SYN'&RESS®

1 YEAR UPGRADE 2%

BUYER PROTECTION PLAN

DEVELOPING

Web Services win

Java APIs

for XML Using WSDP

Integrate XML into Your Java Platform
« Master the Java Web Services Developer Pack (JWSDP)
« Write and Use Web Services and XML Documents in Java

- Leverage XML Standards Such as DOM, SAX, and XSL

Jay Foster

Mick Porter

Dreamtech Software, Inc.
Natalie Wear

Bob Hablutzel Ttechnical Editor

solutionsadasyngress.com

With more than 1,500,000 copies of our MCSE, MCSD, CompTIA, and Cisco
study guides in print, we continue to look for ways we can better serve the
information needs of our readers. One way we do that is by listening.

Readers like yourself have been telling us they want an Internet-based ser-
vice that would extend and enhance the value of our books. Based on
reader feedback and our own strategic plan, we have created a Web site
that we hope will exceed your expectations.

Solutions@syngress.com is an interactive treasure trove of useful infor-
mation focusing on our book topics and related technologies. The site
offers the following features:

= One-year warranty against content obsolescence due to vendor
product upgrades. You can access online updates for any affected
chapters.

= “Ask the Author” customer query forms that enable you to post
questions to our authors and editors.

= Exclusive monthly mailings in which our experts provide answers to
reader queries and clear explanations of complex material.

= Regularly updated links to sites specially selected by our editors for
readers desiring additional reliable information on key topics.

Best of all, the book you’re now holding is your key to this amazing site.
Just go to www.syngress.com/solutions, and keep this book handy when
you register to verify your purchase.

Thank you for giving us the opportunity to serve your needs. And be sure
to let us know if there’s anything else we can do to help you get the
maximum value from your investment. We’re listening.

WWwwWw.syngress.com/solutions

SYNGRESS®

SYN'&RESS®

|
e snaEerion ran ;Mm ;

DEVELOPING

Web Services win

Java APIS

for XML Using WSDP

Jerry Foster

Mick Porter

Dreamtech Software, Inc.
Natalie Wear

Bob Hablutzel technical Editor

Syngress Publishing, Inc., the author(s), and any person or firm involved in the writing, editing, or
production (collectively “Makers™) of this book (“the Work™) do not guarantee or warrant the results
to be obtained from the Work.

There is no guarantee of any kind, expressed or implied, regarding the Work or its contents. The Work
is sold AS 1S and WITHOUT WARRANTY. You may have other legal rights, which vary from state
to state.

In no event will Makers be liable to you for damages, including any loss of profits, lost savings, or
other incidental or consequential damages arising out from the Work or its contents. Because some
states do not allow the exclusion or limitation of liability for consequential or incidental damages, the
above limitation may not apply to you.

You should always use reasonable care, including backup and other appropriate precautions, when
working with computers, networks, data, and files.

Syngress Media®, Syngress®, “Career Advancement Through Skill Enhancement®,” and “Ask the
Author UPDATE®,” are registered trademarks of Syngress Publishing, Inc. “Mission Critical™,”““Hack
Proofing®,” and “The Only Way to Stop a Hacker is to Think Like One™" are trademarks of Syngress
Publishing, Inc. Brands and product names mentioned in this book are trademarks or service marks of
their respective companies.

KEY SERIAL NUMBER
001 945T5GHDAT
002 MPET4AKRT4
003 3VN54NMER6
004 B39UNGD354
005 U6N7VH8BUSM
006 NTE4NFMG4R
007 TBR46TWBVH
008 565M2PRB9R
009 R4BA3N58MS
010 2ZFCG6YTH2

PUBLISHED BY
Syngress Publishing, Inc.
800 Hingham Street
Rockland, MA 02370

Developing Web Services with Java APIs for XML Using WSDP

Copyright © 2002 by Syngress Publishing, Inc. All rights reserved. Printed in the United States of
America. Except as permitted under the Copyright Act of 1976, no part of this publication may be
reproduced or distributed in any form or by any means, or stored in a database or retrieval system,
without the prior written permission of the publisher, with the exception that the program listings
may be entered, stored, and executed in a computer system, but they may not be reproduced for
publication.

Printed in the United States of America
1234567890
ISBN: 1-928994-85-7

Technical Editor: Bob Hablutzel Cover Designer: Michael Kavish
Technical Reviewer: Alex Ceponkus Page Layout and Art by: Shannon Tozier
Acquisitions Editor: Jonathan Babcock Copy Editor: Mike McGee and Jesse Corbeil

Indexer: Jennifer Coker
Distributed by Publishers Group West in the United States and Jaguar Book Group in Canada.

Acknowledgments

We would like to acknowledge the following people for their kindness and support
in making this book possible.

Ralph Troupe, Rhonda St. John, Emlyn Rhodes, and the team at Callisma for their
invaluable insight into the challenges of designing, deploying and supporting world-
class enterprise networks.

Karen Cross, Lance Tilford, Meaghan Cunningham, Kim Wylie, Harry Kirchner,
KevinVotel, Kent Anderson, Frida Yara, Jon Mayes, John Mesjak, Peg O’Donnell,
Sandra Patterson, Betty Redmond, Roy Remer, Ron Shapiro, Patricia Kelly, Andrea
Tetrick, Jennifer Pascal, Doug Reil, David Dahl, Janis Carpenter, and Susan Fryer of
Publishers Group West for sharing their incredible marketing experience and
expertise.

Jacquie Shanahan, AnnHelen Lindeholm, David Burton, Febea Marinetti, and Rosie
Moss of Elsevier Science for making certain that our vision remains worldwide in
scope.

Annabel Dent and Paul Barry of Elsevier Science/Harcourt Australia for all their help.

David Buckland, Wendi Wong, Marie Chieng, Lucy Chong, Leslie Lim, Audrey Gan,
and Joseph Chan of Transquest Publishers for the enthusiasm with which they receive
our books. And welcome back to Daniel Loh—glad to have you back Daniel!

Kwon Sung June at Acorn Publishing for his support.

Ethan Atkin at Cranbury International for his help in expanding the Syngress
program.

Jackie Gross, Gayle Voycey, Alexia Penny, Anik Robitaille, Craig Siddall, Darlene
Morrow, lolanda Miller, Jane Mackay, and Marie Skelly at Jackie Gross & Associates
for all their help and enthusiasm representing our product in Canada.

Lois Fraser, Connie McMenemy, Shannon Russell, and the rest of the great folks at
Jaguar Book Group for their help with distribution of Syngress books in Canada.

Vi

Contributors

Jay Foster has been an IT professional since 1989. His areas of expertise
include object-oriented design and modeling, software engineering, Web
based application design/development, extranet/intranet security, and N-
tier application development. He has extensive experience in the fol-
lowing technologies: Java Servlets, Enterprise JavaBeans (EJB), Java Server
Pages (JSP), Java Database Connectivity (JDBC), Remote Method
Invocation (RMI), Java Foundation Classes (JFC), Swing, OOA/OOD/
OOP using the Unified Modeling Language (UML), CORBA,Web
Services, .NET Framework, C#, ASP.NET,Web Security and Enterprise
Application Integration. Jay has been developing object-oriented systems
in Java since 1996 and is a Sun Certified Java Programmer. Jay has
authored several books on various Java programming topics.

Mick Porter (SSICP, MCP) is a Senior Technical Architect for Logica, a
global systems integrator. Mick specializes in the design and implementa-
tion of wireless and mobile commerce systems. With 15 years of experi-
ence in the IT industry, Mick has worked on an enormous variety of
systems and projects, and over the last few years, he has delivered a
number of major e-commerce systems. Mick holds a bachelor’s degree in
Computer Science, and became a Sun Certified Java Programmer five
years ago, as well as having passed eight Microsoft Certified Professional
exams. Mick lives in Sydney, Australia, with his wife, Andrea, and children,
Holly and Anthony.

Jonothon Ortiz isVice President of Xnext, Inc. in Winter Haven, FL.
Xnext, Inc. is a small, privately owned company that develops Web sites
and applications for prestigious companies such as the New York Times. He
has been a professional developer for over nine years now and has been
exposed to a wide range of programming languages and styles. He uses
JSP extensively to perform transformations of XML data in conjunction
with other languages. Jonothon lives with his wife, Carla, in Lakeland, FL.

Dreamtech Software India Inc. is a software solution and service
provider that provides a broad range of services and offers a dynamic
blend of consultancy and system integration to help corporations build
and implement innovative e-business strategies. A futuristic vision moti-
vates the globally acclaimed software products of Dreamtech Software.
Dreamtech has already distinguished itself with an excellent track record
of publishing books on advanced technologies including XML and XSLT,
WAP, Bluetooth, 3G , peer-to-peer networking, C#, and Java. The success
of Dreamtech’s endeavors to provide world-class software products can be
gauged by the fact that its clientele includes some of the most distin-
guished names in IT-related publishing and solutions.

Natalie S.Wear is a Senior Java Developer and Systems Engineer at
Telecommunications Services, Inc. in Tampa, FL. She creates code designs,
provides architecture recommendations, and writes software for the Java
applications used within her department. Such applications are primarily
centered on back-end integration using XML and wireless industry-stan-
dard APIs. Her specialties include e-commerce, CORBA implementation,
back-end system integration, and internet/intranet development. Natalie’s
background includes positions as Senior Java Engineer at Verizon Wireless
and as an instructor of Vitria at PriceWaterhouseCoopers, LLP. She also
teaches an undergraduate course on Java at the University of South
Florida. Natalie holds a bachelor’s degree in Political Science and another
bachelor’s degree in Management Information Systems (MIS) from the
University of South Florida. She holds a master’s degree in Business
Administration (MBA) from the University of South Florida.

Greg Bylenok is a Software Engineer with iConverse. In his role at
iConverse, Greg is involved in the design and development of products
for the mobile industry. He has been using Java, J2EE, and XML tech-
nologies in his daily work for over three years.

Vii

Technical Editor and Contributor

viii

Bob Hablutzel is a Senior Consultant with 20 years experience in
enterprise-scale software systems. He is currently a Founding Partner in
InflexionPoint, a consultancy whose practice spans the full cycle of a soft-
ware product, from business needs analysis through architecture, develop-
ment, debugging, and deployment. Bob is particularly interested in the
efficiency and accuracy of large systems and has advised numerous pro-
jects on the identification and elimination of bottlenecks and errors. His
background also includes time as CTO and Principle Architect of various
startup companies. Bob’s Web Services experience includes being a
founding member of the XAML (XML-based business transactions)
working group and implementing high-availability and clustering for the
Bowstreet XML-based application server. His Java experience includes
implementation of Java bytecode compilers and contributing to the book
Sun Certified Programmer for Java 2. Bob lives in New Hampshire with his
wife, Trish, and daughters, Anna and Katie.

Contents C

Foreword Xxiii
Answers to You Chapter 1 Introduction to the JWSDP 1
Frequently asked Introduction
Questions . IwsDP History
/\/
JAXP

Q: What is the JWSDP?

A: The JWSDP is a
collection of libraries,
tools, and standard
interfaces designed to
ease the development
of XML-based Web
services in the Java
programming
language.

XM

AX Event Model 15

~ Overview of Event Processing 15

- History of SAX 16

- Basic SAX Events 17
~ Example Parse Events 18
1derstanding Event Handlers 18

- Overview of Handlers 18
Basic SAX Callbacks 19

Example Event Handler 22

X Contents

Selecting a SAX Parser
M
The newlnstance() method
searches the target
environment at runtime
for a suitable SAX engine.
It searches the following
places in order:

1. System property space
2. JAXP properties file
3. JAR metafile

Creating a SAX Parser
SAX Interfaces and SAX Implementations
JAXP and Underlying SAX Engines
Introducing the JAXP package
Using the SAXParserFactory
Selecting a SAX parser with the
plugability interface
Parsing Data with a SAX Parser
Input Sources
InputSource
An Example Servlet
Servlets and Multithreading
Configuring the Parser
Enabling Validation
Enabling Namespaces
Namespaces and Events
Enabling Other Features
Features and Properties
Setting Features
Setting Properties
Handling Advanced Events
ContentHandler
ErrorHandler
SAX2 Extensions
LexicalHandler
DeclHandler
Summary
Solutions Fast Track
Frequently Asked Questions

Chapter 3 Processing XML Documents
with DOM

Introduction
The Document Object Model
The DOM Tree
The Basic Classes
Document

26
26
27
27
27

28
31
31
31
32
36
38
39
39
40
41
42
43
43
44
44
45
47
47
48
49
50
51

53
54
54
55
57
58

NoTE

The ParsingXML servlet
uses the GET method
(in which the servlet
receives data in the
form of a query string)
for the request.
However, the
ParsingXML servlet does
not read any data using
the HTTPServletRequest
object, since data is
being read from a file-
based source. Thus, the
use of doGet() or
doPost() is figurative
and not practically rele-
vant to this particular
servlet.

Contents

Element
Text
Attribute
Node
NodeList
Interrelationships
Hierarchy imposed by the Document/
Element/Attribute/Text classes
Relationship between Elements in
a DOM hierarchy
JAXP and Underlying DOM Engines
Creating a DOM Parser
The DocumentBuilderFactory class
Obtaining a new instance of the
DocumentBuilderFactory
Using the DocumentBuilderFactory
to create a DocumentBuilder
Setting parser attributes
Creating a coalescing, validating,
namespace aware DOM parser.
Parsing XML into a DOM
Input source types
InputSource
File-based source
InputStream-based sources
String
EntityResolvers
Manipulating DOM Objects
Walking a DOM Constellation
Obtaining the document root
Walking the hierarchy
A servlet to write out name/value
pairs from example schema
Finding lists of nodes
Servlet to write out all node names
that contain a specific value.
Changing the contents of a node

58
58
59
59
59
60

60

61
62
65
66

66

66
67

69
73
73
74
74
74
75
75
77
77
80
80

82
89

94
96

xi

xii Contents

AdditionInXML Servlet to modify

nodes in the DOM tree 104
Advanced Topics 108
Multi-threaded applications 109
Safe routines 109
Unsafe routines 115
Parser Attributes 115
Selecting a DOM Parser with the
Plugability Interface 117
DOM Parser search path 117
Error Handling 118
Summary 120
Solutions Fast Track 120
Frequently Asked Questions 121

e r?g”iﬂeg”de”y'”g Chapter 4 XML Transformations 123

_— = Introduction 124

= JAXP is not an Reviewing XSL and XSLT 124
XSL/XSLT engine; it is XPath and XSLT 128
actually a layer that Axes and Locations 129
allows developer to Procedural XSLT 130
use JAX-P regardless of
the XSL/XSLT engine <xsl:template> 130
that lies beneath. <xsl:apply-template> 131

= Current popular <xsl:for-each> 132
XSL/XSLT engines <xsl:if> 134
L?;';?'e SAXON and <xsl:choose>, <xsl:when>,

. Since JAXP has o <xsl:otherwise> 137
provide a proper layer <xsl:sort> 138
over all available <xsl:value-of> 138
XSL/XSLT engines it can <xsl:output> 138
?J'r']it‘:‘gﬁgﬁ’tr; common JAX-P and Underlying XSL Engines 139

Using JAX-P Classes 140
Creating a Transformer 140
Source and Result 144
Transformer 145
Templates 149

Miscellaneous JAX-P for XSL Issues 152

Contents xiii

Error Handling 152
ErrorListener 152
SourceLocator 153
URIResolver 153
Thread Safety 154
Plugability 155
Summary 156
Solutions Fast Track 156
Frequently Asked Questions 158
Chapter 5 Using JSTL (JSP Standard
XML Support Tags Tag Library) 159
= = Introduction 160
= All expressions in the Expression Languages 160
XML Tag Library use Why Expression Languages? 161
XPath expressions. Supported Expression Languages 161
= JSTL provides XML Simplest Possible Expression

e e Language (SPEL) 161
x:transform action. ECMAScript 163
= By using the JXPath 164
x:transformer action Selecting an Expression Languge 164
you can define a Application-Wide 164
ELZ:S;":;T;;LT?ZS;?W Code Section Explicit | 165

multiple XML Expression Languages and Tag Library
documents within the Selection 166

Same page. Future Compatibility with Expression
Languages 166
Core Tags 167
Expression Language 167
c.out 169
c:set 170
Iterations 171
c:forEach 171
c:forTokens 172
Conditional Expressions 173
cif 173
c:choose 173

c:when 173

Contents

c:otherwise
Importing External Resources
c:import
c:param
URL Manipulation
c:urlEncode
c:redirect
SQL Query Tags
Setting up a driver
sql:driver
Executing queries
sql:query
sgl:param
Executing updates
sql:update
Denoting transactional boundaries
sql:transaction
Internationalization Tags
Defining the Locale
Browser Specified
JSP Specified
Defining the Timezone
fmt:timeZone
Specifying a Resource Bundle
fmt:bundle
Locating the resource bundle
Using Internationalized Messages
Obtaining Simple Internationalized
Messages
Performing Parameter Substitution
Exception Localization
Parsing and formatting
fmt:formatNumber
fmt:parseNumber
fmt:formatDate
fmt:parseDate
XML Support Tags

174
174
174
175
175
175
176
176
176
177
177
177
177
179
179
180
180
182
183
183
184
184
184
185
186
186
187

187
188
190
192
192
194
194
195
195

Contents

Parsing and searching
X:parse
X:out
x:set
Iteration
x:forEach
Flow Control
x:if
x:choose
X:when
x:otherwise
Translation and XSLT
Summary
Solutions Fast Track
The Components of a .
SOAP Message Frequently Asked Questions

Chapter 6 Writing SOAP Clients
o Introduction
Understanding SOAP
onr) | Envelopes
— ‘ Headers
Bodies
Attachments
7777777777777777 SOAPElement and JAXM DOM
(OWI?ZSE?TE"MZ%&)Q% SOAPElement

,,,,,, ! Attributes
Child Elements

SOAP Message

Attachment 1 !
| (Only in SOAP Messages 1
| __ vt Nahmen) | Text Nodes
Name

Text
JAXM SOAP Elements
SOAPMessage
MIME encoding
SOAPPart
SOAPEnNvelope
SOAPHeader & SOAPHeaderElement
SOAPBody, SOAPBodyElement and
SOAPFault

XV

195
195
196
196
196
196
197
197
197
197
197
198
199
199
201

203
204
204
205
206
207
208
209
209
210
210
212
213
214
214
214
215
217
219
220

222

XVi Contents

Unboxing

Creating a SOAP Message
MessageFactory
Creating SOAP Parts, Envelopes,
Headers and Bodies
Adding Attachments to Messages
Bringing it all Together—A Complete
SOAP Client
Connecting to a SOAP service
Summary
Solutions Fast Track
Frequently Asked Questions

—=——— = Chapter 7 Writing SOAP Servers

Unboxing is the act of
converting an object back
into a value type. The
syntax for this process
looks very similar to
explicit casting in Java, as
the following C# code
demonstrates:

int x =29

object xQbj = x; //
Boxi ng

int x1 = (int)xoj; [/

Unboxi ng

Introduction
Message Routing
Asynchronous messages
One-Way Messages
Delayed Response Messages
State in Asynchronous Servers
Message Routing
Incoming Message Routing
Outgoing Message Routing
Establishing a Connection to a JAXM Provider
ProviderConnections
Using the ProviderConnection to Create
a Message
Using ProviderConnection to Send
a Message
Profiles
Writing a SOAP Server Servlet
JAXMServlet
Required Overrides
Handling Messages
Writing a SOAP EJB
Overriding MessageDrivenBean and
OnewayListener
Example SOAP Servlet

223
224

226
228

230
230
248
248
250

253
254
254
255
256
257
258
259
260
262
263
266

267

267
269
270
271
273
274
275

277
277

Contents xvii

Receiving and Processing SOAP Messages 278

Summary 300
Solutions Fast Track 300
Frequently Asked Questions 302
Chapter 8 Using XML-based RPC 303
Introduction 304
JAX-RPC Summary 304
Understanding Stubs and Ties 305
Sending a XML-RPC Message 306
_ _ Mapping Java Data Types 307
ProviderConnections Supported Java data types 307
P/@_d_9 Data Type to XML/WSDL Definition Tables 308
o[:)cj):al::tse recszgr?tei;[;; r;)erform P”r_n Itives 308
three different tasks: Object Types 308
1. Allow information Arrays 309
(meta data) about the Application Classes 310
Provider to be queried. Arbitrary Java Classes 311
2. Provide Serializers 311
MessageFactory objects Deserializers 312
2:;;225;82;?& to a Holder Classes 312
certain profile. Conversion Between Java Classes and WSDL 313
3. Pass messages to the WSDL Generator 313
Provider to be sent Command Line Options 313
asynchronously. Tool Configuration File 314
Server Configuration File 316

Using Classes Generated by the Stub
Generator 317
Creating a JAX-RPC Client 317
Creating a connection to a remote server 318
Invoking methods on a remote server 318
Creating a JAX-RPC Server 319
Creating the Service Definition Interface 319
Creating the xrpcc Config File 319
Developing the Service Implementation 320
Building the Server WAR File 320

Creating a Simple XML-RPC Server and Client 321

XViii

NoTE

Contents

WSDL supports four
basic types of opera-
tions. These are:

One-way, in which
the service receives
a message.

Request-Response,
in which the service
receives a message
and sends a
response.

Solicit-Response, in
which the service
(not the client) initi-
ates communication
by sending a mes-
sage and receives a
response.

Notification, in
which the service
sends a message
and seeks no
response.

Summary
Solutions Fast Track
Frequently Asked Questions

Chapter 9 Locating Web Services

Introduction
Registries
Storage of Metadata about Services
Categories
Locations
Major Registry Standards
UDDI
ebXML
Categorizing Web Services
Category Hierarchies
Example Hierarchies
Organization, User
Connecting to a Registry
Using the Default Registry
Adding an Organization
Querying the Registry
Querying the Registry
Finding a Service Using a Simple Query
Finding a Service Using a Complex Query
Understanding the Query Results
Metadata Returned
External Data
WSDL Documents
Structure of aWSDL Document
Example WSDL Document
The <definitions> Element
The <message> Element
The <portType> Element
The <binding> Element
The <service> Element
Storing Information in a Registry
Adding New Registry Records

328
329
331

333
334
334
334
335
336
336
337
339
342
342
343
343
344
347
348
351
353
353
357
363
363
364
364
365
368
370
370
371
371
372
372
372

Contents XiX

Updating Records 381
Deprecating and Deleting Existing Records 386
Security Requirements 393
Summary 395
Solutions Fast Track 395
Frequently Asked Questions 398
Chapter 10 Java Secure Sockets Layer 401
Introduction 402
Answers to You Configuring JSSE 402
Frequently asked Download JSSE and Extract the Files 403
Questions) .
_— = Install the .jar Files 403
Q: What version of SSL Reglgter the SunJSSE Provider 403
does JSSE support? Configure The URL Handler 404
A: JSSE 1.0.2 supports SSL Install a JSSE-Specific cacerts file
version 3. (Optional Configuration Step). 405
Q: Can JSSE perform RSA Introduction to Keys and Certificates 405
encryption? Using keytool to Create a Keystore 407
A: Yes, JSSE 1.0.2 per- Creating a keystore 408
forms RSA encryption. Using keytool to Create/install a Certificate 409
Importing a Certificate 409
Generating a self-signed Certificate 410
Importing a Certificate From an
Identity Database 411
Referring to keystores with JSSE properties 411
The KeyStore Class 412
The Certificate Class 413
Using JSSE Properties to Refer to
the keystore 414
Using HTTPS URL Handlers 416
Configuring URL Handler for JSSE 416
Creating a HTTPS Connection 418
Using the URL Handler 418
Using SocketFactories 420
Creating Sockets and ServerSockets (by hand) 420
The ServerSocket Class 420

The Socket Class 421

XX Contents

Using SocketFactories and

ServerSocketFactories 421
The SocketFactory Class 421
The ServerSocketFactory Class 422
Advantages of SocketFactories 422
Determining Default and Installed
Cipher Suites 422
Determining the Installed Cipher Suites 423
Using Secure Server Sockets 424
Getting the Secure Socket Factory 425
Registering a Secure Server Socket 426
Accepting Connections 426
Reading Data 426
Writing Data 427
Closing Connections 427
Using Secure Client Sockets 429
Connecting to a Remote Secure Server 430
Writing Data 430
Reading Data 431
Closing the Connection 431
Using JSSE Applications with WSDP 437
Using the URLHandler in aWeb Service 440
Client-Server Web Service 443
Summary 448
Solutions Fast Track 448
Frequently Asked Questions 450
Chapter 11 Using JWSDP Tools 453
Introduction 454
JWSDP UDDI Registry 454
Installing 455
Microsoft Windows Installation
Instructions 455
Unix, Linux Installation Instructions 455
Configuring 460
Activating 460

Limitations 461

Limitations

=, T =

JWSDP does not support
the following messages
within the Registry Server:

= add_publisher
Assertions

= delete_publisher
Assertions

m get_assertionStatus
Report

= get_publisherAssertions

= find_relatedBusiness

Contents

Selecting as the Registry
Organization
Primary Contact Information
Classifications
Tomcat
Installing
Windows
Linux
Environmental Variables
Configuring
Server.xml
The webapps Directory and WAR files
Activating
Starting Tomcat under Windows NT
Manually
Starting Tomcat under Windows NT
as a Service
Starting Tomcat under Linux Manually
Starting Tomcat under Linux at
Startup Time
Relationship to Apache Servers
Acting Standalone
Proxied behind Apache Servers
Ant
Structure of an Ant Input File
Projects
Targets
Tasks
Invoking ANT
Invoking from the Command Line
Integrating with IDES
An Ant Example
Summary
Solutions Fast Track
Frequently Asked Questions

XXi

462
464
464
465
467
467
467
467
468
468
468
469
471

471

471
471

472
472
472
472
472
472
473
473
474
475
475
476
476
479
479
481

Foreword

It should come as no surprise to someone reading this foreword that two of the most
influential forces in information systems over the last few years have been Java and
XML. Java provides a stable, industrial-strength language that runs on a variety of
platforms, while XML offers a simple format for the exchange of information across
a variety of platforms. Together, they showcase tools for developing numerous appli-
cations: from reaching back into legacy computer systems, to reaching out to users
and partners on the World Wide WWeb.

Lately, it has become popular to combine these two technologies in a highly-dis-
tributed architectural technique called Web services. Broadly speaking, a \Web service is
the exposure of a business process over a network. The connotation is generally that
XML-based traffic is being moved on a public network (the Internet) via the HT TP
protocol. However,\WWeb services can also be useful internally to an organization, as a
mechanism for encapsulating and exposing the business logic inherent in legacy sys-
tems. New applications can then utilize this \\eb service interface to leverage the
complex business logic that has been refined, sometimes for decades, in these legacy
systems. This allows for the reuse of systems at the logical level, without regard to
physical configuration.

There is nothing specific to Java in Web services. In fact, the whole point of \Web
services is that any language, and any platform, can be used. I've written \Web services
in languages as varied as Java, C++, C#, and Perl, but the features that make Java
attractive for general server programming (rich libraries, straightforward execution
model, and portability) are the same ones that make Java attractive when writing new
Web-service-based systems as well.

Until recently, Java programmers wanting to use XML-based Web services have
been faced with a variety of libraries, each presenting a slightly different API and func-
tionality. WWeb service standards such as SOAP, UDDI, and ebXML appeared (being key

for next-generation \Web-based applications), but had no direct support in Java.
XXiii

XXiv Foreword

This recently changed with the introduction of the Java Web Services Developer
Pack (JWSDP). The JWSDP was designed to create or endorse standard interfaces for
the Java processing of XML.The name is somewhat misleading in that the JWSDP
can be used for applications that have nothing to do with Web services. However, it
does focus on the presentation of business logic over a network:\\eb services.

JWSDRP is a rich collection of existing interfaces and libraries that Java endorsed,
new standards developed under the Java Community Process, and code that Sun
developed internally to support Web services. At the time this book was written, the
most recent release was the EA2 (Early Access 2) version, which is the version
focused on in these pages. As updates become available, check the Syngress Web site
for amendments to this book.

The first chapter is intended to introduce you to the components of the JWSDP.
It introduces the history of the JWSDP, and the components that make up the
package. It’s a good idea to read chapter one before skipping to any of the other
chapters, just to get an overview of how the parts interoperate.

Since processing XML is key to Web services, the next three chapters take an in-
depth look at processing XML in Java, each covering a different aspect of the process.
Chapter 2 tackles parsing XML using SAX—the Simple API for XML. Chapter 3
covers parsing again, but this time for the Document Object Model. SAX and DOM
are the two dominant mechanisms for processing XML in Java, and after reading
these chapters you’ll be able to decide which best fits your application needs.

Chapter 4 explores XML processing using XSL, a powerful system for trans-
forming XML data, while Chapter 5 concentrates on the new APIs contained in the
JWSDP. After reading Chapter 4, you’ll be set to begin applying your XSL stylesheets
to the XML you parsed in Chapters 2 and 3.

While XML is the core of a\Web-services-based system, you need to be able to
present those services externally. Its frequently the case that these services need to be
presented directly to end users, and in J2EE that often means JSP. Chapter 5 also
introduces the JSP Standard Tab Library, a component of the JWSDP designed to
facilitate the development of complex JSPs.

Next, Chapters 6 and 7 turn to computer-to-computer communication, each dis-
cussing the SOAP (Simple Object Access Protocol) support built into JWSDP.
Chapter 6 concentrates on writing SOAP clients—requesting a remote service (per-
haps one of those wrapped legacy systems) perform some business logic, while
Chapter 7 explores the flip side: writing SOAP servers to provide encapsulated busi-
ness logic to remote clients. These chapters also introduce the concepts of SOAP

WWW.Syngress.com

Foreword XXV

providers, which can supply reliable routing of SOAP messages, and/or simplify the
development of systems that rely on higher-level, SOAP-based protocols such as
ebXML.

While message passing works well for many \WWeb service systems, there are times
where you want to be able to encapsulate the functionality of a remote service and
present it as an object in your local application. This technique, known as remote proce-
dure calls, is nothing new—Unix systems have provided this functionality for years, as
have middleware tools such as COM and CORBA. However, with XML-based
RPC, the remote system can be wildly different from the local machine—and doesn’t
even have to run a specific middleware tool. Chapter 8 investigates the XML-based
RPC systems, and shows how you can develop applications that act as clients or
Servers.

Chapter 9 addresses the issue of finding and describing Web services. It covers the
JWSDP interfaces to UDDI and ebXML registries, which are the dominant mecha-
nisms for describing Web services. Registries were originally conceived as a global
resource—a mechanism for finding an electronic business partner on the Internet—
but the advent of low-cost registries such as the JWSDP Registry tool and jUDDI
have made it practical for organizations to deploy registries for internal systems as
well. After reading Chapter 9, you will be ready to dynamically describe and locate
Web service descriptions a variety of ways.

For applications that do communicate with external partners, security is always a
concern. Chapter 10 addresses the JSSE (Java Secure Sockets Extension). JSSE intro-
duces a portable (and exportable) API for securing the point-to-point transfer of
information. Using JSSE ensures that the messages you send are not intercepted or
viewed by unintended audiences.

Finally, Chapter 11 addresses some of the miscellaneous tools included in the
JWSDP. These tools, including Tomcat, Ant, and the JWSDP Registry, are designed to
provide a development environment for building and testing WWeb-service-based
applications. Again, these tools are complex, and could easily be a book topic on their
own. Chapter 11 strives to introduce just enough of them for you to use them in
conjunction with the JWSDP.

Writing a book, like an enterprise-class application, is an exercise in changing
priorities, requirements, and scope. This is particularly true when writing about
emerging technologies such as the JWSDP. The contributing authors and | have
striven to produce a book that is as current as possible without being speculative, and
useful in the real-world application of the JWSDP libraries.\We hope that this book

WWW.SyNngress.com

Foreword XXVi

serves as both an introduction and a reference when writing Web-service-based sys-
tems in Java.

| want to give thanks to my editor, Jonathan Babcock, who made my first tech-
nical editing job easier than | expected. On a personal note, | want to thank my
ever-supportive wife, Trish, and my daughters, Anna and Katie. Without Anna and
Katie, larger portions of the book would have been done in daylight hours, but the

laughter they bring more than makes up for any lost sleep. And without Trish, there
would be no laughter or daylight at all.

—Bob Hablutzel, Technical Editor and Contributor
Sun Certified Java Architect
Consultant and Founding Partner, InflexionPoint

WWW.SyNngress.com

Introduction

to the JWSDP

Chapter 1

Solutions in this chapter:

= JWSDP History
= JAXP

= JAXM

= JAX-RPC

= JAXR
. IBSE
-

= Ant and Tomcat

M Summary
M Solutions Fast Track

M Frequently Asked Questions

J=

B

S 13

Chapter 1 = Introduction to the JWSDP

Introduction

The Java Web Services Developer Pack (JWSDP) is a collection of tools and
libraries designed to make the development of Web services in Java as painless as
possible. First introduced in January 2002 as an Early Access (EA) release, the
JWSDP brings together XML parsers, SOAP support, service containers, and
build tools that can be used to create and consume widely distributed services
based on XML protocols.

At the time of this writing, the current release is EA2, which contains the
following components:

= The JAXP XML processing libraries

= The JAXM XML messaging libraries

= The JAX-RPC XML Remote Procedure Call libraries
= The JAXR libraries for accessing XML registries

= The Java Secure Sockets (JSSE) library

= JSP Standard Tag Libraries

= The Apache/Jakarta Ant build tool

= The Apache/Jakarta Tomcat servlet container

= Asimple UDDI registry (WSDP Registry tool)

= TheWeb Application Deployment tool

You probably noticed that parts of the JWSDP were not written by Sun. In
fact, the JWSDP is mostly a collection of existing products; the JWSDP acts to
package these tools in a form convenient to download and install. Also, with the
JWSDP you know you have versions of the tools that work together, saving a lot
of frustration when trying to get some code working.

This book covers the components of the JWSDP in detail. However, in order
to make the book something you can actually lift without heavy machinery, some
background information has been excluded. Specifically, this book won’t teach
you how to program Java (it’s assumed you already know that). It won’t teach you
details about XML, SOAP, or other related protocols, although there will be some
coverage of those topics in order to make points clear.

This book is focused on the libraries and tools that come with the JWSDP, and
using these tools for real-world applications. After reading this book, you should be
ready to begin writing and using Web services and XML documents in Java.

WWW.SyNngress.com

Introduction to the JWSDP « Chapter 1

JWSDP History

As just mentioned, the JWSDP is a collection of existing tools, and is, in some
sense, a marketing response to Microsoft’s .Net initiative, gathering and high-
lighting existing technologies, and giving them a common name.

In most cases, this works to the benefit of the user.You no longer have to
worry about what APIs are going to survive in the long run; the APIs in the
JWSDP have Sun’ blessing and are good choices to standardize on.You also don’t
have to wonder about version compatibility between different libraries; so long as
the libraries all come with the JWSDP, you shouldn’t have compatibility problems.

There are a few places where the gathering of libraries results in some oddi-
ties. In particular, the JAXM, JAXP, and JAX-RPC libraries were developed as
separate initiatives by the Apache XML project and the Java Community Process.
Because they were developed separately, there are places where the APIs
overlap—for instance, some functionalities in the JAXM is also provided in JAXP.
These places are pointed out in the text. It remains unclear if future versions of
the JWSDP will address these issues.

The other aspect that can be confusing about the JWSDP is that some parts
of it are available in different forms on the Web. For example, the JAXP libraries
are shipped as a part of the JDK 1.4 release. JWSDP includes these libraries for
capability with older versions of the JDK, especially as it will take some time for
vendors to migrate to supporting the newer JDK releases.

Having said all that, it’s worth looking at the individual components of the
JWDSP.

JAXP

The Java API for XML Processing (JAXP) provides standardized interfaces for
parsing and transforming XML documents. JAXP is designed to fill a hole in the
XML standard interfaces: there are standard interfaces for transforming and parsing
XML, but no standard interfaces for obtaining the transformers and parsers.
When XML first started gaining popularity, there were no standards for pro-
cessing it. As time went on, standards developed for processing XML, but these
standards were all interface-based—they did not contain any required classes.
Libraries meeting the standards did so by implementing the standard interfaces
and adding their own proprietary mechanisms for creating instances of those
implementing classes. So, while your XML processing code, based in the inter-
faces, might be portable, the small bits of code used to create those objects were

www.syngress.com

Chapter 1 = Introduction to the JWSDP

not. This meant XML libraries could not be swapped in and out without making
small changes to the application code.

JAXP provides a standard set of interfaces, and more importantly classes, that
allow for the creation of these implementation objects. JAXP does not redefine
XML standards; instead, it leverages those standards (DOM, SAX, XSLT) that
already have wide acceptance. JAXP ensures that code utilizing the standards will
not have to be changed if the XML library supporting the standard interfaces is
changed.

Because JAXP does not define XML interfaces on its own, you will find that
some interfaces exposed in JAXP are not in the java or javax packages. Instead,
Sun chose to adopt those standards already in wide use. This means that modi-
fying code to use JAXP will hopefully be limited to those sections of code that
create the parsers and transformers.

The next three chapters of the book cover the three aspects of JAXP: parsing
using SAX and DOM parsers, and processing XML through XSLT transforms.

JAXM

The Java API for XML messaging addresses a similar problem: when the SOAP
(Simple Object Access Protocol) standard was proposed, it did not have a standard
set of libraries for Java. Not particularly surprising, given Microsoft’s involvement
in the creation of the standard, but still a problem for Java programmers. JAXM
addresses this issue by providing a standard interface for SOAP 1.1 and the SOAP
with Attachments, so that Java programmers can easily send and receive SOAP
messages.

JAXM provides a number of features above just the implementation of the
SOAP standards. It gives vendors a mechanism for supporting reliable delivery of
messages, and for partial population of SOAP messages for specific SOAP-based
protocols (such as ebXML).

It was earlier mentioned that some areas of the JWSDP overlap. JAXM is one
example of this. Parts of JAXM provide a simple implementation for manipu-
lating XML documents—an example of what JAXP provides in greater detail,
and with standard interfaces. Ideally, JAXM would just leverage the interfaces
provided by JAXP, but it doesn't.

This is because JAXM and JAXP were developed in parallel, by separate Java
Community Process teams. It’s unfortunate and confusing, however, and makes the
processing of XML documents with both JAXM and JAXP harder. If you have to
receive a message via SOAP, and process it further (for example, with XSLT trans-
forms), you have to transform the document from one representation to another.

WWW.SyNngress.com

Introduction to the JWSDP « Chapter 1

Sun has not, to my knowledge, publicly discussed this issue. However, one can
hope that future JAXM releases will fix this problem.
JAXM s discussed in detail in Chapters 6 and 7 of this book.

JAX-RPC

The Java API for XML-based Remote Procedure Calls (JAX-RPC) provides a
mechanism for making what appear to be object calls across a network via
SOAP-based messages. JAX-RPC allows for the implementation of Web services
described by WSDL (Web Service Definition Language) documents—the
apparent standard for describing Web services.

With JAX-RPC, the implementation of what appears to be a Java object can,
in reality, be hosted on a machine across a network (including the Internet), in
any language that supports SOAP. This gives a powerful mechanism for decou-
pling business systems. Unlike other distributed systems (COM, CORBA), XML-
based RPC can span architectures without requiring a large investment in
common support software. All that is required is you process XML documents at
each end. The mechanism for processing them, and the underlying system, are
completely unimportant.

JAX-RPC acts much like RMI in that stub objects are created for use in
invoking remote objects. Conceptually, you use the two systems identically. What
differs between JAX-RPC and RMI is the format of the data transferred
between the two machines. RMI uses low-level, Java-specific protocols (or
CORBA 110P), while JAX-RPC uses XML. Because of this, RMI may be
faster—since the protocols are more efficient—but it is important to remember
that JAX-RPC isn’t about performance, it’s about interoperability.

JAX-RPC, like JAXM, was a Java Community Process project, and was devel-
oped in parallel. However, JAX-RPC does a better job of hiding the implemen-
tation details. It does not need to expose the underlying XML structures as much
as JAXM did. The current reference implementation does not appear to use
JAXP, but implementations from other vendors could (as could the reference
implementation in future releases). Again, this is a legacy from when JAX-RPC
might have been downloaded without downloading JAXP—a problem the
JWSDP (and JDK 1.4) eliminates.

JAX-RPC is covered in Chapter 8 of this book.

www.syngress.com

Chapter 1 = Introduction to the JWSDP

JAXR

Once Web services have been defined via WSDL, there needs to be a mechanism
for finding them.WSDL documents are often published in registries, which pro-
vide a mechanism for the storage and retrieval of service descriptions. Registries
allow users to search for services that will fulfill their needs, and download the
specifications for those services.

The most common registry interfaces right now are the Universal
Description Discovery and Integration (UDDI) and the ebXML (Electronic
Business using XML) Registry and Repository. JAXR, the Java API for XML
Registries, provides an abstract interface for querying registries; JAXR can be
used to isolate the user from having to know the specifics of either UDDI or
ebXML RegRep.

Registries provide rich, complex mechanisms for categorizing services. A
large part of the JAXR API is targeted toward providing a standardized view of
these categories. This is the main reason JAXR was created as a separate library,
rather than extending JNDI (Java Naming and Directory Interface, which pro-
vides a similar functionality). The categories used by JAXR would be meaningless
to most JNDI users, so it did not make sense to include them in the JNDI
package. On the other hand, it isn’t possible to use WSDL registries without these
categories, therefore JAXR is a package that stands on its own.

JAXR, like packages discussed previously, was developed in parallel. However,
the JAXR committee did a good job of watching the other Java Community
Process efforts, and has come up with a specification that can be implemented
using JAX-RPC, JAXM, and JAXP.

JAXR is covered in Chapter 9 of this book.

JSSE

At this point, you might have the impression that the JWSDP is nothing but
XML processing. That isn’t really true. JWSDP is closely related to the Java XML
pack, which is limited to those packages discussed earlier. However, the JWSDP
includes additional packages useful for creating Web-based applications.

The Java Secure Socket Extension (JSSE) is a good example of this. JSSE pro-
vides a mechanism for communicating over encrypted network connections and
managing the keys associated with that encryption.

JSSE provides a royalty free implementation of SSL (Secure Sockets Layer) v3
and TLS (Transport Layer Security) 1.0 support. More importantly, the JSSE

WWW.SyNngress.com

Introduction to the JWSDP « Chapter 1

implementation may be exported from the United States, dramatically easing the
adoption of secure communication in worldwide organizations.

In addition to providing low-level socket support for encryption, JSSE pro-
vides additional URL handlers, so that the java.net.URL class can understand and
process HTTP URLs. This means that WWeb services, which require transport-level
security, can be easily implemented in Java.

The JSSE is discussed in Chapter 10.

JSTL

Just as Web services are not only about XML, they are not only about business
processing. There needs to be a mechanism for presenting functionality to end
users, as well as to remote machines. It's common to use Java Server Pages (JSPs)
to encapsulate the user interface of an application; this provides a simpler inter-
face than coding servlets by hand.

However, JSPs have traditionally had to include either direct Java code or
custom-written tag libraries in order to access the underlying business function-
ality. The JSP Standard Tag Library (JSTL) is designed to help ease this burden.
JSTL provides a standard set of tags for common JSP tasks, such as iterating over
a collection of objects, making database queries, and internationalizing text.

JSTL also provides for expression languages, which allow the user to directly
access business objects with a simple expression. JSTL currently provides support
for not one but a number of expression languages. This allows the user to choose
the language that best suits their needs, but more importantly, protects the user
from an upcoming JSP standard that should directly include expression languages.

JSTL comes directly from an Apache Jakarta project of the same name, which
later came under the Java Community Process. JSTL is covered in Chapter 5.

Ant and Tomcat

Like JSTL, Ant comes from Apache Jakarta. Ant isn’t a Java library—rather, it’s a
build tool. It’s included with the JWSDP simply because it makes writing and
bundling Java applications easy to do. Ant comes with built-in tasks for creating
WAR (Web Application aRchive), which are the default packing for Java WWeb
Services. Ant is an open-source project, whose sources can be found on
www.apache.org

Similarly, Apache Jakarta’s Tomcat is a reference implementation of the JSP
and servlet standards. As such, it allows for the development hosting of servlet-based

www.syngress.com

8 Chapter 1 = Introduction to the JWSDP

Web services, such as JAXM supports. Unlike Ant, you likely will not use
Tomcat for production deployments; it does not support failover, reliable
message delivery, EJBs, or a host of other production features. However, it is
free, fast, and lightweight to install; you can easily run Tomcat as a test server on
your development machine. Like Ant, Tomcat is open-source and available at
www.jakarta.apache.org/ant.

Along with Ant and Tomcat, JWSDP includes the WSDP (Web Services
Developer Package) Registry server. This is a simple UDDI server, again for
development and testing use. Unlike Ant and Tomcat, WSDP is a Sun project and
IS not open-source.

Ant, Tomcat, and WSDP Registry are covered in Chapter 11.

WWW.SyNngress.com

Introduction to the JWSDP « Chapter 1

Summary

The JWSDP provides a collection of libraries and tools designed to give you
everything you need to begin developing and testing Web services. In addition to
the standard interface libraries, reference implementations for each library are
provided. In some cases (JAXP), these reference implementations are production
quality; in other cases (JAXM), they are sufficient for development. In all cases,
the interfaces are designed to allow for the replacement of the reference imple-
mentations with alternative versions.

JWSDP also provides some tools to ease the development of \Web services.
They may not replace production servers (such as IBM WebSphere or BEA
WebLogic) and other tools, but they will allow you to begin developing Web
Services.

Once you download the JWSDP, you have everything you need to develop
Web services. The following chapters will walk you through all the pieces in
detail, explaining how they work and how to use them. After finishing this book,
you will be able to quickly develop high-quality Web services in Java.

Solutions Fast Track

JWSDP History

M The JWSDP is a collection of existing tools.

M JWSDP is, in some sense, a marketing response to Microsoft’s .Net
initiative—it gathers and highlights existing technologies, and gives them
a common name.

M The JAXM, JAXP, and JAX-RPC libraries were developed as separate
initiatives by the Apache Jakarta project and the Java Community
Process. Because they were developed separately, there are places where
the APIs overlap.

JAXP

M The Java API for XML Processing (JAXP) provides standardized
interfaces for parsing and transforming XML documents.

www.syngress.com J

10 Chapter 1 = Introduction to the JWSDP

M Because JAXP does not define XML interfaces on its own, you will find
that some interfaces exposed in JAXP are not in the Java or javax
packages. Instead, Sun chose to adopt standards already widely used. This
means that modifying code to use JAXP will hopefully be limited to
those sections of code that create the parsers and transformers.

JAXM

ﬁ M JAXM provides a standard interface for SOAP 1.1 and SOAP with
Attachments, so that Java programmers can easily send and receive SOAP
messages.

M JAXM gives vendors a mechanism for supporting the reliable delivery of
messages, and for partial population of SOAP messages for specific
SOAP-based protocols (such as ebXML).

| JAX-RPC

M The Java API for XML-based Remote Procedure Calls (JAX-RPC)
provides a mechanism for making what appear to be object calls across a
network via SOAP-based messages.

M With JAX-RPC, the implementation of what appears to be a Java object
can, in reality, be hosted on a machine across a network (including the
Internet), in any language that supports SOAP.

M JAX-RPC acts much like RMI in that stub objects are created to invoke
remote objects. Conceptually, you use the two systems identically. What
differs between JAX-RPC and RMI is the format of the data transferred

¥ | between the two machines. RMI uses low-level, Java-specific protocols
b & (or CORBA 110P), while JAX-RPC uses XML.

JAXR

M JAXR, the Java APl for XML Registries, provides an abstract interface
for querying registries; JAXR can be used to isolate the user from
having to know the specifics of either UDDI or eb XML RegRep.

M The JAXR committee did a good job of watching the other Java
Community Process efforts, and has come up with a specification that
can be implemented using JAX-RPC, JAXM, and JAXP.

WWW.SyNngress.com

Introduction to the JWSDP « Chapter 1 11

JSSE

M JSSE provides a mechanism for communicating over encrypted network
connections and managing the keys associated with that encryption.

M JSSE provides a royalty-free implementation of SSL (Secure Sockets
Layer) v3 and TLS (Transport Layer Security) 1.0 support.

M In addition to providing low-level socket support for encryption, JSSE i
provides additional URL handlers, so that the java.net. URL class can
understand and process HTTP URLs.

JSTL "

M JSTL provides a standard set of tags for common JSP tasks, such as
iterating over a collection of objects, making database queries, and
internationalizing text.

M JSTL also provides for expression languages, which allow the user to
directly access business objects with a simple expression.

M JSTL currently provides support for not one but a number of expression
languages. This allows the user to choose the language that best suits
their needs, but more importantly, protects the user from an upcoming
JSP standard that should directly include expression languages.

Ant and Tomcat

M Ant is an open-source build tool that comes with built in tasks for
creating WAR (Web Application aRchives), which are the default
packing for Java Web Services.

M Tomcat is a reference implementation of the JSP and servlet standards. As
such, it allows for the development hosting of servlet-based Web
services, such as those JAXM supports.

M JWSDP also includes the WSDP (Web Services Developer Package)
Registry server. This is a simple UDDI server, used for development
and testing.

www.syngress.com

12

Chapter 1 = Introduction to the JWSDP

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

Q: What is the JWSDP?
A: The JWSDP is a collection of libraries, tools, and standard interfaces designed

to ease the development of XML-based \WWeb services in the Java program-
ming language.

: How do | obtain JWSDP?
. The JWSDP can be obtained from the following Web site:

http://java.sun.com/Webservices/Webservicespack.html.

: What version of the JWSDP does this book cover?
. At the time this book was written, the current version of the JWSDP was the

EA2 release. That release is the one covered here.

. I1s JWSDP new technology?
: No, in most cases the JWSDP is a consistent packaging of existing technolo-

gies. Some portions, such as the WSDP registry, are unique to the JWSDP.

: 1S JWSDP Sun’s answer to .Net?
: JWSDP is one aspect of the overall Java programming environment. It pro-

vides some features that compete with features in the .Net platform. Other
parts of the Java programming environment, especially the J2EE specification,
are equally important to consider when compared against .Net.

. Is there a charge for JWSDP?
: No, JWSDP can be downloaded free from the site listed earlier in these

questions.

WWW.SyNngress.com

Chapter 2

Processing
XML Documents

with SAX

Solutions in this chapter:

= Understanding Event-Based XML Parsing
= Creating a SAX Parser

= Parsing Data with a SAX Parser

-. Configuring the Parser

= Handling Advanced Events

M Summary
M Solutions Fast Track

M Frequently Asked Questions

13

B

14

Chapter 2 = Processing XML Documents with SAX

Introduction

JAXP provides wrappers around two different mechanisms for processing XML
data. The first is the Simple APl for XML or SAX, and is covered in this chapter.
The second, the Document Object Model (DOM), is covered in the next.

In the SAX model, XML documents are provided to the application as a
series of events, with each event representing one transition in the XML docu-
ment. For example, the beginning of a new element counts as an event, as does
the appearance of text inside that element. A SAX parser reads through the XML
document one time, reporting each event to the application exactly once in the
order it appears in the document.

Event-based parsing has strengths and weaknesses.Very large documents can
be processed with events; there is no need to read the entire document into
memory at once. However, working with sections of an XML document (a
record made up of many elements, for example) can become complicated
because the application developer has to track all the events for a given section.

SAX is a widely used standard, but is not controlled by any industry group.
Rather, it is a de facto standard that was originally developed by a single developer
(David Megginson) and by others in the XML community and is now supported
by an open source project (http://www.saxproject.org).

The SAX wrapper provided by JAXP allows for plugging in different SAX
parsers without concern for the underlying implementation. This feature is some-
what moot because there aren’t that many SAX parsers in widespread use today.
However, it does provide for safeguards against changes in future versions.

Understanding Event-Based XML Parsing

One benefit of using XML is its inherent readability. You can take an XML docu-
ment, print it out on paper, and show it to someone, who'll likely make some
sense of its contents. Most XML documents provide some amount of context.
You can probably discern a document of product inventory levels from a docu-
ment of account balances just by looking at the tag names.

Although it helps in sharing information, sometimes all those tag names just
get in the way. This is especially true within the confines of some programs. For
example, your program may involve reading a document of account balances, and
you may already have business objects defined for Accounts and Customers. In
Java, you may find it easier to work directly with objects rather than raw tags and
text. This is where a parser can assist you. A parser takes the raw text and converts
it into something directly useable by a program.

WWW.SyNngress.com

Processing XML Documents with SAX « Chapter 2

The SAX Event Model

Most XML parsers fall into one of two main categories: tree-based or event-
based. Each kind of parser represents XML information slightly differently. A
tree-based parser converts an XML document into a tree of objects (You will
learn more about tree-based parsers in the next chapter). An event-based parser
presents a document as a series of events, each representing a transition in the
document. Taken together, these events provide your program with a complete
picture of the document.

Overview of Event Processing

Imagine again that we have printed out an XML document. How would you
begin to read the document? You would probably begin at the top of the page
and continue line by line, left to right. Since you are familiar with XML, you
know that the tags have specific meanings.You would likely take notice of where
one element ends and another begins; and with each new element you would
gain a better understanding of the complete document.

Event-based parsers work in much the same way. An event-based parser scans
through a document from top to bottom. As it scans, the parser takes notice of
interesting points in the document. For example, it would notice where one ele-
ment ends and another begins. The parser then alerts your program, giving it the
opportunity to respond to the transition. In parser terminology, the alert is called
an event and your program’s response is a callback. A complete document parse
may consist of hundreds or even thousands of events in series. Each event pro-
vides further information about the document.

Handling hundreds or thousands of events sounds overwhelming, and there’s no
doubt that it can get complicated. Event-based parsing suits some situations better
than others. The simpler the DTD associated with a document is, the easier it will
be to use event-based processing. Oftentimes these documents contain repeating
groups of elements, where each group is to be processed the same way. Poor candi-
date documents are much the opposite. They are loosely-structured or contain deep
and complex hierarchies.You may also want to avoid documents where elements
are reused throughout multiple levels of a hierarchy. For these types of documents,
consider the tree-based parsers discussed elsewhere in this book.

If you are interested in using an event-based parser, then you will need to
learn the SAX API. Luckily, the S in SAX stands for “Simple.” The SAX API
defines a simple means for interacting with event-based parsers. SAX is a standard
part of the JAXP package; so all JAXP parsers follow the SAX APIL. The rest of
this chapter describes the SAX API in more detail.

www.syngress.com

15

16

Chapter 2 = Processing XML Documents with SAX

History of SAX

SAX was one of the first XML technologies for Java. It has evolved only slightly
since it was first released, and it has certainly proven itself a stable foundation for
building XML applications in Java. Part of its success lies in how it was developed.
It was conceived by an early group of XML users in an open, collaborative forum.

XML creators addressed a common problem: systems from one vendor could
not easily communicate with systems from another. XML breaks down those bar-
riers by introducing a standard way to represent data. Once the standard was in
place, early XML users began to focus on the problem of reading and incorpo-
rating XML into their applications.

It soon became clear that there was room for more than one parser, and quite
a few companies developed their own implementations. Some of these parsers
adopted the same basic approach, relying on an event-based model to parse docu-
ments. Although early parsers read XML documents just fine, they each presented
results in a proprietary manner, and it became difficult to compare the various
parsers one-on-one, especially for conformance with the XML spec. More
importantly, users needed to learn new APIs for each parser. Suddenly, a tech-
nology created for interoperability was under threat of fragmentation by propri-
etary implementations.

Parser developers agreed that interoperability was a good idea for parsers, too.
One early parser implementer, David Megginson, proposed a scheme for stan-
dardizing the interface to all event-based parsers. He solicited input from other
interested members of the XML community, and then demonstrated the new
scheme in his own early parser, ZAlfred. The scheme was donated to the XML
developer community as the Simple API for XML Processing.

SAX was primarily the work of one driving individual and several interested
contributors. It was released without the backing of a formal sponsor or standards
body. It found success, however, because it addressed a clear need in the XML
community. Parser developers could write to one half of the API, and parser users
could write to the other half. This leveled the playing field for parser imple-
menters and parser users alike. Furthermore, SAX was simple to understand and
to implement. It made learning the technologies less confusing and encouraged
further adoption of XML.

SAX caught on and is now maintained by an open-source community, which
can be found at http://www.saxproject.org. The community’s job is to evolve the
standard as XML itself evolves. For example, after the initial release, it soon
became clear that XML namespaces would take an important role in XML’

WWW.SyNngress.com

Processing XML Documents with SAX « Chapter 2

future. The SAX community responded by publishing SAX Version 2.0 with
better support for namespaces. Since then, little has changed in the core of SAX
except minor clarifications and bug fixes. Over time, it has proven to be a com-
plete and stable package.

Basic SAX Events

The XML language allows us to build very complex documents while learning
only a few simple rules. For example, all XML documents must start with one
root element. Elements in turn may contain more elements, attributes, and text in
any number of combinations. There are only a handful of other concepts - namely
entities, namespaces, and Document Type Definitions. These latter concepts are
indeed important, but they are secondary to understanding and using XML.
Elements, attributes, and text remain the foundation of any XML document.

SAX includes at least one event for each of the basic XML structures, and
since there are only a handful of basic XML structures, there are only a handful
of SAX events. This is part of what makes SAX simple to learn and use; a real
world XML document may be large and complex, but it can still be broken
down into the basic events outlined below.

Here are the basic SAX events:

Document Events

Document events notify your program of the beginning and end of an XML
document. A SAX parse always begins with a start document event and ends with
an end document event. The end document event is particularly useful because it’s
the SAX parser’s signal that the parse is complete.

Element Events

Element events notify your program of the beginning and end of each element.
The SAX parser creates a start element event for each opening tag in the docu-
ment. Likewise, it will create an end element event for each closing tag it finds.

Empty elements, or those without content, may not have distinct start and
end tags. However, the SAX parser will still create both a start and end event for
any empty element.

Character Events

Character events notify your program of any character data found between ele-
ments. Character data includes any text, entities, and CDATA sections.

www.syngress.com

17

18

Chapter 2 = Processing XML Documents with SAX

SAX includes a few other events that are useful in special situations. These
advanced events cover some of XML’ advanced concepts, including:

= namespaces
= entities and entity declarations
= ignorable whitespace

= processing instructions

We will cover the advanced events in greater depth further in this chapter.

Example Parse Events

Figure 2.1 shows a clearer picture of how events fit together. It illustrates an
example XML document and the event sequence created by the SAX parser. As
you can see, even a simple XML document results in quite a number of events.

Figure 2.1 Example XML with Associated Parse Events

1. start document » | <?xml version="1.0">
2. start element “root” ——» | <r oot >

3. start element “item” l—» <itene

> This is an
exanple item

4. character (1 or more)

5. end element “item” | » </itenmr

—» <notes/>

6. start element “notes”

7. end element “notes”
</ root >

8. end element “root” Q
9. end document

Understanding Event Handlers

Events by themselves aren’t very interesting, especially if nothing listens for the
events. When the parser creates an event, however, your program has the oppor-
tunity to respond. It’s up to you as the programmer to supply the logic to handle
the events.You provide that logic by writing an event handler.

Overview of Handlers

The SAX parser and the event handler work in unison to parse an XML docu-
ment. First, the SAX parser notifies the event handler of every event it creates.

WWW.SyNngress.com

Processing XML Documents with SAX « Chapter 2 19

The event handler then services the event before passing control back to the
parser. In servicing the event, your event handler can interpret the event in what-
ever manner you see fit. Parsing an XML document thus shifts back and forth
between the parser and the event handler.

ContentHandler

The ContentHandler is the core interface of any SAX parser. It defines the most
frequently used callbacks in the SAX API. Once you have a class that implements
the ContentHandler interface, you are ready to begin using SAX in your programs.
ContentHandler defines ten distinct callbacks, so you would need to write ten dis-
tinct methods to implement your own Content Handler.

DefaultHandler

You can easily create a class to implement all the SAX callbacks, but there’s an
even easier way to get started. The SAX package includes the DefaultHandler class
to get you up and running quickly.You have already learned that SAX includes
both frequently used events and less frequently used events. The DefaultHandler
class allows you to concentrate on the frequently used events that are most inter-
esting for your purposes.

The DefaultHandler serves as a concrete implementation of the ContentHandler
interface, and defines simple callbacks for every event. However, the callbacks
do nothing more than consume the events, making it an extremely basic imple-
mentation.

To create a more interesting event handler for your program, extend the
DefaultHandler with your own subclass. You can provide your own implementa-
tion for only those callbacks that interest you most and ignore the other, less fre-
quently used callbacks. If you do not implement a callback for a particular event,
then the DefaultHandler’s callback will take care of it.

Basic SAX Callbacks

You have already learned about the basic SAX events; here we describe the basic
SAX callbacks. Each SAX event requires its own corresponding callback.\When
the SAX parser creates a particular event, the parser will call the appropriate call-
back method, as outlined below.

Document Callbacks

Document callbacks handle the corresponding document events that occur at the
beginning and end of an XML document. The SAX parser begins every parse

www.syngress.com

20

Chapter 2 = Processing XML Documents with SAX

with a call to the startDocument() callback method. The startDocument() callback is
an excellent place to perform any necessary initialization before continuing with
the parse.

public void startDocunent () throws SAXException;

public void endDocunment () throws SAXException;

Likewise, the parser ends with a call to endDocument(). This is the final event
provided by the SAX parser, and signals that the parse is complete.

Element Callbacks

The element callbacks execute at the beginning and end of each element. The ele-
ment callbacks are much more interesting than the document callbacks because the
SAX parser includes information parsed right out of the XML document. This
information includes the element’s name, namespace URI, and attributes.

public void startElenent(String uri, String |ocal Nane,
String gName, Attributes atts)
t hrows SAXException

public void endEl ement(String uri, String |ocal Nane,

String qNane) throws SAXException

The element’s name is probably of most immediate interest. It gives some
sense of the parser’s progress through the document.You find the name of the
parsed element in one of two parameters: the localName or the gName, which are
each used in slightly different situations. The localName is interesting only while
processing namespaces. Since namespace processing is disabled by default, we’ll
ignore the localName for now. Instead, look for the element name in the gName
parameter. We’ll discuss the differences between the localName and gName when
we explore namespace processing later in this chapter.

A typical callback method will begin by interpreting the current element’s
name. Different elements may require different actions, so the callback must
choose an action based on the element’s name. Here is a simple example:

public void startElenent(String uri, String |ocal Nane,
String gNanme, Attributes atts)
t hrows SAXException

i f (gNane. equal s("order"))
{

WWW.Syngress.com

Processing XML Documents with SAX « Chapter 2

//code to handl e <order> el enent

}
else if (gName.equal s("orderlten'))

{

//code to handl e <orderltenr el ement

If the element includes any attributes, the event will provide an Attributes
object. The Attributes object contains the names and values of any element
attributes. To find the value of an attribute, simply refer to a specific attribute by
name. For example:

String value = atts.getValue("id"); // return the value of
/1 the "id" attribute

Characters Callback

The characters callback handles any character events from the parser. As it scans
the document, the SAX parser reads characters into an array. This includes text,
entities, and CDATA sections. The parser then passes the array to the characters()
callback method.

Importantly, the SAX parser may reuse the array between calls, so it may con-
tain more than just the characters for the most recent event. The start and length
parameters help you find the valid characters. The start parameter provides the
offset into the array, while the length parameter provides the number of characters
for the most recent event.

public void characters(char[] ch, int start,
int length) throws SAXException

Unlike other events, it’s difficult to predict just when or how many character
events will occur. For any group of characters, the SAX parser is free to decide
how many events to create. You cannot assume the parser will report a group of
characters with one event; it may choose to report the characters with one event
per line, or even one event per character. The SAX standard provides a lot of
freedom here for parser implementations, so we cannot expect all parsers to
behave identically. The example below describes a technique for dealing with this.

www.syngress.com

21

22

Chapter 2 = Processing XML Documents with SAX

Example Event Handler

To get a better idea of how the callbacks fit together, we’ll implement a basic
SAX event handler and associated callbacks. However, before we can even begin
to design an event handler, we must first understand the structure of the XML
document to be parsed. In this example, we will be building part of an applica-
tion to help manage a company’s inventory. Here is an typical XML document
containing information about the example company’s wares and its inventory:
<?xm version="1.0" encodi ng="UTF-8"?>
<I NVENTORY>
<| TEM>
<SKU>3956</ SKU>
<DESCRI PTI ON>wi dget </ DESCRI PTI ON>
<QUANTI TY>108</ QUANTI TY>
</ | TEM>
<I TEM>
<SKU>5783</ SKU>
<DESCRI PTI ON>gadget </ DESCRI PTI ON>
<QUANTI TY>32</ QUANTI TY>
</ | TEM>
<| TEM>
<SKU>6583</ SKU>
<DESCRI PTI ON>spr ocket </ DESCRI PTI ON\>
<QUANTI TY>7</ QUANTI TY>
</ | TEM>
</ | NVENTORY>

Our example handler will read the XML document above and convert it into
something more useful. In this example, we’ll construct an object representation
of the items in the company’s inventory. Our business objects (of type “Item”)
simply hold the values from the XML document. After parsing, the business
objects may then be manipulated further by the client application. Converting
XML into objects is a very common application of SAX, so you may find these
techniques useful for your own programs.

Here is the example event handler with its callbacks:

i nport org.xnl.sax. hel pers. Def aul t Handl er;
i mport org.xm .sax. SAXExcepti on;
inport org.xnl.sax.Attributes;

WWW.SyNngress.com

/**

*/

Processing XML Documents with SAX « Chapter 2

This class inplements a SAX event handler for parsing

iteminventory levels froman XM. docunent.

public class InventoryHandl er extends DefaultHandl er

private ltem currentltem /1item nodel object

private ItenCollection itens; //parse results hol der

private StringBuffer characters; //buffer for elenent content

/**

* SAX cal I back to handl e character events

*/

public void characters(char[] ch, int start, int |ength)

t hrows SAXException

characters. append(ch, start, | ength);

| **
* SAX call back to handle start of document
*/
public void startDocunent() throws SAXException
{
/1 Initialize before parsing this docunment
characters = new StringBuffer();

itens = new ItenCol | ection();

[**
* SAX cal |l back to handle start of each elenent.
*/
public void startEl enent(String uri, String |ocal Nane,
String gNane, Attributes aAttribs)
t hrows SAXException

www.syngress.com

23

24 Chapter 2 = Processing XML Documents with SAX

{
i f (gNanme.equal s("I TEM'))
{
//Create a new Item object to hold Item data
currentltem = new Item();
}
/I Prepare character buffer for element content
characters = new StringBuffer();
}
/**

* SAX cal l back to handle end of each el enent.

*/

public void endEl ement(String uri, String |ocal Nane,
String gName) throws SAXException

{

//read el enent contents from buffer

String content = characters.toString();

i f (qNane. equal s("SKU"))

{
/W have just parsed a SKU
currentltem set SKU(content);

}

else if (gNare.equal s(" QUANTITY"))

{
/ /W have just parsed a QUANTITY
currentltem set Quantity(content);

}

else if (qNane.equal s("ITEM))

{
/1 W have fini shed parsing one item Save in
//collection before we parse another.
itens.add(currentltem;

}

}

}

WWW.SyNngress.com

Processing XML Documents with SAX « Chapter 2

The event handler code may be difficult to follow until you consider the
original XML document. The XML document itself drives the sequence of
events created by the parser. With each event, the parser will call the appropriate
callback method. Each callback in turn processes a small portion of the docu-
ment. To better understand the order of execution, it helps to envision the parser
as it scans the XML document. Consider the parser’s progress through the
example document:

1.

Document start The parser triggers the startDocument callback.\We
begin by initializing any data structures needed for the parse.

<INVENTORY> element The parser triggers its first startElement
callback. The inventory element doesn’t tell us anything useful, so we
move on without performing any special processing.

<ITEM> element The parser triggers a second startElement callback.
We are now parsing information about a particular item. This is our
opportunity to create a new data structure to hold information about
the coming item.

<SKU> element The parser triggers yet another startElement callback.
We are about to read information about the SKU, but we must wait for
a subsequent character event for the SKU itself.

Element content The parser passes in the SKU data itself through one
or more calls to the characters callback. Remember, the element content
may all appear in one callback, or it may be broken up into multiple
callbacks. Thus, we collect the character data in a buffer.

</SKU> end element The parser triggers its first endElement callback,
letting us know that we have finished reading in the element content.
We interpret the content as a SKU and add it to our model object.

<QUANTITY/> and <DESCRIPTION/> elements The parser
handles these in much the same way as the <SKU/> element, repeating
steps 4 through 6 for each element. For this particular example, our code
ignores the <DESCRIPTION/> element completely. This is one of the
key benefits of event-based parsing. SAX allows us to save some parts of
the document while filtering out others completely.

</ITEM> With the endElement callback, we have completely read one
item.We add the completed item to a collection to be retrieved later.

www.syngress.com

25

26 Chapter 2 = Processing XML Documents with SAX

9. <ITEM/> If the document contains additional items, then steps 3
through 8 will be repeated until all items have been read.

10. </INVENTORY> The parser triggers one last endElement callback.

11. Finally, the parser terminates with an endDocument callback.We defer to
the DefaultHandler’s implementation since our handler does not provide
its own implementation. The DefaultHandler simply consumes the event.

When the parse is complete, the InventoryHandler will have created a
complete object representation of the original XML document. Running this
InventoryHandler against an XML document requires a few more pieces, however. It
must be combined with a SAX parser and a source of XML data. We’ll pick up this
example in later sections, adding the other components to complete the picture.

Creating a SAX Parser

The SAX parser does much of the heavy lifting in reading an XML document,
while you only need to provide a simple event handler. In this section, you’ll
learn how to instantiate the parser itself.

SAX Interfaces and SAX Implementations

Interoperability among parsers was one of the original design goals of SAX.The
SAX creators wanted to make it easy for developers to swap in one parser for
another. This is accomplished through heavy use of interfaces, which are an
excellent way to shield developers from underlying implementations. In SAX, this
shield works two ways: It protects both the SAX user and the parser.

We've already seen how this works with the event handler interface described
in the previous section. As a SAX user, you implement the ContentHandler inter-
face yourself. Whenever the parser needs to communicate with your application,
it does so only through the narrowly defined ContentHandler interface. The SAX
parser never concerns itself with the specifics of your implementation; it simply
creates events and passes them through the ContentHandler interface.

SAX defines another interface specifically for SAX parser implementers. Here
the roles are reversed: The SAX parser implements the XMLReader interface,
through which you communicate with the parser. The XMLReader is the main
SAX interface to the underlying parse engine: it defines every action you can
perform with the parser, such as providing it with an XML document or initi-
ating a parse.

WWW.SyNngress.com

Processing XML Documents with SAX « Chapter 2

With these two interfaces, the parser and the event handler remain virtually
decoupled. They can each proceed without ever acknowledging one another’s con-
crete implementation, which is an excellent quality because it allows you to write
applications that are independent of the underlying SAX engine. In fact, you can
write an entire SAX application without ever referring to a specific SAX parser.

JAXP and Underlying SAX Engines

So far we’ve talked a lot about SAX but not a lot about JAXP. The reason for this
is simple: SAX is very much complete and usable in and of itself. That being said,
JAXP adds some important refinements that merit discussion.

Introducing the JAXP Package

JAXP essentially bundles a number of existing XML technologies into one con-
venient and unified framework. Most of these technologies—including SAX—
predate JAXP itself. Further, existing applications may be using SAX
independently of JAXP, so JAXP strives to ensure backwards compatibility. One
result is that under JAXP, existing XML classes maintain their original naming
conventions. This can be rather confusing at first, so it helps to understand how
things are organized.

First, the core SAX classes are located in their original SAX packages. These
are found in the following packages:

org. xm .sax.*

org. xn . sax. hel pers. *

JAXP introduces several new classes in several new packages. The classes for
working with SAX parsers are located here:

javax. xm . parsers. *

The new JAXP classes add a “plugability layer” over the existing SAX inter-
faces. With JAXP, you can plug a SAX engine into the Java runtime and then
refer back to it through the JAXP API. Here, we’ll see how to use this plugability
layer to create applications that are portable across SAX engines.

Using the SAXParserFactory

The core SAX API merely provides an interface to the underlying SAX parser. If
you’ve worked with interfaces before, you know that you can’t create an object
instance directly from an interface. However, you could always instantiate a SAX

www.syngress.com

27

28

Chapter 2 = Processing XML Documents with SAX

parser by name if you knew about the underlying implementation and its con-
structors. This latter approach would make your code dependent on a specific
SAX parser.

Fortunately, JAXP allows us to construct parsers in a manner that is com-
pletely portable. It provides an abstract factory mechanism for constructing
parsers irrespective of the underlying implementation. Use the abstract factory
class, called SAXParserFactory, to construct an instance of a parser. It is actually a
two-step process: You first, obtain an instance of the concrete factory, and then
you obtain a concrete parser from the concrete factory:

SAXPar ser Factory factory = SAXParserFactory. newl nstance();

SAXPar ser parser = factory.newSAXParser();

By applying the factory, we avoid referencing any specific SAX engine by name,
which helps to keep things portable. The JAXP factory’s newlnstance() method
ends up returning a concrete SAX factory for a specific SAX engine, but we
never concern ourselves with the concrete implementation’s details. In the next
section, you’ll learn how the newlnstance() method makes its selection.

With the concrete factory in hand, we can begin to build concrete instances
of the parser. The newSAXParser() factory method creates instances of JAXP’s
SAXParser class. The SAXParser class is just a simple wrapper over the SAX’s stan-
dard XMLReader parser class. It also provides a few convenience methods for
interacting with the underlying parser.

NoTE

Although SAX originally included its own parser factory, only the new
JAXP factories provide for plugability. Use JAXP’s SAXParserFactory to
instantiate a parser, and ignore SAX’s older XMLReaderFactory.

Selecting a SAX Parser with the Plugability Interface

The JAXP plugability layer always provides a valid SAX engine, but how do we
know exactly which engine it provides? The answer lies within SAXParserFactory’s
newlnstance() method. The newlInstance() method searches the target environment at
runtime for a suitable SAX engine. It searches the following places in order:

1. System property space
2. JAXP properties file

WWW.SyNngress.com

Processing XML Documents with SAX « Chapter 2

3. JAR metafile
4. Platform default

System Property Space

JAXP begins its search by querying for a system property named javax.xml
.parsers. SAXParserFactory. To force JAXP to use a particular engine, simply set the
property to the name of a specific SAX implementation.You can set this at run-
time through the command line. For example, starting Java as follows will force
JAXP to use the Xerces XML parser:

java -D avax. xnl . parsers. SAXPar ser Fact ory=

org. apache. xer ces. j axp. SAXPar ser Factoryl npl <your main cl ass>

JAXP Properties File

If you choose not to set the system property, JAXP will look in a specific proper-
ties file for the information. The properties file, called jaxp.properties, must be
installed as a Java extension. Simply create a properties file with the same key and
value as above and save it to your Java runtime environment’s JRE/Ilib directory.
This is convenient because you only need to go through this once; there’s no
need to set system properties everytime you run.

JAR Metafile

JAXP provides a third method that is more complicated but more powerful than
the first two methods. This is where JAXP will most likely find its parser, so it is
important to understand how it works. Basically, JAXP looks for a preferred SAX
engine within each JAR file in the classpath. The name of the preferred SAX
engine is tucked away in a metafile within the JAR file itself. Conveniently, most
JAXP parsers already contain this metafile. Thus, the simple act of adding your
parser’s JAR file to the classpath is all that’s needed to access this functionality. If
you'd like to introduce a new parser, simply place it somewhere forward in the
classpath and JAXP will automatically configure itself to use the parser, without
forcing you to explicitly set any properties.

Platform Default

Finally, some Java environments offer a default SAX engine. This is the case with
Sun’s new Java Development Kit version 1.4, which bundles a number of XML
technologies.When all else fails, JAXP will use the platform’ default SAX engine.

www.syngress.com

29

30 Chapter 2 = Processing XML Documents with SAX

Developing & Deploying...

Parser Proliferation

If XML continues to grow in popularity, XML parsers may eventually
become ubiquitous. Already, XML is an integral part of many products.
These products may bundle their own XML parsers; if these are Java
products, then chances are the XML parsers use SAX. For example, if you
are using a modern Integrated Development Environment, it likely
includes a SAX parser, soyou may already have a SAX-compliant parser
in your possession without even realizing it.

As you begin to work with XML, here are some of the parsers you
will likely encounter:

= Xerces 1 Xerces 1 is the workhorse of modern parsers. It is
SAX 2.0 compliant but does not support the JAXP plugability
layer. Even so, many XML tools, development environments,
and application servers still depend on the Xerces parser. If
you are developing for a server-side environment, check to
see if your application server requires you to use Xerces.

= Crimson Sun originally developed this parser as a tech-
nology demonstration, then donated it to the open-source
community. Now it has found its way back into Sun’s
product fold. Crimson is the standard parser in JAXP 1.1,
and it is the standard parser bundled with Sun’s Java
Development Kit version 1.4.

= Xerces 2 Xerces 2 is a hext-generation, high performance
XML parser. Xerces 2 is the standard parser included with
JAXP 1.2, which makes it a sign of things to come.
Eventually, it should replace both Xerces 1 and Crimson in
Sun’s lineup.

As XML standards continue to evolve, we can expect XML parsers
to evolve with the standards. Newer parsers may offer extra features,
like schema-based validation in the Xerces parser. JAXP insulates you
from these changes without preventing you from using them to full
effect.

JAXP plugability can simplify the task of distributing SAX applications, because
you don’t necessarily need to bundle a SAX parser. As long as your code follows

WWW.SyNngress.com

Processing XML Documents with SAX « Chapter 2

the SAX standard, you can be reasonably confident it will work with whatever
SAX engine is available. Of course, it is always best to test your application thor-
oughly with each parser. If you notice any difference, you can always bundle a SAX
parser with your application and configure JAXP to use your preferred parser.

Parsing Data with a SAX Parser

Parsing with SAX requires three things: an event handler, a parser instance, and an
XML document to be parsed.You’ve already learned how to write an event han-
dler and how to create a parser instance; this section describes how to combine
an event handler and parser along with an XML document itself.

Input Sources

XML documents may be static or dynamic. Static documents may be stored in a
file system or document repository, whereas dynamic documents may be assem-
bled on the fly from databases or other enterprise systems. Either may be trans-

mitted electronically through any number of networking protocols. Whatever its
source, you can find a way to parse the document with SAX.

InputSource

Use the SAX InputSource class to pass the XML document to a parser. The
InputSource object allows the parser to locate the XML data.

URI-based Sources

If you know the XML document’s exact location, you can create an InputSource
directly from a Uniform Resource Identifier (URI). This method works particu-
larly well for reading in static documents from your local file system.You can also
read documents over the Internet using the HTTP protocol:

I nput Source fronFile = new | nput Source("fil e:///"+aFil enane);

I nput Source fromAéb = new I nput Source("http://ww.");

Stream-based Sources

Many applications may not deal with static XML documents on a physical disk.
This is particularly true of web services, where XML messages may be con-
structed on the fly and passed electronically. For these types of sources, you may
construct an InputSource directly from a stream:

www.syngress.com

31

32

Chapter 2 = Processing XML Documents with SAX

I nput Sour ce byteSource = new | nput Source(sonel nput Stream);

I nput Sour ce char Source = new | nput Source(soneReader);

Stream-based sources provide a lot of flexibility, but they also come with
some additional responsibility. With stream-based sources, you may need to pro-
vide additional information to help the parser correctly interpret the source. For
example, when working with byte streams, the parser must convert the bytes into
characters. It then becomes important to tell the parser how the characters are
encoded. If you’ve set the character encoding within the document’s XML decla-
ration, then the parser should be able make the conversion on its own. However,
if you've failed to set the encoding within the document, you should set it on the
InputSource itself. For example, to set the stream’s encoding to UTF-8, use the fol-
lowing method:

byt eSour ce. set Encodi ng(" UTF-8") ;

Character encodings can get quite complex and SAX parsers are not required to
support all encodings known to man. Generally, parsers support at least the
common encodings, including US-ASCII, 1ISO-Latin-1, and UTF-8. If you are
working with international content, make sure that your XML parser can under-
stand the encoding for your content.

An Example Servlet

You'’ve just about learned everything needed to begin building SAX applications.
You've learned how to construct a parser, create an event handler, and locate an
input source. Now we will demonstrate how to put these pieces together into a
complete application. The example application is part of a fictitious company’s
inventory management system.

Earlier in this chapter, we created an event handler to read information about
the company’s inventory. This example picks up where the first example left off: it
adds a source of XML data and a parser instance to the original event handler.
The three pieces are combined within a servlet, providing web-based access to
the company’s inventory.

In continuing this example, we’ve made some slight alterations to the original
event handler. Most importantly, we’ve added a method to retrieve the parsed
results from the event handler. The servlet itself calls this method after completing
the parse. Secondly, the event handler no longer skips anything from the example
XML document. It now reads all information for each inventory item, including
its full description. Figure 2.2 shows the servlet’s complete output.

WWW.SyNngress.com

Processing XML Documents with SAX « Chapter 2

Figure 2.2 Example Servlet Output

Ellllu ook bt FRIERD W o i el [l ivied, Foplor er
Fia Ed ‘Awa Prexkar Toch Halp -
ek = m o T] A Ptmant [§Pevorbm ey e O ™
Agckam |E_'| b | B e] Bt e E t-}ﬂ.g
=
Inventory Summary:
SEN Doseripton Iaventory Level
TR wridgess 10BN
SRS Al 320
LIRS poockets 20
El
2] Do % Local intrarat

Below you’ll find the code for the servlet that produced the output in Figure
2.2.\When examining the code, begin with the servlet’s init() method. If you are
familiar with servlets, you know that the init() method is a good place to perform
any initialization work. In our case, it’s a perfect place to instantiate a parser fac-
tory from JAXP’s abstract factory. The init() method is only called once, so we
save the factory within a member variable.

After initialization, the servlet waits for any user requests. Each request to the
servlet invokes the servlet’s get() method. The get() method is where the servlet
constructs an event handler, a parser, and an input source. After running the
parser, the servlet obtains the results of the parse from within the event handler.
Finally, it iterates through the parsed results and displays them in a simple table.

i mport
i mport

i mport
i mport
i mport
i mport
i mport

java.util.lterator;

java.io.| OExcepti on;

j avax.
j avax.
j avax.
j avax.

j avax.

servlet.
servlet.

servlet.

servl et

servlet.

Ser vl et Excepti on;

Ser vl et Qut put St r eam

http. H t pServlet;

.http. H t pServl et Request ;
http. Ht t pSer vl et Response,;

www.syngress.com

33

34

Chapter 2 = Processing XML Documents with SAX

i nport javax.xmnl . parsers. SAXParser Factory;
i mport javax.xm . parsers. SAXParser;

i nport javax.xml . parsers. Parser Configur ati onExcepti on;

i nport org.xnl.sax.|nput Source;

import org.xml .sax. SAXExcepti on;

public class InventoryServlet extends HttpServlet

{

/I share one instance of the parser factory

private SAXParserFactory parserFactory;

/**

* |nitializes the servlet. The servlet container

* will only call this method once!

*/
public void init() throws ServletException
{

//instantiate a concrete factory

parser Factory = SAXParser Factory. newl nstance();

[*x
* Handl es a GET request to this servlet.
*/
public void doCet (HttpServl et Request request,
Ht t pSer vl et Response response)

throws | OException, ServletException

//contruct custom event handl er

I nvent oryHandl er event Handl er = new | nvent or yHandl er () ;

//obtain SAX parser instance
SAXPar ser parser = null;

try

{

WWW.SyNngress.com

/**

*

*/

Processing XML Documents with SAX « Chapter 2

parser = parserFactory. newSAXParser();

}
cat ch (ParserConfigurati onException pce)
{
throw new Servl et Exception("Error constructing parser.
}
catch (SAXException se)
{
throw new Servl et Exception("Error constructing parser.
}
try
{
// provide XM. docunent
String uri =
"file:///C:/sanples/inventory.xm";
| nput Sour ce sourcebDoc = new | nput Source(uri);
/linitiate the parse
par ser. par se(sour ceDoc, event Handl er) ;
}
catch (SAXException se)
{
throw new Servl et Exception("Error parsing inventory.",
}

/lretrieve and print results
ItemCol | ection itens = event Handl er. get Par seResul t s() ;

printltens(itemnms, response.getQutputStrean());

Prints output as HTM.

private void printltenms(ltenCollection itens,

Ser vl et Qut put St ream out)
throws | OException

www.syngress.com

pce);

", se);

se);

35

36 Chapter 2 = Processing XML Documents with SAX

Iterator iter = itens.iterator();

//set up the HTM.

out. println("<HTM.><BODY><H2>| nventory Summary: </ H2>");
out.println("<TABLE><TR ALI G\N=' CENTER >");
out.println("<TH WDTH=" 30% >SKU</ TH>") ;

out.println("<TH WDTH="40% >Descri ption</ TH>");
out.println("<TH WDTH=" 30% >l nventory Level </ TH></ TR>");

/Iprint a table row for each item
while (iter.hasNext())

{
Itemcurrentltem = (ltem iter.next();
out.println("<TR ALI G\=' CENTER >");
out.println("<TD>"+currentltem get SKU() +"</ TD>");
out.println("<TD>"+currentltem getDescription()+"</TD>");
out.println("<TD>"+currentltem getQuantity()+"</TD>");
out.println("<TR>");

}

//close out the HTM
out.println("</TABLE></ HTM.>");
out . flush();

Servlets and Multithreading

Servlet-based applications are multithreaded by nature so it is important to keep
multithreading in mind when working with servlets. The example servlet demon-
strates how to apply SAX within a multithreaded environment. The most impor-
tant thing to remember is that SAX parsers are not thread safe. Although you may
reuse one parser to parse several documents, you can’t reuse it to parse several
documents at the same time. Our servlet’s get() method therefore constructs a
new parser with each user request, allowing the servlet to handle multiple users
simultaneously.

WWW.SyNngress.com

Processing XML Documents with SAX « Chapter 2

Parser instances cannot be shared between threads, but the SAXParserFactory
can be shared under certain circumstances. The example servlet maintains only
one instance of the factory, and it refers back to that instance over and over again
within the servlet’s get() method. This works fine in a multithreaded environment
because the SAXParserFactory’s newSAXParser() method is declared to be thread
safe. Consequently, we can safely use the factory object in many threads at once.

Debugging...

Using Locators to Aid Debugging

XML applications are often data-driven, and this can make them espe-
cially difficult to debug. Your program’s execution depends not only on
the correctness of your code, but also the that of every XML document
processed. If your event handler is not doing what you expect, start by
getting a better understanding of the event sequence. Once you under-
stand the parser’s progress through the XML document, you can begin
to diagnose the problem.

Traces are a basic technique for understanding the event sequence.
Within your event handler, create a trace routine that prints out mes-
sages to the screen or to a log file. Then, call the trace routine at the
start of every event callback. The trace output should give you a clearer
picture of the event sequence, much like that shown in Figure 2.1.

While tracing is useful for debugging small documents, it can
quickly become unwieldy; a large document may produce thousands of
events, so following the event trace may be overly tedious. For complex
documents, correlating the trace with the original document may still
pose challenges. Fortunately, SAX includes a mechanism to help you
make better sense of your trace output.

Use the Locator mechanism to make tracing even more effective.
The Locator object provides the parser’s exact location as it scans
through the XML document. It will help you zero in on the position of
events within the document. To begin using the Locator within your
event handler, first implement the setDocumentLocator() method to
save a reference to the Locator itself. (The SAX parser calls this method
to hand you the Locator.) During the parse, query the Locator whenever
you need to know the parser’s position:

Continued

www.syngress.com

37

38 Chapter 2 = Processing XML Documents with SAX

private void traceEvent(String event Message)

{

System out . pri nt (" Event: " +event Message) ;

[l if locator is set, print line and col um
if (this.locator !'= null)
{
int line = this.locator. getLi neNunber();
int colum = this.|ocator.getColumNunber();
Systemout.printlin(" at line: "+line+

" and col um: "+col um);

Officially, the Locator mechanism is an optional part of SAX. As
with any optional feature in SAX, it’s a good idea to check that the
parser supports it. Thus, the code above first checks for the Locator’s
presence. You will find that most common parsers supply a Locator,
simply because it’s so useful.

Configuring the Parser

Real world XML documents are rarely as simple as those demonstrated in Figure
2.2.This is especially true in web services, where XML documents often partake
in complex exchanges. Web services present a couple of challenges: First, the
XML documents must conform to an agreed-upon structure. Second, the
meaning of each tag must not be misinterpreted.

Two XML features help deal with each of these challenges. First, Document
Type Definitions (DTD) allow you to validate a document’ structure. Second,
namespaces allow you to associate elements with specific XML grammars. These
features are used prominently in web services. Together, they help keep commu-
nications running smoothly.

All SAX-compliant parsers include support for both DTDs and namespaces,
whereas specific SAX parsers may provide other special capabilities as well. This
section describes how to enable these features and use them in your applications.

www.syngress.com

Processing XML Documents with SAX « Chapter 2

Enabling Validation

If your XML document refers to a DTD, you may want to enable DTD valida-
tion.With DTD validation, the SAX parser will check the structure of the docu-
ment against the DTD as it parses; if the document’s structure does not match
the DTD, the parser responds with an error.

Use JAXP’s SAXParserFactory class to enable validation. Once enabled, the val-
idating option will apply until it is changed. Any new parsers created through the
factory will perform DTD validation. Try the following code to create one or
more validating parsers:

SAXPar ser Factory factory = SAXParser Factory. newl nstance();
factory. setValidating(true);
SAXPar ser validatingParser = factory. newSAXParser();

SAX provides a couple of other mechanisms that work hand-in-hand with
DTD validation.When using validation, you may want to specify a DTDHandler
and an ErrorHandler in along with your usual event handler. The DTDHandler
assists in parsing the DTD itself, while the ErrorHandler can deal with any valida-
tion errors. Neither of these is necessary to use DTD validation, but we’ll get
back to these in the next section.

Finally, you should understand that validation incurs a performance penalty
because validating a document is simply extra work for the parser. If performance
is a critical part of your application, you may want to reconsider using any valida-
tion. As a tradeoff, consider turning on validation during testing and turning it off
during production.

Enabling Namespaces

SAX includes support for processing XML namespaces. Like DTD validation,
namespace processing is a special feature that must be explicitly enabled. Use
JAXP’s SAXParserFactory class to enable namespace processing. Once enabled, any
new parsers created through the factory will read and interpret any namespace
declarations and namespace prefixes used in the document. Try the following
code to create a hamespace-aware parser:

SAXPar ser Factory factory = SAXParser Factory. newl nstance();
factory. set NamespaceAwar e(true);
SAXPar ser validatingParser = factory. newSAXPar ser ()

www.syngress.com

39

40 Chapter 2 = Processing XML Documents with SAX

NoTE

JAXP disables namespace processing by default. This is in slight contrast
with the stand-alone SAX package, where namespace processing is
enabled.

Namespaces and Events

Namespace processing makes SAX parsing a little more complicated. Namespaces
are an extra piece of information to juggle, both for you and for the parser. With
namespaces enabled, the SAX parser reads any namespace declarations from the
document and locates the corresponding namespace for each and every element
in the document. Finally, it interprets the namespace prefixes with each element
or attribute. The SAX parser provides all this information to you through stan-
dard SAX callbacks, and its up to you to make sense of it all.

Here is how namespaces influence the SAX callbacks:

Element Callbacks

We’ve already discussed the element callbacks earlier in the chapter, but we now
have a chance to explore them in depth. Here is the element callback once again:

public void startElenent(String uri, String |ocal Nane,
String gNanme, Attributes atts)
t hrows SAXException

The element callback provides several pieces of information about each ele-
ment. These include the element’s URI, its localName, and its gName. When we
originally discussed the element callback, we focused mostly on the gName, But
now that we are processing namespaces, the other two parameters take on new
significance.

