@WILEY . _ TIMELY. PRACTICAL. RELIABLE.

Developing

Java Web
Services

Architecting and
Developing Secure
Web Services
Using Java

Ramesh Nagappan
Robert Skoczylas
Rima Patel Sriganesh

Developing Java” Web Services

Architecting and Developing Secure
Web Services Using Java

Developing Java®
Web Services

Architecting and Developing Secure
Web Services Using Java

Ramesh Nagappan
Robert Skoczylas
Rima Patel Sriganesh

WILEY

Wiley Publishing, Inc.

Publisher: Robert Ipsen

Editor: Theresa Hudson

Developmental Editors: Scott Amerman and James Russell
Editorial Manager: Kathryn A. Malm

Managing Editor: Angela Smith

Text Design & Composition: Wiley Composition Services

This book is printed on acid-free paper.
Copyright © 2003 by Wiley Publishing Inc., Indianapolis, Indiana. All rights reserved.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or
otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright
Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rose-
wood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470. Requests to the Pub-
lisher for permission should be addressed to the Legal Department, Wiley Publishing, Inc.,
10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4447, E-mail:
PERMCOORDINATOR@WILEY.COM.

Limit of Liability /Disclaimer of Warranty: While the publisher and author have used their
best efforts in preparing this book, they make no representations or warranties with respect
to the accuracy or completeness of the contents of this book and specifically disclaim any
implied warranties of merchantability or fitness for a particular purpose. No warranty may
be created or extended by sales representatives or written sales materials. The advice and
strategies contained herein may not be suitable for your situation. You should consult with
a professional where appropriate. Neither the publisher nor author shall be liable for any
loss of profit or any other commercial damages, including but not limited to special, inci-
dental, consequential, or other damages.

For general information on our other products and services please contact our Customer
Care Department within the United States at (800) 762-2974, outside the United States at
(317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears
in print may not be available in electronic versions.

For more information about Wiley products, visit our Web site at www.wiley.com.

Trademarks: Wiley, the Wiley Pubishing logo and related trade dress are trademarks or reg-
istered trademarks of Wiley Publishing, Inc., in the United States and other countries, and
may not be used without written permission. All other trademarks are the property of their
respective owners. Wiley Publishing, Inc., is not associated with any product or vendor
mentioned in this book.

Library of Congress Cataloging-in-Publication Data:
ISBN 0-471-23640-3

Printed in the United States of America

109 87 654321

Contents

Foreword Xiii
Introduction Xv
Part One Evolution and Emergence of Web Services 1
Chapter 1 Evolution of Distributed Computing 3
What Is Distributed Computing? 4

The Importance of Distributed Computing 5
Client-Server Applications 6

CORBA 8

Java RMI 10

Microsoft DCOM 13
Message-Oriented Middleware 14

Common Challenges in Distributed Computing 16

The Role of J2EE and XML in Distributed Computing 17

The Emergence of Web Services 20

Summary 20

Chapter 2 Introduction to Web Services 21
What Are Web Services? 22

Motivation and Characteristics 24

Why Use Web Services? 26

Basic Operational Model of Web Services 26

Core Web Services Standards 27

Extensible Markup Language (XML) 28

Simple Object Access Protocol (SOAP) 28

Web Services Definition Language (WSDL) 29

Universal Description, Discovery, and Integration (UDDI) 29

ebXML 30

vi Contents

Part Two
Chapter 3

Chapter 4

Other Industry Standards Supporting Web Services
Web Services Choreography Interface (WSCI)
Web Services Flow Language (WSFL)
Directory Services Markup Language (DSML)
XLANG
Business Transaction Protocol (BTP)
XML Encryption (XML ENC)
XML Key Management System (XKMS)
XML Signature (XML DSIG)
Extensible Access Control Markup Language (XACML)
Security Assertions Markup Language (SAML)
Known Challenges in Web Services
Web Services Software and Tools
BEA Systems Products
Cape Clear Products
IBM Products
IOPSIS Products
Oracle Products
Sun Products
Systinet Products
Web Services Strategies from Industry Leaders: An Overview
Sun ONE (Sun Open Net Environment)
IBM e-Business
Microsoft .NET
Key Benefits of Web Services
Summary

Web Services Architecture and Technologies

Building the Web Services Architecture
Web Services Architecture and Its Core Building Blocks
Tools of the Trade
Simple Object Access Protocol (SOAP)
Web Services Description Language (WSDL)
Universal Description, Discovery, and Integration (UDDI)
ebXML
Web Services Communication Models
RPC-Based Communication Model
Messaging-Based Communication Model
Implementing Web Services
Developing Web Services-Enabled Applications
How to Develop Java-Based Web Services
Developing Web Services Using J2EE: An Example
Summary

Developing Web Services Using SOAP
XML-Based Protocols and SOAP
The Emergence of SOAP
Understanding SOAP Specifications

31
31
31
31
32
32
32
32
33
33
33
34
34
34
35
35
35
35
36
36
36
37
37
37
38
38

39

11
42
46
46
47
49
49
50
50
51
52
54
55
60
101

103
104
105
106

Contents

vii

Chapter 5

Anatomy of a SOAP Message
SOAP Envelope
SOAP Header
SOAP Body
SOAP Fault
SOAP mustUnderstand
SOAP Attachments
SOAP Encoding
Simple Type Values
Polymorphic Accessor
Compound Type Values
Serialization and Deserialization
SOAP Message Exchange Model
SOAP Intermediaries
SOAP Actor
SOAP Communication
SOAP RPC
SOAP Messaging
SOAP Bindings for Transport Protocols
SOAP over HTTP
SOAP over SMTP
Other SOAP Bindings
SOAP Message Exchange Patterns
SOAP Security
SOAP Encryption
SOAP Digital Signature
SOAP Authorization
Building SOAP Web Services
Developing SOAP Web Services Using Java
Developing Web Services Using Apache Axis
Installing Axis for Web Services
Running Axis without Tomcat/Servlet Engine
Axis Infrastructure and Components
Axis Web Services Programming Model
Creating Web Services Using Axis: An Example
Building Axis-Based Infrastructure
Setting Up the ACME Web Services Environment
Implementing the ACME Web Services
Known Limitations of SOAP
Summary

Description and Discovery of Web Services
Web Services Description Language (WSDL)
WSDL in the World of Web Services
Anatomy of a WSDL Definition Document
WSDL Bindings
WSDL Tools

107
110
111
112
112
115
116
118
118
119
120
124
124
126
127
128
128
130
131
131
134
136
138
140
140
142
143
144
145
146
147
149
149
154
160
161
165
173
199
199

201
202
202
204
211
214

viii Contents

Chapter 6

Part Three
Chapter 7

Future of WSDL
Limitations of WSDL

Universal Description, Discovery, and Integration (UDDI)
UDDI Registries
Programming with UDDI
Inquiry API
Publishing API
Implementations of UDDI
Registering as a Systinet UDDI Registry User
Publishing Information to a UDDI Registry
Searching Information in a UDDI Registry
Deleting Information from a UDDI Registry
Limitations of UDDI

Summary

Creating .NET Interoperability
Means of Ensuring Interoperability
Declaring W3C XML Schemas
Exposing WSDL
Creating SOAP Proxies
Testing Interoperability
Microsoft .NET Framework: An Overview
Common Language Runtime (CLR)
NET Framework Class Library
Developing Microsoft .NET Client for Web Services
Key Steps in Creating a Web Service Requestor
Using the NET Framework
Case Study: Building a .NET Client for Axis Web Services
Challenges in Creating Web Services Interoperability
Common SOAP/HTTP Transport Issues
XML Schema- and XML-Related Issues
SOAP /XML Message Discontinuities
Version and Compatibility
The WS-I Initiative and Its Goals
Public Interoperability testing efforts
Summary

Exploring Java Web Services Developer Pack

Introduction to the Java Web Services
Developer Pack (JWSDP)
Java Web Services Developer Pack
Java XML Pack
Java APIs for XML
JavaServer Pages Standard Tag Library
Apache Tomcat Container
Java WSDP Registry Server
ANT Build Tool

221
222
222
223
226
235
249
254
255
257
260
264
269
269

271
272
273
273
273
274
274
275
275
276

276
278
289
290
290
290
291
291
292
292

293

295
296
297
297
309
309
310
310

Contents ix

Downloading the Web Services Pack 310
Summary 311
Chapter 8 XML Processing and Data Binding with Java APIs 313
Extensible Markup Language (XML) Basics 314
XML Syntax 316
Namespaces 322
Validation of XML Documents 324
Java API for XML Processing (JAXP) 337
JAXP 337
Uses for JAXP 338
JAXP API Model 339
JAXP Implementations 342
Processing XML with SAX 342
Processing XML with DOM 353
XSL Stylesheets: An Overview 364
Transforming with XSLT 372
Threading 383
Java Architecture for XML Binding (JAXB) 383
Data Binding Generation 386
Marshalling XML 393
Unmarshalling Java 395
Other Callback Methods 396
Sample Code for XML Binding 396
Summary 399
Chapter 9 XML Messaging Using JAXM and SAAJ 401
The Role of JAXM in Web Services 402
JAXM Application Architecture 403
JAXM Messaging: Interaction Patterns 406
JAXM API Programming Model 407
javax.xml.messaging 407
javax.xml.soap (SAAJ 1.1 APIs) 409
Basic Programming Steps for Using JAXM 413
Using a JAXM Provider 413
Using JAXM without a Provider (Using SOAPConnection) 419
JAXM Deployment Model 425
Deploying JAXM-Based Applications in JWSDP 1.0 425
Configuring JAXM Applications Using a JAXM Provider 427
Configuring a Client 428
Configuring a Provider 428
Developing JAXM-Based Web Services 430
Point-to-Point Messaging Using JAXM (SOAPConnection) 431
Asynchronous Messaging Using the JAXM Provider 439
JAXM Interoperability 450
JAXM in J2EE 1.4 450
Summary 450

X

Contents

Chapter 10 Building RPC Web Services with JAX-RPC

Chapter 11

Chapter 12

The Role of JAX-RPC in Web Services
Comparing JAX-RPC with JAXM
JAX-RPC Application Architecture
JAX-RPC APIs and Implementation Model
JAX-RPC-Based Service Implementation
JAX-RPC-Based Client Implementation
JAX-RPC-Supported Java/ XML Mappings
Java/WSDL Definition Mappings
Developing JAX-RPC-Based Web Services
Creating a JAX-RPC-Based Service (BookPriceService)
Developing JAX-RPC Clients (BookPriceServiceClient)
JAX-RPC in J2EE 1.4
JAX-RPC Interoperability
Summary

Java API for XML Registries
Introduction to JAXR
JAXR Architecture
JAXR Architectural Components
JAXR Capabilities and Capability Profiles
The JAXR Programming Model
JAXR Information Model
Classes and Interfaces
Classification of Registry Objects
Association of Registry Objects
JAXR Registry Services API
Connection Management API
Life Cycle Management API
Query Management API
JAXR Support in JWSDP 1.0
Registry Server
Registry Browser
Understanding JAXR by Examples
Publishing Using JAXR
Querying Using JAXR
Deleting Information Using JAXR
Summary

Using the Java Web Services Developer Pack: Case Study

Case Study Overview
The Roles of Service Provider, Requestor, and Registry
Important Components and Entities

Case Study Architecture

Design of Components
Provider Environment
Designing the Publishing and Discovery Classes
Designing the Service Requestor Environment

(computerBuy.com)

451
452
454
454
456
456
464
471
474
476
476
484
491
491
492

493
494
494
494
496
498
499
499
502
508
510
510
516
522
532
532
534
536
536
549
556
561

563
563
564
564
567
568
568
572

575

Contents

Part Four
Chapter 13

Implementation
Developing the Service Environment
Developing the Service Requestor Environment
Setting Up the JWSDP Environment

Service Provider Runtime Infrastructure (acmeprovider.com)

Service Registry Infrastructure

Service Requestor Runtime Infrastructure (computerBuy.com)

Executing a Scenario
Summary

Security in Web Services

Web Services Security
Challenges of Securing Web Services
Technologies behind Securing Web Services
Rapid-Fire Cryptography
XML Encryption
What XML Encryption Is
Implementations of XML Encryption
XML Encryption
Encrypting <Accounts> XML Element
Decrypting the <Accounts> XML Element
Programming Steps for Encryption and Decryption
XML Signatures
Types of XML Signatures
XML Signature Syntax
Canonicalization
Implementations of XML Signature
XML Signature: An Example
XML Key Management Specification (XKMS)
XKMS Components
XKMS Implementations
XML Key Information Service Specification (X-KISS)
XML Key Registration Service Specification (X-KRSS)
Security Assertions Markup Language (SAML)
SAML Implementations
SAML Architecture
Authentication Assertion
Attribute Assertion
Authorization (Decision) Assertion
SAML Bindings and Protocols
Model of Producers and Consumers of SAML Assertions
Single Sign-On Using SAML
XML Access Control Markup Language (XACML)
Architecture of an XML Access Control System
Conclusion
Summary

582
582
593
602
602
609
610
612
615

617

619
620
621
621
630
631
633
633
641
643
644
650
650
652
655
656
657
668
670
671
671
677
685
687
689
691
693
694
696
697
698
706
707
710
711

xii Contents

Part Five Web Services Strategies and Solutions

Chapter 14 Introduction to Sun ONE
The Vision behind Sun ONE
Delivering Services on Demand (SoD)
Web Applications
Web Services
Web Clients
Sun ONE Architecture
Sun ONE Service Layers
Sun ONE Standards and Technologies
Sun ONE Product Stack: Integrated versus Integrate-able
Summary

Further Reading

Index

713

715
715
718
718
718
723
724
724
725
727
731

733
741

Foreword

In the last decade of computing, we have seen a growing realization that
most of the cost of computing comes not from the initial purchase of the
hardware, not even from the purchase of the software, but from the cost of
responding to change throughout the life of the system. When one part
changes, the degree of tight coupling between the elements of the system
dictates the “brittleness” or probability that change will be forced else-
where. When you have to retest the software because the operating system
was “upgraded,” that’s brittleness. When you can’t open your word
processor documents because the software version is wrong, that’s brittle-
ness. When a policy change in the accounting department dictates a soft-
ware rewrite in the sales department, that’s brittleness.

In seeking to eliminate brittleness, there have been three significant steps
taken:

m The first was the introduction of Java technology, which separated
software from the platform and allowed the creation of business logic
that wasn’t greatly affected by changes to the underlying server.

m The second was the introduction of Extensible Markup Language
(XML), which separated the data from the software and enabled
different software systems to share data without being affected by
changes to the data structures unless they needed to respond to them.

m The most recent is the introduction of Web services. Web services
separate collaborating computer systems connected by networks,
enabling them to delegate processing without becoming coupled in
a brittle way.

xiv

Foreword

All three of these steps need one another. The maximum protection
against brittleness occurs when software written for the Java platform uses
agreed XML data formats to supply or consume services, which are
connected using Web services technologies such as SOAP and WSDL and
perhaps UDD], if the application calls for it. Systems built with Java
technology, XML, and Web services are loosely coupled in all three dimen-
sions and will be the most resilient and flexible in the uncertain future that
faces us all.

The conjunction of Java for the software, XML for the data, and Web ser-
vices for the collaborative processing makes this book especially timely
and welcome. The majority of Web services development today is being
conducted using products from the extraordinarily rich Java community,
and the rapid integration of Web services into Java 2 Enterprise Edition
(J2EE) by the Java Community Process (JCP) offers the software developer
a comprehensive toolchest. In the pages that follow, you will find the
following;:

m Discussion of the evolving standards landscape for Web services,
including the important developments at ebXML, the XML succes-
sor to EDI

m The Java APIs for XML (JAX) standards so skillfully evolved by the
JCP to address everything connected to XML and Web services in a
vendor-neutral way

m Information about the approaches being taken by all of the impor-
tant Web services vendors, including a variety of tools

m Practical examples that will help you get started with your own Java
Web services implementations

m A discussion of the essentials of Web services security that
considers both the needs of identity management and of in-transit
data protection

m A valuable case study of a real-world Web services deployment
using Java

Web services are such a fundamental idea in the world of connected
computing that they will rapidly become part of the everyday fabric of
information systems, just as Java technology and XML have already. I com-
mend this book to you as your springboard to the future of how to make
the Internet work.

—Simon Phipps (www.webmink.net)
Chief Technology Evangelist at Sun Microsystems, Inc.

Introduction

“The big Web Services story is the end-to-end,

side-to-side integration of technology:

James Gosling,
The father of Java Platform

In this age of Internet, the success of the Web-based applications played a
vital role in moving our businesses from brick-and-mortar infrastructures
to 24 x 7 online businesses running on different systems and locations. As
anext evolutionary step, Web services are a new breed of Web-based appli-
cations that address the new phenomenon of building a general-purpose
platform for creating efficient integration among business processes, appli-
cations, enterprises, partners, customers, and so on. Web services are the
next evolution phase of distributed computing, based on XML standards
and Internet protocols. Web services provide a promising mechanism for
communication and collaboration among business applications, which
were constructed using various resources, that enables them to work
together regardless of their differences in their underlying implementa-
tion.

This book is a developer’s guide for designing and developing Web ser-
vices using a Java platform. It bundles together a wealth of knowledge and
detailed study materials, focusing on concepts, technologies, and practical
techniques for implementing and deploying Web services. It combines the
Web services vision of the Java community by providing in-depth coverage
of the Java Web Services Developer Pack (JWSDP). In addition, this book
also addresses the fundamentals of Web services from the ground up.

XV

xvi

Introduction

Technologies Covered in This Book

The book covers the core Web services standards and technologies for
designing and implementing Web services. In particular, it focuses in
depth on the following subject areas:

m Web services standards, protocols, and technologies, including
SOAP, WSDL, and UDDI

m Web services architecture and exposing J2EE applications as Web
services.

m The development of Web services using Java APIs (JAXP, JAXB,
JAX-RPC, JAXM, and JAXR) on JWSDP

m Web services security technologies: XML Encryption, XML Signa-
ture, Security Assertion Markup Language (SAML), XML Key Man-
agement Services (XKMS), and XML Access Control Markup
Language (XACML)

m Interoperability with Microsoft NET

m The real-world implementation of Web services on JWSDP, using a
case study

m Introduction to Sun ONE
In addition, the book also provides example illustrations using tools
such as Sun Microsystems JWSDP 1.0, BEA WebLogic 7.0, Systinet WASP

4.0, Apache Axis 1.0 Beta 3, IBM XML Security Suite, Exolab CASTOR, and
Microsoft .NET framework.

Target Audience

This book is for all Web services enthusiasts, architects, and developers
who perceive Java as their platform of choice for Web services develop-
ment and deployment.

This book presumes that the reader has the basic conceptual and program-
ming knowledge of implementing Web applications using Java and XML.

Organization of the Book

The content of this book is organized into following five parts, with exclu-
sive chapters concentrating on the Web services technologies:

Introduction

Part One, “Evolution and Emergence of Web Services.” Introduces the
reader to Web services by taking a evolutionary journey of distrib-
uted computing and the emergence of Web services, and then it
devotes an exclusive overview on Web services, addressing its moti-
vation, characteristics, industry standards and technologies, strate-
gies and solutions, and its benefits and limitations.

Chapter 1, “Evolution of Distributed Computing.” The background
of distributed computing and the evolution of Internet-enabled
technologies is explored in the first chapter. Here, we will examine
the definition and reasons for using distributed computing and the
core distributed computing technologies.

Chapter 2, “Introduction to Web Services.” This chapter presents an
introduction to Web services, especially focusing on the definition
of Web services, the standards and technologies that the services
use, and the benefits of using these services.

Part Two, “Web Services Architecture and Technologies.” This section
walks through the different Web services standards and technologies
such as SOAP, WSDL, and UDDI with real-world examples. It fea-
tures an in-depth coverage of the Web services architecture on a J2EE
implementation model, with example illustrations showing how to
expose enterprise applications to Web services. It also demonstrates
an interoperability scenario with non-Java based Web services.

Chapter 3, “Building the Web Services Architecture.” This chapter
focuses on the Web services architecture, its core building blocks,
implementation models, and deployment processes for building
Web services-based application solutions. In addition, this chapter
illustrates, using an example, the development of a complete Web
services solution, exposing J2EE applications as services over the
Internet.

Chapter 4, “Developing Web services using SOAP.” This chapter
provides an in-depth discussion on SOAP and its role in develop-
ing Web services. It covers the W3C definition of SOAP’s stan-
dards, conventions, messages, communication models, and
implementation of SOAP-based applications for Web services. In
addition, the chapter also includes example illustrations of adopt-
ing different SOAP communication models in Web services.

Chapter 5, “Description and Discovery of Web Services.” This
chapter explains two important Web services specifications: WSDL
and UDDIL. It provides a detailed explanation on the important

xviii Introduction

aspects of a WSDL specification and examples of using WSDL tools
within Web services development. UDDI specification also is cov-
ered in great detail, complete with practical examples on working
with UDDI registries. This chapter also covers issues with the cur-
rent WSDL and UDDI technologies.

Chapter 6, “Creating .NET Interoperability.” This chapter discusses
the Web services interoperability scenarios, challenges, and issues.
It also illustrates a full-featured interoperability example that
involves Java and Microsoft .NET environments.

Part Three, “Exploring Java Web Services Developer Pack (JWSDP).”
This section exclusively focuses on Java APIs for Web services: JAXP,
JAXB, JAXM, JAX-RPC, and JAX-R, and their reference implementa-
tion on JWSDP. This section provides complete example illustrations
and developer essentials for implementing and deploying Java-based
Web services on JWSDP. It also includes a special chapter that illus-
trates a case study demonstrating a real-world Web services imple-
mentation using JWSDP.

Chapter 7, “Introduction to the Java Web Services Developer Pack.”
This chapter introduces the reader to the Java Web Services Devel-
oper Pack (JWSDP) 1.0. It covers the Java XML Pack APIs and pro-
vides an overview of the runtime environment and tools used for
building, deploying, and testing Web services applications.

Chapter 8, “XML Processing and Data Binding with Java APIs.”
This chapter discusses the Java API for XML Processing (JAXP)
and Java Architecture for XML Binding (JAXB). It provides an
overview of XML, DTD, and W3C XML Schema and then provides
a walkthrough of the various techniques used for processing XML
data. The chapter also covers the Simple API for XML (SAX), Doc-
ument Object Model (DOM), and eXtensible Stylesheet transforma-
tions (XSLT). For completeness, it also dedicates a section on data
binding using JAXB.

Chapter 9, “XML Messaging Using JAXM and SAA]J.” This chapter
discusses the Java API for XML messaging (JAXM) and SOAP with
Attachment API for Java (SAAJ). It covers the JAXM/SAAJ-based
application architecture, an API programming model, and deploy-

ment. It also includes example illustrations of using JAXM and
SAAJ APIs.

Chapter 10, “Building RPC Web Services with JAX-RPC.” This
chapter discusses the Java API for XML RPC (Remote procedural
call) for developing RPC-based Web services. It also covers the

Introduction

Xix

JAX-RPC application architecture, an API programming model,
deployment, and its different client Invocation models. It also
includes example illustrations using JAX-RPC and demonstrates
the different client invocations.

Chapter 11, “Java API for XML Registries.” This chapter provides
detailed information on the Java API for XML Registry (JAXR)
specification from the Java Community Process (JCP). It also dis-
cusses the various aspects of JAXR in terms of its classification sup-
port, association support, connection management, life cycle
management, and querying capabilities. Also provided with this
chapter is the discussion on the various JAXR examples about
working with UDDI registries.

Chapter 12, “Using theJava Web Services Developer Pack: Case
Study.” This chapter focuses on implementing a complete Web ser-
vices solution using the Java Web Services Developer Pack
(JWSDP) 1.0. It puts together all of the JWSDP-based APIs covered
in this book to demonstrate a working Web services example.

Part Four, “Security in Web Services.” This section covers Web services
security concepts and various security standards and technologies. In
addition, it illustrates real-world Web services security implementa-
tion scenarios on XML Encryption, XML Signature, and SAML-based
Single Sign-On.

Chapter 13, “Web Services Security.” This chapter provides great
details on the issues revolving around Web services security, which
is followed by a discussion on each of the five major Web services
security technologies: XML Encryption, XML Signature, XML Key
Management Services (XKMS) , Security Assertions Markup Lan-
guage (SAML), and XML Access Control Markup Language
(XACML). It also provides good examples of using tools for secur-
ing Web services through XML Encryption and XML Signature
technologies. In addition, the chapter provides a hypothetical use
case study of applying SAML for achieving Single Sign-On.

Part Five, “Web Services Strategies and Solutions.” This section intro-
duces the reader to the Sun ONE initiative and provides information on
Sun ONE tools and platform servers for implementing Web services.

Chapter 14, “Introduction to Sun ONE.” This chapter aims at intro-
ducing the Sun ONE platform technologies and products. It also
provides some brief information on the Sun ONE product stack,
including its tools and platform servers. In addition, it also intro-
duces ebXML technologies.

XX

Introduction

Companion Web Site

All the source code from the example illustrations found within this book
is available for download from the companion Web site, www.wiley.com
/compbooks/nagappan.

In addition, this site also includes the following material:

m Frrata
m Further reading and references

m Changes and updates

Support and Feedback

The authors would like to receive the reader’s feedback. You are encour-
aged to post questions and/or contact the authors at their prospective
email addresses. Contact information can be found at the companion Web
site to this book at www.wiley.com/compbooks/nagappan.

Acknowledgments

The authors would like to extend their big thanks to the Wiley publishing
team, including Terri Hudson, Kathryn Malm, Scott Amerman, James Rus-
sell, and Angela Smith; and the reviewers for their constant help, from
beginning to end, in fulfilling this dream work.

Thanks to Simon Phipps for writing the Foreword and sharing his best
thoughts on Web services in this book.

Thanks, too, to Dave Martin and Chris Steel for having reviewed this
work and sharing their views.

Heartfelt gratitude to our friends at Sun Microsystems for their help and
support while accomplishing this work.

Ramesh Nagappan

After six months of hard work, it is an utter surprise for me to see the com-
pletion of the project, and it’s a great feeling to see the quality of work the
way we wanted.

It's quite fun to recall the genesis of this book: Two friends, Sada
Rajagopalan and Sameer Tyagi, started gathering ideas for this mammoth
project on September 19, 2001, at the John Harvard’s Pub in Natick, Massa-
chusetts. Around 10:45 P.M., after most of us had three pitchers of a
seasonal flavor and all had shared rip-roaring hilarious talk, Sada, who
didn’t drink, came up with this idea of writing a book on Java Web ser-
vices. In the next few days, we created the proposal for this book. Both
Sameer and Sada helped us initiating this huge effort and in getting the
proposal written; much thanks to them for all their efforts. It's always been

xxi

xxii

Acknowledgements

great fun calling Sameer in the middle of the night, especially to discuss
emerging technologies, as well as known bugs, changes, and issues.

My special thanks goes to Sunil Mathew and my fellow architects at the
Sun Java center for their constant encouragement for writing this book.
Thanks to the Apache Axis team and my friends at Apache Software Foun-
dation for being helpful, answering my questions, and updating me with
changes. Thanks also to the Exolab CASTOR, Systinet WASP, and W3C
SOAP discussion groups for answering my questions with insightful
responses and initiating valuable discussions.

Finally, the largest share of the credit goes to my loving wife, Joyce, my
little buddy Roger, and my parents for all their love and support. Only
through their love and support, am I able to accomplish any goal.

Robert Skoczylas

After long, long hours of hard work we are finally done with the chapters
and ready to thank and recognize the help of many people who gave us
guidance, direction, and support.

Special thanks to Sada Rajagopalan for his contributions to the first
chapter of the book. Your amazing motivation got this ball rolling. Thanks!

Big thanks to all the expert contributors of the Java, XML, and Web ser-
vices mailing lists out there, your feedback adds a great value to this work.

I want to thank all my friends at the Sun Java Center for all their support,
especially my manager, Sunil Mathew, for his constant encouragement.

Also, to the many people who have directly or indirectly influenced my
career: Albert Rudnicki, Paul Dhanjal, Mario Landreville, Ray Sabourin,
Jan Bratkowski, Sameer Tyagi, Tomasz Ratajczak, Carol McDonald, Chris
Steel, and Dan Hushon.

Thanks to my parents, Urszula and Jacek, and my brother Slawomir,
who always show me the way things need to be done.

Finally, I would like to thank my fiancée, Urszula Masalska, who put up
with this project for the last couple of months. Without your patience and
encouragement, I wouldn’t have had the strength to cross the finish line.
Thank you!

Rima Patel Sriganesh

This book has been an exciting roller-coaster ride of my life. When I first
started as a reviewer of this book, I never imagined that I would end up
being a co-author. All of a sudden when that opportunity came up, I was

Acknowledgements xxiii

overwhelmed with joy as well as work. It was during the course of this
project that I realized how challenging this work was, not only for me, but
also for my husband, who’d happily let go of all the fun moments for the
sake of my venture.

In the memory of those fun times we lost, I would like to dedicate my
share of this hard work, success, and joy to my dearest and loving hus-
band, Sriganesh, without whom life would not have been so beautiful; and
my most wonderful parents, who spent the best years of their lives in
turning me into the person that I am today.

My special thanks goes to Max Goff, without whom I would have never
got to know this beautiful world of Technology Evangelism.

Also, I would like to thank my fellow Evangelist Carol McDonald for
introducing me to my cohorts on this book as well as the rest of the Sun Tech-
nology Evangelism group, including my manager, Reginald Hutcherson.

About the Authors

Ramesh Nagappan is an experienced software architect who specializes in
Java-, XML-, and CORBA-based distributed computing architectures for
Internet-based business applications and Web services. He is an active con-
tributor to popular Java- and XML-based open source applications. Prior to
this work, he has co-authored two books on J2EE and EAI He is also an
avid Unix enthusiast. Before he hooked on to Java and CORBA, he worked
as a research engineer for developing software solutions for CAD/CAM,
fluid dynamics, system simulation, and aerodynamics applications.
Currently he is working for Sun Microsystems as an Enterprise Java
Architect with the Sun Java Center in Boston. He lives in the Boston suburb
with his wife and son. In his spare time, he enjoys water sports and playing
with his son Roger. He graduated from Harvard University, specializing in
applied sciences. He can be reached at nramesh@post.harvard.edu.

Robert Skoczylas is an Enterprise Java Architect with the Sun Java Center
in Boston, MA. He has many years of experience in Object-Oriented tech-
nologies. He has been focused on design and implementation of large-scale
enterprise applications using Java and XML technologies. He currently
consults and mentors large projects specializing in server side Java-based
distributed systems. He is driven by new technologies and loves reading
about them. His past experiences include working on Java applications for
performance and analysis of cellular networks with Ericsson Research
Canada (LMC).

XXV

xxvi About the Authors

Outside of Java World, Robert enjoys techno beats, playing golf, and any
extreme sport that involves a board, including snowboarding, wakeboard-
ing, and windsurfing. Robert holds a Computer Science degree from
Concordia University in Montreal, Quebec. He can be reached at
robert.skoczylas@sun.com

Rima Patel Sriganesh is a Technology Evangelist presently working for
Sun Microsystems, Inc. She specializes in Java, XML, and Integration plat-
forms. Her areas of technology passion include Distributed Computing
Models, Trust Computing, Semantic Web, and Grid Computing architec-
tures. She speaks frequently at premiere industry conferences such as
JavaOne, Web Services Edge, SIGS 101, and others. She also publishes on
Sun’s Technology Evangelism portal: www.sun.com/developers/evang-
central.

Rima and her husband live in the Greater Boston area. She most enjoys
eating spicy Indian food and reading Gujarati novels. Also, she loves
debating world politics and Vedic philosophy when energy permits her.
Rima holds a graduate degree in Mathematics. She can be reached at
rima.patel@sun.com.

_PART |
'One
Evolution and Emergence

of Web Services

Evolution of Distributed
Computing

The Internet has revolutionized our business by providing an information
highway, which acts as a new form of communication backbone. This new
information medium has shifted business from the traditional brick-and-
mortar infrastructures to a virtual world where they can serve customers
not just the regular eight hours, but round-the-clock and around the world.
Additionally, it enhances our organizations with significant benefits in
terms of business productivity, cost savings, and customer satisfaction. As
a result, modern organizations are compelled to re-evaluate their business
models and plan on a business vision to interact with their customers, sup-
pliers, resellers, and partners using an Internet-based technology space. To
achieve this goal of obtaining an Internet business presence, organizations
are exposing and distributing their business applications over the Internet
by going through a series of technological innovations. The key phenome-
non of enabling business applications over the Internet is based on a fun-
damental technology called distributed computing.

Distributed computing has been popular within local area networks for
many years, and it took a major step forward by adopting the Internet as its
base platform and by supporting its open standard-based technologies.
This chapter discusses the background of distributed computing and the
evolution of Internet-enabled technologies by focusing on the following;:

4

Chapter 1

m The definition of distributed computing

The importance of distributed computing
m Core distributed computing technologies such as the following:
m Client/server
= CORBA
m Java RMI
m Microsoft DCOM
m Message-Oriented Middleware
m Common challenges in distributed computing
The role of J2EE and XML in distributed computing

m Emergence of Web services and service-oriented architectures

What Is Distributed Computing?

