14

Integer . 14

Long . 14

Short . 15

Float . 15

Double . 15

Char . 15

Data Types Summary . 16

■LESSON 4 Comments . 17

Block Comments . 17

Line Comments . 18

Javadoc Comments . 18

vii

6250FM.qxd 2/22/06 4:44 PM Page vii

■LESSON 5 Naming Standards and Conventions . 19

Legal and Illegal Names . 19

Java Conventions . 20

■LESSON 6 The Java Operators . 21

Arithmetic Operators . 21

Relational Operators . 22

Increment Operators . 22

Logical Operators . 23

Bitwise Operators . 24

Block Scope . 26

■LESSON 7 Strings with Java . 29

Declaring a String . 30

Concatenating Strings . 31

Using the String Methods . 31

The charAt Method . 31

The substring Method . 32

The equals Method . 32

The length Method . 32

Using the StringBuffer Class . 33

The append Method . 33

The insert Method . 33

Using the StringTokenizer Class . 34

■LESSON 8 Control Flow . 35

Using the if Statement . 35

Using the ? and : Operators . 36

Using the switch Statement . 37

Looping . 38

The while Loop . 38

The for Loop . 39

The do Loop . 40

■CONTENTSviii

6250FM.qxd 2/22/06 4:44 PM Page viii

■LESSON 9 Jump Statements . 41

The break Statement . 41

The continue Statement . 42

The return Statement . 42

■LESSON 10 Arrays and Collections in Java . 43

Using Arrays . 43

The Array Index . 44

Declaring an Array . 44

Creating the Array . 44

Filling the Array . 45

Multidimensional Arrays . 46

The Vector Class . 46

Using Vectors . 47

■LESSON 11 Object Orientation in Java . 49

The Pillars of OO . 49

Java Class Structure . 50

Inheritance and Polymorphism . 51

Encapsulation . 53

Abstraction . 56

■LESSON 12 More OO in Java—Interfaces and Abstract Classes 57

Abstract Classes . 57

Interfaces . 59

■LESSON 13 Inner, Nested, and Anonymous Classes 61

Inner Classes . 61

Nested Classes . 62

Anonymous Classes . 63

■LESSON 14 Errors and Exceptions . 65

The Throwable Class . 65

Exception Handling . 66

The try . . . catch block . 66

The finally block . 68

Exception Throwing . 69

■CONTENTS ix

6250FM.qxd 2/22/06 4:44 PM Page ix

■LESSON 15 Threads, Daemons, and Garbage Collection 71

Simple Threads . 71

Basic Related Threads . 74

Synchronized Threads . 76

Semaphoring Threads . 77

Daemon Threads and Garbage Collection . 78

■LESSON 16 Basic Swing Using Default Layouts . 79

Containers . 79

A Simple Swing Example . 80

■LESSON 17 Event Handling . 83

Listening . 83

■LESSON 18 Layout Managers and Other Components 87

FlowLayout . 87

BorderLayout . 87

GridLayout . 89

Layout Design Example . 90

Other Atomic Components . 91

PART 2 ■ ■ ■ Enterprise Java

■LESSON 19 JDBC Technology . 97

JDBC Drivers . 97

Type 1 Drivers . 97

Type 2 Drivers . 97

Type 3 Drivers . 98

Type 4 Drivers . 98

Loading the Driver . 98

Connecting to the Database . 98

Creating Statements . 100

ResultSets . 103

■CONTENTSx

6250FM.qxd 2/22/06 4:44 PM Page x

■LESSON 20 The Java Connector (JCo) . 107

Downloading and Installing JCo . 107

A JCo Example . 107

■LESSON 21 Servlets . 115

Hypertext Transfer Protocol . 115

The Servlet Architecture . 116

Servlet Basics . 116

The Generic Servlet . 117

The HTTPServlet . 120

The web.xml File . 125

Initializing Servlets . 126

Global Initialization Parameters . 129

Preloading Servlets . 130

Servlet Timeout . 131

Tracking with Servlets . 132

Programming Cookies . 132

■LESSON 22 JavaServer Pages (JSP) . 133

The JSP Architecture . 134

The JSP Access Model . 134

The JSP Syntax . 135

Scripting Elements . 135

Comments . 135

Expressions . 136

Scriptlets . 138

Declarations . 138

Directives . 139

Action Elements . 140

Control Elements . 140

JavaBean Elements . 141

Custom Tags . 143

■LESSON 23 Extensible Markup Language (XML) . 145

The Sales Order Example . 145

Empty Elements . 147

Element Attributes . 147

■CONTENTS xi

6250FM.qxd 2/22/06 4:44 PM Page xi

The Document Header . 148

The Document Content . 148

Parsing the XML Document . 151

The ContentHandler Interface . 153

Constraining the XML Document . 157

Using DTDs . 159

Using Schemas . 161

■LESSON 24 Java Messaging Services . 165

JMS Scenarios . 166

SOAP . 166

JAXM . 167

Other Considerations When Using JMS . 169

■LESSON 25 Enterprise JavaBeans 3.0 . 171

Working with EJB 2.x . 171

The Session Bean . 171

The Entity Bean . 172

The Message-Driven Bean . 173

EJB Clients . 174

Components in a 2.x EJB Scenario . 174

Naming Conventions for EJB Beans . 174

Creating a Simple EJB 2.x Project . 175

What’s New in EJB 3.0? . 187

Annotations . 187

POJO Services . 187

Developing an EJB 3.0 Session Bean . 188

HelloLocal.java . 188

HelloBean.java . 188

HelloServlet.java . 189

Developing an EJB 3.0 Entity Bean . 190

The Entity Bean . 190

The Session Bean . 191

Conclusion . 192

■INDEX . 193

■CONTENTSxii

6250FM.qxd 2/22/06 4:44 PM Page xii

About the Author

■ALISTAIR ROONEY has been developing software for over 23 years. He has been a programmer,
team leader, project manager, and IT manager. Alistair started coding in COBOL and RPG on
IBM mainframes and has coded in Basic, InfoBasic, Visual Basic, C++, C#, and naturally Java.
Alistair spends his time consulting to corporations in the SAP arena. He teaches both ABAP
and Java for SAP and other companies in Europe, the United States, and in South Africa where
he lives with his wife and two children.

You will also find him developing and doing implementation support for various clients.
He is a keen mountain biker during his time away from the office.

xiii

6250FM.qxd 2/22/06 4:44 PM Page xiii

6250FM.qxd 2/22/06 4:44 PM Page xiv

Acknowledgments

Thanks must go to Stuart Fripp for some of the ideas in this book, Steve Anglin for his expert
eye, Stefan Keuker from SAP for his very sound technical advice, and Richard Dal Porto for
bringing it all together. Thanks must also go to many of my clients for allowing me to experi-
ment with their SAP systems, to SAP AG, SAP Belux, SAP UK, and SAP America for their
guidance, and to my family for their patience.

xv

6250FM.qxd 2/22/06 4:44 PM Page xv

6250FM.qxd 2/22/06 4:44 PM Page xvi

Introduction

Java has been a part of developers’ vocabularies since 1995. At first it was thought of as
being a nice, neat little language that could do some amazing things for the Internet. However,
the language soon matured, and it still kept its simple approach. Developers started to realize
the awesome power of a clean uncluttered alternative to C/C++.

It wasn’t long before visionaries in the industry discovered that Java could be further
extended into an “enterprise” language. Thus J2EE (Java 2 Enterprise Edition) was born. This
has also matured into a solid base for running three-tier, web-based, enterprise systems.

If anyone doubts the industrial strength of these systems, there are now a wealth of blue-
chip corporations using J2EE. They use IBM WebSphere and other enterprise systems to create
very large, robust, and “externalized” systems.

The dot-com boom may have adjusted itself somewhat, but it is by no means gone. The
statement that the Gartner group made a few years ago, that corporations would have to
externalize their data or lose out to competitors that have, is still very valid. Can you imagine
working with a bank that did not offer online banking? They wouldn’t survive for very long if
their competitors were all “webified”!

So, in 2001, one of the most innovative ERP companies, SAP, saw an opportunity to bring
Java into its development environment. SAP has said that Java and ABAP will coexist as devel-
opment languages. With Web Application Server (WAS) 6.40, we have seen this become a reality.
Although there is still room for improvement (isn’t there always?) we now have a credible SAP
platform for delivering web services.

Make no mistake—SAP is very serious about Java. It is not a passing fancy or an attempt
to be fashionable. When I first lectured about Java to ABAP programmers in Europe in late
2002, SAP already had 35 internal projects using and developing Java. SAP has developed a
“flavor” of J2EE to fit inside WAS.

In this Foundations book, we will be looking at the standard J2EE and the new Java EE 5.
You will find it easy to use the SAP-specific APIs once you have mastered the standard version.
Rest assured, though, that I will explain everything from an ABAP programmer’s point of view.
I will also show you the NetWeaver way where appropriate.

As I write this, Sun has recently renamed Java (Standard Edition) 1.5 to Java 5. Sun is also
releasing Java 5 Enterprise Edition (Java EE 5), and this has been done as part of the Java Com-
munity process. This is important, because SAP (and others) have been part of this process.

WAS 6.40 does not currently use Java EE 5, but considering that technologies like Enter-
prise JavaBeans (EJB) 3.0 make life easier for developers, it’s a certainty that SAP will include it
soon. Rather than covering the old way of doing things, we will explore the latest technology
so that you will be adequately armed for the next release.

Many books have leapt into discussions of how SAP employs Java without adequately
explaining the basics. This book aims to reverse that trend by leading the reader through
bite-sized lessons with simple examples that stress the points in the lessons.

Clearly, in my opinion, Java is a lot of fun. If you need an illustration of this, check out the
Robocode project at http://robocode.sourceforge.net/.

I hope you enjoy this book. Remember to have fun with Java! xvii

6250FM.qxd 2/22/06 4:44 PM Page xvii

6250FM.qxd 2/22/06 4:44 PM Page xviii

Introducing Java

In this first section, we will explore the basic constructs of the Java language. You

shouldn’t skip any of these lessons, since they will lay the foundation for the second part

of the book. Always try what you have learned, even if it means copying the example code,

as this will consolidate the principles in your mind.

P A R T 1

■ ■ ■

6250CH01.qxd 2/22/06 4:47 PM Page 1

6250CH01.qxd 2/22/06 4:47 PM Page 2

Your First Java Program

Java is a funny language. The more you learn about it, the more you love it. The question is
where to start to teach Java?

Java is a fully object-oriented (OO) language, and most people coming from an ABAP envi-
ronment will not have had any real exposure to OO concepts. (Hands up if you have done the
SAP BC401 course). OO is very important to Java, and most would say it’s critical.

Normally I wouldn’t talk about Java at all for the first few lectures in a Java course. I would
talk about OO principles: inheritance, polymorphism, encapsulation, and the like. On the
other hand, it’s nice to see some Java to keep the excitement going.

The compromise that most lecturers come up with is to present a simple “Hello World”
type of program, explore some OO basics, and then return to Java. That’s what we’ll do here.

Hello World of Abapers
Let’s have a look at a simple ABAP program.

REPORT ztestacr.

DATA: v_hello(11) TYPE c VALUE 'Hello World',
v_abapers(10) TYPE c VALUE 'of Abapers'.

START-OF-SELECTION.

WRITE: /, v_hello, v_abapers.

What will this produce? A list dialog displaying “Hello World of Abapers”.
Now let’s look at the same thing in Java.

class HelloAbapers
{

public static void main(String args[])
{

System.out.println("Hello World of Abapers");
}

}

3

L E S S O N 1

■ ■ ■

6250CH01.qxd 2/22/06 4:47 PM Page 3

That’s it! That’s your first program. Now we need to “activate” it, like we would activate
the ABAP program, and the process in Java is somewhat similar. The Java program does not
compile to native code but rather to bytecode, which is then interpreted by the Java Virtual
Machine (JVM). (More about the JVM later in the book). To compile this program, we issue
this command:

javac HelloAbapers.java

The file we’ve just written must be saved with a .java extension.
Figure 1-1 shows two separate examples of the compile command on the same screen:

one with errors and then one with the errors corrected.

Figure 1-1. Compiling with and then without errors

Let’s take a closer look at the Java code we’ve just written. The first line defines the class.
As you can see, I haven’t defined a variable for my string in this example. I’ll explain why when
we cover static variables.

Notice the curly brackets. This is how we define blocks in Java. They can be positioned
anywhere, but it looks a lot neater if they are lined up and indented. The first curly bracket
opens the class block.

The next line defines the method we are using. In this case, it’s the main method. Every
Java class that can be called or run directly from the command line must contain a main
method.

Lastly there’s the line that does the work. It calls a System object that contains a println
method (I’ll have more to say about the notation later). This method accepts a single parame-
ter and prints it on the screen. The parameter is the string.

Don’t worry at this early stage about the cryptic things like public or static or args[].
We’ll cover those things as we go along.

Finally we need to run the program. If you try to run the class file by typing this,

java HelloAbapers

there is a good chance you will get an error similar to this:

Exception in thread "main" java.lang.NoClassDefFoundError: HelloAbapers

LESSON 1 ■ YOUR FIRST JAVA PROGRAM4

6250CH01.qxd 2/22/06 4:47 PM Page 4

To prevent this from happening, we need to tell the Java runtime where to find the class file by
providing a class path. In my computer, the class resides in C:\book, so I will inform the run-
time by putting -cp in my command, followed by the actual path. As shown in Figure 1-2, on a
command line I would merely type the following:

java -cp C:\book HelloAbapers

Figure 1-2. Running our Java program

That was easy, but obviously there is a bit more to Java than this. Stay tuned for the next
lesson, where we’ll start to explore the benefits of OO design and we’ll look at what the various
terms mean.

LESSON 1 ■ YOUR FIRST JAVA PROGRAM 5

6250CH01.qxd 2/22/06 4:47 PM Page 5

6250CH01.qxd 2/22/06 4:47 PM Page 6

Object Orientation in a
Nutshell

Help! I’m in a nutshell! What kind of nut has such a big nutshell? How did I get into this

bloody great big nutshell?

Austin Powers

In this lesson we will explore the basics of object orientation. I will use a very contrived model
to explain the basics of some of these concepts, and we will go into more detail in subsequent
lessons.

The Nutshell—Encapsulation
Fantasize for a moment that you needed to speak to Bill Gates. Unless you’re a bigwig in IT, the
chances of you speaking directly to him are small. You will probably deal with one or many
intermediaries. They will listen to your ideas and pass them on to Steve Ballmer who may not
even pass them on to Bill.

That’s how encapsulation works. You don’t get direct access to the private data within a
class. These are hidden from you. Don’t feel offended—it’s really for your own good. You need
to use special methods to retrieve or change this data. Since the data cannot be changed
directly, and can only be accessed through these methods, we can be confident that we have
not changed the way the class works.

Now here’s the bonus. We don’t have to test the class or worry that it’s doing what we want.
It is a black box that we can trust will do the job. Java has a lot of these really neat classes avail-
able for use. They’re called APIs (application programming interfaces), and they’re kind of like
super function modules. More about APIs later.

Figure 2-1 illustrates how classes function like nutshells. See how the private data is pro-
tected by the methods? In Java, we call these the accessor or mutator methods.

7

L E S S O N 2

■ ■ ■

6250CH02.qxd 2/23/06 11:17 AM Page 7

Figure 2-1. The nutshell

Inheritance and Polymorphism
Let’s look at another concept within OO: inheritance.

Meet Joe Soap. He’s an FI consultant, but he wants to go further. He wants to specialize in
Treasury. So he does some extra training, becomes better at Treasury, and is now a more spe-
cialized consultant. Is he any less of an FI consultant? No, of course not. He still retains all that
good experience he built up. Figure 2-2 shows this diagrammatically. We could say that the TR
consultant is a more specialized FI consultant. We could also say that the TR consultant inher-
its all of the FI consultant’s attributes and behaviors.

Figure 2-2. A simple inheritance tree

LESSON 2 ■ OBJECT ORIENTATION IN A NUTSHELL8

6250CH02.qxd 2/23/06 11:17 AM Page 8

Let’s consider a more accurate analogy now. Let’s think about a shape. We don’t know
what kind of shape it is, but it has some attributes in common with all shapes. It has an area
and it has a color. We can also give it a behavior. For example, a shape knows how to calculate
its area.

Figure 2-3 illustrates this. Notice that the Shape class has two attributes and the one
behavior. This is how we draw them in Unified Modeling Language (UML).

Figure 2-3. Class diagram in UML

This is where it gets interesting. We can now create three more specialized shapes that will
inherit the attributes and behaviors from the Shape class, as shown in Figure 2-4. We call these
subclasses. From their perspective, we call Shape the superclass.

Figure 2-4. Subclasses

LESSON 2 ■ OBJECT ORIENTATION IN A NUTSHELL 9

6250CH02.qxd 2/23/06 11:17 AM Page 9

■Note Standard UML notation would not repeat any methods in a subclass. I have shown the area method
again, in bold, in the subclass because I will add functionality to it. This repetition would not normally be
done in UML.

The variables defined inside the parentheses in the behaviors loosely equate to export-
ing/importing parameters (depending where you look at them from) for a function module.
Bear in mind that these are always the parameters being passed to a method. (They are the
“message” in UML-speak.)

Notice that the parameters are different in two of the classes (Circle and Triangle), and
they are the same for one of the methods in the Square. The Square class is said to have over-
ridden the calcArea(x,y) method from the superclass because it is using the same number
and type of parameters (or arguments). Notice that the Square has a second calcArea method
with only one parameter. This is now overloading the calcArea method, leaving the runtime to
choose the most appropriate version.

The other two classes, Circle and Triangle, are said to have overloaded the calcArea
method and not overridden it, since the numbers of parameters do not match the superclass’s
definition.

To put it simply for now, the calcArea(x,y) method in Square (shown in bold in Figure 2-4)
is the only method being overridden. Essentially, the difference is that the method signature is
the same for the one method in Square and different for the others. This is the essence of poly-
morphism.

If this all seems a bit confusing, don’t panic! I will cover this concept later in more detail.
I’ll also explain the concept of late-binding, which makes polymorphism powerful in Java.

The Conceptual Model (A Glimpse of UML)
I’m going to introduce you to one of the most common artifacts (the UML name for a docu-
ment): the conceptual model. There are many more documents that can be used in OO
design, and I strongly encourage you to do more research on the subject. It will make you a
better Java programmer, and it will also enable you to write truly reusable code. (See
http://uml.tutorials.trireme.com/uml_tutorial_navigation.htm for more information.)

■Note Several companies with the right resources have studied OO versus non-OO design before investing
serious money in changing their methodology to an object-oriented approach. (For example, Sharble and
Cohen did a study for Boeing in 1994.) To my knowledge, none have been able to refute the claim that it is a
far more efficient methodology.

LESSON 2 ■ OBJECT ORIENTATION IN A NUTSHELL10

6250CH02.qxd 2/23/06 11:17 AM Page 10

Let’s take a look at a video store for an example. First we make a list of candidate classes,
or concepts.

• Assistant

• Video

• Video catalogue

• Customer

• Video store

• Loan

There are a number of techniques that can be used to extract these candidates, but we won’t
cover them here.

We can now start to build associations between our classes. This will start to give us an
indication of the responsibilities of each class, which is a very important aspect of OO design.
Figure 2-5 illustrates this more fully.

Figure 2-5. UML diagramming

LESSON 2 ■ OBJECT ORIENTATION IN A NUTSHELL 11

6250CH02.qxd 2/23/06 11:17 AM Page 11

■Note Notice the numbering of the relationships. In Figure 2-5 we see both one-to-one and one-to-many
relationships. The asterisk (*) denotes that there are “many.”

That’s a very brief introduction to the wonderful world of UML/OO. I’ve heard people say
that it takes from six months to a year to convert a procedural programmer to an object-ori-
ented programmer. You can only benefit from learning and applying OO principles, so stick
with it! Personally I wouldn’t put a time limit on it. It depends on how keen you are.

In Lesson 3 we’ll explore some Java basics, such as the primitive data types.

LESSON 2 ■ OBJECT ORIENTATION IN A NUTSHELL12

6250CH02.qxd 2/23/06 11:17 AM Page 12

The Primitive Data Types

Everything in Java is an object. You’ll hear this refrain often enough on any Java course. And
the exception to this rule is, of course, the primitive data types. I’ll go through them quickly in
this lesson, since you, as an ABAP programmer, will already have a very good understanding
of data types.

Why do we have the data types we do in Java? Well when James Gosling (Java architect)
started out writing the Java language, he likened it to moving apartments. He put everything
(from C/C++, the old apartment) into boxes and then moved to the new apartment. He didn’t
unpack anything—he left everything in a box until he needed it, and then he pulled it out.
After a year, everything that was left in the boxes was thrown out. It’s not a completely accu-
rate analogy but it is very close.

Boolean
This data type is named after George Boole (1815–64), the English mathematician who
devised Boolean algebra.

■Note The Boolean declaration starts with a small b as do all our primitive data types. Boolean with a
capital B refers to the wrapper class and not to the data type.

The boolean can only have a value of true or false. It does not have a value of 1 or 0 and
cannot be treated as such. Therefore you would test it like this:

boolean a=false;
if (a = = true)
{
some code in here.
}

■Note Because of the structure of Java syntax, you are not obliged to leave a space between the operator
and the operand. In ABAP you must leave a space.

13

L E S S O N 3

■ ■ ■

6250CH03.qxd 2/22/06 4:48 PM Page 13

The double equals (==) tests a condition. The single equals (=) acts as an assignment
operator (as it does in ABAP).

The default value for a boolean is always false.

Byte
In Java a byte is a signed, two’s-complement quantity. If you missed the “what on earth is a
two’s complement value” lesson, please send an email and I will happily send you an expla-
nation. Essentially it’s an efficient way of storing negative numbers. A byte is 8 bits long and
therefore can hold any value from –128 to 127 (28).

Beware of doing arithmetic using bytes. For instance, this code will generate an error:

byte a=10, b=20;

byte c=a+b;

Java always performs mathematical calculations at 32-bits precision, so you would need to
cast the 32-bit answer into a byte to store the answer in c. We do this by placing the data type
in brackets, like so:

byte c = (byte) (a+b);

■Warning DANGER Will Robinson! There will, of course, always be a potential for data loss when casting
from bigger to smaller data types. The most significant bits will be dropped. (Readers who have never seen
an episode of the old ’60s classic Lost in Space will not get my Will Robinson reference. That’s OK. Just ask
your nearest old geek.)

Integer
An integer, as you know, is a whole number. It is declared in Java by using the int keyword.

An integer is also signed and two’s complement, and it is 32 bits wide, allowing it to hold
any value from –231 to 231 – 1. The default value is zero.

Nothing more to see here. Move along.

Long
As the name suggests, the long gives you more space to hold your big integers. It behaves like
an integer in every way, except for two. It can hold any value from –263 to 263 – 1, and the dec-
laration of a long value requires an l or L after the number. Convention dictates that you use
the capital L to avoid confusion with the number one.

Here’s an example:

long longVar = 12345L;

The default value for longs is zero.

LESSON 3 ■ THE PRIMITIVE DATA TYPES14

6250CH03.qxd 2/22/06 4:48 PM Page 14

Short
There are instances when memory is at a premium. For instance, when you’re writing Java
code for your HP iPAQ. (Remember, Java is essentially “write once, run anywhere.”)

In these situations, you can use the short, which shares all the attributes of an integer but
only takes up 16 bits. From this we can deduce its value range to be from –215 to 215 – 1.

Unlike the long, the short does not require a suffix.

Float
The float data type can hold decimals. As the name suggests, it uses a floating-point precision
and can accommodate up to 32 bits. This gives it a value range from –3.4E38 to 3.4E38 and it
runs to about 5 or 6 digits of accuracy.

Floats must have an f or an F as a suffix:

float f = 12.3456f;

Double
The double is similar to the float in many ways except that you obviously declare it with the
double keyword. The most important distinction is that it is double (pun intended) the size.
The double will hold a stunning 64 bits, which means it can hold values from –1.7E308 to
1.7E308. You may append a D or d to the end of the number, but it’s optional. Leaving it out
will make the assumption of a double.

Although currency calculations would rarely use the full size of a double, it is common
practice to use doubles for currency calculations. Large scientific or engineering calculations
make good use of the double data type.

Char
The char is the only unsigned primitive data type (apart from boolean).

■Note Heads up! In C a char is a mere 8 bits wide (255 characters). In Java it is 16 bits wide, allowing for
a much greater range of characters. It conforms to Unicode and not to ASCII. (Don’t panic, the Unicode and
ASCII character sets are identical for the first 255 characters.) This enables us to use Japanese, Chinese,
Sanskrit, and many other character sets (for more info, see http://www.unicode.org/charts/).

The char in Java is defined within single quotes. For example,

char a = 'A';

LESSON 3 ■ THE PRIMITIVE DATA TYPES 15

6250CH03.qxd 2/22/06 4:48 PM Page 15

You can also embed escape sequences within a character definition. Table 3-1 shows a
summary of those.

Table 3-1. Common Escape Sequences

\n Linefeed \r Carriage return

\f Form feed \\ Backslash

\t Tab \" Double quote

\b Backspace \' Single quote

Data Types Summary
That’s the lot. Take a moment (get a coffee) and look over what we’ve learned about primitive
data types. Table 3-2 lists them again for your convenience.

Table 3-2. Summary of Data Types

Data Type Size

boolean true or false

byte 8 bits

short 16 bits

int 32 bits

long 64 bits

float 32 bits

double 64 bits

char 16 bits (unsigned)

In the next lesson we’ll cover some commenting standards in Java and have a quick look
at the Javadoc utility, which is provided free with the SDK. We’ll also have a look at naming
conventions and standards.

LESSON 3 ■ THE PRIMITIVE DATA TYPES16

6250CH03.qxd 2/22/06 4:48 PM Page 16

Comments

In this and the next lesson, I’m going to talk about commenting in Java, and then naming
conventions and standards. I’m not only going to cover the Sun conventions but also the ones
I use to make a program easier to read. This is also known as good programming style.

Comments in Java are just like comments in any other language, including ABAP. The one
important distinction is that comments can work with the Javadoc utility. This is an extremely
powerful tool that will scan your Java program for certain comments, method names, and the
like, and produce very nice documentation from it.

Contemporary wisdom dictates that all programs should be fully documented, as this is
where you will find developers looking for clues about the program’s functionality. Document
your programs as much as possible. I do not hold with the notion that because comments
may not accurately describe the code, developers can leave them out. All developers benefit
from reading commented—even partially commented—programs.

Let’s have a look at the three different types of commenting in Java:

• Block comments

• Line comments

• Javadoc comments

Block Comments
Java provides a way of commenting out an entire block of code, as shown here:

/* This is a block comment in Java. You may not "nest" block comments in Java.
You can only have one start and one end comment. */

Notice the use of /* to start the comment and */ to end the comment.
You can use this form of commenting for a single line, but Java also provides for this with

line comments.

17

L E S S O N 4

■ ■ ■

6250CH04.qxd 2/22/06 4:49 PM Page 17

Line Comments
Line comments allow you to comment a line, or part of a line. This is very similar to the double
quote symbol used in ABAP. Here’s an example:

int myVariable = 0; // Initialize myVariable to zero.
// Now initialize the other variable.
float myFloat = 3.45f;

The two different methods are shown in the preceding example. The double slash // can
start at the beginning of a line or halfway through a line, telling the compiler that anything
after it is to be ignored.

Javadoc Comments
Javadoc is an incredibly useful utility that actually builds documentation for you! It reads your
program comments and method comments and builds a standard form of documentation
that every Java programmer can read. Please find the time to research this utility and even to
build some skeleton code to see how it works. You can learn all about Javadoc at http://
java.sun.com/j2se/javadoc/index.jsp.

Javadoc comments start with /** and end with */. You can also now use tags within your
Javadoc comment block, as in this example:

/**
Start of comment block.
@author Alistair Rooney
@version 1.1

*/

The standard tags are listed at the URL mentioned previously.

■Note In Java 5 the tag functionality has been extended. We’ll look at this more in Lesson 25, which
discusses Enterprise JavaBeans.

LESSON 4 ■ COMMENTS18

6250CH04.qxd 2/22/06 4:49 PM Page 18

Naming Standards and
Conventions

When talking about naming standards in Java, there are two distinct topics to discuss. The
first is the legality of the name—will the compiler allow the name—and the second is popular
convention. The latter will not give you a compiler problem, but it will earn you a sharp smack
upside the head from your team leader or fellow developers. I’ll let you decide which is worse!

Legal and Illegal Names
As you write your code, you will need to name variables, methods, and labels. Collectively we
call the names for these things identifiers.

You can start an identifier with any letter, an underscore, or a dollar sign. The identifier
can then have any combination of letters or numbers. It can also contain certain special char-
acters, like the underscore. Table 5-1 shows several legal and illegal identifiers—see if you can
work out why the names are legal or not.

Table 5-1. Legal and Illegal Identifiers

Legal Illegal

MYVARIABLE %myVariable

myVariable My-Variable

my_Variable 9988variable

MyVariable9988 5variable

$myVariable THE-FIRST-METHOD

While we’re on the subject of variable names, let’s look at the Java syntax for declaring a
variable. In ABAP we would do it as follows:

DATA MYVARIABLE TYPE I

In Java we would declare the variable like this:

int myVariable;

19

L E S S O N 5

■ ■ ■

6250CH05.qxd 2/22/06 4:50 PM Page 19

We can also initialize the variable at the same time like so:

int myVariable = 76;

(In ABAP, we would add the VALUE addition.)
To use the Java equivalent of the chain command in ABAP (DATA:), we can simply use a

comma to separate the different variables, but they must be of the same type:

int myInt1, myInt2, myInt3;

This method of defining variables is, however, frowned upon by most developers.

Java Conventions
There are many good sites on the Internet that discuss Java style, and more than one book has
been written on this subject alone! I’ll just cover the basics of naming conventions here:

• All identifiers should start with a lowercase letter.

• Class names should start with an uppercase letter.

• If there are two words in the name, the second word should always start with an upper-
case letter (for example, myGreatVariableName).

• Names should always be meaningful. Do not call your identifiers $a or $b!

• Constants should be all uppercase like PI or MYCONSTANT.

Constants are defined using the final keyword. Here’s a quick example:

final double PI = 3.14159;

Remember that a constant cannot be changed in any way. Attempting to do so will throw a
compiler error. Constants are also usually prefixed with the static keyword, but this is some-
thing we will cover later.

There are other naming suggestions, like prefixing a working variable with an underscore,
but these conventions are largely personal preference. For more information about Java coding
conventions, look up Elements of Java Style by Allan Vermeulen et al., (ISBN: 0-521-77768-2) or
take a look at the JavaRanch “Java Programming Style Guide” at http://www.javaranch.com/
style.jsp or at Sun’s code conventions at http://java.sun.com/docs/codeconv/html/
CodeConvTOC.doc.html.

In the next lesson, we will look at the operators that are provided with Java, and at some-
thing new to Abapers called block scope.

LESSON 5 ■ NAMING STANDARDS AND CONVENTIONS20

6250CH05.qxd 2/22/06 4:50 PM Page 20

The Java Operators

Java operators can be broken down into several different groups:

• Arithmetic operators

• Relational operators

• Increment operators

• Logical operators

We’ll look at each of these types in this lesson, along with the concept of block scope.

Arithmetic Operators
The most important thing to remember about arithmetic operators is their order of
precedence. Let me give you an example:

2 + 3 * 5 + 4 = ?

If you answered 21, you are correct. If you said 54, you made the mistake of adding the
numbers before multiplying them. At school we learned about BODMAS, which stands for
Brackets, Of, Division, Multiplication, Addition, and Subtraction. Notice how adding and
subtracting are the last things you do?

Remember Alistair’s golden rule and you’ll be OK: If in doubt, use brackets! So the previous
equation would be better expressed like this:

2 + (3 * 5) + 4 = 21

These are the math operators in Java:

+ Add

- Subtract

* Multiply

/ Divide

% Modulus

21

L E S S O N 6

■ ■ ■

6250CH06.qxd 2/22/06 4:51 PM Page 21

Be careful with the minus sign! It can also be used to denote a negative number. It is a
unary operator (meaning it has only one operand).

Relational Operators
Relational operators are usually used when testing the relationship between two variables.

There are two big points to remember about relational operators:

• The result of these operations will always return a true or false boolean value.

• The equals operator is the double equals sign (==) not just a single one (=) as in ABAP.

You should be familiar with just about all of the relational operators already:

< Less than

> Greater than

== Equal to

!= Not equal to

<= Less than or equal to

>= Greater than or equal to

Here’s a code example:

if (appleCount >= bananaCount)
{

banana.eat();
}

We’ll discuss these operators in more detail when we get to the topic of control flow in
Lesson 8. Let’s move on shall we?

Increment Operators
These are what I call “shorthand” operators:

• The code x = x+1 can be shortened to x++.

• The code y = y-1 can be shortened to y--.

■Caution Here’s a programmers’ joke (but it’s not really that funny): Java is the result of the operation
C++, since C is only incremented after the operation.