The URI parameter is simply the namespace URI of the current element.
The URI is important because it uniquely identifies the element’s namespace. If
your document contains more than one namespace, you may want to break your
callback logic into parts, where each part handles processing for one particular
namespace.

The localName and gName each provide the name of the current element. The
two are similar, but the localName omits the namespace prefix provided in the

WWW.SyNngress.com

Processing XML Documents with SAX « Chapter 2

gName. This is actually a good thing, because the namespace prefix usually just
gets in the way; you already know the particular namespace’s URI, which does a
much better job at uniquely identifying the namespace. The local name will be
most frequently used, but the gName can be used for clarificiation when
embedded namespaces have identically named elements.

It does little harm to enable namespace processing, even if your document
contains no namespaces. You may continue to use the localName parameter as long
as namespace processing is enabled. For any elements without a namespace,
simply expect the URI parameter to be empty.

Prefix Mapping Callbacks

For documents that contain more than one namespace definition, it may be
important to track where one namespace begins and another ends. SAX includes
another callback specifically for this purpose. When namespace processing is
enabled, the SAX parser will automatically recognize any change in namespace. It
then notifies your event handler via a special namespace event.You can add the
following callbacks to your event handler to pick up these events:

public void startPrefixMappi ng(String prefix, String uri) ;
public void endPrefixMappi ng(String prefix);

If an element declares a namespace, the namespace takes effect for that ele-
ment as well as any child elements. As it scans the document, the parser will
move in and out of different namespaces. Use the prefix mapping callbacks to
keep track of where one namespace begins and another ends.

Enabling Other Features

The SAX creators tried to keep the SAX standard as simple as possible by lim-
iting the standard to a core of common features that would be useful to a wide
audience.You have already learned about two of these features: namespace pro-
cessing and validation via DTDs. A parser must offer both of these features to be
considered SAX-compliant.

While the SAX standard was kept simple, it was also made flexible. It allows
SAX parsers to add their own innovations. Some parsers may very well offer pro-
prietary features that you might find useful for your applications. Though these
new capabilities are not mandated by the SAX standard, they are still welcome
within SAX applications.

The Xerces parser, included with JAXP 1.2, is a perfect example. In addition
to validating from a DTD, the Xerces parser can also validate from an XML

www.syngress.com

41

42

Chapter 2 = Processing XML Documents with SAX

Schema. XML Schemas hold promise because they are more powerful and more
flexible than traditional DTDs. For now, however, XML Schemas remain an
emerging technology. Until XML Schemas become ubiquitous, we cannot expect
all SAX parsers to offer this same innovation.

Features and Properties

SAX organizes parser capabilities into two categories: SAX parser features and
SAX parser properties. From a practical standpoint, the differences between these
two are minor. There’s little sense in getting hung up on terminology, but here
are some guidelines to help you understand the difference:

= Use features to control parser behavior.

= Use properties to control parser state.
SAX defines a few core features and properties for all SAX engines. These are
described further in Table 2.1 and Table 2.2.You’ll need to refer to your specific
parser’s documentation to learn about any additional proprietary features and

properties that it may offer. Before trying to use any features or properties, make
sure they are actually implemented by your particular parser.

Table 2.1 Core SAX Features

Feature Name Description
http://xml.org/sax/features/namespaces Turns namespace pro-
cessing on or off.
http://xml.org/sax/features/namespace-prefixes Reports namespace
prefixes
http://xml.org/sax/features/string-interning Uses string interning

(see java.util.String
.intern() for details)

http://xml.org/sax/features/validation Turns validation on
or off.
http://xml.org/sax/features/external-general-entities Includes or skips

external text entities.

http://xml.org/sax/features/external-parameter-entities Includes or skips
external parameter
entities.

WWW.SyNngress.com

Processing XML Documents with SAX « Chapter 2

Table 2.2 Core SAX Properties

Property Name Description

http://xml.org/sax/properties/Tdom-node Retrieves the current DOM node
under parse. This is only useful when
using SAX over a DOM parser.

http://xml.org/sax/properties/xml-string Retrieves the raw string of characters
responsible for the current event.

Setting Features

SAX offers a standard way to access all of a parser’s features, even if the features
themselves are proprietary. If a SAX parser supports a particular feature, it will
expose the feature through the SAXParserFactory object. In JAXP, features are set
on the factory rather than on the parser. Once you enable a particular feature,
any new parsers created through the factory will exhibit the new behavior.

To turn a feature on or off, you need to know the unique name of the feature.
For example, here is how you would enable Xerces’ schema-based validation:

try {
par ser Fact ory. set Feat ur e(

"http://apache.org/ xm /features/validation/schem",
true);
} catch (SAXException e) {
Systemerr.println("Inplenentation does not" +

"include schema support.");

Remember, not all parsers will support a given proprietary feature. The parser
factory will throw an exception if it does not support your requested feature.

Setting Properties

SAX properties work in much the same way as SAX features, but there are a
couple of slight differences. First and foremost, SAX properties work at the parser
level rather than the factory level, which means that your setting is only valid for
one particular parser instance. SAX properties are often used to expose the
internal state of the parser, so it makes sense to work with one parser instance at a
time. Secondly, properties are not limited the simple on/off style logic of SAX fea-
tures.You can set or retrieve complete objects directly through a SAX property.

www.syngress.com

43

44 Chapter 2 = Processing XML Documents with SAX

Here is an example of SAX property that returns a String value. Query this
property during a parse to find the parse event’s string literal:

try {

String currentlLiteral = parser.getProperty(
"http://xm .org/sax/properties/xm-string "
true);

} catch (SAXException e) {

Systemerr.println("Parser does not support "+

"literal property.");

The SAX standard specifies only a couple of SAX properties, but does not
require SAX parsers to support any of them. As before, the parser will throw an
exception if it does not recognize a particular property. If you expect the prop-
erty to be available, you’ll have to handle any exception accordingly.

Handling Advanced Events

So far, you've learned about some basic SAX events. The basic events covered the
basic structures of XML: documents, elements, and characters. However, there’s a
lot more to XML than these three basic structures. XML documents may contain
more advanced structures, such as processing instructions and entity declarations.
Eventually, you are bound to run into an XML document that contains one of
these advanced structures.

SAX includes additional event handlers for dealing with advanced XML
structures. To use these event handlers, follow the same basic pattern as we have
been exploring: Create a class that implements the handler, add logic for the han-
dler’s callback methods, and register the event handler with the parser.

ContentHandler

In addition to the basic SAX callbacks and namespace callbacks, the
ContentHandler defines a few more useful callbacks:

public void ignorabl eWitespace(char[] ch, int start, int |ength)

throws SAXException

Use the ignorableWhitespace() callback to capture non-essential document
whitespace. In normal processing, the parser reports all whitespace characters
through the ContentHandler’s own characters() callback. However, if you've added a

WWW.SyNngress.com

Processing XML Documents with SAX « Chapter 2

DTD to the document, the parser behaves slightly differently: the DTD provides
enough semantic information to allow the parser to distinguish significant and
insignificant whitespace. The parser always reports significant whitespace through
the usual characters() callback.While using a DTD, the parser reports any other
whitespace through the ignorableWhitespace() callback. If you wish to preserve the
insignificant whitespace during parsing, be sure to catch the whitespace through
the ignorableWhitespace() callback:

public void processinglnstruction(String target,
String data) throws SAXException

If your document contains any XML processing instructions, you may need
to implement the processinglnstruction() callback. A processing instruction is a spe-
cial XML directive intended for the XML parser. The target parameter is simply
the name of the processing instruction. The data parameter includes everything
after the processing instruction’s name. Processing instructions are completely
open-ended, so it’s up to you to parse and interpret any data as you see fit.

public void skippedEntity(String nane) throws SAXException

Implementing the skippedEntities() callback is usually unnecessary. In most cases,
the parser will resolve any entities automatically through one of the other
ContentHandler callbacks. However, the parser may skip over some entities if you
explicitly tell it not to resolve references. (See the http://xml.org/sax/features/
external-general-entities and http://xml.org/sax/features/external-parameter-entities prop-
erties.) Implement the skippedEntity() callback to record any skipped XML entities.

ErrorHandler

Implement the SAX ErrorHandler interface to catch and trap different types of
XML parsing errors. If a parser has difficulty parsing a document, it will trigger
an exception error. Some parsing errors are more serious than others. The
ErrorHandler allows you to distinguish serious parse errors from less serious ones.
For less serious errors, you may wish to record the error and continue on parsing.
Each type of error may be handled in its own way. The ErrorHandler defines three
callbacks for the three different types of parsing errors:

public void fatal Error (SAXParseExcepti on exception) throws SAXException
public void error(SAXParseExcepti on exception) throws SAXException

public void warni ng(SAXPar seExcepti on exception) throws SAXException

www.syngress.com

45

46

Chapter 2 = Processing XML Documents with SAX

Fatal errors are the most serious types of parse errors, and unfortunately they
are the ones you will encounter most frequently. Fatal errors occur when a parser
tries to read an XML document that is not well formed. For example, if your
document is missing an end tag or your document contains a syntax error, the
parser will respond with a fatal error. The fatal error lets you know that the parser
cannot continue.

However, there are situations where you may be able to recover from a parse
error and continue parsing. Errors are non-fatal parsing situations where the parser
cannot determine whether to continue or terminate. For example, if validating,
the parser will trigger an error when the document does not match the DTD. In
such a scenario, the parser gives you the opportunity to record the error and
continue parsing, or re-throw the error and terminate the parse. Warnings are
non-fatal situations that are less serious than errors.

The ErrorHandler interface only includes three methods, so it’s a very easy
class to implement. However, there is an easier way to get started with the
ErrorHandler: the DefaultHandler class implements the ErrorHandler interface as well
as the core ContentHandler interface. The DefaultHandler serves as a very rudimen-
tary ErrorHandler. It only reports SAX fatal errors, and it completely consumes
SAX errors and warnings. If you want to report all errors, simply override the
DefaultHandler’s methods with your own versions.

You may also prefer to keep your error handling code separate from your
event handling code. If so, simply implement the ErrorHandler and DefaultHandler
in completely separate classes. This approach has one downside: registering and
using the handlers becomes slightly more involved. JAXP does not allow you to
register an ErrorHandler directly with a parser, so you’ll need to work through the
underlying XMLReader instance. The following code demonstrates how to reg-
ister each handler and invoke parsing through the XMLReader:

//contruct handlers
ErrorHandl er errorHandler = new MyErrorHandl er();
Cont ent Handl er def aul t Handl er = new Def aul t Handl er () ;

// obtai n XM_Reader from SAXParser
XM_Reader xml Reader = ((SAXParser)parser).get XM_Reader ();
xm Reader . set Cont ent Handl er (def aul t Handl er);

xm Reader . set Error Handl er (error Handl er);

//invoke parsing

xm Reader . par se (sonel nput Source);

WWW.SyNngress.com

Processing XML Documents with SAX « Chapter 2

NoTE

If you have implemented a separate ErrorHandler class, do not use the
SAXParser.parse() method provided through JAXP. The SAXParser.parse()
method automatically resets the ErrorHandler, so use the
XMLReader.parser() method instead.

SAX2 Extensions

Although SAX includes quite a few different event handlers, these handlers are
by no means comprehensive. XML documents may contain a variety of structures
not covered in the core SAX event handlers. Eventually, you may run up against
some of these limitations in your own work. For example, SAX can'’t help you if
you're interested in parsing an XML document’s comments. Basic SAX parsers
will skip right over comments without triggering any events. Luckily, SAX still
gives you some alternatives for handling these cases.

If you’ve found SAX event handlers too limiting, try making use of SAX2
Extensions. The SAX2 Extensions add two new event handlers to the core SAX
library. These new event handlers add almost a dozen new SAX events. If your
parser supports these extensions, then you’ll be able to handle most XML parsing
challenges.

The SAX2 Extensions are an optional part of SAX, so not every parser can
be expected to support them. However, they are so useful that most common
parsers support them anyway. If you’re using the standard parsers included in
JAXP, then you have everything you need to begin using the SAX2 Extensions.

Here are the new event handlers included with SAX2 Extensions:

LexicalHandler

The LexicalHandler provides greater lexical information about an XML document.
It defines callbacks for reading XML comments and finding the beginnings and
endings of DTD declarations. Additionally, the LexicalHandler provides a finer grain
of control over XML character events.You may recall that the SAX ContentHandler
interface includes basic support for character data, but it passes all types of charac-
ters through one character() callback. It does not allow you to distinguish normal
characters from others, like entities and CDATA. The LexicalHandler corrects this
shortfall. It provides distinct events for entities and CDATA characters.

www.syngress.com

47

48

Chapter 2 = Processing XML Documents with SAX

DeclHandler

If you need to parse a DTD, use the DeclHandler interface. It’s easy to confuse this
class with the DTDHandler included in the core of SAX.The DeclHandler reports
all element, attribute, and entity declarations. The DTDHandler only reports nota-
tion declarations and unparsed entities. You'll likely need both the DeclHandler
and DTDHandler to fully parse a DTD.

Using the two extension event handlers is much like using core SAX event
handlers. First, create a class that implements the appropriate handler interface,
then add logic for each callback method. Finally, register the event handler with
your parser instance.

Registering an extension event handler is slightly more work than registering
a core SAX event handler. The extension handlers are registered through the
SAX Property mechanism you learned about earlier. SAX defines two new prop-
erties for setting the respective handlers. Simply set the appropriate property,
passing in the extension handler as its value:

try

{
/lcreate and register a Lexical Handl er
Lexi cal Handl er | exHandl er = new MyLexi cal Handl er ();
saxPar ser. set Property(

"http://xm .org/sax/ properties/|exical-handler", |exHandl er);

/lcreate and register a Decl Handl er
Decl Handl er decHandl er = new MyDecl Handl er ();
saxPar ser. set Property(
"http://xm .org/sax/ properties/decl aration-handl er"”, decHandler);
}
catch (SAXException se)
{
Systemerr.println("SAX2 Extensions not supported");
}

SAX2 Extensions are an optional part of SAX, and not all parsers may support
the extensions. The above code simply catches any exceptions in case the exten-
sions are unavailable.

WWW.SyNngress.com

Processing XML Documents with SAX « Chapter 2 49

Summary

In the SAX model, XML documents are provided to the application as a series of
events. The SAX parser scans an XML document once from beginning to end. As
it scans, the parser reports each document transition as an event. With each event,
the application has a chance to respond to the change in the document
Event-based parsing has strengths and weaknesses.Very large documents can
be processed with events, as there is no need to read the entire document into :
memory at once. However, working with sections of an XML document can be
complicated because the application developer must track all the events for that
section. For documents with complex hierarchies, consider using DOM parsing

instead. 1

SAX defines a number of interfaces for interacting with the SAX parser. The ‘
event handler interfaces provide callbacks for handling each event. As a conve-
nience, extend the DefaultHandler class rather than implementing the full
ContentHandler interface. Within your class, simply implement those callbacks you
find most interesting.You will most likely want to implement the character call-
back, the element callbacks, and possibly the document callbacks.

Once you have created an event handler, combine it with an actual parser.
Use JAXP’s abstract factory mechanism to create concrete parser instances. The
abstract factory allows you to instantiate a parser without referring to any one
parser in particular. This keeps your code portable, should parser technology
change in the future. If you'd like to try out a new parser, set a system-wide
property naming the SAXParserFactory implementation class. Alternatively, simply
replace your old parser on the classpath with a new parser.

SAX parsers provide additional capabilities beyond basic event handling. SAX
parsers are namespace-aware, but namespace processing must be explicitly
enabled. Additionally, SAX parsers can validate documents as they parse. Use the
SAXParserFactory to activate both of these features.

SAX parsers may implement features beyond the original APIl. Some of these
features are strictly optional, like the event handlers provided by the SAX2
Extensions package. Other features are proprietary, like Xerces’ validation through
XML Schema. All of these features are accessed indirectly because they are not
part of the core API. With flexibility built into the standard itself, SAX should
remain a part of the XML landscape for years to come.

L
D
W o

50 Chapter 2 = Processing XML Documents with SAX

Solutions Fast Track

Understanding Event-Based XML Parsing

M The SAX parser scans an XML document once from beginning to end,
creating events for each document transition.

M With each event, the SAX parser calls an event handler. The event
handler contains callbacks for each type of event.

M To quickly create an event handler, simply extend the SAX
‘ DefaultHandler class. Provide implementations for only those callbacks

you find interesting.

Creating a SAX Parser

-+ M To keep your applications portable, avoid writing to a specific parser
implementation. Instead, work through the SAX interfaces.

M Use the abstract factories provided by JAXP rather than SAX to create
parser instances. The JAXP factories are preferred because they are more
portable.

M Follow the JAXP search path to figure out what parser is instantiated.

Parsing Data with a SAX Parser

M To parse a document, you need three things: a parser, an event handler,
and an XML input source.

b ,.J M Wrap your XML document from a stream or file with an InputSource
object. If it’s not specified within the XML itself, set the character
encoding properly.

M SAX parsers are not thread-safe. If you are working with servlets or
r other multithreaded applications, create a new parser for each thread.

Configuring the Parser

M Enable DTD validation and namespaces through convenience methods
on the JAXP SAXParserFactory class

WWW.SyNngress.com

Processing XML Documents with SAX « Chapter 2

M With namespace processing enabled, rework your event handler callbacks
to use the element’s localName and namespace URI.

M Enable other SAX features and properties through methods on either
the SAXParserFactory or SAXParser classes, respectively.

Handling Advanced Events

M Implement the ContentHandler callbacks to detect ignorable whitespace,
processing instructions, and skipped entities.

M Register an ErrorHandler to detect different types of errors. Some errors
may be recoverable, so you may be able to continue parsing.

M Use the SAX2 Extension interfaces to parse and detect XML comments,
DTDs, CDATA, and entities.

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

Q: When should I choose SAX parsing over DOM parsing?

A: Use SAX parsing when performance is critical. Also use SAX parsing on very
large documents. SAX-based parsing is generally quicker and consumes far
less memory than building a DOM tree.

Q: When the SAX parser reads my XML document, some of the characters
show up as garbage. Why?

A: Make sure you are setting the document’s character encoding properly. This is
best done through the XML declaration within the document itself. If you do
not specify a character encoding, the XML parser will assume the document
uses UTF-8 encoding.

Q: I can open my XML document fine in Internet Explorer, but my SAX parser
can't parse it. What’s wrong?

www.syngress.com 8

51

52

Chapter 2 = Processing XML Documents with SAX

A Internet Explorer does a good job of correcting some minor errors in your

document when it does not impact the document meaning. Make sure in
particular that your document does not have whitespace before the XML
declaration.

: My SAX parser is reporting an attribute value that | don’t see in the docu-

ment.Where is it coming from?

. If your document contains a DTD, the DTD may specify a default value for

some attributes. SAX parsers will automatically report any default attributes
in the startElement() callback.

: My XML document references an external DTD, but the SAX parser can’t

seem to locate the DTD.What can | do?

: Some SAX parsers will automatically try to read external DTDs. This can be

inconvenient, especially when you are off the network and can’t reach the
DTD. Certain parsers allow you to control loading of DTDs, but this is a pro-
prietary feature of each parser. For the Xerces parser in JAXP 1.2, turn the
http://apache.org/xml/features/nonvalidating/load-external-dtd feature off.

: Where can | find out more about specific SAX parsers?
. The two parsers discussed in this chapter (Xerces and Crimson), are main-

tained by the Apache open source community.You can find the project’s
homepage and a wealth of information at http://xml.apache.org/.

WWW.SyNngress.com

Chapter 3

Processing
XML Documents

with DOM

Solutions in this chapter:

= The Document Object Model

= JAXP and Underlying DOM Engines
= Creating a DOM Parser :

-. Parsing XML into a DOM

= Manipulating DOM Objects

= Advanced Topics

M Summary
M Solutions Fast Track

M Frequently Asked Questions

53

B

54

Chapter 3 = Processing XML Documents with DOM

Introduction

In the last chapter we discussed event-based parsing. Event-based parsing has
some limitations. For instance, one cannot manipulate entire sections of a docu-
ment at once. Also, multiple passes over the document data calls for multiple runs
through the parser. Often, it would be more efficient if an entire document could
be read into the memory and manipulated as an in-memory representation.

This can be achieved using the Document Object Model (DOM), which is
by far the most widely used among the various standards proposed for in-
memory representation of XML documents. A standard specified by the World
Wide Web Consortium (W3C), the DOM specifies an abstract mapping of XML
elements into runtime objects. Binding this specification to various languages,
including Java, has been implemented by a variety of vendors.

In the DOM, every XML document is represented as a hierarchy of objects.
This hierarchy forms a tree structure that mimics the structure of the XML doc-
ument. Once you are familiar with XML and DOM, translating between the two
becomes a simple matter.

One thing the current DOM specification omits is an API for the parsing of
an XML document into a DOM. This is left to the individual vendor when
writing a DOM parser. The latest DOM specification (DOM 3) seeks to address
this issue too, but until it gains in popularity, application developers have to take
into account the prospects of modifying their code when moving to a different
parser. JAXP solves this problem by presenting a standardized interface for parsing
XML data; the result of this parsing is an object that conforms to the standard
W3C DOM Document interface.

This chapter presents a discussion on the reading, writing, and simple manip-
ulations of a DOM representation. More complex manipulations, such as those
pertaining to stylesheets, will be discussed in the next chapter.

The Document Object Model

The Document Object Model (DOM) is a World Wide Web consortium (W3C)
specification that provides a programming interface for both XML and HTML
documents. The basic objective of W3C DOM is to provide a standard, cross-
platform, that is, cross-language programming interface that can be used in a wide
variety of environments and with any programming language. Using a DOM,
you can dynamically create or modify the structure or the contents of a docu-
ment, add or delete its elements and navigate through its structure. The DOM

WWW.SyNngress.com

Processing XML Documents with DOM « Chapter 3

focuses upon the model of a document and not upon the methods, interfaces etc.
which may be required only to define and implement a DOM. Consequently, to
use DOM in Java or in any other language, the appropriate language binding
must be developed. These language bindings would serve as the APIs that can be
used to create and manipulate document as per the DOM specifications.

In the DOM, documents have a logical structure that is usually depicted as a
tree. The DOM is akin to the traditional object-oriented design concept since it
models a document using objects. All these objects have methods and properties
associated with them. Let us consider an example to illustrate the concept of
DOM.

The DOM Tree

Figure 3.1 is an XML file that contains an objective type question along with
two answer options, only one of which is correct. The correct option is marked Y
while the incorrect option is marked N. Such an XML file may be used for, say,
dynamically generating questions for an online examination.

Figure 3.1 A Simple XML

<ROOT>
<questi on>
<questioni d>1</ questi oni d>
<questiontext >The earth revolves around the sun (State True or Fal se)

</ questi ont ext >

<opti on>Fal se</ opti on>
<opt i onno>1</ opti onno>
<correct>N</correct>
<opti on>True</ opti on>
<opti onno>2</ opti onno>
<correct>Y</correct>

</ questi on>

</ ROOT>

If we were to represent this XML graphically using the DOM, it would be as
shown in Figure 3.2.

In the DOM tree structure, each XML tag (and its value) is viewed as a node
object. In Figure 3.2, we have numbered each of these node objects from 1 to 18

www.syngress.com

55

56

Chapter 3 = Processing XML Documents with DOM

for ease of explanation. In an actual DOM document, these nodes will not be
numbered.

Figure 3.2 DOM Tree for XML of Figure 3.1

Node 2 “(Question”

“questionid”

“questiontext”
\; “The Earth revolves around the sun
(State True or False)*
| Mote7 | optio’
ale”

Node 10 “1r

Node 11 “Correct”

Node 12 “N”

1 Node 13 “Option”
Node 14 “True”

Node 15 “Optionno”

i

7 “Correct”

]

Node 18 “y”

The <ROOT> tag (see Nodel in Figure 3.2) forms the root node of the tree,
and is referred to as the first child of the document. The <question> tag is a child
node for the root node. <questionid>, <questiontext>, <option>, <optionno> and
<correct> are child nodes for the question node. These nodes representing the
XML tags are element nodes. Node 1, Node 2, Node 3, Node 5, Node 7, Node 9,
Node 11, Node 13, Node 15 and Node 17 in Figure 3.2 represent element nodes.
The DOM tree also represents the values of various elements (Corresponding to

WWW.SyNngress.com

Processing XML Documents with DOM « Chapter 3

CDATA in XML) as nodes, except that these values are represented by text nodes
(Node 4, Node 6, Node 8, Node 10, Node 12, Node 14, Node 16 and Node 18 all
represent text nodes). This is because in most DOM parsers, CDATA nodes are
reserved for text that is explicitly marked as CDATA.

NoTE

The text within quotes (“ROOT”, “question” etc.) given alongside each
node in Figure 3.2, has been given solely to correlate the node with its cor-
responding XML tag, attribute or value (as the case may be). In actuality,
this text is embedded within the DOM tree as nhode names or node values.
For example, the node name for Node 1 will be “ROOT” while Node 4 is a
text node that represents the value (“1”) of the <questionid> tag.

The DOM is organized into Levels instead of versions. Level 1 (Core) of the
DOM represents the hierarchy of content within a document. Level 2 (Core)
improves upon the general structure specified in Level 1 by providing a set of
core interfaces and modules that are meant for content-specific models. For
example, Level 2 contains specialized interfaces that are dedicated to XML.\We
shall limit our discussions in this section to Level 1 only.

The Basic Classes

As shown in Figure 3.2, Level 1 of the DOM represents documents in a hierar-
chical structure of Node objects. Each of these nodes (except for Text and
CDATA nodes, which will be covered further later) may have zero or more child
nodes of various types and may form a sub-tree under it. If a node has no child
nodes under it, it is referred to as a leaf node. There are different types of nodes
such as an Element nodes, a Text node, an Attribute nodes and so on.

The Java API for XML processing (JAXP) provides various interfaces to pro-
cess the different types of elements in an XML document.We shall now discuss,
in brief, the fundamental JAXP interfaces that are contained in a DOM imple-
mentation. However, you should bear in mind that these interfaces are a part of
the DOM Level 1 specification as developed and recommended by the World
Wide Web Consortium (W3C) and are not specific to JAXP. This is to say that to
manipulate DOM documents, JAXP defines interfaces/classes with names same as
(or similar to) W3C'’s standard DOM interfaces. For example, W3C has defined
the standard interface Document that encompasses a complete document. To make

www.syngress.com

57

58

Chapter 3 = Processing XML Documents with DOM

use of the Document W3C interface with JAXP’s data structures and APIs, JAXP
has developed its own interface with the same name. Thus, Document is a generic
interface that may be supported by various vendors to make it interoperable with
their proprietary APIs.

Document

The Document interface specifies the top node of the DOM tree and encompasses
an entire document (XML or HTML). It provides access to the document’s ele-
ments and data. Since every other node has to be within the document, this
interface contains methods to create other nodes as well as methods for manipu-
lating the document structure and its properties. The Document interface extends
the Node interface inherits various properties and methods from it.

Element

The Element interface represents an XML or HTML element. A document’s data
Is contained within its elements. An element may also have attributes providing
additional content information. The Element interface provides methods to set or
retrieve the attributes of an element as an Attr (attribute) object or as an attribute
value. This interface also inherits from the Node interface.

Referring back to the XML in Figure 3.1, each of the tags will be repre-
sented by an Element; for instance, question, questionid, option, optionno and correct
will all be elements in a DOM document.

Text

This interface represents the text content (character data in XML) of an element
or an attribute value. This interface is also implemented as a node on the DOM
tree structure; that is, as a child node of the element containing the text data
(Refer to Figure 3.2). The content/text of an element may or may not contain
markup. If there is no markup, the Text interface implements the text content as a
single node object. If any markup is present, it is further broken down into ele-
ments, comments. with the markup constituents forming a sub-tree under the
text node that represents the original text data. The Text interface inherits from
both the Node interface and the CharacterData Interface.

As mentioned during our discussions on the DOM tree in Figure 3.2, the
value of an XML value tag or the value of an attribute are represented as text
nodes and not as CDATA nodes. Most DOM parsers reserve CDATA nodes for
text explicitly marked as CDATA.

WWW.SyNngress.com

Processing XML Documents with DOM « Chapter 3

Attribute

The Attribute object represents the attributes of an element in the document. The
Java API defines the Attr interface for the attributes of an element. Though the
Attr interfaces inherit from the Node interface, the DOM treats them not as sepa-
rate entities, but as properties of the element with which they are associated.
Thus, attributes are not accessed through the document tree. This also implies
that node attributes like parent node, next or previous sibling will have a null value
for the Attr object. This is because attributes do not form child nodes of the ele-
ment they describe.

An attribute may contain a simple text value or an entity reference (as in
XML). However, the DOM does not distinguish between attribute types. It treats
all attribute values as strings.

Node

The Node interface is central to the DOM tree. Node objects form the core struc-
ture of a DOM tree. The entire concept of a DOM tree is based on the node
object contained in the Node interface. Note that all the DOM data types dis-
cussed above; Document, Element, Text and Attribute are represented in the DOM
tree as nodes. While some properties and methods of these nodes are common,
others are specific to the specific node’s type. For example, the Text node does
not have child nodes while the Attribute node has no parent or sibling nodes.

The Node interface provides methods to retrieve information about a node,
such as the node name, the node value, the node attributes, the child nodes asso-
ciated with a node, and so on. Additionally, it also provides a mechanism for
obtaining and manipulating information about a node’s child nodes.

NodeList

The NodeList interface represents a collection of node objects. This interface pro-
vides a mechanism to access a document’s node structure as an indexed list of
nodes beginning at 0. This allows for iteration through the nodes collection. Any
changes made to a document’s structure, say by adding or removing a node, are
immediately reflected in the Node list. The Node list is an abstract entity in the
sense that it does not consider the implementation of the nodes collection or the
types of nodes within the collection. However, it provides a convenient means to
gloss over a document’s DOM structure and can be especially useful for docu-
ments whose structure (number of nodes and their attributes, for instance) are
not known.

www.syngress.com

59

60

Chapter 3 = Processing XML Documents with DOM

Interrelationships

In a DOM tree, various nodes are related to one another as child-nodes, parent-
nodes, sibling-nodes and so on. The possibility of placing one type of node below
the other, . whether or not one type of node can form the child node of another
type, for instance, is an area that calls for careful consideration. In this section, we
will explore the relationships of elements with other elements, as well as with
their own character data and attributes.

Hierarchy Imposed by the
Document/Element/Attribute/ Text Classes

The different objects of a DOM structure are interrelated in a hierarchical pattern.
This hierarchy can be represented in its very basic form as shown in Figure 3.3.

Figure 3.3 Hierarchy of DOM Objects

Document

R
L
’ Element 1 ‘ ’ Element 2 ‘

|
’ Attribute n ‘ ’ Attribute 2 ‘ ’ Attribute 1 ‘ E
|

Entity Reference in (XML) E

The Document object lies at the top of the hierarchy, which is obvious consid-
ering that no data or content that lies outside a document is relevant to it. All
elements, text data, processing instructions, or comments have to lie within the
context of a document. A document is composed of Element objects, which pro-
vide a structure and meaning to a document by separating the document’s con-
tent into a readable and logical format. Elements within a document may further
be nested to define a document’s content structure. Elements that lie directly
below another element are called its child elements. The upper element forms the
parent node for the underlying elements. Elements that lie directly under the

WWW.SyNngress.com

Processing XML Documents with DOM « Chapter 3

same parent node are called siblings. The actual data or text content of the docu-
ment is stored as Text objects, which may represent either element data or an
attribute value. Attributes are used to provide additional information about an
element (apart from the data content). Attribute values are also represented as text
objects. It is important to note that objects in the DOM structure cannot be
placed haphazardly, for example, a document object cannot be placed under an
attribute object. The nesting of elements follows a logical and orderly manner
that conforms to the DOM specifications.

Let us now consider a modified version of Figure 3.1 for a better under-
standing of the relationship among elements in a DOM hierarchy.

Relationship between Elements in a DOM Hierarchy

In the XML file given in Figure 3.4, the questionid tag has been removed. This tag
is now being represented as an attribute of the question element. Similarly, optionno
and correct have been made into attributes of the Option element.

Figure 3.4 An XML with Attributes

<ROOT>
<question questionid="1">
<questiontext >The earth revolves around the sun (State True or Fal se)
</ questi ont ext >
<option optionno="1" correct="N'>Fal se</option>
<option optionno="2" correct="Y">True</option>
</ questi on>

</ ROOT>

The DOM structure for this XML document will follow the hierarchy
shown in Figure 3.5

Figure 3.5 clearly shows that Element 1 is a child element of the ROOT ele-
ment, which is the root element for the document. Element 2, Element 3 and
Element 4 in turn form child elements for Element 1. Element 2, Element 3 and
Element 4 are siblings. Element 1 also has an attribute object under it, named
Attribute 11, as shown in Figure 3.3. This attribute represents the questionid
attribute of the question element.

Element 2 has a child of type Text, named Text 1 (as seen in Figure 3.3).
Element 3 and Element 4 represent the two option tags and each have two attribute
nodes under them. Thus, the DOM maintains the hierarchy as explained in the

www.syngress.com

61

62 Chapter 3 = Processing XML Documents with DOM

above section. The following sections clarify concepts of DOM with regard to

Java’s API for XML parsing, JAXP.

Figure 3.5 DOM Hierarchy for the XML Document

Document

Root Element name = “ROOT”

Element 1 name = “question”

Attribute 11

Element 2
e]

Element 3 name = “Option”
Attribute 13

— Attribute 23

Attribute 14

Attribute 24

value = “1”

name = “questionid”

“The Earth revolves around the Sun
(State True or False)”

name = “optionno”
value =“1”

name = “Correct”
value = “N”

name = “optionno”
value = “2”

name = “Correct”
value = “Y”

JAXP and Underlying DOM Engines

Sun’s Java API for XML Processing (JAXP) provides classes and methods to parse
XML documents, irrespective of which XML processing implementation is used.
JAXP supports XML processing using SAX, XSLT and DOM, and attempts to

provide cohesiveness to the SAX and DOM APIs.While it does not alter any of
these, it does add some convenient methods for making the XML APIs easier to

use for java developers

JAXP does not redefine DOM and SAX, but ensures that parsers can be
accessed in a Java application through a pluggable interface. The principles of

using JAXP and DOM are similar to those of SAX.

For example, just as we use

SAXParser and SAXParserFactory in SAX, we use DocumentBuilder and
DocumentFactoryBuilder in JAXP. In fact, these two interfaces use the SAX API

WWW.SyNngress.com

Processing XML Documents with DOM « Chapter 3

internally and hence throw the same Exceptions as well. Figure 3.6 illustrates the
way the two interfaces work .

Figure 3.6 The JAXP DOM API

[DocumentBuilderFactory } Document (DOM)

Object

Create

— Object

Parse Parse
Input XML I:> Document Builder |:> — Object

L— Object

As shown in Figure 3.6, the DocumentBuilderFactory class is used to create a
document builder. The document builder receives the input XML and parses it to
create its DOM Document.

Developing & Deploying...

JWSDP EA2

JWSDP can be downloaded for free from http://java.sun.com/webservices/
downloads/webservicespack.html

The Java Web Services Developer Pack (Java WSDP) download will
contain the following technologies:

= JavaServer Pages Standard Tag Library (JSTL)

= Java XML Pack, which includes: Java APl for XML Messaging
(JAXM), Java API for XML Processing (JAXP), Java API for XML
Registries (JAXR), and Java APl for XML-based RPC (JAX-RPC)

= Tomcat (Java servlet and JavaServer PagesTM container and
tools)

= Ant build tool

Continued

WWW.SyNngress.com

63

64 Chapter 3 = Processing XML Documents with DOM

= The deploytool web application deployment utility
= Registry Server

When the Java WSDP is installed, it automatically sets the
JAVA_ HOME and CATALINA HOME environment variables in
JWSDP_HOME/bin/setenv.bat (in Windows) to the current locations of
the J2SE SDK and the Java WSDP. The start scripts in JWSDP_HOME/
bin call setenv. If you change your J2SE SDK installation, update setenv
to reflect the new location if it is different than the previous location.
Adding JWSDP_HOME/bin to the front of your path will ensure that the
Java WSDP scripts are used instead of any other installations.

Your WSDP pack is now ready to be used.

Let us illustrate the JAXP parser with the help of an example. The sample
code is shown in Figure 3.7:

Figure 3.7 Sample Code for a JAXP Parser

inmport java.io.*;

i mport javax.xm .parsers.*;

i nport org.xnl.sax.*;

i mport org.xm . sax. hel pers. *;

i mport org.w3c.dom *;

public class parserDenp

{

// Step 1: Create an instance of the DocunentBuil defactory class

Docurent Bui | der Fact ory docunent Fact ory;

docunent Fact ory = Docunent Bui | der Fact ory. newl nst ance();

/1l Step 2: create a DocunentBuil der that satisfies the
/|l constraints specified by the DocunentBuil der Factory
Docunent Bui | der nyDocunent Bui |l der = nul | ;
try {

nmyDocurent Bui | der = docunent Fact ory. newDocurent Bui | der () ;
} catch (ParserConfigurationException pce) {

Systemerr.println(pce);

WWW.SyNngress.com

Continued

Processing XML Documents with DOM « Chapter 3

Figure 3.7 Continued

Systemexit(1);
}
I/l Sets the Error Handler..
nmyDocunent Bui | der . set Err or Handl er (new MyErrorHandl er());

/1l Step 3: parse the input file

Docunent parsedDocunent = null;
try {
par sedDocunent = myDocunent Bui | der. parse(new Fil e(Fil eNane));

} catch (SAXException se) {

Systemerr.println(se.getMessage());
Systemexit(1l);

} catch (1 OException ioe) {
Systemerr.println(ioe);
Systemexit(1);

}

}

Even a cursory glance over the import statements is enough to make out that
the code does not contain any vendor-specific details. Otherwise the code is
quite similar to that for any other parser. Note that the parser, though created
using JAXP, throws the same SAXException. This is because internally JAXP uses
many of the classes used by SAX.We may now proceed to discuss the core issues
involved in building a practical JAXP parser.

Creating a DOM Parser

To build a document’s DOM tree structure, the document should be parsed and
nodes corresponding to each element should be placed systematically in the
DOM tree. The nesting of elements should conform to the DOM specifications.
The Java XML processing API defines the DocumentBuilderFactory class to parse
XML documents and obtain their DOM tree structure.

The DocumentBuilderFactory Class

The DocumentBuilderFactory class defines methods and properties that allow the
user to create DOM parsers. An instance of the DocumentBuilderFactory class is

www.syngress.com

65

66 Chapter 3 = Processing XML Documents with DOM

created,then used to obtain instances of the DocumentBuilder class to parse the
XML and extract DOM document instances from it.

WARNING

The DocumentBuilderFactory class is not thread safe. Though an applica-
tion can use the same instance of the DocumentBuilderFactory class to
create instances of DocumentBuilder, it is incumbent upon the application
developer to ensure that the instance of the DocumentBuilderFactory class
is not used by more than one thread at a time.

The following section goes into the various steps involved in creating a JAXP
parser, then integrates these steps to build a practical parser.

Obtaining a New Instance

of the DocumentBuilderFactory

A DocumentBuilderFactory class instance can be obtained by using the newlInstance()
method, which creates a new factory instance.

Docunent Bui | der Fact ory dbf = Docunent Bui | der Fact ory. new nst ance();
The newlnstance() method is defined as a static method that throws a

FactoryConfigurationError exception if the factory implementation is not available
or cannot be instantiated.

public static DocunentBuil der Factory newl nstance() throws

Fact or yConfigur ati onErr or

As mentioned earlier, an application may use the same factory instance to
create multiple DocumentBuilder instances, or it may create one factory instance
per thread. However, in either case it is the responsibility of the application devel-
oper to ensure that only one thread uses the factory instance at a time.

Using the DocumentBuilderFactory

to Create a DocumentBuilder

The DocumentBuilder class is actually used to obtain the DOM document from a
given XML file. Once this class is instantiated, it can be used to parse the XML,
which may be available in the form of an input stream, a file, a URL, or other

WWW.SyNngress.com

Processing XML Documents with DOM « Chapter 3

data source (Detailed discussions on various input sources are included later in
this chapter). An instance of the DocumentBuilder class can be created using the
DocumentBuilderFactory instance:

Document Bui | der db = nul | ;
try {
db = dbf. newDocunent Bui | der () ;
} catch (ParserConfigurati onException pce) {}

Here, dbf is the factory instance. If the DocumentBuilder cannot be created, a
ParserConfigurationException exception is thrown. As in the case of a factory instance,
the same DocumentBuilder instance should not be concurrently used by two threads.
An application developer should either create one DocumentBuilder instance per
thread or ensure that two threads do not use the same DocumentBuilder instance at
the same time. It would be worthwhile to mention here that several classes from
the SAX API are reused by the DocumentBuilder class. However, this does not neces-
sitate the use of a SAX parser to parse the XML for which the DOM implementa-
tion is being implemented.

Setting Parser Attributes

The DocumentBuilderFactory instance can be used to configure the parser by set-
ting its attributes. These attributes define what the parser considers and what it
ignores while traversing through an XML file. Here, we’ll discuss the major parser
attributes that can be set using the factory instance. Take note that to be effective,
these properties need to be set before a document builder is requisitioned. Say, if
the properties are set after a document builder (dbl, for instance) has been instan-
tiated, then the document builder will not be automatically updated; instead, it
will parse XML documents using the default property values for any properties
that had not been explicitly set when it was created. However, subsequent builder
instances will use the property values set by the factory class.

Coalescing

This attribute specifies whether or not the parser will convert character data
(CDATA) into Text nodes. If this attribute is set to true, the parser converts each
CDATA node to a Text node and appends it to an adjacent text node, if one exists.
The following line of code may be used to set the coalescing property to true:

dbf . set Coal esci ng(true);

www.syngress.com

67

68

Chapter 3 = Processing XML Documents with DOM

In this code line, dbf is the factory instance. The coalescing property is set to
false by default.

ExpandEntityReferences

This property, if set to true, instructs the parser to expand entity reference nodes.
The following line of code configures the parser to expand entity reference nodes:

dbf . set ExpandEnt it yRef erences(true);

Though we assume that readers would be aware of the concept of entities in
XML, we are repeating it to explain the ExpandEntityReferences property’s func-
tionality. An entity in an XML file may refer either to a certain piece of text or
to an entire document. For example, we define an entity as follows:

<IENTITY JAXPentity "Java APl for XM Processing, JAXP">

We now call this entity in an XML tag as follows:

<i nfo>Wel cone to &AXPentity; - manipul ating DOM objects the Java way
</info>

When this text is retrieved from the <info> tag, the JAXPentity entity gets
expanded and the tag value is read as “Welcome to Java API for XML Processing,
JAXP — manipulating DOM objects the Java way.”

If we set ExpandEntityReferences to true while parsing the XML, the document
builder expands (replaces with its defined value) JAXPentity in the <info> tag
above. The concept of expanding entity references will become clearer later in
the chapter when we discuss EntityResolvers in the Input Source Types section
(See the examples in Figure 3.11 and Figure 3.12).

IgnoreComments

This property specifies whether or not the parser should ignore comments given
in an XML. This property may be set using the following line of code:

dbf . set I gnori ngComent s(true);

IgnoreElementContentWhitespace

The IgnoreElementContentWhitespace property applies to the insignificant white
spaces in an XML file, while ignoring the significant white spaces such as spaces
internal to a text block.When this property is set, the parser eliminates ignorable
white spaces in the XML. The following line of code sets this property:

dbf . set | gnori ngEl emrent Cont ent Wi t espace(true);

WWW.SyNngress.com

Processing XML Documents with DOM « Chapter 3

NamespaceAware

The NamespaceAware property specifies whether or not the parser is namespace
aware. The factory instance can be used to make the parser namespace aware:

dbf . set NamespaceAwar e(true);

Any parsers created by the factory after setting this property will support
name spaces in the XML.

Validating

This property is set to true for configuring the parser such that it validates the
XML file while parsing it. The following line sets this property to true:

dbf . set Val i dating(true);

We now integrate the methods and properties listed above to configure JAX-
P to be validating, coalescing, and namespace-aware.

Creating a Coalescing, Validating,

Namespace Aware DOM Parser

To perform a validating parse, we choose an XML file with a DOCTYPE decla-
ration to check whether the parser validates the XML. The file TempDTD.xml is
used as the source XML.The XML in file TempDTD.xml, is listed in Figure 3.8.

Figure 3.8 An XML with a DTD

<?xm version='1.0" encodi ng="1SO 8859-1" standal one="yes"?>
<! DOCTYPE ROOT [
<! ELEMENT ROOT (questi onid)>
<! ELEMENT questionid (#PCDATA) >
1>
<ROOT>
<questi oni d>9</ questi oni d>
</ ROOT>

We call our parser class Examplel whose code is listed in Figure 3.9.

Figure 3.9 The Parser Class

inmport java.io.*;

i mport javax.xm .parsers.*;

Continued

WWW.Syngress.com

69

70 Chapter 3 = Processing XML Documents with DOM

Figure 3.9 Continued

i nport org.xm .sax.*;
i mport org.xm .sax. hel pers. *;
i mport org.w3c.dom *;

public class Exanplel
{

String result = new String();

String filenane = new String();
/1l Constructor..
// 1. File Name of the File To Be Parsed

Exanpl e1(String fil enane)
{

t his. fil ename = fil enane;
[/l Step 1: create a DocunentBuil der Factory and configure it
Docunent Bui | der Fact ory docunent Fact ory;

docunent Fact ory = Docunent Bui | der Fact ory. new nst ance() ;

/1 Optional: set various configuration options

docunent Fact ory. set Val i dati ng(true);

docunent Fact ory. set | gnori ngCorment s(true);

docunent Fact ory. set | gnori ngEl enent Cont ent Whi t espace(true);

docunent Fact ory. set NanespaceAwar e(true);

/1 The opposite of creating entity ref nodes is expanding theminline

docurent Fact ory. set ExpandEnt i t yRef erences(true);

/1At this point the DocumentBuil derFactory instance can be saved
/land reused to create any nunber of DocunentBuil der instances

//with the sane configuration options.

//Step 2:create a DocunentBuilder that satisfies the constraints
/I speci fied by the Docunent Bui | der Fact ory

Docunent Bui | der nyDocunent Bui | der = nul | ;

try {

Continued
WwWw.syngress.com

Processing XML Documents with DOM « Chapter 3

Figure 3.9 Continued

myDocurent Bui | der = docunent Fact ory. newDocunent Bui | der () ;
} catch (ParserConfigurati onExcepti on pce) {
Systemerr.println(pce);
Systemexit(1);
}
/1 Sets the Error Handler..
nyDocurnent Bui | der . set Err or Handl er (new MyErrorHandl er());

/1 Step 3: parse the input file

Docunent parsedDocunment = nul | ;
try {
par sedDocunent = myDocunent Bui | der. parse(new Fi |l e(fil enane));

} catch (SAXException se) {

Systemerr. println(se.get Message());
Systemexit(1);

} catch (1 OException ioe) {
Systemerr.println(ioe);

Systemexit(1);

}

/] Store the DOMtree in a String Object

st oreResul t (par sedDocunent) ;

voi d storeResult(Node node)

{

/1 The function is responsible for Traversing the DOM Tree and

Il storing the result in the Object of the Cass String

String returnResul t ()
{

/1 This function is responsible for returning the result to

/1 the calling program

}

Continued

www.syngress.com

71

72 Chapter 3 = Processing XML Documents with DOM

Figure 3.9 Continued

/1 Error Handler |nplenmentation....
private static class MErrorHandl er inplenments ErrorHandl er
{
| *x
* Returns a string describing parse exception details
*/
private String getParseExceptionl nfo(SAXPar seExcepti on spe) {
String systemd = spe.getSystemd();
if (systemid == null) {
systemd = "null";
}
String info = "URI=" + systemd +
" Line=" + spe.getLineNunber() +
+ spe. get Message();

return info;

/1 The followi ng nmethods are standard SAX ErrorHandl er nethods.
/] See SAX docunentation for nore info.

public void warni ng(SAXPar seException spe) throws SAXException {
Systemout.println("Warning: " + getParseExceptionlnfo(spe));

}

public void error(SAXParseExcepti on spe) throws SAXException {
String message = "Error: " + getParseExceptionlnfo(spe);

t hrow new SAXExcepti on(nessage);

}

public void fatal Error(SAXParseException spe) throws SAXException {

String nmessage = "Fatal Error: + get Par seExcepti onl nf o(spe);

t hrow new SAXException(nmessage);

}
}

WWW.SyNngress.com

Continued

Processing XML Documents with DOM « Chapter 3

Figure 3.9 Continued

public static void main(String args[])

{
// Main Program..

}

The MyErrorHandler class takes care of the XML validation. It contains the
getParseExceptioninfo() method that prints out the URI for the source that caused
the exception, the description of the exception and the line number within the
source that caused the exception to be thrown. The warning(), error() and fatalError()
methods are used for the respective types of error. The storeResult()method is called
for each node in the DOM tree, and the corresponding node name and value are
appended to the result string variable. The storeResult() method will be discussed
later when we build a complete working parser (See XMLParser.java class of
Figure 3.16).

Parsing XML into a DOM

Before we commence our discussion on how an XML file can be parsed into a
DOM tree, we discuss the various possible input sources for the XML file to be
parsed. JAXP handles each of the input source types differently..

Input Source Types

An input source refers to the resource (a URL, a string, a file and so on) that
provides a parser with the XML to be parsed. The source XML can be made
available to a parser from various types of sources. These sources include an XML
file (for example, myXML.xml) that needs to be read by the parser, a string (One
method calls a parsing function and passes the source XML to it as a string
parameter value), an input stream (The XML is being read from a remote source
using a socket), an entity (when the entity within an XML refers to another
complete XML document) and so on. In this section we focus on how JAXP
can be used to read/receive XML from various sources.

www.syngress.com

73

74

Chapter 3 = Processing XML Documents with DOM

InputSource

This class encompasses input from a single source object; for example, a byte
stream or a character stream. This input source is passed on to the parser’s parse()
method. How the JAXP parser reads the XML depends upon the input stream.
For example, if the input source is a character stream, it will be read directly.
Otherwise, the parser will try to read it using a byte stream. If the input is neither
a byte stream nor a character stream, the parser will try to open a URL connec-
tion to the identified resource. Note that this is also true in the case of SAX
parsers. As mentioned earlier, this is because the JAXP parsers build the DOM
based on SAX events.

The class uses the method getByteStream() if the input is in the form of a byte
stream, the method getCharacterStream() if the input is a character stream, else, it
uses the getSystemld() method to read from the input source.

File-based Source

If the XML is in the form of a file (say myfile.xml), the file can be directly passed
to the the JAXP parser’s parse() method in the following form:

par ser bj ect . parse(new File("nyfile.xm "))

This command’s return value will be a Document object containing the parsed
XMLs DOM tree.

InputStream-based Sources

In InputStream-based sources, a connection is opened to an XML source and the
input stream associated with the XML source is obtained. This InputStream is
passed to the parser class. For example, if the XML file is named Temp.xml, we
obtain the input stream using the following code:

String urlName = "http://1ocal host: 8080/ exanpl es/ Tenp. xm ";
URL url = new URL(url Nane);

URLConnecti on connection = url.openConnection();

I nput Stream XMLStream = connection. getlnput Streamn();

We pass this input stream to the parse() method as follows:
par ser Cbj ect . parse(XML.St rean) ;

The parse() method now uses XMLStream to parse the XML.

WWW.SyNngress.com

Processing XML Documents with DOM « Chapter 3

String

If a piece of XML code is assigned to a String variable, this variable can straight-
away be passed to the parse() method for parsing. For example, if the XML is
assigned to the XMLString variable, the following line of code will cause the
parser class to parse the XML and return its Document object:

par ser Qbj ect . parse(XM.Stri ng);

EntityResolvers

An XML document may contain a reference to an external entity. When parsed,
this entity is resolved and loaded in the original document. Figure 3.10 shows
XML in that contains reference to an external entity.

Figure 3.10 An XML file with an External Entity

<l-- Sanple2.xm -->

<! DOCTYPE poem [

<IENTITY ext1l SYSTEM "Sanpl e2. xm ">

1>

<poenr

<verse>Take Care To Get Wat You Like.</verse>

<verse>QtherWse you'll be Forced to |ike what you Get.</verse>

&ext 1;

<verse>Don't worry about pressure..</verse>

<verse>Renmenber it is the pressure that makes dianmpbnd out of coal.</verse>

</ poenp

Extl contains the reference to the external entity that is an XML file named
Sample2.xml. Sample2.xml contains the code given in Figure 3.11.

Figure 3.11 File Sample2.xml

<l-- Sanple2.xm (Sanple2.xm) -->
<verse>May Lord Al mghty be with you Al ways.</verse>

<verse>May Lord Almghty help in Difficult tinmes.</verse>

When the first XML file is run, the entity ext1 is resolved and the output is as
shown in Figure 3.12.

www.syngress.com

75

76 Chapter 3 = Processing XML Documents with DOM

Figure 3.12 The XML Output with a Resolved External Entity
FE-" -: ';_ = hvmﬂﬁﬂﬂﬂﬂ

& ey e sy s Deaeg T FLUATE g Pavpar Lype? ot 8]

® o AL ot . |

v
e Take Care Te il e T Lk o eac
e R e ST B cenEd 1o b el e T e

et ey Ll Alimlghig Be sdh s Al peagn. -
@ oo ey Luest Aimlghd g sy a0 Dl .rllr-m.
arrclon 't ey abeer grosssm. e
R e T A |] |il-|.l.lHl-1|‘I1 ki ol Ereeed el ai
il s
e

L] [i e

Note that the output reflects the XML from file Sample2.xml. If an applica-
tion needs to handle any external entities, it must implement the EntityResolver
interface and register with the SAX driver. Only then will the XML reader allow
the class to implement customized handling for these entities (For example an
external DTD subset). This is typically required when the XML is being gener-
ated from a database or the input is from specialized sources such as URI types
other than URLs. For example, if you need to generate an XML entity at run-
time as per a specific DTD and you wish to define your own customized handler
for this entity, then you need to implement the EntityResolver interface. If, how-
ever, you do not require any customized handling for the entities and thus decide
not to implement the EntityResolver, then the parser will use the default entity
resolving mechanism.

The class uses the resolveEntity() method to resolve external entities. This
method returns an InputSource associated with the entity.

public | nputSource resolveEntity(String publicld, String systemid) throws
SAXException, | OException

If the entity cannot be resolved, a SAXEXxception is thrown. If the designated
entity cannot be reached, an IOException is thrown.

An important facet however, is that JAXP SAX wrappers do not resolve
external entity references. The same applies to non-validating parsers.\When a
parser cannot resolve an entity, it may simply skip it or generate an error. If an
entity is skipped, a callback is issued that gives the name of the skipped entity. This
enables another parser with the required resolving features to resolve the entity.

The skippedEntity() method can be used to retrieve the name of the skipped
entity.

public void skippedEntity(String nane) throws SAXException

WWW.SyNngress.com

Processing XML Documents with DOM « Chapter 3

The name parameter contains the name of the skipped entity.

NoTE

Established parsers like Apache Xerces, even if they are non-validating,
will not skip entities. Instead they will expand entity references and
include them in the parsed results. However, be careful when using
another parse engine. Also take care that the parameter passed to the
skippedEntity() method does not contain the leading ampersand and the
trailing semicolon that are used to denote an entity. (For example,
“&extl;” in Figure 3.10 would be passed as “extl”)

Manipulating DOM Objects

Once an XML file has been parsed and its DOM tree constructed, simple func-
tions can be created to traverse through the DOM tree. The Node interface pro-
vides ample methods and properties to separately obtain each node object in the
DOM tree and its respective text values, its attributes and its child nodes. Each
of the nodes can be processed further down until the leaf nodes (those with
nothing below them) are reached. In the following sections, we shall discuss how
this is done.

Walking a DOM Constellation

To create a DOM tree, we first need to parse an XML file and create the
Document object. Readers may recall that the document object is representative of
the complete parsed XML file, with all the XML elements and data contained
within it. Assuming that the XML source is a file, the following code will create a
Document from the XML.:

Docunent doc = null;

try {

doc = db. parse(new Fil e(fil enane));
} catch (SAXException se) {}

} catch (1 OException ioe) {}

Here, db is the DocumentBuilder object created from the instance of the
DocumentBuilderFactory class. Note that a SAXEXxception is thrown if the XML
cannot be parsed and an 10Exception is thrown if the XML file cannot be read.

www.syngress.com

77

78 Chapter 3 = Processing XML Documents with DOM

We now list an echo() function that accepts the document object, doc, as a
parameter.

private void echo(Node n) {
int type = n.getNodeType();
switch (type) {
case Node. ATTRI BUTE_NCDE:
/1 Check if the node represents an attribute
Systemout. println("Attribute Node");
br eak;
case Node. CDATA_SECTI ON_NODE:
/1 Check if the node represents a CDATA section
System out. printl n(" CDATA Secti on Node");
br eak;
case Node. COVMVENT_NODE:
/1 Check if the node represents a Conmment
System out . printl n(" Conment Node");
br eak;
case Node. DOCUMENT _FRAGVENT _NCDE:
/1 Check if the node represents a Document Fragnent
System out. printl n("Docunment Fragnent Node");
br eak;
case Node. DOCUMENT_NCDE:
/1 Check if the node represents a Docunment Node
System out. printl n("Docurment Node");
br eak;
case Node. DOCUMENT_TYPE_NODE:
/1 Check if the node represents a node that defines the type
/1 of document

System out. println("Docunment Type Node");

/1 1f the node defines the docunment type, obtain its NodeMap
NanmedNodeMap nodeMap = ((Docunent Type)n).getEntities();
indent += 2;
for (int i = 0; i < nodeMap.getLength(); i++) {

Entity entity = (Entity)nodeMap.iten(i);

echo(entity);

WWW.SyNngress.com

Processing XML Documents with DOM « Chapter 3

}

br eak;
case Node. ELEMENT_NODE:
/1 Check if the node represents an el enent
System out. println("El ement Node");
/1 1If the node represents an elenent, obtain its attributes
/1 using its NodeMap
NanedNodeMap atts = n.getAttributes();

for (int i = 0; i < atts.getLength(); i++) {
Node att = atts.iten(i);

echo(att);

}

br eak;

case Node. ENTI TY_NODE:
/1 Check if the node represents an Entity
Systemout.printin("Entity Node");
br eak;
case Node. ENTI TY_REFERENCE_NODE:
/1 Check if the node represents an Entity Reference
Systemout.printin("Entity Reference Node");
br eak;
case Node. PROCESSI NG | NSTRUCTI ON_NCDE:
/1 Check if the node represents a Processing Instruction
Systemout.println("Processing Instruction Node");
br eak;
case Node. TEXT_NCDE:
/1 Check if the node represents a Text Node
System out. println("Text Node");
br eak;
defaul t:
/1 Check if the node type is not recognised
System out . println("Unrecogni sed Node Type");

br eak;

}

/!l Run a for loop to obtain the children if any for the node

/1 passed a Paraneter to the echo() nethod

www.syngress.com

79

80

Chapter 3 = Processing XML Documents with DOM

for (Node child = n.getFirstChild(); child !'= null;
child = child.getNextSibling()) {
echo(child);

}

}

Note that doc is being passed to the echo() method as a Node object. This is
because the Document object is treated as a node in the DOM tree. (Refer to the
discussions in the previous sections for clarification.)

We quote snippets from the echo() method to analyze how the DOM tree is
traversed.

Obtaining the Document Root
Notice the code line:

case Node. DOCUMENT_NCODE:

This line retrieves the document node when it is encountered. This docu-
ment node is the root node of the document from where further processing
down the DOM tree begins. The document node will be the first node encoun-
tered when the document object (doc), is first passed to the echo() method.

Walking the Hierarchy

The echo() method uses the in-order technique to traverse the DOM tree. In the
in-order technique, when a node (Node A, for example) is encountered, the pro-
cessing sequence follows the path under that node until the leaf nodes are
reached, and then the processing resumes at the node’s next sibling. We redraw
part of Figure 3.2 as Figure 3.13 to explain the sequence in which the DOM tree
is traversed.

Root Element is the first one to be obtained. The program then goes to
Element 1 and retrieves its attribute as given by Attribute 11. Element 2 is fetched
next, followed by its text value, Text 1. The next in sequence is Element 3. Its
attributes, Attribute 13 and Attribute 23, are obtained and the program goes to
Element 4 and so on. The Path arrows in Figure 3.13 have been numbered to rep-
resent the path followed.

Since the focus in this chapter is on JAXP rather than on DOM, other
traversal techniques like left-to-right (LTR) are not being explained. Interested

WWW.SyNngress.com

Processing XML Documents with DOM « Chapter 3

readers may refer to relevant material when using a parser that uses a different
traversal technique.

Figure 3.13 Traversing the DOM Tree

Root Element

l L‘ Element 1
path 1 Path 2
Attribute 11

\

Path 3
== ez |
y

Path 5
Path .
@ 7*—> Attribute 13

Path 7
——| Attribute 23
Path8 | Y_,
Element 4

Finding sibling and child nodes
Consider the following for loop of the echo() method

for (Node child = n.getFirstChild(); child !'= null;
child = child.getNextSibling()) {
echo(child);

}

When the document object is passed to the echo() method, the first execution
of the loop returns Root Element (See Figure 3.6) as the first child of the doc
object,. The echo() function is recalled, except that this time the node object
being passed to echo() is Root Element. The next pass through this for loop returns
Element 1 as the child element of Root Element and passes it as a parameter to
the echo() method. Since Element 1 is an Element node, the case statement, case

www.syngress.com

81

82

Chapter 3 = Processing XML Documents with DOM

Node.ELEMENT_NODE:, causes the NamedNodeMap of Element 1% attributes to
be created through the following code:

NarmedNodeMap atts = n.getAttributes();

for (int i = 0; i < atts.getLength(); i++) {
Node att = atts.item(i);
echo(att);

}

The first pass through the main for loop invokes this code against Element 1.
The next pass through the for loop returns Element 2 as the child for Element 1.
Again, the echo() method is called and Element ‘s 2 attributes are retrieved. The
next pass through the for loop returns Element 3 as the next sibling of Element 2.
The processing thus follows the in-order sequence discussed above.

The following discussion clarifies the concept of walking the DOM tree.

A Servlet to Write Out Name/Value

Pairs from Example Schema

First of all, Figure 3.14 lists the XML that is being parsed. Note that we shall be
using the same XML for further examples, so Figure 3.14 will be referenced in
future discussions.

Figure 3.14 XML Code for Parsing

<?xm version="'1.0" ?><RO0T>

<questi on>

<questi oni d>1</ questi oni d>
<questi ont ext >Type Any Question Here ?</questiontext>
<option>Option 1</option>
<opt i onno>1</ opt i onno>
<correct>N</correct >
<option>Qption 2</option>
<opt i onno>2</ opti onno>
<correct >Y</correct >
<option>Option 3</option>
<opt i onno>3</ opt i onno>
<correct>N</correct>
<option>ption 4</option>

<opt i onno>4</ opti onno>

Continued

WWW.SyNngress.com

Processing XML Documents with DOM « Chapter 3

Figure 3.14 Continued

<correct >N</correct >
</ questi on>
</ ROOT>

Assuming that this XML is available as a file named Temp.xml, we now create
the ParsingXML.java servlet (Figure 3.15), to open a connection to the
Temp.xml file using Java’s URLConnection object.We also assume that Temp.xml
lies within the examples folder in the servlet’s document root.

Figure 3.15 The ParsingXML.java Servlet

import java.io.*;
i mport java.net.*;
i mport javax.servlet.*;

import javax.servlet.http.*;

public class ParsingXM. extends HttpServl et
{
| nput St ream xm St ream
public void doGet(HtpServletRequest request,
Ht t pSer vl et Response response)
throws Servl et Exception, |OException
{
PrintWiter outputWiter = response.getWiter();
response. set Content Type("text/htm");

/1 Providing the url Nane of the XML File..

String urlnane = "http://]ocal host: 8080/ exanpl es/ Tenp. xm ";
URL url = new URL(url nare);
URLConnection connection = url.openConnection();

xm Stream = connection. getlnputStrean();

/1 Calling the dass XM.Parser with the Stream of the XM. File,
/1 to parse the XML File.

Continued

WWW.Syngress.com

83

84 Chapter 3 = Processing XML Documents with DOM

Figure 3.15 Continued

XM_Par ser mnyParser = new XM.Parser(xm Stream;

// Ootaining the result fromthe d ass.

String returnValue = nyParser.returnResult();
outputWiter.println("<center><hl>Result of Parsing</center>");
outputWiter.println("<h4> "+returnVal ue);

output Witer.close();

xm Stream cl ose();

The ParsingXML servlet extends the HT TPServlet used for the HTTP pro-
tocol. The ParsingXML servlet calls the XMLParser class within its doGet()
method. The servlet passes the contents of the Temp.xml file to the parser class
using the data stream stored in the xmlstream variable.

NoTE

The ParsingXML servlet uses the GET method (in which the servlet
receives data in the form of a query string) for the request. However, the
ParsingXML servlet does not read any data using the HTTPServletRequest
object, since data is being read from a file-based source. Thus, the use of
doGet() or doPost() is figurative and not practically relevant to this partic-
ular servlet.

The XMLParser class is responsible for creating instances of the
DocumentBuilderFactory class and DocumentBuilder class to create the XML’s
DOM tree. The code for the XMLParser class is listed in Figure 3.16:

Figure 3.16 The XMLParser.java Class

import java.io.*;
i mport javax.xm .parsers.*;

import org.xmnl.sax.*;

WWW.SyNngress.com

Continued

Processing XML Documents with DOM « Chapter 3

Figure 3.16 Continued

i nport org.xnl.sax. hel pers. *;
i mport org.w3c.dom *;

public class XM.Parser

{

String result = new String();

/1 Constructor..
/1 1. InputStreamof the File to be parsed..

XMLPar ser (1 nput Stream xnl Streamn
{

/1l Step 1: create a DocunentBuil derFactory and configure it
Docunent Bui | der Fact ory docunent Fact ory;

docunent Fact ory = Docurnent Bui | der Fact ory. newl nst ance() ;

/1 Optional: set various configuration options

docunent Fact ory. set Val i dati ng(fal se);

docunent Fact ory. set | gnori ngCorment s(true);

docurent Fact ory. set | gnori ngEl ement Cont ent Wi t espace(true);

docunent Fact ory. set Coal esci ng(true);

/1 The opposite of creating entity ref nodes is expanding theminline

docunent Fact ory. set ExpandEnti t yRef erences(true);

/1 At this point the DocunentBuil derFactory instance can be saved and
//reused to create any nunber of DocunentBuilder instances with the
/'l same configuration options.
Il Step 2: create a DocunentBuilder that satisfies the constraints
/'l specified by the DocumentBuil der Factory
Docunent Bui | der nyDocunent Bui | der = nul | ;
try {
myDocunent Bui | der = docunent Fact ory. newDocunent Bui | der () ;
} catch (ParserConfigurati onExcepti on pce) {

Systemerr.println(pce);

Continued

www.syngress.com

85

86 Chapter 3 = Processing XML Documents with DOM

Figure 3.16 Continued

Systemexit(1);
}

/1l Step 3: parse the input file

Docunent parsedDocunment = null;

try {
par sedDocunment = nyDocurnent Bui | der. parse(xm Stream;

} catch (SAXException se) {
Systemerr.println(se.get Message());
Systemexit(1);

} catch (I OException ioe) {
Systemerr.println(ioe);
Systemexit(1);

}

/] Store the DOMtree in a String Object

st oreResul t (par sedDocunent) ;

/1 The function is responsible for Traversing the DOM Tree and storing

// the result in the Object of the dass String (result).

During the

/1 Traversal special HTM. tags as al so added along with the Node

/1 Name/Value to as to facilitate understanding.

voi d storeResult(Node node)
{
String val = node. get NodeVal ue();
if (val == null)
{
result += "Nane : "+
node. get NodeNane() ;
result += "
";
}
else if (val.trim().equals(""))

WWW.SyNngress.com

Processing XML Documents with DOM « Chapter 3

Figure 3.16 Continued

{
/1 Sinmple lgnore...

}
el se
{
result += "Nane : "+
node. get NodeNane() ;
result += " &bsp; Val ue : " +

"</ Font>" + val + "
";

for (Node child = node.getFirstChild(); child !'= null;
child = child.getNextSibling())
storeResul t (child);

/1 This function is responsible for returning the result to the

//Calling program

String returnResult()

{

return(result);

}
}

The constructor of the XMLParser class accepts the servlet’s input stream.
The constructor instantiates the DocumentBuilderFactory class and uses this
instance to create a document builder object. Note the parser attributes: it
is non-validating (documentfactory.setValidating(false);), ignores comments
(documentfactory.setignoringComments(true);), ignores white spaces
(documentfactory.setlgnoringElementContentWhitespace(true);), is a coalescing
parser (documentfactory.setCoalescing(true);) and expands entity references
(documentfactory.setExpandEntityReferences(true);).

www.syngress.com

87

88

Chapter 3 = Processing XML Documents with DOM

The document builder’s parse() method parses the XML stream and creates a
document from it as shown by the following code line:

par seddocunent = mydocunent bui | der. parse(xn strean;

In the above line parseddocument is a Document object that contains the DOM
structure for the XML given by xmlstream.

The storeResult() method accepts a node object and obtains the node name
(node.getNodeName();) and the node value (node.getNodeValue();). If the node value
is null, only the node name is appended to the result string. Otherwise, both the
node’s name and value are appended to result. The HTML and

tags are being used to present the node names and values in a readable format
and hold no other significance for the parsing result.

NoTE

The storeResult()method accepts a Node object as parameter. However,
the XMLParser class’ constructor makes the first call to storeResult() by
passing a Document object to it (Note the code line “storeResult(parsed-
document);”). Recollect from our discussion on the Document interface
(“The Basic Classes” sub-section under “The Document Object Model”)
that Document extends the Node interface. This is equivalent to saying
that the Document obiject is also a Node object. Therefore, the call to
storeResult() with a Document object as parameter is perfectly valid.

We now examine the following for loop within the storeResult() method:

for (Node child = node.getFirstChild(); child !'= null;
child = child. getNextSibling())
storeResul t (child);

The first node returned by the loop will be the node representing the
<ROOT> tag, which happens to be the first child for the Document object given
by parseddocument. This node (ROQOT) is passed to the storeResult() method. This
means that during the second execution, the for loop will return the first child of
the ROOT node (the node that represents <questionid>). The third execution
returns the node that represents the tag <questiontext> and is a sibling of the
questioned node and so on. Thus, the for loop executes until all nodes within the
Document are covered.

WWW.SyNngress.com

Processing XML Documents with DOM « Chapter 3

The returnString()method returns the string variable to the calling servlet
(ParsingXML).
The output of the ParsingXML class is shown in Figure 3.17.

Figure 3.17 Output from ParsingXML.java

Result of Parsing

fapre o iy
{anm EOCIT
Sape pEviEn
Sawe el
M Srmyd Y
Tiie GEETOAd R
Hawer "pal Vil Topes Asp Quraias Heie
Hawe Clplain
lawe Bwal Vi Tiptii |
seee mpijanma
Tawen wgni Vol |
RET Y L il
M omurt Yahe N
e D
lawe wpgt Vi Thptil 1
. L]
lapee gl Vs §

fapes st Vol |
= Sy |
[T I I_'m_..l

Finding Lists of Nodes

The DOM tree can be searched for specific nodes by supplying the node name.
The Node interface provides the getNodeName() and getNodeValue() methods to
obtain the name and value of a node, respectively. These node names andvalues
may then be compared against a specified name/value to be searched. A loop can
be run to iterate through nodes with matching names/values.

Figure 3.18 illustrates searching a DOM tree for nodes that contain a speci-
fied value.We shall use the DOM tree from Figure 3.1for our example. First of
all, we create an HTML form with an input field in which to type the value for
which we’ll search. Let us call it searchForm.html (see Figure 3.18)

Figure 3.18 Code for searchForm.html:

<htm >
<head>
<title>Untitled Docurment</title>

<meta http-equi v="Content-Type" content="text/htm ; charset=iso-8859-1">

Continued

www.syngress.com

90 Chapter 3 = Processing XML Documents with DOM

Figure 3.18 Continued

</ head>
<body bgcol or="//FFFFFF" text="#000000">
<f orm name="fornl" nethod="get"
action="http://|ocal host: 8080/ exanpl es/ servl et/ Sear chl nXM." >
Enter the Search Criteria Here...
<i nput type="Text" nanme="NodeToSearch" size = "20">

<cent er >
<i nput type="submit" nane="Submt" value="Cick to Find The Node">
</ center>
</formp
</ body>
</htm >

Figure 3.19 The Search Form

The form of searchForm.html appears in the browser as shown in Figure 3.19.

Finding a List of Nodes that Match a Particular Criteria

We now create a class that accepts two parameters: a search word and an XML
input stream that is to be searched for the search word. This class, DOMXML,
uses the DocumentBuilder class to parse the XML and build its DOM tree. It then
searches the resulting DOM tree for the specified search value (see Figure 3.20).

Figure 3.20 Code for DomXML.java

inmport java.io.*;

i mport javax.xm .parsers.*;
import org.xmnl.sax.*;

i mport org.xm . sax. hel pers. *;

i nport org.w3c.dom *;

WWW.SyNngress.com

Continued

Processing XML Documents with DOM « Chapter 3

Figure 3.20 Continued

public class DOVXM-

{

String result = new String();

String searchCriteria = new String();
bool ean found = fal se;

int valueNo = 1;

/1 Constructor..
/1 1. InputStream of the File to be parsed..
/! 2. Node Value to be searched.

DOMXM_(| nput Stream xm Stream String searchCriteria)

{
this.searchCriteria = searchCriteria;
/1l Step 1. create a DocunentBuil derFactory and configure it
Docunent Bui | der Fact ory docunent Fact ory;

Docunent Fact ory = Docunent Bui | der Fact ory. new nst ance() ;

/1l Optional: set various configuration options

docunent Fact ory. set Val i dati ng(fal se);

docunent Fact ory. set | gnori ngCorment s(true);

docurnent Fact ory. set | gnori ngEl ement Cont ent Wi t espace(true);

docunent Fact ory. set Coal esci ng(true);

/1 The opposite of creating entity ref nodes is expanding theminline

docunent Fact ory. set ExpandEnti t yRef erences(true);

/1 At this point the DocunentBuil derFactory instance can be saved and
//reused to create any nunber of DocunentBuilder instances with the

/I same configuration options.

/]l Step 2: create a DocunentBuilder that satisfies the constraints
/I speci fied by the DocunentBuil der Factory

Docunent Bui | der nyDocunent Bui | der = nul | ;

try {

Continued

www.syngress.com

92 Chapter 3 = Processing XML Documents with DOM

Figure 3.20 Continued

myDocurent Bui | der = docunent Fact ory. newDocunent Bui | der () ;
} catch (ParserConfigurati onExcepti on pce) {
Systemerr.println(pce);
Systemexit(1);
}

/1 Step 3: parse the input file

Docunent parsedDocunment = nul |l ;

try {
par sedDocunent = myDocunent Bui | der. parse(xm Strean);

} catch (SAXException se) {
Systemerr. println(se.get Message());
Systemexit(1);

} catch (1 OException ioe) {
Systemerr.println(ioe);
Systemexit(1);

}

/] Store the DOMtree in a String Object

st or eResul t (par sedDocunent) ;

}

/1 The function is responsible for Traversing the DOM Tree and storing
//the result in the Object of the Cass String (result). During the
// Traversal special HTM. tags as al so added along with the Node

/I Nane/ Value to as to facilitate understandi ng.

voi d storeResult(Node node)

{
String val = node. get NodeVal ue();

if (val !'= null)
{
val = val.trim);

if (val.equal slgnoreCase(searchCriteria))

{

found = true;

WWW.SyNngress.com

Continued

Processing XML Documents with DOM « Chapter 3

Figure 3.20 Continued

result += valueno+". " +node. get Parent Node(). get NodeName() +"
";
val ueNo++;
}

}
for (Node child = node.getFirstChild(); child != null;

child = child.getNextSibling())
storeResul t (child);

/1 This function is responsible for returning the result to the Calling
/lprogramIf the Flag found is false that is no name for a specific val ue

// is found then the String Object (result) is assigned a value "Enpty".

String returnResult()
{
if (!found)
result = "Enmpty";
return(result);
}
}

The name of the node whose value matches the search criterion is appended
to the result output String variable. The storeResult() method is repeatedly called
for all nodes in the DOM tree to check for those with matching value entries. If
no match is found, the Empty string is assigned to the result variable.

Now we create a servlet to read the search value from the HTML form and
pass it to the DomXML class for searching. The servlet will also print out the
search results it receives from the DomXML class.We call this servlet SearchinXML.
SearchiInXML5s code displayed in Figure 3.21.

Servlet to Write Out All Node
Names that Contain a Specific Value

The SearchInXML servlet opens a connection to the Temp.xml file, which
contains the XML to be searched. It also reads the search word from

www.syngress.com

93

94

Chapter 3 = Processing XML Documents with DOM

searchForm.html using the getParameter() method. The servlet then passes the
XML stream and the search word to a DomXML object (Figure 3.21).

Figure 3.21 The SearchinXML Servlet

nport java.io.?*;
nport java.net.*;
nport java.util.*;
nport javax.servlet.*;

nport javax.servlet.http.*;

public class SearchlnXM. extends HttpServlet

{

| nput St ream xml Stream
String searchCriteria = new String();
public void doGet(HtpServl et Request request,
Ht t pSer vl et Response response)
throws Servl et Exception, |OException

{

PrintWiter outputWiter = response.getWiter();

response. set Cont ent Type("text/htm ");

/1 Storing the paraneter passed to the servlet in a string variable.

searchCriteria = request.getParaneter("NodeToSearch");

/1 Providing the url Name of the XML File..

String url Name = "http://I|ocal host: 8080/ exanpl es/ Tenp. xm ";
URL url = new URL(url Nane);

URLConnecti on connection = url.openConnection();

xm Stream = connection. getlnput Strean();

/1 Calling the Cass DomXM. with the Stream of the XML File and a

/Iparticular search criteria to search in the XM_ File.
DOMXM. nyParser = new DOMWM.(xm Stream searchCriteria);
/] Obtaining the result fromthe d ass.

String returnValue = nyParser.returnResult();

outputWiter.println("<center><hl>Result of Searching</center>");

Continued

WWW.SyNngress.com

Processing XML Documents with DOM « Chapter 3

Figure 3.21 Continued

/1 Displaying the result in appropriate fornmat.
i f (returnval ue. equal s("Enpty"))

outputWiter.println("<h4> "

+ " Search Yielded 0 result(s). ");

el se
{

StringTokeni zer tokens = new StringTokeni zer(returnVal ue, "
");

int nunmber O Tokens = tokens. count Tokens();

outputWiter.println("<h4> "

+ " Search Yielded "+ nunberOf Tokens + " result(s). ");
outputWiter.print("<h4> "+returnVal ue);

}

outputWiter.close();
xm Stream cl ose();
}
}

If returnValue contains “Empty,” it outputs the message “Search Yielded 0
result(s).” Otherwise, returnValue is split using the HTML
 tag that was
appended after each matching entry by the DomXML class. Assuming that the user
entered the value “1” into searchForm.html’s input field (See Figure 3.21), the
node names satisfying the search criterion are displayed as shown in Figure 3.22.

Figure 3.22 Node Names that Match the Search Criterion

Dby i . PN v | reavien Searkl dil Wl MIE

Rezuli of Scarching
b Tislded 1 geaninai

| sprrriwgud
| opiyennn

D= T P

www.syngress.com

95

96

Chapter 3 = Processing XML Documents with DOM

Changing the Contents of a Node

The DOM tree can be used not only to read node names or their values, but also
to modify an XML file. This modification could take the form of appending
nodes, changing node values or deleting nodes. Once again, the various methods
provided by the Node interface come into play while modifying the DOM tree.

We start by creating a single user interface in the form of an HTML form
that accepts a node name and the corresponding node value in input fields and
provides two buttons, one to empty the DOM tree (by removing all nodes in the
tree) and the other to modify the node value or to append a new node. We call
this file modifyForm.html. Figure 3.23 shows the code for this file:

Figure 3.23 The modifyForm.html Code

<ht m >

<head>

<title>Untitled Document</title>
<meta http-equiv="Content-Type" content="text/htnl; charset=iso-8859-1">
</ head>
<body bgcol or ="#FFFFFF" t ext ="#000000" >
<form name="forml" method="get" action="http://| ocal host: 8080/ exanpl es/
servl et/ Addi ti onl nXWM." >
Enter the Node Name Here..<input type="Text" nane="NodeToAdd" size =
" 20" >

Enter the Node Val ue Here..<input type="Text" name="Val ueToAdd" size =
"20">

<center><i nput type="submt" name="Submt" value="Cick to Add/ Change
Node in The XM.">
</ center>
</form
<form name="forml" met hod="post" action="http://| ocal host: 8080/ exanpl es
/ servl et/ Enpt yXM." >
<i nput type="submt" nane="Submt" value="Enpty the Entire DOV >
</form
</ body>
</htm >

WWW.SyNngress.com

Processing XML Documents with DOM « Chapter 3

Consider the form displayed in Figure 3.24, where we have assumed that the
user has added Option as the name of the new node and New Option as the value
of the node after opening the modifyForm.html file in the browser.

Figure 3.24 The Form for Modifying the DOM Tree

Creating and Updating Elements and Text Nodes

We create a single class, ModifyXML.java, that matches the node name passed to
its constructor with all the nodes in the DOM tree. If the node name is found, its
value is updated using the node value passed as another parameter to the con-
structor function. If the node is not found, a new node with the given name and
value is appended to the root of the DOM tree. Code for ModifyXML.java is

shown in Figure 3.25.

Figure 3.25 The ModifyXML.java Class

inmport java.io.*;

i mport javax.xm .parsers.*;
import org.xml.sax.*;

i mport org.xm .sax. hel pers. *;

i mport org.w3c.dom *;

public class ModifyXM
{

String result = new String();

String nodeNane = new String();

String nodeValue = new String();

int enpty = 0;

bool ean found = fal se;

Continued

www.syngress.com

97

98

Chapter 3 = Processing XML Documents with DOM

Figure 3.25 Continued

bool ean addedAt End = fal se;

i nt

Il
11
Il
11
Il

val ueNo = 1;

Constructor..

1
2
3.
4

I nput Stream of the File to be parsed..
Node nanme which is to be affected.
New Node val ue of the Node nane which is to be affected.

Fl ag enpty which is used to Enmpty out the entire DOM Tree..

Modi f yXML(| nput Stream xm Stream String nodeNane,
String nodeVal ue, int enpty)

t hi s. nodeNane = nodeNane;

thi s. nodeVal ue = nodeVal ue;

/1 Step 1:

create a Docunent Buil der Factory and configure it

Docunent Bui | der Fact ory docunent Fact ory;

Docunent Fact ory = Docunent Bui | der Fact ory. new nst ance() ;

/1 Optional: set various configuration options

docunent Fact ory.
docunent Fact ory.
docunent Fact ory.
docunent Fact ory.
/1l The opposite

docunent Fact ory.

/1 A
/lreused to create any nunber

set Val i dati ng(fal se);
set | gnori ngConment s(true);
set | gnori ngEl ement Cont ent Wi t espace(true);

set Coal esci ng(true);

set ExpandEnt it yRef erences(true);

of creating entity ref nodes is expanding theminline

this point the DocunentBuil derFactory instance can be saved and

/I same configuration options.

/1 Step 2:

of Docunent Buil der instances with t

create a DocunentBuil der that satisfies the constraints

/'l specified by the DocumentBuil der Factory

Docunent Bui | der nyDocunent Bui | der

try {

= null;

he

WWW.SyNngress.com

Continued

Processing XML Documents with DOM « Chapter 3 99

Figure 3.25 Continued

myDocurent Bui | der = docunent Fact ory. newDocunent Bui | der () ;
} catch (ParserConfigurati onExcepti on pce) {
Systemerr.println(pce);
Systemexit(1);
}

/1 Step 3: parse the input file

Docunent parsedDocunment = nul |l ;

try {
par sedDocunent = myDocunent Bui | der. parse(xm Strean);

} catch (SAXException se) {
Systemerr.println(se.get Message());
Systemexit(1);

} catch (1 OException ioe) {
Systemerr.println(ioe);
Systemexit(1);

}

if (enpty == 1)
{
Docunent enptyDocunment = null;
par sedDocunent = enptyDocunent;
showResul t (par sedDocunent) ;
}

el se
{
st oreResul t (par sedDocunent) ;
/1 1f a node of a particular nane is not found then call
/1 the Function "AddNewNode" to create a new Node at the End.
if (!found)
{
addedAt End = true;
El ement newNode = parsedDocunent. creat eEl enment (nodeNane) ;

Text textNode = parsedDocunent. creat eText Node(nodeVal ue) ;

Continued

www.syngress.com

100 Chapter 3 = Processing XML Documents with DOM

Figure 3.25 Continued

par sedDocunent = addNewNode(par sedDocunent, newNode, t ext Node) ;
}

/] Store the DOMtree in a String oject
showResul t (par sedDocunent) ;
}
}

/1 The function is responsible for Traversing the DOM Tree and checking
/1 whether a Node of a particular name is present or not. If it is
/'l present then the value of the node is replaced buy the new Val ue

/1 and a flag "Found" is set to be true.

voi d storeResul t (Node node)
{
String val = node. get NodeNane();
val = val.trim);
i f (val.equal sl gnoreCase(nodeNane))
{
found = true;
Node chi |l dNode = node. getFirstChild();
chi | dNode. set NodeVal ue(nodeVal ue) ;
}
for (Node child = node.getFirstChild(); child != null;
child = child.getNextSibling())
storeResul t (child);

}

/1 The function is responsible for Traversing the DOM Tree and storing
/1 the result in the hject of the Class String (result). During the
[/ Traversal special HTM. tags as al so added along with the Node

/1 Narme/Value to as to facilitate understanding.

voi d showResul t (Node node)
{

WWW.SyNngress.com

Continued

Processing XML Documents with DOM « Chapter 3

Figure 3.25 Continued

if (node == null)
{
result = "Enpty";
}
el se
{
String val = node. get NodeVal ue();
if (val == null)
{

result += "Name : "+
node. get NodeNane() ;

result += "
";

}
else if (val.trim().equals(""))
{
/1 Sinple lgnore...
}
el se if(val.equal sl gnoreCase(nodeVal ue))
{
i f (addedAt End)
{

result += "Nane : </ Font>"+
node. get NodeNane() ;

result += " &bsp; " +
"Value : "+ val + "
";

}

el se

{
result += "Nane : "+

node. get NodeNane() ;
result += " &bsp; &bsp;" +

"Val ue : "+ val +"</ Font >
";

el se

Continued

101

www.syngress.com

102 Chapter 3 = Processing XML Documents with DOM

Figure 3.25 Continued
{
result += "Nane : "+
node. get NodeNane() ;
result += " &bsp; " +

"Val ue : " + val +"
";

for (Node child = node.getFirstChild(); child != null;
child = child.getNextSibling())
showResul t (chi | d);

/1 This function is responsible for returning the result to the Calling

/] program

String returnResult ()
{

return(result);

}

/1 This function "AddNewNode" is responsible for adding a new Node to
/1 theDOM Tree it takes as paraneter three Objects of the Type Node..
/1 1. The original Dom Tree..

// 2. The Name of the Node to be added..

/1 3. The value of the Node to be added..

/1 The return type of this function is the updated DOM Docunent.

Docunent addNewNode(Node origi nal, Node nodeEl enent, Node nodeText)

{
Node position = original.getLastChild();

if (position.getNodeType() != Node. TEXT_NODE)
{

WWW.SyNngress.com

Continued

Processing XML Documents with DOM « Chapter 3

Figure 3.25 Continued

posi tion. appendChi | d(nodeEl enent);
posi tion. appendChi | d(nodeText);
}
el se
whi | e(posi tion. get NodeType() == Node. TEXT_NCDE)
{
for (Node child = position.getFirstChild(); child !'= null;
child = child.getNextSibling())
if (child.getNodeType() != Node. TEXT_NCODE)
{
child = chil d. appendChil d(nodeel ement) ;
child = child. appendChil d(nodetext);
ori gi nal . appendChil d(child);
br eak;
}
}

return((Docunent)original);

}

The code iterates through the storeResult() method to check if the node name
given by the nodeName variable exists in the DOM tree. If it does, the
setNodeValue() method is called to set its value to that passed to the constructor as
the nodeValue variable. If the node is not found, the addNewNode() method is
called to append the node to the end of the DOM tree.

If the value of the integer being passed to the constructor is 1, the ModifyXML
class sets the value of the parsed document objectto null. This automatically
removes all the nodes in the document.

AdditionInXML Servlet to
Modify Nodes in the DOM Tree

We now list the servlet (AdditionInXML), that reads the node name and the
value entered by the user and calls the ModifyXML class to change the value of
the node if it exists, or to append the node name and value if the node does not
exist. The code for AdditionInXML is shown in Figure 3.26.

103

www.syngress.com

104 Chapter 3 = Processing XML Documents with DOM

Figure 3.26 The AdditionInXML Servlet

import java.io.*;
import java.net.*;
import java.util.*;
import javax.servlet.*;

import javax.servlet.http.*;

public class AdditionlnXM extends HtpServl et
{

| nput St ream xml Stream

String nodeNane = new String();

String nodeValue = new String();

public void doGet(HtpServl et Request request,
Ht t pSer vl et Response response)
throws Servl et Exception, | OException

PrintWiter outputWiter = response.getWiter();

response. set Cont ent Type("text/htm ") ;

/1 Storing the paraneters passed to the servlet in string variables.
nodeNanme = request. get Par anet er (" NodeToAdd") ;

nodeVal ue = request. get Par anet er (" Val ueToAdd") ;

/1 Providing the url Nane of the XML File..

String urlname = "http://1 ocal host: 8080/ exanpl es/ Tenp. xm ";
URL url = new URL(url narne);

URLConnection connection = url.openConnection();

xm Stream = connecti on. getl nput Stream();

/1 Calling the Cass MddifyXM. with the Stream of the XML File, nodeNane
//and nodeVal ue of the node to be repl aced/ appended.
Modi f yXML nyParser = new Mdi f yXM_(xm Stream nodeNane, nodeVal ue, 0);

/1 Obtaining the result fromthe d ass.

String returnValue = nyParser.returnResult();

outputWiter.println("<center><hl>Result of Modification</center>");

WWW.SyNngress.com

Continued

Processing XML Documents with DOM « Chapter 3

Figure 3.26 Continued

output Witer.print("<h4> "+returnval ue);
outputWiter.close();
xm Stream cl ose();
}
}

The servlet uses the HT TPServletRequest object to read the values of the form
(Figure 3.23) fields in its doGet() method. Note that the form named Form1 in
Figure 3.23 specifies “get” as the value of its method attribute.

WARNING

The AdditionInXML servlet uses the doGet() method to obtain informa-
tion entered by the user, in the form of query string variables. Since the
information being passed in this example is not sensitive in nature, the
get method is acceptable. If, however, you are accepting confidential
information from the user, say, a user name and password pair, then use
the HTTPServlet’s doPost() method instead. This will also require
changing the method attribute of Form1 in Figure 3.23 to “post.” In case
you wish to only use the doGet() method, be sure to encode the values
being passed in the query string.

Assuming that the user puts the option string in the node-name input field
and the New Option string in the node-value input field, the output from
AdditionInXML will be as shown in Figure 3.27.

Observe that the value of all the existing nodes named “option” in the DOM
tree has been changed to “New Option.”

Now, if the user enters a node name, say “New Node,” that does not exist in
the DOM tree, the new node and its value will be appended to the end of the
document root as shown in Figure 3.28.