In the early years of computing, mainframe-based applications were consid-
ered to be the best-fit solution for executing large-scale data processing appli-
cations. With the advent of personal computers (PCs), the concept of software
programs running on standalone machines became much more popular
in terms of the cost of ownership and the ease of application use. With
the number of PC-based application programs running on independent
machines growing, the communications between such application programs
became extremely complex and added a growing challenge in the aspect
of application-to-application interaction. Lately, network computing gained
importance, and enabling remote procedure calls (RPCs) over a network pro-
tocol called Transmission Control Protocol/Internet Protocol (TCP/IP) turned
out to be a widely accepted way for application software communication.
Since then, software applications running on a variety of hardware platforms,
operating systems, and different networks faced some challenges when
required to communicate with each other and share data. This demanding
requirement lead to the concept of distributed computing applications.

As a definition, “Distributing Computing is a type of computing in which
different components and objects comprising an application can be located
on different computers connected to a network” (www.webopedia.com,
May 2001). Figure 1.1 shows a distributed computing model that provides
an infrastructure enabling invocations of object functions located anywhere
on the network. The objects are transparent to the application and provide
processing power as if they were local to the application calling them.

Evolution of Distributed Computing

5

TCP/IP
User
TCP/IP
W Application | ——— _Teee |
TCP/IP

\

Figure 1.1 Internet-based distributed computing model.

Today, Sun Java RMI (Remote Method Invocation), OMG CORBA (Com-
mon Object Request Broker Architecture), Microsoft DCOM (Distributed
Component Object Model), and Message-Oriented Middleware (MOM)
have emerged as the most common distributed computing technologies.
These technologies, although different in their basic architectural design
and implementation, address specific problems in their target environ-
ments. The following sections discuss the use of distributed computing
and also briefly describe the most popular technologies.

The Importance of Distributed Computing

The distributed computing environment provides many significant advan-
tages compared to a traditional standalone application. The following are
some of those key advantages:

Higher performance. Applications can execute in parallel and distribute
the load across multiple servers.

6

Chapter 1

Collaboration. Multiple applications can be connected through stan-
dard distributed computing mechanisms.

Higher reliability and availability. Applications or servers can be
clustered in multiple machines.

Scalability. This can be achieved by deploying these reusable distrib-
uted components on powerful servers.

Extensibility. This can be achieved through dynamic (re)configura-
tion of applications that are distributed across the network.

Higher productivity and lower development cycle time. By breaking
up large problems into smaller ones, these individual components
can be developed by smaller development teams in isolation.

Reuse. The distributed components may perform various services
that can potentially be used by multiple client applications. It saves
repetitive development effort and improves interoperability between
components.

Reduced cost. Because this model provides a lot of reuse of once
developed components that are accessible over the network, signifi-
cant cost reductions can be achieved.

Distributed computing also has changed the way traditional network
programming is done by providing a shareable object like semantics across
networks using programming languages like Java, C, and C++. The fol-
lowing sections briefly discuss core distributed computing technologies
such as Client/Server applications, OMG CORBA, Java RMI, Microsoft
COM/DCOM, and MOM.

Client-Server Applications

The early years of distributed application architecture were dominated by
two-tier business applications. In a two-tier architecture model, the first
(upper) tier handles the presentation and business logic of the user applica-
tion (client), and the second /lower tier handles the application organization
and its data storage (server). This approach is commonly called client-server
applications architecture. Generally, the server in a client/server application
model is a database server that is mainly responsible for the organization
and retrieval of data. The application client in this model handles most of the
business processing and provides the graphical user interface of the applica-
tion. It is a very popular design in business applications where the user

Evolution of Distributed Computing

interface and business logic are tightly coupled with a database server for
handling data retrieval and processing. For example, the client-server model
has been widely used in enterprise resource planning (ERP), billing, and
Inventory application systems where a number of client business applica-
tions residing in multiple desktop systems interact with a central database
server.

Figure 1.2 shows an architectural model of a typical client server system
in which multiple desktop-based business client applications access a cen-
tral database server.

Some of the common limitations of the client-server application model
are as follows:

m Complex business processing at the client side demands robust
client systems.

m Security is more difficult to implement because the algorithms and
logic reside on the client side making it more vulnerable to hacking.

m Increased network bandwidth is needed to accommodate many calls
to the server, which can impose scalability restrictions.

m Maintenance and upgrades of client applications are extremely diffi-
cult because each client has to be maintained separately.

m (Client-server architecture suits mostly database-oriented standalone
applications and does not target robust reusable component-
oriented applications.

Application Application Application

TCP/IP TCP/IP TCP/IP

|

Database
Server

Figure 1.2 An example of a client-server application.

Chapter 1

CORBA

The Common Object Request Broker Architecture (CORBA) is an industry
wide, open standard initiative, developed by the Object Management
Group (OMG) for enabling distributed computing that supports a wide
range of application environments. OMG is a nonprofit consortium
responsible for the production and maintenance of framework specifica-
tions for distributed and interoperable object-oriented systems.

CORBA differs from the traditional client/server model because it pro-
vides an object-oriented solution that does not enforce any proprietary pro-
tocols or any particular programming language, operating system, or
hardware platform. By adopting CORBA, the applications can reside and
run on any hardware platform located anywhere on the network, and can
be written in any language that has mappings to a neutral interface defini-
tion called the Interface Definition Language (IDL). An IDL is a specific
interface language designed to expose the services (methods/functions) of
a CORBA remote object. CORBA also defines a collection of system-level
services for handling low-level application services like life-cycle, persis-
tence, transaction, naming, security, and so forth. Initially, CORBA 1.1 was
focused on creating component level, portable object applications without
interoperability. The introduction of CORBA 2.0 added interoperability
between different ORB vendors by implementing an Internet Inter-ORB
Protocol (IIOP). The IIOP defines the ORB backbone, through which other
ORBs can bridge and provide interoperation with its associated services.

In a CORBA-based solution, the Object Request Broker (ORB) is an
object bus that provides a transparent mechanism for sending requests and
receiving responses to and from objects, regardless of the environment and
its location. The ORB intercepts the client’s call and is responsible for find-
ing its server object that implements the request, passes its parameters,
invokes its method, and returns its results to the client. The ORB, as part of
its implementation, provides interfaces to the CORBA services, which
allows it to build custom-distributed application environments.

Figure 1.3 illustrates the architectural model of CORBA with an example
representation of applications written in C, C++, and Java providing IDL
bindings.

The CORBA architecture is composed of the following components:

IDL. CORBA uses IDL contracts to specify the application boundaries
and to establish interfaces with its clients. The IDL provides a mecha-
nism by which the distributed application component’s interfaces,
inherited classes, events, attributes, and exceptions can be specified
in a standard definition language supported by the CORBA ORB.

Evolution of Distributed Computing

C C++ Java C C++ Java
| | |
IDL IDL IDL
Client Stubs ’ ‘ Server Skeletons ’
Y Y

CORBA - ORB (Object Bus)

Figure 1.3 An example of the CORBA architectural model.

ORB. It acts as the object bus or the bridge, providing the communi-
cation infrastructure to send and receive request/responses from the
client and server. It establishes the foundation for the distributed
application objects, achieving interoperability in a heterogeneous
environment.

Some of the distinct advantages of CORBA over a traditional
client/server application model are as follows:

OS and programming-language independence. Interfaces between
clients and servers are defined in OMG IDL, thus providing the fol-
lowing advantages to Internet programming: Multi-language and
multi-platform application environments, which provide a logical
separation between interfaces and implementation.

Legacy and custom application integration. Using CORBA IDL,
developers can encapsulate existing and custom applications as
callable client applications and use them as objects on the ORB.

Rich distributed object infrastructure. CORBA offers developers a
rich set of distributed object services, such as the Lifecycle, Events,
Naming, Transactions, and Security services.

Location transparency. CORBA provides location transparency: An
object reference is independent of the physical location and applica-
tion level location. This allows developers to create CORBA-based
systems where objects can be moved without modifying the underly-
ing applications.

Chapter 1

Network transparency. By using the IIOP protocol, an ORB can inter-
connect with any ORB located elsewhere on the network.

Remote callback support. CORBA allows objects to receive asynchro-
nous event notification from other objects.

Dynamic invocation interface. CORBA clients can both use static
and dynamic methods invocations. They either statically define their
method invocations through stubs at compile time, or have the
opportunity to discover objects’ methods at runtime. With those
advantages, some key factors, which affected the success of CORBA
evident while implementing CORBA-based distributed applications,
are as follows:

High initial investment. CORBA-based applications require huge
investments in regard to new training and the deployment of
architecture, even for small-scale applications.

Availability of CORBA services. The Object services specified by
the OMG are still lacking as implementation products.

Scalability. Due to the tightly coupled nature of the connection-
oriented CORBA architecture, very high scalability expected in
enterprise applications may not be achieved.

However, most of those disadvantages may be out of date today. The
Internet community for the development of Intranet and Extranet applica-
tions has acknowledged using CORBA with IIOP and Java as their tools of
choice. Sun has already released its JDK 1.4 (Java development kit), which
includes a full-featured CORBA implementation and also a limited set of
services.

Java RMI

Java RMI was developed by Sun Microsystems as the standard mechanism
to enable distributed Java objects-based application development using the
Java environment. RMI provides a distributed Java application environ-
ment by calling remote Java objects and passing them as arguments or
return values. It uses Java object serialization—a lightweight object persis-
tence technique that allows the conversion of objects into streams.

Before RMI, the only way to do inter-process communications in the Java
platform was to use the standard Java network libraries. Though the
java.net APIs provided sophisticated support for network functionalities,

Evolution of Distributed Computing

they were not intended to support or solve the distributed computing chal-
lenges. Java RMI uses Java Remote Method Protocol (JRMP) as the inter-
process communication protocol, enabling Java objects living in different
Java Virtual Machines (VMs) to transparently invoke one another’s meth-
ods. Because these VMs can be running on different computers anywhere
on the network, RMI enables object-oriented distributed computing. RMI
also uses a reference-counting garbage collection mechanism that keeps
track of external live object references to remote objects (live connections)
using the virtual machine. When an object is found unreferenced, it is con-
sidered to be a weak reference and it will be garbage collected.

In RMI-based application architectures, a registry (rmiregistry)-oriented
mechanism provides a simple non-persistent naming lookup service that is
used to store the remote object references and to enable lookups from
client applications. The RMI infrastructure based on the JRMP acts as
the medium between the RMI clients and remote objects. It intercepts
client requests, passes invocation arguments, delegates invocation
requests to the RMI skeleton, and finally passes the return values of the
method execution to the client stub. It also enables callbacks from server
objects to client applications so that the asynchronous notifications can be
achieved.

Figure 1.4 depicts the architectural model of a Java RMI-based applica-
tion solution.

Java RMI
Client Stubs

RMI Java RMI
Skeleton Server

Y

Remote Ref. Layer Remote Ref. Layer

Figure 1.4 A Java RMI architectural model.

12

Chapter 1

The Java RMI architecture is composed of the following components:

RMI client. The RMI client, which can be a Java applet or a stand-
alone application, performs the remote method invocations on a
server object. It can pass arguments that are primitive data types or
serializable objects.

RMI stub. The RMI stub is the client proxy generated by the rmi
compiler (rmic provided along with Java developer kit—JDK) that
encapsulates the network information of the server and performs
the delegation of the method invocation to the server. The stub also
marshals the method arguments and unmarshals the return values
from the method execution.

RMI infrastructure. The RMI infrastructure consists of two layers: the
remote reference layer and the transport layer. The remote reference
layer separates out the specific remote reference behavior from the
client stub. It handles certain reference semantics like connection
retries, which are unicast/multicast of the invocation requests. The
transport layer actually provides the networking infrastructure, which
facilitates the actual data transfer during method invocations, the
passing of formal arguments, and the return of back execution results.

RMI skeleton. The RMI skeleton, which also is generated using the RMI
compiler (rmic) receives the invocation requests from the stub and
processes the arguments (unmarshalling) and delegates them to the RMI
server. Upon successful method execution, it marshals the return values
and then passes them back to the RMI stub via the RMI infrastructure.

RMI server. The server is the Java remote object that implements the
exposed interfaces and executes the client requests. It receives incom-
ing remote method invocations from the respective skeleton, which
passes the parameters after unmarshalling. Upon successful method
execution, return values are sent back to the skeleton, which passes
them back to the client via the RMI infrastructure.

Developing distributed applications in RMI is simpler than developing
with Java sockets because there is no need to design a protocol, which is a
very complex task by itself. RMI is built over TCP/IP sockets, but the
added advantage is that it provides an object-oriented approach for inter-
process communications. Java RMI provides the Java programmers with
an efficient, transparent communication mechanism that frees them of all
the application-level protocols necessary to encode and decode messages
for data exchange. RMI enables distributed resource management, best
processing power usage, and load balancing in a Java application model.
RMI-IIOP (RMI over IIOP) is a protocol that has been developed for

Evolution of Distributed Computing

13

enabling RMI applications to interoperate with CORBA components.
Although RMI had inherent advantages provided by the distributed object
model of the Java platform, it also had some limitations:

m RMIl is limited only to the Java platform. It does not provide lan-
guage independence in its distributed model as targeted by CORBA.

m RMI-based application architectures are tightly coupled because of
the connection-oriented nature. Hence, achieving high scalability in
such an application model becomes a challenge.

m RMI does not provide any specific session management support. In
a typical client/server implementation, the server has to maintain
the session and state information of the multiple clients who access
it. Maintaining such information within the server application with-
out a standard support is a complex task.

In spite of some of its limitations, RMI and RMI-IIOP has become the
core of the J2EE architectural model due to its widespread acceptance in
the Java distributed computing paradigm and rich features.

Microsoft DCOM

The Microsoft Component Object Model (COM) provides a way for
Windows-based software components to communicate with each other by
defining a binary and network standard in a Windows operating environ-
ment. COM evolved from OLE (Object Linking and Embedding), which
employed a Windows registry-based object organization mechanism.
COM provides a distributed application model for ActiveX components.

As a next step, Microsoft developed the Distributed Common Object
Model (DCOM) as its answer to the distributed computing problem in the
Microsoft Windows platform. DCOM enables COM applications to com-
municate with each other using an RPC mechanism, which employs a
DCOM protocol on the wire.

Figure 1.5 shows an architectural model of DCOM.

DCOM applies a skeleton and stub approach whereby a defined inter-
face that exposes the methods of a COM object can be invoked remotely
over a network. The client application will invoke methods on such a
remote COM object in the same fashion that it would with a local COM
object. The stub encapsulates the network location information of the COM
server object and acts as a proxy on the client side. The servers can poten-
tially host multiple COM objects, and when they register themselves
against a registry, they become available for all the clients, who then dis-
cover them using a lookup mechanism.

14

Chapter 1

Client COM COM - Server
run time run time Component
RPC RPC

\

Figure 1.5 Basic architectural model of Microsoft DCOM.

DCOM
Protocol

DCOM is quite successful in providing distributed computing support
on the Windows platform. But, it is limited to Microsoft application envi-
ronments. The following are some of the common limitations of DCOM:

m Platform lock-in

m State management
m Scalability
|

Complex session management issues

Message-Oriented Middleware

Although CORBA, RMI, and DCOM differ in their basic architecture and
approach, they adopted a tightly coupled mechanism of a synchronous
communication model (request/response). All these technologies are
based upon binary communication protocols and adopt tight integration
across their logical tiers, which is susceptible to scalability issues.
Message-Oriented Middleware (MOM) is based upon a loosely coupled
asynchronous communication model where the application client does not
need to know its application recipients or its method arguments. MOM
enables applications to communicate indirectly using a messaging
provider queue. The application client sends messages to the message
queue (a message holding area), and the receiving application picks up the

Evolution of Distributed Computing

15

message from the queue. In this operation model, the application sending
messages to another application continues to operate without waiting for
the response from that application.

Figure 1.6 illustrates a high-level MOM architecture showing
application-to-application connectivity.

In MOM-based architecture, applications interacting with its messaging
infrastructure use custom adapters. Client applications communicate with
the underlying messaging infrastructure using these adapters for sending
and receiving messages. For reliable message delivery, messages can be
persisted in a database/file system as well.

Some of the widely known MOM-based technologies are SunONE Mes-
sage Queue, IBM MQSeries, TIBCO, SonicMQ, and Microsoft Messaging
Queue (MSMQ). The Java Platform provides a Java-based messaging API
(JMS-Java Message Service), which is developed as part of the Sun Java
Community Process (JCP) and also is currently part of the J2EE 1.3 specifi-
cations. All the leading MOM vendors like SunONE, TIBCO, IBM, BEA,
Talarian, Sonic, Fiorano, and Spiritwave support the JMS specifications.

JMS provides Point-to-Point and Publish/Subscribe messaging models
with the following features:

m Complete transactional capabilities
m Reliable message delivery

m Security

/\ MOM

Appli;ation Adapter API Infrastructure Adapter API Appligation

|

Persistence

Figure 1.6 A typical MOM-based architectural model.

16 Chapter1

Some of the common challenges while implementing a MOM-based
application environment have been the following:

m Most of the standard MOM implementations have provided native
APIs for communication with their core infrastructure. This has
affected the portability of applications across such implementations
and has led to a specific vendor lock-in.

m The MOM messages used for integrating applications are usually
based upon a proprietary message format without any standard
compliance.

Adopting a JMS-based communication model enables a standardized
way to communicate with a MOM provider without having to lock in to
any specific vendor APL It leverages the use of open standards 1, thus
enhancing the flexibility in connecting together diverse applications.

Common Challenges in Distributed Computing

Distributed computing technologies like CORBA, RMI, and DCOM have
been quite successful in integrating applications within a homogenous
environment inside a local area network. As the Internet becomes a logical
solution that spans and connects the boundaries of businesses, it also
demands the interoperability of applications across networks. This section
discusses some of the common challenges noticed in the CORBA-, RMI-,
and DCOM-based distributed computing solutions:

m Maintenance of various versions of stubs/skeletons in the client and
server environments is extremely complex in a heterogeneous net-
work environment.

m Quality of Service (QoS) goals like Scalability, Performance, and
Availability in a distributed environment consume a major portion
of the application’s development time.

m Interoperability of applications implementing different protocols on
heterogeneous platforms almost becomes impossible. For example, a
DCOM client communicating to an RMI server or an RMI client
communicating to a DCOM server.

m Most of these protocols are designed to work well within local net-
works. They are not very firewall friendly or able to be accessed
over the Internet.

The biggest problem with application integration with this tightly
coupled approach spearheaded by CORBA, RMI, and DCOM was that it

Evolution of Distributed Computing

17

influenced separate sections of the developer community who were
already tied to specific platforms. Microsoft Windows platform developers
used DCOM, while UNIX developers used CORBA or RMI. There was no
big effort in the community to come up with common standards that
focused on the interoperability between these diverse protocols, thus
ignoring the importance, and hence, the real power of distributed comput-
ing. Enough said about the weaknesses, we now are going to discuss what
is becoming an alternative technology, which still has all the existing
strengths and targets to solve the complexities of current systems.

The Role of J2EE and XML
in Distributed Computing

The emergence of the Internet has helped enterprise applications to be eas-
ily accessible over the Web without having specific client-side software
installations. In the Internet-based enterprise application model, the focus
was to move the complex business processing toward centralized servers
in the back end.

The first generation of Internet servers was based upon Web servers that
hosted static Web pages and provided content to the clients via HTTP
(HyperText Transfer Protocol). HTTP is a stateless protocol that connects
Web browsers to Web servers, enabling the transportation of HTML con-
tent to the user.

With the high popularity and potential of this infrastructure, the push
for a more dynamic technology was inevitable. This was the beginning of
server-side scripting using technologies like CGI, NSAPI, and ISAPL

With many organizations moving their businesses to the Internet, a
whole new category of business models like business-to-business (B2B)
and business-to-consumer (B2C) came into existence.

This evolution lead to the specification of J2EE architecture, which pro-
moted a much more efficient platform for hosting Web-based applications.
J2EE provides a programming model based upon Web and business
components that are managed by the J2EE application server. The applica-
tion server consists of many APIs and low-level services available to the
components. These low-level services provide security, transactions, con-
nections and instance pooling, and concurrency services, which enable a
J2EE developer to focus primarily on business logic rather than plumbing.

The power of Java and its rich collection of APIs provided the perfect
solution for developing highly transactional, highly available and scalable
enterprise applications. Based on many standardized industry specifica-
tions, it provides the interfaces to connect with various back-end legacy and

Chapter 1

information systems. J2EE also provides excellent client connectivity capa-
bilities, ranging from PDA to Web browsers to Rich Clients (Applets,
CORBA applications, and Standard Java Applications).

Figure 1.7 shows various components of the J2EE architecture.

A typical J2EE architecture is physically divided in to three logical tiers,
which enables clear separation of the various application components with
defined roles and responsibilities. The following is a breakdown of func-
tionalities of those logical tiers:

Presentation tier. The Presentation tier is composed of Web compo-
nents, which handle HTTP requests/responses, Session management,
Device independent content delivery, and the invocation of business
tier components.

Web Browser

Applets/
CLIENTS Applications

IIOP
J2EE Server

?FEERSENTATION WEB CONTAINER

APPLICATION

TIER EJB CONTAINER

INTEGRATION SQL/JDBC

TIER
DATABASE

Figure 1.7 J2EE application architecture.

LEGACY
APPLICATIONS

Evolution of Distributed Computing

Application tier. The Application tier (also known as the Business
tier) deals with the core business logic processing, which may typi-
cally deal with workflow and automation. The business components
retrieve data from the information systems with well-defined APIs
provided by the application server.

Integration tier. The Integration tier deals with connecting and com-
municating to back-end Enterprise Information Systems (EIS), data-
base applications and legacy applications, or mainframe applications.

With its key functionalities and provisions for partitioning applications
into logical tiers, J2EE has been highly adopted as the standard solution for
developing and deploying mission critical Web-based applications. The
power of J2EE-based applications would be tremendous, if it is enabled
to interoperate with other potential J2EE-deployed applications. This
enables business components across networks to negotiate among them
and interact without human interaction. It also enables the realization of
syndication and collaboration of business processes across the Internet by
enabling them to share data and component-level processes in real time.
This phenomenon is commonly referred to as business-to-business (B2B)
communication.

The emergence of the Extensible Markup Language (XML) for defining
portable data in a structured and self-describing format is embraced by the
industry as a communication medium for electronic data exchange. Using
XML as a data exchange mechanism between applications promotes inter-
operability between applications and also enhances the scalability of the
underlying applications. Combining the potential of a J2EE platform and
XML offers a standard framework for B2B and inter-application communi-
cation across networks.

With J2EE enabling enterprise applications to the Internet and XML
acting as a “glue” bridges these discrete J2EE-based applications by facili-
tating them to interoperate with each other. XML, with its incredible
flexibility, also has been widely adopted and accepted as a standard by
major vendors in the IT industry, including Sun, IBM, Microsoft, Oracle,
and HP. The combination of these technologies offers more promising pos-
sibilities in the technology sector for providing a new way of application-
to-application communication on the Internet. It also promotes a new
form of the distributed computing technology solution referred to as Web
services.

20

Chapter 1

The Emergence of Web Services

Today, the adoption of the Internet and enabling Internet-based applica-
tions has created a world of discrete business applications, which co-exist
in the same technology space but without interacting with each other. The
increasing demands of the industry for enabling B2B, application-to-
application (A2A), and inter-process application communication has led to
a growing requirement for service-oriented architectures. Enabling ser-
vice-oriented applications facilitates the exposure of business applications
as service components enable business applications from other organiza-
tions to link with these services for application interaction and data
sharing without human intervention. By leveraging this architecture, it
also enables interoperability between business applications and processes.

By adopting Web technologies, the service-oriented architecture model
facilitates the delivery of services over the Internet by leveraging standard
technologies such as XML. It uses platform-neutral standards by exposing
the underlying application components and making them available to any
application, any platform, or any device, and at any location. Today, this
phenomenon is well adopted for implementation and is commonly referred
to as Web services. Although this technique enables communication
between applications with the addition of service activation technologies
and open technology standards, it can be leveraged to publish the services
in a register of yellow pages available on the Internet. This will further rede-
fine and transform the way businesses communicate over the Internet. This
promising new technology sets the strategic vision of the next generation of
virtual business models and the unlimited potential for organizations doing
business collaboration and business process management over the Internet.

Summary

In this chapter, we discussed the evolution and the basics of distributed
computing technologies and the emergence of Web services that define the
next generation of business services models and business process commu-
nication over the Internet.

In particular, we looked at the background of distributed computing; the
fundamentals of distributed computing techniques; the basics of industry-
accepted technologies like CORBA, RMI, DCOM, and MOM,; the role of J2EE
and XML for enabling distributed computing over the Internet; and the con-
cept of service-oriented architectures and the emergence of Web services.

In the following chapters, we will go into a more detailed introduction to
Web services concepts and focus on the various aspects of designing and
developing Web services.

Introduction to Web Services

Today, people use the Internet as an everyday service provider for reading
headline news, obtaining stock quotes, getting weather reports, shopping
online, and paying bills, and also for obtaining a variety of information
from different sources. These Web-enabled applications are built using
different software applications to generate HTML, and their access is lim-
ited only through an Internet browser or by using an application-specific
client. This is partially due to the limitations of HTML and the Web server-
based technologies, which are primarily focused on presentation and their
inability to interact with another application.

The emergence of Web services introduces a new paradigm for enabling
the exchange of information across the Internet based on open Internet
standards and technologies. Using industry standards, Web services
encapsulate applications and publish them as services. These services
deliver XML-based data on the wire and expose it for use on the Internet,
which can be dynamically located, subscribed, and accessed using a wide
range of computing platforms, handheld devices, appliances, and so on.
Due to the flexibility of using open standards and protocols, it also facili-
tates Enterprise Application Integration (EAI), business-to-business (B2B)
integration, and application-to-application (A2A) communication across
the Internet and corporate intranet. In organizations with heterogeneous
applications and distributed application architectures, the introduction of

21

22

Chapter 2

Web services standardizes the communication mechanism and enables
interoperability of applications based on different programming languages
residing on different platforms.

This chapter presents an introduction on Web services, especially focus-
ing on the following;:

m The definition of Web services

Motivation and characteristics of Web services

|
m Web services industry standards and technologies
m Web services strategies and solutions

|

Benefits of Web services

Today’s leading technology vendors have set their strategies around
providing infrastructure solutions for delivering Web services. With the
increasing adoption, acceptance, and availability of platforms, languages,
application tools, and supporting technology solutions, it is expected that
Web services will become a new service industry providing businesses
services over the Internet.

What Are Web Services?

Web services are based on the concept of service-oriented architecture
(SOA). SOA is the latest evolution of distributed computing, which enables
software components, including application functions, objects, and
processes from different systems, to be exposed as services.

According to Gartner research (June 15, 2001), “Web services are
loosely coupled software components delivered over Internet standard
technologies.”

In short, Web services are self-describing and modular business applica-
tions that expose the business logic as services over the Internet through
programmable interfaces and using Internet protocols for the purpose of
providing ways to find, subscribe, and invoke those services.

Based on XML standards, Web services can be developed as loosely cou-
pled application components using any programming language, any pro-
tocol, or any platform. This facilitates delivering business applications as a
service accessible to anyone, anytime, at any location, and using any
platform.

Consider the simple example shown in Figure 2.1 where a travel reser-
vation services provider exposes its business applications as Web services
supporting a variety of customers and application clients. These business
applications are provided by different travel organizations residing at
different networks and geographical locations.

Introduction to Web Services 23

Airline
Reservation
2 System
=
Register
Services
Travel Rental Car
Services Reservation
Registry System
[9)
] — |
> «—> ==
NCH Invoke _ C
6 Servi Services T I - Hotel
R erwcte R ravet Reservation
equestor eserv.atlon System
Services
Provider
Automobile ap and Weather
Information
System
o
ol T
i | s
Organization -
Credit Card

Payment System

Figure 2.1 An example scenario of Web services.

The following is a typical scenario:

1. The Travel service provider deploys its Web services by exposing the
business applications obtained from different travel businesses like
airlines, car-rental, hotel accommodation, credit card payment, and

so forth.

24

Chapter 2

2. The service provider registers its business services with descriptions
using a public or private registry. The registry stores the information
about the services exposed by the service provider.

3. The customer discovers the Web services using a search engine or by
locating it directly from the registry and then invokes the Web ser-
vices for performing travel reservations and other functions over the
Internet using any platform or device.

4. In the case of large-scale organizations, the business applications
consume these Web services for providing travel services to their
own employees through the corporate intranet.

The previous example provides a simple scenario of how an organiza-
tion’s business functionalities can be exposed as Web services and invoked
by its customers using a wide range of application clients.

As we discussed earlier, Web services are typically implemented based
on open standards and technologies specifically leveraging XML. The
XML-based standards and technologies, such as Simple Object Access Pro-
tocol (SOAP); Universal Description, Discovery, and Integration (UDDI);
Web Services Definition Language (WSDL); and Electronic Business XML
(ebXML), are commonly used as building blocks for Web services. These
technologies are discussed briefly in the section Core Web Services Stan-
dards, which follows later.

Motivation and Characteristics

Web-based B2B communication has been around for quite some time.
These Web-based B2B solutions are usually based on custom and propri-
etary technologies and are meant for exchanging data and doing transac-
tions over the Web. However, B2B has its own challenges. For example, in
B2B communication, connecting new or existing applications and adding
new business partners have always been a challenge. Due to this fact, in
some cases the scalability of the underlying business applications is
affected. Ideally, the business applications and information from a partner
organization should be able to interact with the application of the potential
partners seamlessly without redefining the system or its resources. To
meet these challenges, it is clearly evident that there is a need for standard
protocols and data formatting for enabling seamless and scalable B2B
applications and services. Web services provide the solution to resolve
these issues by adopting open standards. Figure 2.2 shows a typical B2B
infrastructure (e-marketplace) using XML for encoding data between
applications across the Internet.

Introduction to Web Services

25

XML XML

< N

Partner Seller

Figure 2.2 Using XML for encoding data in a B2B communication.

Web services enable businesses to communicate, collaborate, and con-
duct business transactions using a lightweight infrastructure by adopting
an XML-based data exchange format and industry standard delivery
protocols.

The basic characteristics of a Web services application model are as
follows:

m Web services are based on XML messaging, which means that the
data exchanged between the Web service provider and the user are
defined in XML.

m Web services provide a cross-platform integration of business appli-
cations over the Internet.

m To build Web services, developers can use any common program-
ming language, such as Java, C, C++, Perl, Python, C#, and/or
Visual Basic, and its existing application components.

m Web services are not meant for handling presentations like HTML

context—it is developed to generate XML for uniform accessibility
through any software application, any platform, or device.

26

Chapter 2

m Because Web services are based on loosely coupled application com-
ponents, each component is exposed as a service with its unique
functionality.

m Web services use industry-standard protocols like HTTP, and they
can be easily accessible through corporate firewalls.

m Web services can be used by many types of clients.

m Web services vary in functionality from a simple request to a complex
business transaction involving multiple resources.

m All platforms including J2EE, CORBA, and Microsoft .NET provide
extensive support for creating and deploying Web services.

m Web services are dynamically located and invoked from public and
private registries based on industry standards such as UDDI and
ebXML.

Why Use Web Services?

Traditionally, Web applications enable interaction between an end user and
a Web site, while Web services are service-oriented and enable application-
to-application communication over the Internet and easy accessibility to
heterogeneous applications and devices. The following are the major tech-
nical reasons for choosing Web services over Web applications:

m Web services can be invoked through XML-based RPC mechanisms
across firewalls.

m Web services provide a cross-platform, cross-language solution
based on XML messaging.

m Web services facilitate ease of application integration using a light-
weight infrastructure without affecting scalability.

m Web services enable interoperability among heterogeneous
applications.

Basic Operational Model of Web Services

Web services operations can be conceptualized as a simple operational
model that has a lot in common with a standard communication model
(see Figure 2.3). Operations are conceived as involving three distinct roles
and relationships that define the Web services providers and users.

Introduction to Web Services

Service
Broker

Service
Requestor

Service
Provider

Invoke Service

Figure 2.3 \Web services operational model, showing roles and relationships.

These roles and relationships are defined as follows:

Service provider. The service provider is responsible for developing
and deploying the Web services. The provider also defines the ser-
vices and publishes them with the service broker.

Service broker. The service broker (also commonly referred to as a
service registry) is responsible for service registration and discovery
of the Web services. The broker lists the various service types,
descriptions, and locations of the services that help the service
requesters find and subscribe to the required services.

Service requestor. The service requestor is responsible for the service
invocation. The requestor locates the Web service using the service
broker, invokes the required services, and executes it from the service
provider.

Let’s examine more closely some of the open standard technologies such
as SOAP, WSDL, UDDI, and ebXML that enable Web services.

Core Web Services Standards

The five core Web services standards and technologies for building and
enabling Web services are XML, SOAP, WSDL, UDDI, and ebXML. An
overview of each is presented in the following sections.

28

Chapter 2

Extensible Markup Language (XML)

In February 1998, the Worldwide Web Consortium (W3C) officially
endorsed the Extensible Markup Language (XML) as a standard data for-
mat. XML uses Unicode, and it is structured self-describing neutral data
that can be stored as a simple text document for representing complex data
and to make it readable. Today, XML is the de facto standard for structuring
data, content, and data format for electronic documents. It has already been
widely accepted as the universal language lingua franca for exchanging
information between applications, systems, and devices across the Internet.

In the core of the Web services model, XML plays a vital role as the com-
mon wire format in all forms of communication. XML also is the basis for
other Web services standards. By learning XML, you will be well prepared
to understand and explore Web services. For more information on XML, go
to Chapter 8, “XML Processing and Data Binding with Java APIs,” or to the
official W3C Web site for XML at www.w3c.org/XML/.