LESSON 6 ■ THE JAVA OPERATORS22

6250CH06.qxd 2/22/06 4:51 PM Page 22

The code for a loop (which we’ll cover in Lesson 8) could be like this:

while(x<10)
{

x++;
System.out.println("The value of x is "+x);

}

The loop will continue until x equals 10. Notice how x increments each time, as shown in the
following output:

The value of x is 0
The value of x is 1
The value of x is 2
The value of x is 3
The value of x is 4
The value of x is 5
The value of x is 6
The value of x is 7
The value of x is 8
The value of x is 9

Get it?
Now that you have, I’ll confuse the issue further. ++x has a slightly different meaning than

x++. When the plusses come before the variable name, this tells the interpreter to increment
the variable before using it.

This means that if we had said x = 3 * j++ and j = 5, then x would equal 15. However if
we had said x = 3* ++j, then x would be 18. In other words, in this last case j would already
have been incremented to 6 before it was used.

Don’t forget this:

• ++h will increment h before use.

• h++ will increment h after use.

Now look at the joke again! It’s still not funny. Let’s move on to the next set of operators.

Logical Operators
There are three logical operators. As ABAP programmers you will know these as AND, OR, and
NOT. In Java these are the && operator, the || operator, and the ! operator. The first two are the
same as in ABAP, but the third has a slightly different meaning. It can negate any Boolean
expression, and in doing so, it can be very handy. Commonly these operators are used in if
and while statements.

LESSON 6 ■ THE JAVA OPERATORS 23

6250CH06.qxd 2/22/06 4:51 PM Page 23

Here’s an example:

while(x!=10)
{

x++;
System.out.println("The value of x is "+x);

}

And here’s another:

if((a==7)&&(x!=10))
{

do something . . .
}

The first example resolves to “while x is NOT equal to 10.” The second one says “if a equals 7
AND x is not equal to 10.”

As an ABAP programmer, you should be comfortable with nesting Boolean expressions,
so I won’t bore you with explanations of these basic principles. However the next section will
introduce a new concept: bit manipulation.

Bitwise Operators
There are 8 bits in a byte, and the number 15, for example, is represented as 1111 in binary.
Table 6-1 shows it diagrammatically. The sign in our example is positive. If the sign was nega-
tive, the leftmost bit would be a 1.

Table 6-1. Eight Bits Showing the Value 15

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 0 0 0 1 1 1 1

■Note Negative figures are held in two’s complement on any computer. Explaining two’s complement is
not for this course, but feel free to research this if you have the time.

We’ve digressed a little here. Let’s return to our logical operators:

& ANDs two binary numbers (typically used for masking)

| ORs two binary numbers (typically used to set bits)

^ XORs a binary number

~ Converts a binary to one’s complement

>> Shifts bits right

<< Shift bits left

>>> Shift bits right (logical)

LESSON 6 ■ THE JAVA OPERATORS24

6250CH06.qxd 2/22/06 4:51 PM Page 24

If we were to AND our example value of 15 with 5, we could express this in Java as follows:

byte a = (byte) 0x0e; // 15 in hex
byte b = (byte) 0x05; // 5 in hex
byte c = (byte)a&b; // the two are ANDed resulting in 5

Table 6-2 shows this diagrammatically. Remember your Boolean logic? Both bits must be
1 before the result can be 1. So we have effectively masked bits 1 and 3.

Table 6-2. ANDing 15 and 5

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 0 0 0 1 1 1 1

0 0 0 0 0 1 0 1

0 0 0 0 0 1 0 1

If we were to OR the same values, we would have the following:

byte a = (byte) 0x0e; // 15 in hex
byte b = (byte) 0x05; // 5 in hex
byte c = (byte)a|b; // the 2 are ANDed resulting in 15

Table 6-3 shows the diagram. Again Boolean logic dictates that either bit can be 1 for the
result to be 1. We have set bits 1 and 3 in this example.

Table 6-3. ORing 15 and 5

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 0 0 0 1 1 1 1

0 0 0 0 0 1 0 1

0 0 0 0 1 1 1 1

To XOR the bits, we use the caret sign (^). This is very useful when working at a bit level,
but rarely used in workaday Java. XOR demands that either of the bits may be 1, but not both,
to achieve a result of 1.

Shifting operations can also be extremely useful. Let’s examine them.
The first is the shift right (>>). We’ll use our value of 15 again and shift the bits two to the

right:

byte a = (byte) 0x0e; // 15 in hex
byte c = (byte)(a>>2); // Shifted 2 to the right giving 3

LESSON 6 ■ THE JAVA OPERATORS 25

6250CH06.qxd 2/22/06 4:51 PM Page 25

Once again, Table 6-4 shows the diagram version.

Table 6-4. Shifting Bits Two to the Right

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 0 0 0 1 1 1 1

0 0 0 0 0 0 1 1

You have to be careful with negative numbers, though. Bit 7 is the “sign” bit. For negative
numbers, bit 7 would be a 1, and each shift would move a 1 into the leftmost position. The
example shown in Table 6-5 demonstrates this. (Remember that negative numbers are held as
two’s complement in Java. The example in Table 6-5 is not –15.)

Table 6-5. Shifting Bits Two to the Right in a Negative Number

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

1 0 0 0 1 1 1 1

1 1 1 0 0 0 1 1

To force the zero to be fed in on the left, regardless of the sign bit, we use the >>> operator.
Shifting left is easier, as the bits from the right are always filled with zeroes:

byte a = (byte) 0x0e; // 15 in hex
byte c = (byte)(a<<2); // Shifted 2 to the left, giving 60

Table 6-6 shows this diagrammatically.

Table 6-6. Shifting Bits Two to the Left

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 0 0 0 1 1 1 1

0 0 1 1 1 1 0 0

That’s all there is for operators!

Block Scope
Conceptually, block scope is a very simple topic. There are just a few basic rules to be followed.
First, though, a definition: A block is any section of code contained in curly brackets {}. Now
for the rules.

Rule number 1: If a variable is defined inside a block, it is not visible to any code outside
of that block.

LESSON 6 ■ THE JAVA OPERATORS26

6250CH06.qxd 2/22/06 4:51 PM Page 26

In Java, the following is correctly expressed:

{
int x = 5;
int y = x + 5;
System.out.println("x = "+x+" and y = "+y);

}

However, the following would produce an error, since the variables are out of scope:

{
int x = 5;
int y = x + 5;

}
System.out.println("x = "+x+" and y = "+y);

Rule number 2: If a variable is defined outside a block, it is visible to any code inside that
block.

The following Java example would work just fine:

int x = 5;
int y = x + 5;
{

System.out.println("x = "+x+" and y = "+y);
}

Easy enough isn’t it? In the next lesson we’re going to explore the wonders of strings!

LESSON 6 ■ THE JAVA OPERATORS 27

6250CH06.qxd 2/22/06 4:51 PM Page 27

6250CH06.qxd 2/22/06 4:51 PM Page 28

Strings with Java

Dealing with text in some way, shape, or form is fundamental to any programming language.
Strings can be dealt with using three classes (String, StringBuffer, and StringTokenizer), which
you need to get familiar with through your API documentation.

■Note I’m not going to cover the Character class here. This is something you can easily research on your
own. The Character class is different from the char primitive data type, and it is one example of a wrapper
class.

THE JAVA API DOCUMENTATION

One of the nicest things about Java is that you can easily see the classes you have available, and the
methods you can use in these classes. Simply download and unzip the documentation for your JDK release.
The HTML file you need to look at is index.htm in the API directory.

The documentation is in HTML format, and it has a list of all the classes down the left side, and the
class details, including the methods, on the right side (see Figure 7-1). Get familiar with this! You’ll be using
it a lot.

29

L E S S O N 7

■ ■ ■

6250CH07.qxd 2/22/06 4:52 PM Page 29

Figure 7-1. The Java API documentation

This is the first time we have encountered a class that will do our dirty work for us—other
languages like ABAP and C use strings as data types. The bonus with Java is that we can use
some very powerful methods to work with strings.

Now here’s a catch. Strings are immutable in Java. This means that you cannot change a
String. Before you throw your hands up in horror, though, let me explain a little. I’ve had stu-
dents who say to me, “You lied to me—this works fine,” and they show me the following code:

String myString = "Howdy Podner";
myString = "Hey y'all";

After they have finished swearing at me, I tell them that they have not changed the string
myString; they have replaced it entirely, which is a very different thing.

Declaring a String
Formally a String declaration should look like this:

String myString = new String("Howdy");

This is called instantiation in Java. More on this in later lessons.

LESSON 7 ■ STRINGS WITH JAVA30

6250CH07.qxd 2/22/06 4:52 PM Page 30

However, and this is a rather big however, we can declare a String in a shorthand way in
Java. We do not have this privilege with other classes in Java (except for one or two, but I’m not
telling).

The shorthand declaration is the one we’ve seen already:

String myString = "Howdy Podner";

Concatenating Strings
Joining or concatenating strings in Java is very easy. Although we cannot overload operators in
Java, Sun has done one for us. The plus (+) sign is used to concatenate two Strings, a char and
a String, and just about any other primitive data type.

Let’s see an example:

String helloString = "Hello";
String worldString = " World";
System.out.println(helloString + worldString);

And here’s another:

String myName = "Alistair";
System.out.println(myName+" is "+21);

Which will print out this:

Alistair is 21.

Using the String Methods
There are over 50 methods in the String class. Obviously, it would be a little silly to cover all of
them. I’m going to cover a few basics, and your job is to research the others in the API docu-
mentation. I’ll introduce each with some code fragments.

The charAt Method
String myString = "Welcome";
char firstChar = myString.charAt(3);

As you may have guessed, the charAt method returns a character. I have asked it to return the
character at position 3, which will be c.

■Warning The charAt method requires an integer, and this integer is the index of the string. A string’s
index always starts at 0.

LESSON 7 ■ STRINGS WITH JAVA 31

6250CH07.qxd 2/22/06 4:52 PM Page 31

Since this is the first time we have seen a class call, let’s direct our attention to the dot
operator (the period in myString.charAt(3)). This is very similar to the use of => in ABAP. We
have the object (reference) myString, and we know we want to use the charAt method. So
we join the two using a dot. For example, Object.method(). Don’t forget the parentheses.

The substring Method
String catMat = "The Cat sat on the Mat";
String catString = catMat.substring(4,7);

The catch with the substring method is that the start index is normal but the end index
requires that you add 1. So to return the string “Cat”, we start at 4 and end at 6 + 1, or 7.

As with charAt, there is more than one variant of this method, depending on the para-
meters you want to use.

The equals Method
String first = "First String";
String second = "Next one";

if (first.equals(second))
{

System.out.println("they are equal!");
}

This example, using equals, compares the values of the two strings.
Hold on. Hold on. Why can’t I just use first == second? Well I’m glad you asked! The

answer is that if you use == , you are not actually comparing “First String” and “Next one”,
you are in fact comparing two object references, which will probably not be equal even if
the String values are.

So if you want to compare any two object instances using their object references, you
should not use the == method, you must use the equals method. A reference—in case you
have not dealt with ABAP objects—is a variable that contains a pointer to an object held in
memory, and usually it’s just an address.

The length Method
The length method is very useful for (surprise!) determining the length of a String.

String longOne = "This String is longer than the others";
If (longOne.length() > 20)
{

do some code here . . .
}

You may want to use the length method in a loop, but be aware that method calls within
loops have a performance overhead. It is better to extract the length outside of the loop.

That’s all on String methods. I strongly recommend you read through the API’s to see what
other methods you have available to you.

LESSON 7 ■ STRINGS WITH JAVA32

6250CH07.qxd 2/22/06 4:52 PM Page 32

Using the StringBuffer Class
The one drawback to using Strings is that they are immutable—they cannot be altered in situ.
The solution to this problem (on the rare occasions it becomes a problem) is to use the
StringBuffer class instead of a String or as well as a String. When using StringBuffer, you are
free to change the string.

■Tip The StringBuffer is less “expensive” than the String from a performance perspective, and should be
used if performance is an issue.

The first thing I need to mention is that if there is a String method to do something, there
is probably a StringBuffer method as well. A good example of this is the charAt method.

The following sections concentrate on the methods that are peculiar to the StringBuffer
class. Once again, I will be looking at a small selection of the available methods, and I
encourage you to read through the APIs.

The append Method
The StringBuffer class must be fully instantiated:

StringBuffer sb = new StringBuffer("my jolly string");
sb = sb.append('s');

In the preceding example, the character s will be appended to the end of the string, and the
instance sb will now contain the string “my jolly strings”.

Bear in mind that you can append floats, doubles, integers, and other data types. Have a
quick peep at the append methods in the APIs.

Of course Java gives you the ability to insert a data type at a specified position instead of
at the end. To do this, you use the insert method.

The insert Method
Continuing the previous example, and assuming the instance sb has been constructed, we
could say this:

sb = sb.insert(1, 'e');

The first parameter is the offset (from 0), and it must be an integer; the second parameter is
the character (in this case) that I want to insert. The end result of this operation will have sb
containing the string “mey jolly strings”.

The other methods in StringBuffer are pretty much self-explanatory. The reverse method
does just that—it reverses a String like “abcdefg” and changes the buffer to “gfedcba”.

The toString method is handy, but since the String class takes a StringBuffer as an argu-
ment in the constructer, we could just say this:

String newString = sb.toString();

LESSON 7 ■ STRINGS WITH JAVA 33

6250CH07.qxd 2/22/06 4:52 PM Page 33

Using the StringTokenizer Class
I don’t want to spend longer than a few minutes on this class. It is useful and bears mention-
ing, but it is something you can look at in more detail on your own.

StringTokenizer will allow the program to run in a loop, examining the contents of a string
and breaking it up into separate strings based on the delimiter that was specified. This is great
for parsing XML files and the like (there’s more on XML in Lesson 24). You must loop through
your string and identify each substring between the delimiters (looping will be covered in
Lesson 8).

Here’s a quick example:

String textExample = "#First String#Second String#Third one";

StringTokenizer st = new StringTokenizer(textExample,"#");

while (st.hasMoreTokens())
{

String theToken = st.nextToken();
System.out.println(theToken);

}

Note the use of the hasMoreTokens method to check whether we have any left, and the
nextToken method to return the next token (strangely enough!) in the String. The preceding
example will return the following:

First String
Second String
Third one

That’s all for this lesson! In the next one we’ll talk about control flow.

LESSON 7 ■ STRINGS WITH JAVA34

6250CH07.qxd 2/22/06 4:52 PM Page 34

Control Flow

A program that hurtles through code in a linear fashion is not terribly exciting. Imagine
trying to play a game of chess where you knew all the moves in advance.

I’ll say one thing, it’s very nice to debug!

Using the if Statement
As you know from ABAP, there are plenty of times where you want to condition your code.
In ABAP we use the IF, ELSE, ELSEIF, and ENDIF keywords to introduce decision paths into our
code. In Java it’s very similar, except that we make use of braces to mark the beginning and
end of our code blocks.

Having said that, it is perfectly legal to leave the braces off when you have only one line in
your if or else statement. Here’s an example:

if (b==5)
c = 73;

else
c = 0;

It is not, however, professional to do this, as it can easily lead to misinterpretations. You
should always use braces with if and else statements, like this:

if (b==5)
{

c = 73;
}
else
{

c = 0;
}

if statements in Java need to be followed by parentheses, and the expression between the
parentheses must resolve back to a boolean value. If not, the compiler will tell you when you
try to compile the Java program. You should be used to doing this in ABAP, but let’s take a
quick look at this now!

35

L E S S O N 8

■ ■ ■

6250CH08.qxd 2/22/06 4:53 PM Page 35

In ABAP, the expression could be written like this:

IF myNewVariable eq wa_newvariable

In Java we would write it as follows:

if (myNewVariable == wa_newvariable)

Notice that in the Java example, the entire condition test is wrapped in parentheses. This
ensures that everything between the parentheses can easily be resolved back to a single
boolean value—either true or false.

■Warning Notice the double equals sign (==) in Java! A single equals in Java is always an assignment,
whereas the double equals is the comparison operator.

You are free to do complex comparisons in Java, provided you use the && (and) and the ||
(or) operators correctly and encase the whole expression in parentheses. Here’s an example:

if ((a<PI)&&(a>78)||(d==17))
{
. . . code . . .
}

Nesting is also available in Java. Remember to indent your code to make it more readable,
like this example:

if (a<PI)
{

if (a==73)
{

. . . code here . . .
}

}

There can be multiple levels of nesting, but remember that this can obfuscate your logic,
so beware. If you find yourself going down more than five levels, have a long hard look at your
program design. One way to get around too many nested if statements is to use the switch
statement, discussed later in this lesson.

There is a shortcut operator in Java for writing an if statement in one line. It is the ?
operator.

Using the ? and : Operators
You can replace the traditional if operator with the ? operator for true values and the :
operator for false values.

LESSON 8 ■ CONTROL FLOW36

6250CH08.qxd 2/22/06 4:53 PM Page 36

Here’s an example using the if operator:

if (b==5)
c = 73;

else
c = 0;

The preceding statement can be written like this:

c = (b==5)?73:0;

In other words, if b equals 5, the c is set to the value after the ? (73), else the value would be set
to whatever follows the : (0).

Pretty smooth! This is nice for embedding within other code, like this:

System.out.println("The answer is "+(b==5)?73:0);

So far so good. All of this should be second nature to anyone who has programmed
before. Now on to the switch statement.

Using the switch Statement
The switch statement is a little disappointing in Java. In ABAP and in other languages, we have
powerful case statements that can check each level individually. In Java, though, each case
within the switch statement must be terminated with a break statement.

■Note The switch statement can only test an int, byte, short, or char.

Let’s have a look at the switch statement in action:

int option = x;
switch(option)
{

case 1:
System.out.println("You selected 1");
break;

case 2:
System.out.println("You selected 2");
break;

case 3:
System.out.println("You selected 3");
break;

default:
System.out.println("You selected something else");
break;

}

LESSON 8 ■ CONTROL FLOW 37

6250CH08.qxd 2/22/06 4:53 PM Page 37

Notice the default statement. This bears some resemblance to the WHEN OTHERS statement
in ABAP. In other words, it acts as a catchall for anything that has not been processed by the
preceding case statements. It is always good practice to include one default statement to
ensure your logic does not contain any holes.

Not very difficult is it? But it is a little limited, as I mentioned.

Looping
In most programming languages we have the ability to iterate around a segment of code. This
is called looping (but you knew that already). In ABAP, we have a number of options open to
us, some of which are peculiar to the language. For example, the LOOP AT keyword is probably
the most common iteration in ABAP, and yet it does not exist outside of ABAP. This is mostly
because of the unique concept of internal tables.

In any case, there are two distinct ways of looping: test-before loops and test-after loops.
In ABAP we have DO, WHILE, and even CHECK. DO can test at the beginning and anywhere

between the start and end of the loop, using the EXIT keyword to leave. WHILE will only test at
the beginning.

We have three types of loops available to us in Java: while, for, and do.

The while Loop
The equivalent of the ABAP WHILE loop is the—wait for it—Java while loop. Yup, it is that easy.
The syntax is almost identical. We say while (expression), and we use our curly braces to
denote our loop scope.

As with all these statements in Java, we are allowed to forego the use of curly braces if we
have only one line in our loop. However, as was mentioned earlier, you should always use the
braces (curly brackets) regardless of the number of lines.

INTERNAL TABLES AND THE JAVA CONNECTOR (JCO) FROM SAP

SAP has provided us with a very useful tool to connect to SAP systems from within Java: the Java Connector
(JCo). How to use JCo is discussed in Lesson 20, but one interesting thing is that it has the ability to duplicate
a SAP data dictionary type (like a structure) within the Java realm. Using this we can build internal tables
using JCO.Table within our Java program! They could have used arrays, but this little trick is very cool, and
for this SAP wins the coveted “cool API of the week” award.

LESSON 8 ■ CONTROL FLOW38

6250CH08.qxd 2/22/06 4:53 PM Page 38

Let’s have a look at a trivial code fragment to demonstrate the while loop:

public void myLoopMethod(int noOfTimes)
{

int n = 0;
// Loop while n is less than noOfTimes
while (n<noOfTimes)
{

n++;
System.out.println("n is now "+n);
System.out.println(“n is now “ + n++);

}
}

We can see that this method (myLoopMethod) takes an integer as a parameter. The while loop
repeats the number of times specified in the integer. It keeps a count using the variable n, and
it prints out the result on each iteration.

Notice how this is a very good example of testing at the beginning of a loop. Easy so far!

■Warning Beware putting a semicolon at the end of the while line. This will result in a functionless loop!

The for Loop
In ABAP we have some very handy things called internal tables. To loop through the internal
table, you just use LOOP AT. You know that it will step through the internal table incrementing
by 1 each time.

In Java we have to specify our starting position in the structure (an array, for example)
and how big our increment steps should be. To do all of this, we use the following syntax:

for(int i=0; i<10; i++)
{

//Do some code

}

The for statement can be broken down into three substatements that are separated by
semicolons (not commas):

• The first initializes the variable or variables you wish to use in your loop. You can also
declare your variable here, which is pretty neat. In the preceding example, you can see
that I’ve done just that.

• The second section works best if you say “while” to yourself before reading it. You’ve
guessed it—this is the condition section, and it must resolve back to a single boolean
value. So in our example the loop will continue “while” i is less than 10.

LESSON 8 ■ CONTROL FLOW 39

6250CH08.qxd 2/22/06 4:53 PM Page 39

• The third section increments or decrements one or more variables. Obviously, in the
preceding example, I wanted to increment by 2 at a time. You can, of course, do the
increment manually. Here’s a quick example:

for(int i=0; i<10; i=i+2)
{

//Do some code

}

It is legal to have empty sections or substatements. In fact, some people recommend the
following for triggering an endless loop (I prefer while(true)):

for(;;);

That’s the short story of for loops. When we examine arrays in Lesson 10, I will spend a
little more time on them.

The do Loop
I can tell you’re not “loopy” enough yet, so I’ll carry on with the next loop. This is where a test
is done at the end of the loop, as opposed to the beginning. All good programming languages
should have one of these loops, as it saves you from slipping into unstructured code (like
using the ABAP EXIT statement!). I disagree strongly with some Java authors who recommend
not using it. I find it very useful.

The way that we do this in Java is by using the do . . . while loop. Let’s have a look at
this in a code snippet:

do
{

System.out.println("The value of x is "+x++);

} while(x<10);

Don’t get confused by the x++. Remember that this will just increment the variable after it
has been printed.

■Note The most important point about this form of loop is that it will be run at least once.

As you can see, loops are quite straightforward. You can, of course, nest any loop within
any other loop.

Next we will have a quick look at jump statements.

LESSON 8 ■ CONTROL FLOW40

6250CH08.qxd 2/22/06 4:53 PM Page 40

Jump Statements

There is a way in Java to leave a loop prematurely, just as you can do with the ABAP EXIT or
CONTINUE statements. In fact, there are several ways to do this. They are collectively called the
jump statements.

■Tip Try not to use jump statements. They promote exceptionally unstructured code, which at its worst will
turn into the dreaded “spaghetti code.” There is almost always a way to design your code so that you don’t
have to use them.

The break Statement
The first of the jump statements is one that you cannot avoid if you choose to use the switch
statement. This is break.

The break statement can be used in any loop—it is not restricted to the switch statement.
If it is encountered in a normal while loop, it will leave processing of the loop at that point and
continue with the next statement outside of the loop. This will happen regardless of the condi-
tion in the loop.

In the following example, we leave the loop whenever the variable equals 7. (Yes, it’s a silly
example, because we’ll never reach 8 or 9, but it’s just an illustration.)

for(int i=0; i<10; i++)
{

if (i=7)
break;

}

41

L E S S O N 9

■ ■ ■

6250CH09.qxd 2/22/06 4:53 PM Page 41

The continue Statement
The next keyword is a little less evil. This is the continue statement. With this you can move on
to the next iteration of the loop, and any unprocessed lines in that iteration will be ignored.
In other words, the control will leave the loop at the point of the continue and will start at the
top of the loop on the next cycle.

Try to avoid using this one in Java, but you can still use it in ABAP if you like!

The return Statement
Unlike the others, the return statement is very useful. It can be used in a method to return
control to the calling method, and it can pass one parameter.

Here’s a wee example:

public double calcArea(double radius)
{

area = Math.PI*radius*radius;
return area;

}

You can have more than one return statement in a method, but they are usually controlled
by a condition—you would only execute one at a time.

You may not have a return that returns nothing if you have specified that there is a return
type on the method signature. That might sound a bit confusing, so I’ll explain. In a method
you may explicitly specify that there is no return parameter, and to do this we use the keyword
void. When we use void, we are not allowed to pass back any variable. In such a case, the
return statement could be on its own, or you can choose to omit it. In the following example,
it’s used on its own:

public void setArea(double area)
{

this.area = area;
return; // Optional in this case

}

In the calcArea method above we have explicitly specified that we will return a double, so
when we use the return statement we need to specify a double type of variable. (More on this
in Lesson 11 where we’ll cover classes and objects.)

That’s all for this lesson. Tune in next time when we will start to explore the wonderful
world of arrays and collections!

LESSON 9 ■ JUMP STATEMENTS42

6250CH09.qxd 2/22/06 4:53 PM Page 42

Arrays and Collections
in Java

If you’re an ABAP programmer and you haven’t coded in other languages, you may not have
come across Arrays. However, you’ve been using them all along (in a way) without being
aware of it.

In ABAP we have internal tables, which are basically collections. There are three basic
types of internal tables in ABAP: standard, sorted, and hashed. How you use each of these
depends on the access method you choose.

Arrays (and other collections) in Java are more “manual” than in ABAP. You must code the
loop yourself—sadly you can’t just say LOOP AT and have your table be read to the end. Cast
your mind back to the for loop we covered in the last lesson—this is the primary mechanism
we will use for reading an Array.

There are many collections in Java. In this section I will cover Arrays and touch on Vectors.
I strongly urge you to review the Java API documentation at this point, as a full under-

standing of the structure of these classes is extremely useful.

Using Arrays
In case you’re still lost and have no idea what I am talking about, I’ll provide some basic
examples. (If you’re comfortable with the concept of Arrays, you can skip this section, but
look at the Java syntax.)

There are many Array analogies, but the one I’m most comfortable with when explaining
single-dimension arrays is the pigeonhole system. In a hotel, for example, there are a number
of pigeonhole slots where the staff can put any number of items for guests to collect at their
leisure. Let’s say our hotel has only ten rooms:

I can put anything I like into those little pigeonholes: a Java primitive data type (an int or
a double, for example) or an object (String, for example). I can even put another Array into
an Array. So, to extend our analogy slightly, we would be putting another whole row of boxes
inside one pigeonhole.

43

L E S S O N 1 0

■ ■ ■

6250CH10.qxd 2/23/06 11:14 AM Page 43

However, an Array may only have one type of entry for the entire array. You may not “mix
and match” your data types within an Array.

■Note In the preceding diagram, you’ll notice that I’ve started counting at zero, not at one. In Java we
count Arrays from zero. In ABAP the first line of the internal table is sy-tabix = 1.

The Array Index
Just like we have sy-tabix in ABAP, we have an index for our Java Arrays. The index will point
at one pigeonhole or element at a time.

If you are familiar with C or C++, you will be aware of the infamous ability of C to read
beyond the end of an Array without even so much as a murmur from the runtime! Thankfully,
we cannot do this in Java without causing a runtime exception to be thrown.

Declaring an Array
If you want to go on and study for your Sun certification, you need to be aware of the three
distinct stages for Arrays: declaring, creating, and filling. We can do all three at once, but let’s
break it down into those different steps.

Declaring an Array is very easy. Let’s declare an Array of Strings.

String[] myArray ;

Notice the square brackets. These tell us that we are declaring an Array of Strings and not
just one String. It is important to note that the square brackets can come after the identifier
(myArray), if you choose, like this:

String myArray[];

Just be consistent.

■Tip It is conventional to put the brackets after the data type, as in the first example, so don’t be too
shocked if you attract a rude comment for coding differently.

Creating the Array
We haven’t told the compiler much about our Array yet, so let’s do that by creating or
instantiating our Array.

myArray = new String[10];

LESSON 10 ■ ARRAYS AND COLLECTIONS IN JAVA44

6250CH10.qxd 2/23/06 11:14 AM Page 44

■Note We will explore the new keyword more fully when we examine objects in Lesson 11.

Before we move on to filling our Array, let’s look at how we could combine the first two
stages into one line of code. It’s easy:

String[] myArray = new String[10];

Filling the Array
There are basically two ways to fill an array: the wrong way and the right way.

I’m not a fan of any hard-coded content in a program, so I’m very much against hard-
coding your array entries, which is the first way of filling arrays. You can declare, create, and
fill an array by using this hard-coded method:

String[] myArray = new String{"One", "Two", "Three", "Four", "Five"};

As you can see, it’s a very effective way to define an array, but since hard-coding should be
anathema to professional programmers, I advise against its use.

The correct way to populate an array is with variables, and the most common way to do
this is with the for loop we learned about in Lesson 9. Here’s an example:

String[] myArray = new String[10];

for (int i=0; i<myArray.length; i++)
{

myArray[i] = "String number"+i;
}

Notice in the preceding example how each array element is referenced by saying
myArray[n], where the value of n is the element number we want to reference.

Also, remember that Java arrays start at zero. This is why we only want to loop while the
variable i is less than the length of the array. This is clearer in a diagram—on the top is the
natural number (1 to 10) indicating the position in the Array, and below is the index number
for that Array position. When you reach the end of the Array, the index value will be one less
than the Array’s length.

1 2 3 4 5 6 7 8 9 10
--
0 1 2 3 4 5 6 7 8 9

■Note length is a variable of the Array class and not a method, so there are no brackets. More on meth-
ods in Lesson 11.

LESSON 10 ■ ARRAYS AND COLLECTIONS IN JAVA 45

6250CH10.qxd 2/23/06 11:14 AM Page 45

Multidimensional Arrays
In Java we can have multidimensional Arrays. A two-dimensional Array is very similar to an
Excel spreadsheet: you can have multiple rows with varying numbers of columns in each. If
the number of columns is identical in each row, we have a rectangular 2-D Array. If they are
not equal, we have what is called a staggered Array.

I don’t want to go into too much detail on 2-D arrays, but I do want to show you how to
declare them:

String[] [] myArray = new String[5] [5];

This will create a five-by-five rectangular (actually square!) Array. This means that for each ele-
ment in the primary array, there is another entire array that is five elements long.

That’s all I want to say about Arrays for now. Let’s move on to other Collections.

The Vector Class
The Java Collections can be seen more clearly in Figure 10-1, which is from Sun.

Figure 10-1. Collections schematic from Sun Microsystems

LESSON 10 ■ ARRAYS AND COLLECTIONS IN JAVA46

6250CH10.qxd 2/23/06 11:14 AM Page 46

The Vector class is a member of the List class (have a look at the APIs in Figure 10-2). As
such it behaves very much like an Array. One main difference between a Vector and an Array is
that a Vector can grow. Or to put it another way, the Vector will dynamically allocate space. A
Vector can also mix its element types, which is pretty useful! However a Vector may only con-
tain objects and not primitive data types. Instead of using Vectors, though, most developers
tend to use the ArrayList class, which shares some of the characteristics of the Vector.

Figure 10-2. API documentation for the Collection Interface

Using Vectors
To add an element to a Vector, you use the addElement() method.

To loop through the elements of a Vector, you can set up an Enumerator and use it to
check whether the Vector has more elements by using the enum.hasMoreElements() method.

I won’t go into detail here, but I encourage you to look at one of the many sites discussing
Vectors and other collections on the Internet.

That’s it for collections. Next we will look at classes and methods.

LESSON 10 ■ ARRAYS AND COLLECTIONS IN JAVA 47

6250CH10.qxd 2/23/06 11:14 AM Page 47

6250CH10.qxd 2/23/06 11:14 AM Page 48

Object Orientation in Java

Ah, objects. Some people take to object orientation (OO) like a duck to water. Most people
don’t really get it for a while (6 to 18 months). But when they do get it, they become evangelists
for OO.

I coded procedural programs for close on 18 years before embarking on this OO journey.
Although I learned Java in 1997, I treated it like another C. In 1999, however, a gifted man
(Stuart Fripp) introduced me to OO and UML. I liked what I saw and started using it in my
projects. It was only in late 2000 that I felt I was designing properly in OO.

I tell you this story so that you will persevere with OO. It is difficult to convert from proce-
dural to object oriented programming, but please don’t give up. The benefits are real and
very cool.

By the way, does SAP “get” OO? They are certainly on the right path.

The Pillars of OO
These are the four pillars of OO:

• Inheritance

• Encapsulation

• Abstraction

• Polymorphism

It is very difficult to talk about inheritance without discussing polymorphism, so I’ll deal
with those two together. First, though, I would like to discuss the structure of a Java class.

49

L E S S O N 1 1

■ ■ ■

6250CH11.qxd 2/23/06 11:25 AM Page 49

Java Class Structure
Figure 11-1 shows a simple diagram of a Java class. The outside box is the class container—we
define a class in Java using the class keyword.