The EmptyXML.java servlet is called when the user clicks on the Empty the
Entire DOM button in modifyForm.html (See the action attribute of Form1 in
Figure 3.23). The servlet contains the code in Figure 3.29.

105

www.syngress.com

106 Chapter 3 = Processing XML Documents with DOM

Figure 3.27 Modifying the Value of an Existing Node

8 PO | e i 1Ty o kil mice . e

WWW.SyNgress.com

Processing XML Documents with DOM « Chapter 3

Figure 3.29 The EmptyXML Servlet

import java.io.*;

import java.net.*;

import java.util.*;

i mport

public

{

nport javax.servlet.

javax. servl et.

* .
’

http.*;

cl ass EnptyXM. extends HttpServl et

| nput St ream xm St r eam

String nodeNanme = new String();

String nodeVal ue =

new String();

public void doGet(HtpServletRequest request,

t hr ows

Ht t pSer vl et Response response)

Ser vl et Exception, | OException

PrintWiter outputWiter = response.getWiter();

response. set Cont ent Type("text/htm");

nodeNanme = request.

get Par anet er (" NodeToAdd") ;

nodeVal ue = request. get Par anet er (" Val ueToAdd") ;

/1 Providing the url Nane of the XML File..
String urlname = "http://1 ocal host: 8080/ exanpl es/ Tenp. xm ";

URL url = new URL(url nare);

URLConnection connection = url.openConnection();

xm Stream = connection. getl nputStrean();

/1 Calling the dass MddifyXM. with the Stream of the XML File, and | ast
/] paraneter 1 indicating that Donffree is to be enptied.

Modi f yXML nyPar ser

= new Modi f yXM_(xm Stream nodeNane, nodeVal ue, 1);

/] Obtaining the result fromthe d ass.

String returnVal ue

= nmyParser.returnResul t();

outputWiter.println("<center><hl1>DOM TREE DESTROYED</ center>");

Continued
WWW.Syngress.com

107

108

Chapter 3 = Processing XML Documents with DOM

Figure 3.29 Continued

outputWiter.close();
xm Stream cl ose();
}
}

This servlet calls the Modify XML class; however, it passes the value 1 to the
integer parameter, empty. The output from this servlet is a single line saying
“DOM TREE DESTROYED?” as shown in Figure 3.30.

Figure 3.30 Destroying the DOM Tree

Dby 2 e . Iy reervion ¥ gl W] Wi iy [IE

| R e P lwh e
| i YR e T

Ih .r-'r'\-'-'?r_'.r-'l'-l:l"\-—'l-'\-'--:!-rﬁll d|
|

DMOAM TREE DESTROYED

] []

Advanced Topics

This completes our discussion on using JAXP to create, modify and manipulate
XML documents based on the DOM model.We will now briefly discuss certain
advanced topics relevant to developing and deploying JAXP applications practically.

Multi-threaded Applications

As mentioned in the previous discussions, the DocumentBuilderFactory class is not
thread-safe. Practical applications, however, are likely to be multi-threaded with var-
ious threads requesting the DocumentBuilderFactory class simultaneously. In all of this
chapter’s examples, the object of the parsing class is being created in the servlet’s
doGet() method (See Figure 3.15). Since the doGet() method is called for each
request to the servlet, this ensures that each thread creates and uses its own instance
of the DocumetnBuilderFactory class, which makes these examples thread-safe.

public void doGet (H tpServl et Request request , HttpServl et Response

response) throws Servl et Exception, | OException

WWW.SyNngress.com

Processing XML Documents with DOM « Chapter 3

XM_Parser nyparser = new XM.Parser(xm strean;

Another way of developing thread-safe applications would be to create only
one object of the DocumentBuilderFactory class per application and ensure that
only one thread at a time can use the instance.We explain this concept with an
example.

Safe Routines

Let us instantiate the parsing class in the servlet’s init() method. Since the init()
method is called only once (when the servlet is loaded or called for the first
time), only one instance of the DocumentBuilderFactory is created and will be used
by every subsequent call to the service() method. The handling of parsing func-
tions by a single thread at any instance is implemented via the synchronized()
method as shown in the ThreadSafe.java servlet example (Figure 3.31).

Figure 3.31 The ThreadSafe Servlet

import java.io.*;
import java.util.*;

i mport java.net.*;

i mport javax.servlet.*;

import javax.servlet.http.*;

public class ThreadUnsafe extends HttpServl et
{

Unsaf ePar ser nyParser;

PrintWiter outputWiter;

| nput Stream xnml Stream

String returnVal ue;

public void init()
{

nmyParser = new Unsaf eParser();

}

Continued

109

www.syngress.com

110 Chapter 3 = Processing XML Documents with DOM

Figure 3.31 Continued

public void doGet(HtpServletRequest request,
Ht t pSer vl et Response response)
throws | OException, ServletException
{
outputWiter = response.getWiter();
response. set Content Type(" text/htm ");

String urlnane = "http://]ocal host: 8080/ exanpl es/ Tenp. xm ";
URL url = new URL(url nane);
URLConnection connection = url.openConnection();
xm Stream = connection. getl nput Strean();
synchroni zed(thi s)
{
nmyPar ser . par seNow(xm Strean);
returnValue = nyParser.returnResult();
}
outputWiter.println("<center><hl>Result of Parsing</center>");
outputWiter.println("<h4> "+returnval ue);
outputWiter.close();

xm Stream cl ose();

We list the UnsafeParser class before moving on to the explanation. The
change made to the parsing code is that the DocumentBuilder class is being instan-
tiated in a new method called parseNow(). This prevents the constructor of the
UnsafeParser class from being called for every request, thereby ensuring that the
DocumentBuilderFactory class is instantiated only once (when the constructor of
UnsafeParser class is created during servlet initialization). Remember that we are
using this code just to explain how the threading issues can be addressed. This
may not necessarily be code that you should use for practical applications (see
Figure 3.32).

UnsafeParser is an odd name in a section on thread safety. You can alternately
call it “UnsychronizedParser”” or something similar that implies that it is assuming
the externalization of synchronization policy.

WWW.SyNngress.com

Processing XML Documents with DOM « Chapter 3

Figure 3.32 The UnsafeParser.java Class

import java.io.*;

i mport
i mport
i mport
i mport

javax. xm . parsers. *;
org. xm .sax.*;
org. xnl . sax. hel pers. *;

org.w3c.dom *;

public class UnsafeParser

{

String result = new String();

Docunent Bui | der Fact ory docunent Fact ory;

Docunent Bui | der

nyDocunent Bui | der = nul | ;

Docunent parsedDocunent = null;

/1l Constructor..

Unsaf ePar ser ()

{

docunent Fact ory

= Docunent Bui | der Fact ory. newl nst ance();

/1 Optional: set various configurati on options

docunent Fact ory.
docunent Fact ory.
docunent Fact ory.
docunent Fact ory.
/1l The opposite
docunent Fact ory.

set Val i dati ng(fal se);

set | gnori ngComrent s(true);

set | gnori ngEl ement Cont ent Wi t espace(true);

set Coal esci ng(true);

of creating entity ref nodes is expanding theminline

set ExpandEnt it yRef erences(true);

voi d par seNow(| nput Stream xnl Stream

{

try {

myDocurent Bui | der = docunent Fact ory. newbDocunent Bui | der () ;

} catch (ParserConfigurati onExcepti on pce) {

Continued

111

www.syngress.com

112 Chapter 3 = Processing XML Documents with DOM

Figure 3.32 Continued

Systemerr.println(pce);
Systemexit(1);
}

try {
par sedDocunment = myDocunent Bui | der. parse(xm Strean);

} catch (SAXException se) {
Systemerr.println(se.get Message());
Systemexit(1);

} catch (1 OException ioe) {
Systemerr.println(ioe);
Systemexit(1);

}

// Store the DOMtree in a String Object

st or eResul t (par sedDocunent) ;

/1 The function is responsible for Traversing the DOM Tree and storing
/1 the result in the Cbject of the Cass String (result). During the
/Il Traversal special HTM. tags as al so added along with the Node

/1 Narme/Value to as to facilitate understanding.

voi d storeResult(Node node)
{
String val = node. get NodeVal ue();
if (val == null)
{
result += "Nane : "+
node. get NodeNane() ;
result += "
";
}
else if (val.trim().equals(""))

{

WWW.SyNngress.com

Continued

Processing XML Documents with DOM « Chapter 3

Figure 3.32 Continued

/1 Sinple Ignore...
}
el se
{
result += "Nane : " +
node. get NodeNane() ;
result += " &bsp; &bsp; Val ue " +

":" + val +"
";

for (Node child = node.getFirstChild(); child !'= null;
child = child.getNextSibling())
storeResul t (child);

/1 This function is responsible for returning the result to the Calling

/| program

String returnResult()

{

return(result);

}
}

The parsing class, UnsafeParser (we call it “unsafe” because this class in itself
does not address the issue of threading. The ThreadSafe servlet calls it in a thread-
safe manner) is instantiated by the servlet’s init() method.

public void init()
{

nmyparser = new UnsafeParser();

}

Since the init() method is called only once, the UnsafeParser class’s constructor
is likewise invoked once. This in turn means that only one instance of the

113

www.syngress.com

114

Chapter 3 = Processing XML Documents with DOM

DocumentBuilderFactory class (created when the constructor of UnsafeParser class is
called), is being created as shown in the code snippet below:

Unsaf ePar ser ()

{
docunent factory = Docurent Bui | der Fact ory. newl nst ance() ;

Note that the servlet’s doGet() method uses this instance using a synchronized()
block:

synchroni zed(t hi s)
{
nmyPar ser . par seNow(xm st rean) ;

returnVal ue = myParser.returnResult();

}

The synchronized() block ensures that only one thread at a time executes the
code given within it. Thus, even if multiple threads are needed to use the parser,
they are forced to do so in a thread-safe manner.

Unsafe Routines

In Figure 3.31 if we do not enclose the call to the parseNow() method within a
synchronized() block, it is possible that more than one thread will try to use the
myParser object simultaneously. Since there is only one instance of the
DocumentBuilderFactory class (DocumentFactory), the parser’s parseNow() method tries
to use this instance for creating more instances of the DocumentBuilder class:

voi d parseNow(| nput Stream xm Stream
{

try {
myDocunent Bui | der = docunent Fact ory. newDocunent Bui | der () ;

Since the DocumentBuilderFactory class in itself is not thread-safe, the code may
behave erratically or exceptions/errors may be thrown.

WWW.SyNngress.com

Processing XML Documents with DOM « Chapter 3

Parser Attributes

SAX parsers are configured by setting their features and properties. A feature has a
Boolean value (true or false), while a property has an object value. The XMLReader
interface provides the getFeature() and setFeature() methods respectively to obtain
and to set the value of a feature:

public void setFeature(String name, bool ean val ue) throws
SAXNot Recogni zedExcepti on, SAXNot Support edExcepti on
public Bool ean getFeature(String nanme) throws SAXNot Recogni zedExcepti on,
SAXNot Support edExcepti on

Standard feature names begin with http://xml.org/sax/features/. For
example, the following code sets the validating feature to true:

par ser Cbj ect. set Feature("http://xm . org/ sax/features/validation", true);

If the parser cannot recognize a feature, the SAXNotRecognizedException
is thrown. If the parser is not equipped to support the feature, a
SAXNotSupportedException is thrown.

SAX parsers do not have any of the properties required. However, the
XMLReader interface provides two methods, setProperty() and getProperty(),to set
and to retrieve the parser properties:

public void setProperty(String nanme, Object value) throws
SAXNot Recogni zedExcepti on, SAXNot Support edExcepti on

public Object getProperty(String nane) throws SAXNot Recogni zedExcepti on,
SAXNot Support edExcepti on

For example, to set the schema location for elements that are not in any
namespace of http://www.propertyexample.com/schema.xsd, the following code
may be used:

par ser bj ect. set Property(http://apache. org/ xm / properties/schema +
"ext er nal - noNamespaceSchemaLocation", "http://ww. propertyexanpl e. com

/ schema. xsd") ;

As against the SAX parsers discussed above, the parsers used in the various
examples in this chapter set validation, namespace-awareness, and so on as parser
attributes and not as parser properties or features. However, these are not
attributes in the XML sense. Attributes, as defined in XML, are name-value pairs
providing additional content information. The parser attributes, however, are
boolean values that can be turned on or off.

115

www.syngress.com

116

Chapter 3 = Processing XML Documents with DOM

Unlike the SAX parsers, JAXP-aware parsers do not have a standardized set of
features. Instead, they support various custom and vendor-specific features. For
example, Xerces, has a http://apache.org/xml/features/dom/create-entity-ref-nodes fea-
ture that lets you choose whether or not to include entity reference nodes in the
DOM tree. This is different from deciding whether or not to expand entity refer-
ences, which determines whether or not the entity nodes that are placed in the
tree have children representing their replacement text.

JAXP allows you to get and set these custom features as objects of the appro-
priate type using the following two methods:

public Coject getAttribute(String nanme) throws II1egal Argument Exception
public void setAttribute(String name, Object value) throws

I'I'I egal Argunment Excepti on

Suppose you are using Xerces and you do not want to include entity refer-
ence nodes. Since they are included by default, you need to set http://apache.org/
xml/features/dom/create-entity-ref-nodes to false. You may use setAttribute() on the
DocumentBuilderFactory, as in the following:

Docunent Bui | der Factory factory;
factory = Document Bui | der Fact ory. newl nst ance();
factory. set Attri bute(
"http://apache. org/ xm /features/donicreate-entity-ref-nodes"”,

new Bool ean(fal se)

The naming conventions for both attribute names and values depend on the
underlying parser. Xerces uses URI strings like SAX feature names. Other parsers
may do something different. JAXP 1.2 will add a couple of standard attributes
related to schema validation.

Selecting a DOM Parser with
the Plugability Interface

JAXP is reasonably parser-independent. The parser that a JAXP program uses
depends on which parsers are installed in your class path and how certain system
properties are set. The default is to use the class named by the javax.xml.parsers
.DocumentBuilderFactory system property. For example, if you want to make sure
that Xerces is used to parse documents, then you would run Examplel.java as per
the following code:

WWW.SyNngress.com

Processing XML Documents with DOM « Chapter 3

D: \ books\ XMLJAVA>] ava- Dj avax. xm . par ser s. Docunent Bui | der Fact or y=or g. apache.
xer ces. j axp. Docunent Bui | der Fact oryl npl Exanpl el

If you want to consistently use a certain DOM parser, gnu.xml.dom
JAXPFactory for instance, place the following line in the META-INEmf file of
the JAXP package:

javax. xm . par sers. Docunent Bui | der Fact or y=gnu. xm . dom JAXPFact ory

If this fails to locate a parser, JAXP looks for a META-INF/services/
javax.xml.parsers.DocumentBuilderFactory file in all JAR files available at run-
time to find the name of the concrete DocumentBuilderFactory subclass.

If that also fails, the DocumentBuilderFactory.newlInstance() returns a default class,
generally the parser from the vendor who provided the JAXP classes. For example,
the JDK JAXP classes pick org.apache.crimson.jaxp. DocumentBuilderFactorylmpl by
default. Thus, JAXP implementation provides parsers with sufficient plugability
options.

DOM Parser Search Path

When the DocumentBuilderFactory class is instantiated, it checks the Classpath vari-
able to locate the XML parser implementation. If the Classpath has not been
updated to point to the XML parser implementation, or if no parser implementa-
tion is provided, an instance of the DocumentBuilderFactory class cannot be created.
Trying to do so throws a FactoryConfigurationException Exception:

public class FactoryConfigurati onException extends Error{
publ i ¢ Fact oryConfigurationError();

publ i c FactoryConfigurati onError(String msg);

publ i ¢ FactoryConfigurati onError (Exception e);

publ i c Fact oryConfigurati onError(Exception e, String nsg);
public Exception getException();

}

The FactoryConfigurationError() method is used to handle the exception.

As already discussed, the object of the DocumentBuilderFactory class is used to
set the parser’s attributes. If the parser cannot be constructed with the validation
and namespace-awareness settings as specified by the parser code, a
ParserConfigurationException exception is thrown.

public class ParserConfigurati onExcepti on extends Exception{

publ i ¢ Par ser Configur ati onExcepti on();

117

www.syngress.com

118

Chapter 3 = Processing XML Documents with DOM

publ i ¢ Parser Configur ati onException(String nsg);
}

ParserConfigurationException may be thrown if the XML parser implementation
specifies contrary configurations settings.

Error Handling

The readers were introduced to error handling in Figure 3.9. The Examplel.java
class, which is a validating DOM parser, contains the MyErrorHandler class that
implements the ErrorHandler interface. The ErrorHandler interface is implemented
for customized error handling. Refer to the following line of code in The
Examplel.java class (Figure 3.9)

MyDocunent Bui | der . set Error Handl er (new MyErrorHandl er());

This line sets the Error handler by registering its instance with the XML
reader.

WARNING

If the instance of Error handler is not registered with the XML reader,
XML parsing errors will go unreported and the program code may
behave unpredictably.

Registration of the error handler’s instance with the XML reader enables the
SAX driver to report parsing errors, warnings and fatal errors through this inter-
face instead of throwing exceptions. The three methods error(), warning() and
fatalError() call the error handler class to report errors, receive a SAXParseException
object. The error() method is used for notification of recoverable errors, the
warning() method reports warnings and the fatalError() method reports non-recov-
erable errors.

WWW.SyNngress.com

Processing XML Documents with DOM « Chapter 3 119

Summary

In this chapter we introduced the concept of DOM structures for XML docu-
ments.\WWe showed how a DOM tree is built from an XML file, using relevant
examples.We then discussed the basic interfaces given in W3C’s specification for
the DOM model. This was followed by traversing the hierarchy imposed by the
objects of DOM interfaces and exploring the interrelationship among various
DOM objects, again with relevant examples. After sufficient information on DOM :
was provided, we moved on to discuss DOM in the context of JAXP. In this sec-
tion, we discussed the JAXP DOM API and its deployment.We followed this up
with examples on how to use JAXP classes such as DocumentBuilderFactory,
DocumentBuilder and so on, to build DOM parsers and to set the parser attributes. ‘
We then delved into the issue of handling various XML input sources (files,
streams and so on) using JAXP. Thereafter, we walked down a DOM constellation
to see what its constituents (the root document, the elements, the attributes,
attribute values and so on) are and how they can be obtained.

The chapter contains complete working program codes for: building a DOM
parser, searching the DOM tree for specific nodes, modifying the DOM tree
nodes/node values, and so on.We critically examined and explained these codes
to enumerate the code execution and to show the ease with which DOM docu-
ments can be manipulated. In the end of the chapter, we addressed issues of
multi-threading and how the thread-unsafe DocumentBuilderFactory class can be
used to build thread-safe parsers, configuring SAX parsers using the XMLReader
class, configuring the Classpath to ensure that the proper XML parser implemen-
tation is used by JAXP classes, and error handling in JAXP parsers. After going
through this chapter, you should be in a position to build customized DOM
parsers using JAXP to handle the processing requirements of XML documents.

Solutions Fast Track

The Document Object Model

M The Document Object Model (DOM) is a World Wide Web consortium
(W3C) specification that provides a programming interface for both
XML and HTML documents.

L
D
W o

120 Chapter 3 = Processing XML Documents with DOM

M DOM provides a cross-language, cross-platform object-based model for
documents that can be used in a wide variety of environments and with
any programming language.

M The Tree-based model is easy to navigate, modify and update.
M The DOM is efficient for repeated use of a single XML file.

JAXP and Underlying DOM Engines

M JAXP supports XML processing using DOM and provides some
convenient methods to make the XML APIs easier to use for java
developers.

%

M The DocumentBuilderFactory and DocumentBuilder interfaces are available
for creating DOM parsers using JAXP.

ﬁ Creating a DOM Parser

M The newlnstance() method creates an instance of the
DocumentBuilderFactory class; this instance can then be used with the
newDocumentBuilder() method to create a document builder.

M Various methods such as setlgnoringComments(),
setExpandEntityReferences(), setCoalescing() and so on can be used to set
the attributes for a JAXP parser.

M An XML can be parsed using the DocumentBuilder class’ parse() method
to create a DOM document.

¢ 7 Parsing XML into a DOM

h- ' M The parse() method of JAXP’s DocumentBuilder class accepts different type
of parameters, for example strings, input streams, files and so on to
accept XML input from different types of sources.

M The DocumentBuilder class’ parse() method converts the XML into a
DOM tree.

WWW.SyNngress.com

Processing XML Documents with DOM « Chapter 3 121

Manipulating DOM Obijects

M The node object provides methods such as getNodeName(),
getNodeValue(), getFirstChild() and so on that can be used to
navigate through the DOM constellation.

M The nodeName and nodeValue properties are used to add new nodes or to
modify existing node values in a DOM tree.

M The DOM tree can be destroyed by setting the document object value L
to EmptyDocument.
Advanced Topics “

M In a multi-threaded environment, the thread-unsafe
DocumentBuilderFactory class can be used in a thread-safe manner by
calling the parser within a synchronized() block.

M An error handler can be set using the setErrorHandler() method of the
DocumentBuilder class for customized error handling.

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

Q: Why should | use the DOM?

A: The DOM model provides a standardized view of a document’s contents. By
implementing the DOM API, the data from one program can be manipulated
by other routines. Additionally, these manipulations can be reused with other
DOMs. This interoperability justifies the use of DOM implementations.

Q: How is JAXP different from DOM and SAX?

A: DOM and SAX represent two standard approaches to handling XML docu-
ments: in-memory and event-driven. Both DOM and SAX omit a definition

www.syngress.com J

122 Chapter 3 = Processing XML Documents with DOM

of how to create a compliant parser; JAX-P provides this standard factory
interface.

Q: Where do | find JAXP?

A: JAXP can be downloaded free of cost from the official Java website at
http://java.sun.com/jaxp/.

Q: Can | append a node to any other node in an existing DOM tree?

A Yes, you can append a node to any other existing node, except to a Text node.
Trying to do so will result in a DOMEXception being raised.

Q: What happens if a parser’s setValidating attribute is set to true, but no error
handling mechanism is defined in the parser?

A: The code executes normally in such a case. However, the XML parser gener-
ates a warning that the default error handling mechanism will be used, since
one has not been defined by the developer.

"
-

WWW.SyNngress.com

Chapter 4

XML

Transformations

Solutions in this chapter: »

= Reviewing XSL and XSLT

B

= JAXP and Underlying XSL Engines
= Using JAXP Classes

= Miscellaneous JAXP for XSL Issues

M Summary
M Solutions Fast Track

M Frequently Asked Questions

123

124

Chapter 4 « XML Transformations

Introduction

In the previous two chapters, we discussed the parsing of XML data, as well as
some simple XML manipulations. The final component of JAXP encapsulates
more complicated XML manipulations. Specifically, it is designed to provide an
interface to XSLT and stylesheets.

XSLT and stylesheets provide a mechanism for automating the transformation
of XML from one form to another.While most frequently used to transform
XML into HTML, it can also be used to transform equivalent XML data between
schemas, or to output data in other browser formats (such asVoice XML).

XSLT and stylesheets are often associated with client-side browsers, not
server-side programming. However, nothing in their design limits them to client-
side. There are often good reasons to perform these manipulations on the server:
to support browsers that do not support XSLT, or to transform XML between
schemas.

JAXP provides a very thin layer over XSL engines. The Transformation classes
in JAXP aren’t really designed to be general-purpose XML transformation
classes, so writing your own Transformer subclass can be a bit tricky.

Reviewing XSL and XSLT

XML, as you may have noticed, requires a lot of work for it to be properly parsed
through and then displayed accurately on an HTML page. Proper code needs to
be written to make sure that the values display the correct color scheme, proper
spacing between areas, and the correct information displayed row-by-row or even
table-by-table. XSL provides a mechanism for encapsulating the transformation of
XML into HTML in a language specifically designed for this task, and moving
this task out of the Java code can make the system easier to maintain and under-
stand. (We won’t go into a full review of XSLT/XPath since it’s outside the scope
of this book.)

XSL is the actual recommendation from the WC 3, and consists of two parts:
XSLT and XSLFO. XSLFO stands for XSL Formatting Objects, which are an
XSL specification used to control the formatting of printed documents. XSLT, or
XSL for Transformations, is what we’ll primarily deal with here.

There is another recommendation which comes into play with XSL as well:
XPath. XPath is the recommendation used within XSL to locate the tags, ele-
ments, and attributes within an XML document.

Let’s take a small XML file and transform it through XSLT. Figure 4.1 shows
our XML file.

WWW.SyNngress.com

XML Transformations = Chapter 4 125

Figure 4.1 text. XML

01: <?xm version="1.0" encodi ng="1SO 8859-1"?>

02: <article>
03: <title>Top Story</title>

04: <aut hor>Lydi a Gonzal ez</ aut hor >

05: <t ext >

06: Many children today in Churches

07: may say the verse "I am the Son

08: of God" out |oud without reading
09: because they are unable to read.
10:

11: In tonorrow s edition: see why this
12: Church has began an outreach program
13: to parents in low incone areas to
14: provide their children with reading
15: assi st ance.

16: </text>

17: <larticle>

Let’s take a look at how our XML file appears on a browser without XSL
applied to it (Figure 4.2).

Figure 4.2 text. XML without XSL/XSLT

T e R e = |
G K g Fpeie [wk b [|
- =+ - i@ A3 Qe e Svel 3 -5 A0 0 R

it] o oyt ok (9 B e, =

Lk pjEwvns @l Eeoes @lescgs @l @ s @esilloncign § e fFRadan

Goge-]] pnews F Foefal) — >

cTeml wenmEn="1.I" sncodng="1E0-08580- 1" _I
caricias
witlazTop Blary<tdes
wrsthors-Lydia Donrsles < st o
imxtsManmy children foday in Thurches may say Ehe verse =1 am the Son of Ged®
aut leud withowd mading becooss they ame unabls §o reesd. In fomermoea’s
ARk Sob why ths Ghieh hs bigan on sreaoh (eogros i paeenls i g
inome amas 2o previda their childres akh resding sesivianoe. < e
T lgim
- |

] o = My Comgena

WWW.SyNngress.com

126 Chapter 4 « XML Transformations

Pretty much like your normal XML file in Explorer, right? Now let’s take a
look at it via XSL in Figure 4.3.

Figure 4.3 text. XML with XSL/XSLT

e S [=1F
G [pe Fpabc [k Wb -
- =+ - @A Yk e el J @ T A0 E

it LB i o Y Bk e =] s
Lk s @l EFows @lacgs Pl fEr e @emdiehiogs O]l @) Guden ™
Gocgle || | i Bk] AL I~ I

| 5

T Shomyr
b i et Coansales

i Do | s Compater

Pretty neat huh? We've taken a lifeless XML file, added a reference to the
XSL/XSLT file, and voila—we get something that, while not perfect, isn’t as
much of an eyesore. Only one line was added to the XML file. Let’s take a look
at the revised header:
<?xm version="1.0" encodi ng="1S0O 8859-1"7?>

<?xm -styl esheet type="text/xsl" href="deno. xsl"?>

If you've seen CSS/DHTML code before, you may notice a similarity
between the xml-stylesheet tag and the src tag. In both cases, the main file is
calling a stylesheet to transform tags or, in this case, transform the page com-
pletely to another output. In case you’re curious, Figure 4.4 has the XSL/XSLT

code used to display Figure 4.3.

Figure 4.4 demo.xsl

00: <?xm version="1.0" encodi ng="1S0O 8859-1"?>

01: <xsl:stylesheet version="1.0"

02: xm ns: xsl ="http://ww. w3. or g/ 1999/ XSL/ Tr ansf or n{' >
03: <xsl:tenplate match="/">

04: <ht m >

05: <head>

06: <title>

WWW.SyNngress.com

Continued

XML Transformations = Chapter 4

Figure 4.4 Continued

07

08

09

10

11:
12

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:

<xsl:val ue-of select="article/title"/>
</title>
</ head>
<body>
<cent er >

<xsl :val ue-of select="article/title"/>

</ b>

<i>

by <xsl:value-of select="article/author"/>

</i>
</ b>
<t abl e bgcol or="#003366" wi dt h="300">
<tr>
<td>

<xsl :val ue-of select="article/text"/>

</td>
</tr>
</t abl e>
</ center>
</ body>
</htm >

</ xsl:tenpl ate>

</ xsl : styl esheet >

Take a quick look at lines 06, 14, 21, and 29 in the previous figure.You may

have noticed that these lines don’t contain anything that may fit with either

www.syngress.com

127

128

Chapter 4 « XML Transformations

HTML or even XML, but sound like they are “matching” something. They are,
in fact, XPath expressions used with XSL/XSLT to locate the items in the XML
file that will be displayed, and fall under the Procedural XSL category.

XPath and XSLT

Before we look at just how XSLT works, we need to first understand what XSLT
uses to find its information. XPath is a W3C recommendation made specifically
for locating nodes, attributes, and their values within an XML file for an XSLT
processor to transform. XPath uses notation similar to a directory structure nota-
tion in order to locate nodes.

An XPath picks out a set of target nodes by specifying how to match nodes
down the XML hierarchy. Each successive level of the hierarchy is specified by
one part of the XPath, much like directories and subdirectories are specified in
Unix. Similar to Unix, the root of the XML file is defined as a single forward
slash (/). Each successive level of the hierarchy is separated by another forward
slash. The complete specification is referred to as a location path, and serves to
identify the XML nodes to use in the transformation.

XPath requires that the name of the root node of the XML file be defined
when used within XSLT. Back in Figure 4.4 in line 03 we defined the root node
as “/” within our XSLT; this allowed us to use the root as a relative path in lines
06, 14, 21, and 29.

Using the XML in Figure 4.1 as our example XML, we can think of the *“/”
root as pointing to the overall XML document. Therefore, lines 06, 14, 21, and 29
pointed to various specific areas within the XML. Table 4.1 has a listing of the
referenced nodes and what they point to.

Table 4.1 XPath Node Reference

Line Complete XPath Points to:

06 [article/title Line 03 of Figure 4.1

14 /article/title Line 03 of Figure 4.1

21 [article/author Line 04 of Figure 4.1

29 [article/text Lines 05 through 09 of Figure 4.1

We can also use a double forward slash (//) to indicate multiple matches. For
example, “//text” would locate all text elements anywhere below the article node.
The wildcard symbol (*) can be used within XPath. Assuming we had a second-

WWW.SyNngress.com

XML Transformations = Chapter 4

level to the XML in Figure 4.1 we could also match all the nodes named “text”
within the XML by using /articles/*/text.

You may be wondering right about now what the difference is between using
“// and the *“* character. The “//”” will match all nodes that match the search
criteria, while the “*”” will match all nodes based on the proceeding path. So, if
you wanted to locate all of the nodes within an XML file you can’t just do “//”
or “/*” you would have to do “//*”, which would match all elements with all
names. XPath is able to do all this thanks to its use of axes.

Axes and Locations

In the simplest sense, an axis is a symbolic link to the parent node that it is cur-
rently selected, and contains all the immediate child nodes. Based on this one
axis, several other axes can be determined. Table 4.2 displays the list of axes that
are exposed.

Table 4.2 Exposed Axes

Axis Description

Ancestor All the parents of the current node up to and including
the root of the topmost parent node; it will display any
grandparents, and so on. The “//”” is an alias for ancestor.

Ancestor-or-self The parents of the current node but also includes its posi-
tion relative to the root node; it will display any grand-
parents, and so on.

Attribute An XML attribute of the current node, if any. “@” is an
alias for attribute.

Child An immediate child of the current node. Child is the
default and can be omitted.

Descendant All nodes descending from the current node; does not

include namespace or attributes.

Descendant-or-self All nodes descending from the current node; does not
include namespace or attributes. Always includes the cur-
rent node.

Following All nodes after the current node in the document, in the
order the nodes appear in the source document. Does not
include descendant, namespace, or attribute nodes.

Following-sibling Same as following but only on nodes with same imme-
diate parent as current node. Does not include name-
space or attribute nodes.

Continued

129

www.syngress.com

130

Chapter 4 « XML Transformations

Table 4.2 Continued

Axis Description

Namespace Any namespace child nodes within current node.

Parent Immediate parent of the current node if it’s available.
Returns a single-parent only. The “..” character is an alias
for parent.

Preceding All preceding nodes listed, including root, excluding

attribute and namespace nodes, in the order they appear
in the source document.

Preceding-sibling All preceding nodes of the current node that share the
same parent. Namespace and attribute nodes are
excluded.

Self The current node. The “.” character is an alias for self.

A location step, a construct to select a node based on the information from the
axis, is then used to do the actual node selection behind the scenes. A complete
location step contains the axis, two colons, the node-test and a set of predicates
within brackets. The predicates act as a filter within the location step. Think of a
node-test as a conditional statement. A location step can also use certain functions
allowed by XPath.We won't be going into long detail about XPath functions and
how they work since it’s outside the scope of this book.You can find more infor-
mation about them at www.w3.0rg/ TR/xpath#section-Function-Calls. We will,
however, go through the more common functions as we work through XSL
before looking at JAX-P.

Procedural XSLT

Now that we have a better idea of how XPath works, we can start to view how
XSLT works with XPath. XPath, as we noticed in the XSLT example, usually is
called from an XSLT procedure. Remember, XSLT works as a procedure, exe-
cuting transformations when called.

<xsl:.template>

<xsl:template> is perhaps the procedure you’ll most often work with. It allows

you to define a template to match node items directly. You always use

<xsl:template> to define the template applied with <xsl:apply-template>.
<xsl:template> can take the following attributes:

WWW.SyNngress.com

XML Transformations = Chapter 4

match This can be any node or location path. An example might be:
<xsl:template match="node”> where “node” is where you want the match
to take place. For example, <xsl:template match="/""> starts the match
from the root of the document.

mode mode is used with match to allow multiple matches that require
different implementation. An example might be: <xsl:template match=
“node” mode="‘mode”>. Modes are used to match xsl:templates to
xsl:apply-templates, allowing you to control which templates are used for
a given element. For example, a mode could be “set1”, which would
mean that the template would apply its values to elements that have the
mode ““setl”.

name name is used to define a called template and is used in conjunc-
tion with <xsl:with-param> and <xsl:call-template>. An example might
be: <xsl:template name="‘demoTemplate™>.

priority priority is rarely used. Its main purpose is to give a template a
higher priority and is only truly useful when working with multiple
XSL stylesheets that happen to have similar matches or names. Generally
speaking, however, whenever you work with multiple stylesheets you
will always want to avoid conflicting matches. This can also be used for
single stylesheets but I think we all agree that conflicting matches on
purpose are a bad thing. An example might be: <xsl:template priority=
“107>.

<xsl:apply-template>

This is the procedure used to apply the template defined by <xsl:template>. It can
also use the mode attribute.

select Declares which XML pattern will be matched; can use any loca-
tion path combination. An example might be <xsl:apply-template
select="*/"">, which states that the template should be applied to the root
of the XML tree. This is often used with XML, that generates HTML to
replace the entire output tree into HTML format.

mode Matches the mode given in the xsl:template that is being
applied.

131

www.syngress.com

132

Chapter 4 « XML Transformations

<xsl:for-each>

As the name implies, this XSL procedure handles a standard for-each loop. It uses
the same select attribute that <xsl:apply-template> has.
The basic syntax is:

<xsl :for-each sel ect="node or |ocation path">
..transformation here

</ xsl : for-each>

Looking back at Figure 4.1, we can see that if our XML contained multiple
authors, the XSL would not work.We’'d need to use a <xsl:for-each> loop to gen-
erate individual tables for each item. Let’s modify the XSL in Figure 4.4 to
include a <xsl:for-each> loop. Figure 4.5 has our modified XSL code and Figure
4.6 contains a new XML, displaying a new root element *“articles” with each
news item listed as an “article”.

Figure 4.5 demo2.xsl

01: <?xm version="1.0" encodi ng="1SO 8859-1"?>

02: <xsl:stylesheet version="1.0"

03: xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or m' >
04: <xsl:tenplate match="/">

05: <htm >

06: <head>

07: <title>Articles</title>

08: </ head>

09: <body>

10: <cent er >

11: <xsl:for-each select="articles/article">
12: <tabl e border="0">

13: <tr>

14:

15:
16: <xsl :val ue-of select="title"/>
17:

18: </ b>

19:

20:

21: <j>

Continued

WWW.SyNngress.com

XML Transformations = Chapter 4 133

Figure 4.5 Continued

22:
23: by <xsl:val ue-of sel ect="author"/>

24:

25: </i>

26: </ b>

27: </[tr>

28: </t abl e>

29: <t abl e bgcol or ="#003366" wi dt h="300">

30: <tr>

31: <t d>

32:
33: <xsl :val ue-of select="text"/>

34:

35: </td>

36: </tr>

37: </ tabl e>

38: </ xsl : for-each>

39: </ center>

40: </ body>

41: </htm >
42: </xsl:tenpl ate>
43: </ xsl :styl esheet >

Figure 4.6 text2.xml

01: <?xm version="1.0" encodi ng="1SO 8859-1"?>

02: <?xm -styl esheet type="text/xsl" href="demn2.xsl" ?>
03: <articles>

04: <article>

05: <title>Top Story</title>

06: <aut hor>Lydi a Gonzal ez</ aut hor >
07: <t ext >

08: Many children today in Churches
09: may say the verse "I amthe Son
10: of God" out |oud w thout reading

Continued

www.syngress.com

134

Chapter 4 « XML Transformations

Figure 4.6 Continued

11: because they are unable to read.
12:

13: See why this Church has began

14: an outreach programto parents in
15: low income areas to provide their
16: children with readi ng assistance in
17: tomorrow s edition.

18: </text>

19: <larticle>

20: <article>

21: <title>Another Ildea</title>

22: <aut hor>Lui s Gonazal ez Sr. </ aut hor >
23: <t ext >

24: W will continue to explore the
25: findings at this Church as the

26: story continues to devel op.

27: </text>

28: <larticle>

29: </articles>

The resulting HTML displayed is shown in Figure 4.7.

<xsl:if>

This XSL procedure handles a standard if-then test. <xsl:if> only has one
attribute, test, which specifies the value to test against, and is then converted to a
true-false value. Often, the value of a node is checked and then the necessary
changes or effects applied. The syntax for <xsl:if> is the following:

<xsl:if test="test procedure>"
transformati on here

</xsl:if>

Here’s an example. Let’s assume the XML in Figure 4.1 had multiple news
items, with one written by the editor. Because of this, you'd probably want to see
the editor’s title in a different color below the name.To get this effect, all we'd
have to do is modify the code in lines 22 and 23.We’ll use the same XML shown
previously in Figure 4.6. Figure 4.8, meanwhile, shows the modified xsl file.

WWW.SyNngress.com

XML Transformations = Chapter 4

Figure 4.7 HTML Resulting from Code in Figure 4.6
E T i3 =
[l 8 Ye= Pgeorier Iws Ser -

- = c A D= ETewiee (@Rede 3 e S o OF O™

b il }t'l.".'-wr'..r-:.:. WL il o sl j I
o glaagers @lown Beofes gliepe @i @TE0 04 @b ik ingn =
Gaoge-| _-J B bt e O b, _r—— ¥ &
1
Tap
By
g L

L=zneming

Arather
i

by Lais
(= LB Bk

.H.J:-ﬁ'\i- L:_.H.- .

Figure 4.8 demo-if.xsl

01: <?xm version="1.0" encodi ng="1SO 8859-1"?>

02: <xsl:stylesheet version="1.0"

03: xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or m' >
04: <xsl:tenplate match="/">

05: <htm >

06: <head>

07: <title>Articles</title>

08: </ head>

09: <body>

10: <center>

11: <xsl:for-each select="articles/article">
12: <tabl e border="0">

13: <tr>

14:

Continued

135

WWW.SyNngress.com

136 Chapter 4 « XML Transformations

Figure 4.8 Continued

15:

16: <xsl :val ue-of select="title"/>

17:

18: </ b>

19:

20:

21: <ji>

22:
23: by <xsl:val ue-of select="author"/>

24: <xsl:if test="author='Luis Gonazalez Sr.'">
25:

26: News Editor

27: </ xsl:if>

28:

29: </i>

30: </ b>

31: </tr>

32: </ tabl e>

33: <t abl e bgcol or="#003366" wi dt h="300">

34: <tr>

35: <t d>

36:
37: <xsl :val ue-of select="text"/>

38:

39: </td>

40: </tr>

41: </tabl e>

42: </ xsl : for-each>

43: </ center>

44: </ body>

45: </htm >
46: </ xsl:tenpl ate>
47: </ xsl:styl esheet >

Figure 4.9 shows how the document would now be displayed.

WWW.SyNngress.com

XML Transformations = Chapter 4

: B a0l =§
[h G e Foeoite Saw e | w |
= Pes w wh o 0N]] | R e [FPeeorte Wess O W Sl A0
P }I""i ! v (L M g el []
Lk f]camens @]chn . Ot] O00ge BT CIRE 14 Rl e L
G e -] _-_: [e - SHEIE)
J

Tep

Elory

L L pruiss

iropraias

ldem

By L

Fanaenier

¥
S
Fligar
- -.J.
i | Pers Al Wy Corpaes

<xsl:choose>, <xsl:when>, <xsl:otherwise>

These three procedures work together to form a multitest conditional statement.
These statements are similar to the switch statement in Java, as shown in the fol-
lowing example:

<xsl : choose>
<xsl:when test="test"
transformation
</ xsl : when>
<xsl : ot herw se
transformation
</ xsl : ot herwi se>

</ xsl : choose

You can have multiple <xsl:when> within the choose. Meanwhile, the
<xsl:otherwise> handles any cases that don’t match.

137

WWW.SyNngress.com

138

Chapter 4 « XML Transformations

<xsl:sort>

<xsl:sort> allows a simple sort to be run on the XML file, and can take the fol-
lowing attributes:

» select Declares which XML pattern will be matched; can use any loca-
tion path combination. An example might be: <xsl:apply-template
select="“node or location path”>.

= lang This is a language declaration for use in multilanguage sorts and
uses the same values defined in RFC 1766
(www.ietf.org/rfc/rfc1766.txt).

» data-type This defines the data type we are sorting for. It can be text,
number, or gname (see www.w3.0rg/ TR/xslt#qname for more infor-
mation). The default is text.

= order Defines the order in which the sort is displayed; can be either
ascending or descending. Default is descending.

= case-order Defines which case type takes priority when working with
text. upper-first gives priority to uppercase letters and lower-first gives pri-
ority to lower case letters.

Here is an example:

<xsl:sort select="articlel/author"
|ang = "en-us" data-type="text"

order ="descendi ng" case-order="uppercase" />

Note that <xsl:sort> is a standalone procedure.

<xsl:value-of>

<xsl:value-of> allows us to query a particular element and retrieve its value. Back
in Figure 4.4, we used it to display the values of the title, author, and text ele-
ments.

<xsl.output>

XSLT supports various output types called output trees. Technically, this is just the
method you chose within your XSLT code that the XML is output as.You can
choose from HTML, XML, TEXT, or QName.You can then define the output tree
type within XSL using the <xsl:output> procedure. This is a top-level procedure so

WWW.SyNngress.com

XML Transformations = Chapter 4 139

you have to have it at the beginning of your XMSLT file, preferably before the
<xsl:template match="/""> line.
Here is an example of the output:

<xsl : out put
met hod = "HTM."
version = "4.0"
encodi ng="1 SO 8859- 1"

st andal one="yes" />
<xsl:output> supports the following attributes:

= method Sets which type of file to output to; can be HTML, XML,
TEXT, or Qname.

= version Sets which version of the selected method to use.
= encoding Sets which language encoding to display.

= omit-xml-declaration Determines whether or not an XML declara-
tion should be output; can be yes or no.

= standalone Determines whether or not a standalone document decla-
ration should be output; can be yes or no.

= doctype-public Sets the public identifier to be used in the dtd.
= doctype-system Sets the system identifier to be used in the dtd.

» cdata-section-elements Specifies gnames that need to be output as
CDATA sections.

= indent Determines whether or not additional whitespace is included
when outputting the file. Can be yes or no.

= media-type Defines the MIME content type of the output data.

Now that we are done with our review of basic XSLT concepts, we can turn
our attention to the matter at hand: the JAXP interfaces for Java.

JAXP and Underlying XSL Engines

While the XSL language is standardized, the XSL engines for Java are not.
Engines like SAXON and Xalan have a lot of functionality, but do so with pro-
prietary interfaces. Java developers need an API that is compatible with Java but
can work with pre-existing engines that already have widespread support and

www.syngress.com

140

Chapter 4 « XML Transformations

usage within the Java community. JAX-P, the Java API for XML Processing, was
built with this type of interface in mind. JAXP itself originates from a previous
project named TrAX that was incorporated into JAX-P.

As in the parsing capabilities of JAX-P, the XSLT capabilities are a series of
interfaces that wrap an underlying engine. The engine provides the functionality,
while the APIs provide a regular mechanism for accessing this functionality. This
allows code to be written that leverages an XSLT engine, without becoming
dependant on its proprietary APIs.

In order for XSLT engines to be swapped in and out, JAXP introduces a
transformer factory class. The factory class returns an instance of a class specific to
an XSLT implementation; this class acts as the bridge between the underlying
functionality and the generic API.

The plugability interfaces will be discussed more later. In general, however,
you don’t have to worry about them, so long as you have a JAX-P-compliant
library available. The library will automatically configure the system to use its
own implementation classes. It’s only if you have multiple XSLT libraries avail-
able, or if you want to try to mix and match XSLT and parsing capabilities across
libraries, that you have to worry about plugability. These cases are discussed next.

Using JAXP Classes

The JAXP classes for transformation are almost all contained in the java.xml
.transform package, which provides the basic functionality for XSLT transforma-
tions. Three additional packages, javax.xml.transform.dom, javax.xml.transform.sax,
and javax.xml.transform.stream provide some additional classes for specifying how
the XSLT engine should read input and write output.

This section will cover the basic JAXP XSLT classes: the javax.xml.transform
package. Later, we’ll discuss the supporting packages for input and output, and
show a complete example program.

Creating a Transformer

A transformation is the process of applying an XSL file to an XML file and then
producing the output. In order to isolate the application from the specifics of cre-
ating transformation-supporting code in a specific XSLT engine, JAXP uses the
TransformerFactory class. TransformerFactorys are used to create Tranformer and
Template instances (more about these in the following) from classes the engines
implement.

WWW.SyNngress.com

XML Transformations = Chapter 4

The first thing you have to do for any XSLT transformation using JAXP is
obtain a TransformerFactory. TransformerFactory is an abstract class provided by
the JAXP library, and has two purposes. A static method of this class is used to
obtain an instance of a concrete subclass provided by an XSLT engine. Once this
concrete instance is obtained, methods defined by the abstract class and imple-
mented by the concrete can be used to create the Transformers and Templates
used to handle the transformations.

Sound confusing? It really isn’t, once you see an example. The following pro-
gram (shown in Figure 4.10) obtains a TransformerFactory, and then uses it to
create a new Transformer. The Transformer would then be used to process an
XSL stylesheet, but that isn’t included in this example.

Figure 4.10 Our first JAX-P/XSL Example Program

package com syngress. jwsdp. xsl ;

import javax.xm .transform*;

public class Exanplel
{
public static void main(String args[])
{
try
{
/] Obtain a new TransformerFactory
TransfornerFactory factory;

factory = TransfornerFactory. newl nstance();

/1 Use it to create a new transforner
Transfornmer transforner;
transformer = factory. newTransforner();

}

catch (Transforner Fact oryConfigurati onError tfce)

{

Systemout.println("Could not obtain factory");
tfce.printStackTrace();
}

catch (TransfornerConfigurati onException tce)

Continued

141

www.syngress.com

142 Chapter 4 « XML Transformations

Figure 4.10 Continued
{

Systemout.println("Could not create transformer");

tce.printStackTrace();
}
}
}

You’ll note in the preceding code that we had to catch two exceptions. The
first, TransformationFactoryConfigurationException, is thrown if the concrete fac-
tory class can’t be found or instantiated. This will generally be due to not having a
XSLT library in the classpath, but could potentially have other causes as well. The
second, TransformerConfigurationException, will generally be because you have
requested the factory (via the following methods) to create a Transformer with
specific properties, but those properties are not supported.

NoTE

The newTransformer() method that follows actually returns a default
Transformer object that just copies XML from one place to another. This
is not generally a useful transformation, but since we are just trying to
illustrate the use of the TransformerFactory in this example, it’s a handy
simplification.

Table 4.3 describes the list of methods available to TransformerFactory.

Table 4.3 TransformerFactory Methods

Methods Description

getAssociatedStylesheet(Source, Gets stylesheet that matches the xml-

String, String, String) stylesheet processing tag.

getAttribute(String) Gets the attributes of the implementation
in use.

getErrorListener() Returns the error event handler.

GetFeature(String) Returns the value of the feature.

Continued

WWW.SyNngress.com

XML Transformations = Chapter 4

Table 4.3 Continued

Methods Description

getURIResolver() Returns the default object used to resolve a
URI found in <xsl:import>, <xsl:include=,
or documenty().

newlnstance() Creates a new TransformerFactory instance.

newTemplates(Source) Returns a new Template associated with the
given source.

newTransformer() Creates a new Transformer instance.

newTransformer(Source) Creates a new Transformer instance for a
given source.

setAttribute(String, Obiject) Defines attributes in the underlying imple-
mentation.

setErrorListener(ErrorListener) Used in conjunction with class ErrorListener;
sets the error event listener for a
TransformerFactory object.

setURIResolver(URIResolver) Sets the URIResolver object to be used with
the current TransformerFactory.

Note that newlInstance was already introduced earlier in the chapter. The
newTemplates and newTransformer methods are used to create Templates and
Transformers, respectively, and are discussed later in this chapter.

The getAssociatedStylesheet method is used to scan through an XSL document
that contains multiple embedded stylesheets. It attempts to find the best match
for the given criteria, which can specify the media, title, and character set.

Using getAssociatedStylesheet allows you to maintain a collection of stylesheets
which have the same purpose (but for different environments) in a single master
document.

The getAttribute and setAttribute methods should be used with caution. They
give you access to setting attributes of the underlying implementation, and as
such, bind your code to that implementation. If you switch to a different imple-
mentation that does not support that attribute, an Illegal ArgumentException will be
thrown. Since this may happen long after you decide to use get/setAttribute, and
only at the point in time that you change XSLT libraries, you may confuse this
with errors in the underlying XSLT engine. Proceed with caution with these
methods, and document the code that uses them carefully.

143

www.syngress.com

144

Chapter 4 « XML Transformations

Similarly, getFeature can be used to query the underlying XSLT engine. The
getFeature method accepts a string representing a URI, and returns a Boolean
result. While the URI passed in could be any valid URI, there are a few prede-
fined ones. For example, in the javax.xml.transform.dom.DOMSource class, a public
static variable Feature is defined. This can be used to query the underlying XSLT
engine to ensure that DOM-based sources are supported. If they are, the method
will return True, otherwise it will return False.

The getErrorListener and setErrorListener methods manipulate the ErrorListener
objects associated with the factory. ErrorListeners are discussed in further detail
later, but to summarize them briefly they provide a mechanism for responding to
errors encountered while performing the XSL processing. getErrorListener returns
the ErrorListener currently in use, while setErrorListener changes to a new one. The
error listeners on the factory should not be confused with the error listeners
associated with Transformers or Templates; the error listener associated with the
factory is used when processing transformation instructions, not while processing
the transformation itself.

The getURIResolver and setURIResolver methods manipulate URIResolver
objects associated with the factory. These objects are used when processing XSL
constructs that reference external stylesheets (the xsl:import and xsl:include tags,
and the document() method). URIResolvers have the chance to perform custom
code to resolve the location of these entities. Unlike ErrorListeners, the
URIResolver associated with the factory does effect the Transformers and
Templates created by a factory; the URIResolver associated with a factory will
be the default URIResolver for all Templates/ Transformers that are created after
the call to setURIResolver.

Source and Result

Before we can talk about the Transformer and Templates classes (which perform
the actual XSL processing), we should discuss how the input and output of the
processing are communicated to the underlying engine. The Source class and
Result class handle exactly what their name suggests—the source XML file or
transformation instructions, and the result of the transformation, respectively.
The Source and Result interfaces are little more than markers, allowing for
the setting and getting of a system ID (a unique identifier associated with the
location of the data), but nothing else.You won't ever create an instance of
Source or Result directly; rather you will create an instance of DOMSource,
DOMResult, SAXSource, SAXResult, StreamSource, or StreamResult. These

WWW.SyNngress.com

XML Transformations = Chapter 4

classes provide the mechanisms for wrapping DOM-based data, SAX-based data,
and Stream-based data, respectively. They do this by accepting an instance of the
data they are wrapping in their constructors. For example, DOMSource takes a
org.w3c.dom.Node object in its constructor, while StreamResult can take an instance
of OutputStream.

DOMSource and DOMResult are members of the javax.xml.transform.dom
package. SAXSource and SAXResult are members of javax.xml.transform.sax, while
StreamSource and StreamResult are members of javax.xml.transform.stream. XSLT
engines are not required to support all these data types, but most will.

Data types can be freely mixed and matched (so long as they are supported).
For example, you can specify a DOMSource and a StreamResult. The XSLT
engine would then read data from a DOM in memory, and write data to an
OutputStream.

You might be tempted to ask about creating your own Result and Source
classes to support some other data type. Unfortunately, you can’t. The XSLT
engine will actually check the Source/Result object via the instanceof operator,
comparing it to the well-known implementing classes. If it isn’t one of those
classes, the engine will not know what to do. Generally, however, you can use the
StreamSource and StreamResult classes for most types of data—for example, you can
specify URL-based data (with the stream return from URL.openStream), file-based
data (with a FilelnputStream or FileOutputStream), and so forth.

Transformer

Now that we’ve looked at how to create a factory, and how to specify the source
and result locations, we need to look at the actual classes used for performing
transformations. The first of these is the Transformer class; we will look at this class
first and defer discussing the other class (Templates) for just a bit.

Transformer defines a class for performing XSL transformations. The
Transformer class itself is abstract; the actual object you get back from the
TransformerFactory is a concrete implementation class specific to the XSLT
engine. However, you don’t have to worry about that; you can just use the object
through the public interface of Transformer.

The main method of Transformer is the transform method. The transform
method accepts a source object (the input XML document) and a result object
(the resulting XML document). The XSL stylesheet associated with the transfor-
mation is inherent in the Transformer object; when you create a Transformer with

145

www.syngress.com

146

Chapter 4 « XML Transformations

a TransformerFactory, you specify a Source object that represents the XSL stylesheet
to use.

This means you can use the same Transformer multiple times to transform
multiple sources. However, as we’ll see in just a moment, there are some serious
limitations when doing this. Shortly, we’ll introduce the Templates class, which is
more useful for repeated transformations.

As we’ve mentioned, the transform method is the one you will use most often
with the Transformer class. However, there are some other methods of interest.

The getParameter, setParameter, and clearParameters methods are used to get, set,
and clear all parameters, respectively. These routines allow you to specify values
for xsl:param tags in your templates; specifying values for parameters allows you to
pass values into the stylesheet.

Like TransformerFactory, you can use setErrorListener and getErrorListener, as well
as setURIResolver and getURIResolver. The URI resolver methods act as you might
expect; they override the default URI resolvers set at the factory level with
Transformer-specific instances. The error listener methods do the same, but you
have to remember that the error listener set at the factory level is not the default
for the Transformer; it only applies to the factory itself. So if you need URI
resolvers for your Transformers, you can set a default at the factory level and be
done. However, if you need an error listener for your Transformers, you have to
set it explicitly for each Transformer you create.

The remaining methods of Transformer manipulate the output properties set
for the stylesheet. These properties, initially defined in an xsl:output tag, specify
how the output is to be rendered. (See the earlier section on xsl:output.) You can
use getOutputProperty to retrieve a specific property, or getOutputProperties to
retrieve all the properties currently defined. To change the properties (which
overrides the defaults set in the stylesheet), you can use setOutputProperty to set a
specific property, or setOutputProperties to change them all at once.

Table 4.4 summarizes the Transformer methods.

Table 4.4 Transformer Methods

Methods Description

clearParameters() Flushes parameters that have been set with
setParameters().

getErrorListener Sets the error listener object

getParameter(String) Gets the value of a parameter.

getOutputProperties() Returns a copy of output properties.

Continued

WWW.SyNngress.com

XML Transformations = Chapter 4

Table 4.4 Continued

Methods Description

getOutputProperty(String) Returns one output property.

getURIResolver() Returns the object used to resolve a URI
found in <xsl:import>, <xsl:include>, or
document().

setErrorListener(ErrorListener) Sets the error listener for a Transformer
object.

setOutputProperties(Properties) Sets the output properties.
setOutputProperty(String, String) Sets one output property.

setParameter(String, Object) Sets the value of a parameter.

setURIResolver(URIResolver) Sets the URIResolver object that will be used
with the current Transformer.

transform(Source, Result) Actual transformation using the current

source tree in the Source object to output
to the Result object.

Now we will look at an example program that creates a Transformer based on
the demo.xsl file we introduced earlier. The code looks similar to the preceding
example program, except for some additional imports, until about line 18. At that
point, instead of creating the default Transformer object, we create a Transformer
that is associated with the demo.xsl file.

We do this by first creating a FilelnputStream associated with the file, and then
wrapping that in a StreamSource. As mentioned previously, StreamSource allows you
to pass the source for a document into the XSL transform engine via an input
stream. Once we’ve wrapped the XSL file stream in a StreamSource, we use the
factory newTransformer method to obtain a Transformer that is based on that XSL
stylesheet.

On lines 24 through 26, we do something similar for the file output stream
that specifies the result: we wrap it in a StreamResult object so we can pass it into
the XSL engine. Lines 28 through 30 wrap the source XML, and we are ready to
invoke the transform.\We do this on line 32, by using the transform method of the
Transformer class.

You’ll also note that we added some additional exception handling. Lines 45
through 54 are there to handle exceptions thrown by the java.io libraries, or the
stream wrappers. (See Figure 4.11.)

147

www.syngress.com

148 Chapter 4 « XML Transformations

Figure 4.11 A Working JAX-P/XSL Example

01: package com syngress.jwsdp. xsl ;
02:

03: inport java.io.*;

04: inport javax.xm .transform*;

05: inport javax.xnml .transform stream *;

06:

07: public class Exanple2

08: {

09: public static void main(String args[])

10: {

11: try

12: {

13: /1 Obtain a new TransfornmerFactory

14: Transformer Factory factory;

15: factory = TransfornerFactory. newl nstance();

16:

17: /1 Use it to create a new transfornmer

18: Transformer transformer;

19: I nput St ream xsl | nput ;

20: xsl I nput = new Fil el nput Stream "deno.xsl");

21: Source xsl Source = new StreanSource(xsllnput);
22: transformer = factory. newlransforner(xsl Source);
23:

24: Qut put Stream resul t St ream

25: resultStream = new Fil eQutputStream("result.htm");
26: Result result = new StreanResult(resultStream);
27:

28: I nput St ream sour ceStream

29: sourceStream = new Fil el nputStrean{ "text.xm");
30: Source source = new StreanBSource(sourceStream);
31:

32: transforner.transforn{(source, result);

33:

34: }

35: catch (Transforner Fact oryConfigurati onError tfce)

WWW.SyNngress.com

Continued

XML Transformations = Chapter 4

Figure 4.11 Continued

36: {

37: Systemout.println("Could not obtain factory");
38: tfce.printStackTrace();

39: }

40: catch (TransfornerConfigurati onException tce)
41: {

42: Systemout.println("Could not create transformer");
43: tce. printStackTrace();

44: }

45: catch (Fil eNot FoundException fnf)

46: {

47: Systemout.printin("File not found");

48: fnf.printStackTrace();

49: }

50: catch (TransfornerException te)

51: {

52: Systemout.println("Transforner exception");
53: te.printStackTrace();

54: }

55. }

56: }

Templates

It isn’t practical to use Transformers alone in high volume, multithreaded applica-
tions. For one thing, the TransformerFactory.newTransformer method parses the XSL
source each time, which can be a significant overhead. More to the point,
Transformers aren’t thread-safe, so in a multi-threaded application you either have
to manage the thread safety yourself, or use Templates.

Templates are designed to solve many of the problems that Transformers have.
They parse the XSL one time, and keep a parsed copy of it internally. From that
internal copy, they can create multiple Transformers—in a thread-safe manner. So,
you can create a single Template object and use it to create multiple Transformers,
one for each thread. This can result in significant performance improvements in a
heavily-used application.

149

www.syngress.com

150

Chapter 4 « XML Transformations

Using Templates is pretty straightforward.You basically have a single extra set in
our code from using Transformers directly. Instead of calling the newTransformer
method of TransformerFactory, you call newTemplates with the same arguments. This
returns a Templates object. Once you have this object, you can call newTransformer
on it (which takes no arguments) to obtain a Transformer object you can use.

The only other method on the Templates interface is the getOutputProperties
method, which can be used to retrieve the output properties defined in an
xsl:output tag in the stylesheet associated with Templates.

The code that follows (Figure 4.12) shows the example program modified to
use Templates. Of course, in the real world you would only do this for a multi-
threaded application; there isn’t any benefit to using Templates in a single-
threaded one. Also, you would probably want to synchronize the creation of the
Templates object, so it’s only created by one thread.

Figure 4.12 Using Templates in JAX-P

01: package com syngress.jwsdp. xsl;
02:

03: inport java.io.*;

04: inport javax.xnl.transform?*;

05: inport javax.xnl .transform stream *;

06:

07: public class Exanple3

08: {

09: public static void main(String args[])

10: {

11: try

12: {

13: /1 Obtain a new TransformerFactory

14: Transfornmer Factory factory;

15: factory = TransfornerFactory. new nstance();
16:

17: /1 Use it to create a new transfornmer

18: Tenpl at es tenpl ates;

19: Transforner transfornmer;

20: I nput St ream xsl | nput ;

21: xsl I nput = new Fil el nput Strean("deno.xsl");
22: Source xsl Source = new StreanSource(xsllnput);

Continued

WWW.SyNngress.com

XML Transformations = Chapter 4

Figure 4.12 Continued

23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:

tenpl ates = factory. newTenpl ates(xsl Source);

Qut put Stream resul t St ream
resultStream = new FileQutputStream("result.htm");

Result result = new StreanResult(resultStream);

I nput St r eam sour ceStream
sourceStream = new FilelnputStrean{ "text.xm");

Source source = new StreanBSource(sourceStream);

transforner = tenpl ates. newlransforner();

transformer.transforn{ source, result);

}

catch (Transforner Fact oryConfigurati onError tfce)

{
Systemout.printin("Could not obtain factory");
tfce.printStackTrace();

}

catch (Transforner Configurati onException tce)

{
Systemout.println("Could not create transforner");
tce.printStackTrace();

}
catch (Fil eNot FoundException fnf)

{
Systemout.printin("File not found");
fnf.printStackTrace();

}

catch (Transfornmer Exception te)
{
Systemout.println("Transforner exception");
te.printStackTrace();
}
}

151

www.syngress.com

152

Chapter 4 « XML Transformations

The main changes to the application from Figure 4.11 are on lines 23, and 33
through 34. On line 23, | create a Templates object rather than a Transformer
object. On lines 33 and 34, | use the Templates object to create a Transformer,
and then use the Transformer to perform the transformation. I moved the cre-
ation of the Transformer close to the usage in order to emphasize how you will
generally use Templates: you will create the Template object first, then create the
Transformer object on the fly from it as necessary.

Miscellaneous JAXP for XSL Issues

Our exploration of JAXP is almost complete. There are only a few things left to
cover, including error handling, resolving URIs, thread safety, and the plugability
interface. We’ll discuss error handling first.

Error Handling

In JAX-P, error handling is carried out by the ErrorListener and SourceLocator
classes. ErrorListener provides a way to output all errors while SourceLocator is used
to locate errors within an XSL source.

ErrorListener

In JAX-P, error messages are typically reported to System.err, which is fine when
you are working from the command line.When you do need to redirect the
error messages to a more agreeable output, you can use ErrorListener. In order to
use ErrorListener, you need to implement an ErrorListener object and pass it to
the setErrorListener method in Transformer. Table 4.5 displays the methods for
ErrorListener.

Table 4.5 ErrorListener Methods

Methods Description
error(TransformerException) Used to report an errotr.
fatalError(TransformerException) Used to report a fatal error.
warning(TransformerException) Used to report a warning.

If you choose, you can throw the exceptions that are passed in to you—or
any other exception, for that matter. If you do nothing, the XSL engine will con-
tinue to process, with one caveat: The engine is not required to continue to pro-
cess after fatal errors are reported (even though it may anyway).

WWW.SyNngress.com

XML Transformations = Chapter 4

SourcelLocator

SourceLocators are used in conjunction with the TransformerException class.
SourceLocators may be provided by the underlying XSL engine to report the
location of the error—the file, line, and column number that the XSL engine had
trouble understanding. These locations will be approximate—they may be off by a
line or two—but can be very useful in determining how to respond to errors.
You will never create SourcelLocator objects yourself (unless you write an
XSL engine). SourceLocators are created for you, and obtained through a
TransformerException. Table 4.6 lists the SourceLocator methods.

Table 4.6 SourcelLocator Methods

Methods Description

getSystemld() Returns the system ID for the document.

GetPublicld Gets the public ID for the document.

getColumnNumber() Returns the first character of the area where the error
was found.

GetLineNumber Returns the line number where the error was found.

URIResolver

URIResolver allows developers to create a custom implementation of how URI
references in XSLT stylesheets are resolved. URIResolver has only one method:
resolve. The resolve method expects two string items to be passed to it; the first one
is href (URI) and the second one is a base. The base may sound a bit compli-
cated, but it just refers to the domain (location) that the href (URI) needs to be
checked against. For example:

<l- - and - ->

<xsl :variabl e name="iten!' sel ect="docunent('test.xm"')"/>

This snippet of XSLT code basically states that the document is named
test.xml, but doesn’t state how this document should be found. By default, it
is found relative to the URI used to locate the original document; so if the orig-
inal document and the included document are not in the same location, problems
can arise.

The URIResolver class is given both the document requested (the href param-
eter) and the current base URI (the base parameter). It returns a fully-qualified

153

www.syngress.com

154

Chapter 4 « XML Transformations

URI for locating the document. The following example resolve method resolves
all documents to a directory in the Syngress Web site. Note that it ignores the
base URI passed in.

public Source resolve(String href, String base)
{
String URI = "http://ww.syngress.conl xsl/" + href;

return new StreantSource(UR);

URIResolvers can be very useful when the XSL stylesheets for your applica-
tion are stored somewhere other than the default working directory. In this case,
it is not a problem to find the main XSL; you just create a FileInputStream with
the full path name to the XSL file, and wrap that in a StreamSource. However, if
you include other XSLs from that main XSL, you have two options: you can
code the entire path in the xsl:include tag (which severely reduces the portability
of your application), or provide a URIResolver. The URIResolver would then add
the path for the XSL directory to the file name provided, and use that to create a
FileInputStream (and then a StreamSource).

URIResolver has only a single method, resolve(String, String). This method is
called by the processor when it finds an xsl:include, xsl:import, or document() func-
tion and defines how the processor should behave.

Thread Safety

We’ve mentioned thread safety a few times. It is important to understand the
threading limitations of the JAXP interfaces, since understanding what threading
JAXP allows for can make your application more stable and perform better.

The TransformerFactory class is never thread-safe. You will always have to
synchronize usage of TransformerFactory instances, or create a new instance for
each thread.

Transformer classes are not thread-safe either.You will generally want to
create a separate Transformer instance for each thread—generally through use of a
Templates object.

Templates objects are thread-safe. The Transformers they create are not, of
course, so you will generally use them to create a new Transformer each time.

WWW.SyNngress.com

XML Transformations = Chapter 4 155

Plugability

In general, all you will have to do to use JAXP is make sure a JAX-P-compliant
library is in your classpath. However, there are times when you want to change
which XSL engine is used, or ensure that a particular one is used regardless of
classpath order.

In these cases, you can use the plugability features of JAX-P. Plugability allows
you to specify a particular XSL engine to use, and is actually the mechanism used
by XSL libraries to announce themselves to the TransformerFactory class.

The key to the plugability interface is the system property javax.xml.trans-
form. TransformerFactory. This shouldn’t be confused with the class of the same
name. The name of the property was intentionally chosen to be the name of the
class in order to minimize changes of collision with existing properties.

The property javax.xml.transform. TransformerFactory contains the fully-qualified
class name of the XSL engine’s implementation of the
javax.xml.transform. TransformerFactory abstract class. If you have a specific XSL
engine you want to use, you can explicitly set this property (either through a
System.setProperty call, or through the -D command-line option).

If the system property is not set, then the system will look for a file
jaxp.properties, located in the lib subdirectory of the active JRE home. If this file
exists, it is expected to be a properties file containing at least one property: the
javax.xml.transform. TransformerFactory (along with the class name you want associ-
ated with it).

If this file can’t be found, then the Services API is used to find any files
named javax.xml.transform. TransformerFactory in the services subdirectory under
META-INF for all jar files in the class path. (Technically, it’s the effective class
path for the object that is making the call, but that’s beyond the scope of this
book.) If this file is found, it should again contain a single line: the name of the
fully-qualified class name for the TransformerFactory implementation.

And should all else fail, there is a platform-dependent default
TranformerFactory class that is used. For the JWSDP EAZ2 release, this is the
Xalan class org.apache.xalan.processor. TransformerFactorylmpl. For other releases, this
default value could change.

www.syngress.com

156

Chapter 4 « XML Transformations

Summary

JAXP has come a long way since its conception as TrAX. Many changes have
been applied and many more are sure to come as more users begin to use JAXP
for their XML/XSLT needs.

What Sun is doing now is basically creating an item to fill the void within
the XML community. While there are a number of XSL processors available to
Java programmers, they all come with a proprietary interface, which makes the
code dependent on a specific library. This makes it hard to change processors if
the need arises.

JAXP circumvents this problem by providing a standardized interface. This
interface, while somewhat less powerful than the native XSL library interfaces,
provides the basic functionality needed to transform XML documents with XSL.
Using the JAXP interfaces protects your code from future library API changes.

Solutions Fast Track

Reviewing XSL and XSLT

M XSL is a specification made up of three different recommendations:
XSLT, XSL-FO, and XPath.

M XSLT handles the actual transformation sequence that takes places with
an XSL stylesheet and an XML file. XSLT procedures are also used
within the XSL stylesheet.

M XSL-FO deals with transformation XML data to print formats, such
as PDE

M XPath is the recommendation that controls how XML data is located
and queried through XSL/XSLT.

JAXP and Underlying XSL Engines

M JAXP is not an XSL/XSLT engine. It is actually a layer that allows a
developer to use JAXP regardless of the XSL/XSLT engine that lies
beneath.

M Current popular XSL/XSLT engines include SAXON and Xalan.

WWW.SyNngress.com

]

XML Transformations = Chapter 4

Since JAXP has to provide a proper layer over all available XSL/XSLT
engines, it can only support common functionality.

Using JAXP Classes

M

Basic transformations can be done through Transformers created by a
TransformerFactory. Transformer instances implicitly contain the source
XSL, and receive the Source XML and a result to output the
transformed file.

TransformerFactory may cause data corruption in high-load situations due
to its poor threading ability. In these cases, it is best to use Templates,
which creates a copy of the output from TransformerFactory and can be
threaded into separate Transformer instances.

Miscellaneous JAXP for XSL Issues

|

M

ErrorListener can be set to gracefully handle error messages that the
servlet/java may throw while running the transformation.

SourceLocator is used to pass the location of the error as part of a
TransformerException.

URIResolver allows developers to create a custom implementation of
how URI references in XSLT stylesheets are resolved.

Multithreaded applications should consider using Templates because
Templates are thread-safe.

TransformerFactory packages are currently not developed to be thread-safe,
and should not be used in threading situations.

Plugability allows you to specify a particular XSL engine to use, and is
actually the mechanism used by XSL libraries to announce themselves to
the TransformerFactory class.

157

www.syngress.com

158

Chapter 4 « XML Transformations

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

Q:
A:

Why are some parts of JAXP unable to properly thread?

Unfortunately, due to some construct issues when dealing with the plugability
layer, the TransformerFactory packages can’t be made thread-safe. However,
both of these items can be properly implemented so they are thread-safe.
TransformerFactory often doesn’t need to be used several times, and can
instead be used in conjunction with a Template, which is thread-safe and can
be used to store the output from TransformerFactory.You would want to then
access Templates to retrieve the information.

: Why does JAXP only-proevide basic support for the underlying parser?
- Every parser has its own level of support. By restricting the support to just

the basics, JAXP can ensure developers that an interface that will not only
abide by W3Cspecifications but also be flexible enough to not be locked in a
specific parser.

- Which is the best default parser for JAX-P?
- This question is asked quite a bit and people have always felt the need to pro-

mote their favorite. However, JAXP was not created to be a layer that oper-
ates best with a specific parser but to be the best layer for any parser. The
easiest way to decide whether you need JAXP is to optimize your machine
for the parser of your choice.

- 1s JAXP still in beta?
: No. However, JAXP can be considered a work in progress, even though it is

not still in beta. Issues have been raised regarding how JAXP should behave
and what functionality it should have. Expect more changes throughout the
year as additional user input is generated. (JAXP saw two releases within three
months!)

WWW.SyNngress.com

Chapter 5

Using JSTL
(JSP Standard

Tag Library)

Solutions in this chapter: _
p?
= Expression Languages [

i g
S 13

= Core Tags
= SQL Query Tags
Internationalization Tags

= XML Support Tags

M Summary
M Solutions Fast Track

M Frequently Asked Questions

159

160

Chapter 5 = Using JSTL (JSP Standard Tag Library)

Introduction

The JSP Standard Tag Library (JSTL) provides a standard tag library (actually sev-
eral of them) that can be used by JSP writers to handle certain frequent tasks.
The JSTL, like much of the WSDP, comes out of the Apache Jakata project; ear-
lier releases of JSTL were available through Apache before it became part of the
JCP (and from there, the WSDP).

JSTL is still in its early stages, and is likely to change in the future. If you read
this book and are dealing with a later version of JSTL, you may want to check
the Syngress website for the latest information and updates.

In particular, the support of expression languages within JSTL is slated to
change. Expression languages give JSP developers a mechanism for embedding
expressions to be evaluated in the place of constants and are scheduled to be
added to the JSP specification itself. JSTLs designers have added a temporary
mechanism for using expression languages within JSTL, but have also committed
to supporting the JSP standard once it is established.

JSTL consists four libraries—and if you get down to it, it’s really eight. The
four libraries provide XML support, structured language support, SQL support,
and internationalization (i18n). Each of these provides a regular and an expression
language version, for a total of eight libraries.

Expression Languages

Before we delve into the tag libraries that comprise the JSTL, it behooves us to go
over one of the JSTLs most important new features, Expression Languages (EL).
Since expression language support is pervasive across all of the tag libraries it makes
sense to understand them before proceeding into the tag libraries themselves.

JavaServer Pages (JSP) came into existence to alleviate the problem of cre-
ating Java Servlets that generated more than a small amount of presentation code.
Those of you who have had to “escape sequence” what seemed like hundreds of
quotation marks in a Java Servlet will know exactly what | mean.With JSPs, you
could define a web page (for example) using what resembles regular HTML. The
JSP is then converted to a Java Servlet in Java code and compiled.

It has long been considered a good design practice to separate out the logic
of a presentation into the three components: Model,View and Controller. This
paradigm, abbreviated as MVC, is the cornerstone of many current-day web
applications. To extend this paradigm into the Java realm, the servlet would act as
the controller, the JSP as the view and the various JavaBeans as the model.

WWW.SyNngress.com

Using JSTL (JSP Standard Tag Library) = Chapter 5

Why Expression Languages?

Now that the parts of a presentation have been separated into their respective
model, view and controller components, there remains the issue of communicating
among them. The issue of communication between the controller/business logic
and the view, represented as a JSP, is of particular importance. Typically, the division
of reasonability in a web development effort has different teams working on the
controller/business logic and the views, and there is no guarantee that the view
team is as familiar with programming languages as the business logic development
team. How then to facilitate the communication between these components?

In the past there have been two methods used to achieve this communica-
tion: the first has been the use of scriptlet code. This scriptlet code is pure Java
code embedded directly into the JSP file. While serving the purpose of commu-
nication between components, this method did assume a certain level of knowl-
edge on the syntax and use of the Java language on the developer’s part. The
second method was the use of a custom tag library. This custom tag library would
facilitate the communication in the form of tags that resemble HTML. This
approach, while cleaner in its implementation, was not standardized; and each
implementation could be vastly different than another.

Expression languages use scoped attributes of JSPs to convey information
from the underlying business logic (such as JavaBeans) to the presentation layer, in
this case JavaServer Pages. This offers the distinct advantage of being able to access
that business logic from JSPs without having to resort to confusing scriptlet code
or expression statements.

Supported Expression Languages

All indicators point to future versions of the JavaServer Page Specification being
standardized on one expression language. With this first release of the JSTL, how-
ever, there is built-in support for a number of expression languages, including
SPEL, ECMAScript, and JXPath.

Simplest Possible Expression Language (SPEL)

The Simplest Possible Expression Language (SPEL) is just that. It was designed
and developed to serve as an expression language with the minimum number of
features needed to be useful in that capacity. Its biggest appeal is its simplicity,
which makes it easy to learn and to use.

161

www.syngress.com

162 Chapter 5 = Using JSTL (JSP Standard Tag Library)

A SPEL notation can take the form of a value or an expression. A value is
evaluated literally and an expression is evaluated according to the rules of the
SPEL specification.

Each attribute is accessible by a name. Each attribute’s properties are refer-
enced with the “.” operator and may be nested as appropriate. These attributes
may also be scoped. The allowable scope values are:

page This puts or retrieves the attribute from the Page scope and is thus
available during the lifecycle of the currently executing JavaServer Page.
The Page scope is analogous to calling the PageContext.getAttribute() and
PageContext.setAttribute() methods.

request This puts or retrieves the attribute from the Request scope and
is thus available during the lifecycle of the current HTTP request, pos-
sibly spanning multiple JavaServer Pages and Servlets. This Request
scope is analogous to calling the ServletRequest.getAttribute() and
ServletRequest.setAttribute() methods.

session This puts or retrieves the attribute from the Session scope and is
thus available during the current user browser session’s lifecycle. This
scope is analogous to calling the HttpSession.getAttribute() and
HttpSession.setAttribute() methods.

app This puts or retrieves the attribute from the Application scope and is
thus available during the lifecycle of the application as a whole. Every
session and servlet will have access to these attributes. This scope is anal-
ogous to calling the ServletContext.getAttribute() and
ServletContext.setAttribute() methods.

header This retrieves the attribute from the header information that is
part of the current HT TP request. The Header scope is analogous to
calling the HttpServletRequest.getHeader() method.

param This retrieves the attribute from the Request scope as a sub-
mitted parameter of that request. The Param scope is analogous to calling
the ServletRequest.getParameter() method.

paramvalues This retrieves the attributes from the Request scope as
submitted parameters of that request. The ParamValues scope is analogous
to calling the ServletRequest.getParameter\Values() method.

WWW.SyNngress.com

Using JSTL (JSP Standard Tag Library) = Chapter 5

If no scope is specified, the attribute is located according to the rules gov-
erning the search for an attribute as defined by the PageContext.findAttribute()
method. This essentially means that the findAttribute() method will search for the
named attribute in the following context order: Page, Request, Session and
Application. As soon as it finds an attribute with the specified name, the search
stops. Therefore if you have two different attributes with the same name but dif-
ferent contexts, and you attempt to retrieve their values without specifying the
appropriate context, the value of the one that’s stored in the broader scope will
always be used. The following example will echo out the request parameter
named username with the value that was entered in the submitting form.

<c:out val ue="${param usernane}"/>

Note the use of the param scope notation to alert the JSP that the username
attribute can be found as a request parameter. The next example shows how you
can use the app scope to set applicable attributes across the entire web application.

<c:set var="lo0g"
val ue="${ app: config. | odfil e} "

scope="page"/ >

In this case we are pulling an attribute that refers to an instance for logging,
and assigning it to a var visible for the currently executing JSP’s lifecycle.

Using Literals

You can use literal values (as opposed to expression values) in your JSTL
attributes. Anything in the attribute of a JSTL tag that is not encapsulated by the
${...} characters is treated as a literal notation. To use the dollar $ sign as a literal
value you escape it with the backslash “\”” character.

<c:set var="anount" val ue="\$1, 000, 000"/ >

ECMAScript

ECMAScript was borne out of the chaos that was (and some would say still is) the
confusion of browser support for JavaScript. ECMAScript is a standardized
scripting language that has its roots in JavaScript version 1.2. The JWSDP frame-
work supports, and expects, expression languages to be in ECMAScript unless
specified otherwise.

163

www.syngress.com

164

Chapter 5 = Using JSTL (JSP Standard Tag Library)

JXPath

JXPath is a powerful and feature-rich scripting technology that provides support
for XPath expressions. It provides graph traversal to retrieve property values by

name or map elements by a key. By specifying an index or search criterion you
can retrieve elements from a collection as well. JXPath also provides support for
logical, arithmetic, character and collection manipulation.

Selecting an Expression Languge

The choice of an expression language depends on your particular needs. Once
determined, there are two methods of denoting which expression language to use
when evaluating the attributes of JSTL tags. These two methods are Application-
Wide and Code Section Explicit.

Application-Wide
As mentioned earlier the default expression language is ECMAScript. To use an
expression language other than this, you have to set the appropriate context
parameter in your web application’s web.xml deployment descriptor.

The following example will set up your application to use the JXPath expres-
sion language evaluator.

<cont ext - par an»
<par am nane>
javax.servlet.jsp.jstl.tenp. Expressi onEval uat or C ass
</ par am nanme>
<par am val ue>
org. apache. tagli bs. standard. | ang. j xpat h. JXPat hExr essi onEval uat or
</ par am val ue>

</ cont ext - par an®

NoTE

Support for the web.xml deployment descriptor became mandatory with
the Java Servlet Specification version 2.2. Web servers that do not sup-
port this version of the specification will not be able to execute
JavaServer Pages with tag libraries.

WWW.SyNngress.com

Using JSTL (JSP Standard Tag Library) = Chapter 5

Code Section Explicit

It is conceivable that you will wish to override the expression language evaluator
for certain parts of your application. JSTL does provide a means to accomplish this.

c:expressionLanguage

The expression language can also be explicitly set at the code level. This involves
the use of the expressionLanguage action from the core tag Library. If, for example,
you wanted to override the application-wide setting for a particular code block
in order to use JXPath as the expression language you would use the following
notation:

<c: expressi onLanguagecl ass="or g. apache. t agl i bs. st andard. | ang. j xpat h.
JXPat hExr essi onEval uat or" >

</ c: expressi onLanguage>

If SPEL was your expression language choice, you would set it using the fol-
lowing notation:

<c: expressi onLanguage cl ass="org. apache. taglibs.standard.|ang. spel.
Expr essi onEval uat or 0 ass" >

</ c: expr essi onLanguage>

And finally if ECMAScript was the desired EL then you would set it as
follows:

<c: expressi onLanguage cl ass="org. apache. taglibs. standard.|ang.javascri pt.
Javascri pt Expr essi onEval uat or" >
</ c: expressi onLanguage>

The expressionLanguage action’s child tags will inherit the evaluator class that
was specified during the evaluation of any expressions encountered during page
rendering.

NoTE

Be advised that if JSTL does standardize on a single expression language,
support for this action will most likely disappear.

165

www.syngress.com

166

Chapter 5 = Using JSTL (JSP Standard Tag Library)

Expression Languages and Tag Library Selection

The JWSDP comes with both the EL support and non-EL support versions of
the four tag libraries. The non-EL tag libraries will have an “-rt” suffix in the file-
name. The EL support tag libraries will have no such suffix.

The non-EL tag libraries function the same way as you have come to expect
tag libraries to function, according to the JavaServer Page Specification version
1.1.The runtime expressions of the tag attributes are evaluated in the JSP
scripting language. You may elect to use the non-EL tag libraries should the
expression language support not contain the necessary functionality you need to
implement your application.

If you do choose to use the EL support tag libraries you will not be allowed
to use the JSP scripting language to derive attribute values.

Future Compatibility with Expression Languages

As mentioned earlier, the specifications that make up the JWSDP are still in a
state of flux. As a result, the support for expression languages will no doubt
undergo modifications. However, there have been assurances from the group
responsible for the JWSDP that future versions will be backwards compatible.

Developing & Deploying...

Configuring Your Web Application to use the JSTL

JSTL comes as a optional tool for the JWSDP. The class packages and sup-
porting TLD files are located at <JWSDP_HOME=/tools/jstl. To use some
or all of the tag libraries defined there you must do three things: First
you must copy the two JAR files, jstl.jar and standard.jar, to your web
application’s /WEB-INF/lib directory. Second, you must copy the TLD files
for the tag libraries you wish to use to the /WEB-INF directory. Last, you
must add a reference to each of the TLD files copied to your web.xml
deployment descriptor as separate <taglib> elements.

WWW.SyNngress.com

Using JSTL (JSP Standard Tag Library) = Chapter 5

Core Tags

Now that we have an understanding of the syntax and use of expression lan-
guages we can go over the meat of the JSTL, the tag libraries themselves.

The core tag library of JSTL represents the basic functionality used in the
development of JavaServer pages. This basic functionality can be broken down
into three groups: expression language, flow control, and importing.

NoTE

The subsequent sections in this chapter provide examples of the actions
available from the four tag libraries that comprise the JSTL. We show
these examples using the standard naming conventions as used in the
specification itself. As a result the core tag library is assigned a c: prefix ,
the SQL tag library is assigned an sql: prefix of, the internationalization
tag library is assigned an fmt: prefix and finally the XML tag library is
assigned an x: prefix of. Using these prefixes keeps the examples in this
chapter consistent with the specification.

Expression Language

The JSTL core tag library offers support for the evaluation and manipulation of
expressions. The validation of expressions is governed by the rules mandated by
the expression evaluator specified in either the deployment descriptor or explic-
itly within the JSP using the expressionLanguage action.

The values of the attributes in the expression can be retrieved from any of a
web application’s associated valid scopes. Scoped attributes can be set in the
web.xml deployment descriptor and retrieved using the app scope notation. They
can be set in a request as form parameters. If you use JavaBeans in your JSP files
then you can reference the properties of those beans using expression language.

In a nutshell, the expression language is used to retrieve and set an applica-
tion’s attributes using a simple notation to denote the name and scope of the
desired attribute. This removes the necessity of putting scriptlet code that might
be confusing to follow into your JSP. An example of this would be to access the
properties of a bean. Consider a JavaBean with the following semantics:

i mport java. beans. *;

167

www.syngress.com

168 Chapter 5 = Using JSTL (JSP Standard Tag Library)

public class Person extends java.lang. Object

i npl ements java.io.Serializable

{
private String fn;
private String In;
private String m;
public String get FN()
{
return this.fn;
}
public void setFN(String val ue)
{
this.fn = val ue;
}
public String getLN()
{
return this.In;
}
public void setLN(String val ue)
{
this.In = val ue;
}
public String getM ()
{
return this. m;
}
public void setM(String val ue)
{
this.m = val ue;
}
}

WWW.SyNngress.com

Using JSTL (JSP Standard Tag Library) = Chapter 5

Using the traditional JSP scripting language to access these bean properties, a
JSP page that uses this bean might look like the following example:

<%@ page content Type="text/htm" %
<U@taglib uri="/jstl-c" prefix="c" %

<htm >
<head><tit| e>Show Person</titl e></head>
<body>

<j sp: useBean id="person" class="Person" scope="session"/>

Wel cone <% person.getFN(); %
</ body>
</htm >

With the introduction of expression languages, the effort to access and use
attributes such as the JavaBean to which we have been referring, become much
simpler to develop and follow.

<%@ page content Type="text/htm" %
<U@taglib uri="/jstl-c" prefix="c" %

<ht i >
<head><tit| e>Show Person</titl e></head>

<body>
<j sp: useBean i d="person" class="Person" scope="session"/>

Wl come <c:out val ue="${session: person.fn}"/>
</ body>
</htm >

Expression languages have provided a means of defining the values of tag
attributes as scoped JSP attributes, greatly simplifying the notation.

c.out

The out action takes the expression specified in its value attribute and evaluates it.
The result of the evaluation is sent to the JspWriter object of the currently exe-
cuting JSP.

169

www.syngress.com

170 Chapter 5 = Using JSTL (JSP Standard Tag Library)

<%@ page content Type="text/htm" %
<%@ page errorPage="error.jsp" %
<U@taglib uri="/jstl-c" prefix="c" %

<htm >
<head>
<title>c:out</title>
<link rel="styl esheet" type="text/css" href="styl esheet.css">
</ head>
<body>
<h2>c: out (cont)</h2>
<p>The follow ng paraneters were retrieved from PARAM scoped attributes
via the c: out </ span> tag. </ p>

street = <c:out value="${paramstreet}"/></1i>
city = <c:out value="${paramcity}"/>
<l'i >zi pCode = <c:out val ue="${param zi pCode}"/></1i>
</ ul >
</ body>
</htm >

c.set

The set action sets the value of an attribute. The name of the attribute is denoted
by the id attribute. The optional scope attribute is used to set the scope visibility of
the attribute. To specify the value of the attribute you can either use the value
attribute or the body of the set action.

<%@ page content Type="text/htm" %
<@ page errorPage="error.jsp" %
<U@taglib uri="/jstl-c" prefix="c" %

<htm >
<head>

<title>c:set exanple</title>

<link rel="styl esheet" type="text/css" href="styl esheet.css">
</ head>

<body>

WWW.SyNngress.com

Using JSTL (JSP Standard Tag Library) = Chapter 5

<h2>c: set </ h2>

<p></ p>

<hr/>

<c:set var="requri" scope="page">
<% request. get Request URI () %

</c:set>

<h3>The Request URI was parsed fromthe request object and set to the var

"requri". The value found is "<c:out value="${requri}"/>".
</ body>

</htnm >

Iterations

The capability to loop or iterate through a collection of object is offered by
Iterations. JSTL’s core tag library provides two actions to support such iterations:
forEach and forTokens.

c:forEach

The forEach action allows a developer to iterate over a collection of objects
within the JSP. The items attribute (which refers to the collection to iterate over),
can be one of the following data types.

= Arrays of either primitive or object types. Primitive arrays are automati-
cally converted into their respective wrapper class instances.

= An instance of a class that is defined as implementing one of the fol-
lowing interfaces: java.util.Collection, java.util.Iterator, java.util. Enumeration
or java.util.Map.

= A java.lang.String instance containing comma delimited fields.

<%@ page content Type="text/htm" %
<%@ page errorPage="error.jsp" %
<%@ page i nport="ConpanyBean" %
<y@taglib uri="/jstl-c" prefix="c" %

<ht i >
<head>

<title>c:forEach exanple</title>

171

www.syngress.com

172

Chapter 5 = Using JSTL (JSP Standard Tag Library)

<link rel="styl esheet" type="text/css" href="styl esheet.css">
</ head>
<body>
<h2>c: f or Each</ h2>
<p></ p>
<hr/>
<j sp: useBean id="conpany" cl ass="ConpanyBean" scope="page"/>

<c:set var="departments" val ue="${page: conpany. departnments}"/>

<t abl e>
<tr><th>Departnment</th></tr>

<c:forEach var="dept" itens="${departnents}">
<tr><td><c:out val ue="${dept}"/></td><?tr>

</ c: forEach>

</tabl e>

</ body>

</htm >

c:forTokens

The forTokens action allows a developer to iterate over a set of tokens using a
specified delimiter. The difference between this action and the forEach action is
that the forTokens action will allow you to define a delimited collection using one
or more delimiters of your choice.