Simple Object Access Protocol (SOAP)

Simple Object Access Protocol, or SOAP, is a standard for a lightweight
XML-based messaging protocol. It enables an exchange of information
between two or more peers and enables them to communicate with each
other in a decentralized, distributed application environment. Like XML,
SOAP also is independent of the application object model, language, and
running platforms or devices. SOAP is endorsed by W3C and key industry
vendors like Sun Microsystems, IBM, HP, SAP, Oracle, and Microsoft.
These vendors have already announced their support by participating in
the W3C XML protocol-working group. The ebXML initiative from
UN/CEFACT also has announced its support for SOAP.

In the core of the Web services model, SOAP is used as the messaging
protocol for transport with binding on top of various Internet protocols
such as HTTP, SMTP, FTP, and so on. SOAP uses XML as the message for-
mat, and it uses a set of encoding rules for representing data as messages.
Although SOAP is used as a messaging protocol in Web services, it also can
operate on a request/response model by exposing the functionality using
SOAP/RPC based on remote procedural calls. SOAP also can be used with
J2EE-based application frameworks. For more information about SOAP, go
to Chapter 4, “Developing Web Services Using SOAP,” or to the official
W3C Web site for SOAP at www.w3c.org/TR/SOAP/.

Introduction to Web Services

29

Web Services Definition Language (WSDL)

The Web Services Definition Language (WSDL) standard is an XML format
for describing the network services and its access information. It defines a
binding mechanism used to attach a protocol, data format, an abstract
message, or set of endpoints defining the location of services.

In the core of the Web services model, WSDL is used as the metadata
language for defining Web services and describes how service providers
and requesters communicate with one another. WSDL describes the Web
services functionalities offered by the service provider, where the service is
located, and how to access the service. Usually the service provider creates
Web services by generating WSDL from its exposed business applications.
A public/private registry is utilized for storing and publishing the WSDL-
based information. For more information about WSDL, go to Chapter 5,
“Description and Discovery of Web Services,” or the official W3C Web site
for WSDL at www.w3c.org/TR/wsdl/.

Universal Description, Discovery, and Integration (UDDI)

Universal Description, Discovery, and Integration, or UDDI, defines the
standard interfaces and mechanisms for registries intended for publishing
and storing descriptions of network services in terms of XML messages. It
is similar to the yellow pages or a telephone directory where businesses
list their products and services. Web services brokers use UDDI as a stan-
dard for registering the Web service providers. By communicating with
the UDDI registries, the service requestors locate services and then
invoke them.

In the core Web services model, UDDI provides the registry for Web
services to function as a service broker enabling the service providers to
populate the registry with service descriptions and service types and the
service requestors to query the registry to find and locate the services. It
enables Web applications to interact with a UDDI-based registry using
SOAP messages. These registries can be either private services within an
enterprise or a specific community, or they can be public registries to ser-
vice the whole global business community of the Internet. The UDDI
working group includes leading technology vendors like Sun Microsys-
tems, IBM, HP, SAP, Oracle, and Microsoft. For more information about
UDD], go to Chapter 5, “Description and Discovery of Web Services,” or to
the official Web site of UDDI at www.uddi.org/.

30

Chapter 2

ebXML

ebXML defines a global electronic marketplace where enterprises find one
another and conduct business process collaborations and transactions. It
also defines a set of specifications for enterprises to conduct electronic
business over the Internet by establishing a common standard for business
process specifications, business information modeling, business process
collaborations, collaborative partnership profiles, and agreements and
messaging. ebXML is an initiative sponsored by the United Nations Center
for Trade Facilitation and Electronic Business (UN/CEFACT) and the
Organization for the Advancement of Structured Information Standards
(OASIS). Popular standards organizations like Open Travel Alliance
(OTA), Open Application Group, Inc. (OAGI), Global Commerce Initiative
(GCI), Health Level 7 (HL7, a healthcare standards organization), and
RosettaNet (an XML standards committee) also have endorsed it.

In the Web services model, ebXML provides a comprehensive frame-
work for the electronic marketplace and B2B process communication by
defining standards for business processes, partner profile and agreements,
registry and repository services, messaging services, and core components.
It complements and extends with other Web services standards like SOAP,
WSDL, and UDDL. In particular:

m ebXML Business Process Service Specifications (BPSS) enable busi-
ness processes to be defined.

m ebXML CPP/CPA enables business partner profiles and agreements
to be defined, and it provides business transaction choreography.

m ebXML Messaging Service Handler (MSH) deals with the transport,
routing, and packaging of messages, and it also provides reliability
and security, a value addition over SOAP.

m ebXML registry defines the registry services, interaction protocols,
and message definitions, and ebXML repository acts as storage for
shared information. The ebXML registries register with other reg-
istries as a federation, which can be discovered through UDDI. This
enables UDDI to search for a business listing point to an eb XML
Registry /Repository.

m ebXML Core components provide a catalogue of business process
components that provide common functionality to the business com-
munity. Examples of such components are Procurement, Payment,
Inventory, and so on.

For more information about ebXML, go to the official Web site of ebXML
standards at www.ebxml.org.

Introduction to Web Services

31

Other Industry Standards Supporting Web Services

Many industry initiatives and standards supporting Web services are cur-
rently available and many more will be available in the future. The most
prominent initiatives to embrace Web services standards are described in
the following sections.

Web Services Choreography Interface (WSCI)

The Web Services Choreography Interface, or WSCI, is an initiative from
Sun Microsystems, BEA, Intalio, and SAP that defines the flow of messages
exchanged in a particular process of Web services communication. It
describes the collective message flow model among Web services by pro-
viding a global view of the processes involved during the interactions that
occur between Web services communication. This facilitates the bridging
of business processes and Web services by enabling Web services to be part
of the business processes of an organization or spanning multiple organi-
zations. For more information about WSCI, go to the Sun XML Web site at
www.sun.com/software /xml.

Web Services Flow Language (WSFL)

The Web Services Flow Language, or WSFL, is an XML-based language ini-
tiative from IBM for describing Web services compositions. These compo-
sitions are categorized as flow models and global models. Flow models can
be used for modeling business processes or workflows based on Web
services, and global models can be used for modeling links between
Web services interfaces that enable the interaction of one Web service with
an operation to another Web service interface. Using WSFL compositions
support a wide range of interaction patterns between the partners partici-
pating in a business process, especially hierarchical interactions and
peer-to-peer interaction between partners. For more information about
WSEFL, go to the IBM Web site at www.ibm.com/software/solutions/
webservices/pdf/WSFL.pdf.

Directory Services Markup Language (DSML)

The Directory Services Markup Language, or DSML, defines an XML
schema for representing directory structural information as an XML docu-
ment, and it allows the publishing and sharing of directory information via
Internet protocols like HTTP, SMTP, and so forth. DSML does not define
the attributes for the directory structure or for accessing the information. A

32

Chapter 2

DSML document defines the directory entries or a directory schema or
both, and it can be used on top of any industry standard directory proto-
cols like LDAP. DSML defines the standard for exchanging information
between different directory services and enables interoperability between
them. Bowstreet originally proposed DSML as a standard and later it
received support from leading vendors like IBM, Oracle, Sun Microsys-
tems, Microsoft, and so on. For more information about DSML standards,
visit www.dsml.org.

XLANG

Similar to WSFL, XLANG defines an XML-based standard specification for
defining business process flows in Web services. It also defines a notation
for expressing actions and complex operations in Web services. Microsoft
developed the XLANG specification and it has been implemented in
Microsoft BizTalk server 2000, especially for handling Enterprise Applica-
tion Integration (EAI) and B2B communication.

Business Transaction Protocol (BTP)

The Business Transaction Protocol (BTP) specification provides a support
for Web services-based distributed transactions enabling the underlying
transaction managers to provide the flexibility of handling XA-compliant,
two-phase commit transaction engines. BTP is an OASIS initiative that
facilitates large-scale business-to-business (B2B) deployments enabling
distributed transactions in Web services. For more information about
BTP, go to the OASIS Web site at www.oasis-open.org/committees
/business-transactions/.

XML Encryption (XML ENC)

The XML Encryption, or XML ENC, is an XML-based standard for securing
data by encryption using XML representations. In Web services, it secures
the exchange of data between the communicating partners. For more
information about XML Encryption, refer to Chapter 13, “Web Services
Security,” or go to the W3C Web site at www.w3.org/Encryption/.

XML Key Management System (XKMS)

The XML Key Management System, or XKMS, is an XML-based standard
for integrating public key infrastructure (PKI) and digital certificates used

Introduction to Web Services

33

for securing Internet transactions, especially those used in Web services.
XKMS consists of two parts: the XML Key Information Service Specifica-
tion (X-KISS) and the XML Key Registration Service Specification
(X-KRSS). The X-KISS specification defines a protocol for a trust service
that resolves public key information contained in XML-SIG elements. The
X-KRSS describes how public key information is registered. For more
information about XKMS, refer to Chapter 13, “Web Services Security,” or
go to the W3C Web site at www.w3.org/2001/XKMS/.

XML Signature (XML DSIG)

The XML Encryption, or XML DSIG, is an XML-based standard for speci-
fying XML syntax and processing rules for creating and representing
digital signatures. In Web services, an XML digital signature helps XML-
based transactions by adding authentication, data integrity, and support
for non-repudiation to the data during data exchange among the commu-
nicating partners. For more information about XML Signature, refer to
Chapter 13, “Web Services Security” or go to the W3C Web site at www
.w3.org/Signature/.

Extensible Access Control Markup Language (XACML)

The Extensible Access Control Markup Language, or XACML, is an XML-
based standard for specifying policies and rules for accessing information
over Web-based resources. In Web services, XACML sets the rules and
permissions on resources shared among the communicating partners.
XACML is one of the security initiatives made by the OASIS security
services technical committee. For more information about XACML, refer to
Chapter 13, “Web Services Security,” or go to the OASIS Web site at
www.oasis-open.org/committees/xacml/.

Security Assertions Markup Language (SAML)

The Security Assertions Markup Language, or SAML, defines an XML-
based framework for exchanging authentication and authorization infor-
mation. SAML uses a generic protocol consisting of XML-based request
and response message formats, and it can be bound to many communica-
tion models and transport protocols. One of the key objectives of SAML is
to provide and achieve single sign-on for applications participating in Web
services. SAML is an initiative from the security services technical commit-
tee of OASIS. For more information about SAML, refer to Chapter 13, “Web

34

Chapter 2

Services Security,” or go to the OASIS Web site at www.oasis-open.org
/committees/security /.

Known Challenges in Web Services

Web services present some key challenges associated with the mission-critical
business requirements. These challenges need to be addressed before the ser-
vices are fully implemented. Some of the key challenges are as follows:

Distributed transactions. If the environment requires distributed
transactions with heterogeneous resources, it should be studied and
tested with standard solutions based on BTP, WS-Transactions, and
WS-Coordination.

Quality of Service (QoS). In case of a mission-critical solution, the
service providers must examine the reliability and performance of
the service in peak load and uncertain conditions for high availabil-
ity. The exposed infrastructure must provide load balancing, and fail-
over and fault tolerance, to resolve these scenarios.

Security. Web services are exposed to the public using http-based pro-
tocols. As Web services is publicly available, it must be implemented
using authentication and authorization mechanisms and using SSL-
enabling encryption of the messages for securing the usage. Adopt-
ing open security standards like SAML, XML Encryption, XML
Signature, or XACML may be a solution.

Other challenges include the manageability and testing of the Web
services deployment, which is subjected to different operating system
environments and platforms and managing service descriptions in
public/private registries.

Web Services Software and Tools

Let’s now take a look at the Web services software and tool vendors
offering solutions for developing and deploying Java-based Web services
solutions. The following is a list of the most popular software solutions
commercially available for implementing Web services.

BEA Systems Products

BEA WebLogic Server 7.0 provides the infrastructure solution for Web ser-
vices supporting the standards and protocols of Web services. The BEA

Introduction to Web Services

35

WebLogic Integration Server also enables complex Web services to be
deployed with transactional integrity, security, and reliability while sup-
porting the emerging ebXML and BTP standards.

In this book, we have provided some example illustrations of using BEA
WebLogic Server 7.0 in Chapter 3, “Building the Web Services Architec-
ture.” For more information about BEA Systems Products, go to their Web
site at www.bea.com.

Cape Clear Products

Cape Clear provides Web services infrastructure and product solutions
such as CapeConnect and CapeStudio, which enable the development of
Web services solutions based on industry standards such as XML, SOAP,
WSDL, and UDDI. Cape Clear also enables business applications from
diverse technologies such as Java, EJB, CORBA, and Microsoft .NET. These
components can be exposed as Web services over the Internet.

For more information about Cape Clear Systems Products, go to their
Web site at www.capeclear.com.

IBM Products

IBM WebSphere Application Server 4.5 provides an infrastructure solution
for deploying Web services-based applications. IBM also provides a Web
Services Tool Kit (WSTK) bundle (now part of WebSphere Studio) for
developers as a runtime environment that creates, publishes, and tests Web
services solutions based on open standards such as XML, SOAP, WSDL,
and UDDIL It also generates WSDL wrappers for existing applications
without any reprogramming. The IBM WSTK is available for download at
www.alphaworks.ibm.com/tech /webservicestoolkit.

IOPSIS Products

IOPSIS provides B2Beyond suite iNsight and W2Net, an Integrated Services
Development Framework (ISDF), that enables the creation, assembly,
deployment, and publication of Web services based on open standards such
as XML, SOAP, WSDL, and UDDI. It also provides tools for the deployment
of Web Services to popular J2EE-based Web application servers.

Oracle Products

Oracle’s Oracle9i Release 2 application server provides the J2EE-based
infrastructure solution for Web services supporting Web services standards

36

Chapter 2

including SOAP, UDDI, and WSDL. It also has features that define and
coordinate business processes using Web services integrating legacy appli-
cations and back-end systems.

Sun Products

As part of the Java community process, Sun has already released its Java
and XML technology-based APIs and its implementation referred to as JAX
Pack for developing and testing Java and open standards-based Web ser-
vices solutions. In addition, Sun also has released a comprehensive set of
technologies specific to Web services that are referred to as the Java Web
Services Developer Pack (JWSDP). In this book, we have discussed exten-
sively JWSDP API technologies and provided example illustrations in
Chapters 7 to 12.

The suite of products of Sun ONE Application Server 7.0, formerly called
iPlanet Application Server 6.0, provide a J2EE- and open standards-based
infrastructure for implementing Web services. The Sun ONE suite is a key
component of Sun’s Open Net Environment (Sun ONE), a comprehensive
Web-services software environment for customers and developers inter-
ested in migrating to the next generation of Web services.

Systinet Products

Systinet provides Web services infrastructure and product solutions such
as WASP Server, WASP Developer, and WASP UDDI, which develops Web
services solutions based on industry standards such as XML, SOAP,
WSDL, and UDDIL. Systinet also enables business applications from diverse
technologies such as Java, E]B, CORBA, and Microsoft .NET to be exposed
as Web services over the Internet. It enables integration with J2EE-based
applications and also supports security frameworks based on GSS API and
Kerberos. It also provides the implementation of Java XML API technolo-
gies that were especially meant for Web services.

In this book, we have provided example illustrations of using Systinet
WASP Server in Chapter 5, “Description and Discovery of Web Services.”

Web Services Strategies from Industry
Leaders: An Overview

Let’s take a brief look at the leading vendor initiatives and strategies
focused on the core of the Web services framework, which includes the

Introduction to Web Services

37

architecture, platform, and software solutions for developing and deploy-
ing Web services. Adopting these frameworks offers a simplified imple-
mentation solution, interoperability, and industry standards compliance
for enabling Web services. The following are the most popular initiatives
for providing the core Web services frameworks that are offered by leading
technology vendors in the industry.

Sun ONE (Sun Open Net Environment)

Sun ONE is Sun’s open standards-based software vision, architecture, plat-
form, and solution for building and deploying Services on Demand-based
solutions that support the development and deployment of Web services.
Sun ONE’s architecture is based on open standards like SOAP, WSDL, and
UDDI and also adopts the Java/J2EE-based solutions as its core runtime
technology. The major strength of SunONE is that it does not exhibit any
vendor lock-in problems or issues caused by other proprietary solutions.
For more information on Sun ONE, refer to Chapter 14, “Introduction to
Sun ONE,” or refer to the Sun Web site at www.sun.com/software
/sunone/.

IBM e-Business

IBM e-business is IBM’s conceptual architecture and open standards-based
product offering for the development and deployment of Web services.
IBM'’s offering is based on Java/J2EE and Web services standards like SOAP,
WSDL, and UDD], and collectively reflects the set of Web services technolo-
gies for Dynamic e-Business. For more information on IBM e-business initia-
tives, refer to the IBM Web site at www.ibm.com/e-business/index.html.

Microsoft .NET

Microsoft .NET defines the framework and the programming model of the
NET platform for developing and deploying standards-based Web
services and all types of applications. The framework defines three layers
consisting of the Microsoft operating system, enterprise servers, and .Net
building blocks using Visual Studio. The .NET-based Web services inter-
faces were developed using the .Net building blocks provided by the
Microsoft Visual Studio .NET framework supporting standards like SOAP,
WSDL, and UDDI. For more information about Microsoft .NET, go to
Microsoft’s Web site at www.microsoft.com.

38

Chapter 2

Key Benefits of Web Services

The key benefits of implementing Web services are as follows:
m Provides a simple mechanism for applications to become services
that are accessible by anyone, anywhere, and from any device.

m Defines service-based application connectivity facilitating EAI, and
intra-enterprise and inter-enterprise communication.

m Defines a solution for businesses, which require flexibility and agility
in application-to-application communication over the Internet.

m Enables dynamic location and invocation of services through service
brokers (registries).

m Enables collaboration with existing applications that are modeled as
services to provide aggregated Web services.

Quite clearly, Web services are the next major technology for demon-
strating a new way of communication and collaboration.

Summary

In this chapter, we provided an introduction to Web services and the core
open standard technologies available today for implementing Web
services applications. We also discussed the operational model and charac-
teristics of Web services in business-to-business communication.

In general, we have looked at what Web services are; the core standards,
tools, and technologies for enabling Web services; the industry standards
that support those services; leading technology vendors; and the uses as
well as benefits and challenges of using Web services.

In the next chapter, we will explore the Web services architecture and its
core buildings blocks, and then illustrate an example of a J2EE-based Web
services application.

" PART
Two |
Web Services

Architecture

and Technologies

Building the Web Services
Architecture

This chapter focuses on the Web services architecture: its core building
blocks, implementation models, and deployment process for building Web
services-based application solutions. In addition, this chapter also illus-
trates an example demonstrating the development of a complete Web
services solution exposing J2EE applications as services over the Internet.
The Web services architecture represents the logical evolution of tradi-
tional computer-based applications to services-oriented applications over
the Internet. It defines a distributed computing mechanism by adopting a
service-oriented architecture (SOA), where all of the applications are
encapsulated as services and made available for invocation over a net-
work. These services can be leveraged from different applications and
platforms with varying technologies adopting common industry stan-
dards and platform-independent and language-neutral Internet protocols
for enabling application interoperability, thus making them easily accessi-
ble over the Internet. In addition, it provides a mechanism for categorizing
and registering the services in a common location by making them
available for discovery and collaboration over the Internet or corporate
networks. Using Web services architecture and adhering to its standards
also exposes existing and legacy applications as Web services, and the
clients invoking these services do not require that they are aware of their
target system environment and its underlying implementation model.

a1

42

Chapter 3

Over the course of this chapter, we will study all about the Web services
architecture and its associated standards and technologies addressing
the challenges in implementation. In particular, we will be focusing on the
following:

Understanding the basics of Web services architecture
Key architectural requirements and constraints
Building blocks of Web services architecture

The role of Web services standards and technologies
Web services communication models

How to implement Web services

How to develop a Web services provider environment using J2EE

How to develop a client service requester environment

Because the key focus of this book is developing Web services using
the Java platform, this chapter will illustrate an example of building a
Web services solution by exposing a J2EE application deployed in a J2EE
application server.

Before moving forward, it is also important to note that during January
2002, W3C started its Web services activity as an ongoing effort to identify
the requirements and standards-based technologies for addressing the key
aspects of Web services, such as the architecture, protocols, and services
description and coordination, and so forth. Today, leading Web services tech-
nology vendors, joined together as part of the W3C Web services working
group, are working on identifying the requirements and developing full-
fledged Web services architecture-based solutions. To find out the status of
W3C working group activities on Web services architecture, refer to the W3C
URL at www.w3c.org/2002/ws/arch/.

Web Services Architecture
and Its Core Building Blocks

In the last chapter, we looked at the basic operational model of a Web ser-
vices environment with the three roles as service provider, service broker,
and service requestor associated with three operational relationships such
as registering, discovering, and invoking services.

The basic principles behind the Web services architecture are based on
SOA and the Internet protocols. It represents a composable application solu-
tion based on standards and standards-based technologies. This ensures that
the implementations of Web services applications are compliant to standard

Building the Web Services Architecture 43

specifications, thus enabling interoperability with those compliant applica-
tions. Some of the key design requirements of the Web services architecture
are the following;:

m To provide a universal interface and a consistent solution model to
define the application as modular components, thus enabling them
as exposable services

m To define a framework with a standards-based infrastructure model
and protocols to support services-based applications over the Internet

m To address a variety of service delivery scenarios ranging from
e-business (B2C), business-to-business (B2B), peer-to-peer (P2P),
and enterprise application integration (EAI)-based application com-
munication

m To enable distributable modular applications as a centralized and
decentralized application environment that supports boundary-less
application communication for inter-enterprise and intra-enterprise
application connectivity

m To enable the publishing of services to one or more public or private
directories, thus enabling potential users to locate the published ser-
vices using standard-based mechanisms that are defined by standards
organizations

m To enable the invocation of those services when it is required, subject
to authentication, authorization, and other security measures

To handle these requirements, a typical Web service architectural model
consists of three key logical components as core building blocks mapping
the operational roles and relationships of a Web services environment.
Figure 3.1 represents the core building blocks of a typical Web services
architecture.

Services container/runtime environment. The services container acts
as the Web services runtime environment and hosts the service
provider. Typical to a Web application environment, it defines the
Web services runtime environment meant for client communication
as a container of Web services interfaces by exposing the potential
components of the underlying applications. It facilitates the service
deployment and services administration. In addition, it also handles
the registration of the service description with the service registries.
Usually, the Web services platform provider implements the services
container. In some circumstances, the Web application servers pro-
vide system services and APIs that can be leveraged as the Web
services container.

44 Chapter 3

omainssmydonain™ hivdao >ant
build.xnl

13ndaorant run

=Getting Product=
1888
Proce . 1Ghz. 512MB. 42GB HD, Linux

Getting Product Catalog=======s======

. 1Ghz. 512MB. 42GB HD. Linux

ACME Blade 2080
111 Pro r. 1. 2G] D. Solaris

r, 1.3Ghz =12, 1GB. 1TB HD. Solaris

Services registry. The services registry hosts the published services
and acts as a broker providing a facility to publish and store the
description of Web services registered by the service providers. In
addition, it defines a common access mechanism for the service
requestors for locating the registered services.

Services delivery. It acts as the Web services client runtime environ-
ment by looking up the services registries to find the required ser-
vices and invoking them from the service provider. It is represented
as a presentation module for service requestors, by exposing the
appropriate interfaces or markups for generating content and deliv-
ery to a variety of client applications, devices, platforms, and so
forth.

To build the Web services architecture with these logical components, we
need to use standardized components and a communication model for
describing and invoking the services that are universally understood
between the service providers and their potential service requestors. It
also requires a standard way to publish the services by the service provider
and store them in the service broker. In turn, service requestors can find
them.

46 Chapter 3

WSDL. This resides in the services container and provides a stan-
dardized way to describe the Web services as a service description.
In ebXML-based architecture, ebXML CPP/A provides services
descriptions including business partner profiles and agreements.

UDDI. This provides a standard mechanism for publishing and
discovering registered Web services, and it also acts as the registry
and repository to store WSDL-based service descriptions. In ebXML-
based architecture, ebXML Registry & Repository provides a facility
to store CPP/CPA descriptions for business collaboration.

As we noted, Web services are accessed using standard Internet protocols
and XML—the Web services architecture forms the standard infrastructure
solution for building distributed applications as services that can be pub-
lished, discovered, and accessed over the Internet.

Tools of the Trade

Let’s take a closer look at the role of those Web services standards and tech-
nologies and how they are represented in Web services architecture and its
development process.

Simple Object Access Protocol (SOAP)

The Simple Object Access Protocol, or SOAP, plays the role of the messag-
ing protocol for exchanging information between the service provider and
the service requestor. It consists of the following;:

SOAP Envelope. It describes the message, identifying the contents
and the envelope’s processing information.

SOAP Transport. It defines the bindings for the underlying transport
protocols such as HTTP and SMTP.

SOAP Encoding. It defines a set of encoding rules for mapping the
instances of the application-specific data types to XML elements.

SOAP RPC conventions. It defines the representation of the RPC
requests and responses. These SOAP requests and responses are mar-
shaled in a data type and passed in to a SOAP body.

Listing 3.1 represents a SOAP message using an HTTP post request for
sending a getBookPrice () method with <bookname> as an argument
to obtain a price of a book.

Building the Web Services Architecture

47

POST /StockQuote HTTP/1.1
Host: www.acmeretailer.com
Content-Type: text/xml; charset="utf-8"
Content-Length: 1000
SOAPAction: "getBookPrice"
<SOAP-ENV:Envelope
xmlns: SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3c.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3c.org/2001/XMLSchema"
SOAP-ENV:encodingStyle
="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV : Body>
<m:getBookPrice
xmlns:m="http://www.wiley.com/jws.book.priceList">
<bookname xsi:type='xsd:string'>
Developing Java Web services</bookname>
</m:getBookPrice>
/SOAP-ENV : Body>
</SOAP-ENV:Envelope>

Listing 3.1 SOAP message using HTTP.

At the time of writing, the current version of SOAP is SOAP 1.2 with
attachments (SwA) and it is still being worked on in W3C. (For more infor-
mation on SOAP and developing Web services applications using SOAP,
refer to Chapter 4, “Developing Web Services Using SOAP.”)

Web Services Description Language (WSDL)

The Web Services Description Language, or WDDL, is an XML schema-
based specification for describing Web services as a collection of operations
and data input/output parameters as messages. WSDL also defines the
communication model with a binding mechanism to attach any transport
protocol, data format, or structure to an abstract message, operation, or
endpoint.

Listing 3.2 shows a WSDL example that describes a Web service meant
for obtaining a price of a book using a GetBookPrice operation.

<?xml version="1.0"?>
<definitions name="BookPrice"
targetNamespace="http://www.wiley.com/bookprice.wsdl"
xmlns:tns="http://www.wiley.com/bookprice.wsdl"

Listing 3.2 A WSDL document describing a Service. (continues)

48 Chapter 3

xmlns:xsd="http://www.w3.0rg/2000/10/XMLSchema"
xmlns:xsdl="http://www.wiley.com/bookprice.xsd"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns="http://schemas.xmlsoap.org/wsdl/">
<message name="GetBookPriceInput">
<part name="bookname" element="xsd:string"/>
</message>
<message name="GetBookPriceOutput">
<part name="price" type="xsd:float"/>
</message>
<portType name="BookPricePortType">
<operation name="GetBookPrice">
<input message="tns:GetBookPricelInput"/>
<output message="tns:GetBookPriceOutput"/>
</operation>
</portType>
<binding name="BookPriceSoapBinding"
type="tns:BookPricePortType">
<soap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http" />
<operation name="GetBookPrice">
<soap:operation
soapAction="http://www.wiley.com/GetBookPrice" />
<input>
<soap:body use="encoded"
namespace="http://www.wiley.com/bookprice"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />
</input>
<output>
<soap:body use="encoded"
namespace="http://www.wiley.com/bookprice"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />
</output>
</operation>>
</binding>
<service name="WileyBookPriceService">
<documentation>Wiley Book Price Service</documentation>
<port name="BookPricePort"
binding="tns:BookPriceSoapBinding">
<soap:address
location="http://www.wiley.com/bookprice" />
</port>
</service>

</definitions>

Listing 3.2 A WSDL document describing a Service. (continued)

Building the Web Services Architecture

49

At the time of writing, the current version of WSDL is WSDL 1.1 and it
has been discussed throughout this book. (For more information on WSDL,
refer to the section Describing Web Services Using WSDL in Chapter 5,
“Description and Discovery of Web Services.”)

Universal Description, Discovery, and Integration (UDDI)

Universal Description, Discovery, and Integration, or UDDI, defines a
mechanism to register and categorize Web services in a general-purpose
registry that users communicate to in order to discover and locate regis-
tered services. While querying a UDDI registry for a service, the WSDL
description describing the service interface will be returned. Using the
WSDL description, the developer can construct a SOAP client interface that
can communicate with the service provider.

UDDI can be implemented as a public registry to support the require-
ments of a global community or as a private registry to support an enterprise
or a private community.

At the time of this book’s writing, the current version of UDDI is UDDI
2.0 and it will be discussed throughout this book. (For more information on
UDD], refer to Chapter 5, “Description and Discovery of Web Services.”)

ebXML

ebXML provides a standard framework for building an electronic market-
place by enabling the standardization of business processes, business part-
ner profiles, and partner agreements. In general, ebXML complements
other Web services standards like SOAP, WSDL, and UDDI.

The following are major features of ebXML:

m ebXML Messaging Service (MS) is a value-add over SOAP that
provides reliability and security mechanisms.

m ebXML BPSS enables business processes to be described.

m ebXML CPP/CPA is a value-add over WSDL that enables business
partner profiles and partner agreements to be described.

m ebXML reg/rep provides a registry and repository, while UDDI is
just a registry.

m ebXML Core components provide a catalogue of business process
components for the business community.

50

Chapter 3

Although ebXML-based Web services are not in the scope of this book,
ebXML framework-based components will be discussed throughout the
book in all of the chapters where the complementing Web services
technologies are presented. For more information on ebXML, refer to the
official ebXML Web site at www.ebxml.org.

Web Services Communication Models

In Web services architecture, depending upon the functional requirements,
it is possible to implement the models with RPC-based synchronous or
messaging-based synchronous/asynchronous communication models.
These communication models need to be understood before Web services
are designed and implemented.

RPC-Based Communication Model

The RPC-based communication model defines a request/response-based
synchronous communication. When the client sends a request, the client
waits until a response is sent back from the server before continuing any
operation. Typical to implementing CORBA or RMI communication, the
RPC-based Web services are tightly coupled and are implemented with
remote objects to the client application. Figure 3.3 represents an RPC-based
communication model in Web services architecture.

The clients have the capability to provide parameters in method calls to
the Web service provider. Then, clients invoke the Web services by sending
parameter values to the Web service provider that executes the required
methods, and then sends back the return values. Additionally, using RPC-
based communication, both the service provider and requestor can register
and discover services, respectively.

——— e ——— e

Web Service
Provider

Web Service
Requester

REQUEST

RESPONSE

Figure 3.3 RPC-based communication model in Web services.

Building the Web Services Architecture

Messaging-Based Communication Model

The messaging-based communication model defines a loosely coupled
and document-driven communication. The service requestor invoking a
messaging-based service provider does not wait for a response. Figure 3.4
represents a messaging-based communication model in Web services
architecture.

In Figure 3.4, the client service requestor invokes a messaging-based
Web service; it typically sends an entire document rather than sending a set
of parameters. The service provider receives the document, processes it,
and then may or may not return a message. Depending upon the imple-
mentation, the client can either send or receive a document asynchro-
nously to and from a messaging-based Web service, but it cannot do both
functionalities at an instant. In addition, it also is possible to implement
messaging with a synchronous communication model where the client
makes the service request to the service provider, and then waits and
receives the document from the service provider.

Adopting a communication model also depends upon the Web service
provider infrastructure and its compliant protocol for RPC and Messaging.
The current version of SOAP 1.2 and ebXML Messaging support these
communication models; it is quite important to ensure that the protocols
are compliant and supported by the Web services providers. It also is
important to satisfy other quality of services (QoS) and environmental
requirements like security, reliability, and performance.

Before jumping into the development approaches, let’s take a look at the
process steps of implementing a Web services model.

Web Service
Provider

Web Service
Requester

Figure 3.4 Messaging-based communication model.

52

Chapter 3

Implementing Web Services

The process of implementing Web services is quite similar to implementing
any distributed application using CORBA or RMI. However, in Web
services, all the components are bound dynamically only at its runtime
using standard protocols. Figure 3.5 illustrates the process highlights of
implementing Web services.

As illustrated in Figure 3.5, the basic steps of implementing Web services
are as follows:

1. The service provider creates the Web service typically as SOAP-
based service interfaces for exposed business applications. The
provider then deploys them in a service container or using a
SOAP runtime environment, and then makes them available for
invocation over a network. The service provider also describes
the Web service as a WSDL-based service description, which
defines the clients and the service container with a consistent
way of identifying the service location, operations, and its
communication model.

2. The service provider then registers the WSDL-based service
description with a service broker, which is typically a UDDI
registry.

3. The UDDI registry then stores the service description as binding
templates and URLs to WSDLs located in the service provider
environment.

4. The service requestor then locates the required services by querying
the UDDI registry. The service requestor obtains the binding infor-
mation and the URLs to identify the service provider.

5. Using the binding information, the service requestor then invokes
the service provider and then retrieves the WSDL Service descrip-
tion for those registered services. Then, the service requestor creates
a client proxy application and establishes communication with the
service provider using SOAP.