Figure 11-1. Java class schematic

Between the class definition and the first method, we can declare our instance variables.
These are variables you would like the whole class to see (although it’s not the same thing, you
can think of these as global variables for the class). If you define something in Method 1, it is
not visible to Method 2—remember the discussion of block scope in Lesson 6? However, if you
define an instance variable, it is available to all methods.

The two big arrows in the figure are both optional. In Java, the absence of a return (or out-
bound) parameter is shown by using void in the method declaration. If we have no inbound
parameters, we show this by having empty brackets () in the method declaration.

■Note Notice that the outbound arrow carries a single parameter. Only one parameter can be “exported”
(to borrow an ABAP term).

LESSON 11 ■ OBJECT ORIENTATION IN JAVA50

6250CH11.qxd 2/23/06 11:25 AM Page 50

I hear you screech with horror! OK, maybe you just raised an eyebrow. Yes, Java will only
allow one parameter to be returned from a method. But this is good. It will force you to imple-
ment methods correctly: A method must do one thing, and one thing only! This will force us to
start thinking in an object way.

Inheritance and Polymorphism
One of the great things about an OO programming language is the concept of inheritance.

Suppose I have already coded a generic BankAccount class. Why should I code a com-
pletely new class for a credit card account, or a savings account, or even a checking account?
Wouldn’t it be great if I could just reuse the standard functionality that I (or some other pro-
grammer) had already created in the plain old BankAccount class?

With inheritance, you can. By simply using the extends keyword in Java, we can use all the
methods that we are allowed to use. (We’ll look at access modifiers later, but it is sufficient to
say here that if we want to prevent inheritance, we can do so. For example, try to write a pro-
gram that extends the String class.)

Let’s look at a model to see how inheritance works. This model won’t be realistic—there
are no databases here, the account balance is somehow magically held by the object, and so
on. Bear with me, this is just an example. I’ll extend it a bit in the future.

The generic BankAccount class will never be instantiated directly. In Lesson 7 we created
an instance of the String class like this (or said we could have):

String s = new String("Hello");

The new keyword means that a new instance of the class has been created, and we have called
it s.

Let’s briefly take a step back. Think of your class as being the design or specification for an
object—the blueprint of a house, for example. A house can be built many times from one set
of blueprints, and similarly, many objects can be instantiated from one class.

Cast your mind back to Lesson 2, and you’ll recognize Figure 11-2, which represents the
BankAccount class. We can see that it holds a private attribute and four public methods. (And
you can see that I’m not sticking to strict UML notation here. Please don’t report me to the OO
police just yet!)

Figure 11-2. The BankAccount class

LESSON 11 ■ OBJECT ORIENTATION IN JAVA 51

6250CH11.qxd 2/23/06 11:25 AM Page 51

We can now create the classes for the three other types of accounts we want to “inherit
from” our BankAccount class: the CreditCard class, the SavingsAccount class, and the Check-
Account class. To show inheritance in UML, we draw the classes as we would draw an
organizational diagram—take a look at Figure 11-3.

Figure 11-3. Inheriting from the BankAccount class

So, let’s look at what we’re doing here. The three subclasses of the BankAccount class
inherit all the methods from the BankAccount class, free of charge. So if you have some superb
functionality in your BankAccount class (also known as the superclass), you already have it in
your subclass just by saying that the subclass extends the superclass.

If we were to look at the class signature of the SavingsAccount class, we would see this:

class SavingsAccount extends BankAccount

As a result, we do not have to recode any of the methods contained in the BankAccount class.
We get them automatically. Now is that cool or what? This is the basic premise of inheritance.

That’s great, but what if you need something different in one of the classes?

• Funds cannot be withdrawn from the credit card account. However, depositing funds
for the CreditCard class is the same as in the BankAccount class.

• The SavingsAccount class will only allow a withdrawal of $500 or less. Again deposits
are standard.

• The CheckAccount class will have special fees for withdrawals and deposits.

Where we just want to use the superclass’s methods, we don’t need to code a line! Remem-
ber, we inherit all of that functionality! However, where we want to make the method more
specialized, we will have to override the method. This means specifying the method again,
ignoring the functionality in the superclass, and overriding it with our own. Overriding is the
first part of polymorphism.

LESSON 11 ■ OBJECT ORIENTATION IN JAVA52

6250CH11.qxd 2/23/06 11:25 AM Page 52

METHOD SIGNATURES: OVERRIDING VS. OVERLOADING

The term “method signature” basically means “the syntax of the method definition.” A method can have a
return type or nothing at all (void) and the method can accept parameters as well. These attributes make
up the method signature.

If you define a method in the subclass with the same name of a method in the superclass, and the
method signature differs, you are, in effect, overloading the method. If the method signature remains the
same, you are overriding the method. Obviously the method name remains the same, and remember, it’s
case-sensitive.

Suppose that there are two types of withdrawals that can be made from our CheckAccount
class: the withdrawal amount can be a BigDecimal type or a double. We can cater for this by
duplicating our withdrawal method, and just having the method signatures differ. Our double
method will have this signature:

public void withdrawal(double amount)

The BigDecimal method will have this signature:

public void withdrawal(BigDecimal amount)

This technique is called overloading, and the really smart thing about Java is that the
correct method to be called is only determined at run time. (As an exercise, write a little
program to test this feature, called late binding in Java.)

■Tip Keep in mind that this is just an introduction to Java. I recommend you read Bruce Eckel’s Thinking in
Java for a good explanation of these concepts (http://www.bruceeckel.com).

Encapsulation
Encapsulation is the “hiding” of methods and data. I like to think of a wooden box with several
partitions that only has one opening to the outside world (see Figure 11-4). All data must pass
through this one hole.

Notice how I’ve called the area that is directly accessible “public,” and the area that is not
directly accessible “private.” We’ll cover these terms again in a moment, but you can see that I
can hide my data away in the private area.

So why would I want to hide things from my fellow programmers? Is it because I don’t
trust them? No, of course not. I’m going to let people who use my class, do so in the way I want
them to use it.

LESSON 11 ■ OBJECT ORIENTATION IN JAVA 53

6250CH11.qxd 2/23/06 11:25 AM Page 53

Figure 11-4. The wooden box analogy

For example, car manufacturers expect us to use the gas pedal to make the car go faster
and the brake to slow it down. The manufacturers don’t want us messing with the engine
directly to speed up or slow down, so they give us a convenient, standard, and predictable way
to interact with it. They encapsulate the engine behind a firewall (the real kind).

We want to do the same thing with our classes. Not through arrogance or malice, but so
that people can use them in a stable and predictable manner, which will make the resulting
code more robust.

Let’s have a look at an example. We need to calculate a mortgage payment, and we are
given the principal amount, the number of periods, and the interest rate. Our class will have a
few methods: the constructor, a getRepayment method, and a calcLoan method.

If we are good OO programmers, we will make the calcLoan method private. This will pre-
vent inheritance and force the user of the class to use the getRepayment method to return the
actual repayment. Let’s look at the code to make it clearer.

public class Loans
{
// Our instance variables - notice they are private
private double principal;
private double periods;
private double interest;
private double repayment;

LESSON 11 ■ OBJECT ORIENTATION IN JAVA54

6250CH11.qxd 2/23/06 11:25 AM Page 54

// This is the Constructor – more about it later
public Loans(double principal, double periods, double int)
{

this.principal = principal;
this.periods = periods;
interest = int;
calcLoan();

}

// This method calculates the loan - let's not worry how!
private void calcLoan()
{

// code here to do the work! Updates repayment.
}

// Now we allow the class user to access the repayment amount
public double getRepayment()
{

return repayment;
}

} // end of class

I want to point out several things in this code. The first is that I am “hiding” the class vari-
ables. I do not want anyone to mess with these, so I declared my variables private.

So if the variables are hidden, how do I pass the necessary information to the class? I do
this by means of a special once only method called a constructor. The constructor cannot have
any return type, not even void. It must also have exactly the same name as the class.

The constructor’s primary job is to initialize instance variables, and we call it after the new
keyword. Here’s what it would look like in the calling program:

Loans ln = new Loans(250000.00, 240.00, 5.00);

Notice how the constructor of the Loans class is called after the new keyword.
If you understand how block scope works, you will realize that the instance variable

principal and the variable principal declared in the method signature of the constructor
are two different variables! To confuse the issue further, they have exactly the same name.
Tricky, hey!

Fortunately we can use a special this keyword, which tells us (and the Java compiler) that
we are talking about the instance variable and not the variable defined in the method. You can
see that since I don’t have that problem with interest and int, I do not have to use the this
keyword. By the way, we can use the this keyword to denote methods as well. If you want to
specify a method from the current class, you could (optionally) use this to make it clear.

The last line in the constructor calls the calcLoan method.
The next method, the calcLoan method, I’ve declared as private. This effectively means

that it can only be used from within its own class. It can’t be inherited, and it can’t be seen
until an instance of this class is created. This is fine with me. It’s a complex method, and only
my class knows how to use it properly. Encapsulation is great. It maintains the integrity of my
class, even when it is used by other classes.

LESSON 11 ■ OBJECT ORIENTATION IN JAVA 55

6250CH11.qxd 2/23/06 11:25 AM Page 55

a7df286b67d5474c38564ca07557573a

Finally, I still need to get my repayment amount out of this class. For situations like this,
we create special methods that are usually prefixed by get or set. Some people call these getter
and setter methods or accessor and mutator methods. Basically, they allow us to get or set pri-
vate instance variables.

We only need access to one instance variable, repayment, so we need an accessor method
to retrieve it. It is the last method in our code, the getRepayment method. As you can see, it
merely returns a double to our calling program. We would code the calling program as follows:

double repay = ln.getRepayment();

Notice that I used the instance of Loans, ln, that I created earlier. Notice also that, as in ABAP,
the names do not have to match, but the types of the variables must match.

I hope I haven’t confused you too much with this discussion of encapsulation. Read as
much about it as you can, as it really is a cornerstone of Java.

Abstraction
I don’t intend spending much time on this topic. Abstraction and encapsulation are opposite
sides of the same coin. I may have a very complex television set, but I don’t want to know how
it works. The buttons (the interface) on the TV, or on the remote, are all I care about. The com-
plexity is hidden (encapsulated), and all I see is the simple representation of the object, in
other words an abstraction.

If you take a UML course, you will learn about conceptualizing the problem domain. In
plain English, that means using abstraction to create concepts like a Bank Account. This is the
process of abstraction.

Let’s move on to such gems as abstract classes and interfaces.

LESSON 11 ■ OBJECT ORIENTATION IN JAVA56

6250CH11.qxd 2/23/06 11:25 AM Page 56

More OO in Java—Interfaces
and Abstract Classes

In Java there is officially no “multiple inheritance.” You may extend one class, and one class
only! Having said that, though, we can simulate multiple inheritance in Java by using inter-
faces. This is not what interfaces are for! It is just an interesting side effect.

More on this later. First, let’s discuss abstract classes, which are never instantiated, only
inherited.

Abstract Classes
Declaring a class final will effectively prevent that class from having subclasses. In other
words, there is no way you can inherit from a final class (try it with String or Math).

final class NoSubs
{

The opposite of this is an abstract class. You must have a subclass somewhere for the abstract
class to work.

An abstract class should have at least one abstract method (although, for some strange
reason, it is not mandatory). A common mistake amongst students of Java is to assume that
abstract classes must have abstract methods, but please think about this the other way
around: If you have an abstract method, you must declare the class as abstract! This means
you may have ten methods, but if only one is abstract, then you have an abstract class.

Here is how we declare an abstract class (I’ve included an abstract method so that you can
become familiar with them):

abstract class MustHaveSubs
{

String longName = " ";

public String getName()
{

return longName;
}

public abstract void setName(String name);
}

57

L E S S O N 1 2

■ ■ ■

6250CH12.qxd 2/23/06 11:27 AM Page 57

Notice how I have an abstract method defined (setName(String name)) and I have a normal
accessor (getter) method called getName.

In essence, what I am saying here is that whoever uses or “implements” this class may
override the getName method, but they are forced to override and implement the setName
method. This means that the class’s designer knows enough to force you to implement the
method but not enough to code the functionality for you.

Let’s look at a contrived example. I am designing a banking system, and I know enough
to say with a certain amount of confidence that all my bank account classes will have at least
methods for depositing and withdrawing funds, as shown in Figure 12-1. I’m confident of this,
but I’m not sure how all my different classes will implement this. So I make the methods
abstract so that my bank account subclasses will bear the responsibility for implementing
them.

Figure 12-1. The BankAccount class

■Tip Abstract methods are implicitly public, but have pity on the poor maintenance programmer and
declare them public anyway.

I may also have methods to get and set the balance (and since I am a good OO program-
mer, I have made balance private). Even in the early stages of my design, I know how these
should be coded. Therefore they are not defined as abstract. However, this does not prevent
the implementer from overriding these methods and extending or replacing the code.

■Note When a method is overridden, you cannot make it more private than it already is. Also an overridden
method cannot throw more exceptions than the method in the superclass. (We’ll cover exception handling in
Lesson 14.)

LESSON 12 ■ MORE OO IN JAVA—INTERFACES AND ABSTRACT CLASSES58

6250CH12.qxd 2/23/06 11:27 AM Page 58

If I wanted to make all the methods abstract I could do, but there is a better mechanism
for doing this called an interface. Think of the abstract class as being a template for a class; an
interface is a blueprint so that you can build a template.

Interfaces
When I consider interfaces, I always think of three things a great Java lecturer, Casper Baden-
horst, told me:

• An interface is a more abstract class than an abstract class.

• An interface makes a promise, or contract, that the methods will be implemented.

• Using interfaces can allow you to simulate multiple inheritance.

If you remember those three things, you’ll be halfway there.
An interface is a template for a class. As with abstract classes, we know what methods

should be in the class (because we’ve done our design properly), but we don’t know how they
will be implemented. Unlike abstract classes, all the methods in an interface must be abstract.
They can have no implementation. Common interfaces in Java are Runnable, ActionListener,
and WindowListener.

Here’s an example of an interface:

public interface Shape
{

float calcArea(double x, double y);
}

Notice how we have no curly brackets after the method declaration, and how we don’t
put the word abstract in at all. As I mentioned previously, all methods must be abstract in an
interface, so there is little need to declare them abstract.

So how do we use this interface in our class? We implement our interface using the—you
guessed it—implements keyword. Here’s an example of implementing the Shape interface:

public class Square implements Shape
{

public float calcArea(double x, double y)
{

float area = (float)x*y;
return area;

}
}

Any ideas why I must cast (float) before putting a value into area? You are right! Both the
variables x and y are doubles, so casting must take place.

We can also subclass an interface with another interface by just saying extends. Surpris-
ingly we can have more than one superclass for an interface. So we could say that interface A
extends B, C, and D. Of course B, C, and D must be interfaces to allow this.

LESSON 12 ■ MORE OO IN JAVA—INTERFACES AND ABSTRACT CLASSES 59

6250CH12.qxd 2/23/06 11:27 AM Page 59

Another interesting aspect of interfaces is that Java will allow you to define variables in
your interface, but they will automatically be declared static and final. This makes sense
(to me, at any rate) since these should only be constants.

■Tip As I’ve mentioned before, this is merely an introduction to Java—there is much more to this subject
than will fit in this book. Understanding classes and objects is fundamental to becoming a good Java
programmer, so please explore this subject further.

In the next lesson we will explore nested, inner, and anonymous classes.

LESSON 12 ■ MORE OO IN JAVA—INTERFACES AND ABSTRACT CLASSES60

6250CH12.qxd 2/23/06 11:27 AM Page 60

Inner, Nested, and Anonymous
Classes

Inner, nested, and anonymous classes are all classes within classes, and there’s a debate that
takes place around this subject. I’ll put the arguments forward for both schools of thought:

• School of thought one: Do not use anonymous classes, period. They can get com-
pletely out of hand, they obfuscate the code, they are unwieldy, and some software,
like Ant, does not deal with them effectively enough.

• School of thought two: You can use anonymous classes, but make sure they are short,
not complex (have only one method), predictable, and easy to understand.

Unless there are software conflicts, I put myself firmly in the second camp (and according
to a recent study, 70 percent of developers feel the same way). Of course, you (or your develop-
ment manager) can decide for yourself.

Inner Classes
Basically speaking, an inner class is simply a class within another class—these are also known
as local classes. Inner classes have access to the instance members of the outer class.

■Note Most Java lecturers will tell you to put inner classes inside a method of the outer class. Although
this is a common use of the inner class, it is not a requirement.

Here is a trivial example of an inner class:

/*
* Simple Inner Class example
*/

import java.applet.*;
import java.awt.*;
import java.awt.event.*;

61

L E S S O N 1 3

■ ■ ■

6250CH13.qxd 2/22/06 4:56 PM Page 61

class JavaBook1 extends Applet
{

Button press = new Button("Click here!");

public void init()
{

class InnerClassExample implements ActionListener
{

public void ActionPerformed(ActionEvent ae)
{

System.out.println("The Button was pressed");
}

}
add(press);
press.addActionListener(new InnerClassExample());

}

}

I know we haven’t covered applets in any great detail, but you should be able to see what’s
going on here. (If you’re confused after you read my explanation here, take a look at Lesson 17,
on event handling.)

The init method is fired off automatically in an applet. This method contains an inner
class, which you can see implements an interface called ActionListener. We’ll cover this in
Lesson 17, but simply put, this interface will help us deal with a button click.

One button (press) is defined in this program, and the inner class uses one method
(ActionPerformed) to do something when the button is pressed—in this example, it just prints
out a message that says “The Button was pressed”.

Outside of the inner class, the button is added to the applet, and the last line of the init
method adds an ActionListener to the button. The ActionListener is an instance of the
InnerClassExample class.

The ActionListener could, of course, be implemented in a more elegant way with an
anonymous class, but we’ll get to that later.

Nested Classes
The main difference between an inner and a nested class is that a nested class can be declared
as static. Just remember that static classes can not access nonstatic instance variables or
methods from the outer class.

Also it’s worth pointing out that nested classes generally do not live in a method of the
outer class.

LESSON 13 ■ INNER, NESTED, AND ANONYMOUS CLASSES62

6250CH13.qxd 2/22/06 4:56 PM Page 62

Anonymous Classes
While the inner class and, for that matter, the nested class, enables us to keep our common
code local, there is another option: the anonymous class. As the name suggests, this is an
unnamed class that we want to create an instance of. All of the code for the anonymous class
is coded within the method where we need to create an instance of the anonymous class.

If you are going to use an anonymous class, keep in mind the rules:

• Keep it small.

• Keep it simple (only one method).

• Make it easy to understand. Commonly used code is OK here.

Let’s look at an example. This is the example we looked at earlier, with the inner class
changed to an anonymous class:

/*
* Simple Anonymous Class example
*/

import java.applet.*;
import java.awt.*;
import java.awt.event.*;

class JavaBook1 extends Applet
{

Button press = new Button("Click here!");

public void init()
{

add(press);
press.addActionListener(new ActionListener()

{
public void actionPerformed(ActionEvent ae)
{

System.out.println("The Button was pressed");
}

}
);

}
}

As you can see, the entire actionPerformed method goes into the argument for the
addActionListener class. Pretty neat, hey! You will see how often we use this method when we
discuss event handling in Lesson 17. Notice the new keyword—the instantiation is performed
instantly on this class.

Incidentally, when this code is compiled, you have two class files: one called
JavaBook1.class and one called JavaBook1$1.class for the anonymous class.

Next we will explore the important topic of errors and exceptions!

LESSON 13 ■ INNER, NESTED, AND ANONYMOUS CLASSES 63

6250CH13.qxd 2/22/06 4:56 PM Page 63

6250CH13.qxd 2/22/06 4:56 PM Page 64

Errors and Exceptions

Java has a much more formal approach to exception handling than other languages (like C).
In ABAP we tend to rely on dandy system variables like sy-subrc. This is fine, but nothing
forces you to deal with potential errors. You are not obliged to check your sy-subrc variable
after a SELECT statement, but most people do because it’s good programming practice. In Java
you are obliged to check for exceptions.

Of course, you will hopefully find most of your potential errors in code when you compile
your program or class. The latest generation of IDEs, like Eclipse (http://www.eclipse.org)
and Netbeans (http://java.sun.com) will even highlight your errors as you code, which is
rather nice.

There are, sadly, exceptions that will only be detected at runtime, such as dividing by zero,
trying to access elements in an array that don’t exist, trying to reference an object with null,
and other silly things. (These are generally termed runtime exceptions.)

The Throwable Class
There are two types of exceptions that both inherit from the Throwable class, shown in
Figure 14-1: Error and Exception.

Figure 14-1. The Throwable class

I won’t go into any detail on the Error class, but please read up on it yourself in the API
documentation. Errors are fairly drastic problems, and no coding is going to get around an
out-of-memory error. This is the termination model: program ends, game over.

We must, however, code for Exceptions—this is the resumption model, which allows the
program to resume once the errors are dealt with. 65

L E S S O N 1 4

■ ■ ■

6250CH14.qxd 2/22/06 4:59 PM Page 65

Within the Exception subclasses, the RuntimeException does not have to be catered for—
this is the exception to the rule (if you’ll excuse the pun). The program will end with a rude
message alerting the user about the runtime exception, but you are not forced to check for this
type of exception. It should be said, however, that good programming techniques will usually
do away with the need to check for these. In other words, check your array index yourself!

So enough of the boring theory, let’s check out the practice. We’ll look first at exception
handling and then exception throwing.

Exception Handling
In cricket (here in England), we have a wicket keeper; in baseball there’s a catcher. In either
case, their job is to prevent the ball from going any further. In other words, they catch the ball.
In Java, the thrown exception is the ball, and the try . . . catch block is the wicket keeper
(or catcher).

The try . . . catch block
If we think that there is a possibility of an exception being thrown, we should wrap the code
that could throw that exception in a try . . . catch block.

Let’s look at an example that will also introduce you to some I/O. Don’t panic, it’s not that
difficult. We’ll read a character from the keyboard, and stop when the correct character has
been pressed. Not rocket science, but it illustrates the point.

Incidentally, if you try to compile this code without putting it in a try . . . catch block,
you would get an error something like this (the details depend on the JVM):

..\JavaBookExcept.java:25: unreported exception java.io.IOException; must be caught
or declared to be thrown.

As you can see, the exception must be caught. Let’s look at the code:

/**
* @(#)JavaBookExcept.java 1.1 07/15/05
*
* @author Alistair Rooney
*
* Basic Exception Handling Example
* (c) Alistair Rooney 2005
*
* You may use this code, copy this code, sell this code,
* print this code out and wallpaper your house with it
* if you wish.
**/

import java.io.*;

LESSON 14 ■ ERRORS AND EXCEPTIONS66

6250CH14.qxd 2/22/06 4:59 PM Page 66

class JavaBookExcept
{

public static void main(String args[])
{

char castChar = ' ';
System.out.println("Starting JavaBookExcept...");
try
{
System.out.print("Please enter the letter 'a' : ");
while (castChar != 'a')
{

castChar = (char)System.in.read();
}
System.out.println("\nWell Done, you typed "+castChar);

}
catch (IOException e)
{

System.err.println("\nAn Error was encountered :"+e);
}

}
}

What we’ve done here is attempted to execute the System.in.read method, and then we
have asked the runtime to check if any IOExceptions were thrown. If any were, the runtime
will immediately transfer execution to the catch block.

■Note This is important enough to repeat: The next line of code after the IOException is thrown will not
execute. Execution is transferred to the catch block.

In its most basic sense, that’s it! You now know how to handle exceptions. Please look
up more about them, though. There is a lot more to exceptions than I can cover in this little
introduction.

One thing I do need to cover before we leave the topic, though, is that you may have more
than one catch block. If I wanted to catch an IOException and also a more general exception,
I would just put the following additions into my code. I’ve marked them in bold so they’re
easy to see:

/**
* @(#)JavaBookExcept.java 1.0 03/10/18
*
* @author Alistair Rooney
*
* Basic Exception Handling Example
* (c) Alistair Rooney 2003
*

LESSON 14 ■ ERRORS AND EXCEPTIONS 67

6250CH14.qxd 2/22/06 4:59 PM Page 67

* You may use this code, copy this code, sell this code,
* print this code out and wallpaper your house with it
* if you wish.
**/

import java.io.*;

class JavaBookExcept
{
public static void main(String args[])
{
char castChar = ' ';
System.out.println("Starting JavaBookExcept...");
try
{

System.out.print("Please enter the letter 'a' : ");
while (castChar != 'a')
{

castChar = (char)System.in.read();
}
System.out.println("\nWell Done, you typed "+castChar);

}
catch (IOException e)
{

System.err.println("\nAn Error was encountered :"+e);
}
catch (Exception ex)
{

System.err.println("\nGeneral Exception :"+ex);
}

}
}

The finally block
One more thing before we move on to throwing exceptions: It is important to do some house-
keeping when our method has completed. This, of course, needs to be done whether an
exception was caught or not. The most elegant way of coding this is to use something called
the finally block.

The finally block will always be executed. The syntax is very simple:

finally
{

// Put some clean up code here.
}

LESSON 14 ■ ERRORS AND EXCEPTIONS68

6250CH14.qxd 2/22/06 4:59 PM Page 68

■Note Good programming style dictates that this block should be the last block in the whole try . . .
catch . . . finally section.

Exception Throwing
Now that we know how to catch an exception, we can catch exceptions thrown either by stan-
dard Java or by other classes and methods that we are using. What if we want to throw our own
exceptions?

We have two options: we can throw standard Java Exception classes (like IOException) or
we can create our own Exception class and throw that. The latter is probably the best way to
do things.

■Tip If you use the second method, use an existing class that is similar to your Exception class and extend
it. You don’t have to do much. It would be sensible to use as much of the existing class as possible.

Let’s create a new Exception, the FileMarkerException. It will be similar to the
EOFException.

class FileMarkerException extends EOFException
{

public FileMarkerException()
{
}

public FileMarkerException(String s)
{

super(s);
}

}

Not much to it, is there? All I’ve made sure of here is that I have two constructors identical
to the superclass’s ones. (Remember to check out the API documentation on the class you
want to extend.)

There are two points you need to remember when you throw an exception.

• You must instantiate the exception (remember the new keyword).

• You must advertise the fact that you are throwing an exception in your method
signature.

LESSON 14 ■ ERRORS AND EXCEPTIONS 69

6250CH14.qxd 2/22/06 4:59 PM Page 69

The syntax for both of these actions is as follows:

public void myThrowingMethod(File myFile) throws FileMarkerException
{
// some code here
throw new FileMarkerException("Marker not found");

// some more code here
}

Notice the two areas in bold—they correspond to the two points made earlier. As you can see,
throwing exceptions, whether your own or standard ones, is quite straightforward. Of course,
if you use myThrowingMethod in another class, you would have to enclose it in a try . . .
catch block!

An interesting final point here is that the client program can rethrow the exception. It can
even change the nature of the exception.

If you wanted to merely rethrow the exception, you would do this:

catch (IOException e)
{
throw e;

}

Or if you wanted to change the exception, you could do this:

catch (IOException e)
{
throw new EOFException();

}

Before we leave the topic of exception handling, I need to emphasize one last point. In all
of the preceding examples, you saw that we catch an exception and we give it a reference. For
example, we might catch the IOException, as we did in the last example—and then give it the
reference e. This means that we now have an object reference that we can use to access the
methods of the Exception object.

The most common Exception methods we use are the utility methods getMessage, which
will allow you to retrieve the text of the message, and printStackTrace, which will show you
something akin to a “short dump” in ABAP.

Here’s a very small, contrived example to illustrate this:

catch (IOException e)
{

System.err.println("Error: "+e.getMessage());
}

That’s the basics (and I do mean basics!) of exception handling and throwing. In the next
lesson we’ll discuss the feared topic of threads.

LESSON 14 ■ ERRORS AND EXCEPTIONS70

6250CH14.qxd 2/22/06 4:59 PM Page 70

Threads, Daemons, and
Garbage Collection

ABAP does not have an accessible system of multi-threading, so I’m going to start this lesson
by explaining a little about threads.

If I want a progress indicator in ABAP, I have to do some coding to “interrupt” my progress
every so often, interrogate its status, and then feed this back to the progress indicator. This is a
fine example of single threading.

It would be far more elegant to have the progress indicator interrogate the primary thread
of the program without interrupting it. This is what we can do in Java by using separate
threads. It’s like having two programs on one session running at the same time.

■Note Even without using threads in Java, we have a least one thread running. This is what I call the
primary thread. Our “Hello World” program in Lesson 1 had one thread running.

The subject of threads is potentially a little complex. Quite honestly, I think other topics
are more complex (such as Enterprise JavaBeans), but this was such a concern for Sun that the
topic of threads was left out of the original Java Certification Exam. As with any complex topic,
take it slowly, code plenty of examples, and you will be fine. If you can, read other books on
the subject, although for this topic I wouldn’t recommend Bruce Eckel’s book, as I find his
examples cumbersome. Of course, that’s just my opinion.

Since this is not meant to be a 700-page volume on Java, I will cover only the basics, but it
should be enough to whet your appetite! I will cover simple threads, basic related threads,
synchronized threads, and semaphoring threads. Then we can talk about daemon threads
and the garbage collector.

Simple Threads
In Java, there are two ways we can define a thread class. We can extend the Thread class, or we
can implement the interface Runnable. Sun recommends using Runnable, and I also recom-
mend Runnable for various reasons that should become apparent. However, other Java
pundits recommend Thread, so the choice is yours. I’ll show an example of both.

71

L E S S O N 1 5

■ ■ ■

6250CH15.qxd 2/22/06 5:00 PM Page 71

/**
*
* @author Alistair Rooney
*
* Basic Threads Example
* (c) Alistair Rooney 2003
*
*
**/

class SimpleThread implements Runnable
{

public void run()
{
// count from 1 to 10

for(int i=1; i<11; i++)
{

System.out.println("i = "+i);
}

}
}

Simple enough, I think! Now we need something to run this—let’s write a driver program.
Remember, this class, SimplePrimary, will be the primary thread (although we don’t see
Thread or Runnable here).

/**
*
* @author Alistair Rooney
*
* Basic Threads Example
* (c) Alistair Rooney 2003
*
*
**/

class SimplePrimary
{

public static void main(String args[])
{

SimpleThread t = new SimpleThread();
new Thread(t).start();
// count from 1 to 10 again
for(int x=1; x<11; x++)
{

System.out.println("x = "+x);
}

}
}

LESSON 15 ■ THREADS, DAEMONS, AND GARBAGE COLLECTION72

6250CH15.qxd 2/22/06 5:00 PM Page 72

■Tip You will probably have noticed that we are instantiating a new Thread class in the preceding code.
This needs to be done in order to execute the Runnable object.

What’s happening here is that the SimplePrimary class counts x from 1 to 10, and just
before it does this, it instantiates the SimpleThread class, which counts i from 1 to 10. All
things being equal, SimpleThread should count from 1 to 10 before SimplePrimary (which is
the primary thread). However the results are unpredictable, as you can see from the following
output. It’s important to note that these two threads are trying to run concurrently.

x = 1
i = 1
i = 2
i = 3
i = 4
i = 5
i = 6
i = 7
i = 8
i = 9
i = 10
x = 2
x = 3
x = 4
x = 5
x = 6
x = 7
x = 8
x = 9
x = 10
Press any key to continue...

To make these unrelated threads work more effectively, we could use the Thread.yield
method in each. This makes each thread yield to one of equal priority. Have a look at the
sidebar on thread priorities.

THREAD PRIORITIES

If you try to yield to a thread with a lower priority, the yield will be ignored. The yield method only
works if all the threads are of equal priority. The default priority is generally 5, but the Thread class also
provides us with constants to make this a little easier: NORM_PRIORITY is 5, MAX_PRIORITY is 10, and
MIN_PRIORITY is 1.

The Thread class has a setPriority method to change the priority of the thread, and getPriority
can be used to retrieve the priority.

LESSON 15 ■ THREADS, DAEMONS, AND GARBAGE COLLECTION 73

6250CH15.qxd 2/22/06 5:00 PM Page 73

Basic Related Threads
Have a look at the next two classes. What I’ve done is let different threads work on different
sections of data. In this very trivial example, I’m asking each thread to count different sections
in the range 1 to 100. Of course, in real life on a multiple-processor machine, such threads
might be calculating prime numbers or something useful.

The “relation” that these threads share is that they are operating on the same group of
data. Have a close look at the following code. I’m sure you’ll be able to work out what’s hap-
pening. What this shows is that unrelated threads can give some very unpredictable results.