<%@ page content Type="text/htm" %
<%@ page errorPage="error.jsp" %
<%@ page i nport="ConpanyBean" %
<U@taglib uri="/jstl-c" prefix="c" %

<htm >
<head>
<title>c:forTokens exanple</title>
<link rel="styl esheet" type="text/css" href="styl esheet.css">
</ head>
<body>
<h2>c: f or Tokens</ h2>

<p></ p>

WWW.SyNngress.com

Using JSTL (JSP Standard Tag Library) = Chapter 5

<hr/>
<c:set var="tokens" val ue="Wel cone, About Us, Services, Opportunities"/>

<h3>Menu | tenms</ h3>

<c:forTokens itens="%{tokens}" delins="," var="nenulteni>
<c:out value="${nmenulten}"/>

</ c: forTokens>

</ ol >

</ body>

</htm >

Conditional Expressions

Conditional expressions are a means to conditionally execute blocks of code
depending upon the result of an expression evaluation. JSTL’s core tag libraries
contains two sets of conditional expressions: if and choose/when/otherwise.

c:if
The if action provides conditional execution support within the JSP. The body of

the <if> tag is evaluated if the condition denoted by the test attribute evaluates to
true.

<c:if test="${session:sessionData.loggedln == true}">
<% - Perform some conditional action --%

</c:if>

c:.choose

The choose action encapsulates a series of nested when actions. The choose action is
therefore analogous to the switch statement in Java.

c:when

The when action is a child tag of a choose action. Each when action has a test
attribute that when evaluated as true executes its body.

173

www.syngress.com

174

Chapter 5 = Using JSTL (JSP Standard Tag Library)

c:otherwise

The otherwise action is the last child element of a choose action. This action only
executes its body content if all proceeding when actions evaluated as false.

The following is an example of how to use these tags to personalize an order
processing JSP according to the customer’s age.

<%@ page content Type="text/htm" %
<@ page errorPage="error.jsp" %
<y@taglib uri="/jstl-c" prefix="c" %

<htm >
<body>
<h2>Cr der Status</h2>
<c: choose>
<c:when test="${session: personBean. age < 18}">
You nust get parental perm ssion to conplete the purchase process.
</ c: when>
<c:when test="${session: personBean. age > 65}">
You are entitled to a senior discount on your purchase
<c: ot herwi se>
Thank you for your order. Please shop with us again
</ c: ot herwi se>
</ c: choose>
</ body>
</htm >

Importing External Resources

JSTLs core tag library extends the inherent capability of the JSP to incorporate
external resources into the currently executing JSP.

C. |mport

The import action is used to combine the output from an external resource into
the currently executing JSP. This resource can be accessible from either a relative
or an absolute URL. The contents of this external resource can be stored in a
variable denoted by a var attribute, a reader object denoted by a varReader
attribute, or simply to the page itself.

WWW.SyNngress.com

Using JSTL (JSP Standard Tag Library) = Chapter 5

The key difference between this JSTL action and the standard JSP script
action jsp:include is that the latter can’t reference a URL that is external to the
currently executing web application. Use of JSTL’s import action also does not
involve the buffering inherent in the traditional jsp:import action.

The following is an example of using the JSTL import action.

<t abl e>
<tr><th>Your Weather</th></tr>
<tr><td>
<c:inport url="/portlet-weather.jsp" >
<c: param nane="zi pcode" val ue="${sessi on: person. zi pCode}/ >
</c:inport>
</[td></tr>

</t abl e>

¢:param

The param action works as a nested tag of the import action. These nested param
actions allow you to set additional parameters to which the external resource can
have access. Each param action will add one more parameter to the URL of the
request, in the same manner as the get request. The following example shows how
this param action could be used:

<c:inmport url="/orderformjsp>
<c: par am name="shi ppi ngZi pCode"
val ue="34050- 1010"/ >

</c:inport>
In this example, the invoked URL would be modified from /orderform.jsp to
/orderform.jsp?shippingZipCode=34050-1010.
URL Manipulation
JSTL offers the ability to encode a string to be used as a URL.

c:urlEncode

The urlEncode action takes a value as represented by its value attribute and
encodes it as x-www-form-urlencoded. The following is an example of the usage
of this action:

175

www.syngress.com

176

Chapter 5 = Using JSTL (JSP Standard Tag Library)

<a href="<c:url Encode val ue="http:/nyserver.coni servl et1?nanme=
John Doe&address=123 Main Street, Suite 17"/>">Add User

When executed, the resultant HTML will contain an anchor tag (<a>) that
looks like the following:

<a href="http:/nyserver.com servl et 1?name=John Doe&addr ess=
1239%20Mai n Street, %20Sui t e%2017" >Add User </ a>

This is useful when programmatically constructing a URL for constructs
requiring one, for example an anchor tag.

c:redirect

The redirect action sends an HT TP redirect command to the client. As with the
import action, you may specify optional param actions to add embedded parame-
ters to the URL. This action’s behavior is analogous to the
HttpServletResponse.sendRedirect() method.

SQL Query Tags

JSTL provides support for simplistic database interaction from within a JSP using
the SQL Tag Library package. Support for SQL commands in JSTL was not
intended to replace the proper placement of database interactions in business
objects like JavaBeans and Enterprise JavaBeans. Rather the SQL Tag Library was
provided to allow for quick prototyping of database-enabled applications. If the
business application is simple enough these SQL actions may suffice. It is up to
the developer’ discretion to decide if this approach is prudent. Recklessly
inserting database interaction logic into a JSP tends to complicate the JSP and
make it harder to follow. The addition of SQL statements in the JSP also tends to
deviate from the desired MV C architecture in web application design.

Setting up a Driver

JSTL allows the driver being used for SQL database interaction to be defined in a
couple different ways. The data source to be used can also be specified in the
web.xml deployment descriptor in a resource-ref element, as shown in the following
example:

<resource-ref>
<res-ref-nane>j dbc/ Li braryDB</res-ref - nanme>

<res-type>j avax. sql . Dat aSour ce</res-type>

WWW.SyNngress.com

Using JSTL (JSP Standard Tag Library) = Chapter 5

<r es- aut h>Cont ai ner </ r es- aut h>

</resource-ref>

Your application code will then take this data source and place it in the
javax.servlet.jsp.jstl.sql.dataSource scoped attribute.

sql.driver

The driver action is provided to set up a data source from with the JSP. It is
important to note here that this scheme should only be used for prototyping;
there are more appropriate places to establish a data source, such as creating a data
source from within servlet initialization and placing the data source with the
application context for multiple sources to use.

NoTE

It is not recommended to use the <driver> tag in a production
environment.

Executing Queries

JSTL provides functionality to query a database and return the results. This is pri-
marily used with simple query statements like the SELECT command. Results
from the query are returned via an instance of the javax.servlet.jsp.jstl.sql. Result
interface.

sql:query
The query action executes an SQL query statement as specified in the sgl attribute
or in the body of the query action itself.

sgl:param
The param action supplies parameters to be used in an enclosing query action.
<sql : query var="resul ts" dataSource="${app: pool . dat aSour ce}" >

SELECT * FROM EMPLOYEES WHERE SSN = ?

<sql : param val ue="${param ssn}" />

</ sql : query>

177

www.syngress.com

178

Chapter 5 = Using JSTL (JSP Standard Tag Library)

The result set from a query can be stored within a JSP scoped variable as
specified in the query action’s var attribute. In the above example the results from
the query against the EMPLOYEE table will be stored in theresults instance. The
Result class has a getRows method, which will return a Row array . Each Row
instance has a getColumns method that returns a Column array. The actual value of
that Column instance can be acquired using the getValue method.

Using the SPEL as our expression language evaluator we can create queries
and display the results in a JSP:

<@ page content Type="text/htm" %

<%@ page errorPage="error.jsp" %
<U@taglib uri="/jstl-c" prefix="c" %
<Y@taglib uri="/jstl-sql" prefix="sql" %

<htm >
<head>
<title>c:query exanple</title>
<link rel="styl esheet" type="text/css" href="styl esheet.css">
</ head>
<body>
<h2>c: query</ h2>
<p></ p>

<hr/>

<sgl :driver var="ds"
driver="sun.jdbc. odbc. JdbcOdbcDri ver"
url ="//1ocal host/db">
<sql : query datasource="ds" var="result">
SELECT * FROM EMPOYEES
</ sql : query>

</sql:driver>

<h3>Enpl oyee List</h3>

<t abl e>

<c:forEach var="enpl oyee" itenms="${result.rows}">
<tr><td><c:out val ue="${enpl oyee.| ast Nane}"/>

<c:out val ue="${enpl oyee. first Nane}"/ ></td></tr>

WWW.SyNngress.com

Using JSTL (JSP Standard Tag Library) = Chapter 5

</ c:forEach>
</t abl e>

</ body>
</htm >

In this example, the JSP first establishes a JDBC driver using the driver action.
A nested query action performs the SELECT query as specified, storing the
results in a result instance held in the var named result. The next group of tags
takes that result collection and iterates through it to create a table with each row
containing one row of the result.

Executing Updates

The JSTL provides the functionality to update databases. This is primarily for use
with simple update statements like the UPDATE command, although any SQL
command that does not return results can be used in this action.

sql:update
The update action essentially allows you to execute an SQL command that returns
no data. The most common SQL commands used in this context are INSERT,

UPDATE and DELETE. As it is with the query action the update action can also
contain nested param actions that affect the behavior of the SQL command.

<%@ page content Type="text/htm" %

<@ page errorPage="error.jsp" %
<U@taglib uri="/jstl-c" prefix="c" %
<v@taglib uri="/jstl-sqgl" prefix="sql" %

<htm >
<head>
<title>sql:update exanple</title>
<link rel="styl esheet" type="text/css" href="styl esheet.css">
</ head>
<body>
<h2>sql : updat e</ h2>
<p></ p>

<hr/>

<c:set var="tabl eNanme" val ue="$paramt abl eNane"/>

179

www.syngress.com

180

Chapter 5 = Using JSTL (JSP Standard Tag Library)

<sql:driver var="ds"
driver="sun.jdbc. odbc. JdbcOdbcDri ver"
url ="//1ocal host/db">
<sql : updat e dat asource="ds">
DROP <c:out val ue="$t abl eNane"/ >
</ sql : updat e>

</sql:driver>

Tabl e <c:out val ue="$t abl eNane"/> has been dropped.
</ body>
</htnm >

In the preceding example the JSP reads the tableName attribute, which exists
as a request parameter, submitted in the current request. Once the attribute has
been retrieved, the driver action creates a data source. Nested within this action is
the update action that executes the DROP command, effectively erasing the table
from the database. Upon successful completion of the table drop the user is pre-
sented with a message stating that the operation was successful.

Denoting Transactional Boundaries

It is often desirable to execute several database functions within the context of a
single transaction. An example of this would be a bank funds transfer: an amount
would be withdrawn from one account in the first database function, and the
same amount would be added to another account in a second database function.
The success of both functions is critical if the transfer is to be completed success-
fully. If the amount was withdrawn from the first account but an exception
occurred while depositing that amount into the recipient account, then the
transfer should fail and the amount be credited back to the first account.

sgl:transaction

The transaction action is used to nest database actions within the boundaries of a
single transaction.

<%@ page content Type="text/htm" %

<%@ page errorPage="error.jsp" %

<y@taglib uri="/jstl-c" prefix="c" %

<U@taglib uri="/jstl-sqgl" prefix="sql" %

WWW.SyNngress.com

Using JSTL (JSP Standard Tag Library) = Chapter 5

<htm >
<head>
<title>c:transaction exanple</title>
<link rel="styl esheet" type="text/css" href="styl esheet.css">
</ head>
<body>
<h2>c: transaction</h2>
<p></ p>

<hr/>

<c:set var="checkAmount" val ue="${param checkAmount}"/>
<c:set var="fromAccount" val ue="${param fromAccount}"/>

<c:set var="toAccount" val ue="${paramtoAccount}"/>

<sql:driver var="ds"
driver="sun.jdbc. odbc. JdbcOdbcDri ver"
url ="//1ocal host/db">
<sql :transacti on datasource="ds">
<sgl : updat e datasource="ds">
UPDATE bankAccounts SET currentBal ance = currentBal ance - ?
WHERE account = ?
<sqgl : param val ue="${ checkAnount}"/ >
<sql : param val ue="${fromAccount}"/ >
</ sql : updat e>
<sgl : updat e datasource="ds">
UPDATE bankAccounts SET currentBal ance = currentBal ance + ?
WHERE account = ?
<sqgl : param val ue="${ checkAnount}"/ >
<sql : param val ue="${t oAccount}"/ >
</ sql : updat e>
</ sql :transaction>

</sql:driver>

Transacti on Conpl et ed
</ body>
</htm >

181

www.syngress.com

182

Chapter 5 = Using JSTL (JSP Standard Tag Library)

The preceding example illustrates how a transaction action can group related
and interdependent SQL commands so that the sequence of commands is treated
as one event. In this example (a variant of the previous banking example), we
have a JSP that receives a request from some other source. This request contains
three parameters of interest: the number of the checking account withdrawing
the amount, the number of the checking account depositing the amount, and the
amount of the transaction itself. Once this data has been retrieved the driver
action establishes a data source, presumably the database holding the account
information. An encapsulating transaction action is used to hold the two
UPDATE commands that remove the amount from one checking account and
deposit it into the other account. Failure of either UPDATE will result in a roll-
back of the entire transaction.

Internationalization Tags

When web-based application development was in its infancy (circa 1995) devel-
opers did not have to concern themselves with support for multiple languages
and locales. Typically the scope and reach of an application was limited to a cer-
tain group communicating in a common language. This is no longer the case;
nowadays these same developers must be cognizant of the implications of
deploying an internationalized application that is capable of supporting multiple
languages and locales. One approach is to port an application developed in one
language such that multiple copies of the application exist, each catering to the
specific needs of a particular language or area. Needless to say, this approach is
extremely costly, both in terms of development and maintenance.

NoTE

The process of enabling an application to work with multiple locales is
known as Internationalization (I118N). When you insert the various for-
matting actions into the JSP files you are performing 118N. The process
of actually creating the content specific to each locale is known as
Localization (L1ON). When you create a resource bundle you are per-
forming L10N.

Fortunately the JSTL provides a mechanism to support multiple languages
and locales from within the same code base. This mechanism allows the developer

WWW.SyNngress.com

Using JSTL (JSP Standard Tag Library) = Chapter 5

to remove all textual messages, formatting, and layout instructions and place them
into a resource bundle. The resource bundle is where the developer places custom
tags designed to specify a locale and to retrieve certain information or perform
certain tasks based on the value of the locale that was either received from the
client’s browser or calculated internally in the web application itself.

Defining the Locale

There are two methods by which a locale can be specified: The first is by the
client’s browser, and the second is by the web application itself. The first method
is more common as the support for specifying a desired language is built into the
browser software and frees the developer from the burden of implementing lan-
guage preference functionality. The second method is used less frequently; some
web applications will let a user select a language, typically from a list of languages
that have been implemented in the form of resource bundles, and store the selec-
tion. This storage is either session-based or persisted to a datastore.

Browser Specified

Web browsers allow the user to compile a list of their preferred languages and
store that information locally on the user’s computer.When the browser makes
an HTTP request, it passes the preferred language settings within the headers of
that request to the web server. During the course of execution, JSP files that
invoke any of the custom tag actions from the fmt.tld tag library descriptor will
use a locale derived from that header information as the basis for the resource
bundle lookup.

Figure 5.1 is a screen capture of the language selection dialog from Internet
Explorer.

Figure 5.1 Browser Language Selection
T |- |

Torw el sy P [e A TR, F
i e S e ey el i i
e,

|

el il v I

il

Haig ol fsha brmmq g ey it

g 5 el i
[| Cuenit |

183

www.syngress.com

184

Chapter 5 = Using JSTL (JSP Standard Tag Library)

You may enter multiple languages in this dialog and arrange them into the
order of precedence that you wish.

JSP Specified

The JSP files do have the capability to explicitly set the locale to use when
looking up internationalized messages.

fmt:locale

This locale action sets the locale to use when attempting to discover the best
resource bundle match or when using the various formatXXXX or parseXXXX
actions as discussed later.

<fnt:local e val ue="de-DE" variant="EURO'/ >

In this example we are setting the locale of the currently executing JSP to the
German language with a variant of EURO.

Defining the Timezone

The JSTL uses the javax.servlet.jsp.jstl.il8n.timeZone scoped JSP attribute to
denote the time zone with which to format data representing a date and time.
This attribute can be set either by the application (using a formula), through
user selection, or it can be explicitly stated within the JSP itself using the
<timeZone> tag.

fmt:timeZone

To explicitly set the time zone from within the JSP you would use the timeZone
action as seen in the following example. This example would set the time zone to
Eastern Standard Time.

<fnt:timeZone val ue="GMI-5: 00" >
. other date and tine formatting tags ...

</fnt:tinmeZone>

If you set the time zone by this method, there are several different types of
values you could use in the value parameter. These value types are:

= Abbreviation Asshown in the example above, you could use the stan-
dard abbreviation for the time zone. Examples include PST, MDT and
EDT. The official Java documentation discourages the use of such abbre-
viations in lieu of the Full Name.

WWW.SyNngress.com

Using JSTL (JSP Standard Tag Library) = Chapter 5

= Full Name This is the full name of the time zone.

= Custom You can specify a custom time zone by denoting the delta
from GMT. Examples of this include GMT-5:00, GMT+2:00, etc.

If you are interested in seeing all of the Time Zones that are defined in Java
you can run the following program:

import java.util.*;
public class ListTineZones extends java.l ang. Object
{
public static void main(String[] args)
{
String[] ids = Ti meZone. get Avai |l abl el Ds();
for(int i =0; i <ids.length; i++)
{
String id = ids[i];
Systemout.print("id="+id);
Ti meZone tz = TineZone. get TimeZone(id);
Systemout.println(", timezone="+

tz. get Di spl ayNane());

Specifying a Resource Bundle

There are two ways to set the base name of the resource bundle you wish to use
when localizing messages, dates and times. The first way is to set it at the applica-
tion level through a context parameter in the webh.xml deployment descriptor.

<cont ext - par ane
<par am nane>
javax.servlet.jsp.jstl.i18n.basenane
</ par am nanme>
<par am val ue>
i 18n. Messages
</ param val ue>

</ cont ext - par an®

The other way is to use the <bundle> tag from the core library.

185

www.syngress.com

186

Chapter 5 = Using JSTL (JSP Standard Tag Library)

fmt:bundle

The bundle action allows you to explicitly load a particular resource bundle. This
bundle is then valid for the remaining parts (after the bundle action) of the cur-
rently executing JSP.

<fnt : bundl e basenane="Application"/>

Locating the Resource Bundle

A resource bundle contains thelocalization information that defines the specific
messages and the formatting of those messages, based upon a specific locale.
When an application is asked to display internationalized information it must first
locate the resource bundle in which that information is contained.

A resource bundle may take the form of a class file or a properties file. The
names of these files must follow a defined pattern if the application is to find the
correct one. There are four parts to a resource bundle’s filename. These parts are:

= Base Name An arbitrary identifier selected bythe web application’s
developer, and which is commonly used to communicate the contents
or consumer of the resource bundle. Examples of this are ErrorMessages
or OrderProcessing.

» Language A twolower-case letter language code. This code must be
I1ISO-639-compliant.

= Country A two upper-case letter code that denotes the country. This
code must be 1ISO-3166-compliant.

= Variant This code consists of one or more underscore-separated tokens
that are specific to a particular vendor or browser.

When put all four parts together, the resource bundle filename will look like:

<<basenane>>_<<| anguageCode>>_<<count r yCode>>_<<vari ant >>

A search for a resource bundle always starts with the base name. The search
mechanism will take the list of desired locales (as supplied by the client’s browser)
or the explicitly defined locale (as set programmatically by the application) and
search for the best possible match against all available resource bundles. The best
possible match refers to how closely the available resource bundles’ filenames pair
up with the desired resource bundle file name as calculated from the base name
and the specified locale.

WWW.SyNngress.com

Using JSTL (JSP Standard Tag Library) = Chapter 5

As defined by the specification, the JVM will search for a resource bundle by
looking for names in the following order.When a match is found the search stops.
= basename+*_"+languageCode+*_"+countryCode+*_+variant
= basename+*_"+languageCode+*_"+countryCode+*_+variant+
“.properties”
= basename+*_+languageCode+*“_"+countryCode
= basename+*_"+languageCode+*_"+countryCode+*.properties”

= basename+*_"+languageCode

+languageCode +*.properties”

= basename+

As the list suggests, ResourceBundles will take precedence over
PropertyResourceBundles of the same name. An example of a resource bundle
created to hold localized messages for Germany might look like so:

El ectroni csSal es_de_DE_EURO

In this example, the ElectronicSales is the base name. All resource bundles will
start with this name. The lowercase de is the language identifier for German. The
uppercase DE is the country identifier for Germany. The variant in this case is
denoted by EURO.

Using Internationalized Messages

The use of internationalized messages within a web application is realized by
the two sets of tags provided by JSTL for that purpose. These two sets are
<Messaging> and <Formatting>. These tags are defined within the fmt.tld tag
library descriptor (with EL support) and the fmt-rt.tld tag library descriptor (with
no EL support).

Obtaining Simple Internationalized Messages

Once a resource bundle has been created and placed where the web application
can locate it in the CLASSPATH, it is a simple matter to access the international-
ized messages contained therein.

187

www.syngress.com

188

Chapter 5 = Using JSTL (JSP Standard Tag Library)

fmt:message

The message action is the easiest means with which you can access international-
ized messages. The following code shows how you will use this page directive to
enable the use of the 118N tags.

<y@taglib uri="/jstl-fm prefix="fm" %

As mentioned earlier, internationalized messages are stored in resource bun-
dles. Before initiating lookups of internationalized messages you must specify
which resource bundle contains the messages you want. If you did not specify a
basename as a context parameter in your web.xml deployment descriptor you
must include a reference to the desired bundle within the JSP itself using the
fmt:bundle ... action.

Now, somewhere else in your JSP you will want to place the actual
<message> tag with a specified key to substitute with the internationalized
message. Using this key, the <message> tag will lookup the following:

<fnt: message key="greeting"/>

</ span>

Performing Parameter Substitution

There are instances where simple message replacement will not suffice. Consider
the problem of rendering complete phrases or sentences containing proper
names. These proper names appear in vastly different positions depending on the
locale in which the sentence is being rendered. The JSTL provides a means with
which to perform this. It is called parameter substitution, and is accomplished
using the <messageFormat> tag with one or more child <messageArg> tags.

fmt:messageFormat

The messageFormat action provides the web application developer with a means of
defining how a message is formatted when key elements of the message are
arranged differently, depending upon the locale in which the message is rendered.
This action takes parameters which it them substitutes within a pattern string.
This pattern string is obtained from the value attribute of the action or, if missing,
from the body of the action itself.

WWW.SyNngress.com

Using JSTL (JSP Standard Tag Library) = Chapter 5

fmt:messageArg

The messageArg action is used to specify the argument of a parent message or
messageFormat action. For each variable in the parent action there must be a cor-
responding messageArg action. Substitution occurs in the order that the messageArg
actions are specified.

An example of how all this works together might look as follows. Assuming
that you have a Resource Bundle named Messages that had an entry of:

wel cone=Wel cone {0} {1} from {2} to our corporate web site.

You could use the following JSP to display a custom welcome message using
data submitted with the request:

<%@ page content Type="text/htm" %
<@ page errorPage="error.jsp" %
<U@taglib uri="/jstl-fm" prefix="fm" %

<ht ml >
<head>
<title>fnt:nessage</title>
<link rel="styl esheet" type="text/css" href="styl esheet.css">
</ head>
<body>
<h2>f nt : message</ h2>

<h2>f nt : nessageAr g</ h2>
<f nt: bundl e basenane="Messages" var="i18n"/>

<fnt: message key="wel cone" bundl e="${i 18n}">
<fnt:nessageArg val ue="${paramfn}"/>
<fnt: nmessageArg val ue="${paramln}"/>
<fnt:nessageArg val ue="${param state}"/>

</ fnmt:message>

</ body>

</htm >

In this example we wish to welcome a person to a web site with a cus-
tomized greeting. The bundle action sets the basename of the resource bundle we
use to lookup localized messages. The subsequent message action retrieves the

189

www.syngress.com

190

Chapter 5 = Using JSTL (JSP Standard Tag Library)

desired localized message, passing substitution variables in the form of nested
messageArg actions.

Exception Localization

The custom exception classes that derive from the java.lang.Exception class come
with built-in support for the localization of exception messages. The localization
of exceptions is accomplished by overriding the getLocalizedMessage method of
the java.lang. Throwable class. The default behavior of this method is to call the
getMessage method of the same class. So out of the box the two methods return
the same result. The getLocalizedMessage method can be overridden in your
custom exception class to perform a lookup against a resource bundle:

import java.util.ResourceBundl e;
inport java.util.M ssingResourceException;
public class LocalizedException extends java.lang. Exception
{
private String nmessageKey;
/**
* Constructor
* Creates a new <code>Local i zedExcepti on</ code>
* without a detail nessage.

* @aram nsg The detail ed message for this exception.

*/
public LocalizedException(String key)
{
super();
thi s. nessageKey = key;
}

[**
* Qverrides the getlLocalizedMessage of the parent
* java.l ang. Throwabl e cl ass.

*/
public String getlocalizedMessage()
{
try
{

WWW.SyNngress.com

Using JSTL (JSP Standard Tag Library) = Chapter 5

Resour ceBundl e rb = Resour ceBundl e. get Bundl e(

"i18n. Error Messages");
String nmessage = rb.getString(nessageKey);
return nessage;

}

catch(M ssingResourceException nre)
{
nre. printStackTrace();

return this. nmessageKey;

In the example, the constructor of this exception takes a single String argu-
ment. This String argument represents the key to use when performing a lookup
against a resource bundle. The constructor takes this key, performs the lookup and
stores, in a private member variable, the internationalized message to associate
with this instance.

When an Exception class is designed in this manner and used in conjunction
with a JSP Error page it becomes possible to display an internationalized error
message, generated by the exception and stored within a resource bundle.

<%@ page content Type="text/htm" %
<%@ page isErrorPage="true" %

<ht nl >
<head><titl e>Error Page</title></head>
<body>

<% exception. getLocal i zedMessage() %
</ span>
</ body>
</htm >

Here we have set up a JSP to serve as an error page using the isErrorPage
directive. Using this directive affords us access to the exception implicit object
within the JSP. In this example we call the getLocalizedMessage method on that
exception instance to return a localized error message.

191

www.syngress.com

192

Chapter 5 = Using JSTL (JSP Standard Tag Library)

Remember that the default behavior of the getLocalizedMessage method is to
return the same value as getMessage, so if this error page gets called with an excep-
tion that is not an instance of our LocalizedException class (or a derived class
thereof) then the usual message will appear in place of of an internationalized one.

fmt:exception

The JSTL provides additional support for the localization of exception messages.
The exception action is designed to display an exception in a localized form as
denoted by its value attribute.

<fm :exception val ue="{request: exception}"/>

Even if value attribute is missing, the exception action can still be used in a JSP
that has been slated as an error page by using the isErrorPage directive. Under
these circumstances the exception action will display the localized value of the
implicit exception variable.

<%@ page content Type="text/htm" %
<@ page isErrorPage="true" %
<U@taglib uri="/jstl-fm" prefix="fm" %

<ht m >

<head><title>Error</titl e></head>

<body>

<h2 class="errorTitle">An error has occured</h2>
<h3 cl ass="error Message" ><f nt: excepti on/ ></ h3>
</ body>

</htm >

Parsing and Formatting

The JSTL provides actions that parse data and format strings. These actions
include formatNumber, parseNumber, formatDate and parseDate. With these actions
you can localize numerical values such as currencies and date-time notations.

fmt:formatNumber
The formatNumber action is used to localize the formatting of numbers.

<%@ page content Type="text/htm" %
<@ page errorPage="error.jsp" %

<%@ page i nport="ConpanyBean" %

WWW.SyNngress.com

Using JSTL (JSP Standard Tag Library) = Chapter 5

<U@taglib uri="/jstl-c" prefix="c" %
<y@taglib uri="/jstl-fm" prefix="fm" %

<htm >
<head>
<title>c:formatNunber exanple</title>

<link rel="styl esheet" type="text/css" href="styl esheet.css">
</ head>

<body>

<h2>c: f or nat Nunber </ h2>

<p></ p>

<hr/>

<c:set var="nunber" val ue="1250000.50"/>

Exanpl es of the >c: f or mat Nunber </ span> acti on used
on the nunerical value of <c:out value="${nunber}"/>
<t abl e>
<tr>
<t h>Local e</t h>
<th>Fornatted Nunber</th>
</[tr>
<tr>
<td>en_US</t d>
<t d><fnt:format Nunber val ue="${nunber}"
type="currency"
par seLocal e="en_US"/ >
</td>
</tr>
<tr>
<t d>de_DE</td>
<td><fnt:format Nunber val ue="${nunber}"
type="currency"
par seLocal e="de_DE"/ ></td>
</tr>
<tr>

<t d>es_MX</td>

193

www.syngress.com

194

Chapter 5 = Using JSTL (JSP Standard Tag Library)

<t d><fnt:format Nunber val ue="${nunber}"
type="currency"
par seLocal e="es_MX"/ ></t d>
</tr>
<tr>
<td>j a</td>
<t d><fnt:format Nunber val ue="${nunber}"
type="currency"
parseLocal e="ja"/></td>
</[tr>
</tabl e>
</ body>
</htm >

Allowable values for the type attribute are number, currency and percentage.

fmt:parseNumber

The parseNumber action takes a string value from the value attribute and parses it
as a number, currency or a percentage, however denoted in the type attribute.

<f m : par seNunber val ue="100. 00" type="currency" var="cost" scope="page"/>

fmt:formatDate

The formatDate action formats a date (or time). The style and pattern attributes
dictate the final format of the date (or time).

<%@ page content Type="text/htm" %

<%@ page errorPage="error.jsp" %

<%@ page i nport="ConpanyBean" %
<U@taglib uri="/jstl-c" prefix="c" %
<U@taglib uri="/jstl-fm" prefix="fm" %

<htm >
<head>
<title>c:fornmatDate exanple</title>
<link rel ="styl esheet" type="text/css" href="styl esheet.css">
</ head>
<body>
<h2>c: f or nat Dat e</ h2>

WWW.SyNngress.com

Using JSTL (JSP Standard Tag Library) = Chapter 5

<p></ p>

<hr/>

Current Date/Time in Helsinki:<p>
<fm:tineZone val ue="Europe/ Hel sinki">
<frm:fornatDate ti meStyl e="long" dateStyle="I|ong"/>
</fnmt:timeZone>
</ body>
</htm >

fmt:parseDate

The parseDate action performs in a similar fashion to the parseNumber action in
that it takes a string and parses it for a Date object.

XML Support Tags

XML support tags provide a means to easily access and manipulate the contents
of an XML document. JSTL XML tags use XPath expressions to perform their
functions.

Parsing and Searching

JSTL provides actions that allow you to parse XML documents and perform a
search for data meeting specified criteria. These actions include parseand expr.

X:parse

The parse action retrieves the content from an XML document. This XML docu-
ment can be specified by either the source attribute or from the body of the
<parse> tag itself. A var attribute specifies the JSP scoped attribute in which to
save the result.

<x:parse var="library">
<library>
<book checkedout="true">
<title>Book Title 1</title>
<i sbhn>0130894680</i sbn>
<t ype>Fi cti on</type>
</ book>

<book checkedout="fal se">

195

www.syngress.com

196 Chapter 5 = Using JSTL (JSP Standard Tag Library)

<title>Book Title 2</title>
<i shn>0210504683</ i sbn>
<t ype>Non- Fi cti on</type>

</ book>

<book checkedout="fal se">
<title>Book Title 3</title>
<i shn>0140911380</i sbn>
<t ype>Non- Fi cti on</type>

</ book>

</library>

</ x: par se>

X:out

The out action enables the developer to denote XPath expressions when working
with XML documents. The expression specified is applied to the current node
and the result is sent to the current JspWriter object.

<x:out select="${library/book/title}"/>

X:set

The set action also evaluates a XPath expression on the current node. In this case
the result is assigned to a JSP scoped attribute as denoted by the var attribute.

<x:set var="isbns" select="${library/book/isbn}"/>

Ilteration

JSTL provides functionality for iterating over a collection of XML elements. The
tag for this XML element iteration is the forEach action.

x:forEach

The forEach action allows you to iterate over a collection of XML elements. The
set of XML elements to use is specified by the select attribute. This select attribute
contains a valid XSL statement with which to filter the XML document.

<h2>Li brary Contents</h2>
<x:forEach select="${library/book}">

Title: <x:valueof select="title"/>

WWW.SyNngress.com

Using JSTL (JSP Standard Tag Library) = Chapter 5

| SBN: <x:val ueof select="isbn"/>

</ x: f or Each>

Flow Control

JSTL provides functionality to conditionally branch execution of the current JSP
document based upon an XPath expression. The action provided by the XML
Tag Library includes the if action and the choose/when/otherwise actions.

X:if
The if action is a conditional operator that executes its body only if the XPath
expression denoted by the select attribute evaluates to true.

<x: forEach select="%{library/book}">
<x:if select="[@heckedout="'false']">
<x:val ueof select="$title"/> is available for checkout
</x:if>

</ x: for Each>

X:choose

The choose action encapsulates a series of nested <when> tags. The choose action
therefore acts like the switch statement in Java. This tag functions identically to the
action of the same name in the core package.

X:when

The when action is a child tag of a choose action. Each when action has a select
attribute containing an XPath expression that, when evaluated to true, executes
its bodly.

X:otherwise

The otherwise action is the last of the choose action’s child elements. This action
only executes its body content if all proceeding when actions evaluated to false.

<x:forEach select="${library/book}">
<x: choose>
<x:when test="$[type='Fiction]">
<x:val ueof select="$title"/> is in the Fiction section.

</ x: when>

197

www.syngress.com

198

Chapter 5 = Using JSTL (JSP Standard Tag Library)

<x:when test="$[type='Non-Fiction']">
<x:val ueof select="$title"/>is in the Non-Fiction section.
</ x: when>
<x: ot herw se>
I do not know where <x:val ueof select="$title"/> is.
</ x: ot her wi se>
</ x: choose>

</ x: f or Each>

In our example we have an XML document holding data representing books
in a library. The forEach action will iterate over each book, the location of which
is specified in the select attribute. For each book element found the type is com-
pared to expected values, in this case a type equal to Fiction or Non-Fiction, and an
appropriate message is displayed. Failure to identify the type will result in an error
message from the JSP.

Translation and XSLT

JSTL provides actions that perform translations of XML documents. This gives
you the ability to modify XML that is structured according to one schema into a
new XML document conforming to a different schema.

X:transform

The transform action applies a transformation to an XML document. The xslt
attribute points to the XSL template to use for defining the transformation. The
XML document itself can be specified either in the source attribute or within the
body of the transform action itself.

<x:transform source="library.xm " xslt="showCheckedQut.xsl"/>

The result can end up in one of three places.; in lieu of any explicit destina-
tion notation, the output goes directly to the page content. If the result attribute
is present in the action, the output gets stored as a javax.xml.transform.Result
instance named with the value of the result attribute. Finally, the output can be
saved as an instance of org.w3c.dom.Document when the var and scope attributes are
specified.

X:param

The param action is used to pass parameters to the Transformer object of a
<transform> tag.

WWW.SyNngress.com

Using JSTL (JSP Standard Tag Library) = Chapter 5

Summary

The Java Standard Tag Library (JSTL) represents a major step forward in the stan-
dardization of JSP tag library functionality. JSTL provides ready-made, commonly
used functionality to a web application; including collection iteration, flow con-
trol, attribute manipulation, XML parsing and searching, and basic database sup-
port using SQL and internationalization and localization. Using JSTL will
facilitate a wider deployment of your application across web servers that support
the JSTL specification.

The support for Expression Languages (EL) further de-couples the presenta-
tion logic from the business logic. By providing access to business methods and
scoped data from an expression we lessen the need to resort to scriptlet code and
proprietary custom tag libraries. The use of expression languages is by no means
mandatory, however. For every EL-supporting tag library provided, there is a twin
tag library that supports attribute expression evaluation using the standard JSP
scripting language.

Again, it is important to remember that these specifications are still largely
being formed. Modifications to the number, type and attributes of tags may
change by the time of the final release. Therefore, care must be taken to not
deploy applications that rely too heavily on JSTL at this time.

Solutions Fast Track

Expression Languages

M Expression Languages (EL) facilitate communication between business
logic and JSPs through scoped JSP attributes.

M Although the initial release of the JWSDP supports several different
Expression Languages, the direction is to eventually standardize on a
single EL.

M Each of the four tag libraries that make up JSTL come in both EL and
non-EL versions. The non-EL versions possess an “~rt” suffix on their
tag library descriptors.

199

www.syngress.com J

200 Chapter 5 = Using JSTL (JSP Standard Tag Library)

Core Tags

M JSTL’ core tag library provides the c:out and c:set actions to manipulate
JSP scoped attributes using expressions.

&

The c:forEach action is used to iterate over collections of objects.

=

The c:forTokens action is used to iterate over a series of tokens using a
specified delimiter.

k M Conditional expressions are realized by the c:if, ¢c:choose, ¢c:when and
c:otherwise actions.

M The c:choose body is only executed if all preceding c:when actions
evaluate their expressions to false.

M The ciimport and c:param actions are used to incorporate external
resources into the current JSP document.

% M The c:encodeURL action will encode a string according to the
= www-form-urlencoded format.

SQL Query Tags

M The <driver> tag should not be used in production. Instead, create your
data source within some business logic and store it within the
appropriate context.

M The <transaction> tag is used to bundle consecutive SQL statements
within the same transactional context.

M The SQL Tag Library contains <query> and <update> tags to perform
¥ those respective functions.

M Internationalized messages and formatting instructions are stored in
r resource bundles.

Internationalization Tags

M The resource bundle filename follows a naming convention that is used
during a search for the best possible match.

M The best possible match for a resource bundle will not necessarily be an
exact match. The best match is based upon the available resource bundles.

WWW.SyNngress.com

Using JSTL (JSP Standard Tag Library) = Chapter 5 201

M The <message> and <messageFormat> tags are used to retrieve and
format internationalized messages, respectively.

M The messages associated with classes that are derived from
java.lang. Throwable can be internationalized by overriding the
getLocalizedMessage method.

XML Support Tags

L
M All expressions in the XML Tag Library use XPath expressions.
M JSTL provides XML transformation capabilities via the X:transform
action. “
M By using the x:transformer action you can define a transformer instance

that is reusable against multiple XML documents within the same page.

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

Q: How do I define the expression language evaluator that | wish to use within
my application?

A: You can either add a context parameter in the web.xml deployment descriptor
called javax.servlet.jsp.jstl.temp.ExpressionEvaluatorClass and give it a value equal
to the full package name of the appropriate evaluation class, or you can
specify it at the page level using the c:expressionLanguage action.

Q: How do I set the basename of the resource bundle I'want to use when local-
izing messages?

A You can either add a context parameter in the web.xml deployment descriptor
called javax.servlet.jsp.jstl.il8n.basename and give.it a-value equal to the base
name of the desired resource bundle or you can specify it at the page level
using the fmt:bundle action.

www.syngress.com J

202 Chapter 5 = Using JSTL (JSP Standard Tag Library)

Q
A
Q
A

O

: How can | reuse an XSLT for multiple XML documents?
. Define a Transformer (XSLT) using the fmt:transformer action.

: Do | need to use expression languages to programmatically set the attributes

of JSTL actions?

: No, you can use JSTL without enabling EL support by using those tag

libraries that have an “-rt” suffix in their filename.

: Does the use of XPath expressions in the XML tag library actions conflict

with my choice of a global expression language?

. The only attribute of the XML Tag Library actions to use the XPath expres-

sion language is the select attribute.You cannot mix expression languages in
this attribute, whichavoids any conflict regarding EL evaluation.

: How can | set a default data source for all JSP files in my web application,

with the option to override locally?

. Somewhere in your application code, set the javax.servlet.jsp.jstl.sql.dataSource

scoped attribute to point to the desired DataSource object.

WWW.SyNngress.com

Chapter 6

Writing SOAP

Clients

Solutions in this chapter: »

= Understanding SOAP

B

= SOAPElement and JAXM DOM
= JAXM SOAP Elements
» Creating a SOAP Message

= Bringing it all Together—A Complete
SOAP Client

M Summary
M Solutions Fast Track

M Frequently Asked Questions

203

204

Chapter 6 = Writing SOAP Clients

Introduction

For the next few chapter, we will explore the development of SOAP communi-
cations using the Java Web Services Developers Pack. This chapter will provide a
brief introduction to SOAP, which is an XML-based protocol for communi-
cating between distributed systems and can be extended with attachments con-
taining essentially any media type.

The Java API for XML Messaging (JAXM) provides an API and specification
for supporting services that enable developers to implement SOAP communica-
tions in Java. This chapter will cover the implementation of SOAP clients using
JAXM (that is, consumers of web services), and the next chapter will cover the
implementation of SOAP servers (that is, providers of web services).

Unlike most of the scenarios covered in this book, it is possible to implement
synchronous communications (that is, request/reply) without the aid of a servlet
or EJB container, and this chapter will fully describe an example of such a stan-
dalone Java application that functions as a SOAP client.

Understanding SOAP

The Simple Object Access Protocol (SOAP) is an XML-based protocol that is
designed to be a lightweight method for exchanging information between dis-
tributed systems. It is very much a cross-platform and cross-vendor technology,
and has the backing of a very wide range of companies.We will discuss two fla-
vors of SOAP documents: plain SOAP, which is a pure XML message, and SOAP
with Attachments, which allows for many types of data to be transmitted with a
SOAP message.

SOAP is a fairly unique technology for use in distributed computing; it has
some things in common with other mechanisms such as RMI, but it also has a
number of differentiating features. These differences stem largely from the fact
that SOAP is designed as a simple protocol—it has been deliberately designed to
be lightweight, and for this reason it does not support such features as passing
objects by reference.

SOAP is also designed to be extensible, and these goals of simplicity and
extensibility have meant that the use of SOAP does not imply any particular pro-
gramming models; a given implementation’s semantics are extremely flexible.
There are a number of possible models for exchanging messages, as well as mech-
anisms for exchanging data of application-defined types and for performing
remote procedure calls and responses.

WWW.SyNngress.com

Writing SOAP Clients = Chapter 6

SOAP messages do not need to be bound to a particular protocol; HTTP is an
obvious choice for many situations (and will be used for the examples in this
chapter and the next), but there are many other possibilities. Likewise the model for
exchanging messages is essentially a one-way transmission between two peers; the
sender sends a message to the receiver. However this model can be extended—
“request-response” is an obvious possibility, as are one-to-many transmissions and
asynchronous transmission or reception via some form of queuing mechanism.

A complete study of the SOAP specifications is well beyond the scope of
this book.We would recommend the following documents for more detailed
information:

= Simple Object Access Protocol (SOAP) 1.1 www.w3.org/
TR/SOAP

= SOAP Messages with Attachments www.w3.org/TR/
SOAP-attachments

Additionally, there are a number of tutorials and books available. The
soaprpc.com site is a good place to look for information; it contains a list of links
to SOAP tutorials at www.soaprpc.com/tutorials/.

Envelopes

Although SOAP Messages with Attachments can contain attachments of various
content types, a simple SOAP message is an XML document that contains the
elements displayed in Figure 6.1.

The SOAP Envelope is the top element of the XML document; as such, it
must be present in every SOAP message. If present, the Header will exist as an
element within the Envelope; the Body will also be present as an element within
the Envelope. An empty envelope would look as follows:
<soap- env: Envel ope xml ns: soap-
env="http://schemas. xn soap. or g/ soap/ envel ope/ " >

</ soap- env: Envel ope>

Because it doesn’t contain a Body element, this envelope would not be a valid
SOAP message, but it illustrates an important point about namespaces in SOAP
messages: The SOAP namespace is defined by this envelope as having a URI of
“http://schemas.xmlsoap.org/soap/envelope/” and a prefix of *““soap-env”. This is
because the SOAP specification states that all of the elements in a SOAP message
must be qualified by this very namespace—an element named “Header” that was

205

www.syngress.com

206 Chapter 6 = Writing SOAP Clients

either locally-named or qualified by a different namespace would not be recog-
nized as a SOAP Header element.

Figure 6.1 The Components of a SOAP Message

SOAP Message

Envelope

Header
(Optional)

} Attachment 1 !
I (Only in SOAP Messages !
! with Attachments) [

| Attachment 1 !
i (Only in SOAP Messages !
} with Attachments) [

Headers

The Header is an optional element that may exist in the envelope. Header ele-
ments are used to transmit additional information along with a message, such as
authentication or transaction information. Header elements can also contain cer-
tain attributes. One of these is the mustUnderstand attribute, which can be used to
specify that the recipient of the message must be able to process that header ele-
ment. If the mustUnderstand attribute is not set, or contains a value of O rather
than 1, it implies that the recipient of the message is free to ignore the header
element if it does not know how to process it.
An envelope that contains a header specifying an ignorable authentication ID
could look like this:
<soap- env: Envel ope xm ns: soap-
env="http://schemas. xnl soap. or g/ soap/ envel ope/ ">
<soap- env: Header >
<aut h: Aut hI D xm ns: aut h="rmy- URI ">
Adm n

WWW.SyNngress.com

Writing SOAP Clients = Chapter 6

</ aut h: Aut hl D>
</ soap- env: Header >

</ soap- env: Envel ope>

In this example, you can see the use of the soap-env namespace prefix against
the Header element, allowing it to be recognized as a SOAP header. Within the
header is an additional element defining a new namespace with a prefix “auth”
and a URI of “my-URI”. Such a namespace can be defined by anybody. The
main thing is that, though it is preferable that the namespace will be globally
unique, it must at least be unique within the environment in which it will be
used. For this reason, our example code will make use of a namespace URI
“www.syngress.com/JWSDP/soap-example”—this can be relied on as being globally
unique as long as someone within the Syngress organization ensures that it is
locally unique.

The actual element name used in this example (AuthlD) indicates that it con-
tains authentication information. If the message’s receiver understands what the
AuthlD element means (within the defined namespace), it should process the ele-
ment, in this case by checking that Admin is an authorized account name. If the
receiver of this message does not know how to process the element, it can be
ignored.

Bodies

The Body element must exist in a SOAP message (as an immediate child element
of the Envelope), and can contain various kinds of information such as informa-
tion being requested or returned, or error information. If error information is
being transmitted in a SOAP message, it is carried using an optional entry within
the Body element known as a SOAP Fault.
An envelope containing a simple Body element containing the time may look
like this:
<soap- env: Envel ope xml ns: soap-
env="http://schemas. xnm soap. or g/ soap/ envel ope/ ">
<soap- env: Body>
<x:CurrentTime xm ns:x="ny-URl">
23:12: 17
</ x: Current Ti ne>
</ soap- env: Body>

</ soap- env: Envel ope>

207

www.syngress.com

208

Chapter 6 = Writing SOAP Clients

Attachments

SOAP Messages with Attachments extend SOAP’s basic model of a single XML
document by adding one or more attachments, each of which can contain con-
tent that is not restricted to being XML.

You may wonder why it is so important for a message to contain attach-
ments. The answer lies in the fact that a standard SOAP message must contain
only XML, and that sometimes it may be desirable for a message to contain
another form of data.

As an example, consider a web service that provides information on the surf
conditions for beaches local to a particular city.You can readily imagine SOAP
being employed to allow people to send a message that requested the conditions
at a particular beach; the response could very easily contain a textual description
along the lines of “Comfortable water temperature, waves up to 3 feet, no wind”
or “Treacherous conditions—BEACH CLOSED.”

Imagine then if this very useful web service was to be upgraded; Maybe the
town council installed digital cameras at each of the beaches. The web service
would then provide not only a textual description of the surfing conditions, but a
snapshot photograph of the beach as well, transmitted as a JPEG binary. That all
well and good, but how do you transmit a JPEG within a SOAP message?
Obviously there’s no problem sending such photographs over HT TP using MIME
encoding, but the XML-only nature of the SOAP standard doesn't allow for it.

The answer is the optional use of attachments. If a message can be transmitted
as a pure SOAP message containing only XML, then the SOAPMessage will con-
tain just the SOAP content. However, if the message is to also contain attach-
ments, the SOAPMessage will actually be a MIME-encoded message containing
the SOAP content and one or more attachments of any type. So SOAP messages
effectively fall into two distinct categories:

= Messages that contain only XML content and are not MIME-encoded.

= Messages that are MIME-encoded, and that contain an initial XML pay-
load as well as any number of attachments. These attachments could each
contain any kind of data; it may be text data, it may be images, it may be
audio, video—anything.

WWW.SyNngress.com

Writing SOAP Clients = Chapter 6

SOAPElement and JAXM DOM

As soon as you start working with JAXM’s DOM implementation you will
notice some similarities and some very obvious differences between it and the
W3C DOM implementation as used by JAXP. It seems perhaps unnecessary to
have this additional DOM implementation when aW3C DOM implementation
will most likely will be available along with any JAXM implementation. The
reason for this is purely historical; the JAXM work was performed as a JCP effort
in parallel to the JAXP work. However, until such time as the JAXM API sup-
ports JAXP more closely you will have to learn this additional specification if you
intend to program with JAXM.

SOAPElement

The java.xml.soap.SOAPEIlement interface is a key interface in the JAXM DOM
API. SOAPElement has a lot in common with the org.w3c.dom.Element interface
that was covered in the chapter on JAXP. As mentioned, however, there are a
number of differences.

When you first look at the two interfaces side by side, some differences
become immediately obvious. These include differences in the names of methods
(addAttribute in SOAPEIlement versus setAttribute in Element). Another difference is
that the org.w3c.dom.Element interface contains a number of near-duplicate
methods (those with the “NS” suffixes) for supporting operations involving
namespace-qualified names rather than local names; the SOAPEIlement approach is
to use a single method for each operation and to use a Name parameter to repre-
sent either a local name or a namespace-qualified name (although there is some
inconsistency in this, as there are overloaded variants of the addChildElement
method for specifying local names or namespace-qualified names). The Name
interface will be examined below.

SOAPEIlement is the direct superinterface for most of the SOAP objects in
the JAXM API.We have already seen that a SOAP message contains such compo-
nents as an envelope, a header (perhaps), and a body; we will shortly see that the
JAXM API represents these with interfaces named SOAPEnvelope, SOAPHeader,
SOAPBody and the like. Each of these interfaces is a subinterface of SOAPElement
and therefore most of the work you do in manipulating and reading from these
components will be done via methods of the SOAPEIlement interface.

209

www.syngress.com

210 Chapter 6 = Writing SOAP Clients

Attributes

The SOAPEIlement interface provides several methods for adding, retrieving and
removing attributes of an element—Table 6.1 lists these methods.

Table 6.1 SOAPElement Methods for Adding, Retrieving and

Removing Attributes

Method

Description

SOAPElement addAttribute(Name name,
java.lang.String value)

java.util.lterator getAllAttributes()

java.lang.String getAttributeValue(Name name)

boolean removeAttribute(Name name)

Add a new attribute to an
element. As already men-
tioned, the name parameter
allows either a local name or
a namespace-qualified name
to be specified.

Retrieves the list of all
attributes of an element by
returning an iterator over
the names of those
attributes. For each of those
names, getAttributeValue
can be used to retrieve the
values individually. Each ele-
ment returned by the iter-
ator will be an object of
type Name.

Retrieves the value of an
attribute by local or name-
space-gualified name.

Deletes an attribute by local
or namespace-qualified
name.

Child Elements

The JAXM DOM implementation also provides a set of methods for adding,
retrieving and removing child elements of an SOAPEIlement, as listed in Table 6.2.

WWW.SyNngress.com

Writing SOAP Clients = Chapter 6

Table 6.2 SOAPElement Methods for Adding, Retrieving and Removing

Child Elements

Method

Description

SOAPElement addChildElement(Name name)

SOAPElement addChildElement(SOAPElement
element)

SOAPElement addChildElement(java.lang.String
localName)

SOAPElement addChildElement(java.lang.String
localName, java.lang.String prefix)

SOAPElement addChildElement(java.lang.String
localName, java.lang.String prefix,
java.lang.String uri)

java.util.lterator getChildElements()

java.util.lterator getChildElements(Name name)

void detachNode()

void recycleNode()

Adds a new child element to
an SOAPElement with either
a local name or a namespace-
qualified name.

Takes an already-created
SOAPEIlement object and
adds it as a child element.

Adds a new child element to
an SOAPElement with a local
name.

Adds a new child element to
an SOAPElement with a local
name and namespace prefix.

Adds a new child element to
an SOAPElement with a
namespace-qualified name.

Gets all of the child elements
of an SOAPElement by
returning an iterator over the
elements.

Gets all of the child elements
of an SOAPElement that
match a certain name (local
or namespace-qualified) by
returning an iterator over the
matching elements.

Inherited from the
javax.xml.soap.Node interface
(which is the direct superin-
terface of SOAPElement),
allows an element to be
deleted from the tree.

Also inherited from Node,
this method should only be
called after calling
detachNode, and notifies the
JAXM implementation that
the object is no longer being

Continued

211

www.syngress.com

212

Chapter 6 = Writing SOAP Clients

Table 6.2 Continued

Method Description

used and can be re-used for
elements that may be created
in the future.

void setParentElement(SOAPElement parent) By setting the parent element
of a child element, it is pos-
sible to move a child element
around within the tree.

As an example, the following code can be used to remove from a SOAP
Body all of the child elements that have the local name “category”:

/1 soapMsg is an SOAPMessage obj ect

SOAPPart part = soapMsg. get SOAPPart ();

SQAPEnvel ope env = part.get Envel ope();

SOAPBody body = env. get Body();

Name nm = env. creat eNane("cat egory");

Iterator it = body. get Chil dEl ements(nm;

while (it.hasNext()) {
SOAPEIl enent child = (SOAPEl enent)it. next();
chi |l d. det achNode();
child.recycl eNode();

Text Nodes

Text nodes are another area where the JAXM DOM implementation differs from
that of JAXP. A text node is added to a SOAPElement by calling the addTextNode
method and passing in the text data as the parameter. The data can be read out of
a text node by calling the getValue method. As an example, the following code

adds a child element with a local name of “bodytype” and a text node of ““saloon”.

/1 body is an SCAPBody obj ect

SOAPEl errent chi | d;

child = body. addChi | dEl enent (" bodytype");
chi |l d. addText Node("sal oon");

WWW.SyNngress.com

Writing SOAP Clients = Chapter 6

After this code has been executed, the child object will represent the
following XML:

<bodyt ype>sal oon</ bodyt ype>

Likewise, to read the data back from this text node, you would call getValue
against the immediate parent element of the text node, in this case the child
object as follows:

String textVal = child. getVal ue();

The getValue method will only return data if the immediate child element is a
text node, otherwise it will return null.

Name

Name objects represent XML names, which may be either local names , or
namespace-qualified. As mentioned above, the use of the Name interface in the
JAXM API simplifies the DOM implementation(especially in terms of the
number of methods required for the SOAPEIlement interface).

Name objects need to be created using a SOAPEnvelope object, which will be
described below. The SOAPEnNvelope object represents the Envelope in a SOAP
message; whether you are building a SOAP message to transmit or are parsing a
received SOAP message you will always have access to a SOAPEnvelope object.
The following code can be used to create both local and namespace-qualified
Name objects:

/1 soapMsg is an SOAPMessage

SOAPPart part = soapMsg. get SOAPPart () ;
SOAPEnvel ope env = part. get Envel ope();

Nane | ocal Name = env. creat eNane("nodel ") ;

Nane nsName = env. creat eNamg(
"Request MakeAndMbodel ",
"kt

"http://ww. nydonmai n. conf mar ket ") ;

In the example above, the localName object will represent the local name
“model””. The nsName object, on the other hand, will represent a namespace-
qualified name with a local name of “RequestMakeAndModel”, a prefix of “mkt”,

213

www.syngress.com

214

Chapter 6 = Writing SOAP Clients

and a URI of “http://www.mydomain.com/market”. This would be represented in
XML as:

<nkt : Request MakeAndModel xm ns: nkt="http://ww. mydomai n. com nar ket " >

Text

The Text interface models text nodes; the Text object is created when a text node
is added to an element via the addTextNode method. It is also possible for a Text
object to represent a comment; the isComment method is available to determine
whether this is the case.

JAXM SOAP Elements

The SOAP specification defines a very clear structure of elements: Envelope,
Header, Body, Fault, and the like; the specification for SOAP Messages with
Attachments extends this structure. In this section we will cover the JAXM API’s
representation of all of these elements as Java types, and we will also see that
JAXM provides a few additional elements that do not map exactly to elements
within the SOAP specification but which are used to enable messages, both with
and without attachments, to be represented in a unified object structure.

SOAPMessage

The javax.xml.soap.SOAPMessage class is the root class for all JAXM SOAP mes-
sages. The SOAPMessage class is slightly different to the majority of the JAXM
SOAP classes in that it doesn’t map directly to the SOAP standard hierarchy—in
fact, it represents a layer on top of the SOAP standard with one specific purpose:
to allow a message to contain attachments, conforming to the SOAP Messages
with Attachments specification.

Figure 6.2 shows an example of the first kind of message—it contains SOAP
content as XML and is not MIME encoded.

Figure 6.2 SOAPMessage Containing Only SOAP Content

SOAPMessage

SOAP content -
XML format

WWW.SyNngress.com

Writing SOAP Clients = Chapter 6

Figure 6.3 shows the second kind of message. The message is MIME encoded
and contains SOAP content followed by at least one attachment of any multi-
media type.

Figure 6.3 SOAPMessage Containing One or More Attachments

SOAPMessage - MIME)
Encoded |:| = Required

SOAP content -
XML format

Attachment 1

7777777777777777777

7777777777777777777

MIME encoding

Multi-purpose Internet Mail Extensions (MIME) is a set of specifications with
the purpose of transferring text using different character sets, as well as transfer-
ring multi-media data between computers.

As its name implies, MIME was originally designed to facilitate the transfer of
data via e-mail; it is MIME that allows all kinds of multimedia e-mail attachments
to be transmitted. However, MIME is also very useful for the interchange of data
via other means, from the downloading of various types of data to web browsers
through to such uses as transmitting various attachments with SOAP messages.

If you examine a MIME-encoded message, you will see that MIME is really a
way of labeling parts of a message so that they can be handled in the correct way.
For example, if a web browser sees MIME content marked as image/jpeg, it knows
that the content is to be displayed as a binary JPEG image.

One of the great features of MIME encoding is that various parts of a mes-
sage can be labeled as having different content types, and it is this feature that

215

www.syngress.com

216

Chapter 6 = Writing SOAP Clients

allows multiple attachments of varying content types to co-exist in a SOAP mes-
sage. Some of the many possible content types are listed in Table 6.3.

Table 6.3 Examples of MIME Content Types

Content Type/Subtype Description

text/xml XML text. This will always be the content type
for the SOAP part of the message; it is also a
valid type for attachments.

text/plain Plain text.

application/octet-stream A stream of bytes representing raw binary data;
serves as a default type for binary data.

image/gif GIF image data.
video/mpeg MPEG-encoded video.

If we create an SOAPMessage and populate it with very simple data, then add
some kind of attachment, the message will immediately be MIME-encoded: the
SOAP part will be marked with a content type of text/xml, while the attachment
will be marked with its appropriate type.

Note that within a multipart MIME-encoded message, there can be several
different types of MIME headers: the Content-Type header defines the MIME
type, while the Content-ID header allows the part to be referenced by other
MIME parts, whereas the Content-Location header can be used to enable a MIME
part to be referenced by HTML MIME parts. For this reason, SOAPPart contains
methods for manipulating the Content-1D and Content-Location headers, but does
not provide for manipulation of the Content-Type header since the MIME type is
fixed to text/xml.

The following output shows the content of a sample message. There are
clearly two parts to this message; the first is obviously the SOAP content itself
(in this case with some added formatting for clarity) and the second part is
marked as plain text and carries the Sample attachment content data:

------ = Part_0_7615385. 1014026663603
Cont ent - Type: text/xm

<soap- env: Envel ope xml ns: soap-env="http://schemas. xnm soap. or g/ soap/
envel ope/ ">
<soap- env: Header/ >

<soap- env: Body>

WWW.SyNngress.com

Writing SOAP Clients = Chapter 6

<sanpl e: Si npl eExanpl e xm ns: sanpl e="http://ny.domai n/ myuri/">
<nane>exanpl e</ nane>
</ sanpl e: Si npl eExanpl e>
</ soap- env: Body>
</ soap- env: Envel ope>
------ = Part_0_7615385. 1014026663603
Content - Type: text/plain

Sanpl e attachnment content
------ = Part_0_7615385. 1014026663603- -

In contrast to the above message, a message with no attachments will actually
contain no MIME information at all, as shown in this sample content:
<soap-env: Envel ope xm ns: soap-
env="http://schemas. xn soap. or g/ soap/ envel ope/ ">

<soap- env: Header/ >

<soap- env: Body>

<sanpl e: Si npl eExanpl e xm ns: sanpl e="http://nmy.domai n/ myuri/">
<nanme>exanpl e</ name>
</ sanpl e: Si npl eExanpl e>
</ soap- env: Body>

</ soap- env: Envel ope>

NoTE

The above examples demonstrate messages that can clearly be sent as
text. However, what happens if we need to add an attachment that
clearly does not contain text data (such as a JPEG image)? The answer is
that the data will be Base64-encoded; Base 64 is a scheme that uses four
characters to encode each group of three bytes, thus enabling binary
data to be represented by all variants of ASCIl and EBCDIC text encoding.

SOAPPart

The javax.xml.soap.SOAPPart class is very similar to the SOAPMessage class in
that it does not map directly to an element within the SOAP specification.

217

www.syngress.com

218

Chapter 6 = Writing SOAP Clients

Instead, SOAPPart represents the part of a message carrying the SOAP payload, as
opposed to any attachments that may be carried by the message.

Every SOAP Message must contain a SOAPPart. Furthermore, since the
SOAP component of a message must be in XML format, the SOAPPart will
always contain a Content-Type MIME header with a value of “text/xml.” Note
that you do not need to explicitly create the SOAPPart; once an SOAPMessage is
created, you can simply retrieve the SOAPPart from it.

The SOAPPart interface, as well as extending the SOAPEIlement interface
described above, defines the methods listed in Table 6.4. Note also that, in
common with the SOAPMessage class, SOAPPart is an abstract class; you should
always obtain a SOAPPart object from a corresponding SOAPMessage object.

Table 6.4 SOAPPart Methods

Method Description

void addMimeHeader(java.lang.String Creates a new MimeHeader object
name, java.lang.String value) and adds it to the SOAPPart.

Java.util.Iterator getAllMimeHeaders() Returns an iterator over all of the
MimeHeader objects attached to this
SOAPPart.

Source getContent() Returns the SOAPEnvelope content
as a javax.xml.transform.Source
object, as covered in the chapter on

JAXP.

java.lang.String getContentld() Retrieves the value of a specific
MIME Header—that with the name
“Content-1d”

java.lang.String getContentLocation() Retrieves the value of a specific
MIME Header—that with the name
“Content-Location”

SOAPENnvelope getEnvelope() Returns the SOAPEnvelope object.
java.util.Iterator Returns an iterator over all of the
getMatchingMimeHeaders MimeHeader objects that match one
(java.lang.String[] names) of the names in the array.
java.lang.String[] Returns an array of values for MIME
getMimeHeader(java.lang.String name) Headers that match the name.
java.util.lterator Returns an iterator over all of the
getNonMatchingMimeHeaders MimeHeader objects that do not
(java.lang.String[] names) match one of the names in the array.
Continued

WWW.SyNngress.com

Table 6.4 Continued

Writing SOAP Clients = Chapter 6

Method

Description

Void removeAllIMimeHeaders()

void removeMimeHeader
(java.lang.String header)

Void setContent(Source source)
Envelope from a JAXP Source object.

void setContentld(java.lang.String
contentld)

void setContentLocation
(java.lang.String contentLocation)

void setMimeHeader(java.lang.String
name, java.lang.String value)

Removes all of the MimeHeader
objects from the SOAPPart.

Remove any MimeHeader objects
that match the name.

Populates the content of the SOAP

Sets the value of a specific MIME
Header—that with the name
“Content-1d”

Sets the value of a specific MIME
Header—that with the name
“Content-Location”

Sets the value of the first matching
existing MIME Header matching a
certain name to a certain value. If no
matching header exists, a new one
will be created and added.

SOAPENvelope

Unlike SOAPMessage and SOAPPart, both of which do not strictly map to the
SOAP specification, the interface javax.xml.soap.SOAPEnNvelope maps to the speci-
fication exactly—a SOAPEnvelope object is a representation of a SOAP Envelope.

Just as the SOAP specification states that an Envelope may contain a header
and must contain a body, a SOAPEnvelope can contain objects representing the
header and body. A newly-created message’s default behavior is that it will con-
tain a SOAPEnvelope that in turn will contain an empty header and body. In the
following chapter we will show that Profiles can be used to generate messages
that adhere to higher-level protocols (such as ebXML), and that such messages
may be generated with additional elements specific to that protocol.

The SOAPEnwelope is a subtype of SOAPEIlement and therefore inherits the
DOM functionality of that interface. Additionally, an SOAPEnvelope object will

implement the methods listed in Table 6.5.

219

www.syngress.com

220

Chapter 6 = Writing SOAP Clients

Table 6.5 SOAPEnvelope Methods

Method

Description

SOAPBody addBody()

SOAPHeader addHeader()

Name createName
(java.lang.String localName)

Name createName
(java.lang.String localName,
java.lang.String prefix,
java.lang.String uri)
SOAPBody getBody()

SOAPHeader getHeader()

Adds a new Body to the Envelope if none
already exists, otherwise throws an exception.
You would not normally need to call this
explicitly as the Envelope should contain a
Body by default after creation.

Adds a new Header to the Envelope if none
already exists, otherwise throws an exception.
You would not normally need to call this
explicitly as the Envelope should contain a
Header by default after creation.

As described above, the Name object can
represent a local or a nhamespace-qualified
name. This method will create a local name.

Creates a namespace-qualified name.

Provides access to the Body element.
Provides access to the Header element.

SOAPHeader and SOAPHeaderElement

The javax.xml.soap.SOAPHeader interface is designed to represent a SOAP
Header, and accordingly, the javax.xml.soap.SOAPHeaderElement interface repre-
sents elements within that Header.

SOAPHeader, in common with all of the SOAP element interfaces, is a sub-
type of SOAPEIement, but in addition it defines a number of methods that are

described in Table 6.6.

Table 6.6 SOAPHeader Methods

Method

Description

SOAPHeaderElement
addHeaderElement
(Name name)

java.util.lterator
examineHeaderElements
(java.lang.String actor)

Creates a new Header Element, initialized with
the local or namespace-qualified name, and
inserts it into the Header.

Returns an iterator over all of the Header
Elements that match the specified actor.

WWW.SyNngress.com

Continued

Writing SOAP Clients = Chapter 6 221

Table 6.6 Continued

Method Description

java.util.lterator Returns an iterator over the exact same set of
extractHeaderElements Header Elements as the above method, but
(java.lang.String actor) additionally detaches them from the Header.

Similarly to SOAPHeader, SOAPHeaderElement defines certain methods in
addition to those defined by SOAPEIlement, as listed in Table 6.7

Table 6.7 SOAPHeaderElement Methods

Method Description

java.lang.String getActor() Returns the URI representation of the
actor associated with this element.

Boolean getMustUnderstand() Returns the value of the

mustUnderstand attribute for this
element. A value of 1 represents
true; a value of 0 or a non-existent
attribute represents false.

void setActor(java.lang.String actorURI) Sets the URI representation of the
actor associated with this element.

void setMustUnderstand(boolean Sets the value of the

mustUnderstand) mustUnderstand attribute for this
element. A value of 1 represents
true; a value of O or a non-existent
attribute represents false.

This is the first time we have mentioned the term Actor. An Actor simply
describes to whom an element in a SOAP Header is addressed. It is specified as
an attribute of the element (called actor), and its value is a URI. In an asyn-
chronous message which is routed via multiple parties, Actors can be used to
specify that certain header elements in the message are addressed to certain par-
ties even though the message itself is ultimately being sent to another destination.
For more information on Actors, refer to the SOAP specification.

In order to add content to a header Element you would generally use the
JAXM DOM implementation, as defined through the SOAPEIlement interface, in
combination with the specific methods in the SOAPHeaderElement interface for
setting certain attributes (namely the actor and mustUnderstand attributes).

www.syngress.com

222

Chapter 6 = Writing SOAP Clients

SOAPBody, SOAPBodyElement and SOAPFault

As with the interfaces described above for dealing with SOAP Headers, the
javax.xml.soap.SOAPBody interface is intended to model the Body within a
SOAP Message and the javax.xml.soap.SOAPBodyElement interface is designed to
model elements within that SOAP Body.

In the same way as the interfaces that model the other elements of a SOAP
Message, the SOAPBody and SOAPBodyElement interfaces are subtypes of
SOAPEIement, although only SOAPBody defines additional methods. Table 6.8
lists the methods defined by SOAPBody.

Table 6.8 SOAPBody Methods

Method Description

SOAPBodyElement Creates a new Body Element, initialized with
addBodyElement(Name name) the local or namespace-qualified name, and
inserts it into the Body.

SOAPFault addFault() Creates a new Fault and inserts it into the
Body. There should only ever be one SOAP
Fault in any message.

SOAPFault getFault() Returns the SOAPFault object that is
attached to the Body if one exists, otherwise
returns null.

boolean hasFault() Returns true if the Body contains a SOAP

Fault, otherwise returns false.

You will recall from the introductory discussion above that each SOAP
Message may convey error information in the form of a Fault, and a maximum of
one Fault element may exist in a particular SOAP Message. Also, if a SOAP Fault
element does exist, it will exist as a direct child element of the Body.

javax.xml.soap.SOAPFault models a SOAP element. This interface is a direct
subinterface of SOAPBodyElement and as such also extends the SOAPElement
interface. However, unlike SOAPBodyElement, SOAPFault defines a number of
additional methods, which are listed in Table 6.9.

WWW.SyNngress.com

Writing SOAP Clients = Chapter 6

Table 6.9 SOAPFault Methods

Method Description

Detail addDetail() Creates a new Detail object and adds it to
the Fault. There may only be one Detail
object attached to a Fault.

Detail getDetail() Returns the Detail object attached to the
Fault.

java.lang.String getFaultActor() Returns the URI of the Actor to which the
Fault is addressed.

java.lang.String getFaultCode() Returns the Fault Code of the Fault.
java.lang.String getFaultString() Returns the Fault String of the Fault.

void setFaultActor Sets the URI of the Actor to which the
(java.lang.String faultActor) Fault is addressed.

void setFaultCode Sets the Fault Code.

(java.lang.String faultCode)

void setFaultString Sets the Fault String.

(java.lang.String faultString)

The Detail object will be an instance of the javax.xml.soap.Detail interface,
which allows any number of Detail Entries to be added through the addDetailEntry
method, and also returns an iterator over those entries via the getDetailEntries
method. The example code in this chapter will demonstrate how to extract infor-
mation from a SOAP Fault. and You will see how to add this Fault information to a
SOAP Message when we develop the SOAP Sevice in the next chapter.

Creating a SOAP Message

As well as providing the above API, JAXM also defines the concept of a Provider.
A JAXM Provider is a type of service that can provide several tasks, including
providing a store-and-forward mechanism for guaranteeing delivery of asyn-
chronous SOAP Messages. A Provider is not actually part of the API; it will nor-
mally exist as a servlet or some other form of service within your J2EE
container. The JAXM API provides mechanisms that enable your container-
hosted application to connect to a Provider and send messages to it, and the
provider will route incoming messages to your application. However, the actual
implementation of the Provider and its capabilities are up to the specific vendor.
A JAXM Provider can only be used by applications running in a container.
Does this mean that standalone Java programs cannot communicate using SOAP?

223

www.syngress.com

224

Chapter 6 = Writing SOAP Clients

Not at all; it simply means that they are restricted to not using a Provider and
therefore must communicate synchronously. This chapter focuses on these types
of applications—in the next chapter we will deal with interacting with JAXM
Providers in more detail.

Since the JAXM classes we have just looked at cannot be directly instantiated
(SOAPMessage is an abstract class, SOAPHeader, SOAPBody etc. are interfaces),
there is a requirement for a factory to produce the objects to build a usable
SOAP message, in much the same way as factories are used with JAXP.

JAXM factories are provided by the underlying implementation to provide
objects of implementation-specific classes; the interface types (Java interfaces or
abstract classes) represent the specification, and what comes out of the factory is
an object that conforms to that specification, though the actual implementation
of that object may vary wildly from one vendor’s implementation to another.\We
know that the object we request from the factory will implement all of the
behaviors described above; exactly how it implements these and therefore how it
may perform in terms of speed, memory usage, or any number of characteristics
is entirely determined by the specific implementation of the JAXM API.

MessageFactory

The actual factory that will produce our SOAPMessage objects is called
MessageFactory. A MessageFactory object is capable of producing SOAPMessage
objects, which will each contain a certain set of objects (such as SOAPHeader).
Additional objects are created in a hierarchical fashion, so that
SOAPHeaderElement objects are created by SOAPHeader objects, for example.

The first step in constructing a JAXM SOAP message is to obtain a
MessageFactory. This can be done a couple of ways:

= If the application is running in a container and making use of a JAXM
Provider, the application will use its connection with the Provider to
request a message factory. This scenario will be covered in the following
chapter.

= |f the application is not using a Provider, a static member of the
MessageFactory class can be called to return a message factory instance.
This is the scenario on which we will focus in this chapter.

Using the static member, we can create the factory as follows:

MessageFactory nsgFactory = MessageFactory. newl nstance();

WWW.SyNngress.com

Writing SOAP Clients = Chapter 6 225

A MessageFactory instance is used to generate SOAP messages (instances of
SOAPMessage), and these messages will be formatted according to the properties
of the MessageFactory itself. To create a message, the following code can be called:

SOAPMessage soapMsg = nsgFactory. creat eMessage();

A successful call to createMessage() will always generate a SOAPMessage object
with the following properties:

= A SOAPPart object (containing the SOAPEnNvelope object).

= A SOAPEnNvelope object (containing the SOAPHeader and SOAPBody
objects).

= A SOAPHeader object, which may contain different information
depending on the profile configured for the MessageFactory, so the header
will be different for a SOAP message than for an ebXML message.

= A SOAPBody object.

Developing & Deploying...

Message Factories—Where can | get one?

Not only do JAXM Providers implement a store-and-forward mechanism
for taking care of routing asynchronous messages to their destination
and guaranteeing their delivery, but they also provide a concept known
as Profiles—that is, they can manage the various protocols (such as
ebXML) that are built on top of SOAP.

In this chapter we examine how to obtain a MessageFactory object
by calling the MessageFactory.newlinstance method. However, this is
really only half the story. Such a factory object can only be used by JAXM
applications that are communicating synchronously without the services
of a JAXM Provider (such as the client application example described in
this chapter).

However, if an application wishes to create messages that will
be routed via a JAXM Provider, the application will have to use a dif-
ferent mechanism to obtain a MessageFactory object. The JAXM API
provides a way for applications to communicate with Providers via
a ProviderConnection object. This connection can then be used to
request a MessageFactory instance; this is done by calling the

Continued

www.syngress.com

226

Chapter 6 = Writing SOAP Clients

ProviderConnection.createMessageFactory method. In the next chapter
we will examine more specifically how to create a connection to a
Provider, and how to use the connection to request a factory. In this
chapter we will continue to focus on applications that do not make use
of a Provider.

Creating SOAP Parts,
Envelopes, Headers and Bodies

For a standard SOAP profile, the MessageFactory will return a message object

that has a skeleton body and header, as well as their enclosing envelope and
SOAPPart. The actual SOAP XML will look like this (some carriage returns have
been added for clarity):

<soap- env: Envel ope xmnl ns: soap-

env="http://schemas. xnl soap. or g/ soap/ envel ope/ " >

<soap- env: Header/ >

<soap- env: Body/ >

</ soap- env: Envel ope>

Therefore, we do not need to actually create these elements, but rather popu-
late them with meaningful information.

Since the message factory will return messages that always create a SOAPPart
object, we simply need to access that object through the message itself. This is
done as follows:

SOAPPart soapPart = soapMsg. get SOAPPart () ;

Once we have accessed the SOAPPart object, we can use it to access the
envelope as in this piece of code:
SQAPEnvel ope soapEnvel ope = soapPart. get Envel ope();

Likewise, the envelope can be used to access both the header and the body. To
access the header:
SOAPHeader soapHeader = soapEnvel ope. get Header ();

The SOAP 1.1 specification describes an example header element that speci-

fies a transaction. The name of the element is “Transaction” (qualified by a names-
pace with a prefix of “t” and a URI of “some-URI”), it contains a

WWW.SyNngress.com

Writing SOAP Clients = Chapter 6

mustUnderstand attribute of 1, and a value of 5. The XML representation of a
SOAP Header containing such an element would look like this:

<soap- env: Header >
<t:Transaction xm ns:t="some-UR " soap-env: nust Under st and="1">
5
</t:Transaction>

</ soap- env: Header >

To add such an element to the header object obtained above using the JAXM
API we could do the following:

/1 Use the Envelope to create a new
/1 namespace-qual i fied name.

Nanme el ement Name = soapEnvel ope. creat eNane(" Transacti on", "t", "some-UR");

// Add a new el enment to the Header
/1 using the nane we just created.

SQAPHeader El enent header El enent = soapHeader . addHeader El ement (el enment Nane) ;

/1 The SOAPHeader El enent interface
/1 provides a nethod for manipulating
/1 the nustUndertsand attribute.

header El enent . set Must Under st and(true);

/! The value is added as a text node.
header El enent . addText Node("5");

From this code you can see the combined usage of specialist methods such as
setMustUnderstand alongside the generic DOM methods from the SOAPElement
interface, such as addTextNode.

As previously mentioned, the Envelope is also used to access the Body:

SQAPBody soapBody = soapEnvel ope. get Body();

Adding elements to the Body is very similar to adding elements to the
Header, although apart from SOAP Faults (which are a specific form of SOAP
Body Element), all of the manipulation of these elements must be directly done
through JAXM’ DOM implementation.

227

www.syngress.com

228

Chapter 6 = Writing SOAP Clients

Adding Attachments to Messages

As discussed above, attachments are optional components of SOAP messages.
They can essentially be of any format, but with some restrictions:

= They must conform to the MIME standards; refer to RFC2045 at
www.ietf.org/rfc/rfc2045.txt for more details. This RFC defines,
amongst other things, how binary data is to be formatted and the
specification of the MIME header.

= They must contain some form of content; an empty attachment is
not valid.

» Each attachment must be preceded by the correct MIME header.

In terms of the JAXM API, attachments contain AttachmentPart objects, which
are added to the SOAPMessage object. When the message is sent over the net-
work, the AttachmentPart objects will follow the SOAPPart (which is the manda-
tory part of the message).You can add as many AttachmentPart objects as you like
to a message, and the attachments can be of different MIME types.

Because attachments do not come into being by default when the factory
spawns a new message, they must always be specifically created. The following
code will add a new attachment to an existing message:

Attachment Part attachnentPart = soapMsg. createAttachnment Part();

As already discussed, this is not yet a valid SOAP attachment because it does
not have any content or a MIME header.

Once the AttachmentPart object has been created, we will have to populate its
content and MIME header. Both of these actions can be accomplished with a call
to a single method, defined as follows:

set Cont ent (j ava. | ang. Obj ect obj ect,

java.lang. String content Type)

The object parameter represents the content, and the contentType parameter will
be used to determine how the object parameter is interpreted and to form the
variable part of the Content-Type MIME header. As an example, the following
code could be used to add a plain text attachment:

String contentString

// contentString populated with some data

attachnent Part. set Content (contentString, "text/plain");

WWW.SyNngress.com

Writing SOAP Clients = Chapter 6

In the above example, the string contents of contentString will form the attach-
ment’s content, and it will have a single header that looks like this:

Content - Type: text/plain

For other types of content (JPEG images for example), it is a little less
obvious what form the content object should take; the solution to this will be
covered below.

The JAXM specification requires that a minimum set of MIME types be sup-
ported, and that these map directly to certain Java types. In the above example we
passed in a java.lang.String content object, along with a text/plain content type.
This was possible because text/plain is one of the types that is required by the
JAXM specification, and also because the specification states that this type maps
to the Java type of java.lang.String. The full set of required MIME types and their
corresponding Java types is listed in Table 6.10.

Table 6.10 MIME Types Required to be Implemented by the JAXM
Specification

MIME Type Java Type

text/plain java.lang.String

multipart/* javax.mail.internet.MimeMultipart
text/xml javax.xml.transform.Source
application/xml javax.xml.transform.Source

The JavaBeans Activation Framework (JAF) was developed as a standard Java
extension to enable Java programs to bind appropriate components to typed data
in much the same way as a web browser does when it automatically renders
JPEG data as an image. JAXM relies on parts of the JAF to provide extensible
support for MIME types, potentially providing for the use of many more types
than those listed above.

Each AttachmentPart object contains a javax.activation.DataHandler member,
which is typically created automatically by the call to setContent on the attach-
ment. It is also possible to explicitly create the DataHandler object and assign it
using a call to setDataHandler on the AttachmentPart object. The JAF ties data han-
dlers to CommandMap objects; a command map is essentially a list of the available
command objects registered on the system. Through this mechanism, additional
MIME types can be supported. Note that more information on the JAF can be
found at http://java.sun.com/products/javabeans/glasgow/jaf.html.

229

www.syngress.com

230

Chapter 6 = Writing SOAP Clients

It is also possible to create an attachment of any MIME type at all (assuming
that the service to which you are sending the attachment knows how to interpret
it) through the use of input streams. The InputStream class and its subclasses can be
used to create objects that represent the data as bytes. Recall from the example
above that we were able to pass a String object into the first parameter of
setContent when the second parameter specified a MIME Type of “text/plain.” It
is also possible to pass an instance of InputStream as the first parameter and to
specify an appropriate MIME Type in the second parameter. As an example, a
FilelnputStream could be used to read a JPEG image file from disk and populate
an attachment:

try {
Fi | el nput Stream j pegbData =
new Fil el nput Strean("i mage.j pg");
attachnent Part . set Content (Fi | el nput Stream
"imagel/j peg");
} catch (I CException e) {

It is also possible to manually set the value of an existing Content-Type MIME
Header on an attachment by calling setContentType.

In terms of clearing out the contents of an AttachmentPart object, the
clearContent method can be called to remove the actual data from the attachment
whil retaining the MIME Headers.

Bringing it all Together—
A Complete SOAP Client

In this section we will look at a real example of a SOAP client application. In the
next chapter we will cover the server side of this example, so unfortunately you
will have to wait until then to test the client.

Connecting to a SOAP service

This example will be a simple program that takes a single parameter, a name for
which to search, and sends this to the server as a request parameter in a SOAP
message. The server example in the next chapter will perform a search against the
example XML file for the name, and if found return the corresponding value. If

WWW.SyNngress.com

Writing SOAP Clients = Chapter 6

the name is not found in the XML file it will return a SOAP fault. The client
will then display the returned value or fault details.

Even though this seems like a fairly simple example, it shows how readily a
web service could be implemented using JAXM to perform any number of tasks.
Instead of looking up a value in an XML file, it is easy to imagine a service that
registers a new subscriber or looks up and returns the time that the next bus is
due at a particular bus stop. Whatever the functionality of the service itself, the
sending and receiving of SOAP messages is a similar process.

One thing that should be noted at this time is that SOAP services and clients
can fall into several different categories; those that use a provider and those that do
not, and those that run within a container and those that do not.

This example client application will neither make use of a provider nor run
in a container, and is thus known as a standalone application. This is different to
many of the examples in this book in that it can be implemented in J2SE and
does not require any form of servlet or EJB container. There are a couple of limi-
tations to standalone JAXM applications (since they do not have the benefit of a
provider’s functionality):

= Standalone applications can only send point-to-point; a single message
can only be sent directly to a single service.

= Standalone applications can only send in a request/reply model; the
client will send a message and block until a reply is received.

= Standalone applications cannot function as SOAP services; they can only
operate as clients.

= Standalone applications can only communicate with a running service;
since they do not access a provider, there is no store and forward
mechanism.

The client will format and send a SOAP message containing a single request
parameter, the name against which the service will look up a value. The message
will comprise several parts:

= The SOAP envelope, which is the enclosing object.

= An empty SOAP header. This is not strictly required at all in the SOAP
specification if no header information is being transmitted; however the
JAXM implementation always creates a header when a new message is
generated.

231

www.syngress.com

232

Chapter 6 = Writing SOAP Clients

= A SOAP body.

= Inside the body, the request parameter. The request will be called
GetValueByName, and we will specify an arbitrary namespace URI of
www.syngress.com/JWSDP/soap-example. A child element called name will
enclose a text element with the name itself.

The example below requests a look up of the name Mickey:
<soap- env: Envel ope xml ns: soap-
env="http://schemas. xnl soap. or g/ soap/ envel ope/ " >
<soap- env: Header/ >
<soap- env: Body>

<myns: Get Val ueByNanme xm ns: nyns="wwv. syngr ess. conl JWSDP/ soap-
exanpl e" >

<nane>M ckey</ nane>
</ nyns: Get Val ueByNane>
</ soap- env: Body>

</ soap- env: Envel ope>

The response schema is similar, with the response being called
GetValueByNameResponse. The response to the example shown above should
look like this:
<soap- env: Envel ope xml ns: soap-
env="http://schemas. xnm soap. or g/ soap/ envel ope/ ">

<soap- env: Header/ >
<soap- env: Body>

<myns: CGet Val ueByNaneResponse
xm ns: nyns="www. syngr ess. conf JWSDP/ soap- exanpl e" >

<val ue>Muse</ val ue>
</ nyns: Get Val ueByNaneResponse>
</ soap- env: Body>

</ soap- env: Envel ope>

This example contains five Java source files. Because it is a standalone client
and does not require a container, you should be able to compile it in a J2SE
environment as long as you have the required libraries, which are available in
Sun’s Java Web Services Developer Pack. All of the classes have been organized
into a single package (com.syngress.jwsdp.soap.client), and can be accessed from
the Syngress Web site.

WWW.SyNngress.com

Writing SOAP Clients = Chapter 6

The executable class for this example will be called Client, in the package
com.syngress.jwsdp.soap.client. The example will expect one (and only one) com-
mand-line parameter, which is the name that we are requesting the service to
look up. If it does not receive a single parameter, the example will report an error
and abort.

Assuming that the command-line parameter was successfully passed in, the
Client constructor will go on to create a point-to-point connection specifying
the service’s URL as the endpoint. This connection is created by using a
ConnectionFactory and also by specifying a URLEndpoint object constructed from
a URL represented as a string. In the next chapter we will examine this process
more closely and also contrast this with the process for sending messages via a
JAXM Provider.

The outgoing message will then be created and an attempt made to send it
to the service. Remember that because this example is not using a provider, it
can only send synchronously and will block until it receives a response from the
service.

Once a response is received, it is tested for the presence of a SOAP Fault. If
fault information is found, the specifics of the fault are extracted and displayed. If
no fault information is found then the lookup has been successful and the
returned value is parsed out of the message and displayed.

[*x
* Cient.java

*

*/
package com syngress.jwsdp. soap.client;

i mport javax.xm . messagi ng. URLEndpoi nt ;

i mport javax.xm .soap. SOAPConnect i onFact ory;

i mport javax.xm .soap. SOAPConnect i on;

i mport javax.xm .soap. SOAPMessage;

i mport javax.xm .transform Transformer;

i mport javax.xm .transform TransfornmerFactory;
i mport javax.xnl.transform Source,;

import javax.xm .transform stream StreanResul t;
i mport com syngress.jwsdp. soap. client. Faul t;

i mport com syngress. jwsdp. soap. cl i ent. Request Message;

233

www.syngress.com

234 Chapter 6 = Writing SOAP Clients

public class Cient {

/1 Define the location of the service endpoint.

/1 This will be determ ned by where you depl oy

/1l the servlet that will be developed in the

/'l exanple in the next chapter.

static final String SERVI CE_ENDPO NT =

"http://1ocal host: 8888/ Chapt er8/servl et/ chapter8. Recei ver Servlet";

public static void main(String args[]) {

/1 W are expecting a single
/1 command |ine argunent; the
/1 nanme to | ook up.
if (1 != args.length) {
Systemerr.println(

"Usage: java " +

"com syngress. jwsdp. soap.client.dient <nane>");
} else {

new Cient(args[0]);

public Cient(String nanme) {

try {

/1 For a standal one client we need
/1 to specify the URL of the
/'l service.
URLENndpoi nt endpoint =
new URLEndpoi nt (
SERVI CE_ENDPOI NT) ;

/1 A standal one client does not

/1l use a provider; create a

WWW.SyNngress.com

Writing SOAP Clients = Chapter 6 235

/1 connection from a connection

/Il factory.

SQAPConnect i onFactory scf
SOAPConnect i onFact ory.

newl nst ance();
SOAPConnecti on connection =

scf. creat eConnection();

/'l Create the request nessage using
/1 the command |ine paraneter as
/1 the name to | ook up.
Request Message regMsg =
new Request Message();
regMsg. set Nane(nane) ;

/1 The call method will block
/1 until sonmething is returned
// fromthe service.
SCAPMessage repl ySOAP =
connection. call (
reqMsg. get Message(),
endpoi nt);

/1 Test for the presence of

// fault information in the

/'l response.

if (Fault.hasFault(repl ySOAP)) ({

// Fault information exists,
// indicating an error
/1 response from the service.
Fault fault =

new Faul t (repl ySOAP) ;

Systemerr. println(
"Recei ved SOAP Fault");

Systemerr. println(

www.syngress.com

236 Chapter 6 = Writing SOAP Clients

"Fault code: " +

faul t. get Faul t Code());
Systemerr. println(

"Fault string: " +

fault.getFaultString());
Systemerr.println(

"Fault detail: " +

fault.getFaultDetail ());
} else {

ResponseMessage respMsg = new ResponseMessage(repl ySOAP);
String responseValue = null;
try {
responseVal ue = respMsg. get Val ue();
System out. println("Response: " + responseVal ue);
} catch(SchemaException e) {

Systemerr.println("Parsing error");

connection. cl ose();

} catch(Exception e) {
Systemerr.println(e.toString());

The outgoing SOAP message is constructed in the com.syngress.jwsdp.soap
.client.RequestMessage class. This example is a standalone client (making use of nei-
ther a J2EE container nor a JAXM provider), and therefore it will create messages
using the default message factory.

Once the SOAP message is created, we need to add the request parameter to
the Body. If we were performing a lookup against the name Mickey, the following
content needs to be added to the Body:

WWW.SyNngress.com

Writing SOAP Clients = Chapter 6 237

<nmyns: Get Val ueByNanme xnl ns: nyns="wwv. syngr ess. conf JWSDP/ soap- exanpl e" >
<nanme>M ckey</ nanme>

</ nyns: Get Val ueByNane>

To add this content to the body using the JAXM DOM implementation,
perform the following steps:

1. Add a new child element to the SOAPBody object with a
name of GetValueByName, a prefix of myns, and a URI of
www.syngress.com/JWSDP/soap-example.

2. Add a new child element to the element just added, with a local name
of “name”.

3. To that child element, add a text node with a value of Mickey.

/**

* Request Message. j ava

*

*/
package com syngress.jwsdp. soap.client;

import javax.xm .soap. MessageFactory;
i mport javax.xm .soap. SOAPMessage;

i mport javax.xm .soap. SOAPPart ;

i mport javax.xm . soap. SOAPEnvel ope;

i mport javax.xm .soap. SOAPBody;

i mport javax.xm .soap. SOAPEl enent ;

i mport javax.xm .soap. SOAPExcepti on;

public class Request Message {
/l class to represent an outgoing
/1 SOAP nessage that will request
/1 a | ookup of a value by a nane.

protected SOAPMessage soapMessage = null;

publ i c Request Message()

www.syngress.com

238 Chapter 6 = Writing SOAP Clients

t hrows SOAPException {

MessageFactory nf =

MessageFact ory. newl nst ance();

/1 Because a standal one client does not
/1 use a provider, the nessage is created
/1 fromthe nmessage factory.

soapMessage = nf.createMessage();

public void setNane(String name)
t hrows SOAPException {

// Set the request paramaeter; this
/] represents the name that we wll

/1 be requesting the service to | ook up.