6. Finally, the service requestor communicates with the service
provider and exchanges data or messages by invoking the available
services in the service container.

Building the Web Services Architecture

53

Web Services Broker

Registry
Services

descriptions as
binding templates
& URLs

| |
| |
| |
| |
| |
| |
| |
Stores service ! UDDI based !
| |
| |
| |
| |
| |
| |

Locates services and
its binding info

Register/Publish
services

Web Services Provider

—
D

Web Services Requester !

' @ Invoke &

obtain WSDL
Service Delivery >

SOAP Clients I

Service Container

Y

MyWebService.xyz =

|

|

|

|

|

|

|

|

i

Exchange data |
using SOAP | SOAP Interfaces "’_‘ |
| 5 !
|

|

|

|

|

|

|

|

|

|

|

|

|

RPC/Messaging

| WSDL Descriptions"’_‘
I

Create SOAP proxy interfaces
and WSDL based Service
descriptions

Figure 3.5 Process steps involved in implementing Web services.

In the case of an ebXML-based environment, the steps just shown are the
same, except ebXML registry and repository, ebXML Messaging, and ebXML
CPP/CPA are used instead of UDDI, SOAP, and WSDL, respectively. The
basic steps just shown also do not include the implementation of security and
quality of service (QoS) tasks. These subjects are discussed in Chapter 13,
“Web Services Security.” So far we have explored the Web services architec-
ture and technologies. Let's now move forward to learn how to develop Web
services-enabled applications as services using the Web services architecture.

54

Chapter 3

Developing Web Services-Enabled Applications

The design and development process of creating a Web services-enabled
application is not different from the typical process of developing a dis-
tributed application. In case of Web services, it can be created as a new
application or from using an existing application by repurposing them as
services.

In a Web services implementation, it also is possible to expose existing /
legacy applications as services by encapsulating the core business func-
tionalities of those underlying applications. The underlying applications
can be of any application implemented in any programming language and
running on any platform.

Figure 3.6 represents a typical Web services implementation model
providing service-oriented interfaces supporting a variety of back-end
application environments.

The implementation steps generally involved in developing Web ser-
vices solutions by exposing back-end business applications are as follows:

1. The potential business component of the underlying application will
be encapsulated as service-oriented interfaces using SOAP and then
exposed as Web services by deploying them in a Web services service
container or a SOAP runtime environment. Using those SOAP-based
interfaces, the service container handles all the incoming SOAP
requests/responses or messaging-based operations and maps them
as methods and arguments of the underlying business application.

| L 1
I'Web Services

1 Requestor

Services Runtime

! |
| |

|
| | Service Delivery | i ! | Environment !
| | | |
' ' Invoke | . | [
! SOAP | Services ! MYWebservices.xyz [i

' Client

| | | Preferences | SOAP | SOAP Interface L R JEE :
| | ! Classes N >) :
I I ! |
| | |
. | | [|| XML Descriptors | | [+—(CORBA ||
|
I |

|
! WSDL «—{ Microsoft .NET i

|
: :
| |
| |
|

Figure 3.6 Exposing applications through Web services.

Building the Web Services Architecture

55

2. WSDL-based service descriptions will be generated and then reside
in a service container. WSDL defines the communication contract
required for invoking the SOAP-based service interfaces. These
WSDL-based service descriptions will be published in a UDDI reg-
istry as service templates and its location URLs. The interfaces
required for publishing in the UDDI registry are usually provided
by the Web service container provider.

3. The service requester finds the services using the discovery mecha-
nisms (registry API) and obtains the service description and its
provider location URL. It then connects to the service provider to
obtain WSDL.

4. To invoke the services exposed by the service provider, the service
requestor (service delivery environment) is required to implement
SOAP-based client interfaces according to the service description
defined in the WSDL.

The Web services container/runtime environment provider generally
provides the tools required for creating SOAP-based services interfaces
from existing applications and generating WSDL-based service descrip-
tions. Depending upon the Web services runtime environment, some
providers also include test environments for UDDI and interfaces for pub-
lishing services interfaces.

The previous steps are usually common at all levels of Web services
development, irrespective of the target application environment such as
J2EE, CORBA, Microsoft .NET, or standalone applications based on Java,
C++, Microsoft Visual Basic, and legacy applications based on, the Main-
frame environment. As a result, implementing Web services unifies J2EE,
CORBA, .NET, and other XML-based applications with interoperability
and data sharing.

Because the scope of this book is focused on developing the Web services
using the Java platform, let’s focus on the key technologies and develop-
ment processes required. We'll begin with implementing Web services
using Java-based applications.

How to Develop Java-Based Web Services

With the overwhelming success of Java in Web and pervasive applications
running on a variety of platforms and devices, the Java platform has
become the obvious choice for enterprise architects and developers. In
addition to the Java platform, today the J2EE-based application environ-
ment also has become the preferred solution for running Web services-
based solutions.

56

Chapter 3

Web services are generally driven using a Web-enabled application envi-
ronment for HTTP communication. Because of that fact, in most cases the
J2EE-based Web services environment plays a vital role as a service enabler
for deploying Java and J2EE components as Web services. In addition, the
adoption of a J2EE-based Web services environment carries one significant
advantage: the deployment of Web services interfaces by the automatic
inheritance of all the characteristics of the J2EE container-based services such
as transactions, application security, and back-end application/databases
connectivity.

Let’s take a closer look at how to build Web services implementation
using a J2EE environment.

Building Web Services in the J2EE Environment

The process of building Web services using a J2EE environment involves
exposing J2EE components such as servlets and E]Bs. In addition, J2EE
applications also can access these exposed services using standard protocols.

In a typical implementation, a J2EE-based Web services model defines
another way of exposing their business components similar to Web appli-
cations and RMI/IIOP-based application connectivity and without chang-
ing the architectural model or code of the existing J2EE components. For
example, in a J2EE-based application server environment, J2EE compo-
nents can be exposed for remote access through RMI/IIOP. In the case of a
Web service provider using a J2EE environment, in addition to RMI/IIOP,
it also is possible to expose those components as a service via WSDL and
handle the exposed service by sending and receiving SOAP-based
requests/responses or messages.

Today, most Web services platform providers and J2EE application
server vendors have released their supporting toolsets for exposing the
J2EE components such as EJBs and Servlets as Web services. Typically,
these tools provide functionality to generate WSDL-based service descrip-
tions and service interface classes, which send and receive SOAP messages
based on the services defined in the WSDL.

The following steps are commonly involved in creating Web services
from a J2EE-based application component:

1. Select a Web services platform provider, which provides a consistent
platform for building and deploying Web services over the J2EE
applications.

2. Define a Web service-enabled application and its behavior.

a. Select the potential J2EE components (for example, E]Bs, Servlets,
and JMS applications) that are required to be exposed as services
or are using the existing services.

Building the Web Services Architecture

b. Choose the communication model (RPC-based synchronous or
messaging-based asynchronous) depending upon the required
behavior of the underlying components (for example, Session or
Entity EJBs using RPC-based communication or JMS applications
using messaging-based communication).

c. Ensure that the service uses only built-in/custom data types
mapping for XML and Java supported by the Web services con-
tainer. This applies only to RPC-based communication models.

3. Develop the Web service by writing the interfaces required for
accessing the exposed components (for example, E]Bs, Servlets, and
JMS applications).

a. Develop the potential J2EE component (for example, EJBs,
Servlets, and JMS applications) that are required and deploy
them in a J2EE-compliant container. Ensure that the data types
used by the components are supported in the XML /Java map-
pings defined by the provider.

b. Implement the SOAP message handlers.

4. Assemble the required components into a required structure (defined
by the Web services platform provider), additionally creating the
deployment descriptors for the services (as defined by the Web ser-
vices platform provider) and package them as a deployable EAR.

a. Most Web service platform vendors provide utility tools to gener-
ate Web services components (SOAP interfaces) by introspecting
the components (especially its methods and values) and mapping
them to its supported data types.

b. Also it is important to note, the upcoming release of the J2EE 1.4
specification is expected to provide a complete J2EE-based Web
services platform and would enable the deployment of J2EE com-
ponents as Web services.

5. Deploy the Web service components in the Web services container
and make them available to its remote clients (based on the required
protocol bindings such as HTTP and SMTP).

6. Create test clients for invoking the deployed Web services.

7. Register and publish your Web service in a UDDI registry, in case
you require enabling the service available by searching public/pri-
vate UDDI registries for Web services.

These steps are common. They are based on the implementation avail-
able from most popular Web services platform vendors. Perhaps in the
future, implementation may vary, based on emerging standards.

58

Chapter 3

J2EE and Java Web Services Developer Pack (JWSDP)

Sun Microsystems as part of its Java community process has already
released its Java API for Web Services for the developer community as the
Java Web Services Developer Pack (JWSDP). It provides a full-fledged
solution package for developing and testing Web services using the Java
APIs. In addition, leading Web services platform providers like Systinet,
CapeClear, and Mind Electric and leading J2EE vendors like BEA, IBM,
and Sun iPlanet also released their Web services capabilities, adopting a
Java platform and supporting Java APIs for Web services as per JWSDP.

JWSDP 1.0 provides a one-stop Java API solution for building Web ser-
vices using a Java platform. The key API components include the
following:

m Java API for XML Messaging (JAXM)

m Java API for XML Processing (JAXP)

m Java API for XML Registries (JAXR)

m Java API for XML Binding (JAXB)

m Java API for XML-Based RPC (JAX-RPC)

m Java WSDP Registry Server (JWSDP)

m Java Server Pages Standard Tag Library (JSTL)

Leading J2EE application server vendors have announced their support
to this effort and also started releasing their JWSDP API implementation.
This helps the developers to build Web services by exposing their existing
J2EE applications. The JWSDP and its API components are discussed with
examples in Part Three of this book, “Exploring Java Web Services Pack.”
At the time of writing this book, Sun Microsystems and its JCP partners are
currently working on a specification: Implementing Enterprise Web Ser-
vices (JSR 109). This specification essentially addresses how to implement
Web services in the J2EE platform defining a standard programming
model and J2EE container-based runtime architecture for implementing
Web services.

So far we have examined the Web services architecture and the concepts
of developing Java-based Web services. In the next section, let’s take a look
at how to develop Web services by exposing J2EE components deployed in
a J2EE application server.

Exposing J2EE Components as Web Services

This section explores the J2EE environment and the Web services tech-
niques available for leveraging J2EE components as Web services. The J2EE

Building the Web Services Architecture

environment delivers platform-independent Java component-based
applications providing a multi-tiered distributed application model with
several advantages like security, scalability, administration tools, portabil-
ity between vendor implementations, and reliability of deployed applica-
tions. In general, it defines the following components residing in different
logical tiers:

m JavaServer Pages (JSP) and Java Servlet-based components act as
Web components running on the Web /Servlet container of the J2EE
server.

m Enterprise JavaBeans (EJB)-based components act as business or
persistence components running on the EJB container of the J2EE
server.

m JDBC (Java Database connectivity) and J2EE connector architecture-
based components act as the integration tier of the J2EE server for
integrating database applications and enterprise information systems.

The key differences between J2EE components and traditional Java
applications is that J2EE components are assembled and deployed into a
J2EE application server in compliance with the J2EE specification. These
components are managed by J2EE server system services such as synchro-
nization, multithreading, and connecting pooling. Additionally, the J2EE
server implementation also provides capabilities like clustering, transac-
tion coordination, messaging, and database connection pooling. Exposing
J2EE components as Web services provides robust Web services-based
applications by fully utilizing the potential of J2EE application server-
deployed components and standards-based communication provided by
the Web services container.

In short, developing Web services from J2EE-based applications requires
the implementation of components using J2EE component APIs (such as
EJBs and servlets), then packaging and deploying them in a J2EE container
environment as target enterprise applications. The components are then
hosted in a J2EE-compliant application server. Exposing these J2EE com-
ponents as Web services also requires a Web services container environ-
ment, which enables the creation and deployment of SOAP-based proxy
interfaces.

In a typical scenario, exposing a J2EE-based application component as
Web services involves the steps in the following list:

STEPS FOR THE SERVICE PROVIDER

1. The potential J2EE component deployed in an application server envi-
ronment will be encapsulated as a service-oriented interface using
SOAP and then deployed in a Web services runtime environment.

60

Chapter 3

2. WSDL-based service descriptions are generated and then reside in
the services runtime environment. The service requestor clients cre-
ate SOAP-based client interfaces using the WSDL-based descriptions.

3. Using registry APIs, WSDLs are used for publishing the services in a
public/private UDDI registry.

STEPS FOR THE SERVICE REQUESTOR

1. The service requestor clients create SOAP-based client interfaces
using the WSDL-based descriptions exposed by the service provider.

2. The service requestor may choose to use any language for imple-
menting the client interfaces, but it must support the use of SOAP
for communication.

3. These client interfaces then are used to invoke the service provider-
deployed services.

At this time of writing, most J2EE application server vendors are devel-
oping their Web services runtime environment as a service container for a
J2EE environment; most of them have already made their beta available.
The upcoming release of]2EE 1.4 and E]B 2.1 specifications focuses on Web
services.

Now, let’s take a look at the full-featured implementation of a real-world
example of exposing J2EE components as Web services.

Developing Web Services Using J2EE: An Example

Before we start, let’s take a look at the background of this example illustra-
tion that is based on a fictitious company named ACME Web Services
Company. In this example, we will be implementing the J2EE components
using a J2EE application server and will expose them as service interfaces
using its service container for the service provider. We also will build the
client invocation interfaces using a SOAP provider.

The ACME Web Services Company is a Web-based services provider
that sells computer products by delivering XML-based data over the Inter-
net as Web services to its partners and resellers by exposing its business
functions. The functions exposed by the service provider are as follows:

m Catalog of computer system products to retail sellers
m Product specific information

m Selling computer systems and products to resellers

Building the Web Services Architecture

The service requesters are partners and resellers who use ACME Web
services to obtain catalogs and product information, place orders, obtain
invoices, and the like. The service requesters use their own application
environment and do SOAP-based service invocation with ACME Web ser-
vices (see Figure 3.7).

To build and deploy ACME Web services, we chose to use the following
infrastructure solutions:

SERVICE PROVIDER SIDE FEATURES

m The ACME Web services provider will use BEA WebLogic 7.0 as its
J2EE application server and its Web services runtime environment/
container.

m BEA WebLogic 7.0 is a J2EE 1.3-compliant application server with
capabilities that enable the creation, assembly, and deployment of
Web services from the existing J2EE components. WebLogic Server
provides early access implementation of Sun JAX-RPC API that
enables the building of RPC-style Web services. It also includes
WebLogic Workshop—a development environment (IDE) for devel-
oping and testing Web services. The BEA WebLogic 7.0 server is
available for download as an evaluation copy for developers at
www.bea.com.

Apache Axis 1.0 BEA Weblogic 7.0
I sI:r\:/(i)(I:(:s || Web services
SOAP Clients |« » Web Services Runtime Env.
SOAP I
FE{un.tlme |—|7 EjB
nvironment Web | Container
Applications
[Web
Container
A
Y
Database

Figure 3.7 Developing Web services using a J2EE environment.

62

Chapter 3

m WebLogic 7.0 provides servicegen, a SOAP and WSDL generation

utility that enables the creation of SOAP-based service-oriented
interfaces from J2EE components. It also provides a client generator
utility, clientgen, which enables the creation of Java-based clients
to invoke Web services. Additionally, it also provides serializer and
deserializer classes, which convert XML to Java representations of
data, and vice-versa.

The ACME Web services provider also uses JAXP-compliant XML
parser and PointBase as its database for storing and querying
information. JAXP and PointBase also are available as part of the
BEA WebLogic bundle and no separate download is required. The
PointBase database also can be used as an evaluation copy for
development purposes. For more information on understanding
the PointBase database, refer to the documentation available at
www.pointbase.com.

SERVICE REQUESTOR SIDE FEATURES
m Apache Axis 1.0B3 is a SOAP 1.1-compliant implementation with

capabilities to enable Java-based SOAP services to be created, assem-
bled, and deployed. More importantly, it also provides a utility for
automatic WSDL generation from deployed services and a WSDL2
Java tool for building Java proxies and skeletons from WSDL
obtained from service providers.

The service requestor will use Apache Axis 1.0B3 as its SOAP client
environment to invoke the services of an ACME Web services
provider.

Apache Axis is an open-source effort from Apache and is available
as a free download from http://xml.apache.org/axis/index.html.

To build and deploy the J2EE components and SOAP interfaces, we cre-
ate XML-based build scripts using Apache Ant. Apache Ant is a Java-based
Makefile utility available as a free download at http:/ /jakarta.apache.org
/ant/index.html.

Developing the ACME Web Services Provider

The following tasks are commonly involved in building the complete
ACME Web services provider in the BEA WebLogic 7.0 environment:

1. Design the business application understanding the problem, then

layout the sequence of events, choose the appropriate design pat-
tern, and then create the conceptual class model for implementation.

Building the Web Services Architecture

63

2. Install and set up the WebLogic-based J2EE development environ-
ment, including the required class libraries in the Java compiler
class path.

3. Create the database tables required for the applications.

4. Implement the J2EE components and the required DAO (Data access
objects), XML helper classes, and database tables, and so on.

5. Build and test the J2EE component and other classes.

6. Generate the SOAP-based service-oriented interfaces and WSDL-
based service descriptions using WebLogic <servicegen> and
<clientgen> utilities.

7. Assemble and deploy components as Web services in the WebLogic
server.

8. Create test clients and test the environment.

To test this example, you may download the chapter-specific source code
and documentation available at this book’s companion Web site at www.
wiley.com/compbooks/nagappan. The source code and README for
installing and running this example are available as part of chapter-3.zip.

Let’s walk through the previous process with more details and demon-
strations.

Designing the Application

As mentioned, the ACME Web services provider will host its product cata-
log application as Web services over the Internet by exposing its associated
J2EE components. In particular, we will be looking at the following busi-
ness functions:

m Getting the complete product catalog listing from the ACME prod-
uct database

m Getting product details for the given product identifier

To understand the problem and flow of events, look at Figure 3.8. This
sequence diagram further illustrates the various sequences of actions per-
formed by a client invoking the ACME Web services and in the WebLogic
server.

Based on the previous sequence of events, we choose to use a fagade pat-
tern by having a session bean act as a proxy by encapsulating the interac-
tions between the business service components such as AcmeXMLHelper
and AcmeDAO. AcmeXMLhelper will handle all the XML construction and
AcmeDAO will do the database interaction. To find out more information on
J2EE design patterns and best practices, refer to the Sun Java site URL at
http:/ /java.sun.com/blueprints/patterns/j2ee_patterns/catalog.html.

64 Chapter 3
ACME . ACME‘ ACME ACME ACME ACME ACME
WebServiceClient WebServices BusinessSession EJB XMLHelper DAO Helper ValueObject Database

!

Request for ACME

Product Data Call business methods

for product information

Call XML helper
for product data

Call DAO
helper to get
product data
from database

Query ACME product tables

I
| |
!

_— —— — — — —

- — —

Create ACME
product |
value object

ReturnACME

—_—— e —— e — —

Return data product value
as ACME object
value objects < — —
Return dat? e— — — |
Response ACME Return Product ixr\ism_ng __l_
product data data as String

as XML String

Figure 3.8 Sequence diagram illustrating flow of events.

1

%f

Figure 3.9 depicts the class diagram of the J2EE components to support
the ACME Web services provider.

Now let’s take a look at how to set up the development environment and
implementation of those J2EE components.

AcmeDAO
<<<SessionE|B>>> AcmeXMLHelper AcmeDAOImpl AcmeDataSource
AcmeSession uses uses encapsulates
obtains\ N v {reates
\A '
Product

Figure 3.9 Class diagram for the J2EE components.

Building the Web Services Architecture

65

Setting Up the Development Environment

Ensure that all of the JDK classes, WebLogic libraries (Jars), and database
drivers are available in the CLASSPATH. Also ensure that the JDK,
WebLogic, and PointBase (database) bin directories are available in the sys-
tem PATH. To test, start the WebLogic server and ensure that the database
server also is started.

Creating the ACME Database Tables

Ensure that all of the JDK, WebLogic libraries (Weblogic JARs), and data-
base drivers are available in the CLASSPATH. Also ensure that the JDK,
WebLogic, and PointBase (database) bin directories are available in the sys-
tem PATH.

1. Create a WebLogic JDBC DataSource with JNDI name JWSPool-
DataSource to provide access to database connection pools required
for connecting the PointBase database. This can be accomplished by
using a WebLogic console or by editing the config.xm1 file.

2. Use the WebLogic Server Console (for example, http:/ /localhost7001 /
console), navigate to JDBC > Tx Data Sources, create a data
source using JNDI name JWSPoolDataSource. The data source
should have the following attributes:

JNDI Name: JWSPoolDataSource
Pool Name: JWSPool

Targets-Server (on the Targets tab:) myserver

3. Then navigate to JDBC > Connection Pools and create a con-
nection pool named JwWSPool with the following attributes (in case
of PointBase):

URL: jdbc:pointbase:server://localhost/demo

Driver Classname:com.pointbase.jdbc.jdbcUniversalDriver
Properties: user=public

Password: (hidden)

Targets-Server (on the Targets tab): myserver

4. Restart the WebLogic server and ensure that the database server has
been started. The WebLogic server config.xml should look like
the following;:

<JDBCConnectionPool
DriverName="com.pointbase. jdbc.jdbcUniversalDriver"
Name="JWSPool" Password="yourchoice"
Properties="user=public" Targets="myserver"
URL="jdbc:pointbase:server://localhost/demo" />
<JDBCTxDataSource JNDIName="JWSPoolDataSource"
Name="JwSPoolDataSource" PoolName="JWSPool"
Targets="myserver"/>

66 Chapter 3

Table 3.1 Database Table Parameters

COLUMN NAME COLUMN DATA TYPE

ITEM_NUM INT
ITEM_NAME VARCHAR(30)
ITEM_DESC VARCHAR(255)
ITEM_PRICE DOUBLE
CURRENCY VARCHAR(3)

With these steps, the WebLogic data source and database server are
ready for use.

1. Now let’s create the database table product_catalog required for
the ACME product catalog. We use the table parameters shown in
Table 3.1.

2. To create the product_catalog table and to populate the data,
you may choose to use the Java code CreateACMETables. java
(see Listing 3.3).

// CreateACMETables.java

package jws.ch3.db;
import java.sqgl.*;
import java.util.*;

import javax.naming.*;
public class CreateACMETables {
public static void main(String argvl[])

throws Exception {
java.sqgl.Connection conn = null;

java.sqgl.Statement stmt = null;
try {
// === Make connection to database ==============

// Obtain a Datasource connection from JNDI tree.
Context ctx = null;
// Put connection properties in to a hashtable.

Listing 3.3 CreateACMETables.java.

Building the Web Services Architecture

67

Hashtable ht = new Hashtable() ;
ht.put (Context.INITIAL_CONTEXT_FACTORY,
"weblogic.jndi.WLInitialContextFactory") ;
ht.put (Context.PROVIDER_URL, "t3://localhost:7001");

// Get a context for the JNDI look up
ctx = new InitialContext (ht) ;
javax.sql.DataSource ds
= (javax.sqgl.DataSource)

ctx.lookup ("JWSPoolDataSource") ;
conn = ds.getConnection() ;
System.out.println("Making connection...\n");

// execute SQL statements.
stmt = conn.createStatement () ;

try {
stmt .execute ("drop table product_catalog") ;
System.out.println("Table
product_catalog dropped.") ;
} catch (SQLException e) {
System.out.println("Table product_catalog
doesn't need to be dropped.");

stmt .execute ("create table product_catalog
(item_num int, item_name
varchar (30), item_desc varchar (255),
item_price double,
currency varchar(3))");
System.out.println("Table product_catalog created.");

int numrows = stmt.executeUpdate("insert into
product_catalog values (1001,
'ACME Blade 1000', 'Ultra Sparc III
Processor, 1Ghz, 512MB, 42GB HD,
Linux', 1000.00, 'USD')");

System.out.println("Number of rows inserted = "

+ numrows) ;

numrows = stmt.executeUpdate("insert into
product_catalog values (1002,
'ACME Blade 2000', 'Sparc III
Processor, 1.3Ghz x2, 512MB, 42GB HD,
Solaris', 3000.00, 'USD')");

System.out.println("Number of rows inserted = "

Listing 3.3 CreateACMETables.java. (continues)

68 Chapter 3

+ numrows) ;

numrows = stmt.executeUpdate("insert into
product_catalog values (1003, 'ACME Server

e7000', 'Sparc III Processor, 1.3Ghz x12,
1GB, 1TB HD, Solaris', 75000.00,
'USD')");

System.out.println ("Number of rows inserted = "

+ numrows) ;

stmt.execute("select * from product_catalog") ;

ResultSet rs = stmt.getResultSet() ;

System.out.println("Querying data ...");

while (rs.next()) {

System.out.println("Product No:
" + rs.getString("item_num")
" Product Name: "
rs.getString ("item_name")
" Product Desc: "
rs.getString("item_desc")
" Price: " 4+ rs.getString("item_price")

+ o+ o+ o+ + o+

" Currency: " + rs.getString("currency"));
}
} catch (Exception e) {
System.out.println ("Exception was thrown: "
+ e.getMessage()) ;
} finally {
try {
if (stmt != null)
stmt.close() ;
if (conn != null)
conn.close() ;
} catch (SQLException sqgle) {
System.out.println("SQLException
during close(): "
+ sgle.getMessage()) ;

Listing 3.3 CreateACMETables.java. (continued)

Building the Web Services Architecture

To compile and run the previous classes, ensure that the WebLogic JAR
and PointBase drivers are available in the CLASSPATH. Then navigate to
the source directory and run the Ant build script (build.xml). The
build.xml file for compiling and testing the previous classes is shown in
Listing 3.4.

<project name="acme_tables" default="all" basedir=".">
<property file="../../../../mydomain.properties"/>
<property name="build.compiler" value="S${JAVAC}"/>
<!-- set global properties for this build -->
<property name="source" value="."/>

<target name="all" depends="compile"/>

<!-- Compile 'CreateACMETables' class into
the clientclasses directory -->
<target name="compile">
<javac srcdir="${source}"
destdir="${CLIENT_CLASSES}"
includes="CreateACMETables.java" />
</target>

<!-- Run the ACME Tables Creation -->
<target name="run">
<java classname="jws.ch3.db.CreateACMETables"
fork="yes" failonerror="true">
<classpath>
<pathelement path="${CLASSPATH}"/>
</classpath>
</java>
</target>
</project>

Listing 3.4 Ant script for creating ACME business tables.

Run the Ant utility in the source directory. The compiled classes will be
saved in the respective destinations defined in the build.xml file.

Now, to execute the CreateACMETables, you may execute the Ant
utility with run as an argument. The successful execution of the program
creates the product_catalog tables in the PointBase database and
inserts Product records in to the table.

If everything works successfully, you will get the output shown in
Figure 3.10.

70

Chapter 3

nssmydonain™ hisdbh>ant
build.xnl

smydomainse liente

E:xhea“user_dom wdomainss pereh3sdbXant pun
[Buildfile: build.xnl

BN 2

[javal Making connection...
[javal

Blade 1868 FProduct I
15

SI
Blac 6888 Product D
. o

ver eVAB8 FProduct
UsD

E:\hea~user_domainssmydomainssy jussch3sdh>

Figure 3.10 Output showing creation of ACME business tables.

Implementing the J2EE Components

Based on the class diagram, the J2EE components required for implement-
ing the ACME Web service are as follows:

AcmeDAO A DAO class enables access to the data source and abstracts
the underlying data access implementation for the product catalog
business clients.

AcmeXMLHelper This class gathers the data and constructs an XML
document as a string for use by the business clients (AcmeSession-
Bean).

AcmeSessionBean This acts as a proxy by encapsulating the interac-
tions with back-end service components.

Building the DAO Classes

To implement the AcmeDAO, we need to define the AcmeDAO as an interface
class and AcmeDAOImpl implements the AcmeDAO. The source code
implementation for the AcmeDAO interface is shown in Listing 3.5.

Building the Web Services Architecture

71

// AcmeDAO.java

package jws.ch3.dao;

import java.util.Collection;

import jws.ch3.exceptions.AcmeDAOException;

import jws.ch3.model.Product;

/**

* AcmeDAO.java is an interface and it is
* implemented by AcmeDAOImpl.java

*/

public interface AcmeDAO {

public Product getProduct (int productID)

throws AcmeDAOException;

public Iterator getProductCatalog()

Listing 3.5 AcmeDAO.java.

throws AcmeDAOException;

The source code implementation for AcmeDAOImpl. java is shown in

Listing 3.6.

// AcmeDAOImpl.java

package jws.

import
import
import
import
import
import
import
import

java.
java.
java.
java.
java.
java.

ch3

sqgl
sqgl
sqgl
sgl
sqgl

.dao;

.Connection;
.ResultSet;
.SQLException;
.Statement;
.PreparedStatement;

util.*;

javax.naming.Context;

javax.naming.InitialContext;

Listing 3.6 AcmeDAOImpl.java. (continues)

72 Chapter 3

import javax.sgl.DataSource;
import javax.naming.NamingException;

import jws.ch3.model.Product;
import jws.ch3.exceptions.AcmeDAOException;

/**

* This class implements AcmeDAO for PointBase DBs.

* This class encapsulates all the SQL calls

* and maps the relational data stored in the database
*/

public class AcmeDAOImpl implements AcmeDAO {
// data access methods

protected static DataSource getDataSource ()
throws AcmeDAOException {

try {

// ======= Make connection to database ======
// Obtain Datasource connection from JNDI tree.

Context ctx = null;
// Put connection properties in a hashtable.

Hashtable ht = new Hashtable();
ht.put (Context.INITIAL_CONTEXT_FACTORY,
"weblogic.jndi.WLInitialContextFactory") ;
ht.put (Context.PROVIDER_URL,
"t3://localhost:7001") ;

// Get a context for the JINDI look up
ctx = new InitialContext (ht);
javax.sqgl.DataSource ds
= (javax.sgl.DataSource)
ctx.lookup ("JWSPoolDataSource") ;

return ds;
catch (NamingException ne) {
throw new AcmeDAOException

("NamingException while looking up
DB context : "+ ne.getMessage());

Listing 3.6 AcmeDAOImpl.java.

Building the Web Services Architecture 73

// Business methods

public Product getProduct (int productID)
throws AcmeDAOException {
Connection ¢ = null;
PreparedStatement ps = null;
ResultSet rs = null;
Product ret = null;

try {
c = getDataSource () .getConnection() ;

ps = c.prepareStatement ("select item_num,
item_name, item_desc, item price,
currency "

+ "from product_catalog "

+ "where item num = ? ",
ResultSet.TYPE_SCROLL_INSENSITIVE,
ResultSet.CONCUR_READ_ONLY) ;
ps.setInt(l, productID);

rs = ps.executeQuery () ;
if (rs.first()) {
ret = new Product (rs.getInt(1l),

rs.getString(2),
rs.getString(3),
rs.getDouble(4),
rs.getString(5)) ;

rs.close();

ps.close() ;

c.close();
return ret;
}
catch (SQLException se) {
throw new AcmeDAOException ("
SQLException: " + se.getMessage());

public Iterator getProductCatalog()
throws AcmeDAOException {

Connection ¢ = null;
PreparedStatement ps = null;
ResultSet rs = null;
Product prod = null;

Listing 3.6 AcmeDAOImpl.java. (continues)

74 Chapter 3

try {
c = getDataSource () .getConnection() ;

ps = c.prepareStatement ("select
item_num, item_name, item_desc,
item_price, currency "
+ "from product_catalog ",
ResultSet.TYPE_SCROLL_INSENSITIVE,
ResultSet.CONCUR_READ_ONLY) ;
rs = ps.executeQuery () ;
ArrayList prodList = new ArrayList () ;
while (rs.next()) {
prod = new Product (rs.getInt(l),
rs.getString(2),
rs.getString(3),
rs.getDouble (4) ,
rs.getString(5)) ;
prodList.add (prod) ;

rs.close();

ps.close() ;

c.close();

return prodList.iterator() ;
}
catch (SQLException se) {
throw new AcmeDAOException ("
SQLException: "
+ se.getMessage());

public static void main(String[] arg) {
AcmeDAOImpl adi = new AcmeDAOImpl () ;
Product prod = adi.getProduct (1001) ;
prod.print () ;

Iterator itr = adi.getProductCatalog() ;
while(itr.hasNext())
{
Product p = (Product)itr.next () ;

p.print();

Listing 3.6 AcmeDAOImpl.java.

Building the Web Services Architecture

75

We also need to implement the value object Product and exception
classes for the AcmeDAO and the source code for the value object
Product . java. The implementation is shown in Listing 3.7.

// Product.
package jws

java
.ch3 .model;

import java.util.*;

import java.io.*;

/**

* This class acts as the value object for Product
* and it defines the accessor methods

*/

public clas

private
private
private
private
private

public

public i
return

}
public
ret

public
retu

}

s Product {

int productID;
String productName;
String productDesc;
double productPrice;
String currency;

Product (int prodID, String prodName,

String prodDesc, double prodPrice, String curr)
productID = prodID;

productName = prodName;

productDesc = prodDesc;

productPrice = prodPrice;

currency = CUrr;

nt getProductID() {
productID;

String getProductName () {
urn productName;

String getProductDesc () {
rn productDesc;

Listing 3.7 Product.java. (continues)

Chapter 3

public double getProductPrice() {
return productPrice;

}

public String getCurrency () {
return currency;

}

public void setProductID(int aProductID) ({
productID=aProductID;

public void setProductName (String aProductName) {
productName=aProductName;

public void setProductDesc (String aProductDesc) {
productDesc=aProductDesc;

public void setProductPrice (double aProductPrice) {
productPrice=aProductPrice;

}

public void setCurrency(String aCurrency) {
currency=aCurrency;

}

public void print() {
System.out.println (productID) ;
System.out.println(productName) ;
System.out.println (productDesc) ;

System.out.println (productPrice) ;
System.out.println(currency) ;

Listing 3.7 Product.java. (continued)

And the source code for the DAO Exceptions AcmeDAOException. java
is shown in Listing 3.8.