/**
*
* @author Alistair Rooney
*
* Basic Related Threads Example
* (c) Alistair Rooney 2003
*
*
**/

class SimplePrimary
{

public static void main(String args[])
{
int from = 1, to = 10;

for (int i=1; i<5; i++)
{
new SimpleThread(from,to).start();
from+=10;
to+=10;
System.out.println("Starting thread "+i);
}

}
}

/**
*
* @author Alistair Rooney
*
* Basic Threads Example
* (c) Alistair Rooney 2003
*
*
**/

LESSON 15 ■ THREADS, DAEMONS, AND GARBAGE COLLECTION74

6250CH15.qxd 2/22/06 5:00 PM Page 74

class SimpleThread extends Thread
{

int from;
int to;

SimpleThread(int from,int to)
{

this.from = from;
this.to = to;

}

public void run()
{

System.out.println("Thread"+getName()+"Started");
// count from 1 to 10 * Thread number
for(int i=from; i<to+1; i++)
{

System.out.println("Thread "+getName()+"i = "+i);
}

yield();
}

}

The beginning of the output will be something like this:

Starting thread 1
ThreadThread-1Started
Thread Thread-1i = 1
Thread Thread-1i = 2
Thread Thread-1i = 3
Thread Thread-1i = 4
Thread Thread-1i = 5
Thread Thread-1i = 6
Thread Thread-1i = 7
ThreadThread-2Started
Starting thread 2
Starting thread 3
Starting thread 4
Thread Thread-2i = 11
Thread Thread-2i = 12
Thread Thread-2i = 13
Thread Thread-2i = 14
Thread Thread-2i = 15
Thread Thread-1i = 8
ThreadThread-3Started
ThreadThread-4Started
Thread Thread-1i = 9

LESSON 15 ■ THREADS, DAEMONS, AND GARBAGE COLLECTION 75

6250CH15.qxd 2/22/06 5:00 PM Page 75

Thread Thread-3i = 21
Thread Thread-4i = 31
Thread Thread-1i = 10
Thread Thread-3i = 22
Thread Thread-4i = 32
Thread Thread-3i = 23
Thread Thread-4i = 33
Thread Thread-3i = 24
Thread Thread-2i = 16
Thread Thread-4i = 34

I’ve snipped the rest. Notice that there is no real sequence to these threads. They run in a
fairly haphazard way. Take some time to review this code, run it yourself, and then improve on
it. It could use some improvement!

Synchronized Threads
I want to show you a simple example of two methods accessing the same object and how we
can synchronize their access. Look at the following code:

class Counter
{

private int countVar;

public synchronized int getCount()
{

return countVar;
}

public synchronized void incCount()
{

countVar+=1;
}

}

Can you see what this is doing? It is allowing access to our data in a managed way. Many
threads can now use this class and increment the counter in a truly synchronous way.

However, we still could have thread 1 incrementing the counter twice before thread 2 has
even had a chance to run. We can manage this further by making use of a technique called
semaphoring, which you will have come across before in your programming career.

■Tip Since I am a Brit, I normally spell synchronised with an s. However, when you use synchronized in
Java it must be spelled American-style with a z.

LESSON 15 ■ THREADS, DAEMONS, AND GARBAGE COLLECTION76

6250CH15.qxd 2/22/06 5:00 PM Page 76

Semaphoring Threads
The technique of semaphoring involves using a “flag” (hence the name) to indicate whether or
not the thread is allowed access or not. In other words, each thread can check to see if it is that
thread’s turn or not.

This is a good technique, but conventional thinking combines this with wait pool man-
agement. Think of the wait pool as a doctor’s waiting room. When the doctor is ready to see
you, the nurse (or notifier) will tell you that you can go in. After you have finished with the
doctor, you will return to the wait pool until you are notified once again.

Let’s see what this looks like in our code.

class Counter
{

private int countVar;
private boolean flag = false;

public synchronized int getCount()
{

while (flag == false)
{

try
{

wait();
}
catch (InterruptedException e)
{}

}
flag = false;
notifyAll();
return countVar;

}

public synchronized void incCount()
{

while (flag == true)
{

try
{

wait();
}

catch (InterruptedException e)
{}

}

LESSON 15 ■ THREADS, DAEMONS, AND GARBAGE COLLECTION 77

6250CH15.qxd 2/22/06 5:00 PM Page 77

countVar+=1;
flag = false;
notifyAll();

}
}

Try to work out what is happening here. In the getCount method, the thread is forced to
wait if the flag is false. If it’s true, the wait pool is notified, the flag is set to false, and the
count is returned. If the incCount method is called while the flag is true, it will wait until
notified.

We now have a pretty good system for controlling our threads. This combination of
synchronizing, semaphoring, and wait pool management gives us something called mutual
exclusion. No two threads will ever try to access the same data object.

Again, this subject is large, so I encourage you to explore threads further.

Daemon Threads and Garbage Collection
Daemon threads (pronounced daymon, not demon) are essentially low-priority threads that
run in the background. The other main difference is that daemon threads do not necessarily
have to belong to a particular program. In other words, you may shut down your program and
find daemon threads still running. This makes a lot of sense if you think of these threads in
terms of services.

The most well known daemon thread is the garbage collector. When Java creates an
instance of an object, it allocates space on the heap for this new object. This is all well and
dandy until the heap starts to fill up. If programs ended without cleaning up after themselves,
we would soon run out of available memory.

In C we have to clean up manually, and forgetting to do this is a little too common, result-
ing in what we call memory leaks. In Java, however, an automatic service called the garbage
collector runs and cleans up any unreferenced objects using the mark and sweep technique.
(I’m not going to go into the different techniques here—those are for a software engineering
course.)

The garbage collector can be called with the System.gc method, but it is important to
note that this method acts only as a suggestion, and the garbage collector will run in its own
sweet time!

To manually clean up your own objects, just set the object reference to null.

myRef = null;

Now that we know all about threads, we can start to look at the GUI features in standard
Java: Swing in Lesson 16, event handling in Lesson 17, and AWT in Lesson 18.

LESSON 15 ■ THREADS, DAEMONS, AND GARBAGE COLLECTION78

6250CH15.qxd 2/22/06 5:00 PM Page 78

Basic Swing Using
Default Layouts

Now for some more interesting stuff—GUIs!
Admittedly, most of you will not code GUIs for applications. In the world of enterprise

coding, it is becoming much less common for one developer to code both the business logic
and the presentation logic. In the SAP world, your coding will mostly be JSPs, servlets, and
EJBs.

However, you should know how to code presentation-side Java, and to do that these days
we use Swing. (You may also want to look at SWT from Eclipse, http://www.eclipse.org.)
In this short lesson we’ll look at coding a few buttons on a panel.

■Note Swing is huge! I cannot possibly cover all the components in this introductory book. The good news
is that once you know how to handle one component, the others are pretty easy. Remember to read the
Java APIs.

In Swing we have a number of things called Containers. I am only going to cover two of
these Containers, but remember to research the others. (You will only use these two 99 percent
of the time, so don’t panic.)

Containers
The root container that we will use is the JFrame. The JFrame cannot have components
(Buttons, TextFields, and so on) put directly onto it. You must pass components to it via the
ContentPane.

A discussion of the ContentPane is outside the scope of this book, but please have a look
at Richard Baldwin’s notes on the Internet (http://www.dickbaldwin.com/) if you have the
time. For our purposes, we just need to remember to add our components to the JFrame via
the ContentPane. I’ll illustrate this in the code later.

What I normally do is add my components to a JPanel (this is my convention; it is not
compulsory). Once I’ve done this, I add the JPanel to the JFrame. The JPanel is then a more
manageable Container that I can position as I see fit.

79

L E S S O N 1 6

■ ■ ■

6250CH16.qxd 2/22/06 5:01 PM Page 79

A Simple Swing Example
Figure 16-1 shows the result we want to achieve. As you can see, this won’t win any prizes for
complexity!

Figure 16-1. A simple Swing example

This example is very easy to code. I’ve used two classes: SimpleSwing and SimplePanel.
Remember that it’s good practice to keep your classes in separate source files!

First we’ll build our JPanel—here’s the code for SimplePanel:

/**
*
* @author Alistair Rooney
*
* Simple Panel Example
* (c) Alistair Rooney 2005
*
*
**/

import javax.swing.*;

public class SimplePanel extends JPanel
{
public SimplePanel()

{
JButton button1 = new JButton("Button 1");
JButton button2 = new JButton("Button 2");

add(button1);
add(button2);

}
}

Notice the import statement. We need to access the swing package from the Java standard
package. It is not part of the language section (java.lang), so we must import it.

LESSON 16 ■ BASIC SWING USING DEFAULT LAYOUTS80

6250CH16.qxd 2/22/06 5:01 PM Page 80

Then the class extends a JPanel. If you recall inheritance, you’ll know that this SimplePanel
class is now a JPanel. It inherits all the methods of a JPanel, like the add method.

In the class’s constructor we instantiate two JButtons and give them labels in their con-
structors. These labels will display on the front of the buttons. Then we simply add our two
buttons to the JPanel (SimplePanel). Easy so far? I hope so.

Now that we have our completed JPanel, we need to pop it onto a JFrame and display the
whole lot. Here’s the code for our driver program, SimpleSwing.

/**
*
* @author Alistair Rooney
*
* Very Simple Swing Example
* (c) Alistair Rooney 2005
*
*
**/

import javax.swing.*;

class SimpleSwing extends JFrame
{

public static void main(String args[])
{

SimplePanel myPanel = new SimplePanel();
SimpleSwing mainFrame = new SimpleSwing();
mainFrame.setSize(200, 200);
mainFrame.getContentPane().add(myPanel);
mainFrame.setTitle("SimpleSwing");
mainFrame.setVisible(true);

}
}

Notice the import once again. And this time our class extends the JFrame class.
In the main method, we create an instance of the JPanel class, and we add it to the JFrame.

(Incidentally, I do not approve of the “trick” technique of instantiating your own class in the
main method, but I’ve done it here to keep things simple.) We now have a reference to our
JFrame, called mainFrame.

Next, we set the size of the frame (200 pixels by 200 pixels) and then add the panel to the
frame via the ContentPane. I’ve made this line bold to point out this technique.

We then set the title of the frame and make sure it is visible. Notice that by default a
JFrame is not visible, so we must tell it to show itself. And that’s it! You’ve completed your first
Swing program.

LESSON 16 ■ BASIC SWING USING DEFAULT LAYOUTS 81

6250CH16.qxd 2/22/06 5:01 PM Page 81

There are two problems here, though:

1. We cannot close this JFrame down properly. If you click on the X button, it will hide the
window, but the program will still be running.

2. The buttons are useless—they do nothing.

We will discuss these two issues in the next lesson, on event handling. Then, after we’ve
covered event handling, we’ll return to Swing to look at other components, and we’ll also cover
Layout sets. These are not SAPScript Layout sets, but Java Layout sets.

LESSON 16 ■ BASIC SWING USING DEFAULT LAYOUTS82

6250CH16.qxd 2/22/06 5:01 PM Page 82

Event Handling

Java separates event handling and the GUI (either AWT or Swing). This separation is based
on the delegation model, which is a model for event-driven programming. This is a very good
thing for developers such as ourselves, since it allows us to change the GUI without affecting
the event handling, and vice versa.

Event handling uses the original Abstract Window Toolkit (AWT) as explained in the side-
bar. Since we need to use AWT to manage our events, we need to import AWT in our programs
(as you will see when we look at some code).

It’s also important to note that AWT has subpackages (or subdirectories if you like). In the
case of event handling, we are interested in the event package, and I’ll show you this in the
code a little later.

Listening
I want to expand on our small example from Lesson 16, which displayed two buttons, to
include the two points we identified earlier: we need to get the buttons to do something, and
we need to allow the clicking of the X button at the top of the window to end the program.
To do this, we need to employ interfaces called listeners.

To handle button clicks, we use the ActionListener interface. This requires that we imple-
ment its only method: actionPerformed.

We also have to use the WindowListener interface to close our window and end the
program, but we have a slight problem here. We would have to implement seven methods!
Fortunately, those nice folks at Sun have created a class that does the implementation. We
can simply use this class, WindowAdapter, and just override the methods we require.

The most common way to deal with clicking the X button, though, is to use an anony-
mous class within our code. Let’s have a look at the code to make this a bit clearer.

AWT AND SWING

Before JDK 1.1 you would have had to use AWT to draw buttons, labels, and so on. We can still use AWT,
which takes advantage of some native Windows API calls but lacks the functionality found in Swing.

Swing was introduced with JDK 1.1.2 to augment but not replace AWT. As a result, AWT still contains
the classes for two important parts of the GUI: event handling and the layout managers.

83

L E S S O N 1 7

■ ■ ■

6250CH17.qxd 2/22/06 5:01 PM Page 83

■Note I have changed the button labels for this lesson.

/**
*
* @author Alistair Rooney
*
* Simple Panel Example
* (c) Alistair Rooney 2003
*
*
**/

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class SimplePanel extends JPanel implements ActionListener
{

JButton button1;
JButton button2;

public SimplePanel()
{

button1 = new JButton("Blue");
button2 = new JButton("Red");

add(button1);
add(button2);

button1.addActionListener(this);
button2.addActionListener(this);

}

public void actionPerformed(ActionEvent ae)
{

Object button = ae.getSource();
Color color = getBackground();
if (button == button1)
{

color = Color.blue;
}
if (button == button2)
{

color = Color.red;

LESSON 17 ■ EVENT HANDLING84

6250CH17.qxd 2/22/06 5:01 PM Page 84

}
setBackground(color);
repaint();

}
}

The driver class, SimpleSwing, has not changed yet, but as you can see, I’ve implemented
our ActionListener and overridden the actionPerformed method, which will be run automati-
cally when a button is clicked. Notice how I have added an ActionListener to each button.
Which ActionListener? This one, hence the keyword this.

The actionPerformed method examines the ActionEvent object being passed and deduces
whether the “Red” button or the “Blue” button has been clicked. It then sets the background
color and repaints the screen (sometimes this is not necessary, but it’s better to be safe).

Also notice my new import at the top, java.awt.event.*, which allows me to use these
event handling classes.

If you key this code in and run it, you should see the window shown in Figure 17-1.

Figure 17-1. Handling our events

We’ve managed to put some event handling code on our buttons! Is this cool or what? But
hang on, we’ve forgotten something. We still need to put a WindowListener on our JFrame, so
that we can control the window closing. Let’s have a peep at the code:

/**
*
* @author Alistair Rooney
*
* Very Simple Swing Example
* (c) Alistair Rooney 2003
*
*
**/

import javax.swing.*;
import java.awt.event.*;

class SimpleSwing extends JFrame
{

LESSON 17 ■ EVENT HANDLING 85

6250CH17.qxd 2/22/06 5:01 PM Page 85

public static void main(String args[])
{

SimplePanel myPanel = new SimplePanel();
SimpleSwing mainFrame = new SimpleSwing();
mainFrame.setSize(200, 200);
mainFrame.addWindowListener(new WindowAdapter()
{

public void windowClosing(WindowEvent e)
{

System.exit(0);
}

}
);
mainFrame.getContentPane().add(myPanel);
mainFrame.setTitle("SimpleSwing");
mainFrame.setVisible(true);

}
}

Notice that the only change I have made in this code is to use an anonymous class
(WindowAdapter) to manage the window closing. If you click on the X button now, the
window will close and System.exit(0) will end my program elegantly.

■Tip There are plenty of other listeners. Check out the APIs in the Java documentation.

That’s all for this lesson, folks! Next we will look at layout managers so that we can control
where our components go. We’ll also look at some more of the 300-odd classes within Swing.

LESSON 17 ■ EVENT HANDLING86

6250CH17.qxd 2/22/06 5:01 PM Page 86

Layout Managers and Other
Components

A layout manager looks after the placement of the Swing or AWT components in a container.
In Lesson 16 we saw a JPanel and a JFrame. Both of these are containers, and they both have
default layout managers.

The default layout manager for a JPanel is FlowLayout, so let’s start with it. We’ve already
used it without realizing it in Lesson 16.

We will also explore some other Swing components in this lesson.

FlowLayout
When we added the buttons to the JPanel in our example in Lesson 16, we used the FlowLayout
layout manager, since it is the default. Unless you specify otherwise, FlowLayout will start by
placing components in the center and then spread outwards, attempting to keep the compo-
nents centered at all times.

You can, of course, make it fill from the left or right by using the FlowLayout.LEFT or
FlowLayout.RIGHT constants.

If you use the FlowLayout class, you must import java.awt.FlowLayout, or, if you prefer,
java.awt.* (if you are using many classes from the awt package).

We’ve already seen FlowLayout in action, so I won’t bore you with another example, but
Figure 18-1 shows an example.

Figure 18-1. FlowLayout in an applet window

BorderLayout
BorderLayout is one of the most versatile layout managers. It also happens to be the default
layout for a JFrame. (To be more accurate, it is the default for a ContentPane, but it’s permis-
sible to think of it as the default for a JFrame.)

87

L E S S O N 1 8

■ ■ ■

6250CH18.qxd 2/22/06 5:02 PM Page 87

BorderLayout allows you to position components or other containers in one of five
general areas: NORTH, SOUTH, EAST, WEST, and CENTER. Figure 18-2 shows an example of a
BorderLayout object.

Figure 18-2. BorderLayout in an applet window

Here’s the program that generates this window:

/*
* Swing version.
*/

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class BorderWindow extends JFrame
{

boolean inAnApplet = true;

public BorderWindow()
{

Container contentPane = getContentPane();
//Use the content pane's default BorderLayout.
//contentPane.setLayout(new BorderLayout()); //unnecessary

contentPane.add(new JButton("Button 1 (NORTH)"),
BorderLayout.NORTH);

contentPane.add(new JButton("2 (CENTER)"),
BorderLayout.CENTER);

contentPane.add(new JButton("Button 3 (WEST)"),
BorderLayout.WEST);

contentPane.add(new JButton("Long-Named Button 4 (SOUTH)"),
BorderLayout.SOUTH);

contentPane.add(new JButton("Button 5 (EAST)"),
BorderLayout.EAST);

addWindowListener(new WindowAdapter()
{

public void windowClosing(WindowEvent e)
{

if (inAnApplet)

LESSON 18 ■ LAYOUT MANAGERS AND OTHER COMPONENTS88

6250CH18.qxd 2/22/06 5:02 PM Page 88

{
dispose();

} else
{

System.exit(0);
}

}
});

}

public static void main(String args[])
{

BorderWindow window = new BorderWindow();
window.inAnApplet = false;

window.setTitle("BorderLayout");
window.pack();
window.setVisible(true);

}
}

I’ve put the important part in bold. Don’t waste time worrying about things like inAnApplet.
I won’t be covering applets in this book, but feel free to research them on your own. You can
start at Sun’s site: http://java.sun.com.

GridLayout
The last layout manager I will cover is the GridLayout. (There are many more layout managers
that you should research.) Again, this is quite easy to code. Figure 18-3 shows an example.

Figure 18-3. GridLayout in an applet window

As you can see in the figure, we have a grid with two columns and three rows. You can set
the grid dimensions in the GridLayout constructor:

contentPane.setLayout(new GridLayout(0,2));

contentPane.add(new JButton("Button 1"));
contentPane.add(new JButton("2"));
contentPane.add(new JButton("Button 3"));
contentPane.add(new JButton("Long-Named Button 4"));
contentPane.add(new JButton("Button 5"));

LESSON 18 ■ LAYOUT MANAGERS AND OTHER COMPONENTS 89

6250CH18.qxd 2/22/06 5:02 PM Page 89

The interesting point is that the constructor specifies 0 rows and 2 columns, yet we see
three rows in the running applet. The value 0 tells the runtime to use as many rows as necessary,
and in this example that happened to be three.

Of course, we could have coded 3 as well, like this:

contentPane.setLayout(new GridLayout(3,2));

It will do exactly the same thing.

■Note The most important thing about building a GUI is that you should plan your design ahead of time.
This may seem obvious, but it’s surprising how many people try to “wing it.”

Layout Design Example
In this design example, we want to produce a calculator. There are many different ways of
doing this, and I’ll put forward just one possibility.

The first thing we need to do is sketch the finished product and then work out how we will
create this result using components and containers. My sketch is shown in Figure 18-4.

Figure 18-4. A design sketch for the calculator

LESSON 18 ■ LAYOUT MANAGERS AND OTHER COMPONENTS90

6250CH18.qxd 2/22/06 5:02 PM Page 90

As you may be able to see from my design, I have my JFrame container holding two
JPanels:

• The upper or NORTH JPanel will hold the calculator’s display. A BorderLayout can be used
here, since one of the characteristics of this layout is that it will allow the component
(in this case a JTextField) to fill all the available space.

• The CENTER JPanel will hold the buttons, and I think you’ll agree that a GridLayout will
be appropriate here.

I hope you will try to code this calculator as a test of all the skills you’ve learned so far.
It should keep you busy for an evening or two!

Other Atomic Components
Let’s quickly go through some of the more common atomic components you may use on a
GUI. The most common two components (apart from the JButton) are the JLabel and the
JTextField.

Suppose we want to achieve the result shown in Figure 18-5. The JLabel will produce the
label to the left (“Please Enter the Code”) and the JTextField will present the user with a text
box to enter data.

Figure 18-5. Creating labels and text fields

You can use the JTextField.setText method to put a value into the field and
JTextField.getText to retrieve text from the field. You can even use a listener on the
text field if you need to, but it is not usually necessary.

Here’s the code for the example above. First the JFrame:

/**
*
* @author Alistair Rooney
*
* Very Simple Swing Example
* (c) Alistair Rooney 2003
*
*
**/

LESSON 18 ■ LAYOUT MANAGERS AND OTHER COMPONENTS 91

6250CH18.qxd 2/22/06 5:02 PM Page 91

import javax.swing.*;
import java.awt.event.*;
import java.awt.*;

class JCompmain extends JFrame
{

public static void main(String args[])
{

JComponents myPanel = new JComponents();
JCompmain mainFrame = new JCompmain();
mainFrame.setSize(200, 200);
mainFrame.addWindowListener(new WindowAdapter()

{
public void windowClosing(WindowEvent e)
{

System.exit(0);
}

}
);

mainFrame.getContentPane().add(myPanel, BorderLayout.NORTH);
mainFrame.setTitle("JComponents");
mainFrame.setVisible(true);

}
}

Note that I have placed the NORTH JPanel on the JFrame. This is a technique to constrain it in a
narrow band for aesthetic reasons.

Now the JPanel:

/**
*
* @author Alistair Rooney
*
* Simple Panel Example
* (c) Alistair Rooney 2003
*
*
**/

import javax.swing.*;
import java.awt.*;

LESSON 18 ■ LAYOUT MANAGERS AND OTHER COMPONENTS92

6250CH18.qxd 2/22/06 5:02 PM Page 92

public class JComponents extends JPanel
{

JLabel label;
JTextField text;

public JComponents()
{
setLayout(new BorderLayout());
label = new JLabel("Please Enter the Code");
text = new JTextField();

add(label, BorderLayout.WEST);
add(text, BorderLayout.CENTER);

}
}

This should be clear.
This ends Part 1 of the book! The next part focuses on some essential topics that make up

Enterprise Java. These include servlets, JDBC, Java messaging, XML, JSP, and even an intro to
EJB 3.0.

Please bear in mind that I have just scratched the surface here. Make use of Sun’s tutorials,
which you can find at http://java.sun.com.

LESSON 18 ■ LAYOUT MANAGERS AND OTHER COMPONENTS 93

6250CH18.qxd 2/22/06 5:02 PM Page 93

6250CH18.qxd 2/22/06 5:02 PM Page 94

Enterprise Java

In the second part of this book, we will explore the essential topics for enterprise devel-

opment. When developing enterprise applications, we must always be mindful of three

separate areas: the database, the presentation logic, and the business logic. However,

there is one more area that, in this era of increasing system integration, is becoming more

important: messaging. In the case of Java and NetWeaver, this is the Java Message

Service. We will also scratch the surface of Enterprise JavaBeans 3.0.

In this part of the book, you can pick and choose the lessons you want to cover, but be

aware that most are interdependent.

P A R T 2

■ ■ ■

6250CH19.qxd 2/22/06 5:03 PM Page 95

6250CH19.qxd 2/22/06 5:03 PM Page 96

JDBC Technology

Java Database Connectivity (JDBC) is the standard way to connect to an external database
from Java. It uses Structured Query Language (SQL) to access and update the database.

It should be stressed that this is not the only way to access a database. For example,
the IBM AS/400 (iSeries) has an implementation of Java that allows direct database access
through nonstandard IBM APIs. The benefit of this method is that the database access is
incredibly quick (the AS/400 consistently comes out on top as the world’s fastest transaction
server), and it takes advantage of the native database functionality. The drawback is that this
approach sacrifices the “write once, run anywhere” ethos.

JDBC Drivers
JDBC drivers allow the Java programmer to communicate with a database management system
(DBMS). Although some basic drivers are delivered with Java, DBMS vendors supply JDBC
drivers with their systems. These drivers fall into four basic types.

In SAP-land, we have other mechanisms for talking to databases, but Exchange Infra-
structure 3.0 can happily use JDBC.

Type 1 Drivers
Type 1 JDBC drivers are also known as bridge drivers, such as the JDBC-ODBC bridge driver.
These drivers rely on an intermediary, such as ODBC, to transfer the SQL calls to the database.
Bridge drivers often rely on native code, although the JDBC-ODBC library native code is part
of the Java 5 Virtual Machine. It is widely believed that these drivers are much slower than
others, and they are avoided for this reason. Interestingly enough, recent studies have shown
them to be as quick, and sometimes quicker, than other drivers.

These are the drivers we will use in our examples, but please experiment with the other
drivers on your own.

Type 2 Drivers
Type 2 drivers use the existing database API to communicate with the database on the client.
Although Type 2 drivers are generally considered faster than Type 1 drivers, Type 2 drivers use
native code and require additional permissions to work in an applet.

A Type 2 driver might need client-side database code to connect over the network.

97

L E S S O N 1 9

■ ■ ■

6250CH19.qxd 2/22/06 5:03 PM Page 97

Type 3 Drivers
Type 3 drivers call the database API on the server. JDBC requests from the client are first prox-
ied to the JDBC driver on the server to run. Type 3 and 4 drivers can be used by thin clients, as
they need no native code.

Type 4 Drivers
The highest level of driver re-implements the database network API in the Java language. Type
4 drivers can also be used on thin clients, as they have no native code.

Loading the Driver
The first step you need to complete before connecting to a database is to load the driver. To do
this, we use the class.forName method.

Here’s how we would load the JDBC-ODBC bridge driver (which comes with the Java SDK):

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

It’s a bit long-winded, but we just need to do it once per application.
Remember to put this in a try . . . catch block to take care of any exceptions that may

be thrown.

■Note There is another more manual way of loading the JDBC driver, but this technique is used by nearly
all Java programmers.

Connecting to the Database
Since we will be looking at the JDBC-ODBC driver in our examples, you will need to know how
to set up an ODBC connection. I have several in my Windows ODBC Data Sources window, as
you can see in Figure 19-1.

To access this, click on Administrative Tools in your Control Panel (Windows 2000 or XP).
After that, click on Data Sources (ODBC), and you should see something like Figure 19-1.
From here you can add, change, or delete your data sources.

■Note The important point here is that the name of the data source in the ODBC Data Source
Administrator window is the name you will use in your program.

LESSON 19 ■ JDBC TECHNOLOGY98

6250CH19.qxd 2/22/06 5:03 PM Page 98

Figure 19-1. ODBC data sources

Now we can code our URL to the data source or database. We first define our URL, which
must follow the format jdbc:odbc:xxxxx (where xxxxx is the name of your data source) if we
are using the JDBC-ODBC bridge. (If you are using a JDBC driver provided by a third party,
don’t fret—the URL for the driver is normally well documented.)

Once we’ve done that, we can use the URL to connect by calling the getConnection
method in our DriverManager class. Easy, no? Here’s an example:

String myURL = "jdbc:odbc:userControl";
myCon = DriverManager.getConnection(myURL, "","");

Don’t forget to close your connection when you’ve finished with the database. Here’s an
example:

myCon.close();

Once we have our connection, we can concentrate on building a Statement.

■Note The JDBC classes—Connection, Statement, DriverManager, and so on—live in the SQL package,
which must be imported before we can use it. The code samples later in this lesson show how we do this
in Java.

LESSON 19 ■ JDBC TECHNOLOGY 99

6250CH19.qxd 2/22/06 5:03 PM Page 99

Creating Statements
With the Statement class, we can do almost anything with a database.

■Tip We will be focusing on the Statement class in this section, but I urge you to examine two subclasses
of Statement: CallableStatement and PreparedStatement.

Let’s examine a simple insert. We first create the statement using the createStatement
method in the Connection class instance:

myStat = myCon.createStatement();

This is good so far. Now that we have our Statement instance, we can execute an SQL
string. For this example, imagine we have extracted some booking information from a user
interface—we are going to add this information as a record to a table in our database. The
Table name is registration.

Here’s how we do this:

myStat.execute("INSERT INTO registration (FirstName, LastName, Salutation, email, "+
"RoomType) VALUES ("+ guestData +");");

Don’t forget to close the Statement once you’ve used it. (This is not the same as closing
the Connection.)

myStat.close();

Now that we’ve examined the basics of a table insert, let’s see all the code together. I’ve
included a snippet from a Servlet class I use for training, but please don’t worry about the
Servlet code. I’ve made the important bits bold, and I’ve chopped chunks out of this program,
to make it more readable.

STRUCTURED QUERY LANGUAGE

When Messrs. Boyce and Codd from IBM developed the relational database, they also decided to develop a
natural English-style interface to those relational databases. Thus, SQL was born. SQL stands for Structured
Query Language and is not pronounced “Sequel”—that pronunciation is for a database product from
Microsoft, which is not the same thing at all. I have made the assumption here that you are already familiar
with SQL from your ABAP coding.

LESSON 19 ■ JDBC TECHNOLOGY100

6250CH19.qxd 2/22/06 5:03 PM Page 100

/*
* 3-Tier Java example (NOT the Full program!)
*
*
*/

import java.io.*;
import java.sql.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.util.*;
import javax.mail.*;
import javax.mail.internet.*;
/**
*
* @author Alistair Rooney
*/
public class GuestReservation extends HttpServlet
{

private Statement myStat = null;
private Connection myCon = null;

public void init(ServletConfig config) throws ServletException
{

super.init(config);
try
{

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
String myURL = "jdbc:odbc:Guest";
myCon = DriverManager.getConnection(myURL, "","");

}
catch(Exception e)
{

e.printStackTrace();
System.err.println("ERROR: Cannot create a Connection");
myCon = null;

}
}

public void doPost(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException

LESSON 19 ■ JDBC TECHNOLOGY 101

6250CH19.qxd 2/22/06 5:03 PM Page 101

. . .
//code snipped out that will call submitData, handle HTML, etc.
. . .

private boolean submitData(String guestData)
{

try
{
myStat = myCon.createStatement();
myStat.execute("INSERT INTO registration (FirstName, LastName,
Salutation, email, "+"RoomType) VALUES ("+ guestData +");");
myStat.close();
return true;

}
catch(Exception ex)
{

System.err.println("ERROR: Cannot enter guest into database");
ex.printStackTrace();
return false;

}
}

public void destroy()
{

try
{

myCon.close();
}
catch(Exception ex)
{

System.err.println("ERROR: Cannot CLOSE database");
}

}

}

Notice that I’ve put everything into try . . . catch blocks for decent exception handling.
Updates can also be done using the executeUpdate method.

■Note Please be aware that although Java can use some advanced features, the underlying database may
not support those features. For example, there is little point trying to get too clever with an Access DBMS,
since it is a very simple stand-alone database with limited functionality. On the other hand, you would proba-
bly have no problems with Oracle or DB/2, which are enterprise-ready full-function database management
systems.

LESSON 19 ■ JDBC TECHNOLOGY102

6250CH19.qxd 2/22/06 5:03 PM Page 102

ResultSets
Think of a ResultSet as being much like an internal table in ABAP. It is a workable storage area
within program memory that stores the results from a select statement.

One of the most exciting features of JDBC is the ResultSet class’s methods for processing
the results. Now would be a very good time for you to review the method summary in the API
documentation under the ResultSet class.

First let’s look at some simple code that connects to a database, runs an SQL query, and
returns the results in a ResultSet:

import java.sql.*;

public class InsertUser
{

public static void main(String args[])
{

Connection myCon;
try
{

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
}

catch (Exception ex)
{

System.err.println("No DRIVER loaded! "+ ex);
return;

}
try
{

String theURL = "jdbc:odbc:MiniClinic";
myCon = DriverManager.getConnection(theURL," ", " ");

}
catch (Exception e)
{

System.err.println("No CONNECTION dude! "+ e);
return;

}

try
{

Statement myStmt = myCon.createStatement();
ResultSet rs = myStmt.executeQuery("SELECT * FROM USER");

while(rs.next())
{

int acode = rs.getInt("aCode");
String userName = rs.getString("userName");
int passw = rs.getInt("password");
System.out.println("User is: "+acode+" "+userName+" "+passw);

LESSON 19 ■ JDBC TECHNOLOGY 103

6250CH19.qxd 2/22/06 5:03 PM Page 103

}
}
catch (Exception es)
{

System.err.println("SQL Problem! "+ es);
}
finally
{

try
{

myCon.close();
return;

}
catch(Exception e)
{}

}
}

}

Can you see what’s happening here? You should be OK until the point where we do the
executeQuery. If you have a look at the method in the APIs, you’ll see that it returns a ResultSet
object. Think of this whole action as being similar to an Array Fetch in ABAP. As I mentioned
earlier, you can think of the ResultSet as being like an internal table—they are very similar
conceptually. What we have done is pulled in every record from the table User in my MiniClinic
database.