/1 Traverse the hierarchy of SOAP
/] objects to obtain the body.
SOAPPart soapPart =

soapMessage. get SOAPPart () ;
SOAPENnvel ope envel ope =

soapPart. get Envel ope();
SOAPBody body =

envel ope. get Body();

/1 Add the request elenment to the body,
/1 using a namespace-qualified nane.
SQOAPEI enent request El enent ;
request El enent = body. addChi | dEl enent (
envel ope. cr eat eName(
" Get Val ueByNane",

nyns",
"www. syngr ess. com JWSDP/ soap- exanpl e"));

WWW.SyNngress.com

Writing SOAP Clients = Chapter 6 239

/1 The value of the nane to | ook up

11
11

is added as a text

node as a child of the

request element using a |ocal nane.

SOAPEl errent par antl enent ;

par ankl enent =

request El ement . addChi | dEl enent (" nanme") ;

par ankEl enent . addText Node(nane) ;

public SOAPMessage get Message() {

/1 Get the SOAP nessage

return soapMessage;

A result containing a valid response is processed in the com.syngress.jwsdp.soap
.client.ResponseMessage class. The getValue method of this class will validate that the
received message adheres to the expected schema, and if it does so it will extract
the value returned from the service.

/**

* ResponseMessage. j ava

*

*/

package com syngress.jwsdp. soap.client;

i mport
i nport
i mport
i nport
i mport
i mport
i mport
i mport
i mport

j avax

j avax.
j avax.
j avax.
j avax.
j avax.
j avax.
java.util.

com syngress. j wsdp. soap. cl i ent

.xm
xm
xm
xm
xm
xm
xm

. soap. SOAPMessage;

. soap. SOAPPart ;

. soap. SOAPEnvel ope;
. soap. SOAPBody;

. soap. SOAPExcepti on;
. soap. SOAPE! enent ;

. soap. Nane;

Iterator;

. SchemaExcept i on;

www.syngress.com

240 Chapter 6 = Writing SOAP Clients

public class ResponseMessage {

/'l Represents a SOAP nessage received

/'l as a response from a service.
protected SCAPMessage soapMessage = nul | ;

publ i ¢ ResponseMessage(SOAPMessage soapMessage) {

thi s. soapMessage = soapMessage;

public String getVal ue()
t hrows SchemaExcepti on,
SOAPException {

/!l Get the value returned for

/1 the request.
String resp = null;

/1 Navigate the hierarchy

/1 of SOAP objects to

/] access the body.

SOAPPart soapPart =
soapMessage. get SOAPPart () ;

SOAPEnvel ope soapEnvel ope =
soapPart. get Envel ope();

SOAPBody soapBody =
soapEnvel ope. get Body() ;

/1 Search for the nanmespace-quali fied
/'l response el enment.
Nanme nane;
name = soapEnvel ope. cr eat eNanme(
" CGet Val ueByNaneResponse",
"nmyns",
"www. syngr ess. conl JWSDP/ soap- exanpl e") ;

WWW.SyNngress.com

Writing SOAP Clients = Chapter 6 241

/1 Ensure there is at |east one
/1 such el enment.
Iterator val ueRequests =
soapBody. get Chi | dEl enent s(nane) ;
if (! valueRequests. hasNext()) {

/1l Schema is not valid

t hr ow(new SchemaException());

/1 Retrieve the first el enent
// and ensure it was the only
/1 one.
SOAPEl erent soapEl enent =
(SOAPEI enent) val ueRequest s. next () ;
i f (val ueRequests. hasNext()) {

/! Schema is not valid

t hr om(new SchemaException());

/1 The value should be in a

// child element of this one, with

// a local name of "value".

nanme = soapEnvel ope. creat eNanme("val ue");
Iterator parans,

parans = soapEl enent. get Chi | dEl ement s(nane) ;
if (! parans. hasNext()) {

/! Schema is not valid

t hr om(new SchemaException());

/] Ensure there is only one such elenent.
SQOAPEI enent par antl ement =

(SOAPEI enrent) par ans. next () ;
if (params.hasNext()) {

www.syngress.com

242 Chapter 6 = Writing SOAP Clients

/1l Schema is not valid

t hr ow(new SchemaException());

/1 Extract the paraneter.
resp = parantl enent.

get Val ue();
if (null == resp) {

/! Schema is not valid

t hr om(new SchemaException());

/1 Schema was successfully validated
/1 and the response paraneter can
/1 be returned.

return resp;

The method getResponseValue() throws the exception SchemaException. This
exception is used to represent an error in parsing the incoming message—the
message did not comply with the expected schema:

/**

* SchemaException. java

*/
package com syngress.jwsdp. soap.client;
public class SchemaException extends Exception {
/1 This exception is used to
/1 indicate that the XM. being

/1 parsed did not conformto

I/ the appropriate schena.

WWW.SyNngress.com

Writing SOAP Clients = Chapter 6

On the other hand, messages containing a fault will be processed by the
com.syngress.jwsdp.soap.client.Fault class. You will recall that the SOAP specification
requires that error information be transmitted within a SOAP Fault, which is an
optional child envelope in a SOAP Envelope. A SOAP Fault is implemented by
the JAXM API as an SOAPFault object, which is obtained by calling the getFault
method of the body object; this method will not throw an exception if there is no
fault information present, but will rather return a null.

The Fault class listed below includes the static hasFault method that is called
first with the received message as the parameter. If this returns true we know the
message is carrying fault information and we should construct a Fault object,
then query it using the getFaultCode, getFaultString, and getFaultDetail methods to
return the fault code, fault string, and possibly the fault detail—if one exists. A
SOAP Fault can carry a number of detail records; for the sake of this sample we
can assume that the service will never return more than one. Also, a SOAP Fault
will not carry a detail unless the error resulted from the processing of the mes-
sage’s Body element.

/**
* Fault.java

*

*/
package com syngress.jwsdp. soap.client;

i mport javax.xnm .soap. SOAPMessage;

i nport javax.xm .soap. SOAPPart ;

i mport javax.xm . soap. SOAPEnvel ope;
i mport javax. xnl.soap. SOAPBody;

i mport javax.xm .soap. SOAPFaul t ;

i nport javax.xmnl .soap. SOAPExcepti on;
i mport javax.xm .soap.Detail;

i nport javax.xm .soap. Detail Entry;

inmport java.util.lterator;
public class Fault {

/1 Fault class should usually be

// instantiated only if the message

243

www.syngress.com

244 Chapter 6 = Writing SOAP Clients

/'l contains fault information; use

/! Fault.hasFault to test for this.
protected SOAPFault soapFault;

public Fault(SOAPMessage nsg)
t hrows SOAPException {

/1 Navigate the hierarchy of
/] SOAP objects to store
/1 a reference to the fault objects
// as it is commonly used within the class.
SOAPPart soapPart = nsg. get SOAPPart () ;
SOAPENnvel ope soapEnvel ope =

soapPart. get Envel ope();
SOAPBody soapBody = soapEnvel ope. get Body();
soapFault = soapBody. get Faul t ();

public static bool ean hasFaul t (SOAPMessage nsg)
t hrows SOAPException {

/] Static utility function to determ ne
/1 whether a SOAP nessage contains

/1 fault information.

/1 Navigate the hierarchy of
/1 SOAP obj ects.
SOAPPart soapPart = nsg. get SOAPPart () ;
SOAPENnvel ope soapEnvel ope =
soapPart . get Envel ope();
SOAPBody soapBody = soapEnvel ope. get Body();

/1 Query whether the Body contains

/1 a SOAP Fault.

return soapBody. hasFault();

WWW.SyNngress.com

Writing SOAP Clients = Chapter 6 245

public String getFaul t Code() {

/1 Get the SOAP fault code

return soapFaul t. get Faul t Code();

public String getFaultString() {

/] Get the SOAP fault string

return soapFaul t.getFaul tString();

public String getFaultDetail () {

/1 Get the SOAP fault detail.

String ret = null;
Detail detail = soapFault.getDetail ();
if (null !'= detail) {

Iterator it =

detail.getDetail Entries();

/1 A fault can contain
/1l multiple detail entries.
/|l For the sake of the exanple,
/1 assune there is a maxi num of
// one detail entry.
if (it.hasNext()) {
Detail Entry detEntry =
(Detail Entry)it.next();
ret = detEntry. getVal ue();

www.syngress.com

246 Chapter 6 = Writing SOAP Clients

return ret,;

Since this example is a standalone JAXM client that adheres to the request/
reply model, you will not be able to run it until the service is running. The ser-
vice will be covered in the next chapter, and once it is running you can run the
client by executing:

java com syngress.jwsdp. soap.client.dient <name>

Figure 6.4 shows the output from a successful execution; the client sent a
request to the service to look up Mickey and the service responded with Mouse.

Figure 6.4 A Successful Execution of the Client
O WIRAT S st il ene

On the other hand, Figure 6.5 shows the results when a request is made to
look up a name that cannot be found by the service; the client sent a request for
Donald, and the service returned a SOAP Fault in its response.

www.syngress.com

Writing SOAP Clients = Chapter 6 247

Figure 6.5 SOAP Fault Returned from the Service

O WA S o e CrreE e

Debugging...

Standalone JAXM Applications

One of the great advantages to building a standalone JAXM application,
like the example developed in this chapter, is the simplicity of debug-
ging. Because the application communicates synchronously by making a
request and then waiting for a response message, issues such as trying
to match up an incoming message with an outgoing request or debug-
ging multiple threads do not need to be taken into account.

To debug the example from this chapter, you should be able to set
a breakpoint at any appropriate point in Client.java and start the
debugger. Just make sure that you configure the debugger to pass in the
desired command-line parameter (specifying the name to send in the
request), and make sure that the IDE is configured to use the libraries
distributed with the Java Web Services Developer Pack.

www.syngress.com

248

34

5

|

Chapter 6 = Writing SOAP Clients

Summary

In this chapter we covered an overview of SOAP, as well as looking in detail at
how SOAP client applications can be developed using the JAXM API.We also
developed a complete SOAP client application that communicates using the
request-response model.

SOAP is an XML-based protocol that enjoys widespread industry support
and that can enable information to be exchanged among distributed systems.
Even though SOAP is XML-based, there is an additional specification that allows
SOAP messages to contain attachments in a wide variety of formats including
XML, plain text, or audio, picture, or video content.

JAXM, the Java API for XML Messaging, provides a unified API for creating
either standard SOAP Messages or SOAP Messages with Attachments. JAXM
provides an independent implementation of an XML document object model,
which differs from that used by JAXP while maintaining similar capabilities. The
API also provides a set of Java types that map directly to the elements of a SOAP
message.

If a SOAP client does not use a container, it is known as a standalone applica-
tion and it must communicate with a service synchronously (request/reply). We
have explored an example of such an application, one that formats a request mes-
sage and sends it to a service, then waits for a response. The response is decoded
and either the returned value is displayed or any SOAP Fault information is
extracted and displayed. In the next chapter we will cover an example service
that can be used in conjunction with the client application.

Solutions Fast Track

Understanding SOAP

M SOAP is a lightweight XML-based protocol for information exchange
among systems in a distributed environment.

M It is possible for SOAP to be used with many protocols (including
TCP/IP), although its most common binding is with HTTP.

M Because of the lightweight nature of the SOAP protocol, it does not
include a number of features found in some of the more complex
distributed technologies.

WWW.SyNngress.com

Writing SOAP Clients = Chapter 6 249

M There is another specification known as SOAP Messages with Attachments,
which enables SOAP messages to be carried within MIME multipart/
related messages and thus carry attachments in a similar way to email.

SOAPElement and JAXM DOM

M JAXM provides its own DOM implementation that is independent of
the org.w3c.dom specification used by JAXP. i

M The SOAPEIlement interface represents an XML element within a
document and provides all of the methods required to manipulate such

an element. y
M All JAXM interfaces that represent elements of a SOAP message are ‘
subtypes of the SOAPEIlement interface.

JAXM SOAP Elements

M JAXM provides several interfaces, such as SOAPMessage and SOAPPart,
to represent a SOAP Message that may or may not contain an
attachment, as well as the actual SOAP part of such a message.

M Other elements, such as SOAPEnvelope, SOAPHeader, SOAPBody and
the like, map directly to objects within the SOAP specification and can
be manipulated via methods of the SOAPEIlement interface, as well as by
some additional methods for specific functions.

M JAXM provides MIME functionality for adding and processing attach-
ments through the use of the JavaBeans Activation Framework (JAF).

Creating a SOAP Message

M A SOAPMessage object needs to be created through a factory object, and
the other elements can each be created by their parent elements.

M When an SOAPMessage object is created, it will contain an Envelope
with an empty Header and a Body.

www.syngress.com J

250 Chapter 6 = Writing SOAP Clients

Bringing it all Together—A Complete SOAP Client

M The example client was created to run independently of a JAXM
Provider or a container. Such a standalone client can only communicate
using a synchronous request/reply model.

M The client application creates a new SOAP message requesting a value
lookup against a command line-specified name, and waits to process the
qi. response from the server.

M The server-side of the example will be covered in the next chapter.

! Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,

are designed to both measure your understanding of the concepts presented in

‘{H this chapter and to assist you with real-life implementation of these concepts. To

1 have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

Q: Is SOAP specific to any particular vendor, platform, or programming language?

A: The answer to all of these is “No.” SOAP enjoys the support of a very wide
array of vendors, including Sun, Microsoft, IBM, Oracle, and many more.
Additionally, any mainstream programming language could be used to imple-
ment SOAP communications. Implementations are available for such a diverse
set of languages as Java, C++, Perl, Python, ADA, Visual Basic, and more.

Q: Does SOAP provide a security model?

b | A: The SOAP specification providesvery little in the-way of security considera-

; tions, but this does not mean that SOAP communications are inherently inse-
cure. If SOAP is bound to HTTP, the same potential security vulnerabilities
exist as with most other HT TP communications, but likewise the same secu-

r rity mechanisms (such as the use of Secure Soekets Layer, or SSL) can be used.

Q: Does SOAP have to operate over HTTP?

A: No, it is not mandatory for SOAP to be bound to HTTP; a SOAP message
could readily be transmitted over SMTP or even a proprietary middleware

WWW.SyNngress.com

>0 > O

O

Writing SOAP Clients = Chapter 6 251

protocol such as IBM’s MQ Series. However, this would be dependant upon
the ability for your JAXM Provider to support these bindings.

: Are there any SOAP mailing lists?
- Yes, there are several; a good one is at http://discuss.develop.com/soap.html

: Are there any tools available to test SOAP services?
: An organization called PushToTest publishes a free open-source framework - ¥

called TestMaker, as well as a commercial product. Their website is at W
WWW.pushtotest.com '

: Where can | find more detailed information on securing SOAP ﬂ

communications?

: The IBM developerWorks site contains a very detailed article at

www-106.ibm.com/developerworks/webservices/library/ws-soapsec/

Chapter 7

Writing SOAP

Servers

Solutions in this chapter:

= Message Routing

= Establishing a Connection to a JAXM
‘ Provider o f

. Pr0\./ide.ré:c.>nnections

= Writing a SOAP Server Servlet

= Writing a SOAP EJB

= Example SOAP Servlet

M Summary
M Solutions Fast Track

M Frequently Asked Questions

253

254

Chapter 7 = Writing SOAP Servers

Introduction

Just as the last chapter looked at standalone SOAP clients, this chapter will
explore hosted SOAP servers.You may recall we talked about the synchronous
request-response model being the only model supported for standalone servers;
this is because JAXM leverages a Java 2 Enterprise Edition (J2EE) container
when routing messages for the more complicated SOAP usages. In particular,
JAXM supports the routing of messages to message-driven EJBs and servlets.

In the JAXM model, the J2EE container has the additional responsibility of
either being or hosting a SOAP Provider. SOAP providers form the underlying
infrastructure for the routing of messages from remote clients to the message
responder. They also provide for routing messages from the message responder to
a different remote host; in this way J2EE-based SOAP servers can also act as
SOAP clients.

In this chapter, we are going to explore the hosted SOAP environment,
including connections to JAXM providers. Further, we will discuss imposing a
standard set of body and header elements on a SOAP message. Known in JAXM
as a profile, this allows for an explicit contract between a client and server without
which there is no guarantee that a SOAP message would contain meaningful data
in well-known locations. Profiles simplify the use of higher-level protocols such
as ebXML; the profile acts to make sure that meaningful information is provided
in a manner that is clear to both parties.

Message Routing

In the last chapter we focused on synchronous message routing (known as request-
response), where the client sent a request message and blocked until some form of
response came back from the service.We also saw that this request-response
model was the only model supported for a standalone client (a JAXM SOAP
client that did not run in an EJB or servlet container). In this section we will
examine another model for SOAP communication using JAXM—asynchronous
messaging. VWe will discuss the advantages of using an asynchronous message
model, such as the ability to obtain guaranteed delivery and delayed responses;
and we will also look at some of the complexities in the development of systems
that implement this model.

WWW.SyNngress.com

Writing SOAP Servers = Chapter 7

Asynchronous messages

In terms of the actual SOAP specification, asynchronous SOAP messages are the
more basic case; the fundamental mechanism for communicating via SOAP is
one-way messaging, in which one system sends a message to another system
without waiting for a response. There is nothing to say that an asynchronous
system cannot include responses to messages; it is just that the sender is not
reliant on an immediate response.

Figure 7.1 shows an example of a synchronous messaging system. The
example shows a very familiar scenario: a web browser requesting a web page. In
this scenario, the browser submits an HT TP request to the web server, requesting
a specific HTML page. Once it has sent the request, the browser then waits until
one of three things happens:

= It receives the HTTP response containing the HTML data.

= |t receives an error, which could come from a number of sources, such
as the web server or a proxy server.

= The request times out.

Figure 7.1 Example of Synchronous Messaging

Web Server

=
—
[J
nonoooo

HTTP
Request

Response
containing
HTML Page

&
=

Web Browser

An example of an asynchronous messaging system is shown in Figure 7.2.
This example should also be a very familiar scenario; Dave sends an e-mail to

255

www.syngress.com

256

Chapter 7 = Writing SOAP Servers

Jean, asking if she’d like to meet for lunch. Jean is away from her computer for a

few days and doesn’t get to read the e-mail until the following week. During this
time Dave (unless he is very anxious about the response to the e-mail) does not

sit waiting for the response; he and his e-mail software are both free to do other

things. Finally, Jean reads the e-mail and decides to send a response to Dave; yes,

she would like to meet for lunch next Tuesday.

Figure 7.2 Example of Asynchronous Messaging

Dave sends an email

Jean may respond at
some point in the future

Asynchronous SOAP messaging can be quite similar to e-mail messaging (and
in fact it is possible to use SMTP as a bearer for SOAP messages). The similarities
are that messages are sent via a store-and-forward mechanism (such as a JAXM
provider) and that the sender does not halt all other processing while it waits for
a response. This clearly provides a number of advantages but also raises a few hur-
dles that will be discussed in the following section.

One-Way Messages

The simplest case of asynchronous messaging involves one-way messages. In this
model, a system sends a message to another system—end of story. There is no
expectation of a response, and no response will ever be sent.

You may wonder when a real-life scenario would work in this way. In fact, it’s
quite a common scenario, especially in terms of alerting and notification. Imagine
a CRM (Customer Relationship Management) system that is used to collect and
maintain information about the customers of an electricity company. If a cus-
tomer rings up and asks for their address to be changed, we may want the CRM
system to automatically notify the billing system of the change so that the cus-
tomer’s bills will be printed out with the correct address. This notification could

WWW.SyNngress.com

Writing SOAP Servers = Chapter 7

certainly be done using a one-way SOAP message, and since we can rely on our
JAXM provider to deliver the message, there is no need to expect any kind of
response from the billing system.

This kind of example (where applications exchange data within an enterprise)
is known as Enterprise Application Integration (EAI), and is increasingly
becoming known as A2A (Application to Application) communication. This is
definitely an area in which Web Services will be seen to play an increasing role in
the near future.

Delayed Response Messages

Not all asynchronous messaging is truly one-way. There are many cases where
asynchronous messaging involves sending a message and possibly receiving a
response; this response may come almost immediately or after a very long delay,
so under the asynchronous model we will not pause other processing while we
wait for it.

Consider the case of an electronic marketplace, where a buyer submits an
order to purchase 300 pencils. After a certain amount of time, the marketplace
receives a message from the pencil supplier agreeing to fulfill the order, and later
a message is received that says the supplier has shipped the order. At this point the
marketplace may have to transfer funds between buyer and supplier and update
the status of the order.

Now consider that there could be many thousands of buyers and suppliers all
active in submitting and fulfilling orders, and that the delay between the submis-
sion of an order and its fulfillment could extend into weeks. It is very clear that
asynchronous messaging is required; the marketplace could not afford to cease
functioning for days or weeks while it waited for a response to any given message.
On the other hand, the messages are clearly not one-way; a fulfillment message is a
specific response to an order request message—nbut it is a delayed response.

A major difference in the implementation of these two models lies in how
they wait for responses. In the synchronous case, the client sends a message and
then waits for a response on the same connection—the understanding is that the
only possible returning message will be the response to the request.

The difference with the asynchronous case is that it is essentially always
expecting messages, but when a message arrives it must match it up with the
corresponding sent message.

Another major difference between the implementation of the two models lies
in the routing of messages. This is readily explained through an analogy with

257

www.syngress.com

258

Chapter 7 = Writing SOAP Servers

some common interpersonal communication technologies: telephone and e-mail.
If you think about using a telephone, you dial somebody’s number and, if they
are available at the time, they will answer the phone and a conversation begins—
this is similar to the synchronous case.

On the other hand, if you send your friend an e-mail, it will be delivered to a
mail server; the next time your friend runs their mail client, the message will be
routed to them (probably via either the POP or IMAP protocol), and they will
be free to respond to the message at their leisure. It is the existence of the mail
server that allows e-mail to work asynchronously; without the mail server, you
could only send e-mails to your friend at times when he or she was online.

Asynchronous SOAP messages require a very similar mechanism; for messages
to be truly asynchronous there must be a routing mechanism receiving messages
and then routing them to the message handler when the handler becomes avail-
able. This mechanism is the J2EE container, with its implementation of a JAXM
Provider.

State in Asynchronous Servers

In the e-mail example from Figure 7.2, Dave sent an e-mail and received a
response after several days. In this example, when a response finally came back
from Jean accepting Dave’s invitation, Dave remembered that he had sent Jean
an e-mail inviting her to lunch. In the interim, Dave may have received many
e-mails from other people including a certain number of unsolicited advertising
e-mails (or Spam), but when he received Jean’s e-mail he knew its context—that
it was a response to an earlier request he had sent her.

In this case, Dave has the ability to mentally store “state” about various mes-
sages he has sent and to which he is expecting responses, so that when he
receives various responses he remembers that he was expecting them. Likewise, if
he doesn’t receive a message from Jean within a week he may decide to take
some other action—send Jean a reminder e-mail, or perhaps try phoning her.

The developer of an asynchronous messaging system will have to implement
certain abilities that are similar to what Dave is doing mentally; that is, to have a
record of state so that the context of incoming messages is known, and perhaps to
trigger a timeout condition (such as sending a followup message) if an expected
response has not been received after a certain amount of time.

In practice, how do you go about implementing this? There are a multitude
of possibilities; some are good ideas, and some are probably not. For instance, for
every message that was sent out it would be possible to spawn a thread (a con-
current unit of process execution) that could wait for the corresponding reply

WWW.SyNngress.com

Writing SOAP Servers = Chapter 7

and perhaps handle the timeout condition if it did not receive the reply within a
certain timeframe. However, unless there were very few messages ever sent out,
the resource overheads of so many threads being created would be prohibitively
inefficient.

A better method would be to implement a session mechanism in much the
same way as many web servers do. In the web server example, an identifier is
passed to the server with each page request; either in the form of a cookie or
embedded as a URL parameter. Either way, the web server can recognize the
unique identifier and match the request to the browser instance. The web server
stores the state of each current session either in memory or in a persistent
database, and can tell certain things about the incoming requests. For example, a
request to display a shopping cart page is coming from a user who is logged into
the site and has three items in his or her shopping cart. Once a session has timed
out (there have been no page requests from that browser instance for a certain
amount of time), its session data may be removed from memory.

Storing session state in an asynchronous messaging system can be done in a
similar manner, although the identifier would generally be associated with a mes-
sage rather than a user. This identifier may be an order identifier, for example.
Picture again the electronic marketplace scenario; for each order request sent to a
supplier, an entry with that order number could be inserted into the database.
When a fulfillment message is received, it could be matched against the appro-
priate request and acted on accordingly. If a fulfillment message is received that
does not match any known order request, an alert is raised for manual investiga-
tion. A background task could likewise run periodically to scan the database for
order requests that have not been matched with a fulfillment message within a
certain timeframe, and raise alerts for appropriate action to be taken.

Message Routing

As well as having to cope with storing state, asynchronous messaging systems also
need to manage the routing of messages. This effectively means delivering the
messages to their final destination, possibly via a number of intermediate destina-
tions. In this section we will discuss the main message routing scenarios and how
they may be implemented in a system that uses JAXM.

Figure 7.3 shows a fairly simplistic view of the message routing scenario for a
synchronous JAXM request-response scenario. It is simplistic in the sense that it
does not include the container in which the server is running—this is because
the container is fairly transparent to the solution. In a scenario such as this, the

259

www.syngress.com

260 Chapter 7 = Writing SOAP Servers

client directly specifies the server’s URL when sending the request and the server
returns the response message to the client in the same connection; the message
cannot be routed elsewhere.

Figure 7.3 Message Routing for a Synchronous Message

Request

/ Message
V\

Synchronous
Client

Synchronous
Server

Response /

Message

In contrast, Figure 7.4 shows a similar form of diagram, this time describing
the minimum message routing required for delivery of an asynchronous message
from a client to a server when both client and server are running JAXM
Providers.You can see from this diagram that there are at least three levels of
routing involved:

= The message must be routed from the client to its provider.

= The sending provider must know how to deliver the message to the
receiving provider.

= The receiving provider must in turn know how to route the message to
the server application.

Figure 7.4 Message Routing for an Asynchronous Message

Asynchronous /\ JAXM /_\ JAXM /\ Asynchronous

Client Provider Provider Server

Incoming Message Routing

JAXM Servers (that is, consumers of incoming messages) may be implemented as
either EJBs or servlets, although they are restricted to being implemented as
servlets under the current release of the JAXM Reference Implementation and
most commercial containers. As we will cover in more detail, they will still imple-
ment the same listener interfaces regardless of whether they are implemented as
servlets or EJBs:

WWW.SyNngress.com

Writing SOAP Servers = Chapter 7

= For asynchronous servers using a Provider (EJB or servlet), they will
implement OneWayListener.

= For synchronous servers not using a Provider (servlet only), they will
implement RegRespListener.

Both of these listener interfaces define an onMessage method; the version in
OneWayListner has a void return value, whereas the version in ReqRespListener
must return a message that will be routed back to the client.

In the case of the synchronous scenario (where the servlet implements
ReqRespListener), the incoming message routing is quite straightforward: the client
will address the message directly to the URL of the deployed servlet, and the
servlet container will route the message to the onMessage method. Likewise the
return value from this method will be returned directly to the calling client.

In the case of the asynchronous scenario (where either a servlet or EIB imple-
ments OneWayL.istener), things work a little differently. In this case, the sending
Provider will have delivered the message to the server’s JAXM Provider. This
Provider has to know the servlet (or EJB) to which the message must be routed.

This routing from the incoming Provider to the actual server application is
achieved because of registration information that every client of a JAXM
provider must provide at deployment time. Note here that a Provider’ *“client”
could be either a client or a server in the SOAP scenarios discussed above;
whether it sends, receives or both, it is a client of the Provider.

Take for example the “Remote” sample that is deployed as part of the Java
Web Services Developer Pack from Sun. This sample does a round-trip send (and
asynchronous response) using the ebXML profile. If you examine the copy of
client.xml that is deployed with this sample you should see that it looks as follows:

<?xm version="1.0" encodi ng="1S0O 8859-1"7?>

<! DOCTYPE i ent Config
PUBLIC "-//Sun M crosystens, Inc.//DTD JAXM dient//EN'
"http://java.sun.com xm /dtds/jaxmclient_1 0.dtd">
<d i ent Config>
<Endpoi nt >
http://ww. wonbat s. con r enot e/ sender
</ Endpoi nt >
<Cal | backURL>

http://1 ocal host: 8080/ axmrenote/ receiver

261

www.syngress.com

262 Chapter 7 = Writing SOAP Servers

</ Cal | backURL>
<Pr ovi der >
<URI >http://java. sun. conl xm /j axni provi der </ URl >
<URL>http://127.0.0. 1: 8081/ j axm provi der/ sender </ URL>
</ Provi der >

</ d i ent Config>

Every application that makes use of a JAXM Provider must provide a
client.xml instance in its deployment; this file may either be created manually or
your development environment may automate its creation—either way, the file
will contain the same content.

You can see that the client configuration provides three distinct pieces of
information:

= An endpoint, expressed as a URI.
= A callback URL, which in this case is the URL of the servlet.
= Provider information as a URI and URL.

It is this information that the provider uses to route the incoming asyn-
chronous message: the message will have been addressed to a specific URI as a
destination; the Provider will then map that URI to the corresponding callback
URL and ensure that the message is routed to the server’s onMessage method.

Outgoing Message Routing

For messages outgoing via a JAXM Provider, a store-and-forward mechanism is
used. This means that the message will be somehow logged (stored) and then
delivered (forwarded) to the destination party. This is similar to mailing a letter;
you place the letter in the post box and assume that the postal service will deliver
it to its destination. In a similar way, an application can deposit the message with
the Provider and trust the Provider to deliver it.

Most commercial JAXM implementations should implement the concept of
guaranteed delivery; that is, the message will eventually be delivered to its destina-
tion, regardless of how long it takes. So if the delivery fails many times due to a
serious problem with a communications link, the Provider will continue to retry
delivery until it is successful. Likewise, even if the server on which the Provider is
running is rebooted, the message will be stored in some form of reliable persis-
tent storage; attempts to deliver the message will resume once the server is up
and running again.

WWW.SyNngress.com

Writing SOAP Servers = Chapter 7

The JAXM Reference Implementation provides some of this functionality, but
stops short of providing guaranteed delivery. As you can see from Figure 7.5, the
reference implementation provides an application for configuring the JAXM
Provider, and that the configurable parameters instantly give away several secrets
about the implementation. First, you can see that there is a limited number of
retries; this could be set to higher than 3, but eventually if a message cannot be
delivered the Provider will give up trying. The second indication that delivery may
not be guaranteed is that the messages are stored in a log file on the file system.
While information stored this way will likely survive a reboot (and the Provider
will continue attempting to resend messages after such an incident), files on the file
system are much less reliable than using something like the Relational Database
Management System (RDBMS) used in many commercial implementations.

Figure 7.5 Configuring the JAXM Provider Properties in the Reference
Implementation

B it mdiy lowd mhiined | Ll | = LT |
Be [k e fpwie Jwh o | o |
lhlf_-'r. a8 e el LT El
4 180 Proicer Default JAXM Provider Properties
¥ =1 Frafiles

= =h i
=0 Fiambsr of

[Bass naremi Prapasiin |

Establishing a Connection
to a JAXM Provider

The JAXM Provider will typically be distributed as part of the J2EE container
with which you are working; it is up to the vendor to determine how the
Provider will be implemented. Generally, the JAXM Provider will be imple-
mented as a servlet, although the implementation of the store-and-forward mech-
anisms will vary greatly. For example, the Provider reference implementation

263

www.syngress.com

264

Chapter 7 = Writing SOAP Servers

stores messages in a logfile directory whereas commercial implementations may
well use RDBMS-based queuing mechanisms and accordingly enjoy a higher
level of reliability. Regardless of the JAXM Provider implementation however,
you will still use the JAXM API to establish a connection and make use of its
Services.

The JAXM Provider is not only responsible for routing inbound messages to
your SOAP server, but is also responsible for routing outbound messages to their
destinations. Your application essentially hands the message over to the Provider,
which then ensures that the message is delivered, retrying the delivery until suc-
cessful.

The basic steps for sending a message via a Provider are:

1. Retrieve a provider connection factory as registered with a JNDI
naming service.

Use the factory to generate a connection with the JAXM Provider.
Use the connection to generate a message factory.

Use the message factory to generate a message, specifying a profile.
Populate the message.

Use the connection with the JAXM Provider to send the message; this
will send asynchronously and will not wait for a response.

o g ks~

J2EE introduced the concept of the naming service based on the Java
Naming and Directory Interface (JNDI) API. A naming service is a form of
repository or directory that, among other things, allows various objects to be reg-
istered by name so that applications can look them up through the service and
make use of them. A common use of such naming services is the registration of
EJBs; this is the mechanism through which an application can access a bean.

Similar to the EJB case, JAXM Providers are registered using a unique name.
Your application can then look up the Provider, using the JNDI API and pro-
viding the exact name with which the Provider was registered; thus retrieving a
ProviderConnectionFactory object that can be used to connect to the Provider in
question.

Therefore, the first requirement in this scenario is that the name of the
Provider must be well known to the system that registers the Provider (probably
the J2EE container) and to any applications that require connections to the
Provider. The vendor may dictate this name, or it may be configurable as a prop-
erty in the container’s configuration files.

WWW.SyNngress.com

Writing SOAP Servers = Chapter 7

Developing & Deploying...

Deploying Provider Clients

In a somewhat confusing mix of terminology, a JAXM Provider’s “client”
may operate as either client or a server (or both) in a SOAP implemen-
tation.

Clients of Providers must not only be deployed with the usual
descriptor files required by servlet containers, but also with additional
deployment information contained in a file named “client.xml.”

Under the JAXM Reference Implementation, this XML descriptor file
must be manually created and included in the WAR file when the client
is deployed. Commercial implementations will most likely include tools
for automating the generation of these descriptors.

The XML file must adhere to a schema that is defined in jaxm-
client.dtd and contains the following information:

= Endpoint A string identifying the client as a URI.

= CallbackURL This is used by the JAXM Provider to route
received messages to the client. The received message will be
addressed to a URI; the Provider will compare that URI to the
registered Endpoint of each client and route the message to
the CallbackURL of the matching client, retrying the delivery
until successful.

= Provider’s URI and URL Used by the client to obtain a con-
nection to the Provider.

As mentioned above, you will need to use the INDI API to look up the
provider. This is done in two steps: a Context object is created, then the lookup
method of that object is called, passing in the Provider’s name. This will return a
ProviderConnectionFactory object, as shown in the following code:

Context context = new Initial Context();
Provi der Connecti onFactory factory;

factory = (ProviderConnectionFactory)context.|ookup("MProvider");

It is actually possible to obtain a ProviderConnectionFactory without using a
naming service lookup (and therefore without using the JNDI API); this is the

265

www.syngress.com

266

Chapter 7 = Writing SOAP Servers

case where the default factory is used by calling the ProviderConnectionFactory’s
static newlInstance method, as shown in this code fragment:

Provi der Connecti onFactory factory = Provi der Connecti onFactory. newl nst ance();
The factory that is returned from this call will generate connections to the
default Provider configuration.
Creating the connection to the JAXM Provider from the factory object is

very straightforward using the factory’s createConnection method, as the following
code demonstrates:

Provi der Connecti on connecti on;

connection = factory. createConnection();

ProviderConnections

ProviderConnection objects essentially perform three different tasks:

1. Allow information (meta data) about the Provider to be queried.

2. Provide MessageFactory objects that can produce messages specific to a
certain profile.

3. Pass messages to the Provider to be sent asynchronously.

Table 7.1 describes the four methods defined in the ProviderConnection
interface:

Table 7.1 ProviderConnection Methods

Method Description

void close() Closes the connection when it is no
longer required.

MessageFactory createMessageFactory Creates a message factory that will

(java.lang.String profile) produce messages according to the
specified profile (for example, ebXML).
ProviderMetaData getMetaData() Returns information about the JAXM

Provider itself, including the sup-
ported profiles.

void send(SOAPMessage message) Sends a message asynchronously via
the Provider.

WWW.SyNngress.com

Writing SOAP Servers = Chapter 7

Using the ProviderConnection
to Create a Message

When working with a JAXM Provider, you will create messages using a message
factory generated from the provider connection. This method allows you to
create a message according to any one of the specific profiles supported by your
JAXM Provider. An example would be the generation of ebXML messages using
a JAXM Provider that supported an ebXML profile. The following code demon-
strates how such a message factory and subsequent message would be generated,
having first created the provider connection object connection as described above:

MessageFactory nsgFactory = connection. creat eMessageFactory("ebxm ");

SOAPMessage nmyMsg = nsgFactory. creat eMessage();

Using ProviderConnection to Send a Message

You will recall from the previous chapter that a synchronous message was sent
using the call method of an SOAPConnection object:

SOAPMessage req;

/1 Popul ate request nessage

URLEndpoi nt endpoi nt = new URLEndpoint("http://destination");
SOAPMessage resp = myConnection.call (req, endpoint);

However, when sending an asynchronous message via a Provider, the process
is a little different:
SOAPMessage req;

/1 Popul ate request nessage

myProvi der Conn. send(req);

You will immediately observe two major differences between the process of
sending messages without and with a Provider:

1. The provider connection’s send method does not return a response mes-
sage (as we would expect, since this is an asynchronous model).

2. The provider connection’s send method does not take a URLEndpoint
parameter.

267

www.syngress.com

268

Chapter 7 = Writing SOAP Servers

If no endpoint is passed to the send method, how does the Provider know
where to send the message? The answer to this is specific to both the Provider
and the Profile used. The Reference Implementation Provider provides two
Profiles: ebXML and SOAPRP. These Profiles represent protocols built upon
SOAP and each specifies a number of mandatory fields that must be provided in
the SOAP Header. Specifically, both of these protocols specify that the header
contain “to” elements which specify a URI for the message destination.

Figure 7.6 shows the Provider Admin application for the JAXM Reference
Implementation being used to configure the ebXML/HTTP Profile. From this
screenshot you can see that the profile can contain a number of Endpoint
Mappings that are used to map URIs with destination URLSs. In this case a single
mapping exists: the URI http://www.wombats.com/remote/sender is mapped to the
URL http://127.0.0.1:8081/jaxm-provider/receiver/ebxml.

Figure 7.6 JAXM Provider Endpoint Mappings

B i ng ke midin ipsd - mRoimiel sy Dyl Ba = T

B b pe fpwiw b (e 3
ih-lf_-lr.. i okl Y i Bl 1 ﬂ
PP ebXML Profile

+ I cbo (HTTP)
e HTTR
g HTTE
¢ D soweAl _ ; [
- HTTS Number F retdes T
B |- Rerry bibarva
rumbar of mezsage
Loafle director |atmed
[mewmarmie |
Erl-ch-:ird_himgr-_:s
hig .:i.. Bl pears
ki 4
L] e

The outbound routing scenario is therefore as follows:

1. The routing of the message from the application to the JAXM Provider
is implicit in the ProviderConnection object, as described above.

2. The routing of the message from the outgoing JAXM Provider to the
destination Provider is achieved by examining the message’s SOAP

WWW.SyNngress.com

Writing SOAP Servers = Chapter 7

Header to extract a destination URI, and then using an Endpoint
Mapping to map that URI to a URL.

3. The routing of the message from the receiving JAXM Provider to the
destination servlet is achieved by mapping the destination URI to a call-
back URL via the deployment information provided in client.xml, as pre-
viously described.

Profiles

A number of protocols have already been built on top of SOAP—that is, they are
protocols that comply with SOAP and specify a number of specific elements,
usually with the SOAP Header. These protocols are known as profiles, and it is
quite likely that more will be defined in the future.

In order to facilitate the use of these protocols, JAXM Providers may provide
implementations of the profiles. The Provider will allow specific configuration of
the properties associated with each profile (as seen in Figure 7.6), and an applica-
tion may specify a particular profile (if the Provider supports it) when requesting
a message factory.

An example of a profile is ebXML, which is a protocol commonly used in
business-to-business (B2B) implementations, and which is built on top of SOAP.
As said earlier, the following code can be used to request a message factory from
a provider connection and create a message from this factory:

MessageFactory nmsgFactory = connection. creat eMessageFactory("ebxm ");

SOAPMessage nmyMsg = msgFactory. creat eMessage();

As long as the Provider supports a profile named “ebxml”, this code would
have returned a message factory object that would in turn have created a slightly
different SOAP message object than the one we created in the previous chapter.
In that example we saw that a default message factory generates messages with an
empty header. In the case of the ebXML profile, the message factory will actually
generate pre-configured messages with a number of header elements inserted in
accordance with mandatory requirements of the ebXML protocol.

If a Profile is specified, the subsequent message factory may not only produce
message objects that are pre-configured with certain XML content, but these
message objects may themselves be subtypes of SOAPMessage, and provide addi-
tional members.

Any such message class will not come from the JAXM API; they will be spe-
cific classes distributed with the JAXM Provider. As an example, the JAXM

269

www.syngress.com

270

Chapter 7 = Writing SOAP Servers

Reference Implementation provides two distinct profiles; ebXML and SOAPRP.
The Reference Implementation also ships with two corresponding messaging
classes; com.sun.xml.messaging.ebxml.EbXMLMessagelmpl and
com.sun.xml.messaging.soaprp. SOAPRPMessagelmpl. These classes are distributed in
jaxm-client..jar.

The EbXMLMessagelmpl class provides a number of get and set methods to
support reading and writing a number of elements in an ed XML message Header
and Body. An example is the method:

voi d set Conversationld(java.lang. String conversationl d)

The setConversationld method (as its name implies) allows the conversation ID
parameter to be set in the message header; this is a mandatory element in an
ebXML message.

Similarly, the SOAPRPMessagelmpl class provides a number of methods for
reading and writing various elements within a SOAPRP message, such as the fol-
lowing method, which retrieves the “reverse path” from the SOAPRP message
header:

java.util.Vector get SOAPRPRevMessagePat h()

Writing a SOAP Server Servlet

Using JAXM, there are a couple of ways that you can implement a SOAP service
that runs in a container and makes use of a JAXM provider; either as a servlet
(running in a servlet container), or as a message-driven bean (running in an EJB
container).

Figure 7.7 shows how a servlet may be used to implement a SOAP Server.
You can see that even within a container, the use of a JAXMProvider can be
optional depending upon the model of SOAP communication used and the fea-
tures required. For example, a SOAP Server that communicates with a standalone
client via the request-response model and which does not need features such as
an ebXML profile, does not need to use a JAXM Provider; the servlet will
receive the request message from the client (via the servlet container), process the
message, and return the response message to the client. On the other hand, more
complex message routing and the use of JAXM profiles will require the use of
the JAXM Provider.

WWW.SyNngress.com

Writing SOAP Servers = Chapter 7 271

Figure 7.7 The Use of a Servlet as a SOAP Server

——————————————

|

|

i

\ \ Servlet
i 4 (extending
|

|

|

|

JAXMServet)

|

|

|

|

2 |

// 777777777777 |
// l }
SOAP Client <—>< | 3
| |

| |

|

|

|

|

|

|

|

|

|

|

JAXMServlet

The superclass provided by the JAXM API for implementing SOAP Servers using
servlets is javax.xml.messaging.JAXMServlet. This is an abstract class, meaning that
you cannot directly instantiate objects of this type; you must first create a base
class that extends JAXMServlet and that implements either the javax.xml.mes-
saging.OnewayL istener or javax.xml.messaging.ReqRespListener interface. Note also
that there is no actual requirement to extend JAXMServlet; you could create your
own servlet class that provided similar functionality as long as it implemented
OnewayL.istener or ReqRespListener; however JAXMServlet offers a certain conve-
nience. As an example of a situation where you may not wish to use the
JAXMServlet class, imagine that you wanted to implement SOAP communications
bound to a protocol other than HTTP; since JAXMServlet extends HT TPServlet, it
can only be used for SOAP bound to HTTP. Note that the dispatch method of
JAXMServlet checks that the this object implements either OnewayL.istener or
ReqRespListener in order to correctly route the message. For this reason, your
JAXMServlet subclass must implement one of these two possible interfaces.

The OnewayL.istener interface is implemented by servlets that are designed to
perform asynchronous SOAP communication; that is, they will receive a message
with no response required. Such a servlet may never send a response message, it
may send one immediately, or it may send one in a few days’ time.

On the other hand, the RegRespListener interface should be implemented by
servlets that will participate in synchronous SOAP communication; the servlet
will receive a message, perform some processing of it, and make a response of
some sort.

www.syngress.com

272

Chapter 7 = Writing SOAP Servers

We have already established that the JAXMServlet class extends HT TPServlet;
furthermore, it provides an overridden implementation of doPost. If you are
familiar with writing HTTP servlets for regular browser-based web pages and the
like, you may be tempted to override the doPost method and attempt to work
with the HttpServletRequest and HttpServletResponse objects directly. However, this
is usually not a good idea; the JAXM listener interfaces (ReqRespListener and
OnewayL.istener) are designed to abstract the processing of JAXM messages to a
level that is independent of whether the server is implemented as a servlet or an
EJB. As we shall shortly see, these interfaces provide the appropriate mechanism
for handling messages.

Another best-practice recommendation is that a servlet derived from
JAXMServlet should not be used for functionality that is unrelated to SOAP pro-
cessing; the JAXMServlet class is specifically designed for consuming and possibly
sending SOAP messages. If, for example, you wished to provide a browser-based
web page with parallel functionality to a web service, it would be best to create
two independent servlets of appropriate types, and perhaps move common busi-
ness logic into the EJB layer. The architecture for this kind of approach is shown
in Figure 7.8.

Figure 7.8 Using the JAXMServlet Subclass Only for SOAP Processing

SOAP Client Web Browser
O =
= .
=
{ \
JEE) Servlet Serviet
Container extending extending
JAXMServlet HTTPServlet

EJBs

WWW.SyNngress.com

Writing SOAP Servers = Chapter 7

Required Overrides

The JAXMServlet class does not require you to override any specific methods. The
most likely method for overriding within this superclass is the init method, which
allows you to perform some processing when the servlet is first initialized—this
could be very useful in performing any resource-hungry processing that only
needs to be run once.To override this method you would do the following:

public class MServlet
ext ends JAXMSer vl et

i mpl ements Onewayli stener {

public void init(ServletConfig servl et Config)
throws ServletException {

/] Be sure to call the superclass nethod

super.init(servl et Config) ;

/1 Perform once-off initialization

/1 processing here

Even though the JAXMServlet class does not require you to override specific
methods, you will have to implement either the OnewayL.istener or ReqRespListener
interface, both of which have a single onMessage method, although these methods

differ in their return types.
If you develop an asynchronous SOAP server using a servlet that implements

OnewayL.istener, you will have to provide an onMessage method implementation
that looks like this:

public void onMessage(SOAPMessage nessage) {

/1 Process the incom ng message

273

www.syngress.com

274

Chapter 7 = Writing SOAP Servers

However, if you develop a synchronous SOAP server using a servlet that
implements ReqRespListener, you will need to provide a slightly different imple-
mentation of onMessage:

public SCAPMessage onMessage(SOAPMessage soapMsg) {
/1 Process the request nessage

SOAPMessage nyResponse;

/1l Create and popul ate the response nessage

return nyResponse;

Notice that the two versions of onMessage differ in their return types: a
OnewayListener implementation does not need to return a value from the
onMessage method, whereas an implementation of ReqRespListener requires that a
SOAPMessage is returned from onMessage; this returned message is the response
message in the synchronous request-response model and will be routed back to
the client.

Handling Messages

As discussed above, regardless of the chosen listener interface it is the onMessage
method that will be implemented to handle messages; in the case of the
OnewayL.istener this will apply purely to inbound messages, whereas the
RegRespListener will handle both the inbound (request) and outbound
(response) messages.

This is not to say that a servlet that implements OnewayL.istener cannot send
outgoing messages; it certainly can.The situation is just that these outgoing mes-
sages will be asynchronous; they are not sent back as responses to the incoming
messages, but rather as unsolicited messages sent either to the originating SOAP
client or to another destination altogether.

Later on in this chapter we will complete the example started in the previous
chapter and implement a service to look up the requested name and return the
value. Because our example follows the synchronous model (standalone JAXM
clients can only communicate this way), we will create a servlet that implements
ReqgRespListener.

WWW.SyNngress.com

Writing SOAP Servers = Chapter 7

Writing a SOAP EJB

The other method for creating a SOAP server using JAXM is with an EJB. This
relies on the EJB 2.1 specification, which provides for message-driven beans that
can be bound to a JAXM provider.

The EJB 2.0 specification first introduced the concept of message-driven beans.
These are a variant of the Enterprise Java Beans (EJBs) that are in turn similar to
stateless session beans, but with the following major differences:

= Message driven beans do not have a home, local or remote interface.
= The container passes messages to the bean and the bean processes them.

Prior to the concept of message-driven beans, the task of receiving messages,
invoking a bean and passing the messages to the bean had to be handled by a
custom-developed process (or daemon) which would be responsible for receiving
messages and then creating a stateless session bean, then communicating via the
bean’s remote interface, generally using RMI over IIOP (as shown in Figure 7.9).
The obvious disadvantages of this are the need to develop a custom daemon and
the fact that the daemon runs outside of the EJB container and must communi-
cate with the bean using RMI.

Figure 7.9 Traditional Method of Passing Messages to EJBs

Incoming message

Daemon for receiving
messages

{

RMIZIIOP

EJB Container

v

Stateles session bean

Figure 7.10 shows a simplified view of a scenario that is similar but that
makes use of a message-driven bean. In this case there is no requirement for a

275

www.syngress.com

276

Chapter 7 = Writing SOAP Servers

process to stand outside of the container and remotely invoke the EJB; instead
the container will ensure that the messages are delivered to the bean. In fact,
since the bean has neither a remote interface nor a home interface, it cannot be
accessed by another application. Note however that there must be some form of
asynchronous messaging technology involved; in EJB 2.0 the messages can only
be JMS messages; in EJB 2.1 implementations the messages could be asyn-
chronous SOAP messages passing through a JAXM provider.

Figure 7.10 The Use of Message-driven Beans

Incoming message

EJB Container

v

Message-driven bean

The EJB 2.0 message-driven beans are based on the Java Message Service
(JMS) API.When a JMS message is received, the container routes the message
directly to the bean. This provides a very useful mechanism for decoupling the
EJB from applications; an application can send a JMS message that will be pro-
cessed asynchronously by the message-driven bean at some point. It is the EJB
2.0 version of message-driven beans that is implemented by most commercial
J2EE containers at the time of this writing.

The EJB 2.1 specification extends the concept of the message-driven bean to
cater for beans that are bound to JAXM providers. This means that an EJB can be
invoked directly by the container and passed an incoming asynchronous SOAP
message, similar to the way that a servlet implementing OnewayL.istener receives
SOAP messages. The implication of this is that it enables EJBs to be directly
exposed as web services across the internet, and through the functionality pro-
vided by the JAXM provider and the EJB container, such features as asyn-
chronous and guaranteed delivery of the messages to the bean are enabled.

WWW.SyNngress.com

Writing SOAP Servers = Chapter 7

Overriding MessageDrivenBean
and OnewayListener

A message-driven bean should always implement the MessageDrivenBean interface.
This interface contains two methods that must be implemented, as listed in
Table 7.2.

Table 7.2 Methods that Must be Implemented in MessageDrivenBean

Method Description

void ejbRemove() The container will invoke this before the bean
is removed; perform any required clean-up
action within this method.

void setMessageDrivenContext This method will be invoked after the instance

(MessageDrivenContext ctx) of the bean has been created, to provide the
bean with its context object. The implementa-
tion of this method should usually store a
copy of the context object in an instance
variable.

Message-driven beans that will be SOAP message handlers must also imple-
ment OnewayL.istener. In doing so, they become similar in their implementation to
the JAXM servlets that implement this same interface.

You may be wondering why message-driven beans can implement
OnewayL.istener but do not have the option of implementing ReqRespListener; the
answer is that message-driven beans can only operate asynchronously via a
provider—a message-driven bean does not listen on a URL in the way a servlet
does and so cannot receive messages directly; all messages are routed to it by the
JAXM Provider.

For further information on the specifics of implementing message-driven
beans that respond to JAXM messages, refer to the documentation provided by
the vendor of the container to be used. Remember that this form of message-
driven bean requires a container that complies with EJB 2.1, and that most of the
commercially-available containers at the time of writing comply with EJB 2.0.

Example SOAP Servlet

In this section we will develop a functioning SOAP service that will complete
the example begun with the previous chapter’s standalone SOAP client.You will
recall that the client application sent a SOAP message to a service requesting a

277

www.syngress.com

278

Chapter 7 = Writing SOAP Servers

value to be looked up by a name; this service will do the lookup and return the
value to the client. If there are any errors in this process, whether from parsing
the incoming message or looking up the value, the error information will be
returned to the client in the form of a SOAP Fault.

Receiving and Processing SOAP Messages

This example will be implemented as a servlet; it will override both JAXMServlet
and RegqRespListener.Why does it override RegRespListener and not
OnewayL.istener? Because our client, developed in the previous chapter, is a stan-
dalone application sending messages synchronously, so we are bound to the
request-response model.

The schema of the request and response messages was outlined in the pre-
vious chapter.You will remember that the client sends a name in a request, and
that the server is expected to look up a value against that name and return the
matching value (if found).

The actual lookup will be done against the sample XML that will be read in
from a file during the servlet’s initialization. You will recall that our sample XML
file looks like this:

<entries>
<entry>
<nanme>f oo</ nane>
<val ue>bar </ val ue>
</entry>
<entry>
<nanme>M ckey</ nanme>
<val ue>Mbuse</ val ue>
</entry>

</entries>

So if the client requested a lookup of the name Mickey, we would return the
value Mouse, whereas a lookup of Peter (or even mickey without the capital M)
would need to generate a SOAP fault in the response.

Our example will be based on a servlet that extends JAXMServlet, so it obvi-
ously needs to run in a container. Since we are using a standalone client we are
bound to the request-response model; the client sends a request and blocks,
waiting until we send some kind of response back. For this reason we will imple-
ment ReqResponseL.istener.

WWW.SyNngress.com

Writing SOAP Servers = Chapter 7 279

Our servlet will only override two methods: init, which allows us to perform
a couple of one-off tasks (including reading the sample XML file from disk), and
onMessage, which is called by the container each time a SOAP message is sent to
our servlet. The version of onMessage that is defined in the ReqResponseListener
interface is passed a SOAPMessage object when it is called by the container; this is
the request message that was sent from the client. It must also return a
SOAPMessage object, which will be sent back to the client as the response.

/**

* ReceiverServlet.java

*

*/

package com syngress.jwsdp. soap. server;

i mport javax.
i mport javax.
i mport javax.
i mport javax.
i mport javax.
i mport javax.
i mport javax.

i mport javax.

xm .
xm .

xm
xm
xm
xm

nessagi ng. JAXMser vl et ;

nmessagi ng. ReqRespLi st ener;

. soap. MessageFact ory;
. soap. SOAPMessage;
. soap. SOAPExcepti on;

servl et. Servl et Config;

servl et. Servl et Excepti on;

i mport com syngress.jwsdp

i mport com syngress. jwsdp.
i mport com syngress. jwsdp.
i mport com syngress. jwsdp.
i mport com syngress. jwsdp.
i mport com syngress. jwsdp.

i mport com syngress. jwsdp.

. soap

public class ReceiverServl et
ext ends JAXMBSer vl et

soap.
soap.
soap.
soap.
soap.

soap.

. server

server

server

i mpl ement s ReqRespLi st ener {

/! Instance variables that wll

/1 by the init method.

server.

server.

server.

. messagi ng. JAXMExcept i on;

. Recei vedMessage;
. LoadXM_Except i on;

server.

LookupExcepti on;
Faul t Message;
SchenmaExcepti on;

NareVal ueLookup;

. Repl yMessage;

be popul ated

www.syngress.com

280 Chapter 7 = Writing SOAP Servers

protected MessageFactory nessageFactory = null;

protected NarmeVal ueLookup | ookUpper = null;

/1 Al SOAP nmessages are routed to the onMessage
/1 met hod.
public SOAPMessage onMessage(SOAPMessage soapMsg)

SOAPMessage retMsg = nul | ;
Recei vedMessage recMsg = nul | ;
Repl yMessage repl yMsg = nul | ;

String nane = null;

String value = null;

try {

/1 Initialize the Recei vedMessage obj ect
/1l with the incom ng request message.

recMsg = new Recei vedMessage(soapMsg);

/1l Parse the nmessage to extract the
/1 requested name paramneter.

name = recMsg. get Request edNane() ;

/1l Attenpt to retrieve the value
/! that matches the nane fromthe
/1 sanple XM.

val ue = | ookUpper .| ookup(namne);

/1 Construct the response nessage.
repl yMsg = new Repl yMessage(

messageFact ory) ;
/1 Set the response paraneter

/1 in the outgoing nessage.

repl yMsg. set Val ue(val ue) ;

WWW.SyNngress.com

Writing SOAP Servers = Chapter 7 281

ret Msg = repl yMsg. get Message() ;
} catch(SchemaException e) {

/1 There was an error parsing the
/'l request nessage.
try {
Faul t Message faultMsg =
new Faul t Message(

messageFact ory) ;

faul t Msg. set Faul t Code(
"Server");

faul t Msg. set Faul t Stri ng(
"I'nvalid Schema");

faul t Msg. set Faul t Det ai | (
"SchemaException");

ret Msg = fault Msg. get Message();
} catch(Exception ex) {

/1 lgnore errors generating

// fault and allow a

/1 null return.

}
} catch(SOAPException e) {

try {
Faul t Message faultMsg =
new Faul t Message(

messageFact ory) ;

faul t Msg. set Faul t Code(
"Server");

faul t Msg. set Faul t Stri ng(
"SOAP Exception");

faul t Msg. set Faul t Det ai | (
" SOAPException");

www.syngress.com

282 Chapter 7 = Writing SOAP Servers

ret Msg = fault Msg. get Message();
} catch(Exception ex) {
/1 lgnore errors generating
// fault and allow a
/1 null return.
}
} catch(LookupException e) {

/1 This should indicate that the
/'l requested name was not found
/1 in the XM.
try {
Faul t Message faultMsg =
new Faul t Message(

messageFact ory) ;

faul t Msg. set Faul t Stri ng(
")
faul t Msg. set Faul t Code(
"Server");
faul t Msg. set Faul t Stri ng(
"Error |ooking up value");
faul t Msg. set Faul t Det ai | (
"LookupException");

ret Msg = fault Msg. get Message();
} catch(Exception ex) {
/1 lgnore errors generating
// fault and allow a
/1 null return.
}
} catch(Exception e) {

/1 Al other errors.
try {
Faul t Message faultMsg =

new Faul t Message(

WWW.SyNngress.com

Writing SOAP Servers = Chapter 7 283

messageFactory) ;

faul t Msg. set Faul t Stri ng(
")

faul t Msg. set Faul t Code(
"Server");

faul t Msg. set Faul t Stri ng(

"General server error");

ret Msg = faultMsg. get Message();
} catch(Exception ex) {
/1 lgnore errors generating
// fault and allow a
/1 null return.
}
} finally {

I/l Since this is called synchronously,
/1 the nessage will be sent directly as
/1 a response to the original request.

return retMg;

public void init(ServletConfig servl et Config)

throws Servl et Exception {

/1 Method performs once-off initialization.

/1 Be sure to call the superclass
/1 inplementation.

super.init(servl et Config);

/] Attenpt to create a new nessage factory.
try {
messageFactory =

MessageFact ory. newl nst ance() ;

www.syngress.com

284 Chapter 7 = Writing SOAP Servers

} catch(JAXMException e) {
e.printStackTrace();

} cat ch(SOAPException e) {
e. printStackTrace();

/] Attenpt to create an object that wll
/1 look up values by nane in the XM.
try {

| ookUpper = new NaneVal ueLookup();
} catch(LoadXM_.Exception e) {

e. printStackTrace();

Systemexit(1);

The incoming message is represented by the class ReceivedMessage, which uses
the JAXM DOM implementation to parse the request and extract the appro-
priate parameter.

/**
* Recei vedMessage. j ava

*

*/
package com syngress.jwsdp. soap. server;

i nport javax.xm .soap. SOAPMessage;

i mport javax.xm .soap. SOAPPart ;

i nport javax.xm .soap. SOAPEnvel ope;
i mport javax.xm . soap. SOAPBody;

i nport javax.xmnl .soap. SOAPExcepti on;
i mport javax.xm .soap. SOAPEl enent ;

i nport javax.xnl.soap. Nane;

inmport java.util.lterator;

i mport com syngress.jwsdp. soap. server. SchemaExcepti on;

WWW.SyNngress.com

public

Il
11
Il

Writing SOAP Servers = Chapter 7

cl ass Recei vedMessage {

Class represents a SOAP nessage received from
a client, which should contain

a valid request to look up a nane.

protected SOAPMessage soapMessage = null;

publ i c Recei vedMessage(SOAPMessage soapMessage) {

t hi s. soapMessage = soapMessage;

public String get Request edNane()

throws SchenmaException, SOAPException {

[/ Get the name paraneter that was
/1 reuested for |ookup. This will perform

/! sone validation of the XM.

String resp = null;

SOAPPart soapPart;
SQAPEnvel ope soapEnvel ope;
SOAPBody soapBody;

Name nane;

/1 Traverse the hierarchy of SOAP

// objects to obtain the body.
soapPart = soapMessage. get SOAPPart () ;
soapEnvel ope = soapPart. get Envel ope();

soapBody = soapEnvel ope. get Body();

/1 Search for an el ement

/1 with the correct

/1 namespace-qual i fied name.

name = soapEnvel ope. cr eat eNanme(
" CGet Val ueByNane",

www.syngress.com

285

286 Chapter 7 = Writing SOAP Servers

nyns",
"www. syngr ess. conl JWSDP/ soap- exanpl e") ;

/1 Check there's at |east one such
/1 el ement.
Iterator val ueRequests =

soapBody. get Chi | dEI enent s(nane) ;
if (! valueRequests. hasNext()) {

/1 Schema is not valid
t hr ow(new SchemaException());
b

/] Check there's no nore than one
/1 such el enent.
SQOAPEI enent soapEl enent =
(SOAPEI errent) val ueRequest s. next () ;

i f (val ueRequests. hasNext()) {
// Schema is not valid

t hr om(new SchemaException());

/1 Look for the appropriate child
/1 elenent containing the nanme paraneter.
name = soapEnvel ope. creat eNanme(

"nanme") :
Iterator paranms =
soapEl enent . get Chi | dEl enent s(
nane) ;

if (! params.hasNext()) {

/1l Schema is not valid

WWW.SyNngress.com

Writing SOAP Servers = Chapter 7 287

t hr om(new SchemaException());

/1 Ensure there's only one such el enent.
SQAPEI enent par anktl ement =
(SOAPEI enent) par ans. next () ;

if (params. hasNext()) {

/! Schema is not valid

t hr om(new SchemaException());

// Attenpt to read out the value of the
/1 name paraneter.

resp = parantl enent. get Val ue();
if (null == resp) {

/! Schema is not valid

t hr om(new SchemaException());

/1 Schema is valid.

return resp;

The NameValueLookup class provides the functionality to load the XML file
from disk into a DOM document and to search that document for a value
matching a requested name. Note that this class makes use of the JAXP DOM
implementation, which adheres to the org.w3c.dom specification.

[*x

* NanmeVal ueLookup. j ava

*

*/

www.syngress.com

288 Chapter 7 = Writing SOAP Servers

package com syngress.jwsdp. soap. server;

i mport org.w3c.dom Docunent ;

i mport org.w3c. dom NodelLi st ;

i mport org.w3c.dom Node;

i nport org.xnl.sax. | nput Source;

i mport org.xml .sax. SAXExcepti on;

i nport javax.xm . parsers. Docurment Bui | der;

i mport javax.xm . parsers. Docunent Bui | der Factory;

i mport javax.xnl . parsers. Parser Configurati onExcepti on;
import java.io.FileReader;

i mport java.io. Fil eNot FoundExcepti on;

import java.io.|lOException;

i mport com syngress.jwsdp. soap. server. LookupExcepti on;

i mport com syngress. jwsdp. soap. server. LoadXM_Excepti on;
public class NaneVal ueLookup {

/1 Class represents an in-nmenory instance
/1 of the sanple XM file and

/1l can perform a nane/val ue | ookup.

/'l Uses the DOM for parsing.

I/ Assunmes that the XML file is stored
/1 in the root directory of the primry
// HDD on a Wndows system adjust for
/1 different systens.

protected static final String docSource =

"c:\\sanple.xm";
protected Docunent donDoc = null;

publ i ¢ NameVal ueLookup()
throws LoadXM.Exception {

/!l Create a docunent builder

/1 for loading the file into the

WWW.SyNngress.com

Writing SOAP Servers = Chapter 7 289

// DOM docunent .
Docunent Bui | der Fact ory dbFactory =

Docunent Bui | der Fact ory. new nst ance() ;

Docurnent Bui | der docBuil der = null;

try {
docBui | der =

dbFact ory. newbDocunent Bui | der () ;
} catch(Parser Configurati onException e) {
t hrow new LoadXM.Exception();

/!l Use a FileReader to access the
/1 file from disk.

Fi | eReader reader = null;

try {

reader = new Fil eReader (docSource);
} catch(Fil eNot FoundException e) {

t hrow new LoadXM.Exception();

[/l Attenpt to parse the XM
/1 file into the DOM docunent.

| nput Sour ce source = new | nput Source(reader);

try {

donDoc = docBui | der. parse(source);
} catch(l OException e) {

t hrow new LoadXM.Exception();
} catch(SAXException e) {

t hrow new LoadXM_Exception();

public String |ookup(String nane)

www.syngress.com

290 Chapter 7 = Writing SOAP Servers

t hrows LookupException {

/1 Looks up the val ue correspondi ng

/1 to the name paraneter.

String value = null;

try {
NodeLi st naneNodes;

/1l Retrieve all of the elenents
/1 named "nane".
nameNodes =

donDoc. get El enent sBy TagNane(

"nanme");
int len = nanmeNodes. get Lengt h();

/'l lterate through the matching
/'l el ements.
for (int ix=0;

i x < naneNodes. get Lengt h();

ix++) {

/1 Conpare the name with the
/1 value of the first child
/1 node.
i f (nameNodes.

iten(ix).

get Chi | dNodes() .

iten(0).

get NodeVal ue() .

equal s(name)) {

// W have a match on
/! the nane; need to

/1l retrieve the val ue.

WWW.SyNngress.com

Writing SOAP Servers = Chapter 7 291

NodeLi st chi |l dNodes;

Node parent =
nanmeNodes.
iten(ix).
get Par ent Node() ;

chil dNodes =
par ent . get Chi | dNodes() ;

for (int iy = 0;
iy < chil dNodes. get Lengt h();
iy++) {

/1 Look for a child node
// with a name of "value".
if (childNodes.

iten(iy).

get NodeNane() .

equal s("val ue")

) |

/1 Retrieve the val ue
/1 of the first child
/1 node.
val ue =
chi | dNodes.
iten(iy).
get Chi | dNodes() .
itenm(0).
get NodeVal ue() ;

/1 W\ have now
/1 successfully | ooked
/1 up the val ue.

br eak;

www.syngress.com

292 Chapter 7 = Writing SOAP Servers

br eak;

}
} catch(Exception e) {

t hrow new LookupException();

/1 Throw an exception if we didn't find
/1 a val ue.
if (null == value) {

t hrow new LookupException();

return val ue;

The ReplyMessage class is used to model a response message to be returned to
the client. This class contains the functionality to insert the value that was found
in the lookup into the correct schema.

/**
* Repl yMessage. j ava

*

*/
package com syngress.jwsdp. soap. server;

i mport javax.xnl.soap. MessageFact ory;
i mport javax.xm .soap. SOAPMessage;

i nport javax.xml .soap. SOAPPart;

i mport javax.xm . soap. SOAPEnvel ope;

i mport javax. xnl.soap. SOAPBody;

i mport javax.xm .soap. SOAPExcepti on;
i mport javax.xnl.soap. SOAPE!l enent ;

WWW.SyNngress.com

public class Repl yMessage {

/1 Cass represents a SOAP nessage

/! to be returned back to the client.

protected SOAPMessage soapMessage = nul | ;

Writing SOAP Servers = Chapter 7 293

public Repl yMessage(MessageFactory nessageFactory)

t hrows SOAPException {

/1l Create a new nessage fromthe
/1 message factory passed in.

soapMessage =

public void setValue(String val ue)
t hrows SOAPException {

/1 Set the response val ue
/1 to be returned.
SOAPPart soapPart;
SOQAPEnvel ope soapEnvel ope;
SOAPBody soapBody;

/1 Traverse the hierarchy of
/1 SOAP objects to obtain the
/1 body.
soapPart = soapMessage. get SOAPPart () ;
soapEnvel ope =
soapBody = soapEnvel ope. get Body();
/1 Add the response el ement
/1 using a namespace-qualified nane.
SOAPEI enent responseEl enent =
soapBody. addChi | dEl enent (

soapEnvel ope. cr eat eNane(

soapPart . get Envel ope();

nmessageFact ory. cr eat eMessage() ;

to the body,

www.syngress.com

294 Chapter 7 = Writing SOAP Servers

" Get Val ueByNaneResponse",

"nmyns",

"www. syngr ess. com JWSDP/ soap- exanpl e"));
/1 The value to be returned
// is added as a text node as a child of the
/1 response element using a local nane.

SOAPE! errent par antl enent = nul | ;

parankEl enent = responseEl enent.
addChi | dEl enent ("val ue");

par ankEl enent . addText Node(val ue) ;

soapMessage. saveChanges() ;

public SOAPMessage get Message() {
/1 Get the SOAP Message.

return soapMessage;

Several exception classes are used in the example. SchemaEXxception is used to
indicate that the request message did not adhere to the agreed schema.

/**

* SchemaException. java
*/
package com syngress.jwsdp. soap. server;

public class SchemaException extends Exception {

/1 This exception is used to

WWW.SyNngress.com

Writing SOAP Servers = Chapter 7 295

/1 indicate that the XM. being
// parsed did not conformto

/1 the appropriate schena.

The LoadXMLEXxception is used to indicate that an error occurred in loading
the sample XML file from disk into the DOM document.

/**

* LoadXM.Exception.java

*

*/
package com syngress.jwsdp. soap. server;
public class LoadXM_Exception extends Exception {

/1 This exception is used to

// indicate any error in |oading
/1 the sanple XM. data fromthe
/1 file.

The LookupException is used to indicate that the requested name could not be
found in the sample XML.

/**

* LookupException.java

*
*/
package com syngress.jwsdp. soap. server;
public class LookupException extends Exception {
/1 This exception is used to
/1 indicate that no value could

/1 be found corresponding to the

/] requested nane.

www.syngress.com

296 Chapter 7 = Writing SOAP Servers

As you will remember from the previous chapter, errors transported in SOAP
Messages take the form of a SOAP Fault. The FaultMessage class is used to model
a response to return fault information to the client.

/**
* Faul t Message. j ava

*

*/
package com syngress.jwsdp. soap. server;

import javax.xm .soap. MessageFactory;
i mport javax.xm .soap. SOAPMessage;

i mport javax.xnl.soap. SOAPPart ;

i mport javax.xm . soap. SOAPEnvel ope;

i mport javax.xm .soap. SOAPBody;

i mport javax.xm .soap. SOAPExcepti on;
i mport javax.xnl.soap. SOAPEl enent ;

i mport javax.xm .soap. SOAPFaul t ;

i mport javax.xni.soap. Nane;

i mport javax.xm .soap.Detail;

i mport javax.xnl.soap.Detail Entry;

inmport java.util.lterator;

public class Fault Message {
/1 Cass represents a nessage containing
// fault information to be returned

/!l to the client.

SOAPMessage nessage;
SOAPFaul t faul t;

publ i c Faul t Message(MessageFact ory nessageFact ory)
t hrows SOAPException {

/1l Create a new nessage fromthe

WWW.SyNngress.com

Writing SOAP Servers = Chapter 7 297

/1 message factory passed in.

nmessage = messageFactory. creat eMessage();

SOAPPart soapPart;
SOAPEnvel ope soapEnvel ope;
SOAPBody soapBody;

/1 Traverse the hierarchy of

/1 SOAP objects to obtain the

/1 body.

soapPart = message. get SOAPPart ();
soapEnvel ope = soapPart. get Envel ope();

soapBody = soapEnvel ope. get Body();

// Add a SOAP Fault to the
/1 body.
fault = soapBody. addFaul t();

public void setFaul t Code(String faultCode)

t hrows SOAPException {

/1 Set the fault code in the SOAP Fault.

faul t. set Faul t Code(faul t Code);

public void setFaultString(String faultString)
throws SOAPException {

/1 Set the fault string in the SOAP Fault.

fault.setFaultString(faultString);

public void setFaultDetail (String faultDetail)
t hrows SOAPException {

/1 Set the fault detail in the SOAP Fault.

www.syngress.com

298 Chapter 7 = Writing SOAP Servers

/1 This will be added as a single
/1 detail entry under a
/1 namespace-qual i fied name.
SOAPEnvel ope soapEnvel ope =
nessage. get SOAPPart () . get Envel ope();

Detail detail = fault.addDetail ();

Nanme name = soapEnvel ope. cr eat eName(
"Faul t Detail",
"nyns",
"W, syngr ess. conl JWSDP/ soap- exanpl e") ;

Detail Entry entry =
detai | . addDet ai | Ent ry(nane) ;

entry. addText Node(faul tDetail);

public SOAPMessage get Message() {

/1 Retrieve the underlying
/1 SOAPMEssage obj ect.

return nessage;

Once the servlet is compiled, you will need to deploy it in a servlet con-
tainer. This is done exactly as you have deployed servlets in the past: because
the servlet does not make use of a JAXM Provider, there is no need for any
JAXM-specific deployment information (that is, you do not need to provide a
client.xml file).

You should be able to test the servlet with the client developed in the pre-
vious chapter. Ensure that you recompile Client.java with the URL of your
newly-deployed servlet assigned to the SERVICE_ENDPOINT variable and
there should be little else to do; run the client with an appropriate name as a
command-line parameter and observe the results.

WWW.SyNngress.com

Writing SOAP Servers = Chapter 7 299

Debugging...

End-to-End Debugging

The examples developed in this chapter and the previous one form an
end-to-end system. In the previous chapter we developed a SOAP client
application, and in this chapter we developed a matching server appli-
cation as a servlet.

It should be perfectly feasible to debug the entire system as an end-
to-end solution, by using two instances of the debugger. In order to do
this you would start up a debugger instance on the machine that wiill
run the SOAP client, and catch the execution at a breakpoint somewhere
prior to the request message being sent out. Then you would use
another debugger instance on the machine running the server in the
servlet container—you may require information provided by the vendor
of your servlet container on how to do this. The idea is to set a break-
point within the ReceiverServlet class’ onMessage method. You should
be able to place a breakpoint at the first line of code within the method.

From this point on, you can continue to step line-by-line through
the client’s code execution until the request message is sent out. Once
that happens you should be able to move back over to the server
debugger instance; the servlet should have received the message and
the breakpoint should have interrupted execution. You can then step
through the server code until a response message is returned from the
onMessage method, when execution will resume on the client.

www.syngress.com

300 Chapter 7 = Writing SOAP Servers

Summary

In this chapter we examined in more detail what a JAXM Provider is, and how
an application can work with a JAXM Provider to send and receive messages
asynchronously. Such an application must be hosted within a container, either as a
servlet or as a message-driven bean. For outgoing messages the Provider will be
responsible for routing the message to its destination and ensuring it is delivered
using a store and forward mechanism. For incoming messages the JAXM Provider
k will be responsible for receiving the messages and then routing them to the
appropriate servlet or EJB.
We also developed a SOAP server (as a servlet) that will respond to requests

% made by the client from the previous chapter, look up a value from the sample
XML file, and return either the value or a SOAP Fault error message. Because
the client was developed as a standalone application, the server will operate syn-
chronously (and the servlet will implement RegRespListener).

~ Solutions Fast Track

Message Routing

M Applications that use a JAXM Provider can communicate using
asynchronous communications.

M The use of a JAXM Provider means that messages’ delivery can be
guaranteed, even if the receiver is inactive at the time a given message is
sent. This is achieved using a store and forward mechanism.

M An asynchronous model using JAXM Providers requires that outgoing
4 messages be routed to their destination, and that incoming messages
L " received by a JAXM Provider be routed to the appropriate service.

Establishing a Connection to a JAXM Provider

r M A JAXM Provider is registered with a naming service.

M An application that wishes to make use of a JAXM Provider uses the
JNDI API to look up the Provider in much the same way as an EJB
lookup is performed.

WWW.SyNngress.com

Writing SOAP Servers = Chapter 7 301

ProviderConnections

M The ProviderConnection object is used to obtain a MessageFactory.

M An application sends asynchronous messages via the ProviderConnection.
Such a request does not specify a destination URL, nor does it wait for a

response.
M The JAXM Provider will determine the destination from a URI in the
message header, in combination with endpoint mappings configured '1
within the JAXM Provider which map URIs to URLs.
Writing a SOAP Server Servlet ‘

M JAXM SOAP servers can be implemented either as servlets or as EJBs,
although currently only servlets are supported by most vendors.

M A SOAP Server servlet can either receive synchronous messages
(request-reply) or asynchronous messages.

M A servlet that will operate synchronously (without a JAXM Provider)
should implement RegRespListener.

M A servlet that will operate asynchronously (with a JAXM Provider)
should implement OnewayL.istener.

Writing a SOAP EJB

M A SOAP EJB is a form of message-driven bean, and should implement
the MessageDrivenBean interface.

M A SOAP message-driven bean cannot operate synchronously; it must
implement OnewayL.istener.

M The processing of OnewayL istener.onMessage in a message-driven bean is
very similar to that within an asynchronous SOAP servlet.

Example SOAP Servlet

M We covered the development of a service that can be called by the client
described in the previous chapter. Because that client is a standalone
application operating synchronously, the service must also operate
without a JAXM Provider.

www.syngress.com J

302

Chapter 7 = Writing SOAP Servers

M The service uses the sample XML that we use throughout this book to
look up a value against a name specified in the request.

M If there is a failure in decoding the request or looking up the name, the
service returns SOAP Fault information in the response message.

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

Q: What is ebXML?

A: ebXML is a set of B2B specifications for enabling enterprises to conduct
business over the Internet. ebXML is a set of B2B specifications for enabling
enterprises to conduct business over the Internet. ebXML is backed by
OASIS (the Organization for the Advancement of Structured Information
Standards) and UN/CEFACT (the United Nations Center for Trade
Facilitation and Electronic Business).

Q: How do I configure the Reference Implementation JAXM Provider?

A: If you have installed the Java\WebiServices Developer Pack, the Provider Admin
tool will by default be installed to http://servername:8081/jaxm-provider
admin.You will need to ensure that Tomcat is already running (through the
startup.bat or startup.sh scripts). The admin tool is password-protected; you will
need to modify the tomcat-users.xml-file to remove the comments around the
entry with the username *“jaxm-provideradmin;” it would also be a good idea
to change the password from “changeme” to semething more unique.

Q: Why are SOAP Server EJBs restricted to implementing OnewayListener when
servlets may implement either OnewayListener or ReqRespListener?

A: A servlet has the option of operating with or without a JAXM Provider; if it
operates without a Provider, client sending the request accesses it directly by
its URL. On the other hand, an EJB cannot be directly addressed by a
URL—it has no URL, and can only operate in an asynchronous mode where
a JAXM Provider receives the messages and routes them to the EJB.

WWW.SyNngress.com

Chapter 8

Using XML-based

RPC

Solutions in this chapter:

= JAX-RPC Summary
= Mapping Java Data Types

= Conversion Between Java Classes
~ and WSDL :

= Creating a JAX-RPC Client
= Creating a JAX-RPC Server

= Creating a Simple XML-RPC Server
and Client

M Summary
M Solutions Fast Track

M Frequently Asked Questions

303

304

Chapter 8 = Using XML-based RPC

Introduction

You might think that the last thing the world needs is another remote procedure
call protocol; after all, there are dozens already in existence. That’s largely a true
statement, and for many situations, XML-based RPC offers few advantages over
existing remote procedure call interfaces. Further, encoding the request into
XML makes the calls less efficient than direct (binary) interfaces.

However, there are times when XML-based RPC solves a business problem.
You might have to communicate via an RPC mechanism across organizational
boundaries through firewalls, for instance. Alternately, you might be communi-
cating with wildly disparate systems—a mainframe speaking PL/1 and a desktop
speaking Java. You might even be creating a server system where you have no way
of knowing the remote client, let alone controlling it. XML-based RPC also pro-
vides some resilience in the face of change. Since the published interfaces are
XML-based instead of binary, elements can sometimes be added or removed
without breaking the connection between the server and existing clients.

JAX-RPC uses two industry standards surrounding XML-based RPC: SOAP
and WSDL. SOAP (covered in chapters 6 & 7) is used for the transfer of data
between end points.\WWeb Service Description Language (WSDL) is the functional
analog of IDL files in other remote procedure systems: it provides a common lan-
guage for describing the inputs, outputs and semantics of remote client services.

JAX-RPC Summary

The Java API for XML-based RPC (JAX-RPC) is an API used to facilitate
remote procedure calls. Remote procedure calls are nothing new; the technology
has been around for years, but the difference between JAX-RPC and older RPC
mechanisms is the data exchange format. Unlike with older implementations,
method calls and subsequent return values in JAX-RPC are passed back and
forth as SOAP messages. The SOAP specification contains provisions for repre-
senting remote procedure calls and the subsequent responses of those calls. These
SOAP messages usually use HTTP as the transport layer. The combination of
these technologies opens new doors in the area of interoperability and EALI. Since
both the data exchange format and the transport mechanism are both built upon
platform-neutral standards, clients and servers deployed on disparate platforms
and operating systems can now use the same set of services.

WWW.SyNngress.com

Using XML-based RPC = Chapter 8

JAX-RPC manifests itself as specialized XML messages; the clients invoking
the RPC and the servers hosting the RPC’s functionality operate in a syn-
chronous manner. Execution of the client is delayed until such time that the
RPC has returned a response.

NoTE

It is important to note that while most other XML messages request a
service in a decoupled manner, XML-RPC defines function call semantics.
These function call semantics define the name of the method to invoke,
the number and type of parameters to pass to the method, and the

return value type.

Understanding Stubs and Ties

The process of taking method calls and translating them into the appropriate
format for transmission, then translating them back on the server end is imple-
mented by stubs and ties . This process is officially known as marshaling and unmar-
shaling. Figure 8.1 illustrates where these stubs and ties fit into the XML-RPC

architecture.

Figure 8.1 XML-RPC using JAX-RPC Overview

Client Server

l l

Stubs Ties

l l

JAX-RPC JAX-RPC

SOAP/HTTP

Both the stubs and ties work with the core JAX-RPC APIs to transmit
SOAP encoded XML using standard HTTP.

If you use the JWSDP to create a web service application then the stubs and
ties are created by the xrpce tool. This tool can take either the Service Definition
Interface (SDI) or aWSDL configuration file and generate the appropriate stubs
and ties. xtpcc is discussed in greater detail later in this chapter.

305

www.syngress.com

306

Chapter 8 = Using XML-based RPC

When you create your client, you will use the generated stub class(es) to
invoke your web service on the server side. The stub then acts as a service proxy,
masking the marshalling and remote procedure call from the client.

When you create your service definition and implementation you do not
need to explicitly work with the tie class(es). The JAX-RPC framework will use
behind-the-scenes ties to unmarshall the data and invoke the appropriate method
in your service.

Sending a XML-RPC Message

The sending and receiving of XML-RPC messages involves some fairly complex
functionality. The JAX-RPC API shields us from those complexities and leaves us
to focus on business needs. The process of sending these XML-RPC messages
involves the following steps. Since XML-RPC is a synchronous process, each of
these steps will be executed in turn. Granted, there is more going on behind the
scenes than the list suggests, but it does cover the high-level milestones in the
RPC process.

1. Client—Creation The client application will create an instance of the
stub class that serves a proxy for the desired functionality.

2. Client—Invocation The client will then invoke the business methods
through this proxy by specifying the method, its parameters and the ser-
vice endpoint.

3. Client—Conversion to SOAP Message The stub class will take the
method name and specified parameters, and create a SOAP message that
embodies that data.

4. Client—Message Transport This SOAP message is then sent over
HTTP by virtue of a POST request to the service endpoint.

5. Server—Remote Listener The HTTP web server located at the
URL defined by the endpoint receives the request and passes it on to an
XML-RPC listener.

6. Server—Message Parsing This listener parses the SOAP message to
retrieve the method name and parameters of that method. Once parsed,
the listener calls that method, passing in those parameters.

7. Server—Method Response The method returns a value to the lis-
tener. This listener will package the response as an XML document. A
SOAP message is created from this XML document.

WWW.SyNngress.com

Using XML-based RPC = Chapter 8

8. Server—Response Transmission The HTTP server will return the
SOAP message, encapsulating the method call’s response in its response
to the original HTTP POST request.

9. Client—Message Receipt The originating client receives the response

JAX-RPC offers distinct advantages over other RPC technologies. By virtue
of using HTTP to transmit XML-based remote procedure calls, the invoking
platform and the service-hosting platform need not be of the same type.
Windows-based clients written inVisual Basic can invoke procedure calls on ser-
vices written in Perl running on Solaris machines.

JAX-RPC places no restrictions on the physical location of the client and
server boxes, so a great distance could separate clients and servers, provided the
server is reachable by the client and that the network latency associated with the
established connection does not adversely affect client performance.

The use of JAX-RPC enables you to use a truly distributed heterogeneous
enterprise platform.You as the developer or architect of a system can choose
best-of-breed solutions without being necessarily limited due to platform-com-
patibility issues when choosing your products. Admittedly, this is oversimplifying
the matter a bit, but the truth remains that XML is becoming the standard for
data exchange. Since data exchanges are using a standard format and being trans-
mitted using a common protocol (HTTP), you can achieve platform indepen-
dence when designing and implementing your system.

Mapping Java Data Types

The JAX-RPC specification spells out the mapping that occurs when translating
Java data types to the appropriate XML representation. Support presently exists
for most of the data types in Java, as well as the facilities to create your own
wrappers for unsupported types.

Supported Java Data Types

The JAX-RPC specification mandates support for most of the Java primitive data
types. The sole exception is the char type. All others, including boolean, byte, short,
int, long, float and double are supported. JAX-RPC also supports the wrapper
classes for this list of primitives (java.lang.Integer, for example).

The JAX-RPC specification also provides support of a small set of classes
from the standard JRE class library. This set consists of:

307

www.syngress.com

308

Chapter 8 = Using XML-based RPC

= java.lang.String

= java.util.Date

= java.util.Calendar

= java.math.Biginteger
= java.math.BigDecimal

There is also support for arrays. Supported arrays must consist of a previously
defined supported Java data type or class. The specification also calls for support
of arrays of type java.lang.Object.

Data Type to XML/WSDL Definition Tables

This section covers the mapping of Java data types to their corresponding types
for the XML/WSDL definition. In the current version of the JWSDP there is
support for the mapping of both primitive and object data types.

Primitives
Table 8.1 illustrates the mapping of supported primitive Java data types to the
corresponding XML data type.

Table 8.1 Primitive Type Mapping

Primitive Data Type XML Data Type
boolean xsd:boolean
byte xsd:byte
double xsd:double
float xsd:float

int xsd:int

long xsd:long

short xsd:short
Object Types

The JAX-RPC also supports the following Java classes shown in Table 8.2. Note
that the Java wrapper classes are mapped to their corresponding SOAP encoded

type.

WWW.SyNngress.com

Using XML-based RPC = Chapter 8

Table 8.2 Object Type Mapping

Object Data Type

XML Data Type

java.lang.String xsd:String
java.lang.Boolean xsd:boolean
java.lang.Byte xsd:byte
java.lang.Double xsd:double
java.lang.Float xsd:float
java.lang.Integer xsd:int
java.lang.Long xsd:long
java.lang.Short xsd:short
java.math.BigDecimal xsd:decimal
java.math.Biginteger xsd:integer

java.util.Calendar

xsd:dateTime

309

java.util.Date xsd:dateTime

Arrays

The JAX-RPC specification supports arrays, provided they are of a type already
supported by JAX-RPC. For example, the following code represents a perfectly
valid service definition interface. Both the String Object type and the int primi-
tive data type are supported, so an array of those types is likewise supported.

i mport java.rm.Renpote;

i mport java.rm . RenoteException;

public interface LoanApplicationlF extends Renote

{
public String[] getCreditRating(int[] ids)

throws RenoteException;

The JAX-RPC also provides support for multi-dimensional arrays. Again the
constraint is that the data type of the array must be of a supported type.

import java.rm.Renote;

import java.rm . RenoteException;

www.syngress.com

310

Chapter 8 = Using XML-based RPC

public interface WrkingHoursCal cul atel F extends Renote
{
public int[][] getWrkingHours(int year)

throws RenoteExcepti on;

Application Classes

Typically, when you design an OO application you create custom classes that rep-
resent objects. These objects can be Customers, Orders, TroubleTickets, Employees, or
whatever you need. These classes encapsulate the state of each instance of those
objects. An Employee class might hold a first name, last name, social security
number, hire date and so on.

JAX-RPC provides support for these types of classes. In the JAX-RPC speci-
fication these classes are referred to as Value Types. That name was assigned
because the class passes its state (values) from the client to the server and back.

The application class can be treated as a value type under the following
conditions.

= The application class must have a public no-argument (default)
constructor.

= Neither the application class nor any of its super classes may implement
the java.rmi.Remote interface.

= All members of the application class must be of one of the supported
types.

Assuming that these requirements are satisfied, the application class may have
any of the following characteristics:

= The members of the application can have any of the defined scope
modifiers; public, private, protected, and the default (package).

= The application class is free to implement any interface except for
java.rmi.Remote.

= The application class may extend any other class, so long as it does not
derive from a class that implements java.rmi.Remote.

= The application class may contain transient members.
= The application class may contain static members.

WWW.SyNngress.com

Using XML-based RPC = Chapter 8

If your application class has been created as a JavaBean, the JAX-RPC API
can still support it. The requirements for JavaBean support are that the bean fol-
lows the standard naming convention for its accessors and mutators. JAX-RPC
adds the restriction that the properties of that bean must be of one of the sup-
ported types.

NoTE

The use of the java.rmi.Remote interface when creating your service
interfaces marks them as remote objects that may be invoked from a
remote virtual machine.

Arbitrary Java Classes

The JAX-RPC specification provides an extensible type-mapping framework that
allows developers to add support for mapping between XML types and Java types
that are not supported in the default configuration. This mapping framework is
implemented by serializers and deserializers. These serializers and deserializers are
plugged into the framework and provide the mapping between any arbitrary Java
type and XML type.

Serializers

A serializer is a Java class that can transform a Java data type to SOAP-encoded
XML. This serializer implements a method called serialize which is invoked by a
container (stub or tie) when a Java data type needs to be converted to its XML
representation.

There are several requirements that a serializer must satisfy in order to be
used within the JAX-RPC framework. The following list highlights those
requirements:

= The serializer must implement the SOAPSerializer interface.
= The serializer must be stateless.
= The serializer must be thread-safe.