// AcmeDAOException.java

package jws.ch3.exceptions;

Listing 3.8 AcmeDAOException.java.

Building the Web Services Architecture

77

* AcmeDAOException is an exception that extends the standard
* RunTimeException Exception. This is thrown by the DAOs

* of the catalog

* component when there is some irrecoverable error

* (like SQLException)

*/

public class AcmeDAOException extends RuntimeException {

public AcmeDAOException (String str) {
super (str) ;

public AcmeDAOException () {
super () ;

Listing 3.8 AcmeDAOException.java. (continued)

To compile and run the previous classes, ensure that the WebLogic JAR
and PointBase drivers are available in the CLASSPATH. Then navigate to
the source directory and run the Ant build script (build.xml). The
build.xml for compiling and testing the previous classes is shown in
Listing 3.9.

<project name="acme_dao" default="all" basedir=".">

<property file="../../../../mydomain.properties"/>
<property name="build.compiler" value="${JAVAC}"/>

<!-- set global properties for this build -->

<property name="source" value="."/>
<target name="all" depends="compile"/>

<!-- Compile DAO class into the serverclasses directory -->
<target name="compile">
<javac srcdir="${source}"
destdir="${SERVER_CLASSES}"
includes="AcmeDAO.java, AcmeDAOImpl.java"
/>
</target>

Listing 3.9 Ant build script for ACME DAO classes. (continues)

78

Chapter 3

<!-- Run ACME DAO Test -->
<target name="run">
<java classname="jws.ch3.dao.AcmeDAOImpl"
fork="yes" failonerror="true">
<classpath>
<pathelement path="${CLASSPATH}"/>
</classpath>
</java>
</target>
</project>

Listing 3.9 Ant build script for ACME DAO classes. (continued)

Now to execute the AcmeDAO classes, you may execute the Ant utility
with run as an argument. The successful execution of the program queries
the product_catalog tables from the PointBase database and inserts

Product records in to the table.

If everything works successfully, you will get the output shown in

Figure 3.11.

smydomnain®
1

icompil
9

[javac] Compiling 2 source files to E:“bea‘suser_domainssmydomainsservercl

=Getting Product==

ACHME Blade 1888

Sparc III Pro . 1Ghz,. 512MB. 42GE HD. Linux
Getting Product Catalog==s======s=s=s====

Elade 18808
IITI Pro . 1Ghz, 512MB. 42GB HD, Linux

lade 2888
IT Pro

» 1.3Ghz =12, 1GB. 1TB HD. Solaris

asses

Figure 3.11 Output showing execution of the ACME DAO classes.

Building the Web Services Architecture

79

Building the XML Helper Classes

To implement the AcmeXMLHelper classes, we need to define the XML
elements as constants in an AcmeConsts class, and the AcmeXMLHelper
is the class implementation that provides methods for constructing XML
mapping for the DAO data objects.

The source code for AcmeConsts. java is shown in Listing 3.10.

//AcmeConsts.java
package jws.ch3.xmlhelper;
public class AcmeConsts {

public static final String ProductCatalog="ProductCatalog";
public static final String LineItem="LineItem";

public static final String ItemNumber="ItemNumber";

public static final String ItemName="ItemName";

public static final String ItemDesc="ItemDesc";

public static final String ItemPrice="ItemPrice";

public static final String Currency="Currency";

Listing 3.10 AcmeConsts.java.

The source code for the AcmeXMLHelper . java is shown in Listing 3.11.

// AcmeXMLHelper.java

package jws.ch3.xmlhelper;
import java.io.*;

import java.util.*;

import org.w3c.dom.*;

import javax.xml.parsers.*;

import javax.xml.transform.*;

import javax.xml.transform.stream.*;
import javax.xml.transform.dom.DOMSource;
import jws.ch3.model.Product;

import jws.ch3.dao.*;

/xx

Listing 3.11 AcmexXMLHelper.java. (continues)

80 Chapter 3

* XML & XML String object mapping the DAO methods
=Y

public class AcmeXMLHelper ({

private Document doc;
private Element root;

// Helper methods

// Create the XML document
private void createXMLDocument (String rootTagName) {

DocumentBuilderFactory factory =
DocumentBuilderFactory.newInstance() ;

try {
factory.setNamespaceAware (true) ;
DocumentBuilder builder = factory.newDocumentBuilder () ;
doc = builder.newDocument () ;
root = doc.createElementNS ("ProductCatalog.xsd",
rootTagName) ;
doc.appendChild(root) ;
} catch (ParserConfigurationException e) {
e.printStackTrace() ;
}
}

// Create the ProductCatalog XML document

private void createProductCatalogXML () {
createXMLDocument (AcmeConsts.ProductCatalog) ;
AcmeDAOImpl adi = new AcmeDAOImpl () ;
Iterator itr = adi.getProductCatalog() ;
while (itr.hasNext()) {
Product p = (Product)itr.next () ;
createLineItemNode (root, p);

// Create the Product XML document

private void createProductXML (int productID) {
createXMLDocument (AcmeConsts.ProductCatalog) ;
AcmeDAOImpl adi = new AcmeDAOImpl () ;
Product prod = adi.getProduct (productID) ;
createLineIltemNode (root, prod);

Listing 3.11 AcmeXMLHelper.java.

Building the Web Services Architecture

// Method to obtain Product Catalog as XML

public Document getProductCatalogDocument () {
createProductCatalogXML () ;
return doc;

// Method to obtain Product Catalog XML as String

public String getProductCatalogXMLasString ()
throws TransformerException{
createProductCatalogXML () ;
return transformDOMtoString (doc) ;

// Method to obtain Product as XML

public Document getProductDocument (int productID) {
createProductXML (productID) ;
return doc;

// Method to obtain Product XML as String

public String getProductXMLasString (int productID)
throws TransformerException({
createProductXML (productID) ;
return transformDOMtoString (doc) ;

// Method to convert XML document as String

private String transformDOMtoString (Document xDoc)
throws TransformerException {
try{
// Use a Transformer for String output
TransformerFactory tFactory
= TransformerFactory.newlInstance () ;
Transformer transformer =
tFactory.newTransformer () ;

DOMSource source = new DOMSource (xDoc) ;
StringWriter sw = new StringWriter();
transformer. transform(source,
new StreamResult (sw)) ;
return sw.toString() ;
} catch (TransformerConfigurationException tce) {

Listing 3.11 AcmexMLHelper.java. (continues)

82

Chapter 3

Listing 3.11

throw new TransformerException (
tce.getMessageAndLocation()) ;

} catch (TransformerException te) {
throw new TransformerException (
te.getMessageAndLocation()) ;

// Methods to create Product XML adding the Line items

private void createLinelItemNode (Node parent, Product p)
try {
Element liElem =
doc.createElement (AcmeConsts.LineItem) ;
parent.appendChild(liElem) ;

//Make <ItemNumber> element and add it
Element elem =
doc.createElement (AcmeConsts.ItemNumber) ;
elem.appendChild (doc.createTextNode (
String.valueOf (p.getProductID())));
liElem.appendChild(elem) ;

// Make <ItemName> element and add it
elem = doc.createElement (AcmeConsts.ItemName) ;
elem.appendChild (doc.createTextNode (
p.getProductName ()));
liElem.appendChild(elem) ;

// Make <ItemDesc> element and add it
elem = doc.createElement (AcmeConsts.ItemDesc) ;
elem.appendChild (doc.createTextNode (
p.getProductDesc()));
liElem.appendChild(elem) ;

// Make <ItemPrice> element and add it

elem =
doc.createElement (AcmeConsts.ItemPrice) ;
elem.appendChild (doc.createTextNode (
String.valueOf (p.getProductPrice())));
liElem.appendChild(elem) ;

// Make <Currency> element and add it
elem = doc.createElement (AcmeConsts.Currency) ;
elem.appendChild (doc.createTextNode (
p.getCurrency ()));
liElem.appendChild(elem) ;

AcmeXMLHelper. java.

{

Building the Web Services Architecture

83

} catch (Exception e) {
e.printStackTrace () ;

// Main method for testing
public static void main(String[] arg) {
try {
AcmeXMLHelper ax = new AcmeXMLHelper();
System.out.println(ax.getProductCatalogXMLasString()) ;
System.out.println("------------——-—————————~—— ")
System.out.println(ax.getProductXMLasString (1001)) ;
} catch (Exception e) {
e.printStackTrace () ;

Listing 3.11 AcmeXMLHelper.java. (continued)

To compile and run the AcmeXMLHelper classes, ensure that the
WebLogic JARs (includes a JAXP compliant XML parser) are available in
the CLASSPATH. Then navigate to the source directory and run the Ant
build script (build.xml). The build.xml for compiling and testing the
AcmeXMLHelper classes is shown in Listing 3.12.

<project name="acme_xmlhelper" default="all" basedir=".">

<property file="../../../../mydomain.properties"/>
<property name="build.compiler" value="${JAVAC}"/>

<!-- set global properties for this build -->
<property name="source" value="."/>

<target name="all" depends="compile"/>

<!-- Compile ACME XML helper classes In serverclasses dir -->
<target name="compile">
<javac srcdir="${source}"
destdir="${SERVER_CLASSES}"
includes="AcmeXMLHelper.java, AcmeConsts.java"
/>
</target>

Listing 3.12 build.xml for compiling and testing the AcmexMLHelper classes. (continues)

84 Chapter 3

<!-- Run ACME XML Helper Test -->
<target name="run">
<java classname="jws.ch3.xmlhelper.AcmeXMLHelper"

fork="yes" failonerror="true">
<classpath>
<pathelement path="${CLASSPATH}"/>
</classpath>
</java>
</target>

</project>

Listing 3.12 build.xml for compiling and testing the AcmexMLHelper classes. (continued)

Now to execute the AcmeXMLHelper classes, you may execute the Ant
utility with run as an argument. The successful execution of the program
queries the 'product_catalog tables from the PointBase database and
inserts Product records in to the table.

If everything works successfully, you will get the output shown in
Figure 3.12.

er_domainssmydonai " cmlhe lper>an
build.xnl

icompile:
[javac] Compilir source Files asu _donainssnydomain

all:
BUILD SUCCESSFUL
Total time

hea*user_doma smydomainsseosjuwssc lhe lper>ant run
(Buildfil build.xnl

HBB< -1 tenNa|
‘ItemPrice

ey
c > ItemPrice>
REUEN]

Figure 3.12 Testing the ACME XML helper Classes.

Building the Web Services Architecture

85

Building the Session Bean

Finally, we need to implement the stateless session bean to act as the session
facade for all of the business service classes. Like any other EJB, it contains
the home interface AcmeSessionHome, a remote interface AcmeSession,
and the bean implementation class AcmeSessionBean.

The AcmeSessionHome interface simply defines a create () method
to return a reference to the AcmeSession remote interface. The source
code for the AcmeSessionHome interface is shown in Listing 3.13.

//AcmeSessionHome. java

package jws.ch3.ejb;

import javax.ejb.CreateException;

import java.rmi.RemoteException;

import javax.ejb.EJBHome;

/** The Home interface for Acme Session Bean*/
public interface AcmeSessionHome extends EJBHome {

public AcmeSession create() throws CreateException,
RemoteException;

Listing 3.13 AcmeSessionHome.java.

AcmeSession defines the remote interface for the Acme Web service
with two business methods. The source code for the AcmeSession inter-
face is shown in Listing 3.14.

//AcmeSession.java
package jws.ch3.ejb;

import java.rmi.RemoteException;

import javax.ejb.EJBObject;

/**

* This is the remote interface for the ACME Session EJB.

Listing 3.14 AcmeSession.java. (continues)

86 Chapter 3

* It provides a session facade as an ejb-tier implementation
* for all ACME functions
=

public interface AcmeSession extends EJBObject ({

public String getProductCatalog() throws RemoteException;
public String getProduct (int productID)
throws RemoteException;

Listing 3.14 AcmeSession.java. (continued)

And finally the bean class AcmeSessionBean. java implementing the
business methods is defined by the remote interface. The source code for
the AcmeSessionBean class is shown in Listing 3.15.

// AcmeSessionBean.java
package jws.ch3.ejb;

import javax.ejb.SessionBean;
import javax.ejb.SessionContext;
import javax.ejb.EJBException;
import javax.naming.InitialContext;

import javax.naming.NamingException;
import jws.ch3.xmlhelper.AcmeXMLHelper;

/**

* Session Bean implementation for ACME business methods
* - Acts as a Session Facade which encapsulates the

* ACME XML Helper and DAO

*/

public class AcmeSessionBean implements SessionBean {

private static final boolean VERBOSE = true;
private SessionContext ctx;

public void ejbCreate() {
tracelog ("AcmeSessionBean: ejbCreate called") ;

Listing 3.15 AcmeSessionBean.java.

Building the Web Services Architecture

87

public void ejbActivate() {
tracelog ("AcmeSessionBean: ejbActivate called") ;

public void ejbRemove () {
tracelog ("AcmeSessionBean: ejbRemove called") ;

public void ejbPassivate() {
tracelog ("AcmeSessionBean: ejbPassivate called") ;

}

public void setSessionContext (SessionContext ctx) {
tracelog ("AcmeSessionBean: setSessionContext called");
this.ctx = ctx;

// Returns Product as XML based String

public String getProduct (int productID) {
try {
AcmeXMLHelper axh = new AcmeXMLHelper () ;
tracelog ("getProduct called") ;
return axh.getProductXMLasString (productlID) ;
} catch (Exception e) {
throw new EJBException (e.getMessage()) ;

// Returns ProductCatalog as an XML String

public String getProductCatalog() {
try {
AcmeXMLHelper axh = new AcmeXMLHelper () ;
tracelog ("getProductCatalog called") ;
return axh.getProductCatalogXMLasString () ;
} catch (Exception se) {
throw new EJBException (se.getMessage());

// Logging the EJB Calls
private void tracelog(String ts) {
if (VERBOSE) System.out.println(ts);

Listing 3.15 AcmeSessionBean.java. (continued)

88 Chapter 3

Now let’s create the deployment descriptors for the EJB such as
ejb-jar.xml and weblogic-ejb-jar.xml to define its internal
dependencies and the assembly information. We will use the EJB name as
ACMEWebService and its JNDI name as jws-ch3-statelessejb-
AcmeSessionHome.

The deployment descriptor ejb-jar.xml is shown in Listing 3.16.

<?xml version="1.0"?>
<!DOCTYPE ejb-jar PUBLIC
'-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 2.0//EN'
'http://java.sun.com/dtd/ejb-jar_2_0.dtd'>
<ejb-jar>
<enterprise-beans>
<session>
<ejb-name>ACMEWebservice</ejb-name>
<home>jws.ch3.ejb.AcmeSessionHome</home>
<remote>jws.ch3.ejb.AcmeSession</remote>
<ejb-class>jws.ch3.ejb.AcmeSessionBean</ejb-class>
<session-type>Stateless</session-type>
<transaction-type>Container</transaction-type>
</session>
</enterprise-beans>
<assembly-descriptor>
<container-transaction>
<method>
<ejb-name>ACMEWebservice</ejb-name>
<method-name>*</method-name>
</method>
<trans-attribute>Required</trans-attribute>
</container-transaction>
</assembly-descriptor>
</ejb-jar>

Listing 3.16 Deployment descriptor for AcmeSessionBean (ejb-jar.xml).

The WebLogic-specific ~deployment descriptor webLogic-ejb-
jar.xml is shown in Listing 3.17.

<?xml version="1.0"?>

<!DOCTYPE WebLogic-ejb-jar PUBLIC

'-//BEA Systems, Inc.//DTD WebLogic 7.0.0 EJB//EN'
'http://www.bea.com/servers/wls700/dtd/Weblogic700-ejb-jar.dtd'>

Listing 3.17 WebLogic-specific deployment descriptor webLogic-ejb-jar.xml.

Building the Web Services Architecture

<weblogic-ejb-jar>

<weblogic-enterprise-bean>

<ejb-name>ACMEWebservice</ejb-name>

<jndi-name>jws-ch3-statelessejb-AcmeSessionHome</jndi-name>

</weblogic-enterprise-bean>

</weblogic-ejb-jar>

Listing 3.17 Weblogic-specific deployment descriptor webLogic-ejb-jar.xml.

(continued)

To compile the EJB, we need to create the Ant build script (build.xml).
The build.xml for compiling, assembling, and deploying the EJB is
shown in Listing 3.18.

<project name="ejb-build" default="all" basedir=".">
<!-- set global properties for this build -->
<property environment="env"/>

<property file="../../../../mydomain.properties"/>
<property name="build.compiler" value="S${JAVAC}"/>
<property name="source" value="."/>

<property name="build" value="${source}/build"/>

<property

name="dist" value="${source}/dist"/>

<target name="all" depends="clean, init,

compile_ejb, jar_ejb, ejbc,
ear_app, compile_client"/>

<target name="init">

<!-- Create the time stamp -->
<tstamp/>
<!-- Create the build directory structure used

by compile and copy the deployment descriptor

into it-->

<mkdir dir="${build}"/>

<mkdir dir="${build}/META-INF"/>

<mkdir dir="${dist}"/>

<copy todir="${build}/META-INF">
<fileset dir="${source}">

<include name="ejb-jar.xml"/>

<include name="weblogic-ejb-jar.xml"/>

</fileset>
</copy>

</target>

Listing 3.18 Build.xml for compiling, assembling, and deploying the EJB. (continues)

90 Chapter 3

<!-- Compile ejb classes into the build directory
(jar preparation) -->
<target name="compile_ejb">
<javac srcdir="S${source}" destdir="${build}"
includes="AcmeSession.java,
AcmeSessionHome.java, AcmeSessionBean.java"/>
</target>

<!-- Make a standard ejb jar file,
including XML deployment descriptors -->
<target name="jar_ejb" depends="compile_ejb">
<jar jarfile="s${dist}/jws-ch3-statelessejb.jar"
basedir="${build}">
</jar>
</target>

<!-- Run ejbc to create the deployable jar file -->
<target name="ejbc" depends="jar_ejb">
<java classname="weblogic.ejbc"
fork="yes" failonerror="yes">
<sysproperty key="weblogic.home"
value="${WL_HOME}/server"/>
<arg line="-compiler javac
${dist}/jws-ch3-statelessejb.jar
S{dist}/jws-ch3-statelessejb.jar"/>
<classpath>
<pathelement path="${CLASSPATH}"/>
</classpath>
</java>
</target>

<!-- Put the ejb into an ear, to be
deployed from the ${APPLICATIONS} dir -->
<target name="ear_app" depends="jar_ejb">
<ear earfile="${APPLICATIONS}/
jws-ch3-statelessejb.ear"
appxml="${source}/application.xml">
<fileset dir="${dist}"
includes="jws-ch3-statelessejb.jar"/>
</ear>
</target>
<target name="clean">
<delete dir="${build}"/>
<delete dir="s${dist}"/>
</target>
<project>

Listing 3.18 Build.xml for compiling, assembling, and deploying the EJB

. (continued)

Building the Web Services Architecture

Now to compile the AcmeSession EJB classes, you may execute the Ant
utility. The successful execution of the program assembles the EAR file and
deploys it in to the server and then displays “BUILD SUCCESSFUL.”

Generating the Web Services

After the successful creation of E]B, let’s include the WebLogic servicegen
and clientgen utilities as Ant tasks to generate the Web service interfaces
and client jar files for Web services clients.

In the WebLogic 7.0 environment, using the servicegen utility requires an
EJB jar file as input. It automatically generates the ‘JAX-RPC based” service-
oriented interfaces, user-defined data type components (serializer and deseri-
alizer classes), and the web-services.xml deployment descriptor, and then
packages them as a deployable EAR file by introspecting the input EJB.

Thus, by creating a servicegen Ant task in the build.xml, it is possi-
ble to generate all the service classes required for exposing an EJB as a Web
service. Listing 3.19 is an Ant task for generating the service classes for
AcmeSession EJB. For the deployed components, we will be using
ACMEWebService as the name of the Web service, and its URI and the
names for EAR, JAR, and WAR are webservices_acmes.ear,
acmes_ejb.jar,and acme_service.war, respectively.

<target name="build-ear" depends="build-ejb">
<delete dir="${build}" />
<mkdir dir="${build}" />
<copy todir="${build}" file="${dist}/acme_ejb.jar"/>
<servicegen
destEar="${build} /webservices_acme.ear"
warName="acme_service.war">
<service
ejbJar="${build}/acme_ejb.jar"
targetNamespace=
"http://localhost:7001/acme_services/ACMEWebService"
serviceName="ACMEWebService"
serviceURI="/ACMEWebService"
generateTypes="True"
expandMethods="True" >
<client
packageName="jws.ch3.ejb"
clientJarName="${client_file}"/>
</service>
</servicegen>

</target>

Listing 3.19 Ant task for generating the service classes from AcmeSession EJB.

92

Chapter 3

Similar to the servicegen utility, WebLogic 7.0 also provides a
clientgen utility that creates a client JAR file containing the client specific
stubs (JAX-RPC based), and serializer and deserializer classes used for
invoking the Web service deployed as an EAR file in the WebLogic server.
This helps the testing of the Web services deployed in the WebLogic server.

Adding a clientgen Ant task generates the required client stub classes
required for invoking the Web services. Listing 3.20 is an Ant task for gen-
erating the client classes required for invoking ACMEWebService.

<target name="build-client" depends="build-ear">
<clientgen
ear="S${build}/webservices_acme.ear"
warName="acme_service.war"
packageName="jws.ch3.ejb"
clientJar="acme_client.jar" />
</target>

Listing 3.20 Ant task for generating the client classes required for invoking ACMEWebService.

It also is important to create a client to test the Web service, and all that it
requires is to know the name of the Web service and signatures of its
operations. To find the signature of the Web service operations, un-JAR the
Web service-specific client JAR file acme_client.jar. The files
ACMEWebService_Impl.java and ACMEWebServicePort.java
contain the implementation of the Web service operations getProduct
Catalog () and getProduct (int productID),and ACMEWebService
refers to the name of the Web service.

To build a static client, no imports are required, just make sure that

'acme_client.jar' is available in the CLASSPATH. Listing 3.21 is the
complete source code of ACMEWebServiceClient. java.

package jws.ch3.ejb;
public class ACMEWebServiceClient {
public static void main(String[] args) throws Exception {
// Parse the argument list
ACMEWebServiceClient client = new ACMEWebServiceClient () ;

String wsdl = (args.length > 0? args[0] : null);
client.example (wsdl) ;

Listing 3.21 Complete source code of ACMEWebServiceClient.java.

Building the Web Services Architecture

93

public void example(String wsdlURI) throws Exception {

// Set properties for JAX-RPC service factory
System.setProperty("javax.xml.rpc.ServiceFactory",
"weblogic.webservice.core.rpc.ServiceFactoryImpl") ;

if (wsdlURI == null) {
System.out.println ("WSDL location not available");
} else {

ACMEWebService_Impl awsI =
new ACMEWebService_Impl (wsdlURI) ;

ACMEWebServicePort aws = awsI.getACMEWebServicePort () ;
System.out.println("==Getting Product info
for ProductID 1001==");
System.out.println (aws.getProduct (1001)) ;
System.out.println("==Getting
Product Catalog==");
System.out.println(aws.getProductCatalog()) ;

Listing 3.21 Complete source code of ACMEWebServiceClient.java. (continued)

Now let’s include the compilation of the ACMEWebServiceClient . java
in the build.xml (see Listing 3.22).

<target name="build-client" depends="build-ear">
<clientgen
ear="${build}/s{ear_file}"
warName="S${war_file}"
packageName="jws.ch3.ejb"
clientJar="${client_file}" />
<javac srcdir="." includes="ACMEWebServiceClient.java"
fork ="true"
destdir="${CLIENT CLASSES}" >
<classpath>
<pathelement path="${client_file}"/>
<pathelement path="${java.class.path}"/>
</classpath>
</javac>

</target>

Listing 3.22 ACMEWebServiceClient.java inthe build.xml.

94

Chapter 3

With all of these steps, we have now completed all of the required
processes for creating the ACME Web services provider.

To compile and run the previous classes, ensure that the WebLogic JARs
and other required packages are available in the CLASSPATH. Then, navi-
gate to the source directory and run the Ant utility.

Upon successful completion, you will find the output shown in Fig-
ure 3.13.

Sulect UninDos

Figure 3.13 Packaging and deployment of the ACME service provider.

Building the Web Services Architecture 95

Testing the ACME Web Services Provider

So far we have looked at building the components and generating the ser-
vice classes for the ACME Web services provider. From now on, let’s test
the service classes using the static client and WebLogic server-provided
utilities.

To execute the static client AcmeWebServiceClient class, you may
execute the Ant utility with run as an argument. The successful execution
of the program invokes the ACMEWebService and then fetches the
Product Catalog asan XML base string.

If everything works successfully, you will get the output shown in
Figure 3.14.

As part of every Web service deployment, the WebLogic 7.0 server auto-
matically generates home pages for all of the deployed Web services.
Through this home page, it does the following;:

m Tests the invoke operations to ensure the operations are working
correctly

m Displays SOAP request and response messages based on the invoca-
tion

m Displays the WSDL describing the service and operations provided
by the Web service

m Downloads the deployed Web service-specific client JAR file contain-
ing the JAX-RPC stub interfaces and classes required for invoking the
Web service from an application

Figure 3.14 Output showing the test invoking the service provider.

96

Chapter 3

The WebLogic Web Services home page URLs for invoking the Web ser-
viced and for displaying the WSDL are as follows:

m http://host:port/war_name/service_uri
m http://host:port/war_name/service_uri/?WSDL

host refers to the WebLogic Server host, port refers to the server 1is-
tening port,war_name refers to the name of the Web application WAR
file, and service_uri refers to the name of the Web service.

In our case, the URL to invoke the ACME Web services home page will
be as follows:

http://localhost7001/acme_service/ACMEWebService

You may choose to use localhost or your hostname. If everything
works successfully, you will get the output shown in Figure 3.15.

You will also notice the WebLogic home page of ACME Web services,
displaying the following supported operations:

m getProductCatalog

m getProduct

[ACMEWEhService Web Service - Netscape & =10] x|
| Bl Edt Yew Searth Go Bochmarks [ass Helo

Q e Q @ | © [Shm ochos701fachs_sarvceicEwshzers | [Susearh | é;o

EEA WeblLoop: Server 7.0 . .
ACMEWebService]Emlt .||.

Welcorme to the WeblLogic Webservice standard testing home page.

The following cperations are supported. For 2 formal definition, plesse review tha
Service Description,

» getProductCatalog
+ getProduct

Recommendation:

Example code that invokes this service using genarated stub is given balow:

dagers (packags) AMEUIorvics

APEWbScevics_Tipl i Miwedlmel}t |
seevics. ges AP0 cevisaFoan |)

zezals = posh.gcaPreduchlasalesl ... |:

Some useful links:

WLS 7.0 Web Service documentation MNamespaces in XML,

WSDL Specification. SOAP Specification,
RFC 2396 on URIs JAX-RPC Specification.
DR A OFFEE Coameh fone (107 5] e

Figure 3.15 Output showing successful deployment of ACMEWebService.

Building the Web Services Architecture

97

To test the operations, just click on the operation links. To invoke the
getProductCatalog operation, click on the link.

Then click on the Invoke button to display the results. The results page
shows the SOAP request and response messages and the data exchanged
as XML.

Upon successful execution, the browser will display the output shown in
Figure 3.16.

And, the final test is to display the WSDL-based service description
describing the service and operations provided by the Web service
provider. To display the WSDL-based service description, just execute the
following URL using your local http browser:

http://localhost:7001/acme_service/ ACMEWebService?WSDL

The browser will display the complete WSDL for the ACME Web service
in an XML format. The browser then will display the output shown in Fig-
ure 3.17.

This concludes the design, implementation, and testing of the ACME
Web service provider using a J2EE-based application environment.

Now let’s take a look at developing the service requester environment to
provide service delivery.

a Bis Edt ¥eom Seach Go [nciracks Josa Help
Q Q @ @ le S b o celhosti P00 L Eame._serKolACMEWEDSareEsol) w‘ Cfgo

EEA WebLogic Server 7.0
ACMEWebhService

Qutput values form the server

Parametar
e Parameter Walue

LOO1ACME Blade 1000zpar: LI Processor, LGhe, SL2MB, 4265 HD,
Fetur Linud 0000 0USE100ZACME Blade 20005parc TT1 Processor, 1.36Gh2 =2,
valus 512ME, 4262 HD, Solsris 3000 OUSDI00ZACME Senver &70005parc 111
Pracessor, 1.3Ghz »12, 1GB, 1TB HD, Solaris75000,0LISD

Request sent to the server

o gesh ssduertavaley smbnaia=thevs i Ls =-lL: - LS acna_sa cvicas/ ABEG Bacvice®
azor: amzodingBiyl eTV o [wchanan ol poap oo g meap) emcoding 1
o

Response from the server

<= -n:s?am.

=2

<er: Dady
< gesroducotanal cofiesponse onlne w='horp () lecaloen: FOML dcne_secvicen/ AOMENEh Becvice
uqﬁw! g Al scag ool seap e o b
=1 mypanrre, Tawl wazslo -ll-nr.ﬂv-'u'rl
<P dncn s alagel, Mate 1o 1
ohn g euFEoMenaral egkesgars.

Figure 3.16 Output showing the SOAP request and response messages.

98

Chapter 3

1B petscape & i =[O x|
| B Edt Yew Search Go Bochmarks [ass Help

J Q Q Q Q | 9 [Sehmillnciroszinatiscme sircsinchewsbsoricsmwsoL 2
Al

<Pl version="1.0% encoding=*utf-9°7:

Seefinitioms welns A= hetp S el L arge 20077 ENLS shemna®
xolns: http="http: // schepas. xnlsoap.oras wsd L ke tps ™ |
xolns:S0ap="htop: // 3xhonas . xnlaoap.orgs uadl/ soap/
LD SoApenC="HTD 4 / ICRhEMAS . XNLI0AP . 0EYY 20ap/ ansoding) "
HElns: tia=ThnTp
LN L= TRTED:

alhose: 001/ amme_ssrvices/ ACHEU=bSarvice”
ChEHAS . Hn 1308k SEDY UL L s
targetlapespace="heep i/ / localhost: TO0L1/amme_ssrvices/ ACHEUSbSarvica”
HELRa=ThCT:/ S Schesad Kamla0ap . OEQS UIdls v

T g Jatalegt >

o/ resoage:
naEE= et catal s

{PArt DAFSSTICoWlET NmMInSIPArtEI=TRtEpr// wow. vl ora/ 2001/ MILSohenat typespartnIiatciag’

</ peganes

<pessage pane="gzrProdust” -

<PArT pEre=TintWal' wmlns:partns="huicp://vew. vl 0rg /2001 MLIchama” type="parcasinc” />

e ¢

el I
B A OFEH Cosunwh Done (071132 ||

Figure 3.17 WSDL emitted from an ACME service provider.

Developing the ACME Web Service Requestor

To build the ACME Web service requestor, it is a requirement to create
SOAP-based client interfaces using the WSDL-based descriptions exposed
by the ACME Web service provider (WebLogic environment). Although it
is not mandatory to choose any programming language for implementing
the client interfaces, it must support the use of SOAP for communication.
As discussed earlier, we will be using Apache Axis 1.0B3 to build the
ACME service requestor client environment. Axis provides a WSDL2Java
tool to build Java-based proxies and skeletons for services with WSDL

descriptions.

To create the service requestor clients as Java proxies, the following tasks

are involved:

1. Install and set up the Apache Axis development environment.
Ensure that Axis class libraries and other optional libraries (that is,
Apache Xerces, Xalan) are in the Java compiler class path.

2. Create a test client directory and run the

org.apache.axis.wsdl.WSDL2Java utility by providing an
ACME Web services WSDL URI as an argument; this will generate

the Java-based client bindings.

Building the Web Services Architecture

99

3. Using an Ant script, compile the generated source files along with
a stub client, which invokes the services from the ACME Web
services.

4. Test the client execution.

Let’s take a closer look at the details of demonstrating the previous steps.

Setting up the Axis Environment

Install the Apache Axis download and create a shell /batch script to set up
the CLASSPATH environment, including all the provided Axis libraries.

Generating the Java Proxies

Create a directory named ACMEClient and run the WSDL2Java utility
with the WSDL URI of ACMEWebService as an argument.
For example, you may execute the following command line:

java org.apache.axis.wsdl.WSDL2Java \
http://nramesh:7001/acme_service/ACMEWebService?WSDL

This will generate a package named localhost that includes a list of
client stub classes as follows:

ACMEWebService. java
ACMEWebServiceLocator.java
ACMEWebServicePort.java
ACMEWebServiceSoapBindingStub. java

Upon successful completion, you typically will find the output shown in
Figure 3.18.

Afa
B5:84a
a5
a5 1 .
a5 6 vice ngStub. java

wTomcatd

Figure 3.18 Output showing the client side stubs generated by an Axis WSDL2Java utility.