Now this is the important part: The next method in ResultSet does two things. It will
return a true or false boolean value depending on whether there are more records in the
ResultSet or not. If there are more records, it will move the cursor to the next record. A cursor
is a pointer, very like the sy-tabix variable in ABAP. If there were no records returned, the
method would return false. This is quite useful, because we can use this in a while loop, as
you can see in the code. Incidentally, the cursor is initially positioned just before the first
record, not on it.

In the while loop, we see three variables getting loaded. An integer acode, a String
userName, and an integer passw.

Now we use the relevant method in ResultSet to extract the data. To do this, you must
know the field names in the database table, since that is how we refer to them. As you can see
from the code, we load acode, userName, and passw into variables using getInt and getString.
We then print them out using our good old System.out method. In the finally block (remem-
ber those?) we close the connection.

Figure 19-2 shows the output I had from my run:

LESSON 19 ■ JDBC TECHNOLOGY104

6250CH19.qxd 2/22/06 5:03 PM Page 104

Figure 19-2. Results from the JDBC program

With the right class of driver (and the right database) we can go forwards and backwards
through the ResultSet. We can position the cursor at an absolute row number with the
absolute method, or move the cursor relative to a row with the relative method.

I mentioned earlier that the ResultSet is similar to an internal table in ABAP, but we
haven’t seen how to delete, modify, or insert rows yet.

To update, move your cursor to the correct row and then use the updateInt method or the
respective method for your field type. Once you have updated the fields, you must call the
updateRow method to update the underlying database. If you don’t, your changes will be lost.

To delete a row, position your cursor (carefully!) and call deleteRow.
Inserting a row is a little more tricky. You must first move the cursor to the insert row

(much like the Header line in ABAP). To do this, use this method:

rs.moveToInsertRow();

You can then updatexxx your fields (where xxx is the primitive data type) and refer to them
by name (or position) and the new value. If you specify by position, notice that field numbers
start with 1 and not with 0, as do most other things in Java. It is nicer to use the names,
though. Here’s an example:

rs.updateInt("aCode", 3);
rs.updateString("userName", "Mary Poppins");
rs.getInt("password", 378);

Then you can do an insertRow to put it into the database:

rs.insertRow();

LESSON 19 ■ JDBC TECHNOLOGY 105

6250CH19.qxd 2/22/06 5:03 PM Page 105

That wraps up ResultSet updates. I implore you to read the section at the top of the
ResultSet API documentation. It lays out what is required to have a scrollable, updateable
result set. Also, explore the getMetaData method for really professional code, and the
PreparedStatement and CallableStatement classes.

Entire books have been written on JDBC, and I hope this little introduction to the basics
has made you enthusiastic about reading more.

In the next lesson I’m going to talk about SAP’s Java Connector.

LESSON 19 ■ JDBC TECHNOLOGY106

6250CH19.qxd 2/22/06 5:03 PM Page 106

The Java Connector (JCo)

JCo is a set of classes (separately downloadable from http://service.sap.com) that allow
Java programs to connect to SAP systems and invoke Remote Function Modules. It also allows
parsing of IDocs (SAP Intermediate Documents) amongst other things.

I will only be dealing with Java-to-RFC calls in this lesson, but ABAP can call Java too! The
example I will use is a refinement of an example delivered with JCo. It is very contrived and
would not really be useful in a live environment, but it will give you an example of how to use
most things in JCo.

Downloading and Installing JCo
You must be an SAP customer to download JCo. Use your OSS login and download it from
http://service.sap.com/connectors. I used version 2.1.1 on a Windows XP machine, but you
should find versions available for Linux and other platforms. It uses the Java Native Interface
(JNI; read up on this!) so it is platform specific.

Once you have downloaded the zip file, I recommend unzipping it into the C:\JCo direc-
tory to keep things simple.

■Note Make sure you copy librfc32.dll from the JCo directory to your C:\...\system32 directory. On
my machine, this is C:\WINDOWS\system32, but it will be different depending on your Windows platform.

You must have jco.jar in your class path when running your project.

A JCo Example
This is a variation on one of the examples provided with JCo. I’ve made a change to export the
results from the BAPI to a JTable, and I’ve left the detailed output to list to the console. This
isn’t very exciting, but it will give you a good skeleton program to base your BAPI calls upon.

107

L E S S O N 2 0

■ ■ ■

6250CH20.qxd 2/22/06 5:04 PM Page 107

The code is long, but don’t panic! I’ll explain everything, piece by piece.

import com.sap.mw.jco.*;
//import java.util.*;

/**
* @author Alistair Rooney
*
* Execute the BAPI to fetch the Companies from SAP
* Alistair Rooney (c) 2002 2003
*
*/
public class TestSAPBAPI
{

JCO.Client mConnection;
JCO.Repository mRepository;

public TestSAPBAPI()
{

Object[] [] data;
try
{
// Change the logon information to your own system/user
mConnection =
JCO.createClient("005", // SAP client
"arooney", // userid
"********", // password (Fill in your real password)
null, // language
"Goofy", // application server host name
"00"); // system number
mConnection.connect();
mRepository = new JCO.Repository("ARAsoft", mConnection);

}
catch (Exception ex)
{
ex.printStackTrace();
System.exit(1);

}
JCO.Function function = null;
JCO.Table codes = null;
try
{
function = this.createFunction("BAPI_COMPANYCODE_GETLIST");
if (function == null)
{
System.out.println("BAPI_COMPANYCODE_GETLIST" +

LESSON 20 ■ THE JAVA CONNECTOR (JCO)108

6250CH20.qxd 2/22/06 5:04 PM Page 108

" not found in SAP.");
System.exit(1);

}
mConnection.execute(function);
JCO.Structure returnStructure =
function.getExportParameterList().getStructure("RETURN");

if (! (returnStructure.getString("TYPE").equals("") ||
returnStructure.getString("TYPE").equals("S")))

{
System.out.println(returnStructure.getString("MESSAGE"));
System.exit(1);

}
codes =
function.getTableParameterList().getTable("COMPANYCODE_LIST");

data = new Object[codes.getNumRows()] [2];
for (int i = 0; i < codes.getNumRows(); i++)
{
codes.setRow(i);
data[i][0] = codes.getString("COMP_CODE");
data[i][1] = codes.getString("COMP_NAME");

}
DisplayFrame df = new DisplayFrame(data);

}
catch (Exception ex)
{
ex.printStackTrace();
System.exit(1);

}
try
{
codes.firstRow();
for (int i = 0; i < codes.getNumRows(); i++, codes.nextRow())
{
function = this.createFunction("BAPI_COMPANYCODE_GETDETAIL");
if (function == null)
{
System.out.println("BAPI_COMPANYCODE_GETDETAIL" +

" not found in SAP.");
System.exit(1);

}
function.getImportParameterList().
setValue(codes.getString("COMP_CODE"), "COMPANYCODEID");

function.getExportParameterList().setActive(false, "COMPANYCODE_ADDRESS");
mConnection.execute(function);
JCO.Structure returnStructure =
function.getExportParameterList().getStructure("RETURN");

if (! (returnStructure.getString("TYPE").equals("") ||

LESSON 20 ■ THE JAVA CONNECTOR (JCO) 109

6250CH20.qxd 2/22/06 5:04 PM Page 109

returnStructure.getString("TYPE").equals("S") ||
returnStructure.getString("TYPE").equals("W")))

{
System.out.println(returnStructure.getString("MESSAGE"));

}
JCO.Structure detail =
function.getExportParameterList().
getStructure("COMPANYCODE_DETAIL");
System.out.println(detail.getString("COMP_CODE") + '\t' +
detail.getString("COUNTRY") + '\t' +
detail.getString("CHRT_ACCTS") + '\t' +
detail.getString("CITY"));

}

}
catch (Exception ex)
{
ex.printStackTrace();
System.exit(1);

}
finally
{

mConnection.disconnect();
}

}
public JCO.Function createFunction(String name) throws Exception
{
try
{
IFunctionTemplate ft = mRepository.getFunctionTemplate(name.toUpperCase());
if (ft == null)
return null;

return ft.getFunction();
}
catch (Exception ex)
{
throw new Exception("Problem retrieving JCO.Function object.");

}
}
public static void main (String args[])
{
TestSAPBAPI app = new TestSAPBAPI();

}
}

I have only listed the main program here. I will list the JFrame and JPanel code at the end
of this lesson for your interest.

LESSON 20 ■ THE JAVA CONNECTOR (JCO)110

6250CH20.qxd 2/22/06 5:04 PM Page 110

The first thing you need to notice is the import statement. We are obviously importing JCo
so that we can use the classes. (JCo comes with its own API documentation—please review it!).

In this program I have followed the JCo example and put the main method at the end of
the code.

The constructor contains a two-dimensional array called data, which we use to populate
the JTable. Then we open a try . . . catch block and try to build a connection by using the
createClient method from the JCO class. We need to give it all the parameters we would nor-
mally give to the SAP logon program. I have put stars in the password field because I don’t
want you seeing my password! Obviously you would replace the values in my code with your
own values.

Once we have created a client, we merely connect using the connect method from the
newly built client (called mConnection here).

The next thing we need to do is nominate a repository (yes, just like your normal SAP
repository) to use for your Java program. This is pretty cool, because we then have access to
any items in your repository.

We will only use one repository here, but as you can see, we can name it using a String.
I’ve called the repository object mRepository.

We then declare our Function and Table classes and assign them a variable. The Function
will point to our BAPI, and our Table will be the internal table we return from the BAPI. Excited
yet? Internal tables in Java!

Next we need to create a function that uses the BAPI BAPI_COMPANYCODE_GETLIST. We do
this by using the createFunction method and then executing this function by using the
mConnection.execute method and passing our function as a parameter.

In the next line of code, we create a structure based on the export structure from our
BAPI. I’ve called this returnStructure.

Next, we define our codes table and populate it from the BAPI, we build a two-dimensional
array based on the size of the internal table, and we cycle through our internal table populating
our array to put into the JTable. We then create an instance of the Frame class and pass it the
array.

You should get something like the table shown in Figure 20-1 (depending on the company
codes in your system).

Figure 20-1. Company codes JTable

LESSON 20 ■ THE JAVA CONNECTOR (JCO) 111

6250CH20.qxd 2/22/06 5:04 PM Page 111

The next section of code displays the details for each of these company codes in the con-
sole. We do this by creating a function linked to the BAPI_COMPANYCODE_GETDETAIL. The coding
is almost identical to the previous section, from a technical point of view, so I won’t bore you
by going through it. Notice, though, that I have selected the company code, country, chart of
accounts, and city fields to be reported.

■Note Notice in the JFrame code below I have used my own little icon to replace the standard icon that
Java uses in the top-left corner. You will have to comment the code out to run this program, or develop your
own little (50 ✕ 50 pixels) icon.

Here is the code for the two remaining classes:

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
//import java.util.*;

/**
* @author Alistair Rooney
* @version 1.0
* Copyright 2002 2003 All rights reserved
*
* Example program using the SAP Java Connector to display company codes
*/
public class DisplayFrame extends JFrame
{

public DisplayFrame(Object[] [] data)
{

DisplayPanel panel = new DisplayPanel(data);
setTitle("My Company SAP Company Codes");
Toolkit tk = Toolkit.getDefaultToolkit();
setIconImage(tk.createImage(DisplayFrame.class.getResource("MyIcon.gif")));

addWindowListener(new WindowAdapter()
{

public void windowClosing(WindowEvent e)
{
System.exit(0);

}
}
);
getContentPane().add(panel);
pack();
setVisible(true);

}

LESSON 20 ■ THE JAVA CONNECTOR (JCO)112

6250CH20.qxd 2/22/06 5:04 PM Page 112

}

//import java.awt.event.ActionListener;
import java.util.*;
import java.awt.*;
import javax.swing.*;
import javax.swing.table.*;

/**
* @author Alistair Rooney
*
* Panel to contain the load button and JTable to
* view the SAP company codes.
*
* All rights reserved (c) 2002 2003
*/
public class DisplayPanel extends JPanel
{

JTable table;
Vector names;

public DisplayPanel(Object [] [] data)
{

Object[] names = {"Code","Description"};
table = new JTable(data, names);
// add to table.
TableColumn column = null;
for (int i = 0; i < 2; i++)
{
column = table.getColumnModel().getColumn(i);
if (i == 0)
{
// "Company codes" is small
column.setPreferredWidth(40);

}
else
{
column.setPreferredWidth(200);

}
}

JScrollPane scrollPane = new JScrollPane(table);
table.setPreferredScrollableViewportSize(new Dimension(240, 300));
add(scrollPane);

}

}

LESSON 20 ■ THE JAVA CONNECTOR (JCO) 113

6250CH20.qxd 2/22/06 5:04 PM Page 113

There is some new Java functionality here that you won’t have seen before, but try to work
through it. ScrollPanes and JTables are both very useful Swing components.

That concludes a very basic introduction to JCo.

■Tip Thomas G. Schuessler from ARASoft (http://www.arasoft.de) will be publishing a book on JCo
and the new IDoc library that will be very useful if you intend to use the JCo—JCo is fantastic at reading
and writing IDocs.

The next lesson is servlets!

LESSON 20 ■ THE JAVA CONNECTOR (JCO)114

6250CH20.qxd 2/22/06 5:04 PM Page 114

Servlets

Way back in 1995, at the very first JavaOne conference in San Francisco, the Java team
(James Gosling and friends) showed that we could have animation in a web page. The Web
was very young at the time, and this really was a very new and exciting development. The
mechanism used to present these animations were called applets.

We won’t cover applets in this book—applets have a few drawbacks, and they’ve now
largely drifted into the history of Java. One of the most severe drawbacks was that you had to
download the applet from the server every time you navigated to the web site. This meant
extra time that, even in this day of broadband, a client is not willing to spend.

So enter servlets. Servlets run on the server, so they don’t tie up client resources, and they
can also access databases. (This was demonstrated in Lesson 19 in an example of a three-tier
application—presentation, application, and database tiers.) Servlets are also very easy to code!

Hypertext Transfer Protocol
HTTP is very important when we use servlets, because this is the protocol we will use to com-
municate between our client and our server.

If we think in terms of a web browser and a web server (see Figure 21-1) we can see
that the browser initiates a request, and the server replies with a response. We call this the
request/response model. Clearly there is a lot more to HTTP than this, but it’s not really
within the scope of this book.

Figure 21-1. The request/response model

That’s the broad overview, but in practical terms we need to know a little more. When we
send a request for a web page, let’s say http://www.rooney.co.za for example, we send a GET
request. This request is sent in normal text and could be read by any text editor.

115

L E S S O N 2 1

■ ■ ■

6250CH21.qxd 2/22/06 5:04 PM Page 115

The server responds and sends back a bunch of text data again. This will contain HTML
tags that your browser can turn into an intelligent web page. If the web page was not found,
you could get the “404 Not Found” error as a response. These status codes are usually on the
first line of the response message.

Easy enough so far? Let’s go over the basic architecture of the Servlet class.

The Servlet Architecture
Servlets are, as I’ve alluded to before, based on the applet architecture. If you’re familiar with
applets, you will see some distinct similarities. There are three methods that are important to
us: init, service, and destroy:

• init: When a servlet is called by the server, it will run the init method. However, if
there have been multiple requests for one particular servlet, the init method will not
be re-invoked.

• service: The service method is where all the business of processing the HTTP request
happens. This method can be re-invoked several times. We’ll go into this in a lot more
detail in the next section.

• destroy: When the server deems it necessary to clean up resources, the destroy method
is called.

Servlets need to implement the javax.servlet.Servlet interface. To use this, you will
have to download the latest version of the Servlets API from http://java.sun.com. You should
look for the Java 5 version. This set of APIs needs to be installed, and your classpath must be
updated.

Of course, if you have SAP Web Application Server 6.30 or later, you need not download
J2EE. SAP has already provided the SAP J2EE for you.

Servlet Basics
The first thing we need to do if we want to code a servlet is decide how we are going to use it.
We can implement the Servlet interface as mentioned before, or we can create a subclass of a
class that already implements the interface (this is the option most people seem to use).

If we choose the latter option, again we have a choice. If we examine the APIs, we see that
the GenericServlet class directly implements the Servlet interface, and we can use this directly
or we can use one of its subclasses, namely HttpServlet.

If you’re blessed with SAP NetWeaver Developer Studio, you will see the two choices in
the drop-down menu for a new servlet, as shown in Figure 21-2. The methods available will
change depending on the class you select.

LESSON 21 ■ SERVLETS116

6250CH21.qxd 2/22/06 5:04 PM Page 116

Figure 21-2. The servlet builder from SAP NetWeaver Developer Studio

Please don’t worry if you don’t have NetWeaver Developer Studio. This lesson will show
you how to code servlets without using fancy tools.

The Generic Servlet
As I mentioned previously, the GenericServlet class is the first class we could choose to extend.
So let’s code up a very simple example of a servlet that is a direct subclass of the GenericServlet
class. This will really just be an equivalent of the good old “Hello World” type of program that
everyone starts off with.

Not all of us have access to expensive web and servlet servers, though. Fortunately, the
fine people who make up the Apache open source consortium have written a very able web
and servlet server called Tomcat. It’s free to download, and we can use it to test our applica-
tions. In this way, we can set up a server on the same machine that we use to develop our
application. This is good, because it enables us to unit test our application without disturbing
the Basis people. See the sidebar entitled “Choosing Your Server to Test” for more details.

LESSON 21 ■ SERVLETS 117

6250CH21.qxd 2/22/06 5:04 PM Page 117

CHOOSING YOUR SERVER TO TEST

There are many different tools available to the J2EE developer. I’m quite a fan of Eclipse (http://
www.eclipse.org), which is the basis for SAP NetWeaver Developer Studio. However, you will still need
some sort of servlet engine and a web server. Apache Tomcat (http://jakarta.apache.org) offers both
and saves you the need for testing with a full-blown SAP Web Application Server.

Download the latest version of Tomcat and read the instructions for installation. You can run the server
as a Windows service, or you can issue the startup command to start the server, and shutdown to end the
service. Point your web browser to http://localhost:8080/ to test the installation (or try http://
127.0.0.1:8080/ if that doesn’t work).

Go through the examples provided with Tomcat to see some basic servlet and JSP examples. These
include code to make life easy!

Let’s have a quick look at our code for the FirstSAPServlet:

package servletPack;
import java.io.*;

import javax.servlet.GenericServlet;
import javax.servlet.ServletException;
import javax.servlet.ServletRequest;
import javax.servlet.ServletResponse;

public class FirstSAPServlet extends GenericServlet
{

public void service(ServletRequest req, ServletResponse res)
throws ServletException, IOException

{
res.setContentType("text/html");
PrintWriter out = res.getWriter();

out.println("<HTML>");
out.println("<HEAD>");
out.println("<TITLE>My First SAP Servlet</TITLE>");
out.println("</HEAD>");
out.println("<BODY>");
out.println("<CENTER><H1>Hi ABAPers - Welcome to the future!</H1></CENTER>");
out.println("</BODY>");
out.println("</HTML>");

out.close();
}

}

LESSON 21 ■ SERVLETS118

6250CH21.qxd 2/22/06 5:04 PM Page 118

As you can see in the preceding code, we are only overriding the service method. The
other two methods will default to the superclass.

As I mentioned in the “Hypertext Transfer Protocol” section, there are two flows in a
servlet. The request and the response. We have used the response stream in our program so
that it “prints out” some HTML.

To make sure the response is treated as HTML, we must use the setContentType method
from the ServletResponse class. Here we have specified "text/html" since we are using HTML
in our response stream.

If you know any HTML, you will find it very easy to see what is happening here—HTML
is tag-based and very similar to DIAG (SAP’s screen protocol) in many ways. In the middle of
the out.println lines, we are placing some text on the page: “Hi ABAPers – Welcome to the
future!” This is centered and displayed as a heading (large and bold). This will then be inter-
preted by the browser, and we’ll see the correct text displayed as a web page.

Before we compile this and test it, we should explore the mechanics behind the Servlet
in general. Figure 21-3 clearly shows the three-tier structure. The request goes to the servlet
engine; the servlet engine runs the Java class file and generates the response; and the response
is interpreted by the client’s browser, and the web page is displayed. Additionally, we could
have extracted data or updated data in a database, though our example doesn’t do that.

Figure 21-3. Three-tier structure: browser, servlet engine, and DBMS

There are some important directories in a web and servlet server that contain our Servlet
classes. Most servers are configurable, so you should be able to point your servlet engine to
the directory you would like to use.

The default in Tomcat is here:

<Tomcat Directory>\webapps\ROOT\WEB-INF\classes\

LESSON 21 ■ SERVLETS 119

6250CH21.qxd 2/22/06 5:04 PM Page 119

If you have a package structure, it must be in this directory. In other words, if you had a pack-
age named com.rooney.sapcon, your class files would be in this directory:

<Tomcat Directory>\webapps\ROOT\WEB-INF\classes\com\rooney\sapcon\

Remember that other class files can live in your directory. If your servlet needed other classes
(and if you’ve done proper OO design, this should be the case) you would also have them in
this directory.

This high-level overview is very entertaining, I hear you say, but it’s not helping me
run my “Hello World”. To run a Servlet class file in the root directory, start your web server
(Tomcat, in our case) and point your web browser to http://localhost:8080/servlet/
FirstSAPServlet. You should see the “Hi ABAPers” message. Our first servlet is running!

Let’s now take a more detailed look at the two interfaces we used in the service method.
The first was the request interface, ServletRequest. Every time the method is called, the
ServletRequest object is passed as an argument. There’s a variety of information passed in this
object, and by using some of the methods we can find out about the requesting client, the type
of encoding used, the locale, and the content type. We can even interrogate any parameters
that were passed as part of the request.

In the example, we didn’t really make any use of the incoming request, but I hope you can
see how we could. I’ll cover tracking (cookies) in the “Tracking with Servlets” section later in
the lesson to show one of these uses in practice. Please examine the API documentation (the
J2EE not the J2SE documentation) for the ServletRequest.

The other interface used in the service method is the ServletResponse interface. If you
have a look at the code for the FirstSAPServlet, you’ll see that we’ve made extensive use of this
one. In our example, we assigned the object to a reference res. We used the setContentType
method to specify the content type sent to the client. In this case we set it for "text/html" and
normally this would be the case.

What we also need to communicate with the client is an output stream. I purposefully
didn’t cover input and output streams in the first part of the book, but they’re very straightfor-
ward. We simply assign a PrintWriter using the getWriter method. I called ours out, and as you
can see from the code, we merely use the println method to send the text to the client. Again,
this interface boasts several methods, which I strongly encourage you to research in the API
documentation.

The HTTPServlet
This class, as you may have guessed, is tailored specifically for HTTP. The GenericServlet class
will handle this, as we saw, but the HTTPServlet class will make life a little easier. Remember
that this class extends the GenericServlet class and obeys all the normal inheritance rules. It
lives in the javax.servlet.http package, so please ensure you have this import in your code.

The service method is broken down further into the following methods:

• doDelete(HttpServletRequest req, HttpServletResponse res): This method handles
an HTTP DELETE request.

• doGet(HttpServletRequest req, HttpServletResponse res): This is certainly one of the
most important methods. It handles the ubiquitous GET request.

• doOptions(HttpServletRequest req, HttpServletResponse res): This method allows
the servlet to handle an OPTIONS request.

LESSON 21 ■ SERVLETS120

6250CH21.qxd 2/22/06 5:04 PM Page 120

• doPost(HttpServletRequest req, HttpServletResponse res): This method allows the
servlet to handle another common request, the POST.

• doPut(HttpServletRequest req, HttpServletResponse res): This method handles
the—you guessed it—PUT request.

• doTrace(HttpServletRequest req, HttpServletResponse res): This method handles
the TRACE request.

There are also a few other methods, which you should read up on.
In this section’s example, we are going to put together a very simple Pet Shop system

where we can order pets online and get a response to confirm what we have ordered. Feel free
to expand on this example to make it more functional.

We will take the methods outlined above and add our own functionality to make them
perform the actions we require. I’m going to concentrate on the GET and POST requests
because these are the most common.

First, though, here’s some HTML that displays a simple form in the browser:

<HTML>
<HEAD>
<TITLE>SAP Pet Shop</TITLE>
</HEAD>
<BODY>
<FORM METHOD = "POST"

ACTION = "http://localhost:8080/Alistair/servlet/PetShop">

<PRE>
*First Name: <INPUT TYPE = "text" NAME = "FNAME" >
*Last Name: <INPUT TYPE = "text" NAME = "LNAME" >

Email: <INPUT TYPE = "text" NAME = "EMAIL" >
</PRE>
<INPUT TYPE = "radio" NAME = "PET" VALUE = "cat">Cat

<INPUT TYPE = "radio" NAME = "PET" VALUE = "rat">Rat

<INPUT TYPE = "radio" NAME = "PET" VALUE = "dog">Dog

<INPUT TYPE = "radio" NAME = "PET" VALUE = "mole">Mole

<INPUT TYPE = "submit" VALUE = "submit Pet choice">
</FORM>
</BODY>
</HTML>

You can quite easily see from the preceding code and Figure 21-4 what is going on. I’ve
put the most important parts in bold. The URL is the location of the servlet.

■Tip If you’re not familiar with HTML, don’t worry. Put down this book and find a quick tutorial on the Net.
It’s not difficult to pick up the basics.

LESSON 21 ■ SERVLETS 121

6250CH21.qxd 2/22/06 5:04 PM Page 121

Figure 21-4. The Pet Shop web page

In the service method of our ChoosePet servlet, we will be able to gather information
sent in the HttpServletRequest interface. For example, if I needed to see the selection of PET,
I would do the following:

// Code snippet to show HttpServletRequest
String pet = request.getParameter("PET");

See how easy this is?
The response interface, HttpServletResponse, is a little different from ServletResponse.

Essentially, though, we still have the same methods. We can set the content type using
setContentType, and we can use getWriter to assign an output stream, just as we did with
ServletResponse.

There are a bunch of other methods, which you will see in the documentation, including
setStatus to send a status (like 404 Not Found) back to the browser. This is good for doing
authorization checks.

Now we need to code our servlet. When the submit button is clicked, the HTML should
send a POST request to a servlet called PetShop.java. Here’s the code for this class:

import javax.servlet.http.*;
import java.io.*;
import javax.servlet.*;
/*
* Created on 20-Jun-2005
*
*/

LESSON 21 ■ SERVLETS122

6250CH21.qxd 2/22/06 5:04 PM Page 122

/**
* @author Alistair
*
* All rights reserved by Alistair Rooney (c) 2005
* Unless specifically waived under Open Source Agreement
*
* 20-Jun-2005
*/
public class PetShop extends HttpServlet
{

public void doPost(HttpServletRequest request, HttpServletResponse response)
throws IOException, ServletException
{

response.setContentType("text/html");
PrintWriter out = response.getWriter();
out.println("<html>");
out.println("<head>");
out.println("<title>SAP Pet Shop</title>");
out.println("</head>");
out.println("<body>");
out.println("<h1>Your Order has been Processed</h1>

");
out.println("Welcome "+ request.getParameter("FNAME")+ "
");
out.println("You have chosen a "+ request.getParameter("PET"));
out.println("</body>");
out.println("</html>");

}

public void doGet(HttpServletRequest request, HttpServletResponse response)
throws IOException, ServletException
{
this.doPost(request, response);

}
}

The first thing you’ll notice here is that the coding is remarkably similar to the coding in
the GenericServlet (FirstSAPServlet), and it’s quite simple. Notice, however, that I’m using the
doPost method. If I didn’t, I would probably get a 405 error message.

We can now enter information into our form and invoke our servlet. For now, I suggest
putting your classes into the root directory. This saves us fiddling with a special file called
web.xml—more on this file later.

You can call your HTML file directly from the browser, as shown in Figure 21-5. Enter your
information, click the submit button, and viola! The servlet interprets the request and sends
the response stream back to the browser, as shown in Figure 21-6.

LESSON 21 ■ SERVLETS 123

6250CH21.qxd 2/22/06 5:04 PM Page 123

Figure 21-5. Entering a Pet Shop order

Figure 21-6. The processed order

Congratulations! You have completed your first J2EE application. The next step is to
delve deeper into the technology behind servlets so that we can have better control over our
applications.

LESSON 21 ■ SERVLETS124

6250CH21.qxd 2/22/06 5:04 PM Page 124

The web.xml File
If you were observant when you were trying out your servlet, you will have noticed the web.xml
file in the WEB-INF directory. Although we ignored it in the previous section, you can’t ignore it
in real life. This file carries the configuration of the servlet engine.

To be able to edit this file, you must have a very basic understanding of XML. If you don’t,
skip quickly ahead to the first section of Lesson 23. There’s nothing scary about XML, it’s really
very simple.

To run the Pet Shop application in a directory other than the root directory, you have to
“advertise” the presence of the servlet. There are two things that you must do before a servlet
is recognized by Tomcat: declare the servlet’s name and its location. The XML code that you
need is here:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!--
Copyright 2004 The Apache Software Foundation

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

-->

<!DOCTYPE web-app
PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

<servlet>
<servlet-name>PetShop</servlet-name>
<servlet-class>PetShop</servlet-class>

</servlet>
<servlet-mapping>

<servlet-name>PetShop</servlet-name>
<url-pattern>/servlet/PetShop</url-pattern>

</servlet-mapping>
<servlet>

<servlet-name>SAPServlet</servlet-name>
<servlet-class>SAPServlet</servlet-class>

LESSON 21 ■ SERVLETS 125

6250CH21.qxd 2/22/06 5:04 PM Page 125

</servlet>
<servlet-mapping>

<servlet-name>SAPServlet</servlet-name>
<url-pattern>/servlet/SAPServlet</url-pattern>

</servlet-mapping>

</web-app>

As you have probably noticed, I have two servlets in this XML. One called PetShop, which you
know all about, and the other is called SAPServlet, which you needn’t be concerned with since
it points to another servlet not covered here.

The servlet declaration sets the name used to refer to the class, and the servlet-mapping
declaration identifies its location. If I had chosen to use an arbitrary name for the servlet, like
FrogHopper for instance, I could have put the following into my XML file:

<servlet>
<servlet-name>FrogHopper</servlet-name>
<servlet-class>PetShop</servlet-class>

</servlet>
<servlet-mapping>

<servlet-name>FrogHopper</servlet-name>
<url-pattern>/servlet/PetShop</url-pattern>

</servlet-mapping>

Notice that I have not changed the name of the class, but I have changed the name I use
to refer to it. Of course, you would have to make one more important change before this
would work. In our original HTML form, we would need to change the action to read the
name of the reference FrogHopper:

<FORM METHOD = "POST"
ACTION = "http://localhost:8080/Alistair/servlet/FrogHopper">

That’s not all we can do with these tags. We can point to a class within a package deep in
the directory structure. So we could have this:

<servlet>
<servlet-name>FrogHopper</servlet-name>
<servlet-class>com.sap.demos.PetShop</servlet-class>

</servlet>

I’ve included the servlet mapping tag for completeness. This will assign a URL to your servlet.

Initializing Servlets
Most programmers tend to avoid hard-coded values because they remove flexibility and
create maintenance overhead. However, it would be slightly remiss of me not to discuss ini-
tialization parameters in this section on the web.xml configuration file. It is possible to pass
initialization parameters into our servlet.

LESSON 21 ■ SERVLETS126

6250CH21.qxd 2/22/06 5:04 PM Page 126

Let’s change our Pet Shop servlet to accept startup parameters that have been hard-coded
into our XML file. (These parameters can be generated by other means, so they will not always
be hard-coded.) The first thing we need is an init method. Here’s the code, with the new parts
in bold:

import javax.servlet.http.*;
import java.io.*;
import javax.servlet.*;
/*
* Created on 20-Jun-2005
*
*/

/**
* @author Alistair
*
* All rights reserved by Alistair Rooney (c) 2005
* Unless specifically waived under Open Source Agreement
*
* 20-Jun-2005
*/
public class PetShop extends HttpServlet
{
private String pageTitle;

public void init(ServletConfig config) throws ServletException
{

super.init(config);
pageTitle = config.getInitParameter("pageTitle");
}
public void doPost(HttpServletRequest request, HttpServletResponse response)
throws IOException, ServletException
{
response.setContentType("text/html");
PrintWriter out = response.getWriter();
out.println("<html>");
out.println("<head>");
out.println("<title>"+pageTitle+"</title>");
out.println("</head>");
out.println("<body>");
out.println("<h1>Your Order has been Processed</h1>

");
out.println("Welcome "+ request.getParameter("FNAME")+ "
");
out.println("You have chosen a "+ request.getParameter("PET"));
out.println("</body>");
out.println("</html>");
}

}

LESSON 21 ■ SERVLETS 127

6250CH21.qxd 2/22/06 5:04 PM Page 127

Lovely! I’ve changed the code to allow for parameters to be passed from the config file
(web.xml). Now we need to alter my web.xml file to include my hard-coded parameters. We do
this by using a new tag, the init-param tag. Here’s the changed file:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!--
Copyright 2004 The Apache Software Foundation

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

-->

<!DOCTYPE web-app
PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

<servlet>
<servlet-name>PetShop</servlet-name>
<servlet-class>PetShop</servlet-class>
<init-param>

<param-name>pageTitle</param-name>
<param-title>My new Servlet Title!</param-title>

</init-param>
</servlet>
<servlet-mapping>

<servlet-name>PetShop</servlet-name>
<url-pattern>/servlet/PetShop</url-pattern>

</servlet-mapping>
<servlet>

<servlet-name>SAPServlet</servlet-name>
<servlet-class>SAPServlet</servlet-class>

</servlet>
<servlet-mapping>

<servlet-name>SAPServlet</servlet-name>
<url-pattern>/servlet/SAPServlet</url-pattern>

</servlet-mapping>

</web-app>

LESSON 21 ■ SERVLETS128

6250CH21.qxd 2/22/06 5:04 PM Page 128

We should now have everything we need to try out our new servlet. We’ll run it exactly as
we did before. The result is shown in Figure 21-7. Notice the title of the web page!