311

www.syngress.com

312

Chapter 8 = Using XML-based RPC

Deserializers
A deserializer is a Java class that can recreate instances of a Java data type that were
SOAP-encoded during serialiazation. A deserializer performs the following steps.
1 The object represented by an XML element is opened.
2. Each of that object’s members are deserialized.

3. The appropriate Java data type is created and initialized with the
deserialized members.

4. The new object instance is passed back as the return value of the
deserialize method.

There are several requirements that a deserializer must satisfy in order to be
used within the JAX-RPC framework. The following list highlights those
requirements.

= The deserializer must implement the SOAPDeserializer interface.
= The deserializer must be stateless.
= The deserializer must be thread-safe.

These requirements are basically the same as those of the serializers, except
that deserializers implement a different interface.

Holder Classes

Holder classes are used to enable the Java to WSDL mapping to preserve the
wsdl:operation signature and parameters.

Each holder class has the same characteristics. These characteristics are as
followvs.

= The holder class will be defined as implementing the javax.xml.rpc
.holders.Holder interface.

= A public member named value that is of a type consistent with a valid
mapped Java type.

= A default no-argument constructor. This constructor will initialize the
value member.

= A constructor that has a single parameter of the same type as the value
member. This constructor should set the value member to the specified
value. The JAX-RPC specification provides holder classes for the primitive

WWW.SyNngress.com

Using XML-based RPC = Chapter 8
data types in the javax.xml.rpc.holders package. The name of these pre-

defined holder classes is derived by taking the name of the primitive type
and adding a Holder suffix.

NoTE

Holder classes are defined with greater detail in the JAX-RPC
Specification, presently at version PFD 0.8, section 4.3.5.

Conversion Between
Java Classes and WSDL

AWSDL file is an XML document used to describe a Web Service. It contains the
definitions of all methods available, the parameters’ data types and the data type of
the return value. These WSDL files can get complex in a hurry. Fortunately the
JWSDP has provided a tool to facilitate the creation of these files.

WSDL Generator

The JWSDP comes with a command-line tool called xrpcc that automates the
tasks of creating client stubs, server ties and WSDL files. This tool is located at
<JWSDP_HOME>/bin. The tool accepts several command-line options that
affect what it generates. It can create RMI Interfaces or aWSDL Document,
depending on what is specified in its config file. The xrpcc tool has the following
syntax.

Xrpcc. extensi on [options] config_fil enane

Here, extension will be bat for Windows and sh for UNIX.

Command Line Options

The xrpcc command-line tool has several options. These options determine its
runtime behavior. Table 8.3 list the command-line options.

313

www.syngress.com

314 Chapter 8 = Using XML-based RPC

Table 8.3 xrpcc tool command line options

Option Description

-server Generates all server artifacts. This includes Ties, Server
Configuration File, and WSDL file or a Service Definition
Interface (whichever of the two is not defined)

-client Generates all client artifacts. This includes stubs, the
Service Interface, Implementation Classes and possibly
the Remote Interface.

-both Instructs the xrpcc tool to generate both the server and

-classpath classpath
-d directory

-keep

-version

the client artifacts listed above.

Explicitly sets the classpath that the tool will use during
execution.

Denotes the directory where the output of the tool
should go.

Instructs the tool to keep the Java source files generated
after they have been compiled. The default behavior is
to remove these source files after compilation.

Instructs the tool to display the version number of the
JAX-RPC API.

Tool Configuration File

The following example illustrates one of the two general structures of the xrpcc
config file. In this case we are assuming that we have the RMI interfaces and
wish to generate the WSDL file (along with the stubs and ties).

<configurati on xm ns="http://java. sun.confjax-rpc-ri/xrpcc-config">

<rm nanme="..." target Nanespace="..."
t ypeNanespace="...">
<servi ce name="..." packageNane="...">
<interface nane="..." servantNane="..."

</ service>

soapAction="..."

soapAct i onBase=""/>

<t ypeMappi ngRegi stry>

</ typeMappi ngRegi stry>

</rm >

</ configur ati on>

WWW.SyNngress.com

Using XML-based RPC = Chapter 8

Table 8.4 shows the config file elements for RMI-based generation.

Table 8.4 config file elements for RMI based generation

Element Attribute Description
rmi name This attribute denotes the name
you have given this model.
targetNamespace This attribute denotes the target
namespace for the generated
WSDL file.
typeNamespace This attribute denotes the target
namespace for the schema section
of the generated WSDL file.
service name This attribute denotes the name
you have given this service.
packageName This attribute denotes the full
package name to give the gener-
ated classes.
interface name The fully qualified package name
of the Service Definition Interface.
servantName The fully qualified package name
of the Service Implementation
class.
soapAction This optional attribute allows you

soapActionBase

typeMappingRegistry N/A

to specify a String to be used as
the SOAPAction for all actions.
This optional attribute allows you
to specify a String value that will
be used as a prefix for the
SOAPAction strings.

This elements body is where you
would place optional type map-
ping information.

The DTD that defines this document dictates that there only be one rmi ele-
ment. Multiple service elements containing one or more interface child element(s)

are permissible, however.

The following is the general structure of the xrpcc config file for those
instances where you have the WSDL file and wish to generate the RMI inter-

faces (along with the stubs and ties).

<configuration xm ns="http://java. sun.confjax-rpc-ri/xrpcc-config">

<wsdl name="..." location="..."

packageName="...">

315

www.syngress.com

316

Chapter 8 = Using XML-based RPC

<t ypeMappi ngRegi stry>

</t ypeMappi ngRegi stry>
</ wsdl >

</ configur ati on>

Table 8.5 shows the config file elements for WSDL-based generation.

Table 8.5 config file elements for WSDL based generation

Element Attribute Description
wsdl name This attribute denotes the name you
have given this model.
location This attribute denotes a URL that

points to a WSDL document.

packageName This attribute denotes the fully quali-
fied package name for the generated
classes and interfaces.

typeMappingRegistry N/A This element’s body is where you
would place optional type mapping
information.

For this document the DTD specifies that one and only one wsdl element
may exist.

Server Configuration File

The xrpcc tool also generates a properties file, which is used to configure the
server web application during its initialization. A reference is placed to this prop-
erties file within the initialization parameters for the service endpoint servlet,
which is in turn within the server web application’s web.xml deployment
descriptor.
<init-paranp

<par am nanme>configur at i on. fil e</ par am nane>

<par am val ue>/ WEB- | NF/ Ser vi ceName_Config. pr operti es</ param val ue>

</init-paranr

The name of the generated properties file is derived by applying the Service
Name found in the Tool Configuration file to the following formula.

<Servi ce Name>_Config. properti es.

WWW.SyNngress.com

Using XML-based RPC = Chapter 8

A typical properties file will contain information similar to the following
example.

port 0. ti e=websvc. accounti ng. | Account sPayabl e_Ti e
port 0. servant =websvc. account i ng. Account sPayabl el np
port 0. nane=I Account sPayabl e

port 0. wsdl . t ar get Nanespace=htt p: // nybusi ness. or g/ wsd
port 0. wsdl . servi ceName=Account Payabl e

port 0. wsdl . port Nane=Account Payabl ePor t

port1l.ti e=websvc. accounting. | Account sRecei vabl e_Ti e
port 1. servant =websvc. account i ng. Account sRecei vabl el np
port 1. nane=I Account sRecei vabl e

port 1. wsdl .t arget Nanespace=htt p:// nybusi ness. or g/ wsd
port 1. wsdl . servi ceName=Account sRecei vabl e

port 1. wsdl . port Nane=Account sRecei vabl ePort

port count =2

NoTE

The config file used to define the runtime behavior of the xrpcc com-
mand-line tool, as well as the tool itself, are not actually part of the JAX-
RPC specification. Therefore it is safe to assume that the syntax of the
tool may change by the final release of the specification.

Using Classes Generated by the Stub Generator

The server-specific classes generated by the tool must be packaged into the WAR
file containing the service implementation. For the client to use the classes gener-
ated by the xrpcc tool, they only need to be in the CLASSPATH environment
variable that is accessible by your client application.

Creating a JAX-RPC Client

A JAX-RPC Client is an application that invokes methods through a proxy hosted
at a service endpoint. Using the tools provided by the JWSDP, the creation of a
JAX-RPC client is not that complicated. You will most certainly possess or have

317

www.syngress.com

318

Chapter 8 = Using XML-based RPC

access to the WSDL file that describes the services available, or you may have the
stubs that were generated using the WSDL (or xrpcc config file).

Your client CLASSPATH will have to contain the service stub classes gener-
ated by the xrpcc tool described earlier.

Before the client can invoke service methods it will have to get an instance of
the service stub. This service stub acts as a proxy to the service implementation.
Once an instance of this stub is created, calls can be made on this stub as if the
service was a local object.

Once the client has been coded, you can simply compile it and run. If all
works correctly your client application will be able to invoke methods on remote
service objects and return the results.

Creating a Connection to a Remote Server

The client starts the process of invoking a remote method by first instantiating
the appropriate stub class. The name of the required stub class will conform to
the following naming convention: <Service Definition Interface Name>_Stub.class.

This class is generated automatically by the xrpcc tool. If you use the —keep
option on this tool when you generate the stubs the source file will remain on
your file system. If you examine this source file, you will see that it is defined
as implementing the SDI methods. The generated implementations of those
methods contain the code necessary to establish a connection, send a SOAP
message, and retrieve a result (if necessary).

Once a stub instance has been created it needs to be directed as to where to
locate the remote service. This is accomplished by calling the _setProperty (String,
String) method of the stub instance. The first String parameter should denote the
name of the property for the endpoint, in this case accessible as the class member
javax.xml.rpc.Stub. ENDPOINT_ADDRESS PROPERTY, and the second String
parameter should contain the service endpoint, or location, that is hosting the
functionality desired.

Invoking Methods on a Remote Server

The stub class contains the same methods as the SDI. Once the stub has been
instantiated you may invoke the same methods defined in that interface. The
parameters are passed to the service endpoint, the target method is executed and
the resulting data (if any) is returned to the client that invoked the method in the
first place. From the client’s perspective, the process looks the same as a local
method call.

WWW.SyNngress.com

Using XML-based RPC = Chapter 8

There are other issues that need to be considered here. Since you are making
a call over the network, latency needs to be addressed. The remote procedure calls
are synchronous, so it is imperative that you design your application with this in
mind.You may want to consider passing as much data as you can back and forth
over the wire with as few calls as possible.

Creating a JAX-RPC Server

The JAX-RPC Server provides business logic that is accessible as a remote proce-
dure call. This server is hosted by a web server and is invoked by the client as a
URL passing SOAP messages back and forth.

Creating the Service Definition Interface

The creation of a JAX-RPC Server starts with the design and development of
the SDI. It is through this interface that all business functions are called. The fol-
lowing are examples of what these interfaces might look like.

import java.rm.Renote;

i mport java.rm . RenoteException;

public interface |School Adm nistration extends Renpte
{

public String[] studentList(String class)

t hrows Renot eExcepti on;
public double gpa(String student)
t hrows Renot eExcepti on;
public boolean enroll(String student)
t hrows Renot eExcepti on;
public bool ean graduate(String student)

t hrows Renot eExcepti on;

Here we have defined several business methods that a school administrator
might want to invoke.

Creating the xrpcc Config File

The xrpcc command-line tool is used to generate files for the JAX-RPC API.
Given aWSDL file, it can create a set of RMI classes, and vice-versa. A config file

319

www.syngress.com

320 Chapter 8 = Using XML-based RPC

called config.xml is used to determine the various parameters that dictate the tool’s
output.

Developing the Service Implementation

The next step is to create the actual service implementation. This class will be
defined as implementing the service interface defined above. The implementation
will also need the services of ties and other classes to communicate with the
client. These classes are generated by xrpcc passing in the -server argument. Xrpcc
will use the config file created in the previous step to generate the necessary
classes.

Building the Server WAR File

The service definition is packaged as a Web Archive (WAR) file. This WAR file is
a specialized JAR package whose directory structure and mandatory contents are
defined in the Java Servlet Specification version 2.3. By packaging a service defi-
nition in this manner it becomes possible to deploy the Service across a wide
variety of platforms.

The Service Definition WAR package contains the following mandatory
items:

All service definition interfaces, each with exactly one interface to
describe the methods available.

All implementing classes of these service definition interfaces.

All resources of the service implementations. A resource may include
graphics, static content (such as HTML), XML documents and so on.

the web.xml deployment descriptor, whose content conforms with that
specified in the Java Servlet Specification version 2.3.This deployment
descriptor must be within the /WEB-INF folder relative to the package
root.

The Service Definition WAR package may also contain the following
optional items:

= Any Serializers or De-serializers to be used for custom data type
mapping.
= AWSDL file that describes the service to be deployed.

WWW.SyNngress.com

Using XML-based RPC = Chapter 8

Once packaged into a WAR file the web application can be deployed to any
Servlet 2.3-compliant web server.

Developing & Deploying...

Developing and Deploying a Web
Service made with the JAX-RPC API

The development and deployment of a Web Service that is built upon
the JAX-RPC API can be summarized in the following steps.

1. Define your service provider interface.

2. Create an implementation based on that interface.

Create a config file that describes your web service to xrpcc.
. Generate the server ties and related classes using xrpcc.

. Package the server into a WAR file as per the Servlet 2.3
Specification.

6. Deploy the WAR file to your web server.

[N

Creating a Simple
XML-RPC Server and Client

Now we will go through the entire process of creating a web service with a
client application to call it. The first step will be to design and create the SDI. As
described earlier in this chapter, this interface will define those business methods
we will want to make accessible via an RPC from a remote client.

In this example we will use an on-line library. This library will offer the
ability to search for books that contain keywords in the titles and return a list
of books that match. This service should also offer the ability to check books in
and out.

The following is an SDI that satisfies our business requirements.

import java.rm.Renote;

import java.rm .RenoteException;

321

WWW.SyNngress.com

322 Chapter 8 = Using XML-based RPC

public interface |Library extends Renote

{

J *%
* Performs a search for a book (or books) whose title
* contains the key specified. Returns a String array
* containing the | SBN nunbers of books that matched.
*/

public String[] searchForBook(String key)

t hrows Renot eExcepti on;

J *%
* Perforns a checkout of a book denoted by the | SBN
* paraneter and using the library card nunber
* provided.
* Returns true the book was checked out successfully.
*/

publ i ¢ Bool ean checkQut Book(String | SBN,

String cardNunber)
t hrows Renot eExcepti on;

] *%
* Perforns a checkin of a book denoted by the | SBN
* paraneter.
* Returns true the book was checked in successfully.
*/

publ i ¢ Bool ean checkl nBook(String |SBN)

t hrows Renot eExcepti on;
}

Having completed our service definition, you need to make the actual service
implementation. This example does not go into detail as to how to perform the
lookup of the books. Presumably you will have some sort of data store (probably
a relational database) that this class will search for the library book information.
public class Librarylnpl inplenents |Library

{

/**

* Perfornms a search for a book (or books) whose

WWW.SyNngress.com

Using XML-based RPC = Chapter 8

* title contains the key specified.
* Returns a String array containing the
* | SBN nunmbers of books that matched.

*/
public String[] searchForBook(String key)
{
| *
* Performthe |ookup an return the results.
*/
}
[**

* Performs a checkout of a book denoted by the
* | SBN paraneter and using the library card nunber
* provided.
* Returns true the book was checked out successfully.
*/
publ i c Bool ean checkQut Book(String | SBN,
String cardNunber)

{
| *
* Checkout the book and return status.
*/
}
[**

* Performs a checkout of a book denoted by the | SBN
* paraneter.

* Returns true the book was checked in successfully.

*/

publ i c Bool ean checkl nBook(String | SBN)

{
| *
* Check in the book and return status.
*/

}

323

www.syngress.com

324

Chapter 8 = Using XML-based RPC

We will use the xrpcc command-line tool that comes with the JWSDP to
generate the stubs, ties and the WSDL file that will describe our library Web ser-
vice. To configure xrpcc’s runtime behavior, we will need to create a config.xml
file that describes the service and what the tool needs to generate.

In our example we will need to create the following XML file:

<?xm version="1.0" encodi ng="UTF-8"?>
<configuration xm ns="http://java. sun.com jax-rpc-ri/xrpcc-config">
<rm name="Li braryService" targetNanespace="http://210-ch08. org/wsdl"
t ypeNanespace="http://210-ch08. org/types">
<servi ce name="Library" packageNane="websvc">
<interface nane="websvc.|Library" servant Nane="websvc.
Li braryl mpl "/ >
</ service>
</rm >

</ configur ati on>

By virtue of including a child <rmi> element, we have effectively told xrpcc
that we have the RMI class (service definition interface) and we wish it to gen-
erate the WSDL file (as well as the usual client stubs and server ties).

Use xrpcc’s -server option to generate only those ties and classes necessary for
the server implementation. Once this is complete, you should have a list of gen-
erated classes that look like this:

I Library_Tie.class

Li brary_SerializerRegistry.cl ass

Checkl nBook_Request Struct. cl ass

Checkl nBook_Request Struct _SOAPSeri al i zer. cl ass
Checkl nBook_ResponseStruct. cl ass

Checkl nBook_ResponseStruct _SOAPSeri al i zer. cl ass
CheckQut Book_Request Struct. cl ass

CheckQut Book_Request Struct _SOAPSeri al i zer. cl ass
CheckQut Book_ResponseStruct. cl ass

CheckQut Book_ResponseSt ruct _SOAPSeri al i zer. cl ass
Sear chFor Book_Request Struct. cl ass

Sear chFor Book_Request St ruct _SOAPSeri al i zer. cl ass
Sear chFor Book_ResponseStruct. cl ass

Sear chFor Book_ResponseSt ruct _SOAPBuI | der. cl ass

Sear chFor Book_ResponseStruct SOAPSeri al i zer. cl ass

WWW.SyNngress.com

Using XML-based RPC = Chapter 8

Finally, you will want to create a client capable of invoking the service. The
following is an example of a client application that serves an access point to the
library service. Since the client will reference the stubs for this service, you have
to generate them using xrpcc’s -client option. This will give you a list of generated
classes that looks like this:

I Li brary_Stub. cl ass

Li brary. cl ass

Li brary_I npl.cl ass
Library_SerializerRegistry.class

Checkl nBook_Request Struct. cl ass

Checkl nBook_Request Struct _SOAPSeri al i zer. cl ass
Checkl nBook_ResponseStruct. cl ass

Checkl nBook_ResponseStruct _SOAPSeri al i zer. cl ass
CheckQut Book_Request Struct. cl ass

CheckQut Book_Request Struct _SOAPSeri al i zer. cl ass
CheckQut Book_ResponseStruct. cl ass

CheckQut Book_ResponseStruct _SOAPSeri al i zer. cl ass
Sear chFor Book_Request Struct . cl ass

Sear chFor Book_Request Struct _SOAPSeri al i zer. cl ass
Sear chFor Book_ResponseStruct. cl ass

Sear chFor Book_ResponseStruct _SOAPBUI | der. cl ass

Sear chFor Book_ResponseSt ruct _SOAPSeri al i zer. cl ass

The stub class, conspicuously named with the _Stub suffix, will be the proxy
class through which the client will invoke library functions.

package websvc;

public class Librarydient

{
private |Library_Stub stub;

public LibraryCient(String endpoint) throws Exception
{
stub = (ILibrary_Stub)(new Library_Inpl().getlLibrary());
stub. _setProperty(javax.xm .rpc. Stub. ENDPO NT_ADDRESS_ PROPERTY,
endpoi nt);

325

www.syngress.com

326 Chapter 8 = Using XML-based RPC

public String[] searchForBook(String Key)

{
String[] result = null;
try
{
result = stub.searchForBook(Key);
}
catch(Exception e)
{
e. printStackTrace();
}
return result;
}

public bool ean checkQut Book(String | SBN,
String cardNunber)

{
try
{
st ub. checkQut Book(| SBN, cardNunber);
}
catch(Exception e)
{
e.printStackTrace();
}
}

publ i c bool ean checkl nBook(String | SBN,
String cardNunber)

try

st ub. checkl nBook(| SBN, cardNunber);

WWW.SyNngress.com

Using XML-based RPC = Chapter 8 327

catch(Exception e)

{

e.printStackTrace();

Once the client has been compiled and packaged it may be deployed any-
where that it can access the web server hosting the web service we created earlier.

NoTE

These examples were developed against the JAX-RPC specification
version 0.8 PFD.

www.syngress.com

328 Chapter 8 = Using XML-based RPC

Summary

The JAX-RPC API offers a fast way to incorporate remote procedure calls into
your distributed heterogeneous application. This functionality is realized via a
framework that creates remote procedure calls using synchronous XML messages,
which contain function-call semantics. These web services are built on the Java
language and can be deployed on multiple platforms.

The interface that defines the methods to be made available as a web service

qi. is called the service definition. This interface must extend java.rmi.Remote, and each
method must be declared to throw java.rmi.RemoteException.

The client that wishes to invoke methods on the server and receive execution

% results does so through a stub. A stub is a class that serves as a service proxy for
the client. The server that wishes to be enabled for remote procedure calls must
have a tie class. This tie class acts as a client proxy for the server. Both the stubs

: and ties translate method calls and return values to SOAP-encoded XML for
';3‘! transmission over HTTP.
A AWeb Service Description Language (WSDL) file describes a Web Service.
This description includes the service methods and their associated semantics, as
well as the location of the service provider. A client that wishes to use a \Web
Service can then use this WSDL file to determine the service offerings and the
syntax to invoke them.

The JWSDP provides a command-line driven tool called xrpcc that facilitates
the creation of stubs, ties and the other artifacts necessary to develop web ser-
vices. This tool is configured using an XML file. Given the SDI or the WSDL
file, xrpcc can generate all necessary files.

The SDI, ties and other generated server artifacts are packaged together in a
Web Archive (WAR) file with an internal directory structure and including a

" . deployment descriptor as defined by the Java Servlet Specification version 2.3.

b +| ThisWAR file, which effectively contains the entire Web Service, may be
deployed on a web server that has been prepared so as to include the necessary
libraries from the JWSDP.

Once deployed, your Web Service may be invoked by any client, including
(but not limited to) Java based clients. This interoperability is possible due to the
support for SOAP over HTTP and WSDL in the JAX-RPC.

WWW.SyNngress.com

Using XML-based RPC = Chapter 8 329

Solutions Fast Track

JAX-RPC Summary

M JAX-RPC API is an API for building web services.

M JAX-RPC is facilitated by using synchronous XML messages using
SOAP over HTTP. 1

Mapping Java Data Types

M All Java primitive types (except char) are supported. 1

M Java classes that are not supported out of the box can be supported using
custom serializers and deserializers.

M JavaBeans are supported by the JAX-RPC API.

Conversion Between Java Classes and WSDL

M The xrpcc command-line tool can create the WSDL service definition
file from a proprietary config file and a service definition interface.

M Xrpcc and the config file that supports it are not part of the JAX-RPC
specification and are subject to change in future releases.

M If the WSDL file already exists, then the RMI class can be generated
from it.

M If the RMI classes already exist, then the WSDL file can be generated
from them.

Creating a JAX-RPC Client

M JAX-RPC Clients use stubs to communicate with the server.

M The stubs needed for communication can be generated using xrpcc with
the optional -client argument.

www.syngress.com |

330

%

Chapter 8 = Using XML-based RPC

Creating a JAX-RPC Server

M JAX-RPC Servers use ties created by xrpcc to communicate with

the client.

M The SDI is that interface which defines the methods to be published by

the web service.

M A server defines an endpoint to access the desired service. This endpoint

is basically a URL that gets mapped to the service implementation.

Creating a Simple XML-RPC Server and Client

M We created a web service with an asociated client application. The first

step was to design and create the SDI, which defined those business
methods we wanted to make accessible via an RPC from a remote client.

We used the xrpcc command-line tool that comes with the JWSDP to
generate the stubs, ties and the WSDL file to describe our Library Web
Service. To configure xrpcc’s runtime behavior, we had to create a
config.xml file to describe the service and what the tool needed to
generate.

We included a child <rmi> element to tell the xrpcc tool that we had
the RMI class (SDI) and we wished it to generate the WSDL file (as
well as the usual client stubs and server ties).

Once the client was compiled and packaged, it could be deployed
anywhere that it could access the web server hosting the web service we
created earlier.

WWW.SyNngress.com

Using XML-based RPC = Chapter 8 331

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

Q: What are some of the JAX-RPC API-related concerns that | might need to
address in the design of my application?

A: XML-RPC is a synchronous communication framework. Therefore, your
remote method calls will block until the result of the method invocation
comes back over the wire. Architecture considerations include designing your
remote method calls to pass as much data as possible in order to minimize the
number of connections you’ll need to make. Another consideration is to
make those classes that perform the actual remote method invocation
threaded and/or pooled so as to provide some measure of decoupling with
the rest of the client application.

Q: How can I improve the speed or efficiency of my client’s remote
procedure calls?

A: A common technique for improving efficiency is to design your SDI to per-
form several functions with-one method call. By bundling functionality over a
single HTTP request you can improve your client’s overall performance of.
Another approach would be to pool instances:that call the service.

Q: Can | obtain the source code for the generated ties and stubs?

A: The xrpcc command-line tool will normally remove any generated Java
source files after successful compilation.You can override this behavior by
using the -keep argument. This will instruct the tool to leave the source files
where it compiled the class files.

Q: How can I use web services built with the JAX-RPC API if | do not know
the signatures of the methods I want to call until runtime?

www.syngress.com 8

332 Chapter 8 = Using XML-based RPC

A: The use of Dynamic Invocation Interfaces (DII1) would solve your problem.
Due to the complexity and difficulty in debugging such clients, it is not gen-
erally recommended to use DII unless there is no other alternative. The JAX-
RPC specification covers this functionality in greater detail.

Q: What are the differences between stubs and ties?

A Both deal with the marshalling and unmarshalling of data. They both take
data in the form of XML containing method call semantics and convert the
data to and from network transport formats. The stubs perform this function
on the Client side and the ties perform this function on the Server side.

WWW.SyNngress.com

Chapter 9

Locating Web

Services

Solutions in this chapter: »

= Registries

B

= Categorizing Web Services
= Connecting to a ReE;istry
-. Querying the Registry

= WSDL Documents

= Storing Information in a Registry

M Summary
M Solutions Fast Track

M Frequently Asked Questions

333

334

Chapter 9 = Locating Web Services

Introduction

To call a Web service, several pieces of information are required. In particular, the
location (URL) of the service and the schema to pass requests in are critical for a
message to be understood by the right remote service.

The simplest means of deriving this information is by hand.You can, for
instance, communicate with a fellow programmer or use Web sites such as
www.xmethods.com to find out the relevant information. However, the problem
with this method is that with the Web being a fluid environment, new services
are added and old ones removed continually. Consequently, evaluating the con-
nection protocol for a Web service by hand calls for a lot of maintenance work to
ensure the system continues to run smoothly.

To solve this problem,Web services can be published to registries. A registry is
a collection of meta-information about Web services such as their location, the
protocol used to contact them and so forth.While registries were originally seen
as a global mechanism—where companies published Web services for anonymous
business partners to find—more commonly, registries are being used internally by
organizations to render service-based architectures more resilient and reliable.

In this chapter, we will explore JAXR, the Web Services Developer Pack
component employed for communicating with registries. Additionally, we will
introduce WSDL, the standard mechanism for describing the schema with which
to call a remote service.

Registries

As mentioned in the introductory paragraph, a \Web service registry contains
information about Web services and their providers. The utility of registries lies in
the fact that they can be searched by Web service clients to obtain data on avail-
able Web services. In this section, we discuss how the metadata about services is
stored and also the standards upon which the registries are built.

Storage of Metadata about Services

A registry entry stores information about an organization such as:
= The name of the organization
= The description of the organization
= A collection of services offered by the organization

WWW.SyNngress.com

Locating Web Services = Chapter 9

= The name of the person who is the primary contact for the organization
= The postal address of the organization

= A key object that represents the ID through which an organization entry
is uniquely identified by the registry and so on

In most cases, a service seeker or client would be looking for services per-
taining to a specific industry sector. Thus, the client is less likely to search for a
specific organization by name; instead, he is more likely to choose an industry
sector to search for organizations that offer the desired services in that sector. In
view of this, the registry uses classifications to categorize the information in the
registry database.\We now discuss how information in the registry is categorized.

Categories

The NAICS (North American Industry Classification System) is used for catego-
rizing various businesses/ services, classifying business establishments on the basis
of their major economic activity. The classification is production-oriented in the
sense that it groups similar services or production processes.

NAICS groups services into 20 broad economic activity categories such as
Manufacturing, Wholesale Trade, Information, Finance, Insurance, and so on.
These economic activity categories are subdivided into subsectors. For example,
Manufacturing has Food Manufacturing as a subsector. Each subsector is divided
into industry groups. For example, Bakery and Tortilla Manufacturing is an
industry group under the Food Manufacturing subsector. An industry group is
finally divided into various NAICS industries. Though there are no further sub-
classifications beyond this level, the NAICS industries may be further divided to
accommodate variations in U.S., Canadian, and Mexican industry nomenclatures.
Figure 9.1 illustrates this classification of services concept.

Thus, categories are subdivided and organized in a tree hierarchy until they
can be subdivided no further. (Categorizing concepts will be clarified further
when we choose a classification for our organization in the section, “Using the
Default Registry” See Figure 9.4 later in the chapter for an illustration of this).

There are a total of 1,170 NAICS categories, out of which 474 lie in the
Manufacturing sector. NAICS uses a standard coding structure for assigning codes
to the categories. Each industry is assigned a six-digit code. The first two digits of
this code specify the economic activity category, the third digit specifies the sub-
sector, the fourth digit the industry group, the fifth digit the NAICS industry, and
the sixth digit is for U.S., Canadian, and Mexican industries.

We shall now discuss categorizing of services on the basis of location.

335

www.syngress.com

336

Chapter 9 = Locating Web Services

Figure 9.1 Categorizing Business Services in a Registry

Economic Activity Category

L Food Manufacturing | Subsector
Bakeries and Tortilla Industry Group

Manufacturing

L Cookie, Cracker, and
Pasta Manufacturing NAICS Industry

L Cookie and Cracker U.S./Canadian/Mexican Industry

Manufacturing

Locations

The geographical location of the service provider is an important criterion for
the service seeker. This is especially true in the case of business transactions that
will eventually involve transportation of physical goods from the manufacturer to
the buyer because, the geographical location will determine to a great extent the
transportation cost as well as the delivery schedules in terms of time required for
transportation.

The is0-th:3166:1999 taxonomy for geographical regions is followed for clas-
sifying the location for a service. This taxonomy divides the physical locations on
the basis of continents such as Asia, Europe, North America, and so on, or major
continent-regions such as the Caribbean, the Middle East, and so on. These con-
tinents/continent-regions are subdivided into countries. For example, North
America is subcategorized into the following North American countries: the
U.S.A., Canada, and Mexico.

Major Registry Standards

In order to understand JAXR, you must first understand that it provides a stan-
dardized interface to common registry standards. JAXR simplifies the utilization
of these registries, and ensures that code written for one registry can be moved
transparently to another. In particular, JAXR provides interfaces for the most
commonly used registry standards for Web services: UDDI and eb XML RegRep.

WWW.SyNngress.com

Locating Web Services = Chapter 9

UDDI

Universal Description, Discovery, and Integration (UDDI) is an open specifica-
tion that strives to implement a universal business registry capable of integrating
electronic commerce sites. UDDI is a project initiated by the concerned industry
sectors and businesses. The aim of UDDI is to create a platform-independent,
global, and open specification for the following purposes:

= To enable vendors to offer/describe their services and businesses
= To enable potential buyers to search for these services and businesses
= To integrate these services and businesses over the Web

In short, UDDI aims at propelling the growth of business-to-business (B2B)
e-commerce. UDDI does not concentrate on the listing and finding of services
alone. It also addresses the problem of the lack of a standard mechanism to con-
duct business, once a buyer has found a suitable service provider. UDDI tackles
this issue by enabling vendors to programmatically specify their preferred business
practices and procedures.

The UDDI specification is implemented as the public UDDI Business
Registry that is elemental to the infrastructure that supports e-commerce. The
UDDI Business Registry is implemented as a set of distributed registries on \Web-
enabled media.Vendors can register their services and businesses with these reg-
istries and buyers can browse them to search for vendors and/or services. The
distributed UDDI registries are maintained as registry nodes, where each node is
managed by an operator who is bound by an agreement to follow the policy and
quality of service guidelines formulated by an Operator’s Council (IBM and
Microsoft are two such operators who are currently operating registry nodes).
Each registry node contains a complete set of the records registered with all the
registry nodes taken together. This is achieved by regularly replicating the regis-
trations across all the nodes. The operators use a common set of APIs to ensure
that all the nodes can exchange information with one another.

Though the original intent of UDDI was to have global registries accessible
over the Internet, organizations are implementing private registries, compliant
with the UDDI specification, on their intranets, extranets, or private networks on
the Internet. These private registries may offer functionality and services tailored
for specific authorized users. For example, a private registry may catalog an orga-
nization’s services that can be located over the organization’s private networks
with trading partners, or be used for internal reference purposes.

337

www.syngress.com

338 Chapter 9 = Locating Web Services

The UDDI Business Registry structure categorizes information under the
following headings:

Business-Entity A business entity is a unique identifier for an entry in
the registry. Besides this, it contains the following information:

= The name of the business.

= A short description of the service/business.

= Basic contact information regarding the vendor.

= A list of categories that describe the service/business.

= A URL that provides more information about the service/business.

Business Service The business service lists the services/businesses
offered by an entity. Each of these service/business entries contain the
following information:

= A description of the service/business.
= A list of categories that describe the service/business.

= A list of pointers pointing to locations where related information
about the service/business can be found.

Specification Pointers Each business service entry contains a list of
specification pointers. These specification pointers serve a dual purpose.

= They point to those URLs where information related to a business
service can be found. These URLS, in turn, may contain information
on how to invoke a service.

= They associate a business service entry with a particular service type.

Service Types A service type defines the nature of a business service,
and can include multiple categories. It is defined by a tModel, which
contains the following information:

= The name of the tModel.
= The name of the organization that published the tModel.
= A list of categories that describe the service type.

= Technical specifications for the service type such as protocols, inter-
face definitions, message formats and so on.

WWW.SyNngress.com

Locating Web Services = Chapter 9

UDDI uses the Simple Object Access Protocol (SOAP). However, a service
registered with UDDI can use any Internet protocol such as SOAP, COM+,
ebXML Message Service, CORBA, Java RMI, and so on for its service interface
(The interface that is used to invoke the service).

NoTE

A UDDI registry, though searchable, is very different from a search
engine. Search engines are meant to search unstructured and random
data related to any field, such as education, industry, society, and so on.
A UDDI registry, however, is highly structured and is specifically meant
for offering services and businesses. Instead of a random search, it sup-
ports one focused on industry, product category, and geographical loca-
tion. A search engine, however, can use the UDDI registry as a source
while producing search results.

ebXML

ebXML is a suite of specifications that defines standard methods to enable busi-
ness transactions over the \WWeb. It details methods for defining and registering
business processes, exchanging business data and messages and conducting busi-
ness relationships, and includes searchable public repositories (like the UDDI
Registry) where services/ businesses can be registered. ebXML is designed to be
platform-independent so that any system that supports XML, the standard
Internet protocols, and, of course, ebXML, can transact e-business using ebXML.

ebXML is an initiative backed by UN/CEFACT (United Nations Centre for
Trade Facilitation and Electronic Business) and OASIS (Organization for the
Advancement of Structured Information Standards). (UN/CEFACT is a United
Nations body whose mission is to facilitate international transactions by standard-
izing business procedures and harmonizing information flow. OASIS, on the
other hand, is a global consortium that develops standards for Web services, elec-
tronic publishing, business transactions on the Internet and elsewhere, and
encourages adoption of e-business standards.)

Extensible Markup Language (XML) is at the core of ebXML, and was
chosen for ebXML because it allows exchange of structured data like the data
stored in databases and is a freely available standard for information exchange

339

www.syngress.com

340 Chapter 9 = Locating Web Services

widely supported by the industry. Another advantage is that XML supports
Unicode that can display most of the world’s languages.
The ebXML architecture is composed of two parts:

1. Product Architecture The product architecture constitutes the tech-
nical infrastructure of the software. It consists of the following elements:

Messaging Service This is a protocol-neutral service that standard-
izes the way business messages are exchanged between trading orga-
nizations. This messaging service is secure and reliable and also allows
for routing a message to an internal application once an organization
has received it. Any standard protocol such as FTP, HTTP, SMTP
and so on can be employed for file transfer while using the mes-
saging service. Additionally, all communications with the Registry
are possible only through the use of the ebXML messaging service.

Registry An ebXML Registry is akin to the user interface of a
repository. The registry stores information about items that are actu-
ally stored in the repository. The repository items can be created,
modified or deleted through requests made to the registry. ebXML
specifies a minimum information model (that defines the types of
information stored in the registry) and the manner in which other
applications interact with the registry, but it does not specify the
implementation of the registry or repository. The registry contains
information such as business documents or agreements, component-
definition for business process modeling, and so on. The ebXML
Registry is a single one as against the distributed registry network of
UDDI (which can be used to locate an ebXML registry).

Trading Partner Information The Collaboration Profile Protocol
(CPP) is used to define an XML document that details the manner
in which an organization can conduct e-business. These details
include information about the organization such as the types of pro-
tocol used by it, security implementations, network addresses, and
business procedures. The Collaboration Protocol Agreement (CPA)
specifies how two trading partners have agreed to conduct business
electronically. The ebXML specification includes issues involved in
creating a CPA from the CPPs of the two parties that intend to con-
duct business, though it does not specify the algorithm for gener-
ating the CPA.

WWW.SyNngress.com

Locating Web Services = Chapter 9 341

= Business Process Specification Schema (BPSS) This schema
defines an XML document (as an XML DTD) to describe how an
organization conducts its business. Note that CPP or CPA deals with
how an organization conducts e-business while BPSS deals with the
actual business process. This includes the business transactions, docu-
ment flow, business level acknowledgements, legal and security aspects,
and so on.The BPSS can be used by an application to configure the
details of conducting e-business with a chosen business partner.

2. Process Architecture The process architecture is meant for analysis
and development. This architecture provides the following contributions:

= Business Process Analysis Worksheet and Guidelines The
Business process Analysis worksheets and the guidelines for using them
assist in collecting the information necessary to describe a business
process. This information can be used to create a BPSS XML docu-
ment. Business Process Editors can be developed on the basis of the
worksheets. These editors can guide the user in collecting information
and automatically generating the XML business process specification.

» Catalog of Common Business Processes This catalog contains
description of common business processes being used by various
organizations.

= E-Commerce Patterns The e-commerce patterns contain descrip-
tions and examples of the common business patterns. To date, only one
pattern has been listed, which is for simple contract formation.

= Core Components The core components are the basic informa-
tion elements used in business messages. The type of information for
these core elements may vary with industry, geographical location,
and so on.The core components are developed from existing or new
business documents and analyzed so as to standardize them for use in
specific industries or regions. These business messages and documents
exchanged in a business process are composed of the core compo-
nents that are also known as “business information objects.”

The product and process architecture are linked through the BPSS that is a
machine or software application interpretable encoding of a business process.

Thus, ebXML provides a standard structure and syntax on which developers
can build packaged applications for the smooth exchange of business data.

www.syngress.com

342

Chapter 9 = Locating Web Services

Readers should note that though UDDI and ebXML RegRep address the
same issue, UDDI is a specification backed by an industry-led consortium,
whereas ebXML is an open standard.

Categorizing Web Services

Web services receive, process (if required), and respond to requests from \Web-
clients. They encompass any self-contained software component/application or
piece of code that can be deployed on a\Web server, and subsequently be invoked
over the Web by Web-clients. The realm of Web services varies from simple
acknowledgement of a client’s request to complex business processes. If Web ser-
vices are to cater to businesses, it is imperative that data on \Web services should
be categorized to create a semblance of order to make them searchable. In this
section, we discuss how Web services can be categorized.

Category Hierarchies

As mentioned in the section, “Storage of Metadata about Services,” categorization
is crucial for proper organization and maintenance of a business registry. Since
JAXR APIs are specifically meant for use with business registries, they obviously
contain provisions to categorize registry objects.

The ClassificationScheme interface in the javax.xml.registry.infomodel package is a
subinterface of the RegistryObject interface and is used to represent a taxonomy
that may be used to categorize RegistryObject instances. The RegistryObject class is
an abstract class that provides the minimal metadata for various registry objects.
For example, in Figure 9.1, Industry is the classification scheme that has been used
to categorize the services. If we categorize services or organizations on the basis
of their geographical location, then Geography would be the classification scheme.
A ClassificationScheme instance can be used to obtain, add, or remove child con-
cepts from a classification scheme. (A concept, meanwhile, is used in JAXR to hold
the information about a specification.) The ClassificationScheme interface provides
numerous methods to set or retrieve information about classification schemes.
Some of these methods, whose names are self-explanatory, are addChildConcepts(),
getChildConcepts(), addClassifications(), removeClassifcations(), and so on.

While the ClassificationScheme interface refers to a classification scheme, the
Classification interface is used for actual classification of RegistryObject instances.
Adding Classification instances to the RegistryObject classifies the RegistryObject

WWW.SyNngress.com

Locating Web Services = Chapter 9

along multiple dimensions. These dimensions could be the industry, the products,
and the geographical location.

The Classification interface allows the classification of RegistryObjects using a
ClassificationScheme. This ClassificationScheme may represent an internal taxonomy
(in which the taxonomy elements and their structural relationship with one
another is represented within the registry provider) or an external taxonomy (in
which the taxonomy elements and their structural relationship with one another
is represented outside the registry provider). A Classification instance that uses a
ClassificationScheme representing an internal taxonomy is known as an internal
classification. Whereas, a Classification instance that uses a ClassificationScheme rep-
resenting an external taxonomy is known as an external classification. The
Classification interface provides a number of methods to set or retrieve classifica-
tion schemes and information related to a registry object. These methods include
getClassificationScheme(), setClassificationScheme(), getConcept(), setConcept(),
getClassifiedObject(), and so on.

Example Hierarchies

The most common and widely-known example of a classification scheme is the
classification of the world into living and non-living objects. Living things are
further classified into plants and animals, animals are classified into mammals, and
so on. Thus, living things are classified under a tree-like structure.

Another example, more appropriate to the current discussion, is that of the
NAICS (North American Industry Classification System) used to classify busi-
nesses and services on the basis of the industry to which they belong. As
explained in the subsection, “Categories,” under the section, “Storing Metadata
about Services,” the NAICS breaks up a broad industry sector into subsectors, in
a hierarchical pattern, right up to the point where the industry narrows down to
its smallest logical unit.

Organization, User

An organization is the physical entity that represents an entry in a business reg-
istry. The Web services being offered and searched for in a registry are eventually
offered by an organization that makes it possible for the requested service to be
executed.

The javax.xml.registry.infomodel provides the Organization interface to encom-
pass this physical entity (the organization). As mentioned in the section, “Storing
Metadata about Services,” an organization has distinguished parameters such as

343

www.syngress.com

344

Chapter 9 = Locating Web Services

the name of the organization, its description, its postal address, the primary con-
tact person in the organization, telephone number, e-mail address for the contact,
services offered by the organization, and so on. Thus, the Organization interface
that represents an organization provides methods to retrieve this organizational
information when a registry is searched. These methods include getName(),
getDescription(), getServices(), getPrimaryContact(), and so on.

A vendor who uses a business registry to offer services, submits the relevant
information to the registry in the form of an Organization instance. Hence, the
Organization interface also encompasses methods to create an organization and set
its data such as name, description (setDescription()), services (addServices()), and so on.

Though an organization is a physical entity, it remains abstract in nature. It is
the people working in the organization that give it a definitive structure and a tan-
gible physical form.Therefore, a primary contact person, his/her telephone
number/e-mail address, and so forth are a part of the organizational data stored in a
business registry. To add the primary contact person information to an organization,
the javax.xml.registry.infomodel package provides the User interface. The User interface
supplies methods to set the primary contact information, such as the person’s name
(setPersonName()), his/her telephone number (setTelephoneNumbers()), e-mail 1D
(setEmailAddresses()), and so on. On the querying side, the User interface provides
methods to retrieve information about the primary contact using methods such as
getPersonName(), getTelephoneNumbers(), getEmail Addresses(), and so on.

Note that the User interface is closely connected to the Organization interface
and the contact person information is automatically retrieved within the
Organization instances returned upon searching a registry. Similarly, after a User
instance is created and relevant information is added to it, the setPrimaryContact()
method of the Organization interface is used to set the User instance information
within the current Organization instance. When the Organization instance is sub-
mitted to the registry, the User information is also submitted.

Connecting to a Registry

The first step in searching a business registry is connecting to it. In this section,
we discuss how various interfaces/classes in the Java API for XML Registries,
JAXR can be used to programmatically connect to a business registry.

To connect to a registry, we create a client program using JAXR. The client
program begins by setting properties that define the URL for the registry being
accessed and the class that implements the connection factory for the registry. For

WWW.SyNngress.com

Locating Web Services = Chapter 9

example, the following lines of code set the URL for IBM’s test query registry
(UDDI registry) that we shall be using for the examples in this chapter:

Properties props = new Properties();
String curl = "http://ww3.ibm contf services/uddi/v2betal/inquiryapi";

props. set Property("javax. xm .regi stry. queryManager URL", curl);

We now set the class for the connection factory implementation of the
UDDI registry through the following line of code:

props. set Property("javax. xm .regi stry.factoryd ass",

"com sun. xm . regi stry. uddi . Connecti onFactoryl npl");

The next step is to instantiate the factory class and set its property as follows:

ConnectionFactory factory = ConnectionFactory. newl nstance();

factory. set Properties(props);

The javax.xml.registry package in JAXR provides the Connection interface
that actually initiates a connection or session with the registry provider.\WWe use
the connection factory instance to create the connection as in the following line
of code:

Connection connection = factory. createConnection();

If the client is behind a firewall, then to access the registry, you must specify
the proxy host address and port on which the proxy service is running. This can
be achieved by setting the proxy host and proxy port properties as shown in the
following lines of code:

String httpProxyHost = "Hostl| PAddress";
String httpProxyPort = "ProxyPortOnHost";

props. set Property("javax. xm .regi stry. http. proxyHost", httpProxyHost);
props. set Property("javax.xm .registry. http. proxyPort", httpProxyPort);

All the preceding steps performed by the client to connect to the registry
have been combined into the method connection() that has been included in the
class Doconnect that returns a Connection object. The code for the Doconnect class is
listed in Figure 9.2.

345

www.syngress.com

346 Chapter 9 = Locating Web Services

Figure 9.2 Connecting to a Registry Using the Doconnect Class

import javax.xm .registry.*;
import javax.xnl .registry.infonodel.*;
i mport java.net.*;

inmport java.util.*;

public class Doconnect
{
Connecti on connectionl;

publi ¢ Doconnect ()
{}

/* This nethod will nmake a connection to the Registry server. This wll

use the IBM UDDI registry server*/

public Connection connection()

{
/* Use these two string values to provide the ProxyHost and Proxyport*/
String httpProxyHost = "";

[LRTI

String httpProxyPort =

String curl = "http://ww 3.ibm com services/uddi/v2betal/inquiryapi";

String purl
"https://ww-3.ibm con servi ces/uddi/v2bet a/ protect/publishapi”;

Properties props = new Properties();
props. set Property("javax. xm . regi stry. queryManager URL", curl);
props. set Property("javax. xm .registry.|ifeCycl eManager URL", purl);
props. set Property("javax. xm .registry.factoryd ass",

"com sun. xm . regi stry. uddi . Connecti onFactoryl nmpl ") ;
props. set Property("javax. xm .regi stry. http. proxyHost", httpProxyHost);
props. set Property("javax. xm .registry. http. proxyPort", httpProxyPort);

try
{

// Create the connection, passing it the
/1 configuration properties
ConnectionFactory factory = ConnectionFactory. new nstance();

Continued
WwWw.syngress.com

Locating Web Services = Chapter 9 347

Figure 9.2 Continued

factory. set Properties(props);

connectionl = factory. createConnection();

Systemout.println("Created connection to registry" +
connectionl);

}

catch (Exception e)

{

e.printStackTrace();

}

return connectionl;

}

The class Doconnect has been used in the SimpleQuery class listed later in the
chapter in Figure 9.9 (and also in subsequent classes) to connect to the registry.
The confirmation line that the connection() method in the Doconnect class outputs
upon successfully connecting to the registry can be seen in Figure 9.10 that
shows the output for the SimpleQuery class. (Note the line Created Connection to
registrycom.sun.xml.registry.uddi. Connectionlmpl@e83912 in Figure 9.10.)

Using the Default Registry

The Java WSDP package comes complete with a WSDP Registry Server that
defines the default Registry. To use this default registry, you need to perform the
following steps:

1. Place the bin directory of your JWSDP installation in your PATH vari-
able, or, go to this directory at the command prompt.

2. Start Tomcat using the command startup for Windows and startup.sh
for a Unix system. Start the Xindice database using xindice-start on
Windows and xindice-start.sh on Unix.

3. Start the JAXR Registry Browser (the Registry Browser acts as a
JAXR client that can be used to search registries and submit data to
the registries) using the command jaxr-browser on Windows and
jaxr-browser.sh on Unix. Note that if you are using the default registry,

www.syngress.com

348

Chapter 9 = Locating Web Services

you need not specify the proxy host and proxy port as command-line
arguments.

4. In the Registry Location drop-down list on the browser, choose the
URL: http://localhost:8080/registry-server/RegistryServerServlet.
You need not change the localhost setting for the default registry server
running on your computer.

You can now add an organization to the default registry, delete an organiza-
tion from it, or query it.

NoTE

As of the time of writing this chapter, a bug in the Default Registry pre-
vents the username and password from being authenticated. A fatal
error is reported when you try to submit the authentication information.
Therefore, we are using the IBM registry to explain the process of adding
an organization to the registry and querying the registry.

Adding an Organization

We use the IBM test registry to show how you can add an organization

to the IBM registry using the Registry Browser. Choose the URL
https://www-3.ibm.com/services/uddi/v2beta/protect/publishapi
from the Registry Location drop-down list. This will bring up a user inter-
face (as shown in Figure 9.3) that seeks information about the organization
(chiefly, the name, description, primary contact, phone, e-mail, and so on).

Leave the Id field blank, the 1D will be allocated to you by the registry upon
successful submission. Click the Add button under the Classifications label to add
classifications. This prompts a pop-up window, as shown in Figure 9.4.

The classifications follow the NAICS (North American Industry
Classification System) that classifies various industry/service sectors. The classifi-
cations window also allows classification on the basis of location. Click the label
ntis-gov:naics:1997 in the classifications window and choose the sector that
best describes your company services.You can choose only one industry sector
for classification. If, however, your company activities lie in multiple sectors, you
need to create a separate entry for each sector. Click the label iso-ch:3166:1999
in the classifications window to specify the location. Just as for the industry

WWW.SyNngress.com

Locating Web Services = Chapter 9

sector, you can choose only one location for an entry. If your company is active
at more than one geographical location, you have to make an entry for each of
the locations separately. Clicking the Add button in the classifications window
will include your organization in the chosen industry sector/location as can be
seen from the two text fields under the Classifications Add/Remove button in
Figure 9.3 (The number 51121 given against the text Software Publishers is a value
that uniquely identifies an industry sector in the NAICS taxonomy). Now click
the Submit button (see Figure 9.3) to submit your organization information to

the registry. This will result in a pop-up window that asks for a username and
password, as shown in Figure 9.5.

Figure 9.3 The Registry Browser’s User Interface

Mi= k]
-

Figure 9.4 Choosing an Industry Sector for Classification
El st et |

www.syngress.com

349

350 Chapter 9 = Locating Web Services

Figure 9.5 The Authentication Window
(B e antom b s al

Hanwas
o Cawwi

NoTE

To publish to the IBM registry, you are required to first obtain a username
and password. To obtain the username and password, go to the URL
https://mwww-3.ibm.com/services/uddi/v2beta/protect/registry.html

and click the Get An IBM ID And Password link. The resulting page pro-
vides you with the option of registering for an IBM UDDI Account. Follow
the guidelines provided on this page and obtain an IBM ID and password.
As in the case of a mail account, your username should be unique to the
registry.

Enter the username and password for your IBM UDDI Account. Once the
registry accepts your submission, you will be required to provide this username
and password for authentication every time you seek to modify your organiza-
tion’s information in the registry. Clicking the OK button in the authentication
window will submit your registration information to the registry and you will
receive a confirmation of successful registration along with a unique 1D as shown
in Figure 9.6.

Figure 9.6 The Confirmation Message When an Organization Is Added to
the Registry

Hewiagm i

T Tl sy el el rsnlly Ry
C naka R R T

This key uniquely identifies your organization’s entry in the registry. To check
that your organization has been added to the registry, you can query the registry
by entering your organization’s name in the query interface (See the next sec-
tion, “Querying the Registry” to find out how you can query the registry). For
example, when we entered Syngress Test (this was the organization name we gave
to the submission we made to the IBM registry) as the search criterion in the
organization-name field, we obtained query results as shown in Figure 9.7.

WWW.SyNngress.com

Locating Web Services = Chapter 9

Figure 9.7 Searching for Your Organization in the Registry
Brcomrbme aloizi

Note that the Name and Description column (see Figure 9.7) contain the name
and description of our organization as entered by us while registering our orga-
nization with the registry. Also, the key value under the Key column is the one
that the message box (Figure 9.6) had displayed on successful submission of our
entry.

NoTE

The Registry Browser allows you to add or delete organizations, but does
not support modifying organizations. If you try to modify an organiza-
tion, a new organization is created when you submit the modified data.

Querying the Registry
To query the IBM test registry, choose the URL http://www-3.ibm.com/
services/uddi/v2beta/inquiryapi from the Registry Location drop-down
list. This brings up a search interface that allows you to query the registry based on
the name of an organization or on a classification (see the Find By option in Figure
9.8). Let us assume that we search for organizations by name and enter the letter |
as the search criterion. Enter I in the text field labeled Name (see Figure 9.8). The
query returns organizations whose name begins with the letter | (as shown in the
same figure).

The Registry Browser displays the name and description for the organizations
returned in the query results. The Key column in Figure 9.8 lists the key that
uniquely identifies an entry of an organization in the registry.

351

www.syngress.com

352 Chapter 9 = Locating Web Services

Figure 9.8 Querying the Registry

=il X

............ e
Py r— = Aipdil Frik L WiE CHurmE;

Latbas cul LDSSOSN-IR04-1I0E. W Dompeopiers o, e v b b |

To query the registry on the basis of Classifications, choose the

Classifications option from the options against the Find by label in Figure 9.8.
You may choose a classification on the basis of an industry sector or on the basis
of location (just as we had done while adding an organization). Clicking the
Search button displays results based on the classification you choose.

NoTE

The default registry uses a single URL http://localhost:8080/registry-server/
RegistryServerServlet for both adding an organization, as well as querying
the registry. You can switch between the two options by clicking the
Submissions and Browse buttons, respectively (see Figure 9.3). The pro-
cedure for adding an organization or querying the default registry is the
same as what we used in the case of the IBM test registry.

However, note that the default registry does not allow wild card
pattern matching for the search criterion. For example, if you specify
%software% in the case of the IBM test registry, it will search for organi-
zations in whose name software occurs anywhere. The default registry,

however, does not allow the use of the percent (%) sign for pattern
matching.

WWW.SyNngress.com

Locating Web Services = Chapter 9

Querying the Registry

Upon successful connection with a registry, the next step is to query the
registry to locate specific vendors and/or services. The ServiceRegistry interface
in the javax.xml.registry package enables the client program to obtain the
interfaces being used by the Connection class to connect to the registry. The
BusinessQueryManager interface in the javax.xml.registry package supports various
methods to search for data in a registry using the JAXR information model. In
this section, we discuss how these interfaces can be used to query a registry.

Finding a Service Using a Simple Query

We begin with a simple query that tries to search for organizations in the

IBM registry whose name begins with the letter A. First of all, we obtain the
ServiceRegistry object and use it to create a BusinessQueryManager object as shown
in the following lines of code:

Regi stryServi ce nyservice = connection. get Regi stryService();

Busi nessQuer yManager bgmanager = nyservi ce. get Busi nessQuer yManager () ;

Here, connection is the connection object used to connect to the registry. \WWe
now create two Collection objects, the first one storing the sorting order for the
search results, and the second one the pattern that we want to search for in an
organization’s name:

Col | ection findQualifier = new ArrayList();
findQual i fier . add(Fi ndQual i fier. SORT_BY_NAME_DESC) ;

Col I ection nanePattern = new ArraylList();

namePat t ern. add("A");

The preceding code specifies that the results be sorted alphabetically and des-
ignates A as the string pattern we are searching for. Next, we use the
findOrganizations() method of the BusinessQueryManager object to search the reg-
istry. The findOrganizations() method returns a BulkResponse object (which is a
collection of objects) as shown next:

Bul kResponse response = bgmanager. findOr gani zat i ons(
findQual i fier, nanePattern,
null, null,

null, null);

353

www.syngress.com

354

Chapter 9 = Locating Web Services

The findOrganization() method accepts the collections, findQualifier and
namePattern, that respectively specify the qualifiers for the search and pattern to be
matched. The remaining four parameters (specified as null) are also collections
that may specify classifications, specifications, external identifiers, and external
links for the organizations. The method searches for organizations that satisfy all
the search conditions specified by the collections passed to it as parameter values.
Since the BulkResponse received is a collection of objects, we retrieve it in a
Collection variable as follows:

Col ection orgs = response. getCol |l ection();

Using an lIterator object, we loop through the collection, obtaining names of
organizations and the services offered by them as shown in the following code
snippet:

Iterator orglter = orgs.iterator();
while (orglter.hasNext())
{
Organi zation org = (Organi zation) orglter.next();

String nane = (org.getNane()).getVal ue();

The services offered by an organization are obtained using the getServices()
method that returns a collection of services. The following code snippet iterates
through the services for an organization:

Col | ection services = org.getServices();
Iterator svclter = services.iterator();
while (svclter.hasNext())
{
Service svc = (Service)svclter.next();
String sname = (svc.get Name()). get Val ue();

Figure 9.9 lists the code for the class SimpleQuery that executes a simple
query using its query() method. Note that the SimpleQuery class instantiates the
Doconnect class to connect to the registry using the following lines of code:

Doconnect myconnection = new Doconnect ();

connection = myconnection.connection();

WWW.SyNngress.com

Locating Web Services = Chapter 9 355

If the connection is successful, the Doconnect class (Figure 9.2) returns a
Connection object that is subsequently used to create a ServiceRegistry object.

Figure 9.9 Using a Simple Query to Search the Registry

import javax.xm .registry.*;
import javax.xml .registry.infonodel.*;
import java.net.*;

inmport java.util.*;

public class SinpleQuery
{

static Connection connection = null;

public SinpleQuery()
{1

public static void main(String[] args)

{
Si npl eQuery squery = new Sinpl eQuery();

/1 This part of Code will nmake a connection to the Registry Server
Doconnect nyconnection = new Doconnect ();

connection = myconnection. connection();

squery. query();

/[*This nethod will nake a query to the Registry Server*/
public void query()
{
try
{
Regi stryServi ce nyservice = connection. get Regi stryService();
Busi nessQuer yManager bgnmanager;

Bgrmanager = nyservi ce. get Busi nessQuer yManager () ;

Continued

www.syngress.com

356 Chapter 9 = Locating Web Services

Figure 9.9 Continued

}

Col I ection findQual i fier = new ArraylList();
findQual i fier . add(Fi ndQual i fier. SORT_BY_NAME_DESC) ;
Col I ection namePattern = new ArraylList();

nanePat t ern. add("A");

Bul kResponse response;
response = bgmanager. findOr gani zati ons(findQual i fier,
nanmePat t er n,
null, null,
Col l ection orgs = response. getCol |l ection();
Iterator orglter = orgs.iterator();
while (orglter.hasNext())
{
Organi zation org = (Organization) orglter.next();
String name = (org.getNanme()).getVal ue();
Systemout.println("This is the organisation nane :"

nane + '\n');

String key = (org.getKey()).getld();
Systemout.printin("This is the organisation Key :"
key + '\n');
Col I ection services = org.getServices();
Iterator svclter = services.iterator();
while (svclter.hasNext())
{
Service svc = (Service)svclter.next();
String snane = (svc.get Nane()). getVal ue();
System out. printl n(
"This is the organisation service name :" +

sname + '\n');

cat ch(Exception ex)

{

nul I,

null);

WWW.SyNngress.com

Continued

Locating Web Services = Chapter 9

Figure 9.9 Continued

ex. printStackTrace();

Querying the registry using the query() method of the code listing in Figure 9.9
produces the output shown in Figure 9.10.

Figure 9.10 The Results of a Simple Query

The output prints the names of organizations that begin with the letter A,
their respective key values and the services offered by them.

Finding a Service Using a Complex Query

We now use a complex query to find organizations in the registry on the
basis of classification. For complex queries, we need to implement both the
BusinessQueryManager and the BusinessLifeCycleManager. In our example of a
complex query, we use the BusinessLifecycleManager to create a classification on
the basis of a specified classification scheme as shown in the code snippet that
follows:

357

www.syngress.com

358

Chapter 9 = Locating Web Services

Busi nessLi f eCycl eManager bl cm = rs. get Busi nessLi f eCycl eManager () ;
String schemeNane = "uddi-org:types";

Cl assi ficati onSchene uddi Or gTypes;

Uddi OrgTypse = bgm findd assi ficat i onScheneByNanme(scheneNane) ;

Cl assi ficati on wsdl Specd assi ficat i on;
wsdl Specd assi ficati on = bl cm creat ed assi ficati on(uddi Or gTypes,
"wsdl Spec",

"wsdl Spec") ;

The first argument uddiOrgTypes is the classification scheme, while the second
and third arguments, wsdISpec, are the taxonomy name and value, respectively,
defined by the UDDI specification for a WSDL (Web Services Description
Language) document.We assign the classification to a collection and use the
findConcepts() method of the business query manager:

Col I ection classifications = new ArrayList();

cl assi ficati ons. add(wsdl Specd assi ficati on) ;

Bul kResponse br;

br = bgm findConcepts(null, null, classifications, null, null);

When we pass the classification created by the business life cycle manager to
the findConcepts() method, it ensures that only those concepts are returned for
which the services offered are based on WSDL or whose technical specifications
conform to WSDL. The findConcepts() method returns a collection of concepts (a
concept is used in JAXR to hold the information about a specification).\We can
now iterate through the concept collection to obtain the search results as given in
the following code snippet:

Col | ection specConcepts = br.getCollection();
Iterator iter = specConcepts.iterator();
while (iter.hasNext())
{
Concept concept = (Concept) iter.next();
String nanme = (concept.get Nane()).getVal ue();
Col l ection links = concept.get Ext ernal Li nks();
System out. println("\ nSpecificati on Concept:\n\tNanme: " + name +
"\n\tKey: " + concept.getKey().getld() +
"\'n\tDescription: " +
(concept . get Description()).getValue());

WWW.SyNngress.com

Locating Web Services = Chapter 9

if (links.size() > 0)

{
External Link link = (External Link) links.iterator().next();
Systemout.printIn("\tURL of WBDL docurent: '" +
link.getExternal URI() + "'");
}
}

The getValue() method returns a taxonomy code associated with the
concept. The getKey() method returns a key that represents the universally
unique ID (UUID) for the concept. The getID() method returns this UUID.
The getDescription() method returns a text that describes the concept. The
getExternalLinks() method returns a collection of links outside the registry that
contain additional information about the concept.

The organizations that satisfy a concept specification can be found using the
findOrganizations() method as shown next:

Col I ection specConceptsl = new ArraylList();
specConcept s1. add(concept);

br = bgm findOrgani zations(null, null, null, specConceptsl, null, null);

As in the previous example of a simple query, we can iterate through the col-
lection of organizations returned by the findOrganizations() method and retrieve
information pertaining to these organizations. The code listing of Figure 9.11
uses the ComplexQuery class that contains the method wsdlQuery() for querying a
registry based on a classification. The ComplexQuery class also instantiates the
Doconnect class (Figure 9.2) to obtain a connection with the registry.

Figure 9.11 Using Classifications to Query the Registry

import javax.xnl.registry.*;
import javax.xm .registry.infonodel.?*;
i mport java.net.*;
import java.util.*;
public class Conpl exQuery
{
static Connection connection = null;
public Conpl exQuery()
{}

Continued

359

www.syngress.com

360

Chapter 9 = Locating Web Services

Figure 9.11 Continued

public static void main(String[] args)

{

Conpl exQuery cquery = new Conpl exQuery();

/1 This part of Code will nmake a connection to the Registry Server

Doconnect nyconnection = new Doconnect ();

connection = myconnection.connection();

cquery. query();

public void query()

{

try

{

Regi stryServi ce nyservi ce;

Busi nessQuer yManager bgnanager;

Busi nessLi f eCycl eManager bl manager;
Cl assi ficati onSchene uddi O gTypes;

Cl assi ficati on wsdl Specd assi ficati on;

Bul kResponse br;

nmyservi ce = connection. get Regi stryService();

bgmanager nyservi ce. get Busi nessQuer yManager () ;
bl manager = nyservi ce. get Busi nessLi f eCycl eManager () ;
Systemout.println("CGot registry service, query " +

"manager, and lifecycle nmanager");

String sNanme = "uddi-org:types";

uddi Or gTypes bgmanager . findCl assi ficat i onSchenmeByNane(sNane) ;
wsdl Specd assi ficati on = bl nanager. creat ed assi ficati on(
uddi Or gTypes,
"wsdl Spec",
"wsdl Spec");

Continued
WwWw.syngress.com

Locating Web Services = Chapter 9 361

Figure 9.11 Continued

Col I ection classifications = new ArrayList();

cl assi ficati ons. add(wsdl SpecC assi ficati on);

br = bqgmanager. findConcepts(null, null, classifications,
null, null);

Col | ection specConcepts = br.getCollection();

Iterator iter = specConcepts.iterator();

if (liter.hasNext())

{
Systemout. println("No WSDL specificati on concepts found");
}
el se
{
while (iter.hasNext())
{

Concept concept = (Concept) iter.next();
String name = (concept.get Nane()). getVal ue();
Col l ection Iinks = concept.get Ext ernal Li nks();
System out. println("\nSpecificati on Concept:\n\tName: " +
name + "\n\tKey: " +
concept. getKey().getld() +
"\'n\t Description: " +
(concept . get Description()).getValue());
if (links.size() > 0)

{
External Link link = (ExternalLink) links.iterator().next();
Systemout.println("\tURL of WBDL docunent: '" +
link.getExternal URI () + "'");
}

/1 Find organizations using this concept
Col | ection specConceptsl = new ArraylList();
specConcept s1. add(concept);

Continued

www.syngress.com

362 Chapter 9 = Locating Web Services

Figure 9.11 Continued

br = bqgnanager. findOrgani zations(null, null, null,
specConceptsl, null, null);

Col l ection orgs = br.getCollection();

/1 Display information about organizations
Iterator orglter = orgs.iterator();
if (orglter.hasNext())
{
Systemout. println("Organi zations using the '" +
name + "' WBDL Specification:");

}

el se

{

Systemout.println("No O ganizations using the '" +
name + "' WSDL Specification");

while (orglter.hasNext())

{
Organi zation org = (Organi zation) orglter.next();
Systemout.printIn("\tName: " + (org.getNanme()).getValue() +
"\n\tKey: " + org.getKey().getld() +
"\'n\tDescription: " +
(org.getDescription()).getValue());
}
}
}
}
catch (Exception e)
{
e.printStackTrace();
}

WWW.SyNngress.com

Locating Web Services = Chapter 9 363

The output of the ComplexQuery class is as shown in Figure 9.12.

Figure 9.12 Results from the Complex Query

Understanding the Query Results

In this section, we use the query results of the simple and complex queries dis-
cussed in the previous sections to highlight the information that can be obtained
by querying a business registry.

Metadata Returned

The Metadata returned by the query is in the form of details about the organiza-
tion that are contained in the registry database. This information includes:

= A Name object that contains the name of the organization. Note that
the organization name in the preceding queries was obtained by type-
casting an lIterator object into an organization object and using the code
org.getName().getValue(), where org is the Organization object.

= A Description object that gives the description of the organization
org.getDescription().get\Value().

= A collection of Service objects that contain the services offered by the
organizations; this collection being obtained using the getServices()

method.

364 Chapter 9 = Locating Web Services

Additionally, you can also obtain the following information from the query
results using the respective method of the Organization Interface:

= A Key object that represents the ID through which an organization
entry is uniquely identified by the registry.

= A Primary Contact object that can be used to obtain the name of the
person who is the primary contact for an organization. This can be done
using the getPrimaryContact() method—namely, org.getPrimaryContact()
.getPersonName().

= Postal Address of the organization by using the getPostalAdress() method.

= A Collection object for the users affiliated to the organization by using
the getUsers() method.

= A collection of child organizations of an organization by using the
getChildOrganizations() method, and so on.

External Data

The external data derived from the preceding queries is in the form of external
links obtained using the code concept.getExternalLinks(). These external links are
URLs from where the services offered by an organization can be accessed. The
URL obtained as an external link may also contain content outside a registry—
for example, an organization may put its home page link in the registry informa-
tion. Additionally, these external links may point to WSDL documents that define
the XML format for transacting business with the company (see the links against
the URL of the WSDL document label in Figure 9.12).

WSDL Documents

Web Services Description Language (WSDL) is a part of UDDI’ initiative to
provide business directories and service descriptions for online services. Akin to
XML grammar for Web services, WDSL is a specification frequently used to
describe networked XML-based services, allowing service providers to describe
the basic format of requests that can be sent to their systems irrespective of the
protocol (such as SOAP) or encoding (such as Multipurpose Internet Messaging
Extensions) being used. In this section, we discuss the structure of a WSDL
document and create an example document.

WWW.SyNngress.com

Locating Web Services = Chapter 9

Structure of a WSDL Document

In essence, WSDL defines a standardized format for data exchange to facilitate
e-business. Structurally,a WSDL document has a <definitions> element as the
root, like that shown next:

<defini ti ons nane="nnt oken" target Namespace="uri">

<-- put definitions here -->

</ defini ti ons>

The <definitions> element defines the name of the Web service. It also
declares multiple namespaces used in other elements in the document. The
<definitions> element contains a set of related services.WSDL defines these ser-
vices using the following six main elements:

= Types The <types> element specifies the low-level data types used for
the procedure contents or the messages being transmitted between the
client and the server.W3C XML Schema specification is WSDL default
choice for the type-system. Thus, if a service uses only the simple built-in
type of the XML schema (strings, integers, and so on), the <types> ele-
ment is not required. The format for the <types> element is as follows:

<t ypes>
<schenma t ar get Namespace="htt p://nanmespaces. myURL. conf'
xm ns="http://ww. w3. or g/ 1999/ XM_Schena" >

</types>

= Message The <message> element defines the data format for a message.
The message could be a client request message or a server response mes-
sage. The message element defines the name of the message and may
contain one or more <part> elements which can refer to message
parameters or to message return values. The syntax for defining a mes-
sage is as follows:

<nessage nane="nsgName">
<part name="nyPart" el ement="nyEl enent?" type=
"nmyns: partNS "?/>

</ nessage>

365

www.syngress.com

366

Chapter 9 = Locating Web Services

PortType The <portType> element is used to group messages that form
a single logical operation. A single logical operation is a complete client-
server communication that encloses both a client request to the server
and the server response to this request. For example, a request may
trigger a response, or in case of error or exception, an error or excep-
tion. This request-response or request-exception exchange can be
grouped together into aWSDL port type. This is equivalent to saying
that the <portType> element defines what operations or functions the
service described by the WSDL document will support. A single
<portType> element can define more than one operation. The syntax for
the <portType> element is as follows:

<port Type nanme="mnyPort">

<operation nane="nyOperation">

<i nput nessage= "input MSG' nane="nyl nput"/>
<out put nessage = "out put MSG' nanme="nyCQutput"/>
<fault message = "error MsG" nanme="nyError"/>

</ oper ati on>

</ port Type>

WSDL supports four basic types of operations. These are:

= One-way The service receives a message. This would mean that
only the <input> element shown earlier will be present.

= Request-Response The service receives a message and sends a
response. Thus the operation will have an <input> element, fol-
lowed by an <output> element as given in the <portType=>
syntax. The <fault> element is optional. The request-response
pattern is most commonly used in SOAP services.

= Solicit-Response The service (not the client) initiates communi-
cation by sending a message and receives a response. Hence,
this operation will have an <output> element followed by an
<input> element. The <fault> element is optional.

= Notification The service sends a message and seeks no
response. The operation will therefore, have a single <output>
element only.

Figure 9.13 shows these four operations.

WWW.SyNngress.com

Locating Web Services = Chapter 9

Figure 9.13 The Basic Operations Supported by WSDL

<input>(1) .

Client —— | Web Service One Way
<input>(1)

Client < Web Service Request-Response
<output>(2)

| <output>(1)

Client » Web Service Solicit-Response
<input>(2)
<output>(1 —
Client <p7() Web Service Notification

The number in brackets (1 or 2) at the end of the <input>/ <output> tag
indicates the order in which the operation occurs.

= Binding The <binding> element describes the concrete specifics of
how the service will be practically implemented. It defines the message
format and the protocol details (say, SOAP-specific information) for the
operations and messages defined by a particular portType. A given
portType may have any number of bindings. The syntax is as follows:

<bi ndi ng nanme="nyBi ndi ng" type="nmyPort">
<oper ati on name="nyQOperation">
<i nput nane="nyl nput ">
</i nput >
<out put nanme="nmyQut put ">
</ out put >
<fault nane="nyError">
</faul t>
</ oper ati on>

</ bi ndi ng>

= Port A <port> element defines a single address for a binding. A port
must not specify more than one binding and should contain only the

367

www.syngress.com

368

Chapter 9 = Locating Web Services

address information for the binding. The syntax of this element is as
follows:

<port name="myPort" bi ndi ng="nyBi ndi ng">

</ port>

= Service The <service> element provides the location of the service (in
other words, the URL from which the service may be invoked). This
normally is the Web address or the URI for a provider of the described
service. The <service> element uses a port and its specified binding to

define a physical location for a communication end point. The syntax of

this element is as follows:

<servi ce nane="nnt oken" >
<port name="nyPort" />

</ service>

Example WSDL Document

We now use the elements described in the “Structure of a WSDL Document”
section to develop a sample WSDL document, shown in Figure 9.14.

Figure 9.14 Example of a WSDL Document

<?xm version="1.0" encodi ng="UTF-8"?>

<defini ti ons nane="Test Servi ce"

t ar get Namespace="ht t p: / / ww. syngr ess. conf wsdl Docs/ Test Servi ce. wsdl "
xm ns="http://schemas. xm soap. org/ wsdl /"

xm ns: soap="http://schemas. xn soap. or g/ wsdl / soap/"

xm ns:tns="http://ww. syngress. conl wsdl / Test Servi ce. wsdl "

xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schenma" >

<message name="client Request">
<part nane="first Nane" type="xsd:string"/>
</ nessage>
<nessage name="Server Response" >
<part nanme="wel comeMessage" type="xsd:string"/>

</ nessage>

Continued

WWW.SyNngress.com

Locating Web Services = Chapter 9

Figure 9.14 Continued

<port Type name="t est Port Type" >
<oper ation nane="wel coneCient">
<i nput message="tns:client Request"/>
<out put nessage="tns: Server Response"/ >
</ oper ati on>

</ port Type>

<bi ndi ng nanme="t est Bi ndi ng" type="tns:testPortType">
<soap: bi ndi ng styl e="rpc"
transport="http://schenmas. xm soap. or g/ soap/ http"/>
<operation nane="wel coned ient">
<soap: oper ation soapAction="wel conredient"/>
<i nput >
<soap: body
encodi ngStyl e="http://schemas. xm soap. or g/ soap/ encodi ng/ "
namespace="ur n: exanpl es: t est servi ce"
use="encoded"/ >
</i nput >
<out put >
<soap: body
encodi ngStyl e="http://schemas. xm soap. or g/ soap/ encodi ng/ "
namespace="ur n: exanpl es: t est servi ce"
use="encoded"/ >
</ out put >
</ oper ati on>

</ bi ndi ng>

<servi ce name="test Servi ce">
<port binding="tns:testBinding" nane="testPort">
<soap: addr ess
| ocation="http://| ocal host: 8080/ soap/servlet/rpcrouter"/>
</ port>
</ servi ce>

</ defini ti ons>

369

www.syngress.com

370

Chapter 9 = Locating Web Services

Let us now analyze the sample WSDL document of Figure 9.14 on the basis
of our discussion in the section, “Structure of a WSDL Document.”

The <definitions> Element

The <definitions> element in the listing of Figure 9.14 specifies that this VWeb ser-
vice is called the TestService. The <definitions> element also specifies a number of
namespaces that have been used in further elements of the WSDL document. The
use of namespaces enables the WSDL document to reference multiple external
specifications such as the WSDL specification, the SOAP specification, the XML
Schema specification, and so on.

Note the targetNamespace attribute in the <definitions> element:

<defini ti ons nane="SyngressTest Servi ce"
t ar get Namespace="htt p: // ww. syngress. conf wsdl Docs/ Test Servi ce. wsdl " ...>

The targetNamespace is an XML Schema convention that enables the WSDL
document to refer to itself.

The definitions element also specifies a default namespace as follows:
xmins=*http://schemas.xmlsoap.org/wsdl/”. Elements such as <message> that do
not have a namespace prefix are therefore assumed to be part of the default
WSDL namespace.

The <message> Element

The listing of Figure 9.14 defines two message elements, a request message
named clientRequest from the client, and a response message hamed serverResponse
from the server. Note the <part> element within the <message> element:

<nmessage nanme="cli ent Request">
<part nanme="fir st Nane" type="xsd:string"/>
</ nessage>
<nessage name="server Response">
<part nane="wel coneMessages" type="xsd:string"/>

</ nessage>

The <part> element for the client request specifies a single request (message)
parameter—that is, a firstName parameter. The <part> element for the response
specifies a return value that happens to be a welcome message for the client in
our case. The type attribute of the <part> element specifies an XML Schema data
type. Note that the value of the type attribute must be namespace-qualified, hence
the use of xsd as a prefix (xsd references the namespace for XML Schema).

WWW.SyNngress.com

Locating Web Services = Chapter 9

The <portType> Element

The <portType> element defines a single operation named welcomeClient. This
operation consists of the client’s request message, named clientRequest and the
server’s response message named serverResponse. Note that the message attribute
in the code snippet that follows should also be specified with reference to a
namespace:

<port Type nane="t est Port Type" >
<oper ation nane="wel coneCient">
<i nput message="tns:clientRequest"/>
<out put nessage="tns: Server Response"/ >
</ oper ati on>

</ port Type>

For example, the message attribute of the <input> element has the prefix tns
that references the targetNamespace defined in the definitions element. Thus, as
already mentioned while describing the <definitions> element of the sample
WSDL document, the targetNamespace attribute is used for self-referencing.

The <binding> Element

The <binding> element specifies how the portType operation (welcomeClient) will
actually be transmitted over the wire. HTTP GET, HTTP POST, and SOAP are
some of the protocols that can be used for transporting the Bindings over the
network.

The <binding> element itself specifies the binding name and a type attribute
that refers to the portType named testPortType, using the self-referencing
targetNamespace:

<bi ndi ng name="Hel | o_Bi ndi ng" type="tns: Hello_Port Type">

The <soap:binding> element indicates that the binding will be made available
via SOAP (WSDL has built-in extensions for SOAP that enables you to specify
SOAP-specific details such as SOAP headers, SOAP encoding styles, and the
SOAPAC(tion HTTP header). The value rpc for the style attribute of the
<soap:binding> element specifies an RPC format. This means that the function
parameters will be embedded inside a wrapper XML element. This wrapper
XML element will indicate the function name and will be included within the
body of the SOAP request. Similarly, the body of the SOAP response will contain
a wrapper element within which the function parameters will be embedded.

371

www.syngress.com

372

Chapter 9 = Locating Web Services

The value of the transport attribute, http://schemas.xmlsoap.org/soap/http, indi-
cates the SOAP HTTP transport, whereas http://schemas.xmlsoap.org/soap/smtp
indicates the SOAP SMTP transport.

The <soap:operation> element indicates the binding of a particular operation
to a specific SOAP implementation. The soapAction attribute specifies that the
SOAPAction HTTP header be used for identifying the service.

The <soap:body> element is used to specify the details of the input and
output messages such as the SOAP encoding style, the namespace associated with
the specified service, and so on.

The <service> Element

The <service> element specifies the location of the service. Since our WSDL doc-
ument specifies a SOAP service, we have used the <soap:address> element and
specified the local host address for the Apache SOAP rpcrouter servlet—that is,
http://localhost:8080/soap/servlet/rpcrouter.

This concludes our discussion on WSDL documents.\WWe’ll now talk about
how we can add data to, delete data from, or modify data in the registry using
JWSDP.

Storing Information in a Registry

In the section, “Using the Default Registry,” we explained how the Registry
Browser can be used for adding an organization to the registry. In this section, we
perform the tasks of adding/deleting an organization to/from the registry and
modifying existing records using JWSDP classes. We use IBM’s test registry in the
examples given in this section.

Adding New Registry Records

We again begin by making a connection to the registry using the connection()
method. (Please refer to the section, “Connecting to a Registry,” to review how
the connection() method works.) The first step in creating an organization is pro-
viding a username and password to the registry for authentication. The authenti-
cation information is used to set the credentials for the connection object as
shown in the following code snippet:

String usernane = "Yashl";

String password = "yashraj1";

WWW.SyNngress.com

Locating Web Services = Chapter 9

Passwor dAut hent i cati on userdetail;

userdetail = new PasswordAut hentication (username, passw toCharArray());
Set user = new HashSet();

user. add(userdetail);

connection. set Credenti al s(user);

Recollect from the discussions in the “Using the Default Registry” section
that you need to create an IBM UDDI Account to obtain the username and
password.

Next, we create a business life cycle manager to create an organization that
we can submit to the registry:

Busi nessLi f eCycl eManager bl nanager;

bl manager = nyservi ce. get Busi nessLi f eCycl eManager () ;

We use a BusinessLifeCycleManager object since it provides methods that are
required to set the necessary information pertaining to an organization, as will be
clear from the following discussions.

We use the createOrganization() method of the business life cycle manager to
create an Organization object as shown in the following line of code:

Organi zati on org;

org = bl manager.createOrgani zati on("Dreantech Software India Inc.");

This sets “Dreamtech Software India Inc.” as the name of the organization. To
add a description for the organization, we use the following code:

International String s;
s = bl manager. createl nternati onal Stri ng(
"Were Dreans Becone Technol ogy");
org. set Description(s);
To create a primary contact for the organization, we use the createUser()
method of the business life cycle manager as shown next:

User primaryContact = bl manager.createUser();
Per sonName pNarme = bl nmanager. cr eat ePer sonNane(" Yash");

pri maryCont act . set Per sonNane(pNane) ;

The setPersonName() method sets the name of the primary contact. In a sim-
ilar manner, we can set the telephone number for the primary contact as shown
in the following:

Tel ephoneNunber t Num = bl manager. cr eat eTel ephoneNunber () ;

373

www.syngress.com

374

Chapter 9 = Locating Web Services

t Num set Nurmber (" (91) 011-3243077");
Col I ecti on phoneNums = new Arraylist();
phoneNuns. add(t Nun) ;

pri maryCont act . set Tel ephoneNunber s(phoneNuns) ;

The createEmail Address() and setEmailAddress() methods are used in a similar
fashion to set the e-mail for the primary contact:

Emai | Address enmi | Addr;

enmai | Addr = bl manager. cr eat eEnai | Addr ess("yash@ir eant echsof t ware. cont') ;
Col I ection enmil Addresses = new ArrayList();

enmi | Addr esses. add(enai | Addr) ;

primaryCont act . set Emai | Addr esses(enai | Addr esses) ;

We now add the primary contact to the organization (“org,” created earlier)
using the following line of code:

org. set PrimaryContact (pri maryCont act);

After providing organizational information, we turn to the classifications that
we need to choose for the organization.We use the ntis-gov:naics scheme to add
classification to our organization, as shown in the following lines of code:

Cl assi ficati on cl assi ficati on;

classification = (O assificati on) bl manager. creat ed assi ficati on(
cSchene,
" Sof tware Publ i shers",
"51121");

Col I ection classifications = new ArrayList();

cl assi ficati ons. add(cl assi ficati on);

org. addd assi ficati ons(cl assi ficati ons);

Recollect from the discussions in the using the Default Registry section that
the NAICS taxonomy classifies various industry sectors such as Agriculture, Food
Processing, and so on (see Figure 9.4). Notice that in the createClassifications()
method, we have passed “Software Publishers” as the classification name and
51121 as the value that uniquely identifies this sector (these values are the same
as were obtained using the Registry Browser in Figure 9.3).

After classification, we add services and service descriptions to our organiza-
tion, once again using the methods of the business life cycle manager as shown in
the code snippet that follows:

WWW.SyNngress.com

Locating Web Services = Chapter 9

Col ection services = new ArraylList();

Service service = bl manager.createService("M Service Nanme");
International String is;

is = blmanager.createlnternational String("M Service Description");

servi ce. set Description(is);

The next step is to create service bindings that bind the service to a URL
from where that service can be accessed, as shown here:

Col | ection serviceBindings = new ArrayList();
Servi ceBi ndi ng bi nding = bl nanager . cr eat eSer vi ceBi ndi ng() ;
is = bl manager.createl nternational String(
"My Service Binding Description");
bi ndi ng. set Descri ption(is);
bi ndi ng. set AccessURI ("http://dreantechsoftware. coni);
servi ceBi ndi ngs. add(bi ndi ng) ;
servi ce. addSer vi ceBi ndi ngs(servi ceBi ndi ngs) ;

We now add these services to the organization:

servi ces. add(servi ce);

org. addSer vi ces(services);

We are now ready to submit our organization to the registry. We do this by
using the following lines of code:

Col l ection orgs = new ArraylList();
orgs. add(org);

Bul kResponse response = bl manager. saveOr gani zati ons(orgs);

The saveOrganizations() method will return an exception if the organization
cannot be submitted, else the response contains the unique ID key that is
assigned to the organization upon successful submission (see Figure 9.6).

This key can be retrieved by iterating through the response collection.
Figure 9.15 lists the code for the PublishEntry class that submits an organization
to the registry and prints the ID if the organization is successfully submitted;
otherwise, it prints out the exceptions that caused the submission process to fail.

375

www.syngress.com

376 Chapter 9 = Locating Web Services

Figure 9.15 Using the PublishEntry Class to Add an Organization to
the Registry

import javax.xm .registry.*;

import javax.xm .registry.infonodel.?*;
import java.net.*;

import java.security.*;

inmport java.util.*;

public class PublishEntry
{

static Connection connection = null;

public PublishEntry()
{}

public static void main(String[] args)

{

String usernane = "Yashl";

String password = "yashraj 1";

Publ i shEntry publishdoc = new PublishEntry();

//This part of Code will make a connection to the Registry Server

Doconnect nyconnection = new Doconnect () ;

connection = myconnection. connection();

publ i shdoc. publ i shentry(usernane, password);

public void publishentry(String usernane, String passw)
{

Regi stryService nyservice = null;

Busi nesslLi f eCycl eManager bl manager = null;

Busi nessQuer yManager bgmanager = nul | ;

try
{

WWW.SyNngress.com

Locating Web Services = Chapter 9 377

Figure 9.15 Continued

nyservi ce = connection. get Regi stryService();

bl manager = nyservi ce. get Busi nessLi f eCycl eManager () ;
bgmanager = nyservice. get Busi nessQuer yManager () ;
System out. printl n(

"Cot registry service, query manager, and life cycle nanager");

Passwor dAut henti cati on userdetail;
userdetail = new PasswordAut henti cation(usernane,

passw. toCharArray());
Set user = new HashSet();

user. add(userdetail);

connecti on. set Credenti al s(user);

System out. println("Checked Security |ssues User Logged ON');

/1 Create organization name and description
Organi zation org;
org = bl manager.createO gani zati on(
"Dreantech Software India Inc.");
International String s;
s = bl manager.createl nternational String(
"Where Dreans Becone Technol ogy");

org. set Description(s);

// Create prinary contact, set nane
User primaryContact = bl manager.createUser();
Per sonNarme pName = bl manager. cr eat ePer sonNane(" Yash") ;

pri maryCont act . set Per sonNane(pNane) ;

/1 Set primary contact phone nunber

Tel ephoneNunber t Num = bl manager. cr eat eTel ephoneNunber () ;
t Num set Nunber (" (91) 011-3243077");

Col |l ection phoneNuns = new ArraylList();

phoneNuns. add(t Nun) ;

primaryCont act . set Tel ephoneNunber s(phoneNuns) ;

Continued

www.syngress.com

378 Chapter 9 = Locating Web Services

Figure 9.15 Continued

/1 Set primary contact ermil address
Emai | Addr ess enai | Addr;
emai | Addr =bl manager . cr eat eEmai | Addr ess(
"yash@ir eant echsof t ware. coni') ;
Col I ection emrmil Addresses = new ArrayList();
emai | Addr esses. add(emai | Addr) ;

pri maryCont act. set Enmai | Addr esses(enai | Addr esses) ;

/1 Set primary contact for organization

org. set Pri maryCont act (pri maryCont act);

/1 Set classification schene to NAICS
C assi ficati onSchene cSchene;
cScherme = bgmanager. findd assi ficat i onScheneByName(

"ntis-gov:naics");

/1 Create and add cl assification

Cl assi ficati on cl assi ficati on;

cl assification = (O assificati on) bl manager. created assi ficati on(
cSchene,
"A Software Devel opnent Conpany",
"722213");

Col I ection classifications = new ArrayList();

cl assi ficati ons. add(cl assi ficati on);

org. addd assi ficati ons(cl assi ficati ons);

/1 Create services and service

Col l ection services = new ArraylList();

Service service = bl manager.createService("My Service Nane");
International String is;

is = bl manager.createlnternational String("M Service Description");

service. setDescription(is);

/1 Create service bindings

WWW.SyNngress.com

Continued

Locating Web Services = Chapter 9 379

Figure 9.15 Continued

Col I ection serviceBindings = new ArrayList();
Servi ceBi ndi ng bi ndi ng = bl manager. cr eat eSer vi ceBi ndi ng() ;
is = bl manager.createlnternational String(

"My Service Binding Description");
bi ndi ng. set Descri ption(is);
bi ndi ng. set AccessURI ("http://dreant echsoftware.conl');
servi ceBi ndi ngs. add(bi ndi ng) ;

/1 Add service bindings to service

servi ce. addSer vi ceBi ndi ngs(servi ceBi ndi ngs) ;

/1 Add service to services, then add services to organization
servi ces. add(servi ce);

org. addServi ces(services);

/1 Add organization and submt to registry

/1 Retrieve key if successful

Col l ection orgs = new ArraylList();

orgs. add(org);

Bul kResponse response = bl manager. saveOr gani zati ons(orgs);

Col l ection exceptions = response. get Exception();

if (exceptions == null)

{
System out. println("Organization saved");
Col l ection keys = response. getCollection();
Iterator keylter = keys.iterator();
if (keylter.hasNext())
{

javax.xm . registry.infonodel . Key orgKey;

orgKey = (javax.xm .registry.infonodel.Key) keylter.next();
String id = orgKey.getld();

Systemout.println("COrgani zation key is " + id);

org. set Key(or gKey);

}

Continued

www.syngress.com

380 Chapter 9 = Locating Web Services

Figure 9.15 Continued

}
el se
{
Iterator exclter = exceptions.iterator();
Exception exception = null;
while (exclter.hasNext())
{
exception = (Exception) exclter.next();
Systemerr.println("Exception on save: " +
exception.toString());
}
}
}
}
catch (Exception e)
{
e.printStackTrace();
if (connection !'= null)
{
try
{
connection. close();
}
catch (JAXRException je)
{

Systemerr.println("Connection close failed");

The output for the PublishEntry class is shown in Figure 9.16.
Note that the output in Figure 9.16 shows a successful operation that prints

out the organization key.