100 Chapter 3

Creating the Java Clients

Using the generated stub classes, implement a Java client for ACME Web
services. A typical implementation will be as follows:

m Use ACMEWebServicelocator to locate the service.
m Use ACMEWebServicePort to obtain the service port.

m Invoke the operations using the obtained port.

Listing 3.23 is the AxisWebServiceClient. java source code using
the generated stub classes.

// AxisWebServiceClient.java

package localhost;
import localhost.*;

public class AxisWebServiceClient ({
public static void main(String [] args) throws Exception {

// Locate the service
ACMEWebServiceLocator service
= new ACMEWebServicelLocator () ;

// Obtain the service port
ACMEWebServicePortType port =
service.getACMEWebServicePort () ;

// Invoke the operations
String catalog = port.getProductCatalog() ;
String product = port.getProduct (1001) ;
System.out.println ("=====Get Product Catalog ====");
System.out.println(catalog) ;
System.out.println ("= Get Product info for

product ID 1001 =");
System.out.println("=====");
System.out.println (product) ;

Listing 3.23 AxisWebServiceClient.java using the generated stub classes.

To execute AxisWebServiceClient, compile using javac *.java
and execute the client running java localhost.AxisWebService-
Client. Upon successful completion, the system will display the output
shown in Figure 3.19.

Building the Web Services Architecture

D:vTomcatds,

Figure 3.19 Output showing successful invocation of ACMEWebService.

This concludes the implementation and testing of the ACME service
requester environment using Apache Axis.

The complete source code and instructions for executing the previous
example are available as part of the source code bundle as Chapter3.zip
and they can be downloaded from this book’s companion Web site at
www.wiley.com/compbooks/nagappan.

In this section, we have illustrated a complete example of implementing
Web services by exposing J2EE components deployed in a J2EE application
server and accessing those services using a SOAP-based client environment.

Summary

This chapter has thoroughly studied building Web services architecture
and implementing J2EE-based Web services. It also has examined the
different strategies and architectural models of developing Web services.

In general, we have looked at such varied topics as Web service architec-
ture and its characteristics, the core building blocks of Web services, stan-
dards and technologies available for implementing Web services, Web
services communication models, how to develop Web services-enabled
applications, how to develop Web services from J2EE applications, and a
complete illustration of developing J2EE-based Web services.

In the following chapter, we will extensively discuss understanding
SOAP and how to develop Web services applications using SOAP.

Developing Web Services
Using SOAP

This chapter presents an in-depth discussion on the core fundamentals of
Simple Object Access Protocol (SOAP) and the role of SOAP in developing
Web services architecture and its implementation. This chapter covers the
W3C definition of SOAP standards, conventions, messages, SOAP com-
munication models, and implementation of SOAP-based applications for
Web services. In addition, this chapter illustrates an example of developing
a Web services solution using a SOAP implementation.

With the emergence of Web services, SOAP has become the de facto com-
munication protocol standard for creating and invoking applications
exposed over a network. SOAP is similar to traditional binary protocols
like IIOP (CORBA) or JRMP (RMI), but instead of using a binary data rep-
resentation, it adopts text-based data representation using XML.

Using XML notation, SOAP defines a lightweight wire protocol and
encoding format to represent data types, programming languages, and
databases. SOAP can use a variety of Internet standard protocols (such as
HTTP and SMTP) as its message transport, and it provides conventions for
representing communication models like remote procedural calls (RPCs)
and document-driven messaging. This enables inter-application communi-
cation in a distributed environment and interoperability between hetero-
geneous applications over the networks. With its widespread acceptance
by leading IT vendors and Web developers, SOAP is gaining popularity

103

104 Chapter 4

and adoption in most popular business applications for enabling them as
Web services. It is important to note that SOAP is an ongoing W3C effort in
which leading IT vendors are participating in order to come to a consensus
on such important tasks associated with XML-based protocols and to
define their key requirements and usage scenarios.

In this chapter, we will explore the fundamentals of SOAP, implementation
details, and how to develop Web services using SOAP-based technologies. In
particular, we will be focusing on the following:

Background of SOAP and XML-based protocols

Anatomy of a SOAP message

SOAP encoding

SOAP message exchange models

SOAP communication

SOAP bindings for transport protocols

SOAP security

Java APIs for developing SOAP applications

Development of a Web services application using a SOAP server
Limitations of SOAP

Because the key focus of this book is developing Web services using
the Java platform, it will illustrate a Java API-based example using a SOAP
implementation for developing Web services. At the time of this book’s
writing, SOAP 1.1 has been released as a public specification and SOAP 1.2
is available as a W3C working draft. For consistency and better under-
standing, the chapter discusses both versions of SOAP and its features.

To find out the current status of SOAP from the W3C Working Group
activities, refer to the W3C Web site at www.23.0rg/2002/ws/.

XML-Based Protocols and SOAP

In the last chapter, we discussed typical Web services architecture and
looked at how the service provider and service requestor communicate
with each other using an XML-based wire protocol (such as SOAP). XML-
based protocols have been used in the industry for a while now—some
even before the W3C SOAP effort began—however, some of these proto-
cols did not get accepted by the industry for various reasons. Some of the
popular XML-based protocols are the following;:

Developing Web Services Using SOAP

105

XMI (XML Metadata Interchange). XMI was developed by OMG to
explore technological synergy between XML and OMG technologies
such as UML and CORBA. XMI defines an open information inter-
change model for CORBA and object-based technologies in a standard-
ized way, enabling them to interoperate using XML and providing the
ability to exchange programming data over the Internet. To find more
information on XMI, refer to the OMG Web site at http:/ /cgi.omg.org
/news/pr99/xmi_overview.html.

XML RPC (XML - Remote Procedure Call). XML-RPC was originally
developed by Userland Inc. It is an RPC-based communication proto-
col that runs over the Internet using HTTP as its transport protocol. It
encodes RPC call parameters and return values in XML. The parame-
ters can consist of numbers, scalars, strings, dates, lists, and complex
records. To find more information on XML-RPC, refer to the XML-
RPC Web site at www.xmlrpc.com/spec.

WDDX (Web Distributed Data Exchange). Allaire (Macromedia, Inc.)
originally developed WDDX. It defines an XML-based data exchange
model between applications leveraging data syndication and B2B col-
laboration. It consists of XML data using document type definitions
(DTDs) and a set of modules for programming languages to use WDDX
and to transfer data. Additionally, it also uses standard protocols such
as HTTP, SMTP, and FTP for transport. To find more information on
WDDX, refer to the WDDX Web site at www.openwddx.org/.

JABBER. JABBER was developed by the JABBER Software Foundation
(JSF), a non-profit organization promoting XML-based protocols for
Internet-based instant messaging and presence. To find out more infor-
mation on JABBER, refer to the JABBER Web site at www.jabber.org.

The Emergence of SOAP

SOAP initially was developed by DevelopMentor, Inc., as a platform-
independent protocol for accessing services, objects between applications,
and servers using HTTP-based communication. SOAP used an XML-based
vocabulary for representing RPC calls and its parameters and return val-
ues. In 1999, the SOAP 1.0 specification was made publicly available as a
joint effort supported by vendors like RogueWave, IONA, ObjectSpace,
Digital Creations, UserLand, Microsoft, and DevelopMentor. Later, the
SOAP 1.1 specification was released as a W3C Note, with additional con-
tributions from IBM and the Lotus Corporation supporting a wide range of
systems and communication models like RPC and Messaging.

106 Chapter 4

Nowadays, the current version of SOAP 1.2 is part of the W3C XML
Protocol Working Group effort led by vendors such as Sun Microsystems,
IBM, HP, BEA, Microsoft, and Oracle. At the time of this book’s writing,
SOAP 1.2 is available as a public W3C working draft. To find out the cur-
rent status of the SOAP specifications produced by the XML Protocol
Working Group, refer to the W3C Web site at www.w3c.org.

Understanding SOAP Specifications
The SOAP 1.1 specifications define the following:
m Syntax and semantics for representing XML documents as struc-
tured SOAP messages
Encoding standards for representing data in SOAP messages
A communication model for exchanging SOAP messages
Bindings for the underlying transport protocols such as SOAP transport

Conventions for sending and receiving messages using RPC and
messaging

Note that SOAP is not a programming language or a business applica-
tion component for building business applications. SOAP is intended for
use as a portable communication protocol to deliver SOAP messages,
which have to be created and processed by an application.

In general, SOAP is simple and extensible by design, but unlike other
distributed computing protocols, the following features are not supported
by SOAP:

Garbage collection
Object by reference

|
|
m Object activation
|

Message batching

SOAP and ebXML are complementary to each other. In fact, SOAP is
leveraged by an ebXML Messaging service as a communication protocol
with an extension that provides added security and reliability for handling
business transactions in e-business and B2B frameworks.

More importantly, SOAP adopts XML syntax and standards like XML
Schema and namespaces as part of its message structure. To understand
the concepts of XML notations, XML Schema, and namespaces, refer to
Chapter 8, “XML Processing and Data Binding with Java APIs.”

Now, let’s take a closer look at the SOAP messages, standards, conven-

tions, and other related technologies, and how they are represented in a
development process.

Developing Web Services Using SOAP

107

Anatomy of a SOAP Message

SOAP defines the structure of an XML document, rules, and mechanisms
that can be used to enable communication between applications. It does
not mandate a single programming language or a platform, nor does it
define its own language or platform.

Before we go exploring the SOAP features, let’s walk through an existing
SOAP message and understand the XML syntax, semantic rules, and con-
ventions. The example shown in Listing 4.1 is a SOAP request/response
message for obtaining book price information from a book catalog service
provider. The SOAP request accepts a string parameter as the name of the
book and returns a float as the price of the book as a SOAP response.

In the scenario in Listing 4.1, the SOAP message is embedded in an
HTTP request for getting the book price information from www.wiley.com
for the book Developing Java Web Services.

POST /BookPrice HTTP/1.1

Host: catalog.acmeco.com

Content-Type: text/xml; charset="utf-8"
Content-Length: 640

SOAPAction: "GetBookPrice"

<SOAP-ENV:Envelope

xmlns:SOAP ENV="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3c.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3c.org/2001/XMLSchema"

SOAP-ENV:encodingStyle
="http://schemas.xmlsoap.org/soap/encoding/">

<SOAP-ENV:Header>
<person:mail
xmlns:person="http://acmeco.com/Header/">xyz@acmeco.com
</person:mail>
</SOAP-ENV:Header>

<SOAP-ENV : Body>

<m:GetBookPrice
xmlns:m="http://www.wiley.com/jws.book.priceList">
<bookname xsi:type='xsd:string'>
Developing Java Web Services</bookname>

</m:GetBookPrice>

</SOAP-ENV : Body>

</SOAP-ENV: Envelope>

Listing 4.1 SOAP request message.

108 Chapter 4

Listing 4.2 shows the SOAP message embedded in an HTTP response
returning the price of the book.

HTTP/1.1 200 OK
Content-Type: text/xml; charset="utf-8"
Content-Length: 640

<SOAP-ENV:Envelope
xmlns: SOAP-ENV=http://schemas.xmlsoap.org/soap/envelope/
xmlns:xsi="http://www.w3c.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3c.org/2001/XMLSchema"
SOAP-ENV :
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />
<SOAP-ENV:Header>
<wiley:Transaction
xmlns:wiley="http://jws.wiley.com/2002/booktx"
SOAP-ENV:mustUnderstand="1"> 5
</wiley:Transaction>
</SOAP-ENV:Header>
<SOAP-ENV : Body>
<m:GetBookPriceResponse xmlns:m="
http://www.wiley.com/jws.book.priceList">
<Price>50.00</Price>
</m:GetBookPriceResponse>
</SOAP-ENV : Body>
</SOAP-ENV: Envelope>

Listing 4.2 SOAP response message.

In Listing 4.2, you might have noticed that the SOAP message contains a
SOAP Envelope SOAP-ENV : Envelope as its primary root element, and
it relies on defined “XML Namespaces” commonly identified with a
keyword xmlns and specific prefixes to identify the elements and
its encoding rules. All the elements in the message are associated with
SOAP-ENV-defined namespaces.

Note that a SOAP application should incorporate and use the relevant
SOAP namespaces for defining its elements and attributes of its sending
messages; likewise, it must be able to process the receiving messages with
those specified namespaces. These namespaces must be in a qualified W3C
XML Schema, which facilitates the SOAP message with groupings of
elements using prefixes to avoid name collisions.

Developing Web Services Using SOAP

109

Usually a SOAP message requires defining two basic namespaces: SOAP
Envelope and SOAP Encoding. The following list their forms in both
versions 1.1 and 1.2 of SOAP.

SOAP ENVELOPE

m http://schemas.xmlsoap.org/soap/envelope/ (SOAP 1.1)
m http:/ /www.w3.0rg/2001/06/soap-envelope (SOAP 1.2)

SOAP ENCODING

m http://schemas.xmlsoap.org/soap/encoding/ (SOAP 1.1)
m http://www.w3.0rg/2001/06/soap-encoding (SOAP 1.2)

Additionally, SOAP also can use attributes and values defined in W3C
XML Schema instances or XML Schemas and can use the elements based
on custom XML conforming to W3C XML Schema specifications. SOAP
does not support or use DTD-based element or attribute declarations. To
understand the fundamentals of XML namespaces, refer to Chapter 8§,
“XML Processing and Data Binding with Java APIs.”

Typical to the previous example message, the structural format of a
SOAP message (as per SOAP version 1.1 with attachments) contains the
following elements:

m Envelope

m Header (optional)

m Body

m Attachments (optional)

Figure 4.1 represents the structure of a SOAP message with attachments.
Typically, a SOAP message is represented by a SOAP envelope with zero or
more attachments. The SOAP message envelope contains the header and
body of the message, and the SOAP message attachments enable the mes-
sage to contain data, which include XML and non-XML data (like
text/binary files). In fact, a SOAP message package is constructed using the
MIME Multipart/Related structure approaches to separate and identify the
different parts of the message.

Now, let’s explore the details and characteristics of the parts of a SOAP
message.

110 Chapter 4

SOAP 1.1 Message SOAP Envelope
W/Attachments
SOAP Header
| Header entry |
SOAP Envelope
(Primary MIME part) | Header entry |
SOAP Body
Attachment
| Body entry |
Attachment | Body entry |
Attachment
Attachment

Figure 4.1 Structure of a SOAP message with attachments.

SOAP Envelope

The SOAP envelope is the primary container of a SOAP message’s structure
and is the mandatory element of a SOAP message. It is represented as the
root element of the message as Envelope. As we discussed earlier, it is
usually declared as an element using the XML namespace http://schemas
xmlsoap.org/soap/envelope/. As per SOAP 1.1 specifications, SOAP
messages that do not follow this namespace declaration are not processed
and are considered to be invalid. Encoding styles also can be defined using
a namespace under Envelope to represent the data types used in the
message. Listing 4.3 shows the SOAP envelope element in a SOAP message.

<SOAP-ENV:Envelope
xmlns: SOAP-ENV=http://schemas.xmlsoap.org/soap/envelope/
xmlns:xsi="http://www.w3c.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
SOAP-ENV :
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />

<!--SOAP Header elements - -/>

Listing 4.3 SOAP Envelope element.

Developing Web Services Using SOAP

111

<!--SOAP Body element - -/>

</SOAP-ENV:Envelope>

Listing 4.3 SOAP Envelope element. (continued)

SOAP Header

The SOAP header is represented as the first immediate child element of a
SOAP envelope, and it has to be namespace qualified. In addition, it also
may contain zero or more optional child elements, which are referred to as
SOAP header entries. The SOAP encodingStyle attribute will be used to
define the encoding of the data types used in header element entries. The
SOAP actor attribute and SOAP mustUnderstand attribute can be used
to indicate the target SOAP application node (Sender/Receiver/Interme-
diary) and to process the Header entries. Listing 4.4 shows the sample rep-
resentation of a SOAP header element in a SOAP message.

<SOAP-ENV:Header>
<wiley:Transaction
xmlns:wiley="http://jws.wiley.com/2002/booktx"
SOAP-ENV:mustUnderstand="1">
<keyValue> 5 </keyValue>
</wiley:Transaction>
</SOAP-ENV:Header>

Listing 4.4 SOAP Header element.

In Listing 4.4, the SOAP header represents a transaction semantics entry
using the SOAP mustUnderstand attribute. The mustUnderstand
attribute is set to “1”, which ensures that the receiver (URI) of this message
must process it. We will look into the mustUnderstand attributes in the
next section.

SOAP headers also provide mechanisms to extend a SOAP message for
adding features and defining high-level functionalities such as security,
transactions, priority, and auditing. These mechanisms are discussed in
Chapter 13, “Web Services Security.”

112 Chapter 4

SOAP Body

A SOAP envelope contains a SOAP body as its child element, and it may
contain one or more optional SOAP body block entries. The Body repre-
sents the mandatory processing information or the payload intended for
the receiver of the message. The SOAP 1.1 specification mandates that
there must be one or more optional SOAP Body entries in a message. A
Body block of a SOAP message can contain any of the following:

m RPC method and its parameters
m Target application (receiver) specific data

m SOAP fault for reporting errors and status information

Listing 4.5 illustrates a SOAP body representing an RPC call for getting
the book price information from www.wiley.com for the book name Devel-
oping Java Web Services.

<SOAP-ENV : Body>
<m:GetBookPrice
xmlns:m="http://www.wiley.com/jws.book.priceList/">
<bookname xsi:type='xsd:string'>
Developing Java Web services</bookname>
</m:GetBookPrice>
</SOAP-ENV : Body>

Listing 4.5 SOAP Body element.

Like other elements, the Body element also must have a qualified name-
space and be associated with an encodingStyle attribute to provide the
encoding conventions for the payload. In general, the SOAP Body can con-
tain information defining an RPC call, business documents in XML, and
any XML data required to be part of the message during communication.

SOAP Fault

In a SOAP message, the SOAP Fault element is used to handle errors and
to find out status information. This element provides the error and/or sta-
tus information. It can be used within a Body element or as a Body entry.

Developing Web Services Using SOAP

113

It provides the following elements to define the error and status of the
SOAP message in a readable description, showing the source of the infor-
mation and its details:

Faultcode. The faultcode element defines the algorithmic mecha-
nism for the SOAP application to identify the fault. It contains stan-
dard values for identifying the error or status of the SOAP application.
The namespace identifiers for these faultcode values are defined in
http:/ /schemas.xmlsoap.org/soap/envelope/. The following fault-
code element values are defined in the SOAP 1.1 specification:

VersionMismatch This value indicates that an invalid namespace is
defined in the SOAP envelope or an unsupported version of a
SOAP message.

MustUnderstand This value is returned if the SOAP receiver node
cannot handle and recognize the SOAP header block when the
MustUnderstand attribute is set to 1. The MustUnderstand
values can be set to 0 for false and 1 for true.

Client This faultcode is indicated when a problem originates
from the receiving client. The possible problems could vary from
an incorrect SOAP message, a missing element, or incorrect name-
space definition.

Server This faultcode indicates that a problem has been encoun-
tered during processing on the server side of the application, and
that the application could not process further because the issue is
specific to the content of the SOAP message.

Faultstring. The faultstring element provides a readable descrip-
tion of the SOAP fault exhibited by the SOAP application.

Faultactor. The faultactor element provides the information
about the ultimate SOAP actor (Sender/Receiver/Intermediary) in
the message who is responsible for the SOAP fault at the particular
destination of a message.

Detail. The detail element provides the application-specific error or
status information related to the defined Body block.

Let’s take a look at the common examples of SOAP fault scenarios.

114 Chapter 4

How a SOAP Fault Is Represented in a SOAP Message

Listing 4.6 shows how a SOAP Fault is represented in a SOAP message.

<SOAP-ENV:Envelope xmlns:SOAP-ENV
="http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle=

"http://schemas.xmlsoap.org/soap/encoding/ ">
<SOAP-ENV : Body>
<SOAP-ENV:Fault>
<faultcode>SOAP-ENV:MustUnderstand</faultcode>
<faultstring>Header element missing</faultstring>
<faultactor>http://jws.wiley.com/GetBookPrice</faultactor>
<detail>
<wiley:error
xmlns:wiley="http://jws.wiley.com/GetBookPrice">
<problem>The Book name parameter missing.</problem>
</wiley:error>
</detail>
</SOAP-ENV:Fault>
</SOAP_ENV : Body>
</SOAP-ENV:Envelope>

Listing 4.6 SOAP Fault in a SOAP message.

SOAP Fault Is Caused Due to Server Failure

Listing 4.7 shows how a SOAP Fault is caused due to server failure.

<SOAP-ENV:Fault>
<faultcode> SOAP-ENV:Server</faultcode>
<faultstring> Server OS Internal failure - Reboot server</faultstring>
<faultactor>http://abzdnet.net/net/keysoap.asp</faultactor>
</SOAP-ENV:Fault>

Listing 4.7 SOAP Fault due to server failure.

Developing Web Services Using SOAP

115

Listing 4.8 shows how a SOAP Fault is caused due to client failure.

<SOAP-ENV:Fault>
<faultcode>Client</faultcode>
<faultstring>Invalid Request</faultstring>
<faultactor>http://jws.wiley.com/GetCatalog</faultactor>
</SOAP-ENV:Fault>

Listing 4.8 SOAP Fault due to client failure.

SOAP mustUnderstand

The SOAP mustUnderstand attribute indicates that the processing of a
SOAP header block is mandatory or optional at the target SOAP node. The
following example is a SOAP request using mustUnderstand and the
response message from the server.

Listing 4.9 shows the request message where the SOAP message defines
the header block with a mustUnderstand attribute of 1.

<SOAP-ENV:Header>
<wiley:Catalog
xmlns:wiley="http://jws.wiley.com/2002/bookList"
SOAP-ENV:mustUnderstand="1">
</wiley:Catalog>
</SOAP-ENV: Header>

Listing 4.9 SOAP mustUnderstand attribute.

Listing 4.10 is an example response message from the server when the
server could not understand the header block where the mustUnderstand
is set to 1. Listing 4.10 is the server-generated fault message detailing the
issues with the header blocks using misUnderstood and gname (faulting
SOAP nodes) and providing a complete SOAP fault.

116 Chapter 4

<SOAP-ENV:Envelope xmlns:SOAP-ENV
="http://www.w3.0rg/2001/06/soap-envelope/"
SOAP-ENV:encodingStyle=
"http://www.w3.0rg/2001/06/soap-encoding/"
xmlns: fx="http://www.w3.0rg/2001/06/socap-faults/">
<SOAP-ENV:Header>
<fx:misUnderstood gname="wiley:Catalog"
xmlns:wiley="http://jws.wiley.com/2002/bookList/" />
</SOAP-ENV:Header>
<SOAP-ENV : Body>
<SOAP-ENV:Fault>
<faultcode>SOAP-ENV:mustUnderstand</faultcode>
<faultstring>Could not understand
Header element</faultstring>
</SOAP-ENV:Fault>
</SOAP_ENV:Body>
</SOAP-ENV: Envelope>

Listing 4.10 SOAP response using SOAP mustUnderstand.

So far, we have discussed the basic structure and elements of a SOAP
message. Now, let’s take a look at how to represent application-specific
data in a SOAP message.

SOAP Attachments

As per SOAP 1.1 with the attachment specification, a SOAP message con-
tains the primary SOAP envelope in an XML format and SOAP attachments
in any data format that can be ASCII or binary (such as XML or non-text).
SOAP attachments are not part of the SOAP envelope but are related to the
message.

As the SOAP message is constructed using a MIME multipart/related
structure, the SOAP attachment part of the message is contained to a
MIME boundary (defined in the Context-Type header). Each MIME part in
the structure of the SOAP message is referenced using either Content-ID or
Content-Location as labels for the part. Both the SOAP header and body of
the SOAP message also can refer to these labels in the message. Each
attachment of the message is identified with a Content-ID (typically an
href attribute using a URL scheme) or Content-Location (a URI reference
associated to the attachment).

Developing Web Services Using SOAP

117

Listing 4.11 uses “WileyCoverPage.gif” as an attachment and illustrates
the use of the Content-ID (CID) reference in the body of the SOAP 1.1 mes-
sage using absolute URI-referencing entities labeled for using Content-
Location headers.

MIME-Version: 1.0

Content-Type: Multipart/Related; boundary=MIME_boundary; type=text/xml;
start="<http://jws.wiley.com/coverpagedetails.xml>"

Content-Description: SOAP message description.

--MIME_boundary--

Content-Type: text/xml; charset=UTF-8
Content-Transfer-Encoding: 8bit

Content-ID: <http://jws.wiley.com/coverpagedetails.xml>
Content-Location: http://jws.wiley.com/coverpagedetails.xml

<?xml version='1.0' ?>

<SOAP-ENV:Envelope

xmlns: SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV : Body>

<!-- SOAP BODY - ->

<theCoverPage href="http://jws.wiley.com/DevelopingWebServices.gif"/>
<!-- SOAP BODY - ->

</SOAP-ENV : Body>

</SOAP-ENV:Envelope>

--MIME_boundary--

Content-Type: image/gif

Content-Transfer-Encoding: binary

Content-ID: <http://jws.wiley.com/DevelopingWebServices.gif>
Content-Location: http://jws.wiley.com/DevelopingWebServices.gif

<!--...binary GIF image... - ->
--MIME_boundary--

Listing 4.11 SOAP attachment in a MIME structure.

Although the SOAP 1.1 specification addressed the SOAP attachments
based on MIME Multipart/related, the W3C Working Group also is
evaluating the support of MIME Application/Multiplexed-based
attachments that facilitate the attachment binary data of the message can
be interleaved from the XML contents of the message. To find out more
information on the latest specification of SOAP attachments, refer to
www.w3.org/TR/SOAP-attachments.

118 Chapter 4

SOAP Encoding

SOAP 1.1 specifications stated that SOAP-based applications can represent
their data either as literals or as encoded values defined by the “XML
Schema, Part -2” specification (see www.w3.org/TR/xmlschema-2/). Lit-
erals refer to message contents that are encoded according to the W3C
XML Schema. Encoded values refer to the messages encoded based on
SOAP encoding styles specified in SOAP Section 5 of the SOAP 1.1 specifi-
cation. The namespace identifiers for these SOAP encoding styles are
defined in http://schemas.xmlsoap.org/soap/encoding/ (SOAP 1.1) and
http:/ /www.w3.0rg/2001/06/soap-encoding (SOAP 1.2).

The SOAP encoding defines a set of rules for expressing its data types. It
is a generalized set of data types that are represented by the programming
languages, databases, and semi-structured data required for an application.
SOAP encoding also defines serialization rules for its data model using an
encodingStyle attribute under the SOAP-ENV namespace that specifies
the serialization rules for a specific element or a group of elements.

SOAP encoding supports both simple- and compound-type values.

Simple Type Values

The definition of simple type values is based on the “W3C XML Schema,
Part -2: Datatypes” specification. Examples are primitive data types such
as string, integer, decimal, and derived simple data types including enu-
meration and arrays. The following examples are a SOAP representation of
primitive data types:

<int>98765</int>

<decimal> 98675.43</decimal>
<string> Java Rules </string>

The derived simple data types are built from simple data types and are
expressed in the W3C XML Schema.
Enumeration

Enumeration defines a set of names specific to a base type. Listing 4.12 is
an example of an enumeration data type expressed in a W3C XML Schema.

Developing Web Services Using SOAP

119

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
elementFormDefault="qualified">
<xs:element name="ProductType">
<xs:simpleType base="xsd:string">
<xs:enumeration value="Hardware">
<xs:enumeration value="Software">
</xs:simpleType>
</xs:element>

</xs:schema>

Listing 4.12 Enumeration data type.

Array of Bytes

Listing 4.13 is an example of an array data type of an array of binary data
that is represented as text using base64 algorithms and expressed using a
W3C XML Schema.

<myfigure xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:enc=" http://schemas.xmlsoap.org/soap/encoding">
xsi:type="enc:base64">
sD334G5vDy9898r32323</myfigure>

Listing 4.13 An array.

Polymorphic Accessor

The polymorphic accessor enables programming languages to access data
types during runtime. SOAP provides a polymorphic accessor instance by
defining an xsi: type attribute that represents the type of the value.

The following is an example of a polymorphic accessor named price
with a value type of "xsd: float" represented as follows:

<price xsi:type="xsd:float">1000.99</price>

And, the XML instance of the price data type will be as follows:

<price>1000.99</price>

120 Chapter 4

Compound Type Values

Compound value types are based on composite structural patterns that
represent member values as structure or array types. The following sec-
tions list the main types of compound type values.

Structure Types

Listing 4.14 is an XML Schema of the Structure data type representing
the “Shipping address” with subelements like “Street,” “City,” and “State.”

<xs:element name="ShippingAddress"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema" >
<xs:complexType>
<Xs:sequence>
<xs:element ref="Street"type="xsd:string"/>
<xs:element ref="City" type="xsd:string"/>
<xs:element ref="State" type="xsd:string"/>
<xs:element ref="Zip" type="xsd:string"/>
<xs:element ref="Country" type="xsd:string"/>
</Xs:sequence>
</xs:complexType>
</xs:element>

Listing 4.14 Structure data type.

And, the XML instance of the ShippingAddress data type is shown in
Listing 4.15.

<e:ShippingAddress>

<Street>1 Network Drive</Street>
<City>Burlington</City>
<State>MA</State>
<Zip>01803</Zip>
<Country>USA</Country>
</e:ShippingAddress>

Listing 4.15 Resulting XML instance of a structure data type.

Developing Web Services Using SOAP 121

The structure also can contain both simple and complex data type values
that can reference each other (see Listing 4.16). The structure uses the
“hret” attribute to reference the value of the matching element.

<e:Product>
<product>Sun Blade 1000</product>
<type>Hardware</type>
<address href="#Shipping"/>
<address href="#Payment"/>
<e:/Product>
<e:Address id="Shipping">
<Street>1 Network Drive</Street>
<City>Burlington</City>
<State>MA</State>
<Zip>01803</Zip>
<Country>USA</Country>
</e:Address>
<e:Address id="Payment">
<Street>5 Sunnyvale Drive</Street>
<City>Menlopark</City>
<State>CA</State>
<Zip>21803</Zip>
<Country>USA</Country>
</e:Address>

Listing 4.16 Structure data type using simple and complex types.

Array Types

Listing 4.17 is an XML Schema of an Array data type representing
MyPortfolio — a list of portfolio stock symbols.

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:enc="http://schemas.xmlsoap.org/soap/encoding" >
<Xs:import
namespace="http://schemas.xmlsoap.org/soap/encoding" >
<xs:element name="MyPortfolio" type="enc:Array"/>
</xs:schema>

Listing 4.17 Compound array types.

122 Chapter 4

The XML instance of the MyPortfolio data type is shown in Listing
4.18.

<MyPortfolio xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:enc=" http://schemas.xmlsoap.org/soap/encoding"
enc:arrayType="xs:string[5]">

<symbol>SUNW< /symbol>

<symbol>IBM</symbol>

<symbol>HP</symbol>

<symbol>RHAT</symbol>

<symbol>ORCL</symbol>

</MyPortfolio>

Listing 4.18 Resulting XML instance of a compound array type.

Multiple References in Arrays

SOAP encoding also enables arrays to have other arrays as member values.
This is accomplished by having the id and href attributes to reference
the values. Listing 4.19 shows an example of an XML instance that has
arrays as member values.

<MyProducts xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:enc="
http://schemas.xmlsoap.org/soap/encoding"
enc:arrayType="xs:string[] [3]">
<item href="#product-hw"/>
<item href="#product-sw"/>
<item href="#product-sv"/>
<SOAP-ENC:Array id="product-hw"
SOAP-ENC:arrayType="xsd:string[3]">
<item>SUN Blade 1000</item>
<item>SUN Ultra 100</item>
<item>SUN Enterprise 15000</item>
</SOAP-ENC:Array>
<SOAP-ENC:Array id="product-sw"
SOAP-ENC:arrayType="xsd:string[2]">
<item>Sun Java VM</item>
<item>Sun Solaris 0OS</item>
</SOAP-ENC:Array>
<SOAP-ENC:Array id="product-sv"

Listing 4.19 Multiple references in arrays.

Developing Web Services Using SOAP

123

SOAP-ENC:arrayType="xsd:string[2] ">
<item>Sun Java Center services</item>
<item>Sun Java Web Services</item>
</SOAP-ENC:Array>

Listing 4.19 Multiple references in arrays. (continued)

Partially Transmitted Arrays

Partially transmitted arrays are defined using a SOAP-ENC:offset,
which enables the offset position to be indicated from the first element
(counted as zero-origin), which is used as an offset of all the elements that
will be transmitted. Listing 4.20 is an array of size [6]; using SOAP-
ENC:offset="4" transmits the fifth and sixth elements of a given array
of numbers (0,1,2,3,4,5).

<SOAP-ENC:Array SOAP-ENC:arrayType="xsd:stringl[6]"
SOAP-ENC:offset="[2]">
<item> No: 2</item>
<item> No: 3</item>
<item> No: 4</item>
<item> No: 5</item>
</SOAP-ENC:Array>

Listing 4.20 Partially transmitted arrays.

Sparse Arrays

Sparse arrays are defined using a SOAP-ENC:position, which enables
the position of an attribute to be indicated with an array and returns its
value instead of listing every entry in the array. Listing 4.21 shows an
example of using a sparse array in an array.

<SOAP-ENC:Array SOAP-ENC:arrayType="xsd:int[10]">
<SOAP-ENC:int SOAP-ENC:position="[0]">0</SOAP-ENC:int>
<SOAP-ENC:int SOAP-ENC:position="[10]">9</SOAP-ENC:int>
</SOAP-ENC:Array>

Listing 4.21 Sparse arrays.