Figure 21-7. Changing the web page title

Global Initialization Parameters
What if you had parameters that were global in nature? In other words, you had a value that
you wanted all the servlets in a specific directory (Web-App) to use as a parameter. We achieve
this by using the context-param tag.

■Note When using the context-param tag, you will only be able to access the value of the parameter
from the ServletContext object and not from the ServletConfig object that we saw in the previous example.

<web-app>
<context-param>
<param-name>contextParm</param-name>
<param-value>Java Rules!</param-value>

</context-param>
</web-app>

This snippet of XML shows how you can use the context-param tag. Again, I need to point
out that hard-coding values in this way undermines good programming practice.

LESSON 21 ■ SERVLETS 129

6250CH21.qxd 2/22/06 5:04 PM Page 129

Preloading Servlets
Previously I mentioned that one of the advantages of the servlet, as compared to the applet, is
that the servlet does not have to be downloaded and installed on the client machine before it
is available to be used. However, the servlet still needs to be loaded when requested by the
client. However, there is a way we can speed even this up!

What we can do is load up our servlets when our server software (SAP J2EE, WebSphere,
Tomcat, etc.) starts up. This ensures that we have a very quick response time when the client
requests the servlet for the first time. The good old web.xml file gives us the opportunity to
configure this.

The tag we use is load-on-startup. We need to place this tag within our servlet tag, and
we also need to specify the order in which we would like our servlets to be loaded. The new tag
is shown in bold in the following code:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!--
Copyright 2004 The Apache Software Foundation

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

-->

<!DOCTYPE web-app
PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

<servlet>
<servlet-name>PetShop</servlet-name>
<servlet-class>PetShop</servlet-class>
<init-param>

<param-name>pageTitle</param-name>
<param-title>My new Servlet Title!</param-title>

</init-param>
<load-on-startup>1</load-on-startup>

LESSON 21 ■ SERVLETS130

6250CH21.qxd 2/22/06 5:04 PM Page 130

</servlet>
<servlet-mapping>
<servlet-name>PetShop</servlet-name>
<url-pattern>/servlet/PetShop</url-pattern>

</servlet-mapping>
<servlet>

<servlet-name>SAPServlet</servlet-name>
<servlet-class>SAPServlet</servlet-class>

</servlet>
<servlet-mapping>

<servlet-name>SAPServlet</servlet-name>
<url-pattern>/servlet/SAPServlet</url-pattern>

</servlet-mapping>

</web-app>

There are many more deployment descriptor tags available for the web.xml file. If you are
interested in them in a general sense, BEA Systems has a list of the most popular ones and
their use (http://e-docs.bea.com/wls/docs61/webapp/web_xml.html). You need to be aware,
though, that this is for the BEA WebLogic server, and some tags might not work on other
servers.

If you are using NetWeaver Developer Studio you will find that your XML will be built for
you depending on your entries in the pages you select. You will see a node named web.xml.

■Note In the SAP WAS 6.40 we now use web-j2ee-engine.xml to store some of the tags and not
web.xml. It can be confusing!

Servlet Timeout
Before we leave the web.xml file, let’s examine another useful configuration tag. The timeout
value for a servlet is the time that it will stay loaded in memory. If it unloads too quickly, the
next client to use it will have to wait again while it loads up. This may be good or bad, depend-
ing on your application, number of clients, and other variables.

The following code snippet shows that we have overridden the default timeout. (The
default depends on your server, but it’s normally 30 minutes.) In this example, we are specify-
ing 25 minutes:

<web-app>
<session-config>

<session-timeout>25</session-timeout>
</session-config>

</web-app>

LESSON 21 ■ SERVLETS 131

6250CH21.qxd 2/22/06 5:04 PM Page 131

Tracking with Servlets
There is always a fine line between privacy and convenience. I’m fairly sure that few people
would like the slightly dystopian world in the film Minority Report, where passers-by were
scanned by machines, and tailored advertisements were then displayed on the digital bill-
boards as they passed.

On the other hand, many people like the clever way that some web sites automatically
recognize their presence and sign them on automatically if they use the same computer.
Some, like Amazon.com, even give the client a list of recommended reading based on previous
purchases or on the books displayed. There are many other useful ways that tracking can work
for us, and modern browsers allow us to switch off tracking if we have privacy concerns.

There are a few ways that tracking can be achieved. SSL is one, URL rewriting is another,
but we will concentrate on cookies. Coding cookies into our programs is wonderfully easy!

Programming Cookies
Cookies work with keys, and the values that belong to those keys. This arrangement is known
as key/value pairs.

Remember our request and response model? We made use of the HttpServletRequest and
HttpServletResponse objects. If you go through the API documentation for these objects, you
will come across some cookie methods. In HttpServletResponse you will find the addCookie
method, and in the HttpServletRequest class you will find the getCookie method. Yes! It’s
that easy.

Cookies can then be read and be used for many different purposes. For example, they
may grant you access to a site that you would otherwise have to register for, they could bring
up a custom page based on your prior activity (like Amazon.com), or they can retain certain
session data for your convenience.

In the next lesson, we will extend our servlet knowledge into JavaServer Pages.

LESSON 21 ■ SERVLETS132

6250CH21.qxd 2/22/06 5:04 PM Page 132

JavaServer Pages (JSP)

JSP pages are a natural extension of servlets. With JSP, you can code your entire program
within an HTML page. If you haven’t learned the basics of HTML, do it now. If you already
know enough HTML to get by, sit back and enjoy our journey into JSP.

The basic principle behind JSP is very simple. In fact, coding your first JSP page will take
less than 5 minutes! However, JSP can be a very complex area as we can merge two technolo-
gies (HTML and Java) quite successfully.

A JSP page is, quite simply, an HTML file with special tags that allow us to embed Java
code directly into the HTML source code. The server then takes this JSP code and translates
it into a servlet, which is then run as a normal servlet.

BUSINESS SERVER PAGES

Business Server Pages (BSP) is part of the SAP WAS environment. BSP pages act much like JSP pages save
for one very notable difference. They use ABAP code instead of Java.

Here’s an example of a BSP page that produces five “Hello Worlds” increasing in size each time. Can
you see the ABAP code here?

<%@page language="abap"%>
<html>
<body>
<center>
<% do 5 times. %>
<font size="<%= sy-index %>">
Hello World

<% enddo. %>
</center>
</body>
<html>

This is very cool. Of course JSP pages will run on any server, including SAP J2EE.
Once we have covered JSP, come back and review this code and note the similarities.

133

L E S S O N 2 2

■ ■ ■

6250CH22.qxd 2/22/06 5:05 PM Page 133

The JSP Architecture
When we looked at servlets, we saw that the servlet engine and a web server act together to
produce a result on the client. With a JSP page, we need another tool called a JSP server! This
will read the JSP files and produce a servlet source and class. This servlet is then run in the
normal way.

Let’s take a quick look at the sequence of events:

1. A request is sent to the web server, which then passes it to the JSP server.

2. The JSP server locates the JSP file requested.

3. The JSP server checks the version of the JSP page to see if it has used it before.

4. If it has not, it will create a new servlet and compile it into a class.

5. Control is passed to the servlet engine, which runs the servlet.

6. The generated response is sent to the client (usually a browser).

Most servers (such as BEA WebLogic, SAP WAS, IBM WebSphere, and Sun Application
Server) will already have a JSP engine as an integral part of the architecture. We will be using
Apache Tomcat again, since it is freely available.

The JSP Access Model
Most companies (SAP included) agree that the Model-View-Controller (MVC) pattern is the
best way to implement JSP. The MVC basically tries to separate the business logic from the
presentation logic, resulting in a more robust and scalable application. It does this by separat-
ing the logic into three separate and distinct areas: the Model, the View, and—you guessed
it—the Controller.

In our JSP environment, this translates to the Model being JavaBeans, the View being the
JSP, and the Controller being the generated servlet. Figure 22-1 illustrates this schematically.

Figure 22-1. The MVC model

LESSON 22 ■ JAVASERVER PAGES (JSP)134

6250CH22.qxd 2/22/06 5:05 PM Page 134

Much has been written about the MVC model, both within SAP and in a more general
sense. Adding to that wealth of information would be redundant, so, again, I encourage you
to research this further.

The JSP Syntax
JSP 2.0 has introduced some very useful new elements. Some of these are the Expression
Language, tag handlers, and the new JSP XML syntax. We will examine some of these at the
end of the lesson, but first let’s examine the basics.

• Scripting elements

• Directives

• Action elements

Scripting Elements
Scripting elements have the following syntax:

<% %>

They can be categorized into the following categories:

• Comments

• Expressions

• Scriptlets

• Declarations

We’ve actually already had a glimpse of comments in the BSP sidebar. As you might
imagine, these are fairly simple.

Comments
Comments always take this form:

<%-- --%>

Comments merely tell the developer more about the code. They are ignored by the servlet
generator. Don’t get confused by these and HTML comments—we will explore a major differ-
ence between them later in the lesson.

Here’s an example of a comment:

<%-- Change requested by FI team to display GL account – 24th August 2005 --%>

Easy enough, I think you’ll agree.

LESSON 22 ■ JAVASERVER PAGES (JSP) 135

6250CH22.qxd 2/22/06 5:05 PM Page 135

Expressions
Expressions take this form:

<%= %>

Expressions convert a Java statement directly into a string for the servlet to output. The
string would normally be a return value from a getter or accessor method. Typically this
method lives in a JavaBeans class. I’ll cover JavaBeans in the “JavaBean Elements” section
later in this lesson.

Have a look at a small example:

<%= CustomerBean.getName() %>

Note that there is no semicolon after the expression.
Let’s have a look at an example program that uses an expression:

<html>
<head>
<title>My First JSP File</title>
</head>
<body>
<!-- This is an example of an HTML comment -->
<h1 align="center">My First JSP Page</h1>
<h3 align="center">

Apache Server reports the time and date is:
<%-- This is an example of a JSP comment --%>
<%=new java.util.Date() %></h3>
</body>
</html>

Save this with the .jsp extension (for example, FirstJSP.jsp). All you have to do now is
make sure that your chosen web application server is running and point your browser to the
correct file.

Look at Figure 22-2. It shows that I have stored the file in the directory shown in
Figure 22-3. Notice that the address in the browser is http://localhost:8080/Alistair/
FirstJSP.jsp. The server automatically routes me to <Tomcat-Home>/webapps/Alistair and
looks for the JSP file there.

Easy, isn’t it! Let’s recap what we have done and what the system has done. We created a
normal HTML file (in the editor of your choice—SAP advises Eclipse or NetWeaver Developer
Studio, but you could use Notepad). After that, we started the server (Tomcat in the example)
and pointed a browser to the JSP file. This pulled the JSP file into the Tomcat JSP engine. It
generated a servlet and passed it to the normal web server to run it. We then saw the end
result.

LESSON 22 ■ JAVASERVER PAGES (JSP)136

6250CH22.qxd 2/22/06 5:05 PM Page 136

Figure 22-2. My very first JSP page

Figure 22-3. The directory structure

From JSP 1.2 onwards, we can use XML to define our tags. XML is case-sensitive, and we
should take care not to mix XML tags and the old format tags. The expression tag in XML is as
follows:

<jsp:expression> CustomerBean.getName() </jsp:expression>

JSP 2.0 now includes Expression Language, which contains the following advanced fea-
tures:

• Basic arithmetic

• Basic comparisons

• Implicit objects

• Functions

These are very simple to use and well worth exploring further.

LESSON 22 ■ JAVASERVER PAGES (JSP) 137

6250CH22.qxd 2/22/06 5:05 PM Page 137

PREDEFINED VARIABLES

JSP developers have access to some built-in predefined variables. These are normally the request and
response variables, and others such as session and out from the Writer object.

Have a look at the examples later in this lesson, and you’ll see some of them in use.

Scriptlets
Scriptlets take this form:

<% %>

Scriptlets are where JSP gets very powerful. You can embed full sections of Java code right
into the HTML page. Not only that, but, as I’ll show later, you can mix and match HTML and
Java code!

Here’s a short example of a “Hello World” program:

<% String myString = request.getParameter("passString");
out.println(myString);

%>

In this example, I would have passed “Hello World” as my parameter passString.
Of course, there is an XML version of the preceding expression. Have a look at the

following example and see if you can figure out what’s going on.

<jsp:scriptlet> for (int j=0; j<4; j++)
{ </jsp:scriptlet>

<H<jsp:expression>j</jsp:expression>>Hi
ABAPers</H<jsp:expression>j</jsp:expression>>
<jsp:scriptlet>}</jsp:scriptlet>

If your HTML is not very good, don’t worry. SAP provides a Tag Library for you to browse.
Hn simply tells HTML to print a heading line of size n, where 1 is the largest. Code this up and
see what it produces.

Declarations
Declarations take this form:

<%! %>

And the XML format is as follows (remember XML is case-sensitive):

<jsp:declaration></jsp:declaration>

Declarations are used for just that—declaring stuff. We can declare variables like so:

<%! int counter = 0; %>

LESSON 22 ■ JAVASERVER PAGES (JSP)138

6250CH22.qxd 2/22/06 5:05 PM Page 138

We can also declare entire methods as shown here:

<%! public double calcArea(double radius)
{

return Math.PI * radius * radius;
}

%>

Conventional wisdom dictates that we do not overload our HTML with scriptlets. The way
around this for complex tasks (or for database interaction) is to use JavaBeans (which will be
discussed in the “JavaBean Elements” section later in this lesson).

Directives
Directives take this format:

<%@ %>

A directive allows the JSP developer to take control over many of the configuration
aspects of the JSP page. We’ve seen one of these directives already in the sidebar on Business
Server Pages. We declared the language we used in a page directive at the top of the BSP page.
In that case, the language was ABAP. Of course, in JSP development we will be specifying the
language as Java. This isn’t always strictly necessary, but there are a number of other attributes
of the page directive that are far more useful.

We can even do Java imports using the page directive:

<%@ page import = "java.util.*, com.sap.jco.*" %>

Here are some of the common directives that are used:

• autoflush

• buffer

• contentType

• errorpage

• extends

• import

• info

• isErrorPage

• isThreadSafe

• language

• pageEncoding

• session

LESSON 22 ■ JAVASERVER PAGES (JSP) 139

6250CH22.qxd 2/22/06 5:05 PM Page 139

We won’t be going into each of these, but there are one or two that are very smart. The
contentType directive is very useful. It can be used to do smart things like embed Excel into
your JSP page. We would do this with the following directive:

<%@ page contentType="application/vnd.ms-excel" %>

We can even do this dynamically, without using a directive, by using one of the methods
provided in the response object. Let’s see that in code:

response.setContentType("application/vnd.ms-excel");

This way we could have normal HTML and Excel on the same JSP page. Cool, is it not?
We can also make our JSP page an error page so that we can give the user a meaningful

explanation when things don’t go quite right. We do this by using isErrorPage:

<%@ page isErrorPage="true" %>

That ends our discussion of directives, but I should mention the XML equivalent of the
include directive. The XML include behaves exactly like an ABAP include:

<jsp:directive.include file="a file to include" />

If you’re a little confused about the XML syntax here, look ahead to Lesson 23 on XML.

Action Elements
Action elements are more runtime oriented than the other tags. They can be broken down into
three distinct categories:

• Control elements

• JavaBean elements

• Custom tags

Control Elements
Control elements allow control to be passed to another JSP file or even to the Java plug-in that
is part of the browser. Let’s examine some of these tags. The syntax is XML based, so if you’re
not yet comfortable with XML, skip ahead to Lesson 23 (on XML) first and then return here.

The first tag, plugin, allows you to run an applet in a browser. This tag is likely to see less
use as time goes on—applets are not as fashionable as they once were, and Microsoft and Sun
are now friends again, so it’s reasonable to expect that future browsers will fully support Java,
thus doing away with the need for plug-ins.

The syntax for this tag is as follows:

<jsp:plugin type="applet" code="myClass.class" width="200" height="300" >
</jsp:plugin>

As you can see, this tag permits control over most of the attributes you normally would control
from an HTML page.

LESSON 22 ■ JAVASERVER PAGES (JSP)140

6250CH22.qxd 2/22/06 5:05 PM Page 140

The second control element I’d like to introduce is fallback. Whenever we have a situa-
tion where the client may not support a piece of code in our JSP page, we want to fall back to a
default message. This is like when you try to load a movie clip in your web browser and you get
a message asking you to download and install some additional software.

Let’s combine fallback with plugin to get a picture of where we would use it:

<jsp:plugin type="applet" code="myClass.class" width="200" height="300" >
<jsp:fallback>You have not installed the Java plug-in</jsp:fallback>

</jsp:plugin>

It’s important to take note of the nesting here. The fallback tag is nested inside the plugin tag.
The next control element tag to look at is the params tag, which is used primarily for pass-

ing parameters to the next JSP page or applet. In order to illustrate this, let’s expand on the
previous example:

<jsp:plugin type="applet" code="myClass.class" width="200" height="300" >
<jsp:params>
<jsp:param name="radius" value="7.43" />
<jsp:param name="circum" value="23.7" />

</jsp:params>
<jsp:fallback>You have not installed the Java plug-in</jsp:fallback>

</jsp:plugin>

As you can see, there are actually two tags here. The first specifies that we will be using para-
meters, and the second (param—notice the absence of an “s” at the end) details the parameter
names and their values.

The final control element I’d like to cover is the forward tag. This is very similar to the
include tag. The big difference is that control is now passed to the new JSP file and not returned
to the calling JSP page. Of course, we could use this in conjunction with our parameters to
make a call that is very similar in many ways to an ABAP PERFORM statement. Here’s a trivial
example:

<jsp:forward page="newJSP.jsp">
<jsp:params>
<jsp:param name="radius" value="7.43" />
<jsp:param name="circum" value="23.7" />

</jsp:params>
</jsp:forward>

Easy enough, I think you’ll agree. If you don’t agree, please write your complaint on the back of
a $100 bill, and post it to me.

JavaBean Elements
Please cast your eyes back to the Model-View-Controller (MVC) diagram in Figure 22-1. As you
can see, it shows our business logic separate from the other code. This has many advantages.

Separating out business logic is not new to ABAP programmers. We have been exposed to
a three-tier structure in SAP for many years now. The main reason behind this was to ensure
smooth scalability—we can increase our transaction servers and our presentation servers as
the demand for IT evolves in an organization.

LESSON 22 ■ JAVASERVER PAGES (JSP) 141

6250CH22.qxd 2/22/06 5:05 PM Page 141

The MVC pattern not only allows us a large degree of scalability—it also separates our
business logic from our presentation logic. This is a good thing, since it means we can imple-
ment changes to our business model without having an effect on our client.

We use the MVC pattern in JSP (and in many other areas) by making use of a JavaBean to
run our business logic.

Before the days of IBM WebSphere, IBM brought out a development environment called
VisualAge for Java. One of the features of this software was that you could produce a Java
application without writing a single line of code! This was done by visually “plugging” Java-
Beans together. All the developer needed to do was determine how and when each JavaBean
was called.

JavaBeans are plug-in Java programs. Essentially they are ordinary Java classes, but they
must adhere to a few rules:

• A JavaBean should always have a constructor with no arguments.

• There should be no public instance variables in a JavaBean. Of course, if you have been
coding correctly, you should already be doing this.

• Instance variables must have getter and setter methods that are public.

Before we can make use of a JavaBean, we must identify it and obtain a reference to it.
We do this by using <jsp:useBean> as in the following example:

<jsp:useBean id="circArea" class="area.CircleArea" scope="session"/>

You should see three attributes in the preceding example. The first one gives our class a
reference name that we can use subsequently. The second links this to our actual class name
(in the package area), and the third determines the scope. The first two are fairly self-
explanatory, but I’d like to dwell on scope for a moment.

Scope is similar to plain old Java scope—its visibility to other programs. If you leave
scope out, it will default to page, which means that the JSP page will only be visible to the first
request. A value of request has the same effect as page, but if there are any jsp:include or
jsp:forward tags, those JSP pages will also be visible to the request. If you use session, as in
our example, the JSP page will be visible to all requests of the current client session. The last
level is application, which makes the JSP page visible to all sessions in the WAS.

JSP syntax defines three tags to use with JavaBeans: useBean, setProperty, and getProperty.
The setProperty and getProperty tags allow the developer to fetch and change the properties
(variables) of the JavaBean. This is exactly like using a get or set method within a Java pro-
gram. In fact, I could choose to use a scriptlet and do exactly that. Let’s extend our previous
example a little to include a setProperty tag:

<jsp:useBean id="circArea" class="area.CircleArea" scope="session"/>
<jsp:setProperty name="circArea" property="setRadius" value="5.74"/>

I’m sure that you can make out what is happening in this code.

LESSON 22 ■ JAVASERVER PAGES (JSP)142

6250CH22.qxd 2/22/06 5:05 PM Page 142

JAVA REFLECTION

Java has an amazing ability. It can expose its classes, methods, and attributes to us at runtime. This is
termed reflection. If your HTML form uses the same variable names as your JavaBean, you can use the “*”
symbol in your value and it will automatically set and get the correct values for you.

Reflection is an incredibly useful extension of Java, and it’s well worth spending a little time
researching it.

At this point in the lesson, I strongly encourage you to build a small test application using
a JSP page and a JavaBean. You can model this on the Pet Shop application we looked at in
Lesson 21, and perhaps expand it a little.

Custom Tags
The topic of custom tags has traditionally been a complex one. The benefit of using custom
tags is that you can set up your own tags to perform sets of routines. In this way, they are very
similar to ABAP macros. However, until recently using custom tags has been much more diffi-
cult than setting up a simple macro.

With the advent of JSP 2.0, this has been made a lot easier. The secret is the new tag file.
To write a tag file, you simply create a normal text file with tag elements inside it. The only ele-
ment you cannot use is a directive.

Let’s create a tag file called myFirstTag.tag, and fill it with the following code:

<%
String abapers = "ABAP Programmers";
%>

Hello There, <%= abapers %>

Save this file in a folder called tags in the WEB-INF directory.
You will now need to include the following line in your JSP page:

<%@ taglib prefix="tags" tagdir="/WEB-INF/tags" %>

Now all we need is to add our new tag where we need it in our JSP:

<tags:myFirstTag/>

This will now print out “Hello There, ABAP Programmers”.
If you are familiar with the old way of using custom tags, you will be breathing a sigh of

relief. This is a lot easier! However, there is a catch. To use this, you must have a JSP server that
supports these new tag files, like Tomcat 5. At the time of writing, the latest WAS 6.40 does
not support JSP 2.0, but I’m sure WAS 7.0 will.

LESSON 22 ■ JAVASERVER PAGES (JSP) 143

6250CH22.qxd 2/22/06 5:05 PM Page 143

This concludes our introduction to JSP development. Of course, there is an awful lot more
to JSP development than can fit in this short lesson. I recommend that you do some further
reading (and code up a few examples) on the following JSP-related subjects:

• Security

• Filters

• Using JSP and servlets together

Entire volumes have been written on JSP, so information will be easy to find!
In the next lesson, we will explore XML.

LESSON 22 ■ JAVASERVER PAGES (JSP)144

6250CH22.qxd 2/22/06 5:05 PM Page 144

Extensible Markup Language
(XML)

It may surprise you to know that HTML and XML share a common heritage. They are both
derived from Standardized General Markup Language (SGML). SGML, or ISO 8879, was
developed to define document formats and how documents may be used.

HTML, of course, predated XML, and it is a very easy way to mark up web pages. Even if
you have no HTML experience, you can be creating pretty complex web pages after a few
hours! What HTML does not allow, though, is extensibility, validations, and structure, so XML
was born.

XML is a meta-language. In other words, the language itself contains data to describe
itself. It does this by using tags, as we have seen in previous lessons. The really neat thing
about this is that you can describe your own tags. You are not limited, as you are with HTML,
to predefined tags. This is the extensible aspect of XML. Because of this extensibility, a number
of other languages have grown out of XML.

There are also some side projects that are derived from XML. In particular, Extensible
Stylesheet Language for Transformations (XSLT). This allows you to transform XML docu-
ments into other document type formats. Since SAP is making use of this technology within
the NetWeaver stack, I encourage you to read up on this.

XML must be structured. Even though we can add our own tags, they must have an order
and a structure. We will see this later when we have a look at some examples.

XML is also self-validating. There are two aspects to this: the document must be well-
formed and it must be valid. We will explore these two aspects in more detail.

Finally, these attributes make XML ideal for communicating between applications. That is
why SAP uses it within Exchange Infrastructure.

The Sales Order Example
Let’s concoct a trivial example of a sales order. I say trivial, because if you have explored the
SAP Sales and Distribution module, you will know how complex a real sales order can be!
Have a look at the following code and see if you can work out what data is being represented.
It’s easy really.

145

L E S S O N 2 3

■ ■ ■

6250CH23.qxd 2/22/06 5:06 PM Page 145

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<!—The Sales Order example -->
<order number="5072341">
<orderDate>20050801</orderDate>
<soldTo>14432</soldTo>
<shipTo>14476</shipTo>
<delDate>20050815</delDate>
<poNumber>90-6627-3</poNumber>
<line id="010">
<material>GI-72388</material>
<uom>ea</uom>
<unitPrice>765.00</unitPrice>
<qty>35</qty>

</line>
<line id="020">
<material>GI-34490</material>
<uom>ea</uom>
<unitPrice>200.00</unitPrice>
<qty>76</qty>

</line>
<line id="030">
<material>GI-982254</material>
<uom>ea</uom>
<unitPrice>25.00</unitPrice>
<qty>12</qty>

</line>
<comment>Deliver at bay 3</comment>

</order>

Before we go any further, it’s important to note that there are standard sales order formats
that have been devised by Electronic Data Interchange (EDI) regulation agencies in different
parts of the world.

So let us explore the preceding sales order. The first thing you should be able to see is that
XML tags are paired. For each start tag, there is an end tag (though, there is a way around this
rule that we will see later). If we look at the <order> start tag, we can see that there is a corre-
sponding </order> end tag. Don’t worry about the number for now; just note that the forward
slash denotes the end tag. If you are familiar with HTML, you will have seen this before.

■Note Please note that XML, like Java, is case-sensitive. “Order” is not the same as “order”!

When we examine the quantity tags, <qty>12</qty>, we can see that we have content.
Collectively, this combination of opening tag, closing tag, and content is called the element.
I think it is obvious that we are saying that this item has a quantity of 12 units.

Element names can be anything, but they should be descriptive so that we can read the
XML code easily. We also have some extra rules to conform to:

LESSON 23 ■ EXTENSIBLE MARKUP LANGUAGE (XML)146

6250CH23.qxd 2/22/06 5:06 PM Page 146

• The name of an element must start with a letter or the underscore (_).

• An element may not start with the letters “XML” or “xml” or any other variation.

• The second character and any others can be periods, hyphens, underscores, colons,
or letters.

• An element name may not contain spaces.

We can also see in our example that we can nest our elements. Just make sure that the
nesting order is correct. You should be familiar with this from nested loops, if statements,
and the like, from ABAP. For example, this is correct:

<address>
<street>1234 Main Street</street>

</address>

This is clearly wrong:

<street><address>1234 Main Street</street></address>

Empty Elements
I said that all start tags must have end tags, but there is an exception to this. It’s when we use
an empty element. Instead of writing this:

<comment></comment>

we can abbreviate it by saying this:

<comment/>

Please be aware that an empty element does not mean that there is nothing at all in the
tag. It just means that the element has no content.

Element Attributes
In the earlier sales order example, we saw that some elements had information as part of
the tag. This is known as an attribute. It gives us information about the tag itself. Here’s an
example:

<order number="5072341">

This tells us that the order has a number attribute.
The data must be in quotes. You may use single or double quotes, but the convention

seems to be to use double quotes. This keeps it in line with Java.

■Note It is generally accepted that only internal information should be stored as an attribute. This means
that data that is not generally presented to a client can be stored as an attribute. In our sales order example,
therefore, it is not correct to represent the order number as an attribute. Can you think of a better attribute?

LESSON 23 ■ EXTENSIBLE MARKUP LANGUAGE (XML) 147

6250CH23.qxd 2/22/06 5:06 PM Page 147

That’s the general syntax of XML—I’m sure that you’ll agree that it is fairly straightfor-
ward. If you were just looking for XML basics so you could understand the code in a previous
lesson, feel free to go back again. In the next sections we will explore XML in more detail.

The Document Header
The document header consists of processing instructions, otherwise known as PI tags. These
tags are identified with a question mark after the angle bracket:

<? ?>

A common example of a processing instruction is the XML declaration. In the earlier sales
order example, you will see one:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

There are several attributes available for the document header, but this example shows
three common ones. The first identifies the version, which in our case is version 1.0. The
second attribute identifies the character set, and as you can see, we are not using Unicode
here—we should always try to use Unicode. The third attribute tells the parser that this XML
document does not require any other documents. We will cover external documents when
we discuss validating the XML with schemas or the Document Type Definition (DTD).

We will encounter more PI tags as we progress.

The Document Content
Let’s return to our sales order example. The note in the “Element Attributes” section pointed
out a problem with the original code, so I’ve refined the example to make it a little more
correct.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<!—The Sales Order example -->
<order type="ZQ">
<number>5072341</number>
<orderDate>20050801</orderDate>
<soldTo>14432</soldTo>
<shipTo>14476</shipTo>
<delDate>20050815</delDate>
<poNumber>90-6627-3</poNumber>
<line id="010">
<material>GI-72388</material>
<uom>ea</uom>
<unitPrice>765.00</unitPrice>
<qty>35</qty>

</line>
<line id="020">
<material>GI-34490</material>
<uom>ea</uom>

LESSON 23 ■ EXTENSIBLE MARKUP LANGUAGE (XML)148

6250CH23.qxd 2/22/06 5:06 PM Page 148

<unitPrice>200.00</unitPrice>
<qty>76</qty>

</line>
<line id="030">
<material>GI-982254</material>
<uom>ea</uom>
<unitPrice>25.00</unitPrice>
<qty>12</qty>

</line>
<comment>Deliver at bay 3</comment>

</order>

The first thing that needs to be stressed is that there can be only one root tag. A root tag
is the highest level tag in the document. In our document, you can see that the root tag is
<order>. Attempting to have more than one root element will cause an error when trying to
parse this document.

Now suppose we had a purchase order XML document that also had a comment tag, a unit
tag, a qty tag, and so on? How could we differentiate between the sales order elements and the
purchase order elements?

The way that this problem is solved in XML is to qualify the tags using namespaces.
We identify the namespace we are going to use in the root element. Here’s an example:

<arcXML:order xmlns:arcXML="http://www.rooney.co.za/arcXML">

In our root element, we now have an xmlns (XML namespace) tag pointing to a URL. We can
prefix all our element names (as we have with the order) with the shorthand code arcXML. This
effectively makes them unique, so that any other XML document that has similar tags will not
result in a collision if we choose to use those tags in our document.

Let’s revisit the sales order example again and put our new qualifier in front of the first
few tags:

<arcXML:number>5072341</arcXML:number>
<arcXML:orderDate>20050801</arcXML:orderDate>
<arcXML:soldTo>14432</arcXML:soldTo>
<arcXML:shipTo>14476</arcXML:shipTo>
<arcXML:delDate>20050815</arcXML:delDate>
<arcXML:poNumber>90-6627-3</arcXML:poNumber>
<arcXML:line id="010">
<arcXML:material>GI-72388</arcXML:material>
<arcXML:uom>ea</arcXML:uom>
<arcXML:unitPrice>765.00</arcXML:unitPrice>
<arcXML:qty>35</arcXML:qty>

</arcXML:line>

We seem to have that problem licked. Here’s another common one: How would I put an
angle bracket or an apostrophe into my XML document so that it is not interpreted as marking
the opening of a tag or an attribute? The answer is that we use escape characters, known as
entity references. The five common ones, and the characters they represent, are listed in
Table 23-1.

LESSON 23 ■ EXTENSIBLE MARKUP LANGUAGE (XML) 149

6250CH23.qxd 2/22/06 5:06 PM Page 149

Table 23-1. Common XML Entity References

Entity Reference Character

> >

< <

& &

' '

" "

Anytime you need to use one of these characters in a normal part of the XML content, you
should use the special entity reference, as in this example:

<comment>He said "No comment"</comment>

Don’t forget the semicolon on the end. You can even build your own entity references to save
work, much like an ABAP macro.