WWW.SyNngress.com

Locating Web Services = Chapter 9

Figure 9.16 Output of an Add-Organization Request

Updating Records

Once we add our organization to the registry, it is also possible to update the
information to reflect any changes made to the organization’s general informa-
tion, such as the primary contact, telephone numbers, and so on, or changes in
the services offered by the organization.

As an example, let’s delete the service we added in the PublishEntry class and
instead add a new service to our organization.\WWe begin by querying the registry
to search for our organization. For this, we set the name of our organization as
the name pattern to be searched, as shown in the code fragment that follows:

String businessnane = "Dreantech Software India Inc.";
Col I ection nanePatterns = new Arraylist()

nanePat t er ns. add(busi nessnane) ;

We now use the business query manager’s getOrganizations() method to search
for our organization, as in the following code:

Bul kResponse response;
response = bgm findOr gani zat i ons(findQual i fiers, nanmePatterns, null

null, null, null);

Here, bgm is the business query manager.

We iterate through the bulk response (see the explanation in the section,
“Querying the Registry”’) and obtain the services offered by our organization
using the getServices() method:

services = org.getServices();

381

www.syngress.com

382

Chapter 9 = Locating Web Services

Here, org is the organization object that refers to our organization.\We loop
through the services to obtain the key associated with the services by using the
following while loop:

whi | e(serlter. hasNext())
{
Service serve = (Service)serlter.next();
Systemout.println("This is the service nane to be deleted " +
(serve.getNane()).getValue() + '"\n');
nmykey = serve. get Key();
Systemout.printin("This is the service key to be deleted " +

mykey.getld() + "\n");

We now delete the service specified by the key value in the variable, mykey.
Since we added only one service, we shall have only one record for services. If
more than one service was added, at the end of the while loop, the mykey variable
would contain the key for the last service listed for our organization.\We use the
business life cycle manager, bimanager, to delete the service, as shown in the fol-
lowing code snippet:

Col l ection keys = new ArraylList();
keys. add(nykey);
Bul kResponse responsel = bl manager. del et eServi ces(keys);

Systemout. println("Del eted Service" + '"\n");

Note that while the querying process requires no authentication, deleting a
service requires authentication. Therefore, we authenticate ourselves with our
username and password, just as we had done while adding our organization to
the registry (see the code listing in Figure 9.16).

After deleting the service, we add a new service using the createService()
method to create the service, as in the following code:

Col I ection newservices = new ArrayList();

Service service = bl manager.createService("Test Service Nane");
International String is;

is = bl manager.createlnternational String("This is Service Description");

servi ce. set Description(is);

We now set this service to our organization and save it using the saveServices()
method of the business life cycle manager:

WWW.SyNngress.com

Locating Web Services = Chapter 9 383

servi ce. set Organi zation(org);
newser vi ces. add(servi ce);

Bul kResponse response2 = bl manager. saveServi ces(newservi ces);

This completes our updates. The entire code for the Update class is listed in
Figure 9.17.

Figure 9.17 Using the Update Class to Update Registry Records

import javax.xm.registry.*;

import javax.xm .registry.infonodel.?*;
import java.net.*;

import java.security.*;

inmport java.util.*;

public class Update

{

static Connection connection = null;

publ i c Update()
{1

public static void main(String[] args)
{
String usernane = "Yashl";
String passw = "yashraj 1";
String businessnane = "Dreantech Software India Inc.";

Updat e updatedata = new Update();

/1 This part of Code will make a connection to the Registry Server

Doconnect nyconnection = new Doconnect () ;

connection = myconnection. connection();

updat edat a. updat e(user name, passw, businessnane);

public void update(String usernane, String pass, String businessnane)

{

Continued

www.syngress.com

384 Chapter 9 = Locating Web Services

Figure 9.17 Continued

Col l ection services = null;
javax. xm . regi stry.infonodel . Key nykey = null;
javax. xm . registry.infonodel . Key depkey = null;

Organi zation org = null;

try

{
Regi stryService rs = connection. get Regi stryService();
Busi nessQuer yManager bgm = rs. get Busi nessQuer yManager () ;
Busi nesslLi f eCycl eManager bl manager;
bl manager = rs. getBusi nesslLifeCycl eManager ();

Systemout.println("CGot registry service and query manager");

/| Define find qualifiers and name patterns

Col | ection findQualifiers = new ArraylList();
findQual i fier s. add(Fi ndQual i fier . SORT_BY_NAME_DESC) ;
Col | ection nanePatterns = new ArraylList();

nanePat t er ns. add(busi nessnane) ;

Bul kResponse response;

response = bgm findOr gani zati ons(findQual i fiers, nanePatterns,
null, null, null, null);

Col l ection orgs = response. getCollection();

Iterator orglter = orgs.iterator();

while (orglter.hasNext())

{
org = (Organi zation)orglter.next();
Systemout.println((org.getKey()).getld() + "\n");
String nane = (org.getNane()).getVal ue();
Systemout.printIn("This is the organisation name :" +

nane + '\n');

services = org.getServices();

}

//This part of code will authenticate the user

Continued

WWW.SyNngress.com

Locating Web Services = Chapter 9 385

Figure 9.17 Continued

Passwor dAut henti cati on userdetail;

userdetail = new PasswordAut henti cation(usernane,
pass.toCharArray());

Set user = new HashSet();

user. add(userdetail);

connection. set Credenti al s(user);

System out. println("Checked Security |ssues User Logged ON');

/1 This part of code will delete a service
Iterator serlter = services.iterator();
whi | e(serlter.hasNext())
{
Service serve = (Service)serlter.next();
Systemout.printIn("This is the service name to be deleted " +
(serve.getNane()).getValue() + '"\n');
nykey = serve. getKey();
Systemout.println("This is the service key to be deleted " +
nykey.getld() + '\n');
}
Col | ection keys = new ArraylList();
keys. add(nmykey) ;
Bul kResponse responsel = bl manager. del et eServi ces(keys);

Systemout.printlin("Deleted Service" + '\n");

/1 This part of code will add a service
Col I ection newservices = new ArrayList();
Service service = bl manager.createService("Test Service Nane");
International String is;
is = bl manager.createl nternational String(
"This is Service Description");
service. setDescription(is);
servi ce. set Organi zation(org);
newser vi ces. add(servi ce);
Bul kResponse response2 = bl manager. saveServi ces(newservi ces);
Systemout.println("Service Added" + '\n');

Continued

www.syngress.com

386

Chapter 9 = Locating Web Services

Figure 9.17 Continued

}

cat ch(Exception e)

{

e.printStackTrace();

The output from the Update class is shown in Figure 9.18. The Update class
also calls the Doconnect class (Figure 9.2) to connect to the registry.

Figure 9.18 The Output from the Update Class

The output from the Update class (as shown in Figure 9.18) prints status mes-
sages that confirm that the service named Test Service Name has been deleted and
a new service has been added. The organization records thus stand updated.

Deprecating and Deleting Existing Records

We have seen how to add an organization to the registry and how to modify and
update registry records.WWe now discuss how these records can be deprecated or
deleted.

Deprecation is equivalent to saying that the services of an organization are no
longer available. The difference between deprecating an organization record and
deleting an organization record is that, when you delete an organization, you

WWW.SyNngress.com

Locating Web Services = Chapter 9

permanently remove access to its services, until you re-create and resubmit the
organization. Deprecating, on the other hand, is temporary in nature, since you
can un-deprecate a deprecated organization at any time to put it back in business.
A deprecated organization, however, will not be listed in the query results of a
registry until it is un-deprecated.

We now build a class, the DeleteEntry class that contains methods both to
deprecate and delete an organization (see the methods deprecateEntry() and
deleteEntry(), respectively, in the code listing of Figure 9.19).

Just as for updating records, we begin by querying the registry using our
organization’s name as follows:

Col I ection nanePatterns = new ArraylList();

nanmePat t er ns. add(busNare) ;

Bul kResponse response;

response = bgmanager. findOr gani zati ons(findQual i fiers, nanePatterns, null,

null, null, null);

Here the variable busName contains the string “Dreamtech Software India Inc.”
Once again, we authenticate the user information by furnishing our user-
name and password, as shown in the following code:

Passwor dAut henti cation userdetail;
userdetail = new PasswordAut henti cation(usernane,
password. toCharArray());
Set user = new HashSet();
user. add(userdetail);

connection. set Credenti al s(user);

We obtain the organization key by iterating through the bulk response
returned by the query results.\WWe now pass this key to the deprecateObjects()
method of the business life cycle manager to deprecate the organization as
shown in the following lines of code:

String keynanme = key.getld();

Col | ection keys = new ArraylList();

keys. add(key);

Bul kResponse response = bl manager. deprecat ebj ect s(keys);

Here key is the organization key that is passed to the method deprecateEntry()
as a parameter.

387

www.syngress.com

388

Chapter 9 = Locating Web Services

Similarly, we pass this key to the deleteEntry() method as a parameter and use
the deleteOrganizations() method to delete the organization as in the following
lines of code:

String keynanme = key.getld();
Col l ection keys = new ArrayList();
keys. add(key);

Bul kResponse response = bl manager. del et eOrgani zati ons(keys);

The complete code for the DeleteEntry class is listed in Figure 9.19. Again, we
use the Doconnect class (Figure 9.2) to connect to the registry.

Figure 9.19 Using the DeleteEntry Class for Deprecating and Deleting
Existing Records

import javax.xm .registry.*;

import javax.xm .registry.infonodel.?*;
import java.net.*;

import java.security.*;

import java.util.*;

public class DeleteEntry
{

static Connection connection = null;
Regi stryService rs = null;
public DeleteEntry()

{}

public static void main(String[] args)

{
String usernane = "Yashl";
String password = "yashraj1";
String bname = "Dreantech Software";

javax. xm . registry.infonodel . Key keyl = null;

Del eteEntry myentry = new Del eteEntry();

/1 This part of Code will make a connection to the Registry Server

Continued

WWW.SyNngress.com

Locating Web Services = Chapter 9 389

Figure 9.19 Continued

Doconnect myconnection = new Doconnect ();
connection = myconnection. connection();

keyl = nyentry. query(bnane);

nyentry. del et eEntry(keyl, user nanme, password) ;

public javax.xm .registry.infonodel.Key query(String busNane)
{
Busi nessQuer yManager bgmanager = nul | ;
javax.xm . regi stry.infonodel . Key organi sationkKey = null;
try
{

rs = connection. get Regi stryService();
bgmanager = rs. get Busi nessQueryManager () ;

Systemout.println("CGot registry service and " + "query nanager");

/1 Define find qualifiers and name patterns

Col | ection findQualifiers = new ArraylList();
findQual i fier s. add(Fi ndQual i fier . SORT_BY_NAME_DESC) ;
Col | ection nanePatterns = new ArraylList();

nanePat t er ns. add(busNane) ;

/1 Find using the nane
Bul kResponse response;
response = bgmanager. findOr gani zati ons(findQual i fier s,
nanePatterns, null,
null, null, null);
Col | ection organi sation = response. getCol |l ection();
Iterator organisationl T = organisation.iterator();
whi | e(organi sati onl T. hasNext ())
{
Organi zation nyorg = (Organi zation)organi sationl T. next();
Systemout.println(" Found Organisation " + '\n');

organi sati onKey = mnyorg. getKey();

Continued

www.syngress.com

390 Chapter 9 = Locating Web Services

Figure 9.19 Continued

String id = organisati onKey.getld();

Systemout.printIn(" This is the organisation ID" + id + '"\n");

}
cat ch(Exception e)

{
e.printStackTrace();

}

return organi sationKey;

public void deprecateEntry(String usernane,
String password,

String bname)

javax. xm . regi stry.infonodel . Key nykey = null;
Busi nessQuer yManager bgmanager = nul | ;

Busi nessLi f eCycl eManager bl manager = nul | ;

Col | ection Services = null;

String keyname = null;

try

{

bgmanager = rs. get Busi nessQueryManager () ;

Col | ection findQualifiers = new ArrayList();
findQual i fier s. add(Fi ndQual i fier . SORT_BY_NAME_DESC) ;
Col | ection nanePatterns = new ArraylList();

nanePat t er ns. add(bnane) ;

Bul kResponse response;

response = bgmanager. findOr gani zat i ons(findQual i fiers,
namePatterns, null,
null, null, null);

Col I ection organi sati on = response. get Col |l ection();

Iterator organisationl T = organisation.iterator();

WWW.SyNngress.com

Continued

Locating Web Services = Chapter 9 391

Figure 9.19 Continued

whi | e(or gani sationl T. hasNext ())
{

Organi zation nyorg = (Organi zation)organi sationl T. next();

Systemout.println(" Found Organisation " + '\n');

Servi ces = nyorg. get Services();

bl manager = rs. getBusi nessLi feCycl eManager () ;
Passwor dAut henti cati on userdetail;
userdetail = new PasswordAut henti cation(usernane,
password. toCharArray());
Set user = new HashSet();
user. add(userdetail);
connection. set Credenti al s(user);

System out. println("Checked Security |ssues User Logged ON');

Iterator serlter = Services.iterator();
whi | e(serlter.hasNext())
{
Service serve = (Service)serlter.next();
Systemout.println("This is the service nane to be deleted " +
(serve.getNane()).getValue() + '"\n");
nykey = serve. getKey();
Systemout.printin("This is the service key to be deleted " +
nykey.getld() + '\n");

keyname = nykey.getld();

Systemout.println("Deprecating Organisation with ID" +
keyname + '\n');

Col | ection keys = new ArrayList();

keys. add(nmykey) ;

Bul kResponse responsel = bl manager. deprecat eQbj ect s(keys);

Systemout. println("Depricated service" + '"\n');

Continued

www.syngress.com

392 Chapter 9 = Locating Web Services

Figure 9.19 Continued

cat ch(Exception ex)

{

ex. printStackTrace();

public void deleteEntry(javax.xm .registry.infonodel.Key key,
String usernane,

String password)

Busi nessLi f eCycl eManager bl manager = null;
try
{

bl manager = rs. getBusi nessLi feCycl eManager () ;
Passwor dAut henti cati on userdetail ;
userdetail = new PasswordAut henti cation(usernane,
password. toCharArray());
Set user = new HashSet();
user. add(userdetail);
connection. set Credenti al s(user);
System out. println("Checked Security |ssues User Logged ON');

String keynane = key.getld();
Col | ection keys = new ArrayList();
keys. add(key);
Bul kResponse response = bl manager. del et eOrgani zati ons(keys);
Systemout.printin("Del eted service of the following Key " +
keyname + '\n');
}

cat ch(Exception ex)

{

ex. printStackTrace();

WWW.SyNngress.com

Locating Web Services = Chapter 9

The output for the DeleteEntry class is shown in Figure 9.20. It lists the key
for the organization that has been deleted.

Figure 9.20 The Output for the DeleteEntry Class

NoTE

As of the time of writing this book, the deprecateObjects() method (see
code listing of Figure 9.19) generates an UnsupportedCapabilityException,
perhaps due to some unresolved compatibility issues between the registry
and the JAXR pack.

Security Requirements

In each of the classes listed earlier, PublishEntry, UpdateRegistry, and DeleteEntry,
we have supplied a username and password to authenticate ourselves before we
can add, modify, or delete our organization’s information in the registry. Each of
the code listings in Figure 9.15, Figure 9.17, and Figure 9.19 contain the fol-
lowing code snippet:

Passwor dAut henti cati on userdetail ;
userdetail = new PasswordAut henti cation(usernane,
password. toCharArray());
Set user = new HashSet();
user. add(userdetail);

connection. set Credenti al s(user);

393

www.syngress.com

394 Chapter 9 = Locating Web Services

This code snippet is a must since without verifying the user’s credentials, the
registry does not allow addition, modification, or deletion of data. In the *“Using
the Default Registry” section too, where we had used the Registry Browser, we
were asked for our username and password when trying to submit our organiza-
tion to the registry (see Figure 9.5). This ensures that the information in the reg-
istry is secure and no one can change the registry information without proper
authorization.

WWW.SyNngress.com

Locating Web Services = Chapter 9 395

Summary

This chapter focused on business registries, their classification, and methods to
access and search business registries. We discussed the categorization of services in
business registries on the basis of industry sectors and on the basis of location that
makes them easily searchable.\We also explained protocols such as SOAP and the
major registry standards such as UDDI and ebXML RegRep. After reviewing the
structure of registries, we explored the default registry that comes with the '
JWSDP pack and is used for testing and development purposes. We explained
how the Registry Browser, also a part of the JWSDP pack, is used to access a
registry and search it, as well as add an organization to it.
Querying techniques were elaborated at length since the major purpose of “
business registries is to let vendors register themselves and let buyers search them.
To clarify the process of querying, we used an example of a simple query that
matches a name string pattern and a complex query that searches the registry on
the basis of classification. In the process, we described the major JAXR interfaces,
classes, and methods that make querying the registry possible. Towards the end of
the chapter, we took up JWSDP interfaces, classes, and so on that allow you to
programmatically add/delete an organization to/from a registry, and update
existing information in the registry. In a nutshell, this chapter covered all aspects
relevant to business registries.

Solutions Fast Track

Registries
M A registry is a collection of meta-information about Web services and
their providers.

M Information in a registry is categorized on the basis of industry sector
and geographical location.

M SOAP is the major protocol used for accessing and communicating with
registries.

M UDDI and ebXML are two industry initiatives that seek to standardize
the way business is conducted over the Internet.

www.syngress.com J

396 Chapter 9 = Locating Web Services

Categorizing Web Services

M WWeb services are those that receive, process (if required), and respond to
requests from Web-clients. Web services encompass any self-contained
software component/application or piece of code that can be deployed
on aWeb server, and subsequently be invoked over the Web by Web-
clients.

M Categorization is crucial for proper organization and maintenance of a
business registry.

Connecting to a Registry
M The ConnectionFactory class in the JAXR API is used to establish a

connection with the registry.

M Connecting to the registry entails setting the appropriate query URL for
querying the registry, or publish URL for submitting an organization to
the registry.

M The proxy host and proxy port needs to be appropriately set if you are
connecting to the registry from behind a firewall.

Querying the Registry

M The registry can be queried on the basis of organization name-pattern,
or on the basis of classification (industrywise or locationwise).

M The business query manager and business life cycle manager provide
methods to query the registry based on name patterns and classification

b d schemes.
M The javax.xml.registry package provides various methods, such as
findOrganizations(), findServices(), findConcepts(), and so on, to query a
registry.

r M Querying the registry returns a collection of objects that provide
information about the organizations that match the search criteria such
as organization name, primary contact, services offered, and so on.

WWW.SyNngress.com

Locating Web Services = Chapter 9 397

WSDL Documents

M WSDL is UDDI initiative to provide XML grammar for WWeb services
so that the format for data and message exchange for e-business are
standardized.

M AWSDL document defines the XML grammar within a <definitions>
tag and the services are defined using the six major elements, <types>,
<message=>, <portType>, <hinding>, <port>, and <service>. A

M An example was shown of aWSDL document that defines a business
message process involving receipt of a first name in the client request
and which sends back a welcome message to the client using SOAP. ‘

Storing Information in a Registry

M The BusinessLifeCycleManager interface in the javax.xml.registry package
provides various methods required to create an organization and add to
it information such as the organization name, contact person, telephone
numbers, services offered, and so on.

M A username and password are required for authentication to store
information in the registry or to modify existing information.

M Existing records in the registry can be updated—for example, the
deleteServices() method can be used to delete a service or the saveServices()
method can be used to save a new service created. Updating requires
proper authentication using the username and password submitted for
the organization being updated.

M An existing organization in the registry can be deleted using the
deleteObjects() method, or deprecated using the deprecateObjects() method.
Both operations require proper authentication (username and password).

www.syngress.com J

398 Chapter 9 = Locating Web Services

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

Q: Why do we need business registries when so many search engines are avail-
able on the Web?

i A Search engines are meant to search unstructured and random data related to a
variety of fields such as education, industry, society, and so on that is available
at any URL on the World Wide Web. By contrast, a business registry is highly

: structured and is specifically meant for offering services and businesses. A reg-
%’ istry enables a focused search on the basis of industry, product category, and
L geographical location. Additionally, registries provide links to URLs from
where services being offered over the Web can be invoked.

Q: What is the purpose of standards like UDDI and ebXML?

A Standards such as UDDI and ebXML strive to standardize the format of busi-
ness messages and business data exchanged between clients and service
providers over the Internet. Such globally accepted standards will make
e-business simpler for trading parties by eliminating incompatibility between
their various data and message formats.

Q: How can I invoke a desired service after | have found a vendor for it while
-+ . searching the registry?
L " A: More often than not, the organization information in the registry contains
links in the form of URLS that can be used to invoke a particular service.
These links usually refer to aWSDL document that provides the request
r format for calling the service.

Q: What is JAXR?

A: JAXR is a pack that comes clubbed with the JWSDP pack and provides an
API to access a variety of XML registries. Programs written using the JAXR
API are portable across different registries.

WWW.SyNngress.com

Locating Web Services = Chapter 9 399

Q: What is the Java WSDP Registry Server?

A: The JWSDP Registry Server serves the same purpose as an actual business
registry does, except that it contains no actual data on service providers and
cannot be searched by actual clients over the Internet. This is a test registry
server that can be used by developers to test their programs that use JAXR
classes to access and query business registries.

Q: What is the purpose of WSDL?

A: Web Services Description Language (or WSDL) is an attempt at standardizing B
the request-response messages transmitted between trading parties over the '
Internet. WSDL allows service providers to specify formats that can be used
to send requests to their services irrespective of the underlying protocol. ﬂ

Chapter 10

Java Secure

Sockets Layer

Solutions in this chapter:

= Configuring JSSE

B

= Using HTTPS URL Handlers
= Using SopketFactoriés

-. Using Secure Server Sockets
= Using Secure Client Sockets

= Using JSSE Applications with WSDP

M Summary
M Solutions Fast Track

M Frequently Asked Questions

401

402

Chapter 10 = Java Secure Sockets Layer

Introduction

The Java Secure Sockets Extension (JSSE) is an odd addition to the Web Services
Developer Pack; it was added on somewhat late, and was made available as a Java
platform extension. However, JSSE is a standard component of J2SE as of version
1.4. So you only need to include JSSE in an environment that uses a JVM release
prior to 1.4 provided that the version is 1.2.1 or later.

JSSE provides a standard mechanism for establishing secure communication
among TCP/IP sockets. It supports the Secure Socket Layer (SSL) and Transport
Layer Security (TLS) security protocols. JSSE is designed to provide a standard,
royalty-free implementation of these protocols for commercial applications.

What is interesting about JSSE is its approach: JSSE introduces the concept of
a socket factory (and a server socket factory). Socket factories are helper classes that
return socket instances; the socket instances in turn depend upon the socket fac-
tory used. The default socket factory, for example, returns insecure sockets; the
default SSLFactory returns SSLSockets. Using SSLSocket automatically handles the
handshaking required by the SSL protocol.

The user subsequently has to update the code to use socket factories instead
of creating sockets directly. Once this is done, the application is ready for secure
communication.

The use of SSL for transferring secure content over a network entails the use
of private and public keys and their associated security certificates. This intro-
duces the concept of a keystore, which is used to store the key and information
regarding the certificates. JSSE retrievs this information from the keystore for rel-
evant purposes. We’ll discuss the keytool utility (that is used to create and manage
a keystore) below. But first, let us discuss the process of configuring JSSE.

Configuring JSSE

This book deals specifically with JSSE version 1.0.2, which is available as an
extension to the Java platform.JSSE must be configured before you can use it.
The Java Cryptography Architecture security provider class, SUnJSSE, is used to
implement JSSE. Installation of JSSE requires the prior installation of Java 2 SDK
version 1.2.1 or later and Java Runtime Environment (JRE) version 1.2.1 or
later. The steps for installing and configuring JSSE are discussed below.

WWW.SyNngress.com

Java Secure Sockets Layer = Chapter 10

Download JSSE and Extract the Files

Download the JSSE package and save it in any directory on your system.
Extracting the downloaded file will create a directory named jsse1.0.2 in which
you will find two subdirectories: doc and lib. Note that the JSSE packages and
properties can also be used with the WSDP, as we shall see in the “Using JSSE
Applications with WSDP” section.

Install the .jar Files
The lib subdirectory contains the following extension files:

= jSse.jar
= jcert.jar
= jnet.jar

Place these three in the java-home/lib/ext directory.

Register the SunJSSE Provider

You need to explicitly register the SunJSSE provider before accessing its services.
This registration can be done in two possible ways: static or dynamic.

Static Registration
Edit the security property file. for WIN32, this file is as follows:

<j ava-hone>\lib\security\java.security

For any Unix-based system (Solaris, Linux and so on), this file is as follows:

<j ava- hone>/|i b/ security/java.security

The java.security file contains one property of the type:

security. provider. n=provi der Cl assNane

This property declares a provider and sets its preference order (n). If no spe-
cific provider is requested, the preference order determines the order in which
providers will be searched. Set this property as follows:

security. provider.l=com sun. net.ssl.internal.ssl.Provider

security. provider.2=sun. security. provider. Sun

SunJSSE will now be the first preferred provider.

403

www.syngress.com

404

Chapter 10 = Java Secure Sockets Layer

Dynamic Registration

Programmatically, dynamic registration is done by adding the following line of
code to the program seeking to use JSSE services:

Security. addProvi der (new com sun. net.ssl.internal.ssl.Provider());

This line of code should be added to a program before using JSSE, preferably
in the application or servlet’s initialization method. The provider is now added
dynamically at runtime using the java.net.Security class.

Readers should note that when the provider is set statically, it is available to
any JSSE program on the system. On the other hand, if the property is not set
statically, every program using JSSE classes will have to essentially include code to
configure the provider.

Configure The URL Handler

Configuring the URL handler enables JSSE programs to access URLs working
on the HTTPS (Secure HTTP) protocol. Like the provider, the URL handler
can be configured either statically or dynamically at runtime.

Static Configuration

The URL handler can be statically configured via the java.protocol.handler.pkgs
property. To set this property, execute the following command at the command
line:

java -D java. protocol . handl er. pkgs=\com sun. net.ssl.internal.

www. pr ot ocol .

Once the property is set statically, you need not configure it in JSSE code
again. Instead, URLs that use HTTPS can directly be accessed using the
URLConnection class.

Dynamic Configuration
To set the URL handler programmatically, use the java.lang.System class as follows:
System set Property("]j ava. prot ocol . handl er. pkgs", "com sun. net. ssl.

i nternal . wwv. protocol");

Note that the first parameter (java.protocol.handler.pkgs) refers to the property,
while the second parameter (com.sun.net.ssl.internal.www.protocol) is the value
assigned to this property. This is the same as in static configuration, except that

WWW.SyNngress.com

Java Secure Sockets Layer = Chapter 10

here we use the java.lang.System class instead of executing a command on the
command line.

Readers should be aware that configuring the URL handler programmatically
at runtime does not set the corresponding system property. This means that if you
have not configured the URL handler statically, every JSSE program seeking to
use the URL handler will have to necessarily use the above line of code in order
to connect to HTTPS URLs. On the other hand, when this property is set stati-
cally through the command line, any JSSE program on the system can use it to
access HTTPS URLs with no need to set the property through code.

Install a JSSE-Specific cacerts file
(Optional Configuration Step)

The Java2 SDK contains a default security certificate. However, if required, you can
provide a JSSE-specific set of trusted root certificates. \WWhen JSSE implementation
creates a default TrustManager, it checks for alternate cacert files before resorting to
the standard cacerts file. If a file is specified by javax.net.ssl.trustStore, it is used as the
trust store, otherwise the implementation looks for <java-home>/lib/security/
jssecacerts and <java-home>/lib/security/cacerts in that order.

Introduction to Keys and Certificates

A key is an algorithmically-generated number that is associated with a particular
entity, say a company or an individual. A key uniquely identifies an entity, and
hence provides a mechanism to verify that entity. A key can be private or public;
a private key is supposed to be known only to the entity to whom it belongs. On
the other hand, a public key is meant to be made available to anyone who
intends to have authenticated/trusted interaction with the entity that owns it.
Public and private keys exist in pairs, with a private key corresponding to exactly
one public key. A key is what uniquely identifies each entry made in a keystore
(This will be discussed in the next section).

A certificate is what certifies a key; it is a digital entity that is used by its
issuer to vouch for certain information being provided from another party (the
owner of the certificate). For example, the issuer confirms that an entity’s public
key as given by the certificate has a certain specified value. The first party (the
issuer) is generally a Certification Authority (CA) who is bound by legal agree-
ments to create and issue valid and reliable certificates. Examples of CAs are
VeriSign and Thawte.

405

www.syngress.com

406 Chapter 10 = Java Secure Sockets Layer

A certificate contains information on the its issuer and the digital signature of
the entity referred to by the certificate. Apart from this, a certificate contains
additional information, such as:

= The certificate serial number (that uniquely identifies the certificate and
is assigned by the entity that created the certificate).

= The X.509 version (v1, v2 and v3). X.509 is a standard that defines what
information can be stored in a certificate and its data format.

= The issuer of the certificate.
= The certificate’s validity period.
= The algorithm used by the CA to sign the certificate.

= The subject name (the name of the entity whose public key is specified
by the certificate).

= Public key information of the subject, and so on.

For all practical purposes, a key is certified, not by one certificate alone, but by
a chain of certificates. A certificate chain consists of say, a certificate from authority
B, certifying the key of entity A, followed by a certificate from authority C,
vouching for the integrity of information from authority B, followed by a certifi-
cate from authority D, that certifies the certificate from authority C and so on.

When a new key is added to the keystore using the -genkey command (which
is explained in the next section), a self-signed certificate is added to form the first
element of the certification chain. In a self-signed certificate, the issuer is the same
as the subject name (the name of the entity whose public key is specified by the
certificate). After a certificate signing request is sent to a CA and the certificate is
received, it replaces the self-signed certificate. The certificate for the CA’s public
key is also appended to the key’s certificate chain. Apart from the original, there
could be more certificates in the chain from different CAs, with each authority
certifying the certificate of the authority right above it in the chain. The certificate
chain thus grows until a self-signed root certificate is reached.

NoTE

It is worth mentioning the fact that most chains end in a certificate self-
signed by a well-known and trusted CA. Chains that end in unknown
CAs are the genesis of some IE security warning messages.

WWW.SyNngress.com

Java Secure Sockets Layer = Chapter 10

Using keytool to Create a Keystore

The keytool is a key and certificate management utility that allows users to
administer their own public or private key pairs and associated certificates. The
keytool facilitates use of digital signatures for authentication services like self-
authentication. In other words, the user authenticates himself/herself to other
users. The keytool stores the keys and certificates in a keystore. By default, this
keystore is implemented as a file (the private keys are protected with a password).
Information from this keystore is used by the jarsigner tool to generate or verify
digital signatures for Java Archive (JAR) files.

NoTE

The keytool and jarsigner together replace the javakey tool in JDK 1.1.
The keystore architecture replaces the identity database created and
managed by javakey. It also provides more features than javakey, pass-
word protection for private keys and verification of digital signatures,
for example.

A keystore contains two types of entries:

= Kkey entries A key entry typically consists of a secret or private key
with associated certificate chain information. Since such a key contains
sensitive information, it is saved in a protected format. The keytool and
jarsigner handle private keys only.

» trusted certificate entries A trusted certificate entry is a public key
certificate that contains the identity of the owner of the certificate. It is
called “trusted” because the keystore owner trusts that it conforms to the
identity prescribed by the certificate.

The keystore entries are accessed using aliases. Each keystore entry has a
unique, case-insensitive alias. An alias is specified when making an entry to the
keystore. Subsequent keytool commands must use the same alias when referring
to the entry being considered. (Aliases will be clarified by the subsequent discus-
sions on generating keystore entries.)

407

www.syngress.com

408

Chapter 10 = Java Secure Sockets Layer

Creating a Keystore

The default location for the keystore is the .keystore file in the user’s home
directory. The home directory is determined by the user.home system property.
This property varies with operating system configuration. For example, on a
multi-user Windows 95 system, user.home defaults to C:\Windows\Profiles\
username. However, for a single-user Windows 95, system user.home defaults to
C:\Windows.

A keystore is created when any of the following commands are used to make
an entry to a keystore that does not as yet exist:

-genkey The -genkey command generates a key pair. Consider the
following command:

keyt ool —genkey -alias nyKey —keypass nykeyPassword

This command generates a key with the alias myKey and the pass-
word mykeyPassword that is subsequently required to access the key. As
mentioned earlier, the alias is used when referring to the key. For
example, if the password for this key is to be changed to, say,
newPassword, the following command might be used:

keyt ool —-keypasswd -alias nyKey —keypass newPassword

Note that the alias myKey or mykey will both refer to the same key
since aliases are case-insensitive. The keystore location can be specified
using the -keystore option. If this option is not specified, it defaults to the
.keystore file in the user’s home directory as given by the user.home
system property.

WARNING

A password should not be specified on the command line unless you are
on a secure system. When you do not specify the password option on
the command line, you are prompted for it. The password typed at this
prompt is echoed as it is; displayed in plain alphanumeric characters,
exactly as typed (no “*” characters are used!). Hence, care should be
exercised to ensure privacy while typing the password.

WWW.SyNngress.com

Java Secure Sockets Layer = Chapter 10

= -import The -import command imports an entry from a specified cer-
tificate file, into the keystore and stores it against the specified alias. The
data to be imported should either be binary encoded or Base64
encoded.

» -identitydb This command reads all the entries from a JDK1.1 identity
database (as created by the javakey tool) and adds these entries into the
keystore. If the keystore does not exist, it creates one.

Apart from using the above commands, a keystore can also be created by
specifying a new one using the -keystore option.

Using Keytool to Create/Install a Certificate

Using keytool, it is possible to create or import a certificate to the keystore. key-
tool currently handles X.509 certificates. All X509 certificates contain the signa-
ture of the entity referred to by the certificate, the certificate serial number, the
signature algorithm identifier, the issuer’s name, the certificate’s validity period,
the subject name, the subject’s public key information and the X509 version.

As mentioned earlier, the keytool can create and manage key entries in the
keystore, each of which contains a private key and its associated certificate chain.
The public key corresponding to the private key entry in the keystore forms the
first certificate in the chain.We now discuss how certificates can be generated
and/or imported into the keystore.

Importing a Certificate

The keytool is used to import certificates associated with a key using the -import
command. As mentioned in the previous section, the -import command uses a
certificate file name to identify the certificate’s source and an alias name to iden-
tify the destination key. The imported certificates are added to the destination
key’s certificate chain. Consider the following command:

keyt ool —inport -alias destinationKeyNanme —fil e certificat eFil eNane. cer

This command will import the certificate specified by the certificateFileName
file and add it to the certificate chain of the key known by the destinationKeyName
alias. The keytool can import certificates with X.509 versions 1, 2, or 3. The gen-
eral form of an -import command is as follows:

-inport {-alias aliasNane} {-file certificateFile} [-keypass keyPassword]

{-noprompt} {-tustcacerts} {-storetype storetype} {-keystore keystore}

409

www.syngress.com

410 Chapter 10 = Java Secure Sockets Layer

[-storepass storePassword] [-provider providerd assNanme] {-v}

{-Jj avaoption option}
Lets take a look at the code parts involved here:

= -storetype defines the type of store that is given by the keystore.type prop-
erty. The default keystore type is jks, which is proprietary to Sun
Microsystems.You may choose any other type for the keystore, say a
type like SyngressKS, which is descriptive of a keystore type created by
Syngress.

= -provider specifies the name of the service provider’s master file, if that
name is not already listed in the securities property file.

= -v indicates verbose mode, whereby detailed information regarding the
certificate is output.

= -Jjavaoption passes the <javaoption> to the Java interpreter. This can be
used for changing JVM parameters; for example, you could ask the VM
to allocate additional memory for more efficient execution.

The rest of the options are self-explanatory or have been explained earlier.
Note that when a new trusted certificate is being imported, the key identified by
the alias name should not exist in the keystore. If the alias name already exists in
the keystore, the new certificate chain will replace the old one associated with
the alias. However, this requires that the password being used to protect the
already existing alias entry in the keystore be supplied to the -keypass option
when importing. If you have not supplied the password, you will be prompted for
it; without supplying the valid password, you cannot change the certificate chain
of the previous alias entry. Also, you cannot create a duplicate alias entry in the
keystore while importing certificates. If you are determined to use the same alias
for your entry, first delete the existing alias using the - delete option (“keytool
-delete -alias lwantThisAlias”) and then import the certificate.

Generating a Self-Signed Certificate
A self-signed certificate can be generated using the -selfcert keytool:
keytool -selfcert {-alias aliasNanme} {-sigalg signatureAl gorith}
{-dnane distingui shedNane} {-validity validityDays} [-keypass
keyPassword] {-storetype storetype} {-keystore keystore}
[-storepass storePassword] [-provider providerC assNane] {-v}

{-Jj avaoption option}

WWW.SyNngress.com

Java Secure Sockets Layer = Chapter 10

= -sigalg denotes the algorithm used to sign the certificate.
= -dname is the X.500 distinguished name for the CA.
For example, the following command replaces the certificate chain entry for

the myAlias key with a self-signed certificate from an authority with a specified
X.500 distinguished name:

keytool -selfcert -alias nyAlias -keypass nyPassword -dnanme " CN=nyNane
OU=nmyUnit, O=nuOrgani zation, L= nyCity, S=nyState, C=US"

Note the values for the -dname option:

= CN denotes common name of a person

= QU denotes the department, division or unit
= O denotes the name of the organization

= L denotes the city

= S denotes the state or province

= C denotes the two-letter country code

Importing a Certificate From an Identity Database

The -identitydb keytool option is used to import keys and certificates from a
JDK1.1 identity database managed by the javakey tool:

keytool -identitydb {-file idbFile} {-storetype storetype} {-keystore
keystore} [-storepass storePassword][-provider providerC assNane]

{-v} {-Jjavaoption option}

Here, the -file option specifies the identity database file. An identity in the
identity database may have more than one certificate. However, while importing,
only an identity’s first certificate is imported into the keystore.

Referring to Keystores with JSSE Properties

The Java API’s KeyStore class can be used to refer to the information kept in the
keystore. This class allows information about keys and certificates to be accessed
and used in a program. Let us examine this class in detail.

411

www.syngress.com

412

Chapter 10 = Java Secure Sockets Layer

The KeyStore Class

The KeyStore class is a part of the java.security package. This class represents the
collection of keys and certificates contained in the keystore. Since the keystore
contains the two types of entries (keys and certificates), this class is capable of
managing both. The KeyStore class’ getInstance() method is used to instantiate it.
This method has two forms:

getlnstance(String keystoreType)

The first form is:

KeyStore kslnstance = KeyStore.getlnstance("JKS");

Note that we are providing the default keystore type (jks). The above code
will check for a jks keystore implementation in the environment.
The second form is:

getl nstance(String keystoreType, Provider provider)

The provider can also be provided with the keystore type when instantiating
the KeyStore class as in the following code:

KeyStore kslnstance = KeyStore. getlnstance("JKS", "SUN');

The system will now determine whether the keystore implementation of the
specified type exists in the provider package.

Before a keystore can be accessed, the keystore must be loaded; an input
stream is passed to the load() method, which loads the keystore. This can be
achieved with the following line of code:

ksl nstance. | oad(new Fil el nput St rean(fil eNane), password);

The parameter password causes the keystore integrity to be verified before
it is loaded. If a null is passed as the input stream parameter, it creates an empty
keystore.

Upon a successful loading, the keystore information can be accessed using
various methods provided by the KeyStore class. Methods are also available to
modify or delete keystore entries.We discuss some of these methods below:

= size() This method returns an integer that gives the number of entries
in the keystore.

= aliases() This method returns an Enumeration object that contains all
the aliases listed in the keystore. These aliases can further be used to
obtain individual information about them.

WWW.SyNngress.com

Java Secure Sockets Layer = Chapter 10 413

= getCertificate(String aliasName) This method returns the certificate
associated with the given alias.

» getCertificateChain(String aliasName) This returns the certificate
chain associated with the key entry as recognized by the specified alias
name.

» getKey(String aliasName, char[] password) This method returns
the key that is identified by the given alias. The password is required to
retrieve the key.

= containsAlias(String aliasName) This method returns a Boolean
value that indicates whether the given name exists in the keystore.

» deleteEntry(String aliasName) This method deletes the entry corre-
sponding to the given alias.

» setKeyEntry(String aliasName, Key key, char[] password,
Certificate[] certChain) This method assigns the key specified by key
to the alias given by aliasName. This key entry is protected by the pass-
word given by password while certChain provides the certificate chain
associated with the key.

» setCertificateEntry(String aliasName, Certificate cert) This
method assigns the certificate given by cert to the key entry recognized
by the alias, aliasName.

= getProvider() This method returns the provider of the keystore.
= getType() This method returns the type of the keystore.

The Certificate Class

Apart from the KeyStore class, the Certificate class in the java.security.cert package
can also be used for getting specific information on the certificate entries in the
keystore. For example, when the KeyStore class’ getCertificateChain() method is
called, it returns an array of certificate objects. The information and properties
associated with each of these certificate objects can then be obtained using the
methods given in the Certificate class.

The constructor of the Certificate class can be used to create a certificate by
specifying the type of certificate.

Certificate(String certType);

www.syngress.com

414 Chapter 10 = Java Secure Sockets Layer

Here are some methods of the Certificate class:

= getPublicKey() This method returns the public key for the certificate.
= getType() This method returns the type of the certificate.

= verify(PublicKey key) This method verifies that the certificate was
signed using the private key for the public key specified by key.

= getEncoded() This method returns the encoded certificate.

Let us conclude our discussion by examining some sample code that uses
these JSSE properties to keystore entries.

Using JSSE Properties to Refer to the keystore

We call our class TestKeys.java. This class obtains information stored in a keystore
and prints out the information it reads. The code for TestKeys.java is given in
Figure 10.1.

Figure 10.1 The TestKeys Class

i mport java.net.*;
i mport javax.net.ssl.*;
import java.security.*;
import javax.security.cert.X509Certificate;
i mport com sun. net. ssl.*;
import java.io.*;
import java.util.*;
import java.security.cert.*;
public class TestKeys
{
public static void main(String[] args) throws Exception
{
Security. addProvi der (new com sun. net.ssl.internal.ssl.Provider());
char[] passphrase = "passphrase".toCharArray();
KeyManager Factory knf = KeyManager Factory. getl nstance
(KeyManager Fact ory. get Def aul t Al gorithm());
KeyStore ks = KeyStore.getlnstance("JKS");

ks. |l oad(new Fil el nput Strean("keys"), passphrase);

System out. println(ks. get Type());

WWW.SyNngress.com

Continued

Java Secure Sockets Layer = Chapter 10

Figure 10.1 Continued

Enuneration enum = ks. al i ases();
whi | e(enum hasMor eEl enent s())
{

Systemout.printIn("This is the allias " + (String)

enum next El ement ());

}
Systemout.println((ks.getProvider()).toString());
System out . println((ks. getKey("duke", passphrase)).getAl gorithm));
System out . println((ks. getKey("duke", passphrase)).getFormat());

java.security.cert.Certificate[] cera = ks.getCertificat eChai n("duke");

for (int i = 0; i < cera.length; i++)

{
Systemout.println((cera[i]).getType());
}

}

}

Note that the code uses the getinstance() method, which receives only the
store type parameter. The KeyStore instance thus created is loaded using the file
input stream that points to the file named “keys”. The keystore is validated since
the load method is supplied with a password given by passphrase. The code begins
by obtaining the keystore’s type. It then obtains the Enumeration array for all the
entries in the keystore, and prints them to the console. Note the code fragments:

ks. get Key("duke", passphrase)).getAl gorithm();
ks. get Key("duke", passphrase)). get Fornmat()

The first fragment uses the getAlgorithm() method to obtain the algorithm
used for the key entry identified by its alias, “duke.” The second fragment obtains
the associated format using the getFormat() method. The following code obtains
the certificate chain associated with the key identified by the alias “duke” in a
certificate array:

You might be wondering why the key is named duke? Duke is the name of
the java triangle guy!

ks. get Certi ficat eChai n(" duke");

415

www.syngress.com

416

Chapter 10 = Java Secure Sockets Layer

The type of each certificate in this certificate chain is then printed to the
console using the following line of code:

Systemout.printin((cera[i]).getType());

Here cera[i] gives the element at the ith position of the certificate array.
The output of the TestKeys class is as given in Figure 10.2.

Figure 10.2 Output from TestKeys Class

Using HTTPS URL Handlers

As mentioned in the section on configuring JSSE, the JSSE implementation con-
tains a URL handler for URL requests that use the HTTPS protocol. This han-
dler can be used only after its implementation package name has been added to
the list of packages searched by the java.net. URL class. This can be done statically
by setting the java.protocol.handler.pkgs system property, or dynamically at runtime.
When using the HTTPS protocol through proxy servers, you need to set the
https.proxyHost and https.proxyPort system properties to point them to the proxy
server’s host name and port, respectively. This can be achieved by executing the
following code:
java —Dhttp. proxySet=true -Dhttps. proxyHost=proxyMachi neNane
—Dht t ps. pr oxyPort =8000

proxyMachineName is the name of the host that is serving as the proxy server.

Configuring URL Handler for JSSE

The java.protocol.handler.pkgs property can be set by specifying the following java
command option at the command line:

java -D ava.
j ava. prot ocol . handl er. pkgs=\com sun. net. ssl . i nternal . ww. prot ocol .

To set the property programmatically, first check for any previously config-
ured protocol handlers. If none are found, just set the java.protocol.handler.pkgs

WWW.SyNngress.com

Java Secure Sockets Layer = Chapter 10

property. If a previously configured protocol handler exists, append the URL
handler to the existing handlers as shown in the code snippet below:

String prop = System get Property("java. protocol.handl er. pkgs");
if (prop !'= null)
prop += "com sun. net.ssl.internal.ww.protocol";
el se
prop = "com sun. net.ssl.internal.ww.protocol";

Syst em set Property("java. prot ocol . handl er. pkgs", prop);

NoTE

The code listings in this chapter do not check for previously configured
URL providers since we did not have any other protocol handlers config-
ured on our system. The code listings directly configure the URL handler
using the following code line:

System set Property("]j ava. prot ocol . handl er. pkgs", "com sun. net . ssl .

i nternal . wwv. protocol");

However, it is advisable to make a check as given in the above code
snippet.

Let us now consider a sample code that configures the URL handler for
JSSE. It uses the class Addproperty.java as in Figure 10.3.

Figure 10.3 Configuring the URL Handler

import java.security.*;
public class Addproperty
{
public static void main(String[] args)
{
try
{
/1 This line of code Configures the HTTPS URL handl er
System set Property("java. prot ocol . handl er. pkgs", "com sun. net. ssl .
i nternal . wwv. protocol");

/1 This property registers the SunJSSE provider.

Continued

www.syngress.com

417

418

Chapter 10 = Java Secure Sockets Layer

Figure 10.3 Continued

Security. addProvi der (new com sun. net.ssl.internal.ssl.Provider());
}
cat ch(Exception ex)
{
ex. printStackTrace();
}
}
}

This is evidently a two-line code that sets the URL handler and sets the
provider (See the section on configuring JSSE for details)

Creating a HTTPS Connection

We’ll now examine an example that illustrates configuring the URL handler for
JSSE and using it to connect to a URL using HTTPS.

Using the URL Handler

We use the URLHandler class to implement the JSSE URL handler dynamically
at runtime. It then connects to a URL using HTTPS and creates a BufferedReader
instance to read data from the URL. The data so read is then echoed as output.
Code for the URLHandler class is shown in Figure 10.4.

Figure 10.4 The URLHandler Class

import java.net.*;
inmport java.io.*;
i mport javax.net.ssl.*;

import java.security.*;

public class URLHandl er {

public static void main(String[] args) throws Exception {

System set Property("]j ava. prot ocol . handl er. pkgs", "com sun. net. ssl.

i nternal . ww. protocol");

URL verisign = new URL("https://netbanking");

Continued

WWW.SyNngress.com

Java Secure Sockets Layer = Chapter 10

Figure 10.4 Continued

Security. addProvi der (new com sun. net.ssl.internal.ssl.Provider());

Buf f eredReader in = new BufferedReader (new | nput StreanReader
(verisign.openStream()));

Systemout.println("Testing the code");

String inputlLine;

while ((inputLine = in.readLine()) != null)
System out. println(inputLine);

in.close();

}

The output from the URLHandler class is as shown in Figure 10.5. Note that
this output represents the HTML content returned by the URL.

Figure 10.5 Output from the URLHandler Class

Figure 10.4 clearly shows that once the URL handler has been implemented,
the java.net. URL class can be used to create a URL that uses the HTTPS.

URL verisign = new URL("https://netbanking");

This URL can then be used to open an input stream from the URL, just as is
done when creating an HTTP connection. Data can be read using any of the
methods available to the reader instance associated with the input stream. The
URLHandler class in Figure 10.4 uses the readLine() method to read one line at a
time from the HTTPS connection.

Thus, with the exception of setting the JSSE URL handler, the process
involved in securing an HTTPS connection is the same as for an HTTP URL
connection.

419

www.syngress.com

420

Chapter 10 = Java Secure Sockets Layer

Using SocketFactories

The URLSs discussed in the previous section provide a high-level mechanism for
connections over a network. Sockets on the other hand, provide a lower-level
interface for making connections and accessing resources over a network. Let us
discuss the various classes available for creating sockets. Sockets are mainly used
for client-server applications where multiple clients connect to a single server
over a network. The server implements the socket-server, which is capable of
accepting multiple client connections. Let us explore the concept of sockets.

Creating Sockets and ServerSockets (By Hand)

The java.net package provides two classes: the Socket class and the ServerSocket
class implement the client side and server side of the sockets, respectively.

The ServerSocket Class

Another class from the java.net package, the ServerSocket class implements the lis-
tener service on the server. The ServerSocket class listens at a specified port for
client requests and accepts them. Since a request is always initiated by a client, the
server needs to be a listening program, hence the need for a server socket. The
following line of code creates a server socket that listens at the port 5555:

Server Socket server Socket = new Server Socket (5555);

WARNING

Before implementing a server socket, ensure that the port at which the
listener listens is not being used by any other application on the server
machine. Also, socket numbers 1-1024 are reserved for system functions
and should generally not be used by applications.

In the code line above, port 5555, becomes dedicated to the listener program
implementing the server socket. This server socket can be used to accept client
connections:

Socket clientConnection = server Socket.accept();

The above code would open a new socket on the server machine to send
data to the client or receive data from the client. Readers should note that if a
class fails to create a socket, it throws an IOException error.

WWW.SyNngress.com

Java Secure Sockets Layer = Chapter 10

The Socket Class

The Socket class in the java.net package is used to create the client socket. The
communication is through the input and output streams associated with the
socket. A socket can be created as follows:

Socket clientSocket = new Socket (I ocal host, 5555);
This creates a socket on the local machine by connecting to the listening port
(in this case, 5555) on the server machine (localhost). Readers should replace

localhost with the name of their computer. To read from a socket, an input stream
can be opened using the socket instance:

Buf f eredl nput Stream client| PStream = new
Buf f er edl nput St rean{ cl i ent Socket . get | nput Strean());

Similarly, output streams can be created to use the socket for writing:

Buf f er edQut put St ream cl i ent OPSt ream = new
Buf f er edQut put St rean(cl i ent Socket . get Qut put Strean());

These streams can now be used by the client to read or write data using the
clientSocket instance.

Using SocketFactories and
ServerSocketFactories

Another method of creating sockets and server sockets is by using the factory
classes, SocketFactory and ServerSocketFactory, respectively.

The SocketFactory Class
The SocketFactory class is an abstract class that extends the java.lang.Object class:

public abstract class Socket Factory extends Ohject

This class provides the createSocket() method to create sockets:

public abstract Socket createSocket(String hostMachine, int port) throws

| OExcepti on, UnknownHost Excepti on

If the host computer referred by hostMachine is unreachable, an IOEXxception
is thrown, and if the name given by hostMachine cannot be resolved, an
UnknownHostException is thrown. Now, suppose we want to create a socket at
port 2022 using the Socket class. The following line of code may be used:

Socket factorySocket = SocketFactory.createSocket (| ocal host, 2022);

421

www.syngress.com

422

Chapter 10 = Java Secure Sockets Layer

The ServerSocketFactory Class
This class is also an abstract class that extends the java.lang.Object class as follows:

public abstract class ServerSocket Factory extends Object

It can be used to create server sockets using the createServerSocket() method,
which returns a server socket bound to the specified port on the server machine.

public abstract ServerSocket createServerSocket(int port)

throws | OException

To create a server socket at port 5555, the following line of code may be used:

Server Socket factoryServer Socket = Server Socket Factory.
creat eSer ver Socket (5555) ;

Advantages of SocketFactories
Socket factories offer the following advantages:

= Both factories and sockets show polymorphism. This enables an applica-
tion to use different types of sockets by passing different kinds of factories.

= The parameters used in socket construction can be used to customize
factories. Practical use of such customization could be to obtain sockets
with different networking timeouts

= The sockets created by using factory classes can expose features like
statistics collection, compression, and so on.

Determining Default and Installed Cipher Suites

Connecting to a URL using HTTPS requires a handshaking mechanism.
Handshaking ensures that the two connecting machines support compatible
cipher suites, which are required to transmit and receive data over a secure con-
nection. The cipher suites installed on a machine may differ from the cipher suits
it supports. (This is equivalent to a feature being supported by a machine but not
being installed on it.) During the handshaking process, the two connecting
machines exchange cipher suite information to determine if they can connect
using a secure connection. The cipher suites installed on a machine can be
obtained using the getCipherSuites() method, which returns the available cipher
suits in the form of an array of string values. Let us illustrate this concept with
an example.

WWW.SyNngress.com

Java Secure Sockets Layer = Chapter 10 423

Determining the Installed Cipher Suites

W create a class called JSSE _install_check.java, which prints out the installed
cipher suites. The code for this class is given in Figure 10.6.

Figure 10.6 The JSSE_install_check.java Class

import java.net.*;

import javax.net.ssl.*;

import java.security.*;

public class JSSE install _check
{

public static void main(String[] args) throws Exception

Security. addProvi der (new com sun. net.ssl.internal.ssl.Provider());

SSLServer Socket Factory nyfactory = (SSLServer Socket Fact ory)
SSLSer ver Socket Factory. get Defaul t () ;

SSLServer Socket myssl Socket = (SSLServer Socket)
nyfactory. creat eServer Socket (5757);

String [] cipherSuites = myssl Socket . get Enabl edCi pher Suites();

for (int i = 0; i < cipherSuites.length; i++)
{

System out. println(cipherSuites[i]);

}

Note that since cipher suites constitute an SSL concept, the SunJSSE provider
is being configured at runtime. The SSLServerSocketFactory class is being instanti-
ated using its getDefault() method. This instance is then being used to create a
ServerSocket at port 5757. The getEnabledCipherSuites() method is used by the

www.syngress.com

424

Chapter 10 = Java Secure Sockets Layer

instance of the server socket (mysslSocket) to obtain the installed cipher suites. The
output for this class is shown in Figure 10.7.

Figure 10.7 Printing the Available Cipher Suites

Using Secure Server Sockets

We have already seen how server sockets are created and what purpose they
serve. Now let us examine the process of securing server sockets. A secure socket
is one that supports data transmission between a client and server over SSL.
Secure sockets behave like normal sockets, except that they add a security layer to
the underlying transport protocol (TCP) being used on the client-server net-
work. This security layer provides protection as entailed in the SSL protocol. The
protection provided covers the following:

= Data Integrity SSL protects against the modification of messages
during transmission.

= Authentication SSL provides for server authentication as well as client
authentication (if requested by the server). This ensures that data is being
sent to or received from a bonafide resource that is authorized to receive
or send the data.

» Confidentiality/Privacy SSL encrypts the data being exchanged
over the network. This ensures that wiretapping measures cannot access
sensitive/confidential data, such as a user’s personal information.

We will now describe the process of creating secure server sockets; and
explain how secure server sockets accept connections and how secure content
can be read or written using them. These concepts will then be consolidated with
the help of an example.

WWW.SyNngress.com

Java Secure Sockets Layer = Chapter 10

Getting the Secure Socket Factory

The SSLServerSocketFactory class in the javax.net.ssl package acts as the factory
that creates secure server sockets. This is an abstract class that extends the
ServerSocketFactory class.

public abstract class SSLServerSocket Factory extends Server Socket Factory

The fact that the SSLServerSocketFactory class extends the ServerSocketFatory
class should come as no surprise. The basic purpose and working of a secure
socket remain the same as for an ordinary socket, except that secure content can
be transmitted through it. The secure server factory encompasses the details of
creating and configuring secure sockets. These details, in turn, include informa-
tion on authentication keys, cipher suites, certificate validation etc.

The secure server socket factory can be obtained as follows:

= By calling the getDefault() method, which returns the default implemen-
tation of the SSLServerSocketFactory.

SSLSer ver Socket Factory. get Defaul t () ;

The value of the SSL.ServerSocketFactory.provider security property in
the Java security properties file determines the default factory imple-
mentation; this property can be set to a desired class. Finally, an instantia-
tion exception is thrown if SSL has not been properly configured for a
virtual machine.

= By using an instance of the SSLContext class. The SSLContext class
encapsulates state information (session state information, for example)
that is shared by all sockets created under that context. The SSLContext
can be instantiated as follows:

SSLCont ext SSLCont ext| nstance = SSLContext . getlnstance("SSL");

Information on configuring the context instance and associated
methods shall be discussed later with reference to Figure 10.8. For the
time being, we use this context instance to obtain a factory instance
using the following code.

SSLSer ver Socket Factory factorylnstance = SSLContextl| nstance.

get Server Socket Factory();

We will now use this factory instance to create a secure server socket.

425

www.syngress.com

426

Chapter 10 = Java Secure Sockets Layer

Registering a Secure Server Socket

The SSLServerSocket class in the javax.net.ssl package creates a server socket that
is protected using the SSL protocol.

public abstract class SSLServerSocket extends Server Socket

As expected, this class provides methods that are specific to secure sockets. A
secure server socket can be created by using an instance of the factory class.

SSLSer ver Socket nyssl Socket = (SSLServer Socket)factoryl nstance.
creat eServer Socket (5757) ;

The above code creates a secure socket server on port 5757 of the host
machine, using the instance of SSL server socket factory class, factoryInstance.

Accepting Connections

Just as with server sockets, a secure server socket can be used to accept secure
connections from clients. The SSLServerSocket class uses the accept() method of its
super class (the ServerSocket class) to accept client connections. The secure server
socket listens for communication from clients and accepts a connection when
requested by a client.

Socket mnySocket = nyssl Socket. accept();

Accepting a connection returns a socket on the client machine. If the con-
nection cannot be accepted, the accept() method throws an IOException or a
SecurityException. The SecurityException is thrown when an existing security man-
ager disallows connections from the requesting client machine.

Reading Data

The secure server socket is similar to a server socket, except for the additional
security it provides. Thus, it uses the same reader and input stream classes for
reading client data as are used by the server sockets. For example, let us create a
BufferedReader using the InputStream associated with the mySocket socket created
above.

Buf f er edReader readdata = new BufferedReader (new
I nput St r eanrReader (nySocket . get | nput Strean()));

This BufferedReader can now be used to read data from the client, using any of
the available methods of the BufferedReader class.

WWW.SyNngress.com

Java Secure Sockets Layer = Chapter 10

Writing Data

In a manner similar to that for reading data, we can write data back to the client
using an output stream. All methods associated with output streams will be avail-
able to the server socket. A print stream is created for the secure server socket in
the following line of code:

PrintStream send = new PrintStream nysocket. get Qut put Strean());

The send object of the PrintStream type can now be used to write data to a
client as follows:

send.printIn("This text is response from server");
send. flush();

The flush() method commits the response.

Closing Connections

The input and output streams associated with a secure server socket can be closed
using their respective close() methods. The secure server socket also inherits the
close() method from any ServerSocket class that closes a socket. Each of these close
methods close their respective streams/sockets and free up the system resources
being utilized by them.

send. close(); // closes the output stream
readdata.close(); // closes the input stream

nysocket.close(); // closes the socket

We will now consider an example in which a secure server socket is created
and used to accept a connection from a client, read data from that client, and
write data back to it in Figure 10.8.

Figure 10.8 The SecureServer Class

import java.net.*;

i mport javax.net.ssl.*;

import java.security.*;

import java.io.*;

import javax.security.cert.X509Certificate;
i mport com sun. net.ssl.*;

public class SecureServer

{

Continued

427

www.syngress.com

428 Chapter 10 = Java Secure Sockets Layer

Figure 10.8 Continued

public static void main(String[] args) throws Exception

Security. addProvi der (new com sun. net.ssl.internal.ssl.Provider());

char[] passphrase = "passphrase".toCharArray();

SSLContext ctx = SSLContext.getlnstance("SSL");

KeyManager Fact ory knf = KeyManager Factory. getlnstance(" Sunx509");
KeyStore ks = KeyStore.getlnstance("JKS");

ks. |l oad(new Fil el nput Strean("keys"), passphrase);
knf.init(ks, passphrase);
ctx.init(knf.getKeyManagers(), null, null);

SSLServer Socket Factory nyfactory = ctx. get Server Socket Factory();
SSLServer Socket myssl Socket = SSLServer Socket)

nmyfactory. creat eServer Socket (5757) ;
Systemout.println("Server Started");

SSLSocket mysocket = (SSLSocket) myssl Socket. accept();

Print Stream send = new Print Strean{nmysocket. get Qut put Strean());
Buf f er edReader readdata = new BufferedReader (

new | nput St reanReader (mysocket . get | nput Stream()));
String nmyrequest = readdata.readLine();

System out. println(myrequest);

send. printIn("This text is response from server");
send. flush() ;
send. cl ose();

readdat a. cl ose();

nysocket . cl ose();
}
}

WWW.SyNngress.com

Java Secure Sockets Layer = Chapter 10

Figure 10.8 introduces another concept, that of the KeyManagerFactory class.
This class acts as a factory for creating key managers, depending upon a source of
key material. Each key manager manages a specific type of key material that is
provider-specific or based on a keystore. Here the line of code KeyManagerFactory
.getInstance(““SunX509”"); generates an instance of the KeyManagerFactory class by
passing the name of the algorithm, “SunX509 to its getInstance() method. The
code fragment, kmf.getKeyManagers(), generates one key manager for each type
of key material.

The KeyStore class is instantiated and the keystore is loaded (These steps
have already been discussed in the “Referring to keystores with JSSE properties”
section).

The SSLContext class is invoked by passing the protocol SSL as a parameter.
This creates an SSL context object that implements the SSL protocol; the
init() method initializes the SSL context. The array of key managers generated
using the getKeyManagers() method is passed to the SSLContext object to
initialize it. Note that we are using the SSL context instance to instantiate the
SSLServerSocketFactory class. The secure server socket created using the factory
class is then used to print out the enabled cipher suites on the server. This socket,
myssiSocket, is also used to read data from the client. The text “This text is
response from server” is written back to the client.

Using Secure Client Sockets

A secure client socket can be created in two ways.
= By using the SSLSocketFactory class. The factory class is first instantiated
using its getDefault() method:
SSLSocket Fact ory. get Defaul t () ;
This returns the default implementation of the factory class. The fac-

tory class’ createSocket() method can be used to create a secure socket
using the following code:

Fact oryl nst ance. cr eat eSocket (Socket s, Sting hostname, int
por t Nurber) ;

This returns a secure socket on the port of the host specified by
hostname.

429

www.syngress.com

430

Chapter 10 = Java Secure Sockets Layer

= Through the accept() method of the SSLServerSocket. \When a secure
server socket accepts a client connection, it returns a secure socket on
the client machine using the following code:

SSLSocket secureSocket = myssl Socket. accept();

Here, mysslSocket is the server socket instance.

Connecting to a Remote Secure Server

First, a secure server is created on the client machine using the factory instance.
This secure socket is then used to obtain the set of supported cipher suites. Note
that this is important because the creation of a secure connection requires the use
of these cipher suites during the handshake process.

SSLSocket socket = (SSLSocket)factory.createSocket ("l ocal host", 5757);
String [] cipherSuites = socket. get SupportedC pherSuites();
socket . set Enabl edCi pher Sui t es(ci pher Sui tes);

The actual connection is created when the socket’s startHandshake() method is
called. This method starts an SSL handshake between the client and server
machines, including the exchange of information pertaining to the cipher suites,
encryption keys, and so on.

socket . st art Handshake() ;

If a network error is encountered, the method throws an 10Exception.

Writing Data

Data can be written from the client to the server by using the getOutputStream()
method associated with a secure client socket. Note that this method is inherited
from SSLSockets’s super class, the Socket class, and hence the returned stream
behaves exactly as an output stream would. Consequently, all methods associated
with output streams (write(), flush(), close()) are available to the secure socket.

The following lines of code write the text “This text is sent by the client as
request to the server” to the server:

String strl = "This text is sent by the client as request to the server";
PrintStream send = new Print Strean(socket. get QutputStrean());

send. println(strl);

send. flush();

WWW.SyNngress.com

Java Secure Sockets Layer = Chapter 10

Reading Data

As with writing data, a secure socket uses the Socket class’s getinputStream()
method for reading data from the server. Consequently, all methods associated
with input streams (read(), close(), skip()) are available to the secure socket.

The following lines of code read data from the server and print it to the
console:

Buf f eredReader readdata = new BufferedReader (new | nput St reanReader
(socket.getlnputStream()));
String str = readdata.readLine();

Systemout. println(str);

Closing the Connection

The input/output streams associated with the socket can be closed using their
respective close() methods. The secure socket also inherits the close() method from
the Socket class. The close() method frees the system resources being used by the
object (input/output stream or socket) on which it is called.

send. close(); // closes the output stream
readdata.close(); // closes the input stream

nmyssl socket.close(); // closes the socket

We now create the client side for the secure server socket. The code for the
SecureClient class is given in Figure 10.9.

Figure 10.9 Code for SecureClient

import java.net.*;

inmport java.io.*;

import javax.net.ssl.*;

import java.security.*;

import javax.security.cert.X509Certificate;

i mport com sun. net.ssl.*;

public class Securedient

{

public static void main(String[] args) throws Exception

{

Continued

431

www.syngress.com

432 Chapter 10 = Java Secure Sockets Layer

Figure 10.9 Continued

Security. addProvi der (new com sun. net.ssl.internal.ssl.Provider());
try
{
char[] passphrase = "passphrase".toCharArray();
SSLCont ext ctx = SSLContext.getlnstance("SSL");
KeyManager Factory knf = KeyManager Factory. get | nstance(" SunXx509");
KeyStore ks = KeyStore. getlnstance("JKS");

ks.l oad(new Fil el nput Strean("keys"), passphrase);
knf.init(ks, passphrase);
ctx.init(knf.getKeyManagers(), null, null);

SSLSocket Factory factory = ctx. get Socket Factory();

SSLSocket socket = (SSLSocket)factory.createSocket ("l ocal host", 5757);
String [] cipherSuites = socket.get SupportedC pherSuites();

socket . set Enabl edCi pher Sui t es(ci pher Sui tes);

socket . st art Handshake() ;

String strl =

"This text is sent by the client as request to the server";
PrintStream send = new PrintStrean(socket. getQutputStrean());
send. println(strl);
send. flush();

Buf f er edReader readdata = new BufferedReader (

new | nput StreanReader (socket. get | nputStrean()));
String str = readdata. readLi ne();
Systemout.printin(str);

}

cat ch(Exception ex)
{
ex. printStackTrace();
}
}
}

WWW.SyNngress.com

Java Secure Sockets Layer = Chapter 10

Developing & Deploying...

Configuring the Cacerts File

To ensure that the client-server programs in Figure 10.8 and Figure 10.9
work properly, the following procedure may be adopted:

1. Locate the file titled “samplecacerts” in your JSSE directory. It
is likely to be found in the JSSE/Samples directory.

2. Copy the “samplecacerts” file into the Program
Files/JavaSoft/JRE 1.2.1/Security/ directory.

3. Rename the “samplecacerts” file to “jssecacerts.”
When the server/client is run, the program tries to locate this file to

obtain certificate information. Not performing this step may result in the
code not working properly.

Run the secure server socket and the secure client socket from Figure10.8
and Figure 10.9, respectively. Start by running the server first. Use the java
SecureServer java command, at the command prompt to run the server.When you
see the*Server Started” string message (See Figure 10.10) on the server console,
run the client using the SecureClient java command in another command-line
window. The client will now try to connect to the server. Upon accepting the
client connection, the server console will show the message “This text is sent by
the client as request to the server” as shown in Figure 10.10.This is the message
that the client sends to the server. The server will now send the string message
“This text is response from server” to the client. The client, upon reading this
message, will print it to the client console as shown in Figure 10.11.

Figure 10.10 The Server Console

433

www.syngress.com

434

Chapter 10 = Java Secure Sockets Layer

Figure 10.11 The Client Console

Debugging...

Using the Debug Mode

The output for the client-server classes, SecureServer and SecureClient
are as shown in Figure 10.10 and Figure 10.11, respectively. The mes-
sage that is read by the client/server gets printed to the console aswould
have happened if the client and server were connected without using
SSL. Yet there is a difference, which will become apparent when these
two programs are run in the debug mode as explained below.

To enable debugging, compile and run the following code (just as
you run a java program in the normal mode):

i mport com sun. net.ssl.*;

public class DebugHel p
{

public static void main(String[] args)

{

com sun. net. ssl.internal.ssl.Debug. Hel p() ;

After you have run this program, use the following command to
run the server:

java -Dj avax. net.debug=al | SecureServer

When you run this command, you will find a huge amount of data
scrolling up the server console. This information includes information on
the truststore location, truststore type, key information from the trust-
store, associated certificate information from the “jssecacert” file, and
so on. To obtain details of the information being printed on the server
console, you may save this information as a text file using the following
command:

Continued

WWW.SyNngress.com

Java Secure Sockets Layer « Chapter 10

java —-Dj avax. net.debug=al | SecureServer>server.txt

This will create the file “server.txt” in the same directory that con-
tains the SecureServer class file.

While going through the “server.txt” file you will come across infor-
mation on the key known as “duke”, and that happens to be the only
key entry in our keystore. This will be followed by the key’s certificate
chain. Details of each certificate, like the signature algorithm, validity
period, the issuer of the certificate, and the serial number. will be enu-
merated. (If the keystore had contained any other keys, information on
their certificates would also have been printed). After all the certificates
are read, the server is ready to service client requests. The text message
“Server Started” will appear at the end of the information on the cer-
tificates in the certificate chain of the keystore entry known as “duke”.

Now run the client using the following command:

java -Dj avax. net.debug=all Secured i ent.

The client output will also begin with the listing of certificates as in
the case of the server. This output can be saved in a text file using the
following command:

java —-Dj avax. net.debug=all Secured ient>client.txt

client.txt will now contain the complete output from the client
console.

Going beyond the line “Server Started” in server.txt, you will find
phrases like “ClientHello” and “ServerHello” followed by information on
cipher suites and compression methods. Interspersed with the certificate
information being exchanged between the client and the server, you may
find text information like *“ServerHelloDone,” *“Handshake,”
“ClientKeyExchange,” “SESSION KEYGEN,” “CONNECTION KEYGEN” and
so on that gives an idea about the process followed during the handshake.

The console outputs for the server and client are shown in Figure
10.12 and Figure 10.13 respectively. Since these images do not list the
complete console output, it is recommended that you refer to server.txt
and client.txt.

Note that data sent from the client to the server and back is
encrypted. This data is decrypted at the receiving end and thet resprec-
tive text messages are displayed. The server file will contain phrases
such as “Plaintext after DECRYPTION: len = 77” and “Plaintext before
ENCRYPTION: len = 54,” followed by the encrypted/ decrypted mes-
sage. The client request will appear as a string message.

Continued

435

www.syngress.com

436 Chapter 10 = Java Secure Sockets Layer

The client file will also contain similar information regarding
client/server hello and handshaking, except that it will be listed in the
order that is appropriate for the client side.

Figure 10.12 Server Output in Debug Mode

—— -

www.syngress.com

Java Secure Sockets Layer = Chapter 10

Using JSSE Applications with WSDP

The JSSE examples covered in previous sections run as Java programs using the
command line. However, JSSE can also be used to create secure \Web services.
Therefore, in this section we present modified codes from previous examples and
their associated Java Server Pages (JSP) to run them as Web services. These Web
services are compatible with the latest Java Web Service Developers Pack
(WSDP) release (WSDP/1.0-ea2).

We begin with the TestKeys.java class from Figure 10.1, which appears in a
modified version in Figure 10.14. Code modification is imperative since the code
of Figure 10.1 (and subsequent examples given in this chapter) use the main()
method to print the output to the console. However, a\Web service requires that
the output be displayed in a browser/web-client. Thus, the code should be modi-
fied so that it may be called in a JSP page (whose output is sent to the browser)
as a Java Bean.

The modified version of TestKeys.java uses JSSE properties in a manner sim-
ilar to the listing in Figure 10.1.The difference is that we have removed the
main() method and its System.out.printin() statements. Instead, we retrieve all the
key and certificate properties within a method, named getValues(), that returns a
string buffer. This string buffer contains the key, keystore, and certificate informa-
tion retrieved using JSSE. The modified code is as follows:

Figure 10.14 Modified Version of TestKeys.java

i mport java.net.*;
i mport javax.net.ssl.*;
import java.security.*;
i mport javax.security.cert.X509Certificate;
import java.io.*;
import java.util.*;
import java.security.cert.*;
public class TestKeys
{
public StringBuffer getValues() throws Exception
{
// Security. addProvi der (new com sun. net.ssl.internal.ssl.Provider());
StringBuffer str = new StringBuffer();

char[] passphrase = "passphrase".toCharArray();

Continued

437

www.syngress.com

438

Chapter 10 = Java Secure Sockets Layer

Figure 10.14 Continued

KeyManager Factory knf = KeyManager Factory. getlnstance(
KeyManager Fact ory. get Def aul t Al gori thn();
KeyStore ks = KeyStore.getlnstance("JKS");

ks.l oad(new Fil el nput Strean("keys"), passphrase);

str = str.append("This is the Type of KeyStore :" + ks.getType() + "|");
Enuneration enum = ks. aliases();
whi | e(enum hasMor eEl enent s())

{

str = str.append("This is the allias " + (String)enum

nextEl ement () + "|");
}
str = str.append("This is the provider of the KeyStore: " +
(ks.getProvider()).toString() + "|");
str = str.append("This is the algorithmused: " +
(ks. get Key("duke", passphrase)).getAlgorithm() + "|");
str = str.append("This is the keys Format: " +

(ks. get Key("duke", passphrase)).getFormat() + "|");

java.security.cert.Certificate[] cera = ks.getCertificat eChai n("duke");

for (int i = 0; i < cera.length; i++)

{

str = str.append("This is the certificate type: " +
(cera[i]).getType() + "|");

}

return str;

}

The getValues() method appends the retrieved information to the string buffer

variable (str) with each entry separated by the pipe (]) character. This enables the
calling JSP page to split the returned string buffer into individual properties.
Figure 10.15 lists the testKeys.jsp, which makes use of the TestKeys class from
Figure 10.14.

WWW.SyNngress.com

Java Secure Sockets Layer = Chapter 10

Figure 10.15 Calling the TestKeys Class in the testKeys.jsp page

<%@ page inport="java.util.*" %

<%@ page i nport="Test Keys" %

<%@ page content Type="text/htm ; charset=lSO 8859-5" %
<htm >

<head>

<title>Socket Server Application</title>
</ head>
<body bgcol or="white">
<j sp: useBean id="nykeys" scope="application" class="TestKeys"/>
<h1>Test Keys Application JSP page</ FONT></ hl>
<hr >
<%
StringBuffer strl = nykeys. getVal ues();
String nystring = strl.toString();
StringTokeni zer token = new StringTokeni zer(mystring,"|");
whi | e(t oken. hasMor eTokens())
{
%
<p><%t oken. next Token() %
<%} %
</ body>
</htm >

testeys.jsp imports the TestKeys class and uses it as a bean with the 1D
mykeys. The following code line calls the getValues() method of the TestKeys class
and stores the string buffer returned by it in the strl:variable.

StringBuffer strl = nykeys. get Val ues();
The string buffer variable is converted to a string using the toString() method.

This string is broken into tokens using the StringTokenizer class as given in the
following code line:

StringTokeni zer token = new StringTokeni zer(nmystring,"|");
A while loop is then run to display all these tokens in the browser using the

output directive <%=token.nextToken()%>.The testKeys.jsp page when run in
the browser displays the output as shown in Figure 10.16.

439

www.syngress.com

440 Chapter 10 = Java Secure Sockets Layer

Figure 10.16 Output of testKeys.jsp
[bt sk s ek bt e alola
C I e
o Bl - = o] 3 e et e | e
T e = P
e - = e ek i e -

TestReys Apploation JSP pagps

L] derm LN i=e e

Note that this output is similar to the console output shown in Figure 10.2,
except that it contains a description string prefixed to each property value.

Using the URLHandler in aWeb Service

Once again, we modify the code listing of Figure 10.4 to add a pdata() method to
the URLHandler.java class to return a string buffer. The pdata() method is as fol-
lows (It is left to the readers to incorporate this method into a URLHandler.java

class in order to run the JSP from Figure 10.17):

public StringBuffer pdata()

{
StringBuffer str = new StringBuffer();
try

{
URL verisign = new URL("https://ww.verisign.conl);

Buf f eredReader in = new BufferedReader (
new | nput StreanReader (veri si gn. openStrean()));
String inputlLine;

while ((inputLine = in.readLine()) '= null)
{
str = str.append(inputLine);
}
in.close();
}

cat ch(Exception ex)

WWW.SyNngress.com

Java Secure Sockets Layer = Chapter 10

{

System out. println(ex);

}

return str;

}

The code, for urlhandler.jsp, that calls the modified URLHandler.java class is
given in Figure 10.17.

Figure 10.17 The urlhandler.jsp page

<%@ page inport="java.util.*" %
<%@ page i nport="URLHandl er" %
<%@ page content Type="text/htm ; charset=]SO 8859-5" %
<j sp: useBean id="nyURLHandl er" scope="application" class="URLHandl er"/>
<%
StringBuffer strl = nyURLHandl er. pdata();
%
<Uestrl.toString() %

Akin to the URLHandler class from Figure 10.4, urlhandler.jsp shows the
HTML content from the invoked site (www.verisign.com). Since the output here
appears not on the console but on the browser, the HTML is decoded by the
browser and the content of the HTML page is displayed as shown in Figure 10.18.

Figure 10.18 Output from the urlhandler.jsp page
(Dr v = i i x
B s RS b ..J.I:-
ot v QDD At e P (Wp AW G E
L] DR v | i
et ol - L i B + &

e o R e L -
TE b R e
————a ot
vraigs Bl i 1 i e it Tk
larw=F L o [—
e Liz - !
i 2 e Ty
Emmm
- =
1 | af
o | e s rr—

441

WWW.SyNngress.com

442

Chapter 10 = Java Secure Sockets Layer

NoTE

The output of urlhandler.jsp, when displayed in the browser, does not
show most of the images. This is because most of the image tags in the
source HTML contain relative URLs for the src (image source) property. If
you use the browser’s View-Source menu to see the source HTML, you
will come across image tags in the following format:

The src property in the above tag does not give the physical path of
the images directory in whose subfolder(s) the images reside. Instead, it
defines the path of images directory relative to the root of the web site.
When you read the HTML content as a stream and display it using a JSP
output directive, the browser tends to look for the images directory in
the default JSP root folder on the local machine. Since the actual images
are on the verisign web server and not on the local machine, the browser
fails to locate them. If the src property of an <img=> tag contains a com-
plete URL of the form http://www.verisign.com/images/.../abc.gif, then
the browser will retrieve the image from the verisign server (provided
you are online) and display it.

Displaying the Installed Cipher
Suites through aWeb Service

To display the cipher suites in a browser using a \Web service, we create a JSP
called security.jsp. Instead of modifying the existing java class install_check.java of
Figure 10.6 and calling it as a bean in security.jsp, we include the actual code
fragments within the JSP page to obtain the enabled cipher suites and to output
them. (The same methodology of including java code in JSP pages can also be
used in the code listings of Figure 10.15 and Figure 10.17). Figure 10.19 contains
code listing for security.jsp.

Figure 10.19 Code for security.jsp

<@ page inport="java.net.*" %

<%@ page inport="javax.net.ssl.*" %

<@ page inport="java.security.*" %

<%@ page content Type="text/htm ; charset=]SO 8859-5" %

<htm >

Continued
WwWw.syngress.com

Java Secure Sockets Layer = Chapter 10

Figure 10.19 Continued

<head>
<title>Security Check Application</title>
</ head>

<body bgcol or="white">
<h1>
Security Check Application JSP page
</ FONT></ h1>
<%
SSLSer ver Socket Factory nyfactory =
(SSLSer ver Socket Fact ory)
SSLSer ver Socket Fact ory. get Defaul t () ;
SSLSer ver Socket myssl Socket =
(SSLServer Socket) nyfactory. creat eServer Socket (5757) ;
String [] cipherSuites = nyssl Socket. get Enabl edGi pher Sui t es()
for (int i = 0; i < cipherSuites.length; i++)
{
%
<p><%-ci pher Suites[i] %

<%

%

</ body>
</htm >

This code needs no explanation since it contains fragments from the
install_check.java class that have already been explained (See code listing in
Figure 10.6). The output directive <%=cipherSuites[i]%> displays the cipher
suites on the browser as shown in Figure 10.20.

Client-Server Web Service

Once again we use the modified forms of SecureServer.java and SecureClient.java as
beans in their respective JSPs. The modified version of SecureServer.java is listed in
Figure 10.21 and encloses the working code (previously within the main()
method) in a user defined method named startServer().

443

www.syngress.com

444 Chapter 10 = Java Secure Sockets Layer

Figure 10.20 Output of security.jsp

B ns r Pk Ao - ie—— =]
Os i e fpwes Jwh b
= T = R I L L e L
lu..l--.i::-.-_ T g .-\._.:.'r 1i= oy ﬂ Pe] ST L
Ll - 5| v -

Securnty Check Application JSP page

I et S

|

e U L i

Figure 10.21 Modified Version of SecureServer.java

import java.net.*;

i mport javax.net.ssl.*;

import java.security.*;

import java.io.*;

import javax.security.cert.X509Certificate;
/linmport com sun.net.ssl.*;

inmport java.util.*;

public class SecureServer

{
public StringBuffer startServer() throws Exception

StringBuffer str = new StringBuffer();
char[] passphrase = "passphrase".toCharArray();
SSLContext ctx = SSLContext.getlnstance("SSL");

KeyManager Factory knf = KeyManager Factory. getlnstance(" Sunx509");

KeyStore ks = KeyStore.getlnstance("JKS");

ks. |l oad(new Fil el nput Strean("keys"), passphrase);
knf.init(ks, passphrase);
ctx.init(knf.getKeyManagers(), null, null);

WWW.SyNngress.com

Continued

Java Secure Sockets Layer = Chapter 10

Figure 10.21 Continued

SSLServer Socket Factory nyfactory = ctx. get Server Socket Factory();
SSLSer ver Socket nyssl Socket =

(SSLServer Socket) nyfactory. creat eSer ver Socket (5757) ;
str = str.append("Server Started" + "|");

SSLSocket mysocket = (SSLSocket) myssl Socket. accept();

Print Stream send = new Print Strean{nmysocket. get Qut put Strean());
Buf f er edReader readdata = new BufferedReader (

new | nput St reanReader (nmysocket . getl nput Streamn()));
String nmyrequest = readdata.readLine();

str = str.append(myrequest);

send. println("This text is response from server\n");
send. flush();
send. cl ose();

readdat a. cl ose();

nysocket . cl ose();

return str;

The startServer() method returns a string buffer containing the message that
was received from the client. This method is called in the server.jsp page as shown
in Figure 10.22.

Figure 10.22 Calling SecureServer.java from server.jsp

<%@ page inport="java.util.*" %
<% page i nport="SecureServer" %
<%@ page content Type="text/htm ; charset=lSO 8859-5" %
<htm >
<head>
<title>Socket Server Application</title>

</ head>

Continued

445

www.syngress.com

446

Chapter 10 = Java Secure Sockets Layer

Figure 10.22 Continued

<body bgcol or="white">
<j sp: useBean id="nyServer" scope="application" class="SecureServer"/>
<h1>Server Application JSP page</ FONT></ hl>
<hr >
<%
StringBuffer strl = nmyServer.startServer();
String nmystring = strl.toString();
StringTokeni zer token = new StringTokeni zer(nystring,"|");
whi | e(t oken. hasMor eTokens())
{
%
<p><%-t oken. next Token() %
<%} %
</ body>
</htm >

The server.jsp program obtains the string buffer returned by SecureServer.java
in the strl variable, converts it into a string and breaks the string into tokens
using the pipe (]) character as delimiter. The tokens so obtained are displayed in
the browser using the output directive, <%=token.nextToken()%>. The output
appears in Figure 10.23.

Figure 10.23 Output of server.jsp

e T e aiDi 2
B L e fpmaw [e =
= = o d A et e (fies - Sl o T H
TR T S] e =
Ly il - : 5| i e i By - o

=
Server Application JSP page
|
| P i -

A similar client.jsp uses the SecureClient.java’s startClient() method to output
messages received by the client to the browser window.We leave it to the reader
to modify the SecureClient.java class from Figure 10.9 and replace its main()
method with the startClient() method. Code for client.jsp is given in Figure 10.24.

WWW.SyNngress.com

Java Secure Sockets Layer = Chapter 10

Figure 10.24 Calling the SecureClient Class in client.jsp

<%@ page inport="java.util.*" %
<%@ page inport="SecureCient" %
<%@ page content Type="text/htm ; charset=lSO 8859-5" %
<htm >
<head>
<title>Socket Client Application</title>

</ head>

<body bgcol or="white">
<j sp:useBean id="nmyC ient" scope="application" class="SecureCient"/>
<h1>Client Application JSP page</ FONT></ hl>
<hr >
<%

String strl = nyCient.startCient();
%

<p><%sstr1.toString() %
</ body>
</ htm >

The output of client.jsp is shown in Figure 10.25. Note that this is the mes-
sage that the client receives back from the server.

Figure 10.25 Output of client.jsp
e M- ET]
B P Y= Fpoew les pe
bl @3 Ot e g S W T H
b [| o gt S i e e
Lt il - & i s ek Lh = - L

Client Applcation J 5P pags

A mrs i ims s

447

www.syngress.com

448

Chapter 10 = Java Secure Sockets Layer

Summary

In this chapter we introduced the concept of a keystore containing the keys and
associated certificates that are used in secure communications over a network
using SSL.We also explained at length the structure of certificates and the role
they play in certifying information in a secure-communication environment. \We
then discussed the keytool utility that can be used to create a keystore and
administer its keys and associated certificate chains.We explained the -import,
-selfcert and -identitydb commands as provided by the keytool utility to create
certificates in the keystore.

The rest of the chapter was devoted to JSSE and various classes in the
java.security, java.security.cert, javax.net.ssl and other JSSE packages that are used
to secure information from a keystore or add information to one.We began with
a discussion on how JSSE can be installed and configured, was followed by a dis-
cussion on using JSSE properties to obtain information about the keystore, such
as the number of aliases in the keystore, their associated certificate chains, the
keystore type and so on.We then showed how to configure a URL handler for
communication using HTTPS by setting the java.protocol.handler.pkgs property.

Thereafter, we briefly discussed the basic classes such as Socket, ServerSocket,
ServerSocketFactory, SocketFactory and the subclasses that are used for secure com-
munications, such as SSLServerSocketFactory, SSLSocketFactory, SSLServerSocket and
SSLSocket. In the remainder of the chapter we used examples and working code
listings to explain how these sockets and socket factories can be used to develop a
client-server application using SSL.We also included in the chapter a complete
description of how you can see the list of certificates being exchanged between a
client and server during a secure communication cycle, and how data is
encrypted at the transmitting end and decrypted at the receiving end. In essence,
this chapter provided a basic guide to secure communications using JSSE.

Solutions Fast Track

Configuring JSSE
M The JSSE can be configured by setting the SunJSSE provider and
configuring the URL handler for JSSE.

M The keytool utility is used to create and manage keystore aliases and
their associated certificate chains, for example, the -genkey command can

WWW.SyNngress.com

Java Secure Sockets Layer = Chapter 10

be used to create a key entry in a keystore while the -import, -selfcert and
-identitydb commands can be used to generate or import certificates.

M The java.security and java.security.cert packages provide various methods
such as getKey(), getCertificateChain(), getProvider(), getType() and so on that
can be used to retrieve information about a keystore.

Using HTTPS URL Handlers

M The URL handler for JSSE can be configured by setting the
java.protocol.handler.pkgs property.

M The URL handler for JSSE can be used to connect to a URL using
HTTPS; and data can then be read over this secure connection using a
buffered input stream.

Using SocketFactories

M Socket factory classes are used to create sockets on both the server
(ServerSocketFactory) and client (SocketFactory) sides.

M The getCipherSuites() method of an SSLServerSocket object can be used to
read the cipher suites installed on a machine.

Using Secure Server Sockets

M The SSLServerSocket class plays the same role in secure communications
as is played by the ServerSocket class in traditional programming: creating
secure server sockets. The SSLServerSocketFactory class provides the
createServerSocket() method to create server sockets.

M The secure server socket can be used to read and/or write data using
input and/or output streams. However, the data being read or written
will remain secure.

Using Secure Client Sockets

M The SSLSocketFactory class’ createSocket() method is used to create secure
client sockets.

449

www.syngress.com J

450 Chapter 10 = Java Secure Sockets Layer

M The SSLSocket class’ startHandshake() method begins the process of
exchanging certificates and establishing a connection with a server upon
verification of the certificate information.

M Input and output streams can be used to read/write data using a secure
socket.

M The SSLSocket class’ close() method is used to close the socket that
automatically closes the connection with the server.

Using JSSE Applications with WSDP

\ M While using WSDP, JSSE classes and properties can be used in servlets/
JSPs in exactly the same manner as they are used in a traditional java
program.

M A traditional java program that uses JSSE can be converted into a Java
%' Bean with minimal modification by removing the main() method and
L incorporating the code in a user-defined method that returns values
retrieved using JSSE to the calling JSP page.

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

b F Q: What versions of the JDK does JSSE 1.0.2 support?

A It supports Java 2 SDK, Standard Edition, version 1.2.1 or later. The JSSE API
can be implemented on either JDK 1.1.x or JavaTM 2 Platform, Standard
Edition.

- What version of SSL does JSSE support?
JSSE 1.0.2 supports SSL version 3.

: Can JSSE perform RSA encryption?
Yes, JSSE 1.0.2 performs RSA encryption

>0 20

WWW.SyNngress.com

Java Secure Sockets Layer = Chapter 10 451

Q: When | compile my JSSE program, | get the following error: Package
javax.net.ssl not found in import. What could be the possible reason?

A: If you install JSSE in accordance to the installation instructions in this
chapter, its JAR files are automatically installed. However, if you are using
JSSE as a bundled extension with an application, you need to point your
CLASSPATH variable to the JSSE JAR files. Otherwise you’ll get the above
error.

Q: When | run my JSSE program, | get the following exception:

Exception in thread "main":

SSL i npl enentati on not avail abl e. *1

Do you know of any remedies?

A: The following could be the possible reasons:
= You may not have registered the SunJSSE provider. (See the section on
configuring JSSE.)

= The keystore may be corrupted or invalid. (The keytool may be used to
check for a valid keystore.)