124 Chapter 4

This summarizes the SOAP encoding defined in the SOAP 1.1 specifica-
tion. Now, let’s take a look at how to handle the custom encoding require-
ments specific to applications.

Serialization and Deserialization

In SOAP messages, all data and application-specific data types are repre-
sented as XML, and it is quite important to note that there is no generic
mechanism to serialize application-specific data types to XML. SOAP
implementation provides application-specific encoding for application
programming languages (such as Java and C++). It also enables developers
to define custom application-specific encoding, especially to handle the
data representation required and its data types adopting data types
defined by the “W3C XML Schema, Part -2” specification (see
www.w3.org/TR/xmlschema-2/). This is usually implemented as applica-
tion- or programming language-specific serialization and deserialization
mechanisms that represent application-specific data as XML and XML as
application-specific data.

Most SOAP implementations provide their own serialization and deseri-
alization mechanisms and a predefined XML Schema supporting the
SOAP encoding rules and mapping application-specific data types. These
serializers and deserializers supporting SOAP encoding rules provide the
encoding and decoding of data on runtime by mapping XML elements to
target application objects and vice versa. It leverages interoperability
between disparate applications using SOAP messages.

We will study the serializers and deserializers of a SOAP implementa-
tion in the example illustration using Apache Axis discussed in
the section titled Axis Infrastructure and Components. So far we discussed
the structure of a SOAP message and the representation of its data types.
Now, let’s take a look at how to exchange SOAP messages using SOAP
communication.

SOAP Message Exchange Model

Basically, SOAP is a stateless protocol by nature and provides a compos-
able one-way messaging framework for transferring XML between SOAP

Developing Web Services Using SOAP

125

applications which are referred to as SOAP nodes. These SOAP nodes rep-
resent the logical entities of a SOAP message path to perform message rout-
ing or processing. In a SOAP message, SOAP nodes are usually represented
with an endpoint URI as the next destination in the message. In a SOAP
message, a SOAP node can be any of the following;:

SOAP sender. The one who generates and sends the message.

SOAP receiver. The one who ultimately receives and processes the
message with a SOAP response, message, or fault.

SOAP intermediary. The one who can play the role of a SOAP sender
or SOAP receiver. In a SOAP message exchange model, there can be
zero or more SOAP intermediaries between the SOAP sender and
receiver to provide a distributed processing mechanism for SOAP
messages.

Figure 4.2 represents a basic SOAP message exchange model with differ-
ent SOAP nodes.

In a SOAP message exchange model, the SOAP message passes from the
initiator to the final destination by passing through zero to many interme-
diaries. In a SOAP messaging path, the SOAP intermediaries represent cer-
tain functionalities and provide routing to the next message destination. It
is important to note that SOAP does not define the actual SOAP senders,
intermediaries, and receivers of the SOAP message along its message path
or its order of destination. However, SOAP can indicate which part of the
message is meant for processing at a SOAP node. Thus, it defines a decen-
tralized message-exchanging model that enables a distributed processing
in the message route with a message chain.

Figure 4.3 represents an example of a complete message exchange model
with a sender, receiver, and its intermediaries. In the previous example, the
message originates from Sender A to Receiver D via Intermediaries B and
C as a request chain, and then as a response chain the message originates
from Receiver D to Sender A via Intermediary E.

SOAP SOAP SOAP
Sender Intermediary Receiver

Figure 4.2 Basic SOAP message exchange model.

126 Chapter 4

Request Chain

>

SOAP SOAP SOAP SOAP
Sender Intermediary Intermediary Receiver
A B C D

A
‘ SOAP
‘ Intermediary |«
E

Response Chain
Figure 4.3 SOAP message exchange model with intermediaries.

SOAP Intermediaries

SOAP defines intermediaries as nodes for providing message processing
and protocol routing characteristics between sending and receiving appli-
cations. Intermediary nodes reside in between the sending and receiving
nodes and process parts of the message defined in the SOAP header. The
two types of intermediaries are as follows:

Forwarding intermediaries. This type processes the message by
describing and constructing the semantics and rules in the SOAP
header blocks of the forwarded message.

Active intermediaries. This type handles additional processing by
modifying the outbound message for the potential recipient SOAP
nodes with a set of functionalities.

In general, SOAP intermediaries enable a distributed processing model
to exist within the SOAP message exchange model. By using SOAP inter-
mediaries, features can be incorporated like store and forward, intelligent
routing, transactions, security, and logging, as well as other value addi-
tions to SOAP applications.

Developing Web Services Using SOAP 127

SOAP Actor

In a SOAP message to represent a target SOAP node, the SOAP actor
global attribute with a URI value can be used in the Header element.
SOAP defines an actor with a URI value, which identifies the name of the
SOAP receiver node as an ultimate destination. Listing 4.22 is an example

of a SOAP actor attribute.

<SOAP-ENV:Envelope xmlns:SOAP-
ENV="http://schemas.xml.org/soap/envelope/"
SOAP-ENV:encodingStyle="http://schemas.xml.org/soap/encoding/"/>
<SOAP-ENV:Header>
<b:Name xmlns:t="http://www.wiley.com/BookService/"
SOAP-ENV:actor="http://www.wiley.com/jws/"
SOAP-ENV :mustUnderstand="1">
WebServices</b:Name >
</SOAP-ENV:Header>
<SOAP:Body> <m:NewBook xmlns:m="http://www.wiley.com/Books">
<BookName>Developing Java Web services</BookName>
</m:NewBook>
</SOAP : Body>
</SOAP:Envelope>

Listing 4.22 SOAP actor attribute.

Additionally, SOAP defines the actor with a special URI http://
schemas.xmlsoap.org/soap/actor/next, which indicates a hop-by-hop
communication using the header element where the SOAP message is
routed via one to many intermediaries before its final destination. Listing
4.23 is an example of a SOAP message that is forwarded via two SOAP
intermediaries before the final receiving node.

<SOAP-ENV:Header>
<zz:path xmlns:zz="http://schemas.xmlsoap.org/rp/"
SOAP-ENV:actor="http://schemas.xmlsoap.org/soap/actor/next"
SOAP-ENV:mustUnderstand="1">
<zz:action></zz:action>

Listing 4.23 SOAP message forwarded via SOAP intermediaries. (continues)

128 Chapter 4

<zz:to>http://www.wiley.com/soap/servlet/rpcrouter</zz:to>
<zz:fwd>
<zz:via>http://javabooks.congo.com/std/multihop/</zz:via>
<zz:via>http://linux.wiley.com/javawebservices/</zz:via>
</zz:fwd>
</zz:path>
</SOAP-ENV:Header>

Listing 4.23 SOAP message forwarded via SOAP intermediaries. (continued)

So far, we have looked at the SOAP message exchange model and the
different roles involved in a SOAP message path. Now, let’s take a look at
the SOAP communication and the supported message flow patterns.

SOAP Communication

SOAP is designed to communicate between applications independent of
the underlying platforms and programming languages. To enable commu-
nication between SOAP nodes, SOAP supports the following two types of
communication models:

SOAP RPC. It defines a remote procedural call-based synchronous
communication where the SOAP nodes send and receive messages
using request and response methods and exchange parameters and
then return the values.

SOAP Messaging. It defines a document-driven communication
where SOAP nodes send and receive XML-based documents using
synchronous and asynchronous messaging.

Now, let’s explore the details of both the communication model and how
it is represented in the SOAP messages.

SOAP RPC

The SOAP RPC representation defines a tightly coupled communication
model based on requests and responses. Using RPC conventions, the
SOAP message is represented by method names with zero or more para-
meters and return values. Each SOAP request message represents a call
method to a remote object in a SOAP server and each method call will have
zero or more parameters. Similarly, the SOAP response message will return
the results as return values with zero or more out parameters. In both

Developing Web Services Using SOAP

129

SOAP RPC requests and responses, the method calls are serialized into
XML-based data types defined by the SOAP encoding rules.

Listing 4.24 is an example of a SOAP RPC request making a method call
GetBookPrice for obtaining a book price from a SOAP server namespace
http://www.wiley.com/jws.book.priceList using a "book-
name" parameter of "Developing Java Web Services".

<SOAP-ENV:Envelope
xmlns: SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3c.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3c.org/2001/XMLSchema"
SOAP-ENV:encodingStyle
="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Header>
</SOAP-ENV:Header>
<SOAP-ENV : Body>
<m:GetBookPrice
xmlns:m="http://www.wiley.com/jws.book.priceList">
<bookname xsi:type='xsd:string'>
Developing Java Web services</bookname>
</m:GetBookPrice>
</SOAP-ENV : Body>
</SOAP-ENV: Envelope>

Listing 4.24 SOAP request using RPC-based communication.

The SOAP message in Listing 4.25 represents the SOAP RPC response
after processing the SOAP request, which returns the result of the Get-
BookPrice method from the SOAP server namespace http://www.
wiley.com/jws.book.priceList using a "Price" parameter with
"$50" as its value.

<SOAP-ENV:Envelope

xmlns: SOAP-ENV=http://schemas.xmlsoap.org/soap/envelope/
xmlns:xsi="http://www.w3c.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3c.org/2001/XMLSchema"
SOAP-ENV:encodingStyle

="http://schemas.xmlsoap.org/soap/encoding/" />
<SOAP-ENV : Body>

<m:GetBookPriceResponse xmlns:m="
http://www.wiley.com/jws.book.priceList">
<Price>50.00</Price>

Listing 4.25 SOAP response message using RPC-based communication. (continues)

130 Chapter 4

</m:GetBookPriceResponse>
</SOAP-ENV : Body>
</SOAP-ENV:Envelope>

Listing 4.25 SOAP response message using RPC-based communication. (continued)

The communication model in Listing 4.25 is similar to a traditional
CORBA- or RMI-based communication model, except the serialized data
types are represented by XML and derived from SOAP encoding rules.

SOAP Messaging

SOAP Messaging represents a loosely coupled communication model
based on message notification and the exchange of XML documents. The
SOAP message body is represented by XML documents or literals encoded
according to a specific W3C XML schema, and it is produced and con-
sumed by sending or receiving SOAP node(s). The SOAP sender node
sends a message with an XML document as its body message and the
SOAP receiver node processes it.

Listing 4.26 represents a SOAP message and a SOAP messaging-based
communication. The message contains a header block InventoryNotice
and the body product, both of which are application-defined and not
defined by SOAP. The header contains information required by the
receiver node and the body contains the actual message to be delivered.

<env:Envelope xmlns:env="http://www.w3.0rg/2001/12/soap-envelope">

<env:Header>
<n:InventoryNotice xmlns:n="http://jws.wiley.com/Inventory">
<n:productcode>J6876896896</n:productcode>
</n: InventoryNotice>

</env:Header>

<env:Body>
<m:product xmlns:m="http://jws.wiley.com/product">
<m:name>Developing Java Web Services</m:name>
<m:quantity>25000</n:quantity>
<m:date>2002-07-01T14:00:00-05:00</n:date>
</m:product>

</env:Body>

</env:Envelope>

Listing 4.26 SOAP message using messaging-based communication.

Developing Web Services Using SOAP

131

So far, we have looked at SOAP messages, conventions, encoding rules,
and its communication model. Now, let’s take a look at its bindings to the
transport protocols required for its messaging environment.

SOAP Bindings for Transport Protocols

In the last section, we looked at SOAP communication and how the SOAP
messages are represented using RPC- and messaging-based communica-
tion approaches. But, interestingly, the SOAP specifications do not specify
and mandate any underlying protocol for its communication as it chooses
to bind with a variety of transport protocols between the SOAP nodes.
According to the SOAP specifications for binding the framework, the
SOAP bindings define the requirements for sending and receiving mes-
sages using a transport protocol between the SOAP nodes. These bindings
also define the syntactic and semantic rules for processing the incom-
ing/outgoing SOAP messages and a supporting set of message exchang-
ing patterns. This enables SOAP to be used in a variety of applications and
on OS platforms using a variety of protocols.

Although SOAP can potentially be used over a variety of transport pro-
tocols, initially the SOAP 1.0 specification mandated the use of HTTP as
its transport protocol; the later specifications opened their support for
other Internet-based protocols like SMTP and FIP. Lately, major SOAP
vendors have made their implementations available using popular trans-
port protocol bindings like POP3, BEEP, JMS, Custom Message-Oriented-
Middleware, and proprietary protocols using TCP/IP sockets. SOAP uses
these protocol bindings as a mechanism for carrying the URI of the SOAP
nodes. Typically in an HTTP request, the URI indicates the endpoint of the
SOAP resource where the invocation is being made.

Now, let’s explore the SOAP bindings for HTTP and SMTP and under-
stand how the SOAP messages are represented in these transport protocols
during communication.

SOAP over HTTP

The use of HTTP as a transport protocol for SOAP communication
becomes a natural fit for SOAP/RPC. This enables a decentralized SOAP
environment to exist by using the HTTP request/response-based commu-
nication over the Internet or an intranet by sending SOAP request parame-
ters in an HTTP request and receiving SOAP response parameters in an
HTTP response. Using SOAP over HTTP does not require overriding any

132 Chapter 4

existing syntactic and semantic rules of HTTP, but it maps the syntax and
semantics of HTTP.

By adopting SOAP over HTTP, SOAP messages can be sent through the
default HTTP port 80 without requiring and opening other firewall ports.
The only constraint while using SOAP over HTTP is the requirement to use
the special header tag for defining the MIME type as Content-Type:
text/xml.

Example of an HTTP-Based SOAP Request

Listing 4.27 is an example of an HTTP-based SOAP request for obtaining
the book price from http:/ /jws.wiley.com/GetBookPrice using bookname
as its parameter.

POST /GetBookPrice HTTP/1.1

User Agent: Mozilla/4.0 (Linux)

Host: nramesh:8080

Content-Type: text/xml; charset="utf-8"
Content-length: 546

SOAPAction: "/GetBookPrice"

<?xml version="1.0"?>

<SOAP-ENV:Envelope
SOAP-ENV:encodingStyle=
"http://schemas.xmlsoap.org/soap/encoding/"
xmlns: SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns: SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<SOAP-ENV: Body>
<m:getBookPrice xmlns:m="http://jws.wiley.com/">
<bookname xsi:type="xsd:string">
Developing Java Web Services</bookname>
</m:getBookPrice>
</SOAP-ENV : Body>
</SOAP-ENV:Envelope>

Listing 4.27 SOAP request message using HTTP.

Example of an HTTP-Based SOAP Response

Listing 4.28 is an example of an HTTP-based SOAP response returning the
results as the book price from http:/ /jws.wiley.com/GetBookPrice.

Developing Web Services Using SOAP

133

HTTP/1.1 200 OK

Connection: close

Content-Length: 524

Content-Type: text/xml; charset="utf-8"
Date: Fri, 3 May 2002 05:05:04 GMT
Server: Apache/1.3.0

<?xml version="1.0"?>
<SOAP-ENV:Envelope
SOAP-ENV:encodingStyle="
http://schemas.xmlsoap.org/soap/encoding/"
xmlns: SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns: SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<SOAP-ENV : Body>
<m:getBookPriceResponse
xmlns:m="http://jws.wiley.com/GetBookPrice">
<Result xsi:type="xsd:string">USD 50.00</Result>
</m:getBookPriceResponse>
</SOAP-ENV : Body>
</SOAP-ENV:Envelope>

Listing 4.28 SOAP response message using HTTP.

In case of errors while processing the SOAP request, the SOAP applica-
tion will send a response message with HTTP 500 "Internal Server
Error" andincludea SOAP Fault indicating the SOAP processing error.

The SOAP 1.1 specifications define the usage of HTTP as its primary
transport protocol for communication. SOAP 1.1 specifications also define
the usage of the HTTP extension framework—an extension of the HTTP
protocol for adding message extensions, encoding, HTTP-derived proto-
cols, and so on.

Using a SOAP/HTTP Extension Framework

How the HTTP extension framework is used as a transport binding
depends upon the SOAP communication requirements defined by the
SOAP nodes. It is similar to HTTP with additional mandatory declarations
in the header using an “M-" prefix for all HTTP methods (that is, M-GET,
M-POST, and so forth).

134 Chapter 4

Listing 4.29 is a sample header using an HTTP extension framework-
based SOAP request.

M-POST /GetBookPrice HTTP/1.1

Man: "http://schemas.xmlsoap.org/soap/envelope/";
Content-Type: text/xml; charset="utf-8"

Content-Length: xxxx

SOAPAction: "http://jws.wiley.com/BookPrice#WebServices"

<SOAP-ENV:Envelope>
</SOAP-ENV:Envelope>

Listing 4.29 SOAP request message using an HTTP extension framework.

Listing 4.30 shows the response header using the HTTP extension
framework.

HTTP/1.1 200 OK

Ext:

Content-Type: text/xml; charset="utf-8"
Content-Length: xxxx

<SOAP-ENV:Envelope>
</SOAP-ENV:Envelope>

Listing 4.30 SOAP response message using an HTTP extension framework.

In case of errors, the servers force a response message. If the extension
declarations do not match the resource, then it responds with a 510 (Not
Extended) HTTP status-code. If one or more mandatory extension declara-
tions are present and other following declarations are not true, then it
responds with a 505 (HTTP Version Not Supported) HTTP status-code.

SOAP over SMTP

The use of SOAP over the Simple Mail Transport Protocol (SMTP) permits
SOAP messages to be enabled with asynchronous communication and sup-
ports one-way notifications and document-driven messaging requirements.

Developing Web Services Using SOAP

135

It also helps SOAP messaging where request/response messaging is not a
good fit and also where HTTP semantics do not apply naturally.

The SOAP 1.1 specifications define the usage of SMTP as a protocol bind-
ing for SOAP applications, especially where the HTTP-based request/
response is not possible and where document-driven messaging is
applicable. In case SOAP over SMTP is used to perform request/response
scenarios, it is handled using message correlation techniques by providing
unique Message-Id and Reply-To headers. This means that the SOAP
message will send the request with a Message-Id in the header and the
response SOAP message will contain an In-Reply-To header containing the
originator’s Message-Id.

Listing 4.31 shows an example of a SOAP request message using SOAP
over SMTP for obtaining the status information of a purchase order.

To: <webservices@wiley.com>

From: <nramesh@post.harvard.edu>

Reply-To: <nramesh@post.harvard.edu>

Date: Tue, 03 May 2002 02:21:00 -0200

Message-Id: <1E23B5F132D3EF3C44BCB54532167C5@post.harvard.edu>
MIME-Version: 1.0

Content-Type: text/xml; charset=utf-8
Content-Transfer-Encoding: QUOTED-PRINTABLE

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
SOAP-ENV:encodingStyle=
"http://schemas.xmlsocap.org/soap/encoding/"
xmlns: SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns: SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<SOAP-ENV : Body>
<m:getStatusInfo xmlns:m="http://jws.wiley.com/">
<PurchaseOrderNo>JWS739794-04</PurchaseOrderNo>
</m:getStatusInfo>
</SOAP-ENV : Body>
</SOAP-ENV:Envelope>

Listing 4.31 SOAP request message using SMTP.

The response message returning the results will be as shown in Listing 4.32.

Most SOAP implementations providing the SOAP messaging-based
communication model use SMTP to transport SOAP documents between
the SOAP nodes.

136 Chapter 4

To: <nramesh@post.harvard.edu>

From: <webservices@wiley.com>

Date: Tue, 03 May 2002 02:31:00 -0210

In-Reply-To: <1E23B5F132D3EF3C44BCB54532167C5@post.harvard.edu>
Message-Id: <1E23B5F132D3EF3C44BCB54532167C5@wiley.com>
MIME-Version: 1.0

Content-Type: TEXT/XML; charset=utf-8
Content-Transfer-Encoding: QUOTED-PRINTABLE

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
SOAP-ENV:encodingStyle=
"http://schemas.xmlsoap.org/soap/encoding/"
xmlns: SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns: SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<SOAP-ENV : Body>
<m:getStatusResponse xmlns:m="http://jws.wiley.com/">
<status>Product Shipment scheduled - Fedex ID
866689689689</status>
</m:getStatusResponse>
</SOAP-ENV : Body>
</SOAP-ENV: Envelope>

Listing 4.32 SOAP response message using SMTP.

Note that SMTP may not provide guaranteed message delivery in cases
of limitations of message size of the receiving SOAP nodes. Therefore, the
SOAP sender nodes may require using custom-delivery receipts and read-
ing the receipts for the email messages they send. The SOAP application
developers can use the Internet email messaging servers as the provider to
send SOAP messages as email text or attachments. And, it becomes the
application developer’s responsibility to parse through the email contents
and to process the contents of the messages. Some common problems are
the result of partial email messages and missing attachments.

Other SOAP Bindings

As already noted, SOAP does not mandate any protocol-specific require-
ments and it can be used with any transport protocols. Using it has a distinct
advantage for enabling application integration, interapplication communi-

Developing Web Services Using SOAP

137

cation, and interoperability. Lately, SOAP application vendors have released
their implementations providing support for the SOAP bindings, especially
for the most popular industry standard protocols such as HTTP/S, JMS, and
BEEP.

Now, let’s take a brief look at those popular SOAP bindings for industry
protocols and their features.

SOAP over HTTP/SSL

In addition to using SOAP over HTTP, the SOAP messages can take advan-
tage of using Secure Socket Layer (SSL) for security and other HTTP-based
protocol features. SSL enables encrypted data to be securely transmitted
between the HTTP client and the server with the use of encryption algo-
rithms. Using SSL with SOAP messages enables the encryption of
messages with greater security and confidentiality between the SOAP
nodes. It also is possible to add MAC (Media access control) addresses of
network card interfaces in the transmitted messages.

Using HTTP /SSL requires certificates on both the sending and receiving
SOAP nodes. As SOAP does not define security or reliability mechanisms
as part of its messages, most SOAP implementations use HTTP/SSL as its
transport protocol for secure communication.

SOAP over JMS

To enable SOAP messages to communicate with J2EE-based components and
messaging applications, most SOAP vendors provide SOAP messaging over
JMS (Java Messaging Service) with J]MS-compliant MOM providers such as
Sun One MQ, Sonic MQ, Websphere MQSeries, and so on. This allows SOAP-
based asynchronous messaging and enables the SOAP messages to achieve
reliability and guaranteed message delivery using a JMS provider.

In this case, the J]MS destination queues are represented in the SOAP
messages as target destinations. The SOAP nodes use the JMS queue for send-
ing and receiving SOAP requests and SOAP responses. The JMS provider
then would implement methods to handle the SOAP message as a payload.

SOAP over BEEP

Blocks Extensible Exchange Protocol (BEEP) defines a generic application
transport protocol framework for connection-oriented, asynchronous mes-
saging that enables peer-to-peer, client-server, or server-to-server messaging.

138 Chapter 4

SOAP over BEEP enables the use of BEEP as a protocol framework that
enables SOAP developers to focus on the aspects of the SOAP applications
instead of finding a way to establish communication. This means that
BEEP takes care of the communication protocol. BEEP, as a protocol, gov-
erns the connections, authentication, and sending and receiving of mes-
sages at the level of TCP/IP. At the time of this book’s writing, the SOAP
over BEEP specification is available as an IETF (Internet Engineering Task
Force) working draft that can be obtained from http:/ /beepcore.org/beep
core /beep-soap.jsp.

So far, we have looked at SOAP communication and protocols. Let’s now
take a look at the different messaging patterns supported by them.

SOAP Message Exchange Patterns

Based on the underlying transport protocol, to enhance the communication
and message path model between the SOAP nodes, SOAP chooses an
interaction pattern depending upon the communication model. Although
it depends upon SOAP implementation, SOAP messages may support the
following messaging exchange patterns to define the message path and
transmission of messages between SOAP nodes, including intermediaries.
It is important to note that these patterns are introduced as part of SOAP
1.2 specifications.
The most common SOAP messaging patterns are as follows:

One-way message. In this pattern, the SOAP client application sends
SOAP messages to its SOAP server without any response being
returned (see Figure 4.4). It is typically found in email messages.

Request/response exchange. In this pattern, the SOAP client sends a
request message that results in a response message from the SOAP
server to the client (see Figure 4.5).

SOAP ’ SOAP Message “ SOAP
Client ’ " Server

Figure 4.4 One-way message pattern.

Developing Web Services Using SOAP

139

SOAP Request Message

SOAP SOAP
Client SOAP Response Message Server

<

Figure 4.5 Request/Response pattern.

SOAP Request Message

Y

SOAP SOAP Response Message (s) SOAP
Client Server

SOAP Response Message (s)

<

Figure 4.6 Request/N*Response pattern.

Request/N*Response pattern. It is similar to a request/response
pattern, except the SOAP client sends a request that results in zero to
many response messages from the SOAP server to the client (see
Figure 4.6).

Notification pattern. In this pattern, the SOAP server sends messages
to the SOAP client like an event notification, without regard
to a response (see Figure 4.7).

Solicit-response pattern. In this pattern, the SOAP server sends a
request message to the SOAP client like a status checking or an audit
and the client sends out a response message (see Figure 4.8).

SOAP " SOAP Message (S) ‘ SOAP
Client ‘ Server

Figure 4.7 Notification pattern.

SOAP Message

SOAP SOAP
Client SOAP Response Message Server

Figure 4.8 Solicit-response pattern.

140 Chapter 4

Note that the previous patterns can be implemented based on the
transport protocols and their supporting communication models.

SOAP Security

Security in SOAP messages plays a vital role in access control, encryption,
and data integrity during communication. In general, SOAP messages do
not carry or define any specific security mechanisms. However, using the
SOAP headers provides a way to define and add features enabling the
implementation of application-specific security in a form of XML-based
metadata. The metadata information can be application-specific informa-
tion incorporating message security with associated security algorithms
like encryption and digital signatures. More importantly, SOAP supports
various transport protocols for communication, thus it also is possible to
incorporate transport protocol-supported security mechanisms like
SSL/TLS for SOAP messages.

The first release of SOAP specifications (SOAP 1.0) did not specify any
security-related mechanisms; the following versions of W3C SOAP 1.1
draft specifications were considering enabling security by providing sup-
port for implementation of the XML-based security features. At the time of
this book’s writing, the W3C SOAP Security Extensions specifications were
available as a Note to define encryption, authorization, and digital signa-
tures in SOAP messages. But all of the security-related elements are identi-
fied using a single namespace identifier using the prefix SOAP-SEC and
with an associated URI wusing http://schemas.xmlsoap.org/soap
/security/. It also defines the three security element tags <SOAP-SEC:
Encryption>, <SOAP-SEC: Signature>, and <SOAP-SEC: Authorization>.
Use of these security tags enables the incorporation of encryption, digital
signatures, and authorization in SOAP messages.

The following section takes a look at how to represent these security tags
in a SOAP message.

SOAP Encryption

The use of XML-based encryption in SOAP permits secure communication
and access control to be implemented by encrypting any element in the
SOAP envelope. The W3C XML Encryption WG (XENC) defines the mech-
anisms of XML encryption in the SOAP messages. In SOAP communica-
tion, encryption can be done at the SOAP sender node or at any of the
intermediaries in the message path.

Developing Web Services Using SOAP

141

Listing 4.33 is a sample representation of a SOAP message using XML
encryption for encrypting its data elements.

<SOAP-ENV:Envelope
xmlns: SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header>
<SOAP-SEC:Encryption
xmlns:SOAP-SEC="http://schemas.xmlsoap.org/soap/security/"
SOAP-ENV:actor="some-URI"
SOAP-ENV:mustUnderstand="1">
<SOAP-SEC:EncryptedData>
<SOAP-SEC:EncryptedDataReference URI="#encrypted-
element" />
</SOAP-SEC:EncryptedData>
<xenc:EncryptedKey xmlns:xenc=
"http://www.w3.0rg/2001/04/xmlenc#"
Id="myKey"
CarriedKeyName="Symmetric Key"
Recipient="Bill Allen">
<xenc:EncryptionMethod
Algorithm="http://www.w3.0rg/2001/04/xmlenc#rsa-1_5"/>
<ds:KeyInfo xmlns:ds=
"http://www.w3.0rg/2000/09/xmldsig#">
<ds:KeyName>Bill Allen's RSA Key</ds:KeyName>
</ds:KeyInfo>
<xenc:CipherData>
<xenc:CipherValue>ENCRYPTED KEY</xenc:CiphervValue>
</xenc:CipherData>
<xenc:ReferencelList>
<xenc:DataReference URI="#encrypted-element"/>
</xenc:ReferencelList>
</xenc:EncryptedKey>
</SOAP-SEC:Encryption>
</SOAP-ENV:Header>
<SOAP-ENV : Body>
</SOAP-ENV : Body>
</SOAP-ENV:Envelope>

Listing 4.33 SOAP message using XML encryption.

Listing 4.33 illustrates a SOAP message with a <SOAP-SEC:
Encryption> header entry to encrypt data referred to in the SOAP header.
It uses a symmetric key for encrypting the body element referred to in
the <xenc:EncryptedbData> element. The <xenc:EncryptedData>
element in the header entry provides the reference to the <xenc:
EncryptedData> element and the symmetric key is defined in the

142

Chapter 4

<xenc:EncryptedKey> element. On the SOAP receiver node, the
receiver decrypts each encrypted element by associating a Decryption-
InfoURI, which indicates <xenc:DecryptionInfo> for providing
information on how to decrypt it. To find out more information on the syn-
tax and processing rules of representing XML-based encryption, refer to
www.w3.org/TR/xmlenc-core/.

SOAP Digital Signature

The use of an XML-based digital signature in SOAP messages provides
message authentication, integrity, and non-repudiation of data during
communication. The SOAP sender node that originates the message
applies an XML-based digital signature to the SOAP body and the receiver
node validates the signature.

Listing 4.34 is a sample representation of a SOAP message using XML
digital signatures.

<SOAP-ENV:Envelope
xmlns: SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header>
<SOAP-SEC:Signature
xmlns: SOAP-SEC="http://schemas.xmlsoap.org/soap/security/"
SOAP-ENV:actor="Some-URI"
SOAP-ENV:mustUnderstand="1">
<ds:Signature Id="TestSignature"
xmlns:ds="http://www.w3.0rg/2000/02/xmldsig#">
<ds:SignedInfo>
<ds:CanonicalizationMethod
Algorithm="http://www.w3.0rg/TR/2000/CR-xml-cl4n-
20001026">
</ds:CanonicalizationMethod>
<ds:SignatureMethod
Algorithm="http://www.w3.0rg/2000/09/xmldsig#hmac-shal" />
<ds:Reference URI="#Body">
<ds:Transforms>
<ds:Transform Algorithm
="http://www.w3.0rg/TR/2000/CR-xml-c14n-20001026"/>
</ds:Transforms>
<ds:DigestMethod Algorithm
="http://www.w3.0rg/2000/09/xmldsig#shal" />
<ds:DigestValue>vAKDSiy987rplkju8ds:DigestValue>
</ds:Reference>
</ds:SignedInfo>
<ds:SignatureValue>JHJH2374e<ds:SignaturevValue>
</ds:Signature>
</SOAP-SEC:Signature>

Listing 4.34 SOAP message using XML digital signatures.

Developing Web Services Using SOAP

143

</SOAP-ENV:Header>
<SOAP-ENV : Body>

</SOAP-ENV : Body>
</SOAP-ENV:Envelope>

Listing 4.34 SOAP message using XML digital signatures. (continued)

Listing 4.34 illustrates a SOAP message with a <SOAP-SEC: Signature>
entry applying an XML-based digital signature for signing data included
in the SOAP envelope. It uses <ds:CanonicalizationMethod>,
<ds:SignatureMethod>, and <ds:Reference> elements for defining
the algorithm methods and signing information. The <ds:Canonical-
izationMethod> refers to the algorithm for canonicalizing the Signed-
Info element digested before the signature. The SignatureMethod
defines the algorithm for converting the canonicalized SignedInfo as
a SignaturevValue. To find more information on the syntax and pro-
cessing rules of representing XML-based digital signatures, refer to
www.w3.org/TR/xmldsig-core/.

SOAP Authorization

Using XML-based authorization in SOAP messages enables the authoriza-
tion of the SOAP messages using certificates from the originating SOAP
sender nodes. SOAP authorization applies an XML-based digital certificate
from an independent authorization authority to the SOAP message from
the sender.

Listing 4.35 is a sample representation of a SOAP message using an
XML-based authorization.

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header>
<SOAP-SEC:Authorization
xmlns: SOAP-SEC="http://schemas.xmlsoap.org/soap/security/"
SOAP-ENV:actor=" actor-URI"
SOAP-ENV:mustUnderstand="1">
<AttributeCert xmlns=
"http://schemas.xmlsoap.org/soap/security/AttributeCert">
An encoded certificate inserted here as
encrypted using actor's public key.
</AttributeCert>

Listing 4.35 SOAP message using an XML-based authorization. (continues)

144 Chapter 4

</SOAP-SEC:Authorization>
</SOAP-ENV:Header>
<SOAP-ENV: Body>
</SOAP-ENV : Body>

</SOAP-ENV: Envelope>

Listing 4.35 SOAP message using an XML-based authorization. (continued)

Listing 4.35 illustrates a SOAP message with a <SOAP-SEC: Autho-
rization> entry in the SOAP header applying an XML-based authoriza-
tion to authorize the SOAP message. It uses an <AttributeCert >
element to define the certificate from an independent authorization
authority. And, it can be encrypted using the receiver node or an actor’s
public key. On the SOAP receiving node, the actor uses its private key to
retrieve the certificate.