An extension of this facility is to use Unicode characters in your text. For example, copy
the following code into an XML document:

<!-- Example of Unicode in Action -->
<arabic>أهلاًب
كمفيِعالم</arabic>

Save the document as name.xml and open it with a web browser. You should see a result similar
to Figure 23-1.

Figure 23-1. Unicode displayed in XML

LESSON 23 ■ EXTENSIBLE MARKUP LANGUAGE (XML)150

6250CH23.qxd 2/22/06 5:06 PM Page 150

We’ve discovered two very exciting things here! First, we can display Unicode characters
in a standard browser, and second we can use our browser as a checker to see if our XML is
correct or well-formed. Figure 23-2 shows what happens if our XML is not well-formed.

Figure 23-2. Using the browser to check whether the XML is well-formed

The error that I introduced was to remove a forward slash from one of the order elements,
causing the check to fail. My document end was reached without finding the end of the order
element.

At this point, you should do a few exercises with XML and use the browser or a specialized
XML product to check whether your results are well-formed.

Parsing the XML Document
Although in the SAP environment you will rarely have to parse your own XML, it is important
to know parsing so you can debug problems when they occur.

There are two main methods of parsing: using the SAX parser and using the DOM parser.
In this section, we will be examining the SAX 2.0 parser. Free versions of this are widely avail-
able for Java. We are going to be using the Xerces version of the SAX 2.0 parser from Apache
(http://www.apache.org). We could have chosen to use the one from Sun—they are very
similar.

Please follow the installation instructions carefully. The latest version of the parser
has changed, and there are now two JAR files to include in your CLASSPATH. These are
xerxesImpl.jar and xml-apis.jar.

LESSON 23 ■ EXTENSIBLE MARKUP LANGUAGE (XML) 151

6250CH23.qxd 2/22/06 5:06 PM Page 151

Let’s first have a look at our main program, where we will call the SAX parser:

package arcParsing;

/**
* @author Alistair
*
* All rights reserved by Alistair Rooney (c) 2005
* Unless specifically waived under Open Source Agreement
*
* 09-Aug-2005
*/
import org.xml.sax.*;
import java.io.*;
import org.apache.xerces.parsers.*;
public class parseOrder
{

public static void main(String[] args)
{

parseOrder po = new parseOrder();
po.startP("C:\\order.xml");

}
public void startP(String xmlFile)
{

ContentHandler cont = new ContentHandling();
try
{

XMLReader mySAX = new SAXParser();
mySAX.setContentHandler(cont);
mySAX.parse(xmlFile);

}
catch (IOException ioe)
{

System.out.println("IO Exception "+ioe.getMessage());
}
catch (SAXException se)
{

System.out.println("A SAX Exception has occurred "+se.getMessage());
}

}
}

As you probably know, it is very bad practice to instantiate a class from within itself, but
this is just an illustration. Have a look at the main method. We create an instance of our own
class, and then we call our method startP. We pass the XML file (in real life we would do this

LESSON 23 ■ EXTENSIBLE MARKUP LANGUAGE (XML)152

6250CH23.qxd 2/22/06 5:06 PM Page 152

in a more elegant way) to the method. The method then instantiates a new parser and pro-
ceeds with parsing.

This is very simple, as you can see, but the best is yet to come. When we run the parser, it
reads through our file and triggers events. All we have to do is handle those events. To do this,
there is an interface that we can implement: the ContentHandler interface.

The ContentHandler Interface
As you can see in the code in the last section, we have created an instance of the Con-
tentHandler:

ContentHandler cont = new ContentHandling();

ContentHandling is a class I wrote to implement the handler. There are eleven methods to
implement in ContentHandler, which is a little long—I wrote an adapter class so we can use
just the methods that we need. I have shown all of them to illustrate this fully, even though I
do not have implementations for all of them. Here is the class:

package arcParsing;

/**
* @author Alistair
*
* All rights reserved by Alistair Rooney (c) 2005
* Unless specifically waived under Open Source Agreement
*
* 09-Aug-2005
*/
import org.xml.sax.*;
public class ContentHandling implements ContentHandler
{

private Locator loc;

public void setDocumentLocator(Locator locator)
{

this.loc = locator;
}
public void startDocument()throws SAXException
{
System.out.println("Parsing is Starting");

}
public void endDocument()throws SAXException
{

System.out.println("Parsing complete");
}
public void processingInstruction(String target, String data)throws SAXException
{

System.out.println("PI: Target="+target+" and Data="+data);
}

LESSON 23 ■ EXTENSIBLE MARKUP LANGUAGE (XML) 153

6250CH23.qxd 2/22/06 5:06 PM Page 153

public void startElement(String nmsURI, String localName,
String qName, Attributes atts)

{
System.out.println("Start Element: Local Name="+localName);
for(int i=0; i<atts.getLength(); i++)
{
System.out.println("Element has the attribute"

+atts.getLocalName(i)+" Value is "+atts.getValue(i));
}

}
public void endElement(String nmsURI, String localName,

String qName)throws SAXException
{

System.out.println("End Element: Local Name="+localName);
}
public void characters(char[] ch, int start, int length)throws SAXException
{

String s = new String(ch, start, length);
System.out.println("Characters="+s);

}
public void ignorableWhitespace(char[] ch, int start, int length)
{
// No implementation yet!
}
public void skippedEntity(String name)
{

System.out.println("Skipped Entity"+name);
}
public void startPrefixMapping(String prefix, String uri)
{

}
public void endPrefixMapping(String prefix)
{

}
}

Each of these methods will be triggered when an event thrown by the parser is caught or
handled. The setDocumentLocator method uses a Locator object to map the actual location
within the XML file (column number, line number, etc.). This cannot be glossed over, as no
callback will work without it. Notice the private variable loc. The startPrefixMapping and
endPrefixMapping methods will report on our namespaces, if we have any.

The other methods are self-explanatory, so peruse the following output. Try to match the
following results with the print statements in the program. Since this is a non-validating
parser it will trigger the character method for the white space.

LESSON 23 ■ EXTENSIBLE MARKUP LANGUAGE (XML)154

6250CH23.qxd 2/22/06 5:06 PM Page 154

Parsing is Starting
Start Element: Local Name=order
Element has the attribute type Value is ZQ
Characters=

Start Element: Local Name=number
Characters=5072341
End Element: Local Name=number
Characters=

Start Element: Local Name=orderDate
Characters=20050801
End Element: Local Name=orderDate
Characters=

Start Element: Local Name=soldTo
Characters=14432
End Element: Local Name=soldTo
Characters=

Start Element: Local Name=shipTo
Characters=14476
End Element: Local Name=shipTo
Characters=

Start Element: Local Name=delDate
Characters=20050815
End Element: Local Name=delDate
Characters=

Start Element: Local Name=poNumber
Characters=90-6627-3
End Element: Local Name=poNumber
Characters=

Start Element: Local Name=line
Element has the attribute id Value is 010
Characters=

Start Element: Local Name=material
Characters=GI-72388
End Element: Local Name=material
Characters=

LESSON 23 ■ EXTENSIBLE MARKUP LANGUAGE (XML) 155

6250CH23.qxd 2/22/06 5:06 PM Page 155

Start Element: Local Name=uom
Characters=ea
End Element: Local Name=uom
Characters=

Start Element: Local Name=unitPrice
Characters=765.00
End Element: Local Name=unitPrice
Characters=

Start Element: Local Name=qty
Characters=35
End Element: Local Name=qty
Characters=

End Element: Local Name=line
Characters=
Characters=

Start Element: Local Name=line
Element has the attribute id Value is 020
Characters=

Start Element: Local Name=material
Characters=GI-34490
End Element: Local Name=material
Characters=

Start Element: Local Name=uom
Characters=ea
End Element: Local Name=uom
Characters=

Start Element: Local Name=unitPrice
Characters=200.00
End Element: Local Name=unitPrice
Characters=

Start Element: Local Name=qty
Characters=76
End Element: Local Name=qty
Characters=

End Element: Local Name=line
Characters=

LESSON 23 ■ EXTENSIBLE MARKUP LANGUAGE (XML)156

6250CH23.qxd 2/22/06 5:06 PM Page 156

Start Element: Local Name=line
Element has the attribute id Value is 030
Characters=

Start Element: Local Name=material
Characters=GI-982254
End Element: Local Name=material
Characters=

Start Element: Local Name=uom
Characters=ea
End Element: Local Name=uom
Characters=

Start Element: Local Name=unitPrice
Characters=25.00
End Element: Local Name=unitPrice
Characters=

Start Element: Local Name=qty
Characters=12
End Element: Local Name=qty
Characters=

End Element: Local Name=line
Characters=

Start Element: Local Name=comment
Characters=Deliver at bay 3
End Element: Local Name=comment
Characters=

End Element: Local Name=order
Parsing complete

There are other handlers that you should be aware of in the SAX environment. The most
important is the ErrorHandler. Review the API documentation that comes with the parser you
choose to use.

Constraining the XML Document
XML is used in many areas these days. It can be used to hold configuration information, as we
saw with servlets and JSP and it can be used in conjunction with XPATH or XSLT to change a
single XML document and present it in many different ways. There are many interesting XML-
based technologies out there at the moment, and more will be developed.

LESSON 23 ■ EXTENSIBLE MARKUP LANGUAGE (XML) 157

6250CH23.qxd 2/22/06 5:06 PM Page 157

One of the really cool technologies is the Java Architecture for XML Binding (JAXB). You
can download this set of APIs as part of the Java Web Services Developer Pack from Sun. What
these APIs will do for you is examine an XML schema and actually build Java classes and inter-
faces for you. Apart from this being an exciting feature on its own, it will allow Java developers
to use XML without in-depth knowledge of SAX, DOM, or XML schemas by treating schema-
valid XML as a Java object! I encourage you to research it after you have read this lesson.

An interesting experiment is using Microsoft Office to create and open XML files. You will
soon realize that you can transport files between Excel and Word using XML.

Incidentally, open an XML file with Word, and you will see something similar to
Figure 23-3.

Figure 23-3. Using Microsoft Word to view XML

XML can also be used to transmit IDocs (SAP Intermediate Documents) and other forms
of EDI documents between elements of a single business or between businesses. This is called
business-to-business (B2B) communication. I can now send my well-formed XML file to my
business partner, so that he can process my order.

Traditionally the interface developers from both companies would agree on an XML for-
mat for the document. For example, there will always be a line element, and the line element
will always contain a material number. Once the two parties have agreed on this format, they
have a mechanism to check whether the document is valid, meaning that it conforms to the
agreed-upon rules.

There are several ways to represent this agreement, or contract. The two main ones are
the Document Type Definition (DTD) and the schema.

LESSON 23 ■ EXTENSIBLE MARKUP LANGUAGE (XML)158

6250CH23.qxd 2/22/06 5:06 PM Page 158

Using DTDs
DTDs are documents that constrain the XML document. They use a special syntax with their
own type definitions.

The ELEMENT Type Definition
Every element we use in an XML document must be declared in the DTD before it can be con-
sidered valid. If we had an atomic element—one that contains no child elements—and it
contained normal character data, we could have an ELEMENT declaration like this:

<!ELEMENT orderDate (#PCDATA)>

Do you remember orderDate from the sales order XML example at the beginning of this lesson?
What we have declared here is that we have an atomic element called orderDate, and that it
contains normal character data.

What if we had child elements we needed to declare. Look at the following example. It’s
not too difficult to see what is happening here:

<!ELEMENT line (material, uom, unitPrice, qty)>
<!ELEMENT material (#PCDATA)>
<!ELEMENT uom (#PCDATA)>
<!ELEMENT unitPrice (#PCDATA)>
<!ELEMENT qty (#PCDATA)>

This tells the validating parser that I can have a line element. The line has no data itself, but it
does contain four child elements: material, uom, unitPrice, and qty. Each of these can contain
character data. What you have not seen here is that I have issued an invisible instruction to the
validating parser—I have told it that there can be only one of each child element. If I tried to
put in two uom elements, the file would not validate.

If I wanted one or more uom elements, I would use the + symbol, like so:

<!ELEMENT line (material, uom+, unitPrice, qty)>

Table 23-2 lists the symbols we can use.

Table 23-2. Symbols Used in DTD Element Declarations

Symbol Description

(blank) The element may only appear once.

? The element may appear zero or one times.

+ The element may appear one or more times.

* The element may appear zero or more times.

| This means that one element or another may be used (but only one).

We could define our order line like this:

<!ELEMENT line (material, uom, unitPrice, qty|netWeight)>

This would indicate that we could use either the qty element or the netWeight element.

LESSON 23 ■ EXTENSIBLE MARKUP LANGUAGE (XML) 159

6250CH23.qxd 2/22/06 5:06 PM Page 159

The ATTLIST Type Definition
Like the ELEMENT definition, the ATTLIST type definition specifies the attributes that are
expected in the XML file. Let’s examine the following XML snippet:

<order type="ZQ">

We would represent this as follows:

<!ELEMENT order (number, orderDate, soldTo, shipTo, delDate, poNumber, line)>
<!ATTLIST order type CDATA #REQUIRED>

We have defined our type attribute that belongs to the order element.
CDATA means that the attribute is character data—a string—and that is it required or

mandatory. Instead of #REQUIRED, the attribute could also be #IMPLIED or #FIXED. #IMPLIED
means that the attribute does not appear in the document, and #FIXED specifies a constant
value.

There are other values other than CDATA. These fall into the tokenized and enumerated
categories. In simple terms, CDATA can take any string data, whereas tokenized types can be
lexically and semantically constrained, and enumerated types must take one of a list of values.
These are worth researching further if you intend using DTD constraints often.

The DOCTYPE Type Definition
Once we have developed our DTD, we need to do one of two things:

• Include the DTD within our XML document.

• Have a reference in our XML document to point to an external DTD.

The usefulness of having an internally defined DTD is somewhat limited. The syntax is as
follows:

<!DOCTYPE arcXML:order[
DTD code in here . . .
]>

External references are much more useful, and they increase in usefulness if you store
them on the Web. You may even choose to use the “standard” XML formats suggested by the
W3C organization.

The format for declaring an external (but not public) DTD is as follows:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE arcXML:order SYSTEM "order.dtd">

This tells the parser to look for a DTD file on the system called order.dtd. To use a public DTD,
we make use of the PUBLIC keyword. Here’s an example:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE arcXML:order PUBLIC "order.dtd" "http://www.rooney.co.za/xml/">

LESSON 23 ■ EXTENSIBLE MARKUP LANGUAGE (XML)160

6250CH23.qxd 2/22/06 5:06 PM Page 160

Although other DOCTYPE definitions are beyond the scope of this lesson, I thought I’d leave
you with this example that you have probably seen before:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

It should be easy enough to follow.

Using Schemas
The subject of schemas has grown enormously since its official inception in 2001. Entire
books have been written on the subject, so this section will simply give you the basic tools to
extend your knowledge further.

DTDs existed before schemas, so why was a new method of constraint considered neces-
sary? To answer this, we need to look at the shortcomings of the DTD. As we have seen, the
DTD has its own syntax. Since the constraint document can be dynamic, it would be better to
keep it as XML so that we can extend it or change it easily. The DTD has 10 data types whereas
the schema has over 44.

Schemas solve the extensibility issue rather elegantly because they are XML documents.
Since they too need to be constrained, they can have a DTD to do this. The other difference is
that when a document that has been successfully validated against a schema, it is called
schema-valid, and not just valid.

The Root Element
So, if our schema is an XML document, it must have a root element. We shall call ours schema.
Notice the namespace declaration in bold in the following code:

<xsd:schema targetNamespace="http://localhost"
xmlns="http://localhost"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified">

</xsd:schema>

The namespace XSD (XML Schema Definition) points to the XMLSchema definition on the
Web. The additional namespace declaration pointing to localhost is needed because we have
our own XML files that should not be constrained by the XMLSchema definition on the Web.

The Element Declaration
Declaring elements in a schema is fairly straightforward. We do it like this:

<xsd:element name="orderDate" type="xsd:date" minOccurs="1" maxOccurs="1" />

There are a few things to note here, however. The first is that we have used the shorthand
way of ending the tag. We could have used </xsd:element> instead. The second point is that
we have actually declared the date as such, and not defaulted to a generic type (as we do in the
DTD) but to a specific data type.

LESSON 23 ■ EXTENSIBLE MARKUP LANGUAGE (XML) 161

6250CH23.qxd 2/22/06 5:06 PM Page 161

There are quite a few data types that we can use. They are separated into two separate
groups: a few built-in types and as many user-defined types as we wish to create. Here are
some of the most popular built-in types:

• boolean

• date

• dateTime

• decimal

• double

• float

• gDay (Gregorian day)

• gMonth (Gregorian month)

• gYear (Gregorian year)

• string

• time

• byte

• short

• token (a string with no white space)

Although you can see that we have minOccurs and maxOccurs statements in the line, these
are superfluous in this case, as the default is that an element may only occur once. I have
included them here for the sake of illustration only. They are self-explanatory. If you wished
to make the upper limit infinite, you could do so by using this:

maxOccurs="unbounded"

Complex Types
In our sales order XML example at the start of the lesson, we had a number of child
elements. We need to be able to represent these in our schema, and we do this by using
the complexType tag.

Even though most developers will use complex types to show child elements, it can also
be used to build special types that can be used in normal simple elements. I won’t bore you
with the details in this short introduction, but please research this if you intend to do a lot of
work with schemas.

The best way to illustrate a complex type is with an example. First let’s look at the XML
code we want to define:

LESSON 23 ■ EXTENSIBLE MARKUP LANGUAGE (XML)162

6250CH23.qxd 2/22/06 5:06 PM Page 162

<arcXML:line id="010">
<arcXML:material>GI-72388</arcXML:material>
<arcXML:uom>ea</arcXML:uom>
<arcXML:unitPrice>765.00</arcXML:unitPrice>
<arcXML:qty>35</arcXML:qty>

</arcXML:line>

Remember this from our sales order? Now let’s develop the schema for the preceding code:

<xsd:element name="material" type="xsd:string" />
<xsd:element name="uom" type="xsd:string" />
<xsd:element name="unitPrice" type="xsd:decimal" />
<xsd:element name="qty" type="xsd:decimal" />
<xsd:element name="line" maxOccurs="unbounded" >
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="material"/>
<xsd:element ref="uom"/>
<xsd:element ref="unitPrice"/>
<xsd:element ref="qty"/>

</xsd:sequence>
</xsd:complexType>

This may seem a little cryptic at first, but let’s step through it. We have declared the
elements before we declared the structure or complex type. The final element is the line ele-
ment—you can see that line has child elements. Next, we declare our complex type and the
sequence that they need to be in. We then use the element tag again to reference the previously
declared elements. Although we can declare the elements inside the complex type, this
method gives us greater flexibility.

If you examine the XML again, you will notice that we seem to have ignored something.
Well, in fact we have. The attributes have not been defined.

Attribute Declaration
Declaring an attribute is really quite simple. Have a look at the following example:

<xsd:attribute name="id" type="xsd:integer" use="required"/>

Because we are experts in XML now, we can read this quite easily. The use addition tells
the parser that this attribute is required. Incidentally, we can also have a default value. To do
this, we use the default keyword, followed by the actual value, like so:

<xsd:attribute name="gpsSetting" type="xsd:boolean" default="false"/>

When we do this, the use keyword may not be used.

LESSON 23 ■ EXTENSIBLE MARKUP LANGUAGE (XML) 163

6250CH23.qxd 2/22/06 5:06 PM Page 163

Let’s close this lesson on XML by taking a look at this keyword in context:

<xsd:element name="material" type="xsd:string" />
<xsd:element name="uom" type="xsd:string" />
<xsd:element name="unitPrice" type="xsd:decimal" />
<xsd:element name="qty" type="xsd:decimal" />
<xsd:element name="line" maxOccurs="unbounded" >
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="material"/>
<xsd:element ref="uom"/>
<xsd:element ref="unitPrice"/>
<xsd:element ref="qty"/>

</xsd:sequence>
<xsd:attribute name="id" type="xsd:integer" use="required"/>
</xsd:complexType>

An important part of XML in the SAP environment is a subset known as SOAP. In the next
lesson, we will explore Java Message Service and SOAP. If you use Exchange Infrastructure, this
lesson is mandatory!

LESSON 23 ■ EXTENSIBLE MARKUP LANGUAGE (XML)164

6250CH23.qxd 2/22/06 5:06 PM Page 164

Java Messaging Services

If you have had experience of messaging middleware, like MQSeries from IBM, you will
already understand the concept of messaging. There are many different forms of messaging—
some use mailboxes (where a message must be placed in the mailbox and then retrieved from
it), and some use direct connections.

Messaging can be broken down into two models: synchronous and asynchronous.
Synchronous messaging requires that a response be received from the message recipient to
say that the message was received in good order. Asynchronous messaging requires no such
confirmation and for this reason can be less reliable. Asynchronous messaging is highly analo-
gous to sending a letter. (When we cover SOAP, we will expand on this analogy.)

Java Message Service (JMS) is asynchronous, but it is highly reliable. This reliability can be
“turned down” if you have an application that doesn’t worry about missed or duplicate mes-
sages. JMS is also said to be loosely coupled; that is, it does not communicate directly with the
other party.

■Note The BAPI (RFC) call discussed in Lesson 20 was a good example of a tightly coupled system.

JMS is simply a collection of classes (APIs) that developers can use to send and receive
messages. The standard format for these messages is XML—specifically the Simple Object
Access Protocol (SOAP). This protocol is equally important in the SAP world, since Exchange
Infrastructure makes use of JMS and uses SOAP/XML as its communications protocol.

Although JMS can adequately support both point to point messaging and publish and
subscribe messaging, we will only be covering the former in this lesson.

THE TWO CONNECTION METHODOLOGIES

There are two ways to design your message connection. The first is to use a point to point connection.
Essentially this relays a message from point A to point B and vice versa. This is still one of the most common
implementations, but increasingly people are using pub/sub or publish/subscribe. In this case, the message
is sent to a topic, and it can be used or “consumed” by many clients. In this lesson, we will be examining a
point to point scenario.

165

L E S S O N 2 4

■ ■ ■

6250CH24.qxd 2/22/06 5:07 PM Page 165

It is important to keep in mind that JMS and SOAP are completely separate technologies. I
am discussing them together here for the simple reason that we do not send messages using
JMS in SAP without first putting the messages into a SOAP format. JMS does not require that
your messages be in SOAP format, but it does make life easier. Conversely, SOAP (or SOAP
with Attachments API for Java—SAAJ—from a Java perspective) works with countless other
technologies outside the JMS context.

JMS Scenarios
Common messaging scenarios include sending intra-organizational messages and B2B (busi-
ness-to-business) messages. Let’s take a look at an example of a simple intra-organizational
message, also called application-to-application (A2A) messages.

Let’s assume we have an order entry application that allows for the creation of a sales
order. Once the sales order has been created, we may want to send this information to a pro-
duction system to produce the stock for the order. This is not a contrived example—many
enterprises have separate systems for ordering and production. The production system will
then feed this information into its demand planning, and it may send other messages to other
systems, like accounting, using the same mechanism.

A common trend these days is to outsource aspects of the business that are not “core”
to the enterprise. Let’s say this company—Acme Beans—makes beans. It does not consider
distribution of its product to be “core” to the company. It uses another company—ABC
Logistics—to handle storage and distribution of the product.

Once a customer places an order, this must be communicated to the distributor, and the
distributor must tell Acme Beans that the delivery has taken place. Figure 24-1 shows this in
schematic form. This can be accomplished using JMS to send these documents as messages,
providing a fast and reliable way of communicating across businesses.

Figure 24-1. A simple B2B process

These days it is rare that JMS works by itself. It can, of course, but it is more efficient and
more robust to have middleware between the two parties.

LESSON 24 ■ JAVA MESSAGING SERVICES166

6250CH24.qxd 2/22/06 5:07 PM Page 166

SOAP
Earlier in this lesson, I compared asynchronous communication to sending a letter. As we
delve into SOAP, we can take this letter analogy a little further. Have a look at the diagram in
Figure 24-2 to get an idea of this.

Figure 24-2. The SOAP layer

Think of Russian dolls when you look at this figure. The body and header live inside the
envelope, the envelope lives inside the part, and the part is wrapped inside the message. The
actual data in the message—an order, for example—will be contained in the body. The header,
which is optional, will contain routing, level of service, intermediate destinations, and sending
and receiving party information. The envelope will contain information about message
encoding—this is a very powerful aspect of SOAP, as it allows us to create our own data types.

JAXM
Now that we have a basic understanding of the SOAP message, let’s look at how we would code
up a very simple example. Our example program will send a request for stock to another party
and receive the response.

Since we are using Java to process our XML/SOAP messages, we should use Java API for
XML Messaging (JAXM). JAXM implements SOAP with Attachments API for Java (SAAJ). You
can download JAXM and SAAJ as separate APIs, or you can point your CLASSPATH to the JAR file
for your J2EE implementation.

The packages we are primarily interested in are these:

javax.xml.soap
javax.xml.messaging

LESSON 24 ■ JAVA MESSAGING SERVICES 167

6250CH24.qxd 2/22/06 5:07 PM Page 167

The first thing we need to do is build the connection. This must be done within a try . . .
catch block.

try
{
// Create the connection first
SOAPConnectionFactory scf = new SOAPConnectionFactory.newInstance();
SOAPConnection con = scf.createConnection();

Now we need to create the message in a very similar way. Notice the method we use to
create a new instance:

// Now create the message
MessageFactory mf = new MessageFactory.newInstance();
SOAPMessage msg = mf.createMessage();

It really is that easy! Now all we need to do is populate our message. First, let’s build all the
message pieces. Refer to the diagram in Figure 24-2 as we go along.

// Build the message pieces
SOAPPart part = msg.getSOAPPart();
SOAPEnvelope envelope = part.getEnvelope();
SOAPBody body = envelope.getBody();

In the next snippet of code, you will see the message being built. Obviously in real life we
would not hard-code strings in this way:

// Create the SOAP request
Name bodyName = envelope.createName("request-stock", "Request
Stock","http://stock.acme.com");
SOAPBodyElement requestStock = body.addBodyElement(bodyName);
Name requestName = envelope.createName("request");
SOAPBodyElement request = requestStock.addChildElement(requestName);
request.addTextNode("Send Stock List");
msg.saveChanges();

Now we have our message. Next we need to create our target, or endpoint, and send the
message through. Again, there are no surprises here. It isn’t really necessary to save the
changes using the saveChanges method, but we’ll call it for safety’s sake.

// Create Endpoint and send the request
URL endpoint = new URL("http://localhost:8080/stock/servlet/stocklist");
SOAPMessage response = con.call(msg, endpoint);
con.close();
// Quick and easy way to drill down to the body
SOAPBody responseBody = response.getSOAPBody();
// Old code
// SOAPBody responseBody = response.getSOAPPart().getEnvelope().getBody();

LESSON 24 ■ JAVA MESSAGING SERVICES168

6250CH24.qxd 2/22/06 5:07 PM Page 168

■Note In the latest version of JAXM, we don’t have to go through the part and envelope to get to the body
and examine the response.

It may be confusing in the first part of the snippet to see a response when we are trying to
send the message, but let’s look at each line. The URL sets up the endpoint. You can probably
see here that we are calling a servlet to send a response. In the next line, we run the call
method, sending the message and the destination as arguments.

We now wait until a response has been sent. Once we have the response, we would
normally iterate through the elements, examining the data.

Other Considerations When Using JMS
Although the previous somewhat trivial example will work without any problems, many enter-
prises insist on a certain level of guarantee that messages are transmitted successfully. For
this reason, we normally employ middleware to manage our connections in a more profes-
sional way.

If you are working in an IBM WebSphere environment, for example, you would probably
use MQSeries to manage your messaging. In this case, you would use the APIs provided by
IBM to build your connection.

The same argument applies to a SAP Exchange Infrastructure environment. For the
point to point model, you would use the javax.jms.QueueSender class to send messages to a
queue, and the javax.jms.QueueReceiver class to retrieve messages. The publish/subscribe
model also has its own SAP-specific APIs. These are javax.jms.Topic to set up a topic,
javax.jms.TopicPublisher to send to a topic, and javax.jms.TopicSubscriber to consume
a message.

In short, when working in specific environments, you should review the APIs first.
In the next lesson, we will look at messaging again, in something called a message-driven

bean. This is all part of the wonderful world of Enterprise JavaBeans.

LESSON 24 ■ JAVA MESSAGING SERVICES 169

6250CH24.qxd 2/22/06 5:07 PM Page 169

6250CH24.qxd 2/22/06 5:07 PM Page 170

Enterprise JavaBeans 3.0

One of the biggest complaints in the Java community recently has been the increasing
complexity of the J2EE environment. This has been especially valid in the area of Enterprise
JavaBeans (EJB). EJB was not easy to use in the 1.1 environment, and although version 2.0
introduced some additional functionality—like message-driven beans—it did little towards
reducing the complexity of developing with EJB.

Well, I have good news, and I have bad news. The good news is that the latest release of
EJB (version 3.0) has made a good attempt at reducing this complexity. The bad news is that I
will go through the older specification first. I do this so that you can see how EJB has devel-
oped. This, I hope, will make you a better practitioner of EJB.

Working with EJB 2.x
EJB allows for a distributed implementation of a Java application. The implementation, or
bean, is wrapped inside a container, which manages the security, the transactions, and the
persistence of each operation. A container can be likened to a web server running a servlet.
Many beans can run in one container.

There are basically three different types of beans: the session bean, the entity bean, and
the message-driven bean.

The Session Bean
It is useful to think of a session bean as representing a client session. Although this is not
strictly true, it’s a good enough analogy. The session bean works for the client, allowing the
client to run its methods. It hides the complexity from the client.

A session bean “belongs” to one client. When the client terminates, the session bean is
no longer associated with that client.

There are some rules for building a session bean:

• The bean must implement the SessionBean interface

• The class must be public

• The class cannot be abstract or final

• The class must implement at least one ejbCreate method

• The class should implement the business methods (more on this later)

171

L E S S O N 2 5

■ ■ ■

6250CH25.qxd 2/23/06 10:26 AM Page 171

• The class should contain a public constructor with no parameters

• It must not define the finalize method

Session beans themselves can be of two types: stateless and stateful.

Stateless Beans
Stateless beans receive messages from the client and send a returning messages. In other
words, the bean does not stay connected to the client. Once the method call is complete, the
connection between the client and the session bean is broken.

The benefits of using stateless beans are that they are held in memory, not on disk, and as
such they have a performance benefit over stateful beans. They can also service many clients
(though only one at a time) and they can also implement a web service.

Stateful Beans
In contrast to the stateless bean, the stateful bean retains a connection to the client. This is
more like making a telephone call than sending a message. Because of this, the state that
exists between the client and the bean is called the conversational state.

You would use a stateful session bean if you need to retain information about the client
from one invocation to the next. It is also useful to act as a façade controller to manage entity
beans.

The Entity Bean
The entity bean represents a business object. This is held in a persistent state (on storage
somewhere). A good example of an entity bean would be the object for a sales order. This
would typically read and write sales order information to the database.

If the bean itself is writing to and reading from the database, it is called bean-managed
persistence. If the container manages the persistence, then the entity bean does not need to
code for it—the EJB container itself makes the calls to the database. This is called container-
managed persistence.

The entity bean must use some code called EJB Query Language (QL) to tell the container
what to read or write from the database. This is actually a nice way of doing things, since the
entity bean does not need to worry about the underlying database, database drivers, and
the like.

Here is a snippet showing some EJB QL:

SELECT OBJECT(p)
FROM Player p
WHERE p.teams IS NOT EMPTY

Many clients can use an entity bean, since many clients may want to update the same
data. This is managed by working within transactions. The transaction management is
handled by the EJB container.

Each entity bean must have a primary key, just as each database record needs a key—it
needs this to be uniquely identified. Also, like database records, entity beans can have rela-
tionships. For example, our sales order entity bean would have a relationship to the customer
entity bean.

LESSON 25 ■ ENTERPRISE JAVABEANS 3.0172

6250CH25.qxd 2/23/06 10:26 AM Page 172

Obviously, if you have written your own database code in the bean, you would have to
manage your own relationships. However, if you have used EJB QL to determine the relation-
ships, the container will manage them.

If you have chosen to let the EJB container manage your relationships, you must use the
Abstract schema to describe these. The Abstract schema is then referenced in the deployment
descriptor, which is an XML file. Don’t worry too much about the deployment descriptor—this
gets easier in EJB 3.0.

Remember that the entity bean is best used for business entities like sales orders, and not
for processes like checking stock.

The Message-Driven Bean
The message-driven bean (MDB) is very like a Listener class (discussed in Lesson 17), but this
type of bean waits for messages from JMS. These messages can be sent from anywhere; hence
the beauty of the message-driven bean. You can probably see how this could be scaled up in a
very easy—and robust—way.

MDBs are very similar to stateless session beans. Remember the letter analogy? The MDB
retains no data linked to a client. A single MDB can also service many clients, and you can also
have a “pool” of MDBs, which the EJB container will assign to clients.

One of the main differences between MDBs and stateless session beans, however, is how
the client talks to the MDB. Instead of directly invoking the bean, it relies on its message to
trigger the running of the bean.