WWW.SyNngress.com

Chapter 11

Using JWSDP Tools

Solutions in this chapter:

L AT
= JWSDP UDDI Registry 4 i!
= Tomcat |
-I._Ant_
M Summary

M Solutions Fast Track

M Frequently Asked Questions

453

454

Chapter 11 = Using JWSDP Tools

Introduction

Included in the JWSDP are a set of tools that can be used in the development or
deployment of Web services. These tools can be employed to support a develop-
ment server, and can even be used for some production releases. The tools include
a UDDI registry (Java WSDP registry server), a servlet/JSP container (Tomcat),
and a build tool (Ant).

The Java WSDP registry server is least likely to be used in production envi-
ronments—at least in its current form. It has limitations in the scope of UDDI
supported, its capability to provide highly available services, and in its perfor-
mance. These will likely be addressed in future releases, so it will be interesting to
see if it eventually evolves into a production-level tool.

Tomcat is a much more capable tool. Behind IBM’s WebSphere and BEA’s
WebLogic, it represents one of the most accomplished and up-to-date servlet
engines. It may even be suitable for small production environments. This depends
on your overall willingness to assume risk, of course. Tomcat is generally sup-
ported by open-source volunteers, and does not provide high-availability features.

If used in development, Ant is the tool you would likely continue to use as
you moved toward production. As a build tool, the issues of high availability are
moot. Ant is as capable a tool for Web services as any other make utility—perhaps
even more so. Keep in mind that it’s a very different tool than standard make util-
ities, and does take some getting used to.

JWSDP UDDI Registry

The Universal Description Discovery and Integration Protocol (UDDI) is an
infrastructure that allows WWeb services to register, or become publicly known by, a
registry. The registry used by Java WSDP is known as the UDDI Registry. Once
these WWeb services are known to the registry, they are then made available to any
client request. The UDDI Registry contents are XML-based and are accessed in a
directory tree-style.

In order to deploy your Web services, you will need to set up the UDDI
Registry, enabling you to add your Web services to the registry. To begin, down-
load the Java Web Services Developer Pack, containing the Registry Server,
from the following URL.: http://java.sun.com/webservices/downloads/
webservicespack.html. This link will prompt you to download the following
executable for Microsoft Windows: jwsdp-1_0-ea2-win.exe. For Unix or Linux
users, you will download this executable: jwsdp-1_0-ea2-unix.sh.

WWW.SyNngress.com

Using JWSDP Tools = Chapter 11

Developing & Deploying...

UDDI Registry

The UDDI Registry Server is automatically installed along with Tomcat
and some additional administrative tools to assist you in deploying your
Web services.

Installing

Prior to installing the JWSDP, you must have the Java 2 SDK or Runtime
Environment of version 1.3.1 or later already installed on your computer.

Microsoft Windows Installation Instructions

JWSDP is supported on Microsoft Windows 2000 and XP only. Microsoft
Windows 95, 98, ME, and N'T 4.0 are unsupported. Double-click the self-
extracting executable jwsdp-1_0-ea2-win.exe.

Unix, Linux Installation Instructions

JWSDP is supported on Solaris and Linux, but is not supported on Mac OS X
and other Unix platforms. Execute the following command against the self-
installing executable % /bin/sh jwsdp-1_0-ea2-Unix.sh.

Both these methods will bring up the InstallShield Wizard shown in Figure
11.1 to assist in installing JWSDP to your computer. Once you have reached this
screen, perform the following steps:

1. From the InstallShield Wizard screen (Figure 11.1) click Next.

2. This will bring up the Evaluation Agreement screen shown in
Figure 11.2.You must agree with it to proceed, so check Approve,
then click Next.

3. The InstallShield Wizard will automatically detect the JDK1.3.1 installa-
tion on your computer (Figure 11.3). Click Next.

455

WWW.SyNngress.com

456 Chapter 11 = Using JWSDP Tools

Figure 11.1 Welcome Screen of the InstallShield Wizard

Figure 11.2 Evaluation Agreement Screen

WWW.SyNgress.com

Using JWSDP Tools = Chapter 11 457

Figure 11.3 JDK Version Selection Screen

4. Fill in a username and password to administer Tomcat, as shown in
Figure 11.4. Click Next.

Figure 11.4 Creation of Tomcat Administrative User Screen

5. You now must specify which directory to install in, as shown in
Figure 11.5. Use the default directory setting and click Next.

WWW.Syngress.com

458 Chapter 11 = Using JWSDP Tools

Figure 11.5 Destination Directory Screen

NoTE

The rest of this chapter will assume you have installed in c:\jwsdp-1_0-ea2
(Windows) or /home/myuserid/jwsdp-1_0-ea2 (Linux/Unix). If you install
into different directories, you will have to adjust the paths given in this
chapter accordingly.

6. This will bring you to the Confirmation screen prior to installation
(Figure 11.6). Click Next.

Figure 11.6 Location Confirmation and Size Screen

WWw.syngress.com

Using JWSDP Tools = Chapter 11 459

7. Now the actual installation begins.You should see the screen displayed in
Figure 11.7, which shows the progress of the install.

Figure 11.7 Installing JWDP Screen

8. Once the install has completed, you will see the screen (shown in Figure
11.8) telling you that the install has completed successfully. Click Next.

Figure 11.8 Successful Installation Screen

9. You will now be brought to the final install screen, shown in Figure 11.9.
Select Yes, restart my system and click Finish.

WWW.SyNgress.com

460 Chapter 11 = Using JWSDP Tools

Figure 11.9 Restart Computer Screen

Configuring

You need to add the /bin directory of the JWSDP to the PATH variable in your
environment. This will then allow you to run any of the JWSDP executables
from any directory. For Microsoft Windows users, modify your PATH variable
through the Control Panel | System | Advanced | Environmental
Variables section. Once this section is accessed, modify the existing PATH set-
ting by appending the following directory path: c:\jwsdp-1_0-ea2\bin. Check
your Microsoft Windows manual on instructions for configuring environmental
variables for your version of Windows. For Unix and Linux users, modify your
PATH variable by appending the following directory to the existing PATH:
/home/myuserid/jwsdp-1_0-ea2/bin.

Activating

Once the JWSDP is installed and configured, the JAXR Registry Server can be
easily launched in Windows by executing the startup script for the Tomcat server,
which is located under the /bin directory. Or, it can be launched from the Start
| Programs | Java Web Services Developer Pack | Startup Tomcat
menu as shown in Figure 11.10. Unix and Linux users execute the startup.sh
script, whereas the Microsoft Windows users execute the startup.bat batch file.
Likewise, the Server can be shut down in the same manner using the shutdown
xindice script for both platforms.

WWW.SyNgress.com

Using JWSDP Tools = Chapter 11 461

Figure 11.10 Activation of the Tomcat Server

i

i
!

E
.
I
3
Ta)
=

-
L
I
3
W

i
=
i

il
H

M Bl W1 iy
B it

1A P ket P 1 et

T AL] B b

Limitations

JWSDP does not support the following versions of Microsoft Windows: Windows
95,98, ME, and NT 4.0. In addition, JWSDP does not support the following
versions of Unix: Mac OS X and other Unix platforms. Please see the README
text of the JWSDP Registry for the latest limitations if you are using a version

later than EA2.
Also, the following messages are not yet supported within the Registry

Server:

= add_publisherAssertions

= delete_publisherAssertions
= get_assertionStatusReport
= get_publisherAssertions

= find_relatedBusiness

Likewise, the uploadRegisters argument is not supported within the save_business
and save_tModel messages.

WWW.SyNngress.com

462 Chapter 11 = Using JWSDP Tools

Limitations exist regarding the find_* messages. The following arguments are
not supported when attempting a search:

= findQualifiers
= identifierBag

= categoryBag

= tModelBag

= discoveryURLsS

After creating an organization, you can search for the organization name;
however, the query of the Registry is case-sensitive. In addition, when searching
for organization names, the percent sign (%), indicating the string can occur any-
where in the name, does not work.You cannot use multiple <name> values in
searches, as this is not supported.

No connection pooling or indexing are available for performance optimiza-
tions in this release.

Selecting as the Registry

The Registry Server has a browser-based tool used to administer the server. Prior
to activating the Registry Browser, make sure Tomcat is running. See the Tomcat
section in this chapter for instructions on starting your Tomcat server.You can
activate the Registry Browser by one of two methods. The first is to execute the
jaxr-browser.bat (or jaxr-browser.sh) program at a DOS prompt. This program is
located under $JWSDP_HOMEN\bin directory. The second method is to launch
the Registry Browser from the Start | Programs | Java Web Services
Developer Pack | JAXR Registry Browser menu. The dialog box shown

in Figure 11.11 will appear.

Select a registry using the dialog box drop-down list. You will be able to
access the last registry in the list, provided that Tomcat is currently running. The
last registry in the list provides UDDI Registry samples. If Tomcat is running, you
will be able to access these samples from the drop-down list using this URL:
http://localhost:8080/registry-server/RegistryServerServlet. Several other reg-
istries are listed in the drop-down list as well, which Sun Microsystems makes
available as test registries. Administration of any Registry Server requires some
level of authentication. If you are interested in adding Web services to these reg-
istries, you must go to one (or both) of these sites and become a registered user
with a username and password: http://uddi.microsoft.com or http://www-3.ibm
.com/services. Figure 11.12 shows a listing of the test registries.

WWW.SyNngress.com

Using JWSDP Tools = Chapter 11

Figure 11.11 The JAXR (UDDI) Registry Browser

Dbt P | L] Pl Oswlan

Figure 11.12 Selection of Registry Locations from the Drop-down List

Naging Dissam M= "
™
Trprk

[%ﬁ.—n :I‘Ilrllll'lmr_ll-l
el G
_-.-.r-'q_ﬂ

Using this browser menu, you can select the Submissions tab (Figure 11.13)
to add, modify, edit, or delete Web services to within your Registry Server.

Clients attempting to connect to your Web services will query the Registry
Server to find the names of registered objects. The properties associated with each
Web service are collectively known as the organization. After you enter the spe-
cific information pertaining to a particular organization, click Add service to
activate the next menu which allows you to add your organization name to the
list of registered objects. This list of registered objects is collectively known as
Services.

463

www.syngress.com

464 Chapter 11 = Using JWSDP Tools

Figure 11.13 The Submissions Input Area in the Registry Browser

= T 1 =)
o=
Sl fale e ow

[

Next is an overview of the field names and their definitions.

Organization

There are three properties available in the registry that provide identification for
your Web services object. They include the following: name, 1D, and description.

Name Any name you would like to associate with this object

Id This becomes the unique key the registry uses to find your object;
this is internally generated by the server itself

Description Here you can provide any text describing your object

Primary Contact Information

Each Web Service object registered within the registry needs to be administered
by an authorized user. The Registry Browser provides properties to identify and
associate the authorized user with the organization. The three pieces of contact
information that need to be supplied are:

Name The name of the user authorized to use this registry
Phone The phone number of the authorized user
Email The e-mail address of the authorized user

WWW.SyNngress.com

Using JWSDP Tools = Chapter 11

Classifications

If you want to group your organization with other organizations under the same
general heading, you can use what is known as a classification. Multiple organiza-
tions that have some relationship to each other are collected under a classification
name. To add your organization to a classification, select the classification you want
to add your organization to and click Add as shown in Figure 11.14.This is only
possible if classifications are already available within your Registry Server.When
you first install your Registry Server, no classifications are listed. If you wish to add
a new classification, you can do so within the Add Service textboxes. Adding your
organization to a classification group is an optional feature.

Figure 11.14 Adding an Organization to a Classification Grouping
Enesnp e ML

[
S fale emvw w

B il ki

The next step is to add your organization to the registry in order to make it
available to client requests. This is known as adding Service objects to the registry.
To begin the process, click Add Service. A new set of textboxes appear, as
shown in Figure 11.15. The following are the field names and their definitions:

= Name The Service object name

= Id The unique key that identifies the Service object; it’s generated by
the Registry Server

= Description Any text describing the Service object

465

www.syngress.com

466 Chapter 11 = Using JWSDP Tools

Figure 11.15 Adding Your Web Service to the Registry

Once you identify the Service object’s name and description, click Edit
Bindings to have the Registry Server bind your object within its registry. A
small dialog box appears, as shown in Figure 11.16. Click Add Binding.

Figure 11.16 Adding/Editing Service Bindings Listed within the Registry
2% 0 Sevvosilindogs E1

STl g

il g | Doss

Each Service Binding must be made publicly available to clients through a
URI. A description can also be provided. This information is entered in the
appropriate textboxes of the dialog box shown in Figure 11.17.

Figure 11.17 Adding/Removing a Service Binding within the Registry

When finished, click Done.You will be prompted for authorization informa-
tion. Enter your username and password, then click OK.You have successfully
added aWeb Service object to your registry.You can now return to the Browse
tab (see Figure 11.18) to see your newly created object. From this Browse tab,

WWW.SyNngress.com

Using JWSDP Tools = Chapter 11

you can query for Web services based on organization name or classification
name. To do so, enter the name to search for in the textbox, then click Search.

Figure 11.18 Browsing/Searching Web Services within the Registry
T . 1 01|

il My 1] i HErwam

Tomcat

Tomcat is an open-source Web server freely available through the Jakarta Project
(http://jakarta.apache.org). The Tomcat \eb server can serve HTML pages, Java
Server Pages, and Java Servlets. This is made possible by the inclusion of a
servlet/JSP container (or engine) within the Web server itself.

Installing

Bundled within the JWSDP is a fully-working Tomcat Web server with the
servlet/JSP container. By following the instructions for installing the JWSDP
(under Section JWSDP UDDI Registry | Installing), Tomcat is automati-
cally installed to your computer. No additional installation is required.

Windows

See the installation instructions for Microsoft Windows users under the section
entitled JWSDP UDDI Registry | Installing.

Linux

Installation instructions for Unix and Linux users can be found under the section
entitled JWSDP UDDI Registry | Installing.

467

www.syngress.com

468

Chapter 11 = Using JWSDP Tools

Environmental Variables

The following environmental variables need to be set up on your computer:
JAVA_HOME, CATALINA_ HOME. Create a JAVA_HOME environmental
variable to point to the location of your JDK installation. Make sure the
$JAVA_HOME/bin path is added to your PATH environmental variable,

S0 you can run Java commands at the command line. Finally, create a
CATALINA_HOME environmental variable to point to the location of

your Tomcat installation. Since JWSDP bundles Tomcat within it, this variable
will point to a location similar to the following: c:\jwsdp-1_0.

Any modifications required to the CLASSPATH environmental variable are
done for you during the installation process. However, if you are setting your
variables up manually, add $JAVA_HOME\lib\tools.jar to your CLASSPATH envi-
ronmental variable.

Configuring

All configurations required for the running of Tomcat are automatically set
during the installation process. No additional configurations are necessary.

Server.xml

The server.xml file is the main file that Tomcat provides to allow server configu-
rations. These configurations can modify the behavior of the servlet/JSP con-
tainer. The server.xml file is located under the $JWSDP_HOMEN\conf directory.
The structure of the file is nested tags, beginning with the top-level parent tag of
Server representing the entire JVM. Multiple service instances can be contained
within the Server tag. A Service instance is denoted with the nested tag called
Service. A service represents a group of connectors associated with an engine.
Within a service tag, Web applications and other services are made available to
clients on specified port numbers. Such services are known as connectors and are
denoted by a tag of the same name. These connectors act as interfaces between
external clients and the services themselves, providing the ability to receive and
respond to those client requests. It is within these connector tags that you can set
up various port numbers to listen for particular client requests and subsequently
invoke the appropriate Java class at runtime.

An example of a connector within a service tag shows how you can enable
SSL to run on port 8443.The following entry defines the connector class that
Tomcat provides to support an SSL connection.Various details are configured

WWW.SyNngress.com

Using JWSDP Tools = Chapter 11

within this tag, including port number, the minimum and maximum number of
processors, the scheme, and the toggling of the secure value.

<!-- Define an SSL HTTP/ 1.1 Connector on port 8443 -->

<Connect or cl assNane="org. apache. catal i na. connector. http. H t pConnect or"

port="8443" mi nProcessors="5" maxProcessors="75" scheme="htt ps"
secure="true">

</ Connect or >

The Engine or Container tag specifies various listeners that can be config-
ured to handle numerous client requests. For example, the standard engine for
handling HTTP requests runs on port 8080 under the engine name of “local-
host.” Within the configuration of this engine, a host tag is configured for the
webapps directory used as the document root directory.

<!-- Default Virtual Host -->
<Host name="1 ocal host" appBase="Wbapps" debug="0" unpackWARs="fal se">
</ Host >

The webapps Directory and WAR files

The default document root directory for the Tomcat Web server is the webapps
directory. The Web server serves up HTML pages from this directory, therefore
any new Web applications can easily be added to the server thru the creation of
new subdirectories under webapps. Such subdirectories are known as context paths
to your application. Additionally, you can invoke Java classes from your \Web appli-
cation which require the creation of another directory called WEB-INF and a
subdirectory of classes.

Web ARchive (WAR) files are files that contain a packed version of an entire
tree directory structure and all nested file types contained within the tree. Such
file types can include HTML, JSP, CLASS, and CSS.WAR files are used for ease
of deployment.

Structure of a webapps Directory

In order to create a correctly-formatted WAR file, a particular structure is
required.You will need to “pack up” or arrange your WAR file in the same order
that Tomcat will later use to execute that WAR file. Therefore, starting with your
document root directory (also known as context path), you will have the structure
shown in Figure 11.19 when constructing your WAR file.

469

www.syngress.com

470 Chapter 11 = Using JWSDP Tools

Figure 11.19 Structure When Constructing Your WAR File

—— webapps —t
myrootdocdir ——

* html

*.jsp

*.¢ss (if any stylesheets are used)

—— WEB-INF ——

web.xml

— classes —

* class

—lib—

* jar

The complete syntax and semantics for the deployment descriptor is defined
in Chapter 13 of the Servlet API Specification, version 2.2. Over time, it is
expected that development tools will be provided that create and edit the deploy-
ment descriptor for you. In the meantime, to provide a starting point, a basic
web.xml file is provided. This file includes comments that describe the purpose of
each included element.

Where to Put WAR Files

In order for Tomcat to unpack a WAR file, it must be placed within the webapps
directory. Tomcat automatically unpacks the WAR file upon startup making the
application available for client requests.

When to Use Each

If you require your application to be deployed on multiple servers, it is recom-
mended you pack up your tree directory within a WAR file. It will be portable
and easily deployable to other Web servers. However, if your application resides
on the same server and same flavor of Web server (for instance, Tomcat), then use
the server.xml configuration.

WWW.SyNngress.com

Using JWSDP Tools = Chapter 11

The web.xml Configuration File

The web.xml file is located under the webapps\mydocumentrootdirectory\
WEB-INF\web.xml (for Linux and Unix users this is the webapps/
mydocumentrootdirectory/WEB-INF/web.xml). This file is used to assist in

the installation of a WAR file. It contains a deployment descriptor that defines
all aspects of your application that Tomcat needs to know for executing purposes.
Such details described within this file include all servlet names, servlet mappings,
servlet session configurations, and general application information such as the
application name.

Debugging...

WAR File Redeployment

If you decide to modify the WAR file and redeploy to Tomcat, make sure
you delete the old WAR file and the old unpacked directory, then stop
and restart Tomcat.

Activating

Tomcat can be started manually or automatically under either platform.
Instructions for setting up and activating the Tomcat server are described next.

Starting Tomcat under Windows NT Manually

To start the Tomcat server, open a DOS-prompt and change to the following
directory: $)WSDP_HOMEN\bin. Execute the following batch file: startup.bat.

Starting Tomcat under Windows NT as a Service

To have Tomcat start up as an NT service, open the Control Panel | Services
menu. Then, add $JWSDP_HOME\bin\startup.bat as a service. Do the same
for the shutdown.

Starting Tomcat under Linux Manually

To start the Tomcat server at the command line, change to the following direc-
tory: $JWSDP_HOME/bin. Then execute the following batch file: startup.sh

471

WWW.SyNngress.com

472

Chapter 11 = Using JWSDP Tools

Starting Tomcat under Linux at Startup Time

The Tomcat server can automatically start up on Linux platforms by placing the
startup.sh script within the /etc/rcN/init directory which is owned by root.

Relationship to Apache Servers

Apache servers can be used in conjunction with Tomcat servers for delegating
services and load-balancing needs.You can configure an Apache \Web server, used
to handle static content of HTML, and images to delegate all JSP and Servlet
requests to Tomcat that contain a servlet/JSP container. By establishing multiple
Tomcat servers between the Apache server, an application can perform load bal-
ancing of client requests among the multiple resources available.

Acting Standalone

Tomcat contains an HT TP Web server along with a servlet/JSP container.
Although the Web server can serve up HTML and other static content, it’s
lacking in speed. However, the setup of a Tomcat server is relatively simple.

Proxied behind Apache Servers

Tomcat server can be proxied behind multiple Apache servers for scalability, secu-
rity and performance reasons. The Apache 1.3 server provides the ability to proxy
client requests through to the Tomcat 4 servers. This is useful in masking the
hostname and IP address of the actual server that contains the content. Likewise,
SSL can be configured to provide an encrypted session between the proxy server
and Tomcat.

Ant

Ant is an open-source build tool developed by Jakarta (http://jakarta.apache.org)
that uses XML-based files to configure target directories. Written in Java, it uses
classes for the actual compilation and execution of a variety of build-related
commands.

Structure of an Ant Input File

The structure of an Ant input file contains a project definition, target directories,
and any tasks that need to be performed during the build.

WWW.SyNngress.com

Using JWSDP Tools = Chapter 11

Projects
Each XML-based Ant build file contains one project.

Project Definition
Projects have three attributes: name, default, and basedir.

Required Elements

At a minimum, you must specify a default directory that will be used in cases
where no target directory is provided.

Optional Elements
The attributes of name and basedir are optional.

Defining Project Properties

A project can contain a set of properties which can be used as a source in path-
names or configuration files. A property is set up as a name/value pair and can be
sourced within the Ant file using the dollar sign and opening and closing curly
braces with the name of the property contained between the braces. For instance,
${file.separator} will evaluate out to a “\”” or “/” depending upon the platform
where the build file is run.

Targets

A project can be set up to contain one or more targets which have five attributes:
name, depends, if, unless, and description. Only the name attribute is required.

Dependencies between Tasks

Each target defines one or more tasks you can set to be executed. Upon the
startup of Ant, you can specify which targets you wish executed.

Ordering of Dependencies

Targets can be dependent upon other targets. For instance, if you plan on dis-
tributing your code in a WAR file after compilation, then the construction of
that distribution file is dependent upon the first target of compilation. This
dependency is set up within the build file using the attribute called depends.

473

www.syngress.com

474

Chapter 11 = Using JWSDP Tools

Specifying Target Locations

When specifying target locations, it is possible to check for the setting of a prop-
erty value prior to execution of the target. This provides you with more control
over the build in regards to external variables. This conditional check is done
with the use of the if attribute within the target declaration tag (for instance,
<target name="my-build-example” if="‘property-A-is-set”/>). Execution of the target
is guaranteed in the absence of an if attribute.

Tasks

Tasks are defined within the target tags and direct some piece of code to execute.
The type of code could be of a variety of languages. For example, the task could

be the DOS command of echo, done to display a message to the user screen, or

it could be the execution of a Java class using the java command.

Structure of a Task Entry

The structure of the task entry begins with an opening tag followed by the
name of the task (which really could be a command) immediately followed
by an attribute name which will equal the value of that attribute. For example,
<echo message="“-- Running CLI client to process request: ${request} --"/>

Ant provides many built-in and optional tasks described next.

Built-in Tasks

Some of the built-in tasks provided by Ant that might be of interest to you
include javac, jar, and war. The javac task is used to compile Java source code or
*.java files. The jar and war tasks are available to pack up files in either a JAR or
WAR file.

Optional Tasks

Many other tasks are provided by Ant as optional tasks to be used with other
technologies. Please consult the list of optional tasks located at the following
URL: http://jakarta.apache.org/ant/manual/index.html.

Defining Tasks

Ant also provides the capability for you to write your own tasks. See the section
entitled “Developing with Ant” for more information on this at the following
URL.: http://jakarta.apache.org/ant/manual/index.html.

WWW.SyNngress.com

Using JWSDP Tools = Chapter 11

Invoking ANT

The following section describes how to invoke the Ant script from the com-
mand-line. There are a variety of options that can be added as additional argu-
ments to the invocation of the program.

Invoking from the Command Line

Once you are ready to compile, all you need to do is invoke the ant command at
the command line from the project source directory. Make sure the following
files are added to your CLASSPATH: ant.jar, crimson.jar, and jaxp.jar. When you
execute this command and do not use the -buildfile option, Ant will look in the
current directory for a build.xml file. Here is a summary of the usage statement
along with all available options:

ant [options] [target [target2 [target3] ...]]

Opti ons:

-hel p print this nessage

-projecthel p print project help information

-version print the version information and exit

-qui et be extra quiet

-verbose be extra verbose

- debug print debugging information

- enmacs produce | ogging information w thout adornnents
-l odfil e fil e use given file for |og output

-l ogger cl assnane the class that is to perform | ogging

-listener classnane add an instance of class as a project listener
- bui | dfil e fil e use specified buil dfil e

-find fil e search for buildfile towards the root of the

fil esystem and use the first one found

- Dpr operty=val ue set property to val ue

Specifying or Defaulting a Build File

By default, Ant will look for a build.xml file in the current directory. If no file is
found and the -find option is turned on, Ant will continue looking up the direc-
tory tree until it reaches the root of your filesystem. If you would like to override
the default behavior, specify a buildfile using the -buildfile file option where file is
the name of your build file.

475

www.syngress.com

476

Chapter 11 = Using JWSDP Tools

Invoking Specific Targets

Ant provides the capability to invoke several targets within a project. However, if
no targets are specified, then Ant will default to use the target defined within the
default attribute of the <project> tag.

Setting Properties

If you would like to override the properties that are sourced in from the
build.properties file, simply use the -Dproperty=value as an option to the ant
command.

Integrating with IDEs

There are several open-source projects available that provide the ability to incor-
porate Ant inside of an IDE. If you are interested in exploring this further, go to
the following Web site: http://jakarta.apache.org/ant/manual/index.html.

An Ant Example

We will now demonstrate an example of a simple Ant file that compiles a servlet,
builds a WAR, and deploys that WAR file to the Tomcat container.

In order to run this example successfully, you will first need to create a file
called build.properties which contains variables to be sourced into the build.xml file.
Here is a sample:

appnane=sanpl ebui | dfil e
wars.dir=../../warfil es

appnane. hone=. . / newhone

For this example, in order to create a WAR file, you need to generate a file
called web.xml which contains information about your servlet code. Here is a
sample:

<?xm version="1.0" encodi ng="1 SO 8859-1"?>

<! DOCTYPE web- app
PUBLIC "-//Sun Mcrosystens, Inc.//DTD Wb Application 2.2//EN'
"http://java. sun.cont j 2ee/ dt ds/ web-app_2_2. dtd">

<web- app>

<di spl ay- nane>Sanpl e Build Fil e</di spl ay- name>

WWW.SyNngress.com

Using JWSDP Tools = Chapter 11

<description>no description</description>

<servl et >
<servl et - nane>Hel | oWr | dSer vl et </ ser vl et - name>
<di spl ay- name>Hel | oWr | dSer vl et </ di spl ay- nane>
<descri pti on>no descri ption</description>
<servl et-cl ass>Hel | oWor| dServl et </ servl et - cl ass>

</servl et>

<servl et - mappi ng>
<servl et - nane>Hel | oWor | dSer vl et </ servl et - name>
<url-pattern>/servl et/ Hell oWorl dServl et</url-pattern>
</ servl et - mappi ng>

</ web- app>

Finally, you will need to create your build.xml file which is what Ant will ini-
tially look to find when invoked. The following shows how your build.xml file
should look:

<proj ect name="sanpl ebui |l dfil e" defaul t="unwar" basedir=".">

<l-- Lookup all of the webapps currently configured on Tontat -->

<property file="../../build.properties"/> <l-- For all webapps -->
<l-- Casspath: need to have servlet.jar to conpile a servliet -->

<path id="sanpl es. cl asspat h">
<fileset dir="../../comon/lib" includes="servlet.jar"/>
</ pat h>
<target nanme="conpile">
<echo message="Conpiling the servlet source code..."/>
<j avac cl asspat href ="sanpl es. cl asspat h"
srcdir="${basedi r}/WEB-1 NF/ src"
dest dir="${basedi r}/WEB- | NF/ cl asses" >
</javac>

</target>

<I-- Create a WAR file -->
<target name="war"

description="Creating the WAR fil e"

477

www.syngress.com

478 Chapter 11 = Using JWSDP Tools

if="wars.dir"
depends="conpi |l ">
<echo nessage="Creating WAR file..."/>
<nkdir dir="${wars.dir}" />

<war war fil e="${wars. di r}/ ${appnane}.war" webxnl ="WEB- | NF/ web. xni " >

<zi pfil eset dir="."/>
</ war >
</target>
<l-- Deploy WAR to Tontat container -->

<target nane="unwar" depends="war">

<unwar src="${wars. dir}/${appnanme}.war" dest="${appnane. hone}" />
<echo nessage="Depl oyi ng WAR file..."/>

</target>

</ proj ect >

Running the Sample
To run the sample, turn the verbose option on to see messages to the console:

$ant -v

WWW.SyNngress.com

Using JWSDP Tools = Chapter 11

Summary

After installing the JWSDP from the self-extracting executable, you will have the
following tools available on your computer: the UDDI Registry Server, the
Tomcat Web server, samples, and services. Installation instructs are carefully
detailed in this chapter for ease of use. The JWSDP contains several tools that
assist you in deploying your Web services. An integral piece to deploying Web
services is registering your Web services within a registry. JWSDP provides a
UDDI Registry Server as well as an easy-to-use browser tool for administration
of the server. Within this registry browser, you can set up your Web services by
identifying them as organizations. Those organizations can be stand-alone or asso-
ciated with a classification. Then you can easily add your service to the registry
with the click of a button. Browsing your available WWeb services is made easy
within the Browse tab of the tool. In addition to the registry server, a full version
of Tomcat is provided, enabling you to deploy your WAR files to this server
which can execute them. Tomcat also provides a fully-functioning Web server to
serve HTML pages, and a servlet/JSP container for the handling of servlet or Java
Server Pages requests. Finally, the pack includes several Ant build file samples
which you can use to easily compile and build your WAR or JAR files for distri-
bution of your Web applications to the Tomcat WWeb server or other flavors of
Web servers. Ant is easy to use and provides many capabilities in the creation of
build files for your Web applications. Many options are available to be added as
arguments to the command-line invocation of Ant in order to provide extra
functionality.

Solutions Fast Track

The JWSDP UDDI Registry

M The UDDI Registry requires the startup of the Tomcat server first.

M The UDDI Registry can be administered through the command line or
through a browser-based tool.

M There are sample registries available within the Registry Browser for
more practice.

.
4

480 Chapter 11 = Using JWSDP Tools

Tomcat

M

]

The Tomcat Server can be started or stopped through the command line
or from a menu.

The Tomcat Server is relatively easy to install and includes a quick
environmental setup.

Tomcat enables the deployment and redeployment of WAR files.

Tomcat executes WAR files by unpacking them into the Tomcat Web
applications structure.

Ant uses XML-based files to configure target directories. Written in Java,
it uses classes for the actual compilation and execution of a variety of
build-related commands.

Ant enables multiple targets to be built within one project or build file.

The Ant build tool provides many useful built-in tasks offering a
multitude of options within the build file.

WWW.SyNngress.com

Using JWSDP Tools = Chapter 11

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

Q: What version of Ant should I be using?
A: The JWSDP recommends you use Ant 1.4 or later.

Q: Why isn't there a separate startup command for the UDDI Registry Server?

A: The UDDI Registry Server is actually a special servlet that is run as a \WWeb
application within Tomcat. Thus, you must start Tomcat in order to use the
registry.

Q: Can Tomcat be used in a production environment?

A: No. Since Tomcat is open-source, there is no support provided for the
product in the traditional vendor support manner. However, it could be used
in a small production environment so long as the-risk is assumed.

Q: I’'m new to servlets and Java Server-Pages. Where can | go to learn more
about them?

A: Go to the Sun Microsystems Trail Maps WWeb Ssite.at-http://java.sun.com/
docs/books/tutorial.

Q: How does Ant know how to compile my source code just by using the
<javac></javac> tag?

A: Ant is actually written in Java so all the tags you use actually invoke
Java classes that take in your value between the tags as arguments. You
can learn more about how Ant works at the Jakarta-Ant Web site at
http://jakarta.apache.org/ant/index.html.

481

www.syngress.com J

$ (JSTL literal notation), 163

A
accept() method, 426, 429
Actors, 221
addAttribute() method, 209, 210
addBody() method, 220
addChildConcepts() method, 342
addChildElement() method, 209, 211
addClassifications() method, 342
addHeader() method, 220
AdditionInXML servlet, 103-105
Addproperty.java class, 417
addTextNode() method, 212, 214
AELfred parser. See SAX (Simple API for
XML)
alert and notification systems, 256-257
aliases, 407
importing certificates and, 410
key generation and, 408
listing of keystore, 412
aliases() method, 412
Ant build tool, 7, 8, 63, 454, 472478
Ant input file structure, 472-474
example Ant file, 476-478
invoking Ant scripts, 475-476
Apache Jakarta, 7
Ant build tool. See Ant build tool
Tomcat. See Tomcat
Apache servers, Tomcat and, 472
application classes, JAX-RPC support of,
310-311
Application scope, SPEL, 162
arrays, JAX-RPC support of, 308;309=310
asynchronous messaging, SOAP aned; 254-299
creating SOAP messages, 266, 264
delayed response messaging, 25/(—258
e-mail messaging vs., 256
example of, 255-256
JAXM Provider connections and, 263—266
message routing, 255-256, 260-263
one-way messaging, 256-257
Profiles and, 269-270
recording of message state, 258+259
sending messages with ProviderConnection,
267-269
SOAP EJB implementation for, 270, 275-277
SOAP server servlet for, 270-274, 277-298

Index

See als% synchronous message routing, SOAP
an
AttachmentPart objects, 228
attachments, message, 204, 208, 215-217
adding to SOAP messages, 228—230
InputStream class and, 230
JavaBeans Activation Framework (JAF) and,
229
SOAP Messages with Attachments and, 204,
208, 214
Attr DOM interface, 59
attributes
setting DOM parser, 67—-69
SOAPElement methods for, 210
XML, 59
Attributes objects, SAX and, 21
axes, node, 129-130

B
<binding> element, WSDL document, 367,
371-372
Body elements, SOAP message, 205, 207
adding elements to, 226-227
SOAPBody methods for, 222
SOAPFault methods for, 222—-223
boolean data type, 307, 308
BPSS. See Business Process Specification
Schema (BPSS)
BufferedReader class, 426
bundle action, JSTL tags for, 186
business entity, UDDI Business Registry, 338
business information objects, ebXML, 341
Business Process Analysis Worksheet, eb XML,
341
Business Process Editors, ebXML, 341
Business Process Specification Schema (BPSS),
ebXML, 341
business service, UDDI Business Registry, 338
business-to-business e-commerce
facilitation of by ebXML, 339-342
facilitation of by UDDI, 337
businesses
classification by geographical location, 336
ClassificationScheme interface for classification
of, 343-344
NAICS registry categories for, 335, 343
representation of in registry by Organization
interface, 343-344

483

484 Index

storage of information on in Web registries,
334-336, 343-344
UDDI Business Registry for, 337, 338-339
updating information on in registry records,
381-386
See also organizations
BusinessLifeCycleManager interface, 357-358,
373
BusinessQueryManager interface, 353-364
byte data type, 307, 308

C
cacerts file, installation of, 405, 433
callbacks, 15
characters callbacks, 21, 25, 45
ContentHandler interface and, 19, 44-45
DefaultHandler interface and, 19
document callbacks, 19-20
element callbacks, 20-21, 40-41
error processing, 45-46
example event handler and callbacks, 22—-26
ignorableVWhitespace() callback, 44—45
namespaces and, 40-41
prefix mapping callbacks, 41
processinglnstruction() callback, 45
skippedEntities() callback, 45
Catalog of Common Business Processes,
ebXML, 341
categories, business/service registry
ClassificationScheme interface for, 342—-343
NAICS, 335, 343
Web service register queries based on,
357-363
c:choose action, JSTL core tag library, 173
CDATA characters, 47
CDATA nodes, 57, 58, 67-68
Certificate class, 413-414
certificates, security, 402, 405-406
accessing information on with KeyStore class,
411-413
chains of, 406
generating self-signed, 410-411
importing to keystores, 409-410, 411
information contained by, 406
installation of JSSE-specific, 405
X.509 standard for, 406, 409
Certification Authority (CA), 405
c:expressionLanguage action, JSTL core tag
library, 165
c:forEach action, JSTL core tag library, 171-172

c:forTokens action, JSTL core tag library,
172-173
char data type, 307
character encodings, SAX parsers and, 32
character events, SAX, 17
characters() callback method, 21, 25, 45
child elements, 60, 210-212
child nodes, DOM, 56, 81-82
choose action, JSTL core tag library, 173
¢:if action, JSTL core tag library, 173
c:import action, JSTL core tag library, 174-175
cipher suites, 422-424
displaying via a\Web service, 442-443
printing with JSSE _install_check.java class,
422-424
classification, Web registry
by business/service category, 335, 343
ClassificationScheme interface for, 342—-343
external, 343
by geographical location, 336
internal, 343
NAICS framework for, 335, 343
queries based on, 357-363
ClassificationScheme interface, 342—-343
Classpath variables, 117
clearParameters() method, 146
client-server connections
client sockets for, 420, 421, 422
debugging, 434-436
secure client sockets for, 429-433
secure server sockets for, 424-429
server sockets for, 420, 421
client-server Web service, 443-447
client sockets
creation of by hand, 421
creation of with SocketFactory, 421
secure, 429-434
client.jsp, 447
close() method, 427, 431
coalescing attribute, DOM parser, 67—68
Collaboration Profile Protocol (CPP), 340
Collaboration Protocol Agreement (CPA), 340
comments, parsing XML, 47, 68
ComplexQuery class, 359
com.sun.net.ssl.internal.www.protocol parameter,
404
conditional expressions, JSTL XML Tag
Library, 173-174, 196-197
configuration file, generation of server by
xrpce, 316-317

Connection interface, 345

containsAlias() method, 413

Content-1D MIME header, 216

Content-Location MIME header, 216

Content-Type MIME header, 216

ContentHandler interface, 19, 26, 44—-45

core components, ebXML, 341

c:otherwise action, JSTL core tag library, 174

cout action, JSTL core tag library, 169-170

CPA. See Collaboration Protocol Agreement
(CPA)

¢:param action, JSTL core tag library, 175

CPP. See Collaboration Profile Protocol (CPP)

createEmail Address() method, 374

createMessage() method, 225

createMessageFactory() method, 266

createName() method, 220

createOrganization() method, 373

createServerSocket() method, 422

createService() method, 382

createSocket() method, 421, 429

c:redirect action, JSTL core tag library, 176

Crimson XML parser, 30

c:set action, JSTL core tag library, 170-171

c:urlEncode action, JSTL core tag library,
175-176

c:when action, JSTL core tag library, 173

D
data types
JAX-RPC support, 307
mapping of to XML data types, 308
transformation of via serializers/deserializers,
311-312
DataHandler object, 229
dates, localizing format of, 194-195
debugging
of client-server applications, 434-436
end-to-end, 299
of standalone JAXM applications and, 247
DeclHandler class, 48
Default Registry
adding organizations to, 348-351
bug in, 348
defining of by WSDP Registry Server,
347-348
querying, 351-352
DefaultHandler class, SAX, 19
<definitions> element, WSDL document, 365,
370

Index 485

delayed response messaging, SOAP messages
and, 257-258

DELETE SQL command, 179

DeleteEntry class, 387-393

deleteEntry() method, 388, 413

deleteOrganization() method, 388

deploytool web application deployment utility,
64

deprecateEntry() method, 387
deprecateObjects() method, 393
deprecation, registry record, 386—-393
deserializers, 312
detachNode() method, 211
Detail object, SOAP, 223
Doconnect class, connecting to registries via,
345-447
DOCTYPE declaration, XML validation and,
69
document callbacks, 19-20
endDocument(), 20
startDocument(), 19-20
Document DOM interface, 57-58
Document nodes, retrieving, 80
Document Object Model (DOM). See DOM
(Document Object Model)
Document objects, DOM
creation of from XML file, 77-80
DOM hierarchy and, 60
Document Type Definitions (DTDs), 38, 39,
44-45, 48
DocumentBuilder interface, 62—-63, 66—67
DocumentBuilderFactory interface, 62—63, 65-73
creating DocumentBuilder with, 66-67
multithreading and, 66, 108-114
obtaining new instance of, 66
setting DOM parser attributes with, 67-69
doGet() method, 84, 105, 108
DOM (Document Object Model), 54-62, 209
constellation creation, 77-80
DOM tree structure, 55-57
hierarchy of DOM objects, 57, 60-62
JAXP implementation of. See JAXP (Java API
for XML Processing)
levels of, 57
node objects in, 55-57
overview of, 54-55
DOM parsers
building with DocumentBuilderFactory class,
65-67
coalescing property in, 67-68

486 Index

creation of Document object from XML file,
77-80
custom features of, 115-116
error handling and, 73, 118
expansion of entity reference nodes by, 68
namespace awareness and, 69
plugability interfaces and, 116-117
sample code for, 64—65, 69-73
search path settings and, 117-118
validation of XML file by, 69, 73
XML comments and, 68
XML input sources and, 73-77
XML whitespace and, 68
See also SAX parsers
DOM trees, 55-57
Attr interface and, 59
changing contents of nodes in, 96-105
creation of from XML file, 77-80
Document interface and, 57-58
document root, obtaining, 80
Element interface and, 58
emptying of, 105, 107-108
hierarchy of DOM obijects in, 57, 60-62
modifying content of nodes in, 96-108
Node interface and, 59
node objects in, 55-56
NodeList interface and, 59
ParsingXML.java servlet for, 82—84
searching for nodes in, 89-95
Text interface and, 58
traversal of, 80-82
XML Parser class and, 84-88
DomXML class, 90-93
double data type, 307, 308
driver action, SQL Tag Library, 177
DROP SQL command, 180
DTD (Document Type Definitions)
enabling SAX parser validation of, 38, 39
parsing of and DeclHandler class, 48
parsing of and DTDHandler class, 39
whitespace characters and, 44-45
DTDHandler class, 39

E

e-commerce patterns, ebXML, 341
e-mail messaging
MIME encoding and, 215
similarity of to asynchronous SOAP
messaging, 256
ebXML (Electronic Business using XML), 6,
339-342

ebXML profile, 268, 269-270

ebXML registry, 340

process architecture components, 341

product architecture components, 340-341

XML and, 339-340
EbXMLMessagelmpl class, 270
echo() function, 77
ECMAScript, 163
economic activity categories, NAICS, 335, 343
ejbRemove() method, 277
Electronic Business using XML. See eb XML

(Electronic Business using XML)

element callbacks, 20-21, 40-41
element events, SAX, 17
Element interface, w3c DOM, 58, 209
element nodes, DOM, 56-57
Element objects, DOM hierarchy of, 60-62
elements, WSDL document, 365-368, 370-372

<binding>, 367, 371-372

<definitions>, 365, 370

<message>, 365, 370

<part>, 365

<port>, 367-368

<portType>, 366, 371

<service>, 368, 372

<types>, 365
EmptyXML.java servlet, 105, 107-108
encrypted network connections, JSSE and, 6, 7
end document event, 17
end element event, 17
end-to-end debugging solutions, 299
endDocument() callback method, 20, 26
endElement() callback method, 20, 25
endpoint mappings, JAXM Provider, 268-269
Enterprise Application Integration (EAI), 257
entities, skipped, 76-77
entity reference nodes, DOM, 68
EntityResolver interface, 76
Envelope, SOAP, 205-206

adding elements to, 226-227

Name objects and, 213

SOAPEnvelope interface and, 219-220
error handling

callbacks and, 45-46

DOM parsers and, 73, 118

event-based XML parsing and, 45-47

fatal parsing errors, 45, 46, 118

JAXP and, 73, 118, 152-153

SOAP messaging and, 222, 223, 294-298
error() method, 73, 118, 152
ErrorHandler interface, 39, 45-47, 118

ErrorListener interface, 152
event-based XML parsing, 14-26
development of SAX for, 16-17
error handling and, 45-47
event handlers and, 18-26
example SAX servlet for, 32—-36
good/bad documents for, 15
multithreading and, 36-37
overview of, 15
SAX event handlers and, 18-26
SAX events for, 17-18
SAX features and properties and, 42—44
SAX InputSource class for, 31-32
SAX interfaces for, 26-31
SAX parser DTD validation and, 39
SAX parser namespace support and, 39-41
SAX2 Extensions and, 47-48
strengths and weaknesses of, 14, 54
whitespace characters and, 44-45
See also SAX parsers
event handlers, SAX, 18-26
basic callbacks, 19-21
ContentHandler interface, 19, 26, 44-45
DefaultHandler class, 19
example handler with callbacks, 22-26
extension event handlers, 47-48
events, SAX, 17-18
character events, 17
end document, 17
end element, 17
example XML with associated events, 18
start document, 17
start element, 17
exception actions, 192
exceptions, localization of, 190-192
ExpandEntityReferences property, DOM parser,
68

export rules, JSSE and, 7
Expression Languages (ELs), 7, 160-166
application-wide settings, 164
ECMAScript, 163
future backward compatibility of, 166
JSTL core tags for manipulation of
expressions, 167-171
JXPath, 164
setting for specific sections of code, 165
Simplest Possible Expression Language
(SPEL), 161-163
expressionLanguage action, JSTL core tag library,
165, 167

Index 487

expressions, JSTL core tags for, 167-171
extension event handlers, 47-48
DeclHandler, 48
LexicalHandler, 47
registration of, 48
external classification, 343
external entities, DOM parsing of, 7577
external links, query results and, 364
external resources, incorporating into JSPs,
174-175

F

FactoryConfigurationError() method, 117

FactoryConfigurationException exception, 117

fatal parsing errors, 45, 46, 118

fatalError() method, 73, 118, 152

FaultMessage class, 296

Faults, SOAP, 222, 223, 296-298

features, SAX parser, 42, 43

file-based XML sources, passing to DOM
parser, 74

findConcepts() method, 358

findOrganizations() method, 353-354, 359

first child node, DOM, 56

float data type, 307, 308

flush() method, 427

fmt:bundle action, 186

fmt:exception action, 192

fmt:formatDate action, 194-195

fmt:formatNumber action, 192-194

fmt:locale action, 184

fmt:message action, 188

fmt:messageArg action, 189-190

fmt:messageFormat action, 188

fmt:parseNumber action, 194

fmt:timeZone, JSTL tags for, 184-185

forEach action, JSTL core tag library, 171-172,
196-197

formatDate action, 194-195

formatNumber action, 192—-194

forTokens JSTL action, JSTL core tag library,
172-173

G

-genkey command, 406, 408

geographic location, classification of service
providers by, 336

get() method, 33, 36, 84

getAlgorithm method, 415

getAllAttributes() method, 210

getAssociatedStyleSheet() method, 142, 143

488 Index

getAttribute() method, 142, 143
getAttributeValue() method, 210
getBody() method, 220

getCertificate() method, 412
getCertificateChain() method, 413
getChildConcepts() method, 342
getChildElements() method, 211
getCipherSuites() method, 422—-424
getClassificationScheme() method, 343
getClassifiedObject() method, 343
getColumnNumber() method, 153
getConcept() method, 343
getContent() method, 218
getContentld() method, 218
getContentLocation() method, 218
getDefault() method, 423, 425, 429
getDescription() method, 344, 359
getEnabledCipherSuites() method, 423
getEncoded() method, 414
getEnvelope() method, 218
getErrorListener() method, 142, 144, 146
getExternalLinks() method, 359
getFeature() method, 115, 142, 144
getFormat() method, 415
getHeader() method, 220

getID() method, 359

getInputStream() method, 431
getInstance() method, 412, 415, 429
getKey() method, 359, 413
getKeyManagers() method, 429
getLineNumber() method, 153
getLocalizedMessage() method, 190, 191
getMetaData() method, 266
getMimeHeader() method, 218
getName() method, 344

getNonMatchingMimeHeaders() method, 218

getOrganizations() method, 381
getOutputProperties() method, 146, 147
getOutputStream() method, 430
getParameter() method, 146
getParseExceptioninfo() method, 73
getPrimaryContact() method, 344
getProperty() method, 115
getProvider() method, 413
getPublicld() method, 153
getPublicKey() method, 414
getServices() method, 344, 381
getSystemld() method, 153
getType() method, 413, 414

getURIResolver() method, 143, 144, 146, 147

getValue method, 359

getValue() method, 212, 213
getValues() method, 437-438
guaranteed delivery, JAXM Provider and,

262-263

H

handshaking mechanisms, cipher suites and,
422-424

Header scope, SPEL, 162
Header, SOAP, 205-207
adding elements to, 226-227
SOAPHeader interface for, 220-221
SOAPHeaderElement interface for, 220, 221
headers, MIME, 216
holder classes, JAX-RPC, 312-313
HTML documents
DOM programming interface for, 54-55, 58
parsing of. See XML parsers
HTTP URLs, 7
HTTPS protocol, 404
handshake mechanisms and cipher suites,
422-424
URL handlers and, 404, 416, 418-419
HTTPServlet interface, 84, 271, 272
HTTPServletRequest object, 105
HttpServletResponse.sendRedirect() method, 176
HttpServlet.setAttribute() method, 162
HttpSession.getAttribute() method, 162
HttpSession.setAttribute() method, 162

IBM test registry
adding organizations to, 348-351
querying, 351-352
identity database, JDK1.1, 409, 411
-identitydb command, 409
if action, JSTL core tag library, 173, 197
ignorable whitespaces, XML, 44-45
ignorableWhitespace callback, 44-45
IgnoreComments property, DOM parser, 68
IgnoreElementContentWhitespace property, DOM
parser, 68
import action, JSTL core tag library, 174-175
-import command, 409-410
in-order traversal technique, 80-82
init() method, 33, 109
input sources, XML, 73-77
passing file-based to JAXP parser, 74
passing InputStream-based to JAXP parser, 74
passing to JAXP parser via InputSource class,
74

passing to SAX parser via InputSource class,
31-32
input stream, passing XML to DOM parser, 74
InputSource class, 31-32
InputStream-based XML sources, passing to
DOM parser, 74
InputStream class, MIME-encoded SOAP
attachments and, 230
insecure sockets, JSSE and, 402
INSERT SQL command, 179
instances, creation of SAX parser, 26-31
int data type, 308
internal classification, 343
Internationalization (L18N), 182-195
accessing internationalized messages, 187-188
exception localization, 190-192
localizing numerical values, 192-195
parameter substitution in internationalized
messages, 188-190
resource bundles, locating, 186-187
resource bundles, specifying, 185-186
setting Web browser language, 183-184
time zone settings, 184-185
IOEXxception exception, 77
ISO-Latin-1 encoding, 32
is0.ch:3166:1999 taxonomy for geographical
regions, 336
iterations
JSTL support of over objects, 171-173
JSTL support of over XML elements, 196

J
J2EE container, 254, 258
JAF See JavaBeans Activation Framework (JAF)
JAR metafiles, 29
jarsigner tool, 407
Java API for XML-based Remote Procedure
Calls. See JAX-RPC (Java API for XML-
based Remote Procedure Calls)
Java API for XML Messaging. See JAXM (Java
API for XML Messaging)
Java API for XML Processing. See JAXP (Java
API for XML Processing)
Java API for XML Registries. See JAXR (Java
API for XML Registries)
Java classes
conversion between WSDL with xrpcc,
313-317
holder classes for WSDL mapping, 312-313
mapping of to XML data types, 308-309

Index 489

non-standard, support of via

serializers/deserializers, 311-312
ValueTypes (application classes), 310-311
See also specific classes

Java Cryptography Architecture, 402

Java data types
JAX-RPC support of, 307
mapping of to XML data types, 308
transformation of via serializers/deserializers,

311-312

Java Message Service (JMS) API, 276

Java Naming and Directory Interface (JNDI),
264, 265

Java Secure Sockets Extension. See JSSE (Java
Secure Sockets Extension)

Java Server Pages (JSPs), 7, 160, 161
conditional execution support in, 173-174
importing external resources into, 174-175
internationalization and localization JSTL

tags for, 182-195
iteration support, 171-173
referencing expressions in, 167-171
SPEL scope values and, 162-163
SQL query tags for, 176-182
Java Web Services Developer Pack (JWSDP).
See JWSDP (Java Web Services
Developer Pack)
Java WSDP Registry Server. See WSDP
Registry Server

Java XML Pack, 63

JavaBeans
JavaBeans Activation Framework (JAF) and,

229
JAX-RPC and, 311

javakey tool, 407

java.lang.String getAttributeValue() method, 210

java.lang.String interface, 171, 308

java.lang.System interface, 404, 405

ava.lan. Throwable interface, 190

java.math.BigDecimal interface, 308

java.math.Biglnteger interface, 308

java.net. URL interface, 7

ava.protocol.handler.pkgs property, 404, 416-417

java.rmi.Remote interface, 311

java.util.Calendar interface, 308

java.util.Collection interface, 171

ava.util. Date interface, 308

java.util.Enumeration interface, 171

java.util. Iterator getAllAttributes() method, 210

java.util. Iterator interface, 171

490 Index

javax.activation. DataHandler object, 229

java.xml.transform package, 140

avax.servlet.jsp.jstl.il8n.timeZone JSP attibute,
184

javax.servlet.jsp.jstl.sql.Result interface, 177
javax.xml.parsers.* package, 27
avax.xml.soap.Detail interface, 223
javax.xml.soap.Node interface, 211
javax.xml.soap.SOAPBody interface, 222
javax.xml.soap.SOAPBodyElement interface, 222
avax.xml.soap.SOAPEnvelope interface,
219-220
javax.xml.soap.SOAPHeader interface, 220-221
javax.xml.soap.SOAPHeaderElement interface,
220, 221
javax.xml.soap.SOAPMessage class, 214-217
javax.xml.soap.SOAPPart class, 217-219
JAX-RPC (Java API for XML-based Remote
Procedure Calls), 5, 63, 304-313
advantages of over other RPC methods, 307
array support by, 308, 309-310
function call semantics and, 305
holder classes for WSDL mapping, 312-313
Java data types supported by, 307
JAX-RPC Client, creation of, 317-319
JAX-RPC Server, creation of, 319-321
JRE class library support, 307-308
non-standard classes, serializers/deserializers
for, 311-312
object type mappings, 308-309
sending a XML-RPC message with,
306-307
stubs and ties in, 305-306
synchronous XML SOAP messaging in,
304-305
ValueTypes (application classes) and, 310-311
JAX-RPC Client, 317-319
connecting to remote server via stubs, 318,
325
example server, 325-327
invoking remote server methods, 318-319,
325-327
JAX-RPC Server, 319-321
example server, 321-324
Service Definition Interface (SDI) for, 319,
321-322
service implementation class for, 320,
322-323, 324
WAR files for, 320-321
xrpce config file for, 319-320, 324

JAXM (Java API for XML Messaging), 4-5, 63,
204
DOM API. See JAXM (Java API for XML
Messaging) DOM API
guaranteed delivery and, 263
JavaBeans Activation Framework (JAF) and,
229
SOAP EJB implementation, 270, 275-277
SOAP message generation with
MessageFactory, 224—-226
SOAP server servlet implementation,
270-274
standalone SOAP client example, 231-247
JAXM (Java API for XML Messaging) DOM
API, 204, 209
adding attachments to SOAP messages,
228-230
creating Name objects, 213-214
creating Text objects, 214
JAXM Provider and. See JAXM Provider
methods for adding/reading text nodes,
212-213
methods for manipulating SOAPEIlement
attributes, 210
methods for manipulating SOAPEIlement
child elements, 210-212
MIME-encoded SOAP attachments and,
208, 214,215-217
SOAPEIlement interface, 209-214
SOAPEnvelope interface, 219-220
SOAPHeader interface, 220-221
SOAPHeaderElement interface, 220, 221
SOAPMessage interface, 214-217
SOAPPart interface, 217-219
XML-only SOAP messages, 214-215
JAXM Profiles, 225, 254, 269-270
JAXM Provider, 223-224, 254, 258, 260, 261
deployment of Provider clients, 265
endpoint mappings, 268-269
establishing connection to, 263—-266
incoming message routing and, 260, 261-262
message creation with ProviderConnection
objects, 266
message-driven beans and, 270, 275-277
obtaining MessageFactory class, 224, 225-226
Profiles and, 269-270
sending messages with ProviderConnection
objects, 266, 267-269
SOAP EJB and, 270, 275-277
SOAP server servlet and, 270-274

steps for sending messages via, 264
JAXM Reference Implementation, 263, 268
JAXM Servers
incoming message routing, 260-262
outgoing message routing, 262—-263
JAXMServlet interface, 270-274
JAXP (Java API for XML Processing), 3—4,
62, 63
DOM interfaces provided by, 57-59, 62-63
error handling and, 152-153
multithreading and, 36-37, 66, 108-114, 154
plugability interfaces and, 27, 28-31, 62, 140,
155
resolution of URI references and stylesheets
by, 153-154
sample code for JAXP parser, 64—65
SAX classes and packages in, 27
SAX parser instances, creation of, 27-31
templates for XSL processing, 149-152
transformers for XSL processing, 145-149
XML file transformation classes, 140-152
XSL and XLST and, 124-139
XSL engines and, 124, 139-140
See also DOM (Document Object Model);
SAX (Simple API for XML)
JAXP parsers
building, 65-73
custom features of, 115-116
error handling and, 73, 118
plugability interfaces and, 116-117
sample code for, 64—65
search path settings and, 117-118
XML input sources and, 73-77
JAXPentity entity, 68
JAXR (Java API for XML Registries), 6, 63,
334, 336
adding new registry records with, 372-381
BusinessLifeCycleManager interface, 357-358
BusinessQueryManager interface, 353-364
connecting to registries with Doconnect class,
345-347
deprecating and deleting registry records
with, 386-393
interfaces for categorization of registry
objects, 342-343
JAXR Registry Server activation, 460-461
Organization interface, 343-344
updating registry records with, 381-386
User interface, 344
JDK1.1 identity database, 409, 411

Index 491

JMS (Java Message Service) API, 276
JNDI (Java Naming and Directory Interface),
264, 265
JPEG images, attaching to SOAP messages,
217,229
JSP Standard Tag Library (JSTL). See JSTL (JSP
Standard Tag Library)
jsp:import action, 175
jsp:include action, 175
JSPs (Java Server Pages). See Java Server Pages
(ISPs)
JspWriter object, 169
JSSE (Java Secure Sockets Extension), 6-7, 402
cacerts file for, 405, 433
cipher suites and, 422—424
client sockets and, 420, 421
creating keystores with keytool, 407-409
generating self-signed certificates with
keytool, 410-411
importing certificates with keytool, 409-410,
411
installation and configuration of, 402—405
keystores, referring to with JSSE, 411-416
secure client sockets and, 429-434
secure server sockets and, 424-429
server sockets and, 402, 420, 422
SSL support by, 402
TLS support by, 402
URL handlers and, 404-405, 416-419
WSDP and, 437-447
JSSE_install_check.java class, 422—424
JSTL (JSP Standard Tag Library), 7, 63, 160,
197
configuring Web application for, 166
core tags containing conditional expressions,
173-174
core tags for encoding strings as URLs,
175-176
core tags for evaluation and manipulation of
expressions, 167-171
core tags for importing external resources,
174-175
core tags supporting iterations, 171-173
Expression Languages (ELs) and, 160-166
internationalization and localization tags,
182-195
non-Expression Language libraries, 166
number of libraries, 160
SPEL attribute literal values, 163
SPEL attribute scope values, 162-163

492 Index

SQL Tag Library package, 176-182
XML support tags, 195-198

JWSDP (Java Web Services Developer Pack)
Ant build tool and. See Ant build tool
configuration of, 460
downloading and installing, 12, 63-64, 454,

455-460

limitations of, 461-462
operating systems supported by, 461
overlapping APIs in, 3, 4
overview of components of, 2, 3-8
Registry Server activation in, 460-461
as response to .Net initiative, 3
SOAP example client libraries, 232-233
Tomcat tool and. See Tomcat
UDDI Registry and. See UDDI Registry
using JSSE applications with, 437-447
See also specific components

JXPath, 164

K

key managers, 429
KeyManagerFactory class, 429
keys, 402, 405-406
accessing information on with Certificate
class, 414
accessing information on with KeyStore class,
411-413
certificates for, 405-406
generation of keystore with -genkey
command, 408
private, 405
public, 405
storage of in keystore, 407
KeyStore class, 429
-keystore command, 409
keystores, 402, 405, 407
Certificate class and, 413-414
creating with keytool utility, 408-409
importing certificates to, 409-410, 411
KeysStore class and, 411-413
referring to with JSEE properties, 411-416
types of entries in, 407
keytool utility, 402, 407
creating keystores with, 408-409
importing certificates with, 409-410, 411

L

leaf node, DOM, 57
left-to-right (LTR) traversal, 80
Levels, DOM, 57

LexicalHandler interface, 47
Linux
JWSDP installation on, 455, 456—-460
Tomcat installation on, 467
literal JSTL attribute values, 163
locale action, JSTL tags for, 184
Localization (L10N), 182. See also
Internationalization (L18N)
localName objects, 213
localName parameter, 20, 40-41
Local XMLException class, 295
Locator mechanism, debugging XML with,
37-38
long data type, 307, 308

M
marshaling, XML-RPC and, 305
Megginson, David, 16
message action, JSTL, 188
message-driven beans, SOAP EJB and, 270,
275-277
<message> element, WSDL document, 365, 370
messageArg action, 189-190
MessageDrivenBean interface, 277
MessageFactory createMessageFactory() method,
266
MessageFactory interface
obtaining, 224, 225-226
SOAP message generation with, 225, 266
MessageFactory.newlnstance() method, 224, 225
messageFormat action, 188
messaging service, ebXML, 340
Microsoft Windows
installation of JWSDP with, 455, 456-460
Tomcat installation with, 467
versions supported by JWSDP, 461
MIME (Multi-purpose Internet Mail
Extensions), 215-216
content types supported by, 216
JavaBeans Activation Framework (JAF) and,
229
MIME-encoded SOAP attachments, 208,
214, 215-217, 228-230
MIME headers, 216, 218-219
MIME types that must be implemented by
JAXM, 229
SOAPPart class and, 218-219
MimeHeader objects, SOAPPart methods for,
218-219
modifyForm.html code, 96
ModifyXML.java class, 97-103

multi-dimensional arrays, JAX-RPC support
for, 309-310
multithreading, 154
JAXP and, 36-37, 66, 108-114, 154
SAX servlets and, 36-37
mustUnderstand attribute, SOAP header, 206
MVC components, 160
MyErrorHandler interface, 73, 118

N

NAICS. See North American Industry
Classification System (NAICS)
Name interface, 209, 213
Name objects, 213
name/value pairs, printing node object, 82-89
NamespaceAware property, DOM parser, 69
namespaces, XML, 20
element callbacks and, 40-41
enabling DOM parser support of, 69
enabling SAX parser support of, 38, 39-40
prefix mapping callbacks and, 41
SAX Version 2.0 and, 17
SOAP messages and, 205-206, 207
NameValueLookup class, 287
naming services, INDI API and, 264
nested database transactions, 180-182
newlnstance() method, 28, 143
newSAXParser() method, 28
newTemplates() method, 143
newTransformer() method, 142, 143
Node interface, 59, 211
node objects, 55-57, 90-93
element nodes, 56-57
finding root object, 80
first child nodes, 56
generating lists of based on search
parameters, 89-95
hierarchy of, 57
locating sibling and child, 81-82
location of by XPath, 128-130
modifying content of, 96-108
node axes, 129-130
printing name/value pairs, 82—89
text nodes, 57
traversal of, 80-81
NodeList interface, 59
non-fatal parsing errors, 46, 118
North American Industry Classification System
(NAICS), 335, 343
notification operations, WSDL, 366, 367

Index 493

nsName objects, 213-214
numbers, localizing the formatting of, 192-194

O

OASIS, 339

objects, mapping of to XML data type,
308-309

one-way operations, WSDL, 366, 367
one-way SOAP messages, 256-257
OnewayL.istener interface, 261, 271, 273, 274,
278
onMessage() method, 261
operating systems, JWSDP support of, 461
Organizaiton interface, 343-344
organizations, 343
adding to registries with JWSDP classes,
372-381
adding to registries with Registry Browser,
348-351
ClassificationScheme interface for, 342—343
deprecating and deleting records of in
registries, 386—-393
NAICS registry categories for by economic
activity, 335, 343
registry classification by geographical
location, 336
representation of by Organization interface,
343-344
storage of information on in Web registries,
334-336, 343-344
UDDI Business Registry for, 337, 338—-339
updating information on in registry records,
381-386
org.xml.sax.* SAX package, 27
org.xml.sax.helpers.* SAX package, 27
otherwise action, JSTL tag library, 174, 197-198
out action, JSTL tag library, 169-170, 196

P

packages, SAX, 27

Page scope, SPEL, 162
PageContent.getAttribute() method, 162
PageContext.findAttribute() method, 163
PageContext.setAttribute() method, 162
param action, JSTL tag library, 175, 177-179
Param scope, SPEL, 162, 163
ParamValues scope, SPEL, 162

parent node, DOM, 60-61

parse action, JSTL tag Library, 195-196
parse() method, 74

parseNow() method, 110

494 Index

parseNumber action, 194
parser factory, JAXP, 27-28
ParserConfigurationException exception, 67,
117-118
parsers, XML. See XML parsers
ParsingXML.java servlet, 83-84, 88
<part> element, WSDL document, 365
passwords
specifying key, 408
Web service registry, 393-394
pdata() method, 440
platform defaults, JAXP parser searches based
on, 29
plugability interfaces
DOM nparsers and, 116-117
SAX parsers and, 27, 28-31
TransformerFactory interface and, 155
<port> element, WSDL document, 367-368
<portType> element, WSDL document, 366,
371
prefix mapping callbacks, 41
primitive data types, 307, 308
private keys, 402, 405
procedures, XSL, 128, 131-139
processing instructions, parsing of, 45
processinglnstruction callback, 45
Profiles, JAXM. See JAXM Profile
projects, Ant build file, 473
properties
JAXP parser searches based on, 29
SAX parser, 42, 43-44

ProvideConnection.createMessageFactory() method,

225-226
Provider, JAXM. See JAXM Provider
ProviderConnection objects, 225, 266-270
ProviderConnectionFactory object, 264, 265-266
ProviderMetaData getMetaData() method, 266
proxy servers, HTTPS and, 416
public keys, 402, 405
PublishEntry class, 375381

Q

gName parameter, 20, 40-41
queries, Web register
of IBM test registry with Registry Browser,
351-352
locating services via complex, 357-363
locating services via simple, 353-357
understanding results obtained by, 363-364
query action, SQL Tag Library, 177
query() method, 354, 357

R
RDBMS. See Relational Database Management
System (RDBMS)
ReceivedMessage class, 284
recycleNode() method, 211-212
redirect action, JSTL core tag library, 176
registries, VWeb service, 6, 334
adding organizations to with JWSDP classes,
372-381
adding organizations with Registry Browser,
348-351, 462-467
categorization of businesses/services, 335,
342-343
connecting to with connection(), 345, 372
connecting to with Doconnect class, 345-347
Default Registry, 347-352
deprecating and deleting records in, 386—393
ebXML specification for, 6, 339-342
queries, simple, 353-357
querying based on classification, 357-363
querying with Registry Browser, 351-352
representation of entities in by Organization
interface, 343-344
results of queries of, 363—-364
storage of service metadata in, 334—336
taxonomy for geographical services in, 336
UDDI specification for, 6, 337-339
updating records in, 381-386
username and password protection of,
393-394
Registry Browser, WSDP, 462-467
adding organizations to classifications via,
465-467
adding organizations to Default Registry via,
348-351
launching, 347-348
querying Default Register with, 351-352
registry selection with, 462-463
Registry Server, IWSDP. See WSDP Registry
Server
RegistryObject interface, 342343
Relational Database Management System
(RDBMS), 263
remote procedure calls. See JAX-RPC (Java
API for XML-based Remote Procedure
Calls)
removeAllMimeHeaders() method, 219
removeAttribute() method, 210
removeClassifications() method, 342
removeMimeHeader() method, 219

ReplyMessage interface, 292
ReqRespListener interface, 261, 271, 273, 274,
278
request-response messaging
SOAP and. See synchronous message routing
WSDL and, 366, 367
Request scope, SPEL, 162
resolve() method, 153
resolveEntity() method, 76
resource bundles
filename parts, 186
locating, 186-187
specifying, 185-186
Result interface, 144-145
RMI, 5, 313, 315-316
RPCs, XML-based. See JAX-RPC (JAX-RPC
(Java API for XML-based Remote
Procedure Calls)); XML-based RPC

S

saveOrganizations() method, 375
saveServices() method, 382
SAX (Simple API for XML)
basic events in, 17-18
ContentHandler interface and, 19, 26, 44-45
debugging documents Locator mechanism,
37-38
DefaultHandler interface, 19
ErrorHandler interface, 45-47
event-based XML parsing with, 14, 15
event handlers and, 18-26
example servlet application, 32—-36
example XML with associated events, 18
history of, 16-17
multithreading and, 36-37
organization of in JAXP, 27
plugability layers and, 27
SAX2 Extensions, 47-48
Web site for, 14, 16
XMLReader interface and, 26-27, 46, 115
SAX parsers, 15
basic events and, 17-18
character encodings and, 32
configuration of, 42-44, 115
ContentHandler interface and, 19, 26, 44-45
Crimson, 30
determining position of in document, 37-38
development of standard interface for, 16-17
DTD validation and, 38, 39
error handling by, 45-47

Index 495

event handlers and, 18-26
example SAX application using, 32-36
example XML with associated events created
by, 18
features of, 42, 43, 115
instantiation of, 27-31
multithreading and, 36-37
passing documents to with InputSource class,
31-32
plugability interfaces and, 27, 28-31
properties of, 42, 43-44, 115
searching environment for suitable, 28-31
Xerces, 30
XML namespaces and, 38, 39-41
XML processing instructions and, 45
SAX2 Extensions, 47-48
SAXException exception, 76, 77
SAXNotRecognizedException exception, 115
SAXNotSupportedException exception, 115
SAXON XSL engine, 139
SAXParser interface, 28
SAXParserFactory interface
creation of parser instances via, 27—-28
enabling DTD validation through, 39
enabling SAX parser support of namespaces
with, 39-40
multithreading and, 37
setting parser features with, 43
SAXParser.parse() method, 47
SchemaException class, 294
SDI. See Service Definition Interface (SDI)
search engines, vs. UDDI registries, 339
searchForm.html, 89-90
SearchInXML servlet, 93-95
secure client sockets, 429-434
client-server Web service and, 443-447
closing server connections, 431
connecting to secure server, 430
creation of, 429-430
reading server data, 431
SecureClient class for, 431-533
writing data to server, 430
Secure HTTP (HTTPS) protocol, 404
handshake mechanisms and cipher suites,
422-424
URL handlers and, 404, 416, 418-419
secure server sockets, 424-429
acceptance of client connections by, 426
client-server Web service and, 443-447
closing client connections, 427

496 Index

creating, 425

reading data from clients, 426
registration of, 426

writing of data to clients, 427

Secure Socket Layer (SSL), 6, 402, 424. See also
secure server clients; secure server sockets

SecureClient interface, 431-433
SecureClient.java, 443, 446—-447
SecureServer interface, 427-429
SecureServer.java, 443, 444-446
security certificates, 402, 405-406

accessing information on with KeyStore class,

411-413
chains of, 406
generating self-signed, 410-411
importing to keystores, 409-410, 411
information contained by, 406
installation of JSSE-specific, 405
X.509 standard for, 406, 409
security.jsp, 442-443
SELECT SQL command, 177
self-signed certificates, 410-411
-selfcert command, 410-411
send() method, 266
serializers, 311
server sockets, 402
creation of, 420, 422
secure, 424-429
server.jsp, 445-446
ServerSocket interface, 420
ServerSocketFactories, JSSE, 420, 422
server.xml file, Tomcat, 468—469
Service Definition Interface (SDI), 305, 319
Service Definition WAR package, 320-321
<sgrvice> element, WSDL document, 368, 372
service registries. See registries, Web service
services type, UDDI Business Registry, 338
ServletContext.getAttribute() method, 162
ServletContext.setAttribute() method, 162
ServletRequest.getAttribute() method, 162
ServletRequest.getParameter() method, 162
ServletRequest.getParameterValue() method, 162
ServletRequest.setAttribute() method, 162
servlets
AdditionInXML servlet, 103-105
EmptyXML.java, 105, 107-108
example servlet, 32—-36
multithreading and, 36-37
ParsingXML.java, 83—-84, 88
SearchInXML servlet, 93-95

SOAP server servlet, 270-274, 277-298
ThreadSafe.java servlet, 109-110
XMOParser.java, 84-88
Session scope, SPEL, 162
session states, asynchronous messaging and,
258-259
set action, JSTL tag library, 170-171, 196
setAttribute() method, 143, 209
setCertificateEntry() method, 413
setClassificationScheme() method, 343
setConcept() method, 343
setContentLocation() method, 219
setConversation|D method, 270
setEmail Address() method, 374
setErrorListener() method, 143, 144, 146, 147
setFeature() method, 115
setKeyEntry() method, 413
setMessageDrivenContent() method, 277
setMimeHeader() method, 219
setNodeValue() method, 103
setOutputProperties() method, 147
setOutputProperty() method, 147
setParameter() method, 146, 147
setPersonName() method, 373-374
setProperty() method, 115
setURIResolver() method, 143, 144, 146, 147
short data type, 308
sibling nodes, 61, 81-82
Simple Object Access Protocol. See SOAP
(Simple Object Access Protocol)
SimpleQuery interface, 354
Simplest Possible Expression Language (SPEL),
161-163
allowable attribute scope values, 162
literal attribute values, 163
searching for attributes, 163
size() method, 412
skipped entities, 45, 76-77
skippedEntities() callback, 45
skippedentity() method, 7677
SOAP (Simple Object Access Protocol), 4-5,
204-207
asynchronous messaging and. See SOAP
messages, asynchronous
binding elements and, 367, 371-372
producing SOAP messages with
MessageFactory, 224—-226
SOAP example client, 231-247
SOAP message components, 205-207
SOAP Messages with Attachments, 208

SOAPBAody interface, 222
SOAPEIlement interface, 209-214
SOAPEnwelope interface, 219-220
SOAPFault interface, 222—-223
SOAPHeader interface, 220-221
SOAPHeaderElement interface, 220, 221
SOAPMessage interface, 214-217
SOAPPart interface, 217-219
synchronous messages. See SOAP messages,
synchronous
UDDI specification and, 339
SOAP Body, 205, 207, 212
SOAP clients, 204, 230-247
debugging, 247
execution of requests by, 232—-246
output from successful execution of, 246
SOAP Fault response, 246, 247
standalone, 231
SOAP EJB, 270, 275-277
SOAP Envelope, 205-206
adding elements to, 226-227
Name objects and, 213
SOAPEnNwelope interface and, 219-220
SOAP Faults, 222, 223, 296-298
SOAP Header, 205-207
adding elements to, 226-227
SOAPHeader interface, 220-221
SOAPHeaderElement interface, 220, 221
SOAP messages, asynchronous, 255-259
creating with ProviderConnection, 266, 267
delayed response messaging, 257-258
example SOAP servlet for, 277-298
one-way messaging, 256-257
recording of state of, 258-259
routing of, 255-256, 260-263
sending with ProviderConnection, 267—-269
SOAP EJB implementation for, 270, 275-277
SOAP server servlet for, 270-273, 277-298
SOAP messages, synchronous, 204, 254,
255-256, 257-258
adding attachments to, 228-230
Body element in, 205, 207, 222-223
Envelope in, 205-206, 219-220
example of, 230-247, 255
Faults in, 222, 223
Header in, 205-207, 220-221
JAX-RPC and, 304-305
message routing, 259-260, 261
MIME-encoded SOAP attachments to, 208,
215-217
namespaces in, 205-206

Index 497

populating components of, 226-227
producing with MessageFactory, 224-227
routing of, 259-260, 261
SOAP Messages with Attachments and, 208
SOAP server servlet for, 274
SOAPPart class and, 217-219
XML-only SOAP messages, 208, 214-215
See also SOAP messages, asynchronous;
XML-based RPC
SOAP Messages with Attachments, 204, 208,
214
SOAP Providers, 223-224, 254
SOAP-RPC, 304
SOAP server servlet, 270-274
deployment of in servlet container, 298
example of, 277-298
exception handling by, 294-298
JAXMServlet class for, 271-272
message handling by, 274
overriding of methods in, 273-274
SOAP servers, 254—299, 277-298
incoming message routing, 260-262
JAXM Provider connections, 263-266
recording of state and, 258-259
SOAP EJB for, 270, 275-277
SOAP server servlet for, 270-274, 277-298
SOAPBody interface, 209, 222
SOAPEIement addAttribute() method, 210
SOAPEIlement interface, 209-214
creating Name objects, 213-214
creating Text objects, 214
methods for adding/reading text nodes,
212-213
methods for manipulating attributes, 210
methods for manipulating child elements,
210-212
SOAPBAody subinterface, 209
SOAPEnNvelope subinterface, 209
SOAPHeader subinterface, 209
SOAPEnNvelope interface, 209, 219-220
SOAPEnvelope object, 213-214
SOAPFault interface, 222—-223
SOAPHeader interface, 209, 220
SOAPHeaderElement interface, 220, 221
SOAPMessage interface, 214-217
MessageFactory interface and, 224-227
MIME-encoded SOAP attachments and,
215-217, 228-230
XML-content only SOAP messages and,
214-215
SOAPPart interface, 217-219, 226

498 Index

SOAPRP profile, 268, 270
SOAPRPMessagelmpl interface, 270
SOAPSerializer interface, 311
Socket interface, 420, 421
SocketFactories, JSSE, 402, 420, 421, 422
sockets, 402
creation of, 420
creation of client side, 421
creation of server side, 420, 421
using secure client, 429-434
using secure server, 424-429
solicit-response operations, WSDL, 366, 367
Source interface, 144-145
SourceLocator interface, 153
specification pointers, UDDI Business Registry,
338
SPEL. See Simplest Possible Expression
Language (SPEL)
SQL databases, 176-182
defining data sources, 176-177
nesting of SQL transactions, 180-182
query execution, 177-179
updating, 179-180
SQL Tag Library package, 176-182
executing queries, 177-179
nesting of SQL transactions, 180-182
setting up the database driver, 176-177
updating databases, 179-180
sql:driver action, SQL Tag Library, 177
sql:param action, SQL Tag Library, 177-179
sql:query action, SQL Tag Library, 177
sgl:transaction action, SQL Tag Library, 180-182
sql:update action, SQL Tag Library, 179-180
SSL. See Secure Socket Layer (SSL)
SSLContext interface, 425, 429
SSLFactory interface, 402
SSL ServerSocket interface, 426
SSLServerSocketFactory interface, 423, 425
SSLSocketFactory interface, 429
SSLSockets interface, 402
standalone JAXM applications
debugging, 247
example SOAP application, 231-247
limitations of, 231
start document event, 17
start element event, 17
startClient() method, 446
startDocument() method, 19-20, 25
startElement() method, 20, 25
startHandshake() method, 429

startServer() method, 445
storeResult() method, 73, 88, 103
stream-based sources, passing to XML parser,
31
String argument, 191
String variable, DOM parsing of, 75
stubs, XML-RPC and, 305-306
stylesheets, XSL, 124
scanning, 143
Transformer interface and, 145-146
SunJSSE provider, 402
dynamic registration of, 404
static registration of, 403
synchronized() method, 109
system property, JAXP parser searches based

on, 29

T

tag library, JSP. See JSTL (JSP Standard Tag
Library)

targets, Ant build file, 473-474
tasks, Ant build file, 474
TempDTD.xml, 69
Templates, JAXP and, 149-152
TestKeys.java class, 414-416, 437-440
text attachments, SOAP message, 228—229
Text interface, 58, 214
Text nodes, 57, 58, 61, 67—68, 214
ThreadSafe.java servlet, 109-110
ties, XML-RPC and, 305-306
time, localization of format of, 194-195
time zone settings, JSTL tags for, 184-185
timeZone action, JSTL tags for, 184-185
TLS (Transport Layer Security), 6
tModel, UDDI Business Registry, 338
Tomcat, 7-8, 63, 454, 467-472
activation of Tomcat server, 460-461, 462,
471-472
environmental variables needed by, 468
installation of, 467
relationship to Apache servers, 472
server.xml files for, 468-469
WAR files for, 469-471
webapps directory for, 469
web.xml configuration file, 471
tracing, debugging and, 37
transaction action, SQL Tag Library, 180-182
transform action, JSTL XML Tag Library, 198
transform() method, 145-146, 147
transformation, XML, 140-152

creation of XSLT transformation code for,
140-144
input and output processing, 144-145
templates for, 149-152
transformers for, 145-149
Transformer interface, 145-149
generation of with TransformerFactory,
140-144
methods in, 146-147
multithreading and, 149, 154
TransformerFactory class, 140-144
transformers, XSLT, 140-144, 145-149
Transport Layer Security (TLS), 6, 402
traversal, DOM tree, 80-82
trusted certificate entries, keystore, 407
TrustManager, 405
<types> element, WSDL document, 365

U
UDDI Registry, 454
connecting to with Doconnect class, 345-347
installation of JWSDP for, 455-460
messages not supported by, 461-462
registry selection with Registry Browser,
462-467
UDDI Business Registry, 337, 338-339
UDDI registries vs. search engines, 339
See also WSDP Registry Server
UDDI specification, 6, 337-339, 454
connecting to registries with Doconnect class,
345-347
protocols supported by, 339
registry nodes and, 337
UDDI Business Registry, 337, 338-339
UN/CEFACT, 339
Uniform Resource Indentifier (URI), 31
Unix, 455, 456-460, 461
unmarshaling, XML-RPC and, 305, 306
UnsafeParser interface, 110, 111-114
update action, SQL Tag Library, 179-180
Update interface, 383—386
UPDATE SQL command, 179, 182
updates, registry record, 381-386
URI-based sources, passing to XML parser, 31
URI parameter, 40
URIResolver interface, 153—-154
URL handlers, 416-419
configuration of, 404, 416-418
creating a HTTPS connection with, 418-419
dynamic configuration of, 404—-405

Index 499

JSSE and, 7
using in Web services, 440-442
URLConnection interface, 404
URLConnection object, 83
urlEncode action, JSTL core tag library, 175-176
URLHandler interface, 418-419, 440, 441
urlhandler.jsp, 441, 442
URLs
connecting to using HTTPs, 418-419
encoding of strings via JSTL, 175-176
HTTP URLs, 7
URL handlers and. See URL handlers
US-ASCII encoding, 32
User interface, 344
user names, \WWeb service registries and, 393-394
user.home system property, 408
UTF-8 encoding, 32

V

ValueTypes (application classes), 310-311
verify() method, 414

void addMimeHeader() method, 218

void close() method, 266

void detachNode() method, 211

void ejobRemove() method, 277

void recycleNode() method, 211-212

void removeAllMimeHeaders() method, 219
void send() method, 266

void setContentLocation() method, 219
void setMessageDrivenContent() method, 277
void setMimeHeader() method, 219

W
WAR files, 7, 317, 320-321, 469-471
warning() method, 73, 118, 152
Web browsers, language selection in, 183-184
Web Service Definition Language documents.
See WSDL (Web Service Definition
Language)
Web service providers
ClassificationScheme interface for
categorization of, 342-343
NAICS registry categories for by economic
activity, 335, 343
registry classification by geographical
location, 336
representation of registry by Organization
interface, 343-344
storage of metadata on in registries, 334-336
Web service registries, 334

500 Index

adding organizations with JWSDP classes,
372-381

adding organizations with Registry Browser,
348-351, 462-467

categorization of businesses/services, 335,
342-343

connecting to with connection(), 345, 372

connecting to with Doconnect class, 345-347

deprecating and deleting records in, 386—-393

ebXML specification for, 339-342

queries, simple, 353-357, 363—-364

querying based on classification, 357-363

querying with Registry Browser, 351-352

representation of entities in by Organization
interface, 343-344

storage of service metadata in, 334-336

taxonomy for geographical services in, 336

UDDI specification for, 337-339

updating records in, 381-386

username and password protection of,
393-394

Web services, 342

cipher suites, displaying installied through,
442-443

client-server Web service, 443-447

creation of with JSSE, 437-447

evaluating connection protocols by hand, 334
JAX-RPC API development and deployment

of, 304, 319-321
registries of. See Web service registries
searching for in registries, 353-364
storing of session states, 259
URL handlers and. See URL handlers
Web Services Description Language. See
WSDL (Web Services Description
Language)
Web Services Developer Package Registry. See
WSDP Registry
web.xml deployment descriptor, 164, 167
when action, JSTL tag library, 173, 197
whitespace characters, parsing of, 44-45, 68
World Wide Web Consortium (W3C), 54
wrapper classes, JAX-RPC support of, 307
WSDL (Web Service Definition Language)
description of Web services by, 5
WSDL (Web Services Description Language),
304, 305, 364-372
elements in WSDL documents, 365—368,
370-372
example WSDL document, 368—-369

JAX-RPC holder classes for, 312-313
operations supported by, 366, 367
WSDL file generation via xrpcc, 313-315
xrpcc command-line tool and, 313-317
WSDP. See Java Web Services Developer Pack
(JWSDP)
WSDP Registry Browser, 462—-467
adding organizations to classifications,
465-467
adding organizations to Default Registry via,
348-351
launching, 347-348
querying Default Register with, 351-352
registry selection with, 462-463
WSDP Registry Server, 454
adding organization to default registry with,
348-351
configuration of, 462-467
installation of JWSDP and, 454, 455
messages not supported by, 461-462
querying default registry with, 351-352
setup of, 347-348
See also UDDI Registry

X
X.509 standard, 406, 409
Xalan XSL engine, 139
Xerces, 30, 41-42, 77
x:forEach action, JSTL tag library, 196-197
XML-based RPC, 304-313
conversion between Java classes and WSDL
and, 313-317
function call semantics and, 305
JAX-RPC client and, 317-319, 325-327
JAX-RPC server and, 319-324
sending messages with JAX-RPC, 306-307
stubs and ties in, 305-306
XML data types, mapping, 308
XML documents
comments in, 47, 68
debugging with SAX Locator mechanism,
37-38
DOM hierarchy for, 60-62
DOM interfaces for elements of, 57-60
DOM trees for, 55-57
event-based parsing of, 14-15, 17-26
example servlet for parsing, 32—-36
JAXP and. See JAXP (Java API for XML
Processing)
JSTL XML tags for, 195-198

parsing of for DOM tree structure, 65-73
parsing of into a DOM tree, 72-77
passing to parsers with SAX InputSource class,
31-32
processing instructions in, 45
SAX event handlers and, 18-26
SAX events for, 17-18
tag element nodes, 56-57
transforming through XSLT, 124-128,
145-152
whitespace characters in, 44-45, 68
XPath and, 128-130
XML JSTL tags
conditional execution support by, 197-198
for iterating over XML elements, 196-197
for parsing and searching, 195-196
translation of and XSLT, 198
XML messaging, JAXM and. See JAXM (Java
API for XML Messaging)
XML namespaces. See namespaces, XML
XML-only SOAP messages, 208, 214-215
XML parsers, 14, 15
callbacks and, 15
character encodings and, 32
Crimson, 30
development of SAX standard for, 16-17
DOM parsers. See DOM parsers
error handling by, 45-47
event handlers and, 18-19
events and, 15
function of, 14
SAX parsers. See SAX parsers
tree-based, 14
Xerces 1, 30, 41-42
Xerces 2, 30,41-42
XML Schemas, 41-42
XMLParser interface, 84—-88
XMLReader interface, 26-27, 28, 46, 115
XMLReader.parser() method, 47
XMLString variable, DOM parsing of, 75
XMOParser.java servlet, 84-88
x:otherwise action, JSTL tag library, 197-198
X:out action, JSTL tag library, 196
X:parse action, JSTL tag library, 195-196
XPath, 124, 128-130, 164, 195

Index 501

xrpcc command-line tool, 305, 313-317
command line options, 314
packaging of services as WAR files, 317,
320-321
RMI interface generation, 315-316
server configuration file generation, 316-317,
319-320
WSDL file generation, 313, 314-315
x:set action, JSTL tag library, 196
XSL, 124
transforming XML files through XSLT,
124-128
XPath and, 124
XSLFO and, 124
XSLT and, 124
XSL engines, 124, 139-140
XSL for Transformations. See XSLT
<xsl:apply-template> procedure, 131
<xsl:choose> procedure, 137
XSLFO, 124
<xsl:for-each> procedure, 132-134
<xsl:if> procedure, 134-137
<xsl:output> procedure, 138—-139
<xsl:sort> procedure, 138
XSLT, 124-128
<xsl:apply-template> procedure, 131
<xsl:choose> procedure, 137
<xsl:for-each> procedure, 132-134
<xsl:if> procedure, 134-137
<xsl:output> procedure, 138-139
<xsl:sort> procedure, 138
<xsl:template> procedure, 130-131
<xsl:value-of> procedure, 138
<xsl:when> procedure, 137
creation of XSLT transformation code for,
140-144
input and output processing in, 144-145
templates and, 149-152
transformers and, 145-149
XPath and, 128-130
<xsl:template> procedure, 130-131
<xsl:value-of> procedure, 138
<xsl:when> procedure, 137
x:transform action, JSTL XML Tag Library, 198
x:when action, JSTL XML Tag Library, 197

SYNGRESS SOLUTIONS...

1 i .ém

YR A M | W

LEGO ﬁ- Programming LEGO Mindstor
f Programming LEGO Mindstorms with J

h'h I'Id ':.[D]"]'ﬂb it is about Java programming. This boo

w""]HVH hobbyists to the serious Mindstorms afi

ith Java

s as much about robotics programming as
or all levels of Mindstorms users, from
dos. This book is also appropriate for a
variety of programming levels; those wi ly a modicum of Java knowledge as well
as those at an advanced level will find much to learn within these pages. You will
cover all the basics of programming the RCX, beginning with the introduction of the
available Java APIs used to communicate remotely to the RCX using its default firm-
ware, all the way through the advanced topics of embedded programming using a
custom Java Virtual Machine (JVM).

ISBN: 1-928994-55-5

Price: $29.95 USA, $46.95 CAN

for Java Programmers ?i'
ET is Microsoft’s answer to the J2EE platform for Enterprise Web Services. It is C #
tial that developers know C# if they are to program for the .NET platform. C# for EI‘JH
Programmers is not an introductory guide to C#, rather it builds on what Pngi"ﬂlﬂlTlE‘ rs
mmers already know about object-oriented languages to give them an :
[0 master the .NET framework. This book will compare and contrast ey S
intages and drawbacks of Java and C#, allowing programmers to
telligent decisions based on the unique uses of each language.

: 1836-54-X
Price: $49.95 USA, $77.95 CAN

Hack Proofing XML

Hack Proofing XML will allow Web developers and database administrators to take
advantage of the limitless possibilities of XML without sacrificing the integrity, confi-
dentiality, and security of their information. Readers will be given hands-on instruc-
tion on how to encrypt and authenti ate their XML data using prescribed
st'eir_ldards,' digital signatures, andf¥arious vendors’ software.

ISBN: 1-931836-50-7 .

SYNGRESS®

http://www.syngress.com/catalog/sg_main.cfm?pid=1772
http://www.syngress.com/catalog/sg_main.cfm?pid=2232
http://www.syngress.com/

	Cover
	Table of Contents
	Foreword
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Index
	Related Titles