The bean will implement the MessageListener interface. This means that when a message
arrives, it will trigger the onMessage method to process the message. In turn, this method will
probably use other beans—because we want some healthy delegation in our design—and
these would be session or entity beans, or both.

Figure 25-1 shows this relationship.

Figure 25-1. Invocation of a message-driven bean

LESSON 25 ■ ENTERPRISE JAVABEANS 3.0 173

6250CH25.qxd 2/23/06 10:26 AM Page 173

EJB Clients
Now that we’ve seen the three basic bean types, let’s examine clients in a little more detail.
Essentially there are two types of clients: local and remote.

• Local clients are clients that run on the same Java Virtual Machine (JVM) as the bean.

• Remote clients can be anywhere, and could be a web service or even another bean.

We will see some practical application of these types of clients later in the lesson.

Components in a 2.x EJB Scenario
Next we’ll examine the old components of the EJB. Remember that this has changed substan-
tially in 3.0, which I will cover later.

There are several types of components you should be aware of:

• Deployment descriptor: This is an XML file that contains information about the bean,
such as its persistence type. NetWeaver Developer Studio will assist you in the creation
of this file, and Sun has its own wizard called deploytool. Occasionally you may have to
edit this file manually.

• The bean class: We will, of course, go into more detail on this later, but suffice it to say
that it is the class to hold the business logic.

• Remote and local interfaces: Web services require their own interfaces.

• Helper or utility classes: These are also included as components.

Once we have all these components, we can “wrap them to go.” We use something similar
to a JAR file to do this. In effect, it is an EJB JAR file, but you will see this more commonly
referred to as an EAR, or Enterprise Archive, file.

Naming Conventions for EJB Beans
We are entering an area of increased complexity (EJB is probably the most complex area of
Java development), so we must pay particular attention to conventions and standards. If we
don’t stick to a convention, our development will be very difficult to maintain.

Table 25-1 shows the recommended standards from Sun. I have no reason to differ
from their suggestions. The letters DD in the table denote items that are in the deployment
descriptor.

LESSON 25 ■ ENTERPRISE JAVABEANS 3.0174

6250CH25.qxd 2/23/06 10:26 AM Page 174

Table 25-1. Sun Naming Conventions for EJB Beans

Item Syntax Example

Enterprise bean name (DD) <name>Bean AccountBean

EJB JAR display name (DD) <name>JAR AccountJAR

Enterprise bean class <name>Bean AccountBean

Home interface <name>Home AccountHome

Remote interface <name> Account

Local home interface <name>LocalHome AccountLocalHome

Local interface <name>Local AccountLocal

Abstract schema (DD) <name> Account

■Note Remember that EJB 3.0 reduces much of this complexity, so please don’t give up yet. We will cover
3.0 soon.

Creating a Simple EJB 2.x Project
Now that we have got the background on EJB 2.x, we can look at building a small EJB 2.x
example: an adaptation of the SAP calculator example provided with NWDS. This example
will be presented in a series of steps, which can easily be followed without much thought,
but please make the effort to understand exactly what we are doing.

The first thing we need to do after starting NetWeaver Developer Studio is create an EJB
project:

1. Select File ➤ New ➤ EJB Module Project as shown in Figure 25-2. Call your project
CalculatorEJB.

Figure 25-2. Creating a new EJB project

LESSON 25 ■ ENTERPRISE JAVABEANS 3.0 175

6250CH25.qxd 2/23/06 10:26 AM Page 175

2. In the J2EE Explorer, click on the Project node, and right-click to create a new EJB as
shown in Figure 25-3. Call it Calculator, and make it a stateless session bean.

Figure 25-3. Creating a new EJB

3. Give it a meaningful package name. Click Next and accept the default names given.
Click Next again.

4. In the business methods screen shown in Figure 25-4 you can create the business
methods of the bean. Click the Add button to add a method.

Figure 25-4. Creating EJB methods

LESSON 25 ■ ENTERPRISE JAVABEANS 3.0176

6250CH25.qxd 2/23/06 10:26 AM Page 176

5. We are going to build a simple calculator, so we will need methods to do basic math.
Add four methods, for add, subtract, divide, and multiply. Use floats for the two incom-
ing parameters and a float for the return parameter, as shown in Figure 25-5.

Figure 25-5. Specifying the details for the business methods

6. Click the Finish button when you’re done. You should see the newly created Java files
in the calculator package, as shown in Figure 25-6.

Figure 25-6. Automatically created Java files

LESSON 25 ■ ENTERPRISE JAVABEANS 3.0 177

6250CH25.qxd 2/23/06 10:26 AM Page 177

7. You will also see the methods under ejb-jar.xml, as shown in Figure 25-7.

Figure 25-7. The newly created business methods

8. Double-click on CalculatorBean, which will have been created as part of the project,
and in the right pane click on Navigate to Bean Class. This is shown in Figure 25-8.

Figure 25-8. Using the navigation aid

9. Code the functionality. You can use the following code as a guideline:

/**
* Business Method.
*/
public float add(float f1, float f2)
{

return f1 + f2;
}

/**
* Business Method.
*/
public float divide(float f1, float f2)
{

return f1 / f2;
}

LESSON 25 ■ ENTERPRISE JAVABEANS 3.0178

6250CH25.qxd 2/23/06 10:26 AM Page 178

/**
* Business Method.
*/
public float subtract(float f1, float f2)
{

return f1-f2;
}

/**
* Business Method.
*/
public float multiply(float f1, float f2)
{

return f1*f2;
}

10. Save everything. This will automatically compile your code.

11. Create the archive by right-clicking on the CalculatorEJB module and choosing Build
EJB Archive. This is shown in Figure 25-9.

Figure 25-9. Building an archive

Our bean is created! Well, it’s the bare bones, at least. It’s a little naked, so we will now
build a web project that will act as our “view.” Follow these steps:

1. Create a new Web Module Project, and call it CalculatorWeb.

2. Now we want a bean (a normal one) and a JSP page to display it. Right-click on Calcu-
latorWeb and create a Java class, as shown in Figure 25-10.

LESSON 25 ■ ENTERPRISE JAVABEANS 3.0 179

6250CH25.qxd 2/23/06 10:26 AM Page 179

Figure 25-10. Adding the Java bean

3. Call the bean CalcProxy, and write code similar to the following:

/*
* Created on Sep 14, 2005
*
* To change the template for this generated file go to
* Window>Preferences>Java>Code Generation>Code and Comments
*/
package com.sap.examples.calculator.beans;

import javax.naming.InitialContext;
import javax.rmi.PortableRemoteObject;

import com.sap.examples.calculator.Calculator;
import com.sap.examples.calculator.CalculatorHome;

/**
* @author arooney
*
* To change the template for this generated type comment go to
* Window>Preferences>Java>Code Generation>Code and Comments
*/
public class CalcProxy
{

private Calculator calc;
public CalcProxy() throws Exception
{

init();
}

LESSON 25 ■ ENTERPRISE JAVABEANS 3.0180

6250CH25.qxd 2/23/06 10:26 AM Page 180

public void init() throws Exception
{

//Lookup the enterprise bean
try
{

InitialContext ctx = new InitialContext();
Object ob = ctx.lookup("java:comp/env/ejb/CalculatorBean");
CalculatorHome home = (CalculatorHome)

PortableRemoteObject.narrow(ob, CalculatorHome.class);
//Initialize the enterprise bean

calc = home.create();
} catch (Exception e)
{

throw new Exception("Error instantiating Calculator EJB" +
e.toString());

}

}
public float getResult(String firstNumber, String secondNumber,
String expression) throws Exception
{

float result = 0;
try
{
if (firstNumber != null && secondNumber != null)
{
//Parse the input parameters
float first = Float.parseFloat(firstNumber);
float second = Float.parseFloat(secondNumber);
int expr = Integer.parseInt(expression);

//Invoke the relevant method of the enterprise bean
switch (expr)
{
case 1:
result = calc.multiply(first, second);
break;
case 2:
result = calc.divide(first, second);
break;
case 3:
result = calc.add(first, second);
break;
case 4:
result = calc.subtract(first, second);
break;
}

}

LESSON 25 ■ ENTERPRISE JAVABEANS 3.0 181

6250CH25.qxd 2/23/06 10:26 AM Page 181

}catch (Exception re)
{

throw new Exception("Fill in all required fields with appropriate
➥values!");

}
//Return the result of the calculation

return result;

}

}

That’s the bean done. Now let’s build the JSP page:

1. Add a JSP file as shown in Figure 25-11.

Figure 25-11. Creating a JSP file

2. Call it Calculator, and add code similar to the following:

<%@ page language="java" %>
<jsp:useBean id= "calc" scope= "session" class=
"com.sap.examples.calculator.beans.CalcProxy" />

<html>
<head>
<title>
Calculator
</title>
<h1>Calculator Example</h1>
</head>
<body>

LESSON 25 ■ ENTERPRISE JAVABEANS 3.0182

6250CH25.qxd 2/23/06 10:27 AM Page 182

<FORM METHOD= "post" ACTION= "Calculator.jsp" >
<P> Select Operation: </P>
<P><SELECT NAME= "expression" >
<OPTION VALUE=1> Multiply
<OPTION VALUE=2> Divide
<option VALUE=3> Add
<option VALUE=4> Subtract
</SELECT></P>
<P> First number: </P>
<P><INPUT NAME= "firstnumber" size=10></P>
<P> Second number: </P>
<P><INPUT name= "secondnumber" size=10></P>
<P><INPUT TYPE= "SUBMIT" NAME= "Submit" VALUE= "Calculate" ></P>
</FORM>

<P>
<HR HEIGHT= "1px" WIDTH= "80%" COLOR= "#000000" >
</P>
<% try { %>
<P>
 <%="Result is " + calc.getResult(request.getParameter("firstnumber"),
request.getParameter("secondnumber"),

➥request.getParameter("expression"))%>
</P>
<% } catch (Exception ex) { %>

<%=ex.getMessage() %>
<% } %>

</body>
</html>

This should give you a screen like the one shown in Figure 25-12, but feel free to play
around with the code to make it pretty!

Figure 25-12. The JSP preview window

LESSON 25 ■ ENTERPRISE JAVABEANS 3.0 183

6250CH25.qxd 2/23/06 10:27 AM Page 183

Now we need to create a web archive and link it to our EJB archive:

1. Double-click on the web.xml file and click on the EJB tab. You should see something
like Figure 25-13.

Figure 25-13. Setting the web.xml file

2. Make sure you have captured the EJB reference name and link, as shown in Figure 25-13.
Now build the web archive by right-clicking the Calculator web project and choosing
Build Web Archive, as shown in Figure 25-14. The web archive (WAR) file will contain
all the elements that NetWeaver will need to run the web programs for the project.

Figure 25-14. Building the WAR file

LESSON 25 ■ ENTERPRISE JAVABEANS 3.0184

6250CH25.qxd 2/23/06 10:27 AM Page 184

Now we need an EAR (Enterprise Archive) project to bind this all together:

1. Click on File ➤ New and choose Enterprise Application Project to create a new EAR, as
shown in Figure 25-15.

Figure 25-15. Building the Enterprise Application Project

2. Name it CalculatorEAR, and click Next.

3. Use CalculatorWeb and CalculatorEjb as reference projects. Click Finish.

4. Double-click on application.xml in the EAR project.

5. In the Modules tab, click on CalculatorWeb.war and enter /Calculator as the Context
Root, as shown in Figure 26-16.

Figure 25-16. Setting the application.xml

LESSON 25 ■ ENTERPRISE JAVABEANS 3.0 185

6250CH25.qxd 2/23/06 10:27 AM Page 185

6. Now build the EAR by right-clicking on the EAR project and selecting Build Application
Archive, as shown in Figure 25-17.

Figure 25-17. Creating the application archive

Now you are done! Ensure the SAP J2EE is running, and key the following into your
favorite browser: http://localhost:50000/Calculator/Calculator.jsp. You should see the
calculator in your browser, as in Figure 25-18. Have fun!

Figure 25-18. The end result

LESSON 25 ■ ENTERPRISE JAVABEANS 3.0186

6250CH25.qxd 2/23/06 10:27 AM Page 186

What’s New in EJB 3.0?
The best thing about Enterprise Java 5 is that it tries to break down the complexity that has
crept in over the last few years. As developers, we should worry about the problems we’re
solving and not the mechanism we use to code our solution.

In EJB 2.x we had to code all of the following, just for the session bean:

• A home interface that can be accessed by a remote client, and that defines the lifecycle
methods for the session bean

• A remote interface that can be accessed by a remote client, and that defines the busi-
ness methods for the session bean

• A bean class that contains the implementations of the home and remote interfaces

• A deployment descriptor (XML file) that specifies information about the bean, such as
its name and type

Now, to create a stateless session bean using EJB 3.0, one simply needs to code the
following:

• A bean class (properly annotated)

• A business interface, which can be generated by default

In this regard, the EJB 3.0 specification has simplified a great deal of the non-problem-
related complexity. There are two ways this has been done. The first is to exploit the new
annotations specification in JDK 1.5 (now called Java 5), and the second is to use plain old
Java objects, now called POJOs—no, I’m not joking.

Enterprise Java 5 started shipping in early 2006.

Annotations
Annotations take advantage of lessons learnt with XDoclet, a successful open source project.
We can now use these annotations to start coding our configuration options and metadata
directly into our beans. This effectively does away with the need for unwieldy XML deploy-
ment descriptors!

POJO Services
In the EJB 3.0 programming model, the old component model (the Home interfaces, the
required deployment descriptors) is out. The new EJB beans and service objects are simply
container-managed POJOs. But without a component model, how can the container manage
those POJOs? In EJB 3.0, the interaction between the POJO class and the container is specified
using Java annotations.

LESSON 25 ■ ENTERPRISE JAVABEANS 3.0 187

6250CH25.qxd 2/23/06 10:27 AM Page 187

Developing an EJB 3.0 Session Bean
Once again, we will code a very simple “Hello World” EJB bean. We will need three Java
programs:

• HelloLocal for the local interface

• HelloBean for the stateless session bean

• HelloServlet for the servlet

HelloLocal.java
This is the code for the interface.

package com.alistair.ejb;

public interface HelloLocal
{
public String shoutOut();

}

Simple enough. The shoutOut method will be our business method.

HelloBean.java
This is the code for the bean. Notice the annotations—they are in bold to distinguish them
from the normal code.

package com.alistair.ejb;

import javax.ejb.*;
import static javax.ejb.TransactionAttributeType.SUPPORTS;

@Stateless
public class HelloBean implements HelloLocal
{
private String shout = "Not initialized";

@Inject
public void setShout(String shout)
{
this.shout = shout;

}

@TransactionAttribute(SUPPORTS)
public String shoutOut()
{
return shout;

}
}

LESSON 25 ■ ENTERPRISE JAVABEANS 3.0188

6250CH25.qxd 2/23/06 10:27 AM Page 188

Everything seems familiar here except for the annotations. Let’s examine each of them in
more detail:

• @Stateless tells our bean that it is a stateless session bean. This does many things for
us, including creating a stub.

• @Inject will look up the shout string for us using Java Naming and Directory Interface
(JNDI). This would be set up in the Web.xml file as an <env-entry>, like this:

<env-entry env-entry-name="shout"
env-entry-type="java.lang.String"
env-entry-value="Hello NetWeaver Peeps"/>

• @TransactionAttribute configures how transactions are managed. In HelloBean.java
we don’t care if we reuse an existing transaction, so we use the SUPPORTS keyword. Using
the REQUIRED keyword would tell the container to start a new transaction.

HelloServlet.java
Now we can examine the client. In this example, the client is a servlet. And once again, the
annotation is in bold.

package com.alistairrooney.ejb;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import javax.ejb.EJB;

public class HelloServlet extends GenericServlet
{
private HelloLocal hello;

@EJB(name="HelloBean")
public void setHello(HelloLocal hello)
{
this.hello = hello;

}

public void service(HttpServletRequest req, HttpServletResponse res)
throws IOException, ServletException

{
PrintWriter out = res.getWriter();
if (hello == null)
{
out.println("This example requires JDK 1.5");
return;

}

LESSON 25 ■ ENTERPRISE JAVABEANS 3.0 189

6250CH25.qxd 2/23/06 10:27 AM Page 189

out.println(hello.shoutOut());
}

}

The @EJB notation tells the container to look up the HelloBean session bean. We could
have added this to our web.xml file, but this is so much more elegant.

Honestly that’s it! Yes, you will have to configure your server. SAP J2EE does not support
EJB 3.0 as I write this, but since SAP is very much part of the Java Community Process, we can
expect to see this remedied shortly.

Developing an EJB 3.0 Entity Bean
Now that we have had a look at a simple example, let’s explore developing an entity bean. I’m
going to use the good old employee object here, but I’m only going to provide code snippets.
If you really want to code this example, you will have to fill in the blanks.

The Entity Bean
@Entity
@Table(name = "EMP")
public class Employee implements Serializable
{
private int empNo;
private String eName;
private double sal;

@Id
@Column(name="EMPNO", primaryKey=true)
public int getEmpNo()
{
return empNo;

}
// More code here
}

I think you can probably already start to see what is happening here. The @Entity annota-
tion tells us that this is an entity bean, and the @Table tells us that we will be using the EMP
table in our database.

The @Id annotation tells the compiler to use the integer empNo as the key. @Column makes
sure we use column EMPNO in the table as our primary key.

LESSON 25 ■ ENTERPRISE JAVABEANS 3.0190

6250CH25.qxd 2/23/06 10:27 AM Page 190

The Session Bean
Now let’s have a look at our session bean.

@Stateless
public class EmployeeFacadeBean implements EmployeeFacade
{
@Resource
private EntityManager em;
private Employee emp;

public Employee findEmployeeByEmpNo(int empNo)
{
return ((Employee) em.find("Employee",empNo));

}

public void addEmployee(int empNo, String eName, double sal)
{
if (emp == null)
{
emp = new Employee();

}

. . .

em.persist(emp);
}

. . .

}

Here we have used the EntityManager API (javax.persistence.EntityManager) to create
and find Employee objects.

The @Resource annotation is specifying that we have dependant objects, which will be
“injected” (Sun’s term) into the object persistence.

I think it’s clear how much simpler it is coding EJB 3.0. We do have a problem, though.
Currently in SAP we can only use the EJB 2.1 specification. However, this will change with
further releases of NetWeaver.

LESSON 25 ■ ENTERPRISE JAVABEANS 3.0 191

6250CH25.qxd 2/23/06 10:27 AM Page 191

Conclusion
Java is not a static language. If you think you can learn any language and then use that as your
meal ticket for the next ten years, you are deluding yourself. Even ABAP has changed its face
considerably over the last ten years.

It is our duty to continually research the new additions and changes to the languages we
use to develop our applications. This is one of the exciting things about Java—it will always be
changing.

Mr. Agassi, the CTO of SAP AG, has said (at SAP TechEd, in Boston, 2005) that Enterprise
Services Architecture is the future, and that traditional IT is dead. Java is the grease that will oil
the wheels of this new paradigm, so have fun with it!

LESSON 25 ■ ENTERPRISE JAVABEANS 3.0192

6250CH25.qxd 2/23/06 10:27 AM Page 192

A
Abstract Window Toolkit (AWT),

83
abstraction, compared to

encapsulation, 56
Apache Tomcat server, 117
APIs (application programming

interfaces), 7
Arrays

ArrayList class, 47
data types and, 44
declaring, 44
elements within, 44
index, 44
instantiating, 44
multidimensional, 46
populating, 45
rectangular 2-D Array, 46
square brackets, use of, 44
staggered Array, 46

B
block scope

code block, defined, 26
out of scope variables, 27, 50
rules of, 26–27

Business Server Pages (BSP), 133,
139

byte, value of, 24

C
Character class, 29
character sets, Unicode and

ASCII, 15
class block, 4
class path, specifying, 5
comments

benefits of, 17
block, 17
Javadoc utility and, 17–18
line, 18

compiling Java programs
bytecode vs. native code, 4
.java extension, 4
javac command, 4

control flow
: (colon) operator, 36
? (question mark) operator, 36

braces, use of, 35
case statement, 37
default statement, 38
else statement, 35
if statement, 35–36
nesting of statements, 36
parentheses, use of, 35
switch statement, 36–38

curly brackets, use in defining
blocks, 4

D
data types

boolean, 13
byte, 14
casting of, 14, 59
char, 15
char, escape sequences in, 16
double, 15
float, 15
integer, 14
long, 14
short, 15
summary of, 16

E
Eclipse, 65, 79, 118
EJB Query Language (QL), 172
Electronic Data Interchange

(EDI), 146, 158
encapsulation

accessor method, 56
benefits of, 55
classes and, 7
compared to abstraction, 56
constructor method, 55
declaring variables as public

or private, 55
defined, 53
get method, 56
instance variables, 55
mutator method, 56
set method, 56
this keyword, 55

Enterprise JavaBeans (EJB) 2.x
bean-managed persistence,

172
building a JSP page, 182–183

building a simple bean
project, 175–179

building a web archive, 184
building a web project,

179–182
components of, 174
container-managed

persistence, 172
containers and beans, 171
conversational state, 172
deployment descriptor,

173–174
EJB Query Language (QL), 172
Enterprise Archive (EAR) file,

174
Enterprise Archive (EAR)

project, building,
185–186

entity beans, 172–173
façade controller, 172
local clients, defined, 174
message-driven bean (MDB),

173
MessageListener interface,

173
naming conventions, 174
remote clients, defined, 174
session beans, 171–172
SessionBean interface, 171
stateful beans, 172
stateless beans, 172
transaction management in,

172
Enterprise JavaBeans (EJB) 3.0

annotations, 187
container-managed POJOs,

187
developing an EJB 3.0 entity

bean, 190–191
developing an EJB 3.0 session

bean, 188–190
new features, 187
plain old Java objects (POJOs),

187
SAP J2EE support and, 190

escape sequences, table of, 16

Index

193

6250Index.qxd 2/22/06 5:09 PM Page 193

event handling
Abstract Window Toolkit

(AWT) and, 83
ActionListener interface,

83–85
actionPerformed method,

83, 85
event package, 83
listeners, 83, 86
WindowAdapter class, 83, 86
WindowListener interface,

83, 85
exception handling

finally block, 68
resumption model, 65
run-time exceptions, 65
termination model, 65
try . . . catch block, 66–68

exception throwing
Exception class, creating,

69–70
getMessage method, 70
object reference, 70
printStackTrace method, 70

Extensible Markup Language
(XML)

atomic elements, 159
ATTLIST Type Definition, 160
characteristics of, 145
child elements, 159
complexType tag, 162–163
ContentHandler interface,

153–154
declaring attributes in

schemas, 163–164
declaring elements in

schemas, 161
DOCTYPE Type Definition,

160–161
document header, 148
Document Type Definition

(DTD), 159
element attributes, 147–148
element names, 146
ELEMENT Type Definition,

159
empty elements, 147
entity references, 149
escape characters, 149
namespaces, 149
parsing XML documents,

151–153
PI tags, 148
root element, 149
root element in schemas, 161
sales order example, 145–146,

148–149

SAX 2.0 parser, 151
schema data types, 161–162
schemas, 161
Unicode characters, use of,

150
valid documents, 158, 161
well-formed documents, 151
xmlns (XML namespace) tag,

149
xsd (XML Schema Definition)

namespace, 161

G
Gosling, James, 13

I
IBM AS/400 (iSeries), database

access and, 97
IDocs (SAP Intermediate

Documents), 107, 114
inheritance

class and, 51–52
extends keyword, 51
reusing functionality, 51
simulating multiple

inheritance, 57
superclasses and subclasses,

9, 52
instantiation, 30
interfaces

defined, 59
implements keyword, 59
keys to understanding, 59
variables in, 60

J
Java 5, tag functionality in, 18
Java API documentation, 29, 43
Java Architecture for XML

Binding (JAXB), 158
Java class structure

abstract method, 57–59
anonymous classes, 61, 63
creating an instance, 51
declaring a final class, 57
declaring an abstract class,

57–59
inner classes, 61–62
instance variables, 50
local classes, 61
methods, 50
nested classes, 62
static classes, 62

Java Community Process, 190
Java Connector (JCo)

API documentation, 111
code example, 107–111

downloading and installing,
107

IDocs (SAP Intermediate
Documents), 107, 114

JFrame and JTable sample
code, 112–113

Remote Function Modules,
107

SAP systems and, 107
Java Database Connectivity

(JDBC)
class.forName method, 98
createStatement method, 100
database management

system (DBMS) and, 97
loading the JDBC-ODBC

bridge driver, 98
next method, 104
Open Database Connectivity

(ODBC), setting up,
98–99

ResultSet, 103–106
Statement class, 100
Structured Query Language

(SQL), 97
Type 1 (bridge) driver, 97
Type 2 driver, 97
Type 3 driver, 98
Type 4 driver, 98

Java Message Service (JMS)
application-to-application

(A2A) messages, 166
business-to-business (B2B)

messages, 166
coding a simple message,

167–168
Java API for XML Messaging

(JAXM), 167
as loosely coupled, 165
managing connections with

middleware, 166, 169
point-to-point messaging,

165, 169
publish and subscribe

messaging, 165, 169
Simple Object Access Protocol

(SOAP), 166
synchronous and

asynchronous
messaging, 165

Java Naming and Directory
Interface (JNDI), 189

Java Native Interface (JNI), 107
Java Virtual Machine (JVM), 4,

174
Java Web Services Developer

Pack, 158

■INDEX194

6250Index.qxd 2/22/06 5:09 PM Page 194

Javadoc utility, 17–18
JavaServer Pages (JSP)

action elements, 140
architecture of, 134
comments, 135
contentType directive, 140
control elements, 140–141
custom tags, 143
declarations, 138–139
defined, 133
directives, 139–140
expressions, 136–137
fallback tag, 141
forward tag, 141
JavaBean elements, 141–142
JSP server, 134
Model-View-Controller

(MVC) model, 134, 141
page directive, 139
params tag, 141
plugin tag, 140
predefined variables, 138
reflection, 143
scope attribute, 142
scripting elements, 135
scriptlets, 138
XML and tag definitions, 137
XML include, 140

jump statements
break, 41
continue, 42
return, 42, 50
warning against using, 41

K
keywords

class, 50
extends, 51, 59
implements, 59
new, 45, 51, 55, 63, 69
static, 20
this, 55, 85
void, 42, 50, 53

L
layout managers

BorderLayout, 87–89
FlowLayout, 87
GridLayout, 89–90
JFrame, 87, 91–92
JLabel, 91
JPanel, 87, 91–93
JTextField, 91
sketching a design layout,

90–91
List class, 47

looping
ABAP and, 38
do loop, 40
for loop, 39–40
method calls within loops, 32
nesting of loops, 40
test-before and test-after

loops, 38
while loop, 38–39

M
methods

abstract, 57–59
accessor, 7, 56, 58
calling at run time, 53
case-sensitivity of method

names, 53
constructor, 55
empty brackets in

declaration, 50
get, 56
init, 62
Java class structure and, 50
main, 4
method signature, 53, 55
mutator, 7, 56
overloading, 10
overriding, 10, 58
parameters, inbound and

outbound, 50
polymorphism and, 10
println, 4
set, 56
signature, 10
this keyword, 55

MQSeries, 165, 169

N
naming conventions

class names, 20
constants, 20
identifiers, 20
uppercase letters, use of, 20
variables, 20

naming standards
identifiers, legal and illegal, 19
variables, declaring, 19
variables, initializing, 20

Netbeans, 65

O
object-oriented (OO) design

ABAP programs and, 3
encapsulation, 3
inheritance, 3
polymorphism, 3

operators
: (colon), 36
? (question mark), 36
arithmetic, 21–22
bitwise, 24–26
dot, 32
increment, 22–23
logical, 23–24
masking bits, 25
negative numbers and, 24, 26
relational, 22
setting bits, 25
shifting bits, 25
two’s complement, 24
unary, 22

P
parameters or arguments,

passing, 10
polymorphism

late-binding, 10
method signature, 10
overloading a method, 10, 53
overriding a method, 10, 52

S
SAP Exchange Infrastructure,

165, 169
SAP NetWeaver Developer

Studio, 116, 118, 131,
174–175

SAP Web Application Server, 116
servlets

Apache Tomcat server, unit
testing on, 117

code for FirstSAPServlet,
118–119

code for PetShop.java,
122–123

context-param tag, 129
declaring a servlet’s name and

location, 125–126
destroy method, 116
GenericServlet class, 116–117,

120
GET and POST requests, 121
global initialization

parameters, 129
HTTP, use of, 115
HTTPServlet class, 120
HttpServletResponse

interface, 122
init method, 116
input and output streams, 120
javax.servlet.Servlet interface,

116
key/value pairs, 132

■INDEX 195

Find it faster at http://superindex.apress.com
/

6250Index.qxd 2/22/06 5:09 PM Page 195

load-on-startup tag, 130
passing hard-coded

parameters into, 128
passing initialization

parameters into, 126
preloading, 130–131
request and response flows,

115, 119
SAP NetWeaver Developer

Studio, 116, 118, 131
service method, 116, 120, 122
Servlet interface, 116
ServletRequest interface, 120
ServletResponse interface,

120, 122
Servlets API, 116
setting the timeout value for,

131
user tracking with cookies,

132
web.xml configuration file,

125–126, 128, 130
Standardized General Markup

Language (SGML), 145
String class

+ (plus) sign and, 31
charAt method, 31
concatenating Strings, 31
declaring a String, 30
equals method, 32
instantiation in, 30
length method, 32
String index, 31
Strings as immutable, 30
substring method, 32

StringBuffer class
append method, 33
insert method, 33
instantiation in, 33
reverse method, 33
use of, 33

StringTokenizer class
parsing XML files, 34
specifying a delimiter, 34
use of, 34

Structured Query Language
(SQL), 97, 100

Swing
Abstract Window Toolkit

(AWT) and, 83
coding application GUIs, 79
ContentPane, 79, 81
JFrame Container, 79, 81–82
JPanel, building, 80

T
threads

basic related, 74–76
daemon, 78
garbage collector, 78
mark and sweep technique,

78
mutual exclusion, 78
Runnable interface,

implementing, 71
semaphoring, 77–78
sequencing of, 76
setPriority method, 73
simple, 71–73
single-threading vs. multi-

threading, 71
synchronized, 76
System.gc method, 78
Thread class, extending, 71
thread priorities, 73
Thread.yield method, 73
wait pool management, 77

Throwable class
Error subclass, 65
Exception subclass, 65
RuntimeException, 66

U
Unified Modeling Language

(UML)
artifacts, 10
class diagrams, 9
conceptual model, 10

V
variables

declaring as public or private,
55

instance, 50, 55
Vector class

addElement() method, 47
dynamic space allocation in,

47
enum.hasMoreElements()

method, 47
as member of List class, 47

X
XDoclet, 187
XML. See Extensible Markup

Language (XML)

■INDEX196

6250Index.qxd 2/22/06 5:09 PM Page 196

FIND IT FAST
with the Apress SuperIndex ™

Quickly Find Out What the Experts Know

L eading by innovation, Apress now offers you its SuperIndex™, a turbocharged

companion to the fine index in this book. The Apress SuperIndex™ is a keyword

and phrase-enabled search tool that lets you search through the entire Apress library.

Powered by dtSearch™, it delivers results instantly.

Instead of paging through a book or a PDF, you can electronically access the topic

of your choice from a vast array of Apress titles. The Apress SuperIndex™ is the

perfect tool to find critical snippets of code or an obscure reference. The Apress

SuperIndex™ enables all users to harness essential information and data from the

best minds in technology.

No registration is required, and the Apress SuperIndex™ is free to use.

1 Thorough and comprehensive searches of over 300 titles

2 No registration required

3 Instantaneous results

4 A single destination to find what you need

5 Engineered for speed and accuracy

6 Will spare your time, application, and anxiety level

Search now: http://superindex.apress.com

6250Index.qxd 2/22/06 5:09 PM Page 197

	Foundations of Java for ABAP Programmers
	Table of Content
	PART 1 Introducing Java
	Chapter 1 Your First Java Program
	Chapter 2 Object Orientation in a Nutshell
	Chapter 3 The Primitive Data Types
	Chapter 4 Comments
	Chapter 5 Naming Standards and Conventions
	Chapter 6 The Java Operators
	Chapter 7 Strings with Java
	Chapter 8 Control Flow
	Chapter 9 Jump Statements
	Chapter 10 Arrays and Collections in Java
	Chapter 11 Object Orientation in Java
	Chapter 12 More OO in Java—Interfaces and Abstract Classes
	Chapter 13 Inner, Nested, and Anonymous Classes
	Chapter 14 Errors and Exceptions
	Chapter 15 Threads, Daemons, and Garbage Collection
	Chapter 16 Basic Swing Using Default Layouts
	Chapter 17 Event Handling
	Chapter 18 Layout Managers and Other Components

	PART 2 Enterprise Java
	Chapter 19 JDBC Technology
	Chapter 20 The Java Connector (JCo)
	Chapter 21 Servlets
	Chapter 22 JavaServer Pages (JSP)
	Chapter 23 Extensible Markup Language (XML)
	Chapter 24 Java Messaging Services
	Chapter 25 Enterprise JavaBeans 3.0

	Index