As we noted earlier, at the time of writing this chapter, the W3C SOAP
security specifications were released as a Note that is subject to change
without notice. To understand the core concepts of security and imple-
menting security in Web services security, refer to Chapter 13, “Web
Services Security.”

Building SOAP Web Services

We all are aware that SOAP provides an XML-based communication pro-

tocol solution for bridging disparate applications in a distributed environ-

ment using XML-based messaging or by remotely invoking methods.
From a Web services point of view, it defines and provides the following:

m A standardized way to transmit data using Internet-based protocols
and a common-wire format (XML) between the Web service
provider and its requestors.

m An extensible solution model using an XML-based framework
enabling the Web service providers and requestors to interoperate
with each other in a loosely coupled fashion and without knowing the
underlying application architecture (such as programming languages
and operating systems). This enables the creation of Web services over
existing applications without modifying the underlying applications.

Developing Web Services Using SOAP

145

In a Web services implementation model, SOAP can be implemented as
a client, as a server application, or both, as follows:

m A SOAP-based client application plays the role of a Web services
requestor, which typically handles an XML-based request/response,
a message containing a XML document, parameters required to
invoke a remote method, or the calling of a SOAP server application.
A SOAP client can be a Web server or a traditional application run-
ning a SOAP-based proxy, which send SOAP requests or SOAP
messages using HTTP or any other supporting protocol.

m A SOAP server application plays the role of a Web services provider,
which processes the SOAP requests and messages from calling SOAP-
based clients. The SOAP server application interacts with its encapsu-
lated applications to process the requests or messages and then sends
a response to the calling SOAP client. SOAP server applications also
can act as SOAP intermediaries, which allows the extensibility of the
application to enable the processing and forwarding of messages
through a series of SOAP nodes or a final destination. In case of acting
SOAP intermediaries, the SOAP server application typically works as
a SOAP client application to the final destination of the message.

To understand the key challenges in the implementation of Web services
using SOAD, let’s take a look at how SOAP applications can be imple-
mented using Java and then deployed in a Java-based Web services run-
time environment.

Developing SOAP Web Services Using Java

SOAP does not mandate a single programming model nor does it define
programming language-specific bindings for its implementation. It is up to
the provider to choose a language and to define the implementation of its
language-specific bindings. In this context, to use Java as a language for
developing SOAP applications requires its Java implementation for SOAP-
specific bindings. As of today, there are many SOAP application vendors
that have made Java-based SOAP implementations for developing Web
applications to Web services.

In general, the use of Java for developing SOAP applications enables scal-
able and portable applications to be built that also can interoperate with
heterogeneous applications residing on different platforms by resolving the

146 Chapter 4

platform-specific incompatibilities and other issues. Additionally, having
SOAP-based applications that adopt a J2EE-based infrastructure and com-
ponent framework allows the inheritance of the characteristics of J2EE con-
tainer-based services such as transactions, application security, and
back-end application/databases connectivity. The release of the Java Web
Services Developer Pack (JWSDP) also provides a full-fledged API solution
for developing SOAP-based Web services. A long list of open source com-
munities, Web services platform providers, and J2EE vendors also have
released their SOAP implementations adopting Java platform and Java-
based APlIs.

To study and explore the features of a Java-based SOAP implementation,
we chose to use Apache Axis, a Java-based toolkit from Apache Software
foundation for developing SOAP-based Web services. Axis also supports
the JAX-RPC, JAXM, SAAJ, and SOAP 1.2 specifications in its forthcoming
implementations. Axis follows its predecessor efforts of Apache SOAP.
Apache refers to Axis as the next generation of Apache SOAP implementa-
tion that provides a complete solution kit for Web services, which is more
than sending and receiving SOAP messages. The Axis toolkit is available
for download at http://xml.apache.org/axis.

Developing Web Services Using Apache Axis

Apache Axis is an open-source implementation that provides a Java-based
SOAP implementation for developing Web services. To implement Web
services, it facilitates a SOAP runtime environment and Java-based API
framework for implementing the core components of Web services adopt-
ing compliant standards and protocols.

As a packaged solution, the Apache Axis environment provides the
following:

m A SOAP-compliant runtime environment that can be used as a
standalone SOAP server or as a plug-in component in a compliant
Java servlet engine (such as Tomcat, iPlanet, and Weblogic)

m An API library and runtime environment for developing SOAP RPC
and SOAP messaging-based applications and services

m A transport-independent means for adopting a variety of transport
protocols (such as HTTP, SMTP, and FTP)

m Automatic serialization and deserialization for Java objects to and
from XML in SOAP messages

m Support for exposing E]Bs as Web services, especially the methods
of stateless session EJBs

Developing Web Services Using SOAP

147

m Tools for creating WSDL from Java classes and vice-versa

m Tools for deploying, monitoring, and testing the Web services

Axis also provides full-fledged implementation support for Sun JWSDP
1.0 APIs, especially JAX-RPC and SAA]. At the time of this book’s writing,
Axis 1.0B3 provides limited implementation support of JAX-RPC 1.0 and
SAA]J 1.1 specifications. To find out the current status of the Axis imple-
mentation and its availability for download, go to Apache’s XML Web site
at http:/ /xml.apache.org/axis/.

Installing Axis for Web Services

The process of installing Axis for building a Web services environment is
quite simple. Axis can be installed as part of a Java servlet engine or as a
J2EE-compliant application server, or it also can run as an independent
server. Because our focus is creating Web services using Axis, we require
Axis installation using a Java servlet engine. For our illustration, we will be
using the Apache Tomcat 4.0.3 servlet engine available for download from
http:/ /jakarta.apache.org/tomcat/index.html.

Now, let’s take a look at the steps involved in installing Axis within an
Apache Tomcat server environment:

1. Download the Apache Axis tool kit (current release) from
http:/ /xml.apache.org/axis/. Unzip (Windows) or untar (UNIX)
the package to your local system directory (for example, d:\xml-
axis) and set an environment variable as AXIS_HOME.

2. Download Apache Tomcat 4.0.3 (or current release) from
http:/ /jakarta.apache.org/builds/jakarta-tomcat-4.0 /release/ and
then install it to your local system directory (that is, d:\tomcat4) and
set an environment variable as TOMCAT_HOME. After installation,
start the Tomcat server and ensure that it is working by locating
http:/ /localhost:8080/index.html with your browser. The browser
will display the screen shown in Figure 4.9.

3. Navigate to your Axis installation home directory and copy the axis
folder from AXIS_HOME\webapps\ to TOMCAT_HOME\webapps\
to deploy the Axis libraries as an Axis servlet.

4. To deploy the Axis libraries as a servlet in the Tomcat container,
create a context in the Tomcat server configuration by editing
TOMCAT_HOME/ conf/server.conf with the following lines:

<Context path="/axis" docBase="axis" debug="0"
reloadable="true" crossContext="true">

</Context>

148

Chapter 4

IM Jakarta Project - Tomcat - Netscape b E =10]=|

o Ele Edit ¥ew Search Go Bookmarks Tasks Help

i Q,o @ Q () [httpifflocaihost:p0a0 e bt 1 | (O Seardh d::{o

. i Home (W] Netscape ‘Ol Sesch 5] Shap [JBookmarks & NetzPhone - Instenk Message - Webdal

L The Jakarta Project

http://jakarta.apache.org

tions Ifyou're seeing this page via a web browser, it means you've
setup Tomcat successfully. Congratulations! B
Fples
abiliies As you may have guessed by now, this is the default Tomcat home
g page. It can be found on the local filesystemn at:
SCATALINA HOME/webapps/ROOT/ index. html
ation

where “BCATALINA_HOWME" is the root of the Tomcat installation
directory. If you're seeing this page, and you don't think you should
be, then either you're either a user who has arrived at new
installation of Tomcat, oryou're an administrator who hasn't got
bus hisher setup quite right. Providing the latter is the case, please

- refar to the Tomcat Documentation for more detailed setup and
[ner Pages Site | administration information than is found in the INSTALL file. |

« 1 o Srm
B & A ©F [| Docunert: Done (1212 secz) ==

entation

Figure 4.9 Browser showing successful installation of the
Apache Tomcat environment.

5. Add axis-specific supporting class libraries (JARs) in the Tomcat
environment. The required supporting class libraries include the

following:

m Apache Xerces parser for Java (Xerces2) with JAXP 1.1 support,

which is available for download a http:/ /xml.apache.org
/xerces2-j/index.html. Unzip the download and copy the
xerces.jar file to TOMCAT_HOME\webapps\axis
\WEB-INF\lib.

m If your application requires database connectivity or other appli-
cation access, ensure that you copy all of the JDBC drivers and

required class libraries to
TOMCAT_HOME\webapps\axis \WEB-INF\lib.

m As part of the kit, Axis provides class libraries for JAXRPC and
JAXM as jaxrpc.jar and saaj.jar. In the case of using JAX-RPC and
JAXM/SAA] libraries, ensure that these JAR files are copied to

TOMCAT HOME\common\lib.

6. To test the Axis Web services environment, start the Tomcat server.

Then, use your Web browser and open the followings URLs:

Developing Web Services Using SOAP

149

m To confirm installation: http:localhost:8080/axis/index.html

m To validate the Axis environment: http://localhost:8080/axis
/happyaxis.jsp

m To list the available Axis services: http://localhost:8080/axis
/servlet/ AxisServlet

7. To compile and test applications, create a run script (.bat or .sh) to
ensure that the CLASSPATH in the development environment
includes the following:

AXIS_HOME/lib/axis.jar
AXIS_HOME/lib/jaxrpc.jar
AXIS_HOME/lib/saaj.jar
AXIS_HOME/lib/commons-logging.jar
AXIS_HOME/lib/log4j-1.2.4.jar
AXIS_HOME/lib/xmlsec.jar
AXIS_HOME/lib/tt-bytecode.jar
AXIS_HOME/lib/wsdl4j.jar
AXIS_HOME/xerces.jar
AXIS_HOME/<DATABASE/OTHER_LIBRARIES.jar>
DEVELOPMENT_HOME/

Running Axis without Tomcat/Servlet Engine

The Axis toolkit also provides a server environment to test Axis-deployed
applications, which enables the services to be run and tested without
having a Web server or a J2EE environment. To start an Axis server, run
your AXIS CLASSPATH script and then execute the following;:

java org.apache.axis.transport.http.SimpleAxisServer <port>

Although it helps to run and test applications in a developer environ-
ment, it is better to run the Axis environment from a Web server or a J2EE
container. Before creating services, let’s take a closer look at the Axis infra-
structure and components.

Axis Infrastructure and Components

In general, the Axis infrastructure consists of the following components as
modular subsystems functioning together as a server or client, depending
upon whether the Web services environment is a service provider or ser-
vice requestor.

150 Chapter 4

Axis Engine

The Axis engine acts as the SOAP runtime environment for processing the
inbound and outbound messages by looking up the SOAPAction headers
for transport (that is, http.SOAPAction). To process messages, the Axis
engine facilitates a series of handlers as chains to invoke and process the
messages. The messages are passed to the handler for invocation as
MessageContext objects.

Handlers and Chains

The Axis engine provides both client- and server-side message processors
as client-side handlers and server-side handlers. The Axis engine processes
messages using a series of request handlers, and after the invocation of a
target service it returns as a series of response handlers. Axis defines the
group of handlers that contain similar responsibilities combined together
as chains. Axis provides a set of request and response chains grouped to
process messages on the message path and especially to support transport,
global request/response, and messaging. Axis provides service handlers to
facilitate RPC- and messaging-based Web services, depending upon the
type of the deployed services in the server environment.

The key characteristics of the Axis service handlers for RPC- and
messaging-based Web services are as follows:

In the RPC style of Web services, the service handler org.apache.
axis.providers.java.RPCProvider identifies the required method
for invocation and then executes it by providing the parameters obtained
as part of the SOAP request message. It uses serialization and deserializa-
tion of Java objects to XML and vice versa during the service request and
response.

In the messaging (document-style) type of services, the service handler
org.apache.axis.providers.java.MsgProvider calls the method
and passes the XML document obtained from the SOAP message.

Note that with the RPC-style services, the service handler processes
the messages using serialization and deserialization to convert XML
into Java objects and vice versa. With messaging-style services, the
XML data are handed over to the target method for processing. During
processing, the service handlers also throw SOAP faults as AxisFault
exceptions.

Figure 4.10 illustrates the server-side infrastructure representing the
Axis engine with the handlers and chains.

Figure 4.11 illustrates the client-side infrastructure representing the Axis
engine with the handlers and chains.

Developing Web Services Using SOAP

151

Axis-based Service Provider Environment

Transport || Global | Service

Handler Handler Handler
Request Chain Provider
X Transport RPC Target
éirvtllce(:tor or Application
q Response Chain Messaging
Provider

I

Transport - Global - Service
Handler Handler Handler

etc.

Figure 4.10 Axis-based service provider infrastructure.

Axis-based Service Requestor Environment

Service 3| Global | | Transport

Y

Handler Handler Handler
Request Chain
Service
- Recei .
Application < Response Chain eceiver HTTP, Provider
FTP,
SMTP
Service I Global || Transport | ¢ etc.
Handler Handler Handler

1 1
1 1
1 1
1 1
| 1
1 1
1 1
1 1
1 1
1 1
| 1
1 1
L 1
Transport
Client : Sender/ . p
1 1
T 1
1 1
1 1
1 1
1 1
1 1
| 1
1 1
1 1
1 1
1 1
1 1

Figure 4.11 Axis-based service requestor infrastructure.

Axis Administration

The Axis administration provides the administration and configuration
information for the Axis engine to enable the runtime service chains and
other SOAP services. It allows the environment of the Axis engine to be
configured with a Web service deployment descriptor (WSDD) file.
The WSDD file defines the supported transports, global configuration
of the axis engine as handlers, and the deployed services. It is usually

152 Chapter 4

represented as server-config.wsdd. To obtain information about the Axis
engine installation and its supported transports, services, handlers, and so
on, run the following command:

java org.apache.axis.client.AdminClient list

It will bring up the listing that includes an Axis administration service
deployed as AdminService. Axis also allows remote administration, which
can be configured by setting an enableRemoteAdmin parameter as true.

We will take a closer look at configuring other administration and
deployment tasks in the section, "Creating Web Services Using Axis: An
Example," later in this chapter.

Serializers and Deserializers

Axis supports SOAP encoding to convert objects and their values between
the native programming language and XML representations. To support
SOAP encoding, Axis provides serializing and deserializing mechanisms,
which enable the conversion of the Java primitives and objects to XML-
based representations and vice versa, without writing any specific code. In
the case of Java Beans, Axis requires the Java classes to be mapped with a
W3C XML Schema type using a <beanMapping> tag in the WSDD file. If
bean mapping is not flexible, Axis allows the definition of custom serial-
ization using a <typeMapping> tag. In this case, the developer has to
implement the serializers and deserializers factory classes to convert the
object to XML and vice versa supporting SOAP encoding specifications. An
example mapping in an Axis WSDD file is shown as follows:

<typeMapping gname="ns:BookCatalog"
xmlns:ns="http://jws.wiley.com/Book.xsd"
languageSpecificType="java:jws.wiley.CustomObject"
serializer="com.jws.wiley.CustomSerializer"
deserializer="com.jws.wiley.CustomDeserializer"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />

Tools for Emitting WSDL

Axis supports WSDL to describe Web services as service descriptions
representing the location of services, supported data types, supported
messaging styles and patterns, and so on. Axis facilitates WSDL support
with the following three options:

Developing Web Services Using SOAP

153

m If an Axis-based service provider deployed its Web services using a
Web server, then the service requestor may obtain the WSDL by
appending ?WSDL to the end of the service URL. This would
generate the WSDL describing the deployed service at the service
provider. For example:

http://jws.wiley.com/axis/services/AcmeCatalogService?WSDL

m The WSDL2Java utility enables the creation of Java-based artifacts
such as stubs, skeletons, and its associated data types from WSDL.
This helps the service requestors to build Java proxy clients from the
WSDL generated by the service provider.

java org.apache.axis.wsdl.WSDL2Java <PROVIDER-WSDL-URL>

m The Java2WSDL utility enables the generation of WSDL from Java
classes, which helps developers to create and describe a Web service
from a Java interface.
java org.apache.axis.wsdl.Java2WSDL -o myService.wsdl

-1 <Service_url_location>
-n <Namespace URL>

-p "java.class"

Axis TCP Monitor

Axis provides tcpmon, a TCP monitor utility that allows viewing, logging,
and debugging of the SOAP request and responses. It helps the Axis-based
Web services environment to monitor the SOAP requests and responses in
real time and also allows the testing of the SOAP requests by editing and
resubmitting them.

Use of the tcpmon utility requires a client listening port, a target SOAP
server host, and its port. The Axis client application should choose a local
client port through which the tcpmon can listen to the connections then
route them by tunneling to the target SOAP server host and using its port.
The tcpmon logs all the SOAP request and response traffic and displays it
in the GUI window.

To view the tcpmon utility, you may run the following command with
options:

java org.apache.axis.utils.tcpmon
<listeningport>
<targetservername>
<targetserverport>

154 Chapter 4

For instance, to create a tcpmon session for a client sending requests to
a listening port 9999 and the target Axis server running on localhost
using port 8080, the command line option will be as follows:

java org.apache.axis.utils.tcpmon 9999 localhost 8080

This will display the Axis tcpmon utility, a GUI window as shown in
Figure 4.12.

The requests also can be modified and then resent. This enables the
behavior to be studied and the response message to be viewed without
changing the client application.

You also may execute the tcpmon command without options, which
would show up in an Administration window where those options could
be filled in. The tcpmon utility enables all of the requests and responses in
XML to be saved as a text file.

Axis Web Services Programming Model

To create a Web service in an Axis environment, implementation of the
following is required:

1. Create the service provider (server application)

2. Create the service requestor (client applications)

[Brcerontor =loix]
anPmawﬂ
Stop Listen Port |3999 Hnst|localhns| Port |B080 | [C Prox
State Time Request Host Target Host Reguest...

EIMOVE UEIEMIED ETIOVE Fv

Request Response
Waiting for Connection. .

™ ML Format HeYE |]

Close

Figure 4.12 Axis TCP Monitor utility for viewing SOAP messages.

Developing Web Services Using SOAP

155

Let’s take a look at the key concepts involved in implementing the Web
service provider and requestors using an Axis environment.

Creating the Service

Axis allows a service to be created from an existing Java-based Web appli-
cation just by identifying the methods required to be exposed and deploy-
ing them in the Axis server.

1. In an RPC-based communication model, a service client invokes the
exposed method and a response is returned. In this process, the Axis
server engine transforms the Java objects to XML and vice versa,
using automatic serializer and deserializer mechanisms during
communication. The following example is a simple service example,
which accepts a string parameter and invokes a method
justSayHello and returns a String parameter:
public class HelloAxis {

public String justSayHello(String s) {
return "Hello " + s ", Welcome to Axis !!!";

}

2. In a messaging-based communication model, the client sends an
XML document and the server application receives the XML as a
W3C Document object for processing. It is not mandatory for the
service to send a response back to the client. In case of sending a
response, the service returns a W3C Document object as a body of
the SOAP response message. The following snippet is a method that
receives a purchase order XML as a W3C document for processing.
Upon successful processing, it sends out a response message as a
W3C document with the shipping notice, otherwise it sends out a
product availability status notice.

public Document sendPODocument (Document poXML)

throws Exception {

// process purchase order

boolean processPO = submitPurchaseOrder (poXML) ;

if (processPO) {
//TRUE: create Shipping notice
Document doc = getShippingDoc (poXML) ;
}

else

156 Chapter 4

// FALSE: create product availability status
Document doc = getAvailabilityStatus (poXML) ;

return doc;

Creating the Service Requestor

Axis allows service clients to be created in two different ways:

1. Having the required values for locating and invoking the service
provider, such as SOAP, endpoint of the service, methods, parame-
ters, and so on

2. Using a WSDL-based service description exposed by the service
provider

Now, let’s take a look at the programming steps involved in creating the
service client with all of the required parameters and how to invoke the
service exposed by the provider.

Creating a Normal Service Requestor Client

In case of an RPC-based communication model, the key programming
steps involved for creating a service client are as follows:

1. Import Axis packages, the most important ones of which are the
following:

import org.apache.axis.AxisFault;

import org.apache.axis.client.Call;
import org.apache.axis.client.Service;
import org.apache.axis.encoding.XMLType;
import javax.xml.rpc.ParameterMode;

import javax.xml.namespace.QName;

2. Define the endpoint of the service:

String endpoint =

"http://localhost:8080/axis/services/HelloService";
3. Create a service:

Service service = new Service();

4. Create a SOAP request call:

Call call = (Call) service.createCall();

5. Set the target endpoint of the provider location:

call.setTargetEndpointAddress (endpoint);

Developing Web Services Using SOAP 157

6. Set the service operation name and its methods:
call.setOperationName (
new QName ("HelloService", "sayHello"));

7. Set the parameters required for the operation. The parameters must
provide the equivalent mapping of a W3C XML Schema:

call.addParameter ("myName",
MLType.XSD_STRING, ParameterMode.IN) ;

8. Set the return type parameters from the SOAP response. The para-
meters must provide the equivalent mapping of a W3C XML
Schema:

call.setReturnType (XMLType.XSD_STRING) ;
9. Invoke the service by sending the request and retrieve the results.

The invoke() method returns a Java object with parameters of the
method and it is required to cast the return values as a Java object:

Object responseObj = call.invoke(new Object[]

{new Integer (myName)});

In case of a messaging-based communication model, the key program-
ming steps involved for creating the service client are as follows:

1. Import the Axis packages, the most important ones of which are the
following:

import org.apache.axis.client.Service;
import org.apache.axis.client.Call;
import org.apache.axis.message.*;
import org.apache.axis.*;

import java.net.URL;

import org.apache.axis.utils.XMLUtils;

import org.w3c.dom.*;

2. Define the endpoint of the service:

String endpoint =
"http://localhost:8080/axis/services/HelloMSG";

3. Read the XML document as an input stream or string:

InputStream is =

ClassLoader.getSystemResourceAsStream("hello.xml") ;

4. Create a new service:

Service service = new Service();

5. Create a SOAP request call using the service:

Call call = (Call) service.createCall();

158 Chapter 4

6. Set the target endpoint of the provider location:

call.setTargetEndpointAddress (endpoint);
7. Create a SOAP envelope with an XML payload:

SOAPEnvelope env = new SOAPEnvelope(is);

8. Send the SOAP envelope with an XML payload to the destination:

call.invoke (env) ;

9. In case of obtaining a response message, the response message also
will be a W3C document as well:

SOAPEnvelope elems = (SOAPEnvelope)call.invoke (env) ;

Creating the Service Requestor Client from WSDL

Axis provides a WSDL2Java utility for building Java proxies and skeletons
from WSDL obtained from service providers. To create Java proxy classes
from a WSDL, you would run the following command:

java org.apache.axis.wsdl.WSDL2Java <Provider-WSDL-URL>

It also is possible to create service clients dynamically using dynamic
invocation interfaces provided by JAX-RPC. This is discussed further in
Chapter 10, “Building RPC Web Services with JAX-RPC.”

To understand how to create Axis service clients from WSDL, refer to
the full-featured example in Chapter 3, “Building the Web Services
Architecture.”

Axis Deployment Model

Axis facilitates easy deployment and undeployment of services using XML-
based Web services deployment descriptors (WSDDs). It enables deploying
and undeploying services and also Axis-specific resources like handlers and
chains using an administration utility ‘/AdminClient ' provided as part of
the Axis toolkit.

To deploy a service, ensure that the AXIS CLASSPATH is set and run the
following command:

java org.apache.axis.client.AdminClient deploy.wsdd

The deploy .wsdd refers to the deployment descriptor defining the ser-
vice, classes, methods, provider (RPC or Messaging), and its namespaces.
Listing 4.36 is a sample WSDD to deploy a service in an Axis environment.

Developing Web Services Using SOAP

159

<deployment name="test"
xmlns="http://xml.apache.org/axis/wsdd/"
xmlns:java="http://xml.apache.org/axis/wsdd/providers/java"
xmlns:xsd="http://www.w3.0rg/2000/10/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2000/10/XMLSchema-instance">

<service name="HelloService" provider="java:RPC">
<parameter name="className"
value="jws.chd4.helloservice.HelloService"/>
<parameter name="allowedMethods" value="justSayHello"/>
</service>
</deployment>

Listing 4.36 Web services deployment descriptor (WSDD) for deploying a service.

The previous WSDD defines HelloService using a provider with
an RPC-based communication model by exposing its class jws.ch4
.helloservice.HelloService and its method justSayHello. The
deployment name test is an identifier and the namespaces define the
W3C XML schemas associated with the implementation.

Similarly, to undeploy a service, ensure that the AXIS CLASSPATH is set
and then run the following command:

java org.apache.axis.client.AdminClient undeploy.wsdd

The undeploy.wsdd defines the service required to undeploy from the
Axis runtime environment. Listing 4.37 is a sample WSDD defining the ser-
vices to be undeployed:

<undeployment name="test"
xmlns="http://xml.apache.org/axis/wsdd/"
xmlns:java="http://xml.apache.org/axis/wsdd/providers/java"
xmlns:xsd="http://www.w3.0rg/2000/10/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2000/10/XMLSchema-instance">
<service name=" HelloService "/>
</undeployment>

Listing 4.37 Web services deployment descriptor (WSDD) for undeploying a service.

160 Chapter 4

Additionally, to find out the list of services deployed in the Axis envi-
ronment, run the following command:

java org.apache.axis.client.AdminClient list

This command will list all the services deployed in an Axis environment. It
also is possible to deploy and undeploy the services in an Axis environment
by editing the server-config.xml file located at AXIS_HOME directory.

Deploying Axis Services Using JWS Files (.jws)

Axis allows the deployment of Web services using Java classes with jws
extensions. It is quite typical to the Java server pages (JSP) deployed in a
servlet engine. By placing Java classes (source files) with .jws extensions in
the Web applications directory (that is, TOMCAT_HOME /webapps/axis/)
during runtime, Axis runtime automatically compiles and deploys the
classes with all of the methods as deployed services. In this case, it does not
require WSDD-deployment descriptors.

Creating Web Services Using Axis: An Example

In this section, we build on the case study example done in Chapter 3,
“Building the Web Services Architecture,” featuring the “ACME Web Ser-
vices Company’ with additional functionalities. Basically, the ACME Web
Services Company is a Web-based services provider that sells computer
products by delivering XML-based data over the Internet as Web services
to its partners and resellers by exposing its business functions.

This case study illustration discusses the following functions exposed as
services from the ACME Web Services provider:

m Getting the product information

m Submitting the purchase order

The service requesters invoke ACME Web Services to obtain product
information and then to submit a purchase order for a selected product.
The service requesters use an Axis-based application environment to do
SOAP-based service invocation with ACME Web services.

We will be creating Apache Axis-based Web service components for the
service provider, and for the client service requestor we will implement
client service components using an Axis client engine-based client invoca-
tion. It adopts a SOAP RPC and SOAP messaging-based communication
model to cater the specific functional scenarios.

Developing Web Services Using SOAP 161

Building an Axis-Based Infrastructure

To build and deploy ACME Web services in the Axis environment, we
chose to use the following infrastructure solutions:

ON THE SERVICE PROVIDER SIDE

m The ACME Web services provider will use Apache Tomcat as its
Servlet engine/Web server, including the Axis-based SOAP runtime
environment.

m It also will use PointBase as its database for querying product catalog
information and storing its purchase orders. The PointBase database
also can be used as an evaluation copy for development purposes.
For more information on understanding the PointBase database, refer
to the documentation available at http:/ /www.pointbase.com/.

ON THE SERVICE REQUESTOR SIDE

m The service requester will use Apache Axis as its SOAP client envi-
ronment to invoke the services of the ACME Web services provider.

To build and deploy the components and SOAP interfaces, we created
XML-based build scripts using Apache Ant. Apache Ant is a Java-based
Makefile utility available as a free download at http://jakarta.apache.org

/ant/index.html.

Figure 4.13 represents the Axis-based Web services infrastructure for
building ACME Web services.

Apache Axis 1.0B

Axis Client
Runtime
Environment

Axis/

SOAP

Apache TOMCAT Server 4.0.x

SOAP

Clients

|

Messaging

Web
Services

| I

Axis Web
Services

Environment

Applications

Resources

Figure 4.13 Axis-based infrastructure for ACME Web services.

Y

162 Chapter 4

To try out this example, you may download the chapter-specific source
code and documentation made available at http://www.wiley.com
/compbooks/nagappan. The source code and README for installing and
running this example are available as part of chapter-4.zip.

Understanding the Application Design

As we discussed earlier, the ACME Web services provider will host its
application as services over the Internet by exposing its underlying busi-
ness components. In particular, we will be implementing the following sce-
narios of the ACME business functions as services:

Scenario 1 (RPC model). Get the complete product information for a
particular product ID from the ACME product database. This will be
handled using SOAP RPC-based communication, where the service
requestor client sends a product ID and gets the product information
as it response.

Scenario 2 (Messaging model). Submit a purchase order to the
ACME PO database. This will be handled using SOAP messaging-
based communication, where the service requestor sends as purchase
order as an XML document to the service provider, and the service
provider processes the message and then writes it to a database. In
return, the service provider then sends a document containing a
response message, mentioning the success or failure of the process.

To understand the problem and flow of events, the sequence diagrams
shown in Figure 4.14 and Figure 4.15 illustrate the various sequences of
actions performed by a client invoking the ACME Web services deployed
in the Axis-based Web services environment.

Based on the previous sequence of events, we chose to use a facade pat-
tern (GoF) using an AcmeXMLHelper class to act as a proxy by encapsu-
lating the business functionalities, which also include database interaction,
XML construction, XML parsing operations, and so on. More specifically,
the AcmeXMLhelper will handle all of the XML construction tasks, and
AcmeDAO will handle the database interaction.

Developing Web Services Using SOAP

163

Acme
Database

ACME Service Requestor ACME Service Provider AcmeXMLHelper AcmeDAO Acme
:GetAcmeProductinfo :AcmeProductinfoService ValueObject
Request for I:I
ACME Product I
Information |
Call business methods I
for product information
Call DAO to I
deliver data Query ACME product
tables :
I
I i . I I
I I I I '
Return ACME
| | | | Product data
| | | I
| | | Create ACME |
| value object
I I J' Return ACME
| | Value object
| Return Data (— — — —
I as ACME
Value objects
I E:;:Lnnse I Return Data — — I_ _
| ACME Product as XML String
Information €« — — — — 7]
| as XML String
I
|

)
I
I

:
I
I

)
I
I

Figure 4.14 Sequence diagram for ACME Web services (RPC scenario).

The following Figures 4.16 and 4.17 depict the class diagram of the
server-side components that support the ACME Web service provider for

RPC and Messaging scenarios.

-— —

164 Chapter 4

Submit Purchase Order ACME Message Service

:SubmitPOService :AcmePOService

Request message with
Purchase order
Document

0

Return Response
message as XML
Document

I

:‘AcmeXMLHelper

ACME

:AcmeDAO

ValueObject

0

Call business
methods

to persist PO

in ACME Database

Create ACME
Value objects

a

=

Return

ACME

Value objects

- — — —

Call DAO to store PO
objects |

0

Return
response data

Return Confirm data
Persisted |

zerslst data

c——— =

I
I
I
I
I
I
I
I
I
I
I
L
\7 Store PO data
I

I
I Return Confirm ﬂ

Figure 4.15 Sequence diagram for ACME Web services (Messaging scenario).

AcmeDAO

|

ACMEProductinfoService

uses

AcmeXMLHelper

uses

AcmeDAOImpl

encapsulates

AcmeDataSource

AN
N

N\ /

4 b

/
/

Product

Figure 4.16 Class diagram for the service provider (RPC scenario).

Developing Web Services Using SOAP

165

AcmeDAO

|

ACMEPQOService

AcmeXMLHelper AcmeDAOImpl

uses

uses

encapsulates

AcmeDataSource

N /
creates "\ / obtains

4 '
PurchaseOrder

Figure 4.17 Class diagram for the service provider (Messaging scenario).

Now, let’s take a look at how to set up the development environment

and implementation of those service components.

Setting Up the ACME Web Services Environment

Specific tasks are involved in setting up the development environment for
creating ACME Web services. They are described in the following sections.

Creating the Service Provider Environment

1. Download the Apache Axis toolkit (current release) from http://xml

.apache.org/axis/. Unzip or untar the package to your local system
directory (that is, d:\xml-axis) and set an environment variable as
AXIS_HOME to its home directory.

. Download Apache Tomcat 4.0.3 (or current release) from

http:/ /jakarta.apache.org/builds/jakarta-tomcat-4.0 /release/ and
then install it to your local system directory (that is, d:\tomcat4) and
set an environment variable as TOMCAT_HOME. After installation,
start the Tomcat server and ensure that it is working by typing this
http:/ /localhost:8080/index.html in your browser.

. Navigate to your Axis installation home directory and copy the Axis
folder from AXIS_HOME\webapps\to TOMCAT_HOME\webapps\
in order to deploy the Axis libraries as an Axis servlet.

166 Chapter 4

4. To deploy the Axis libraries as a servlet in the Tomcat container,
create a context in the Tomcat server configuration by editing
TOMCAT_HOME/ conf/server.conf with the following lines:

<Context path="/axis" docBase="axis" debug="0"
reloadable="true" crossContext="true">
</Context>
5. Download the Apache Xerces parser for Java (Xerces2) and Apache
Xalan with JAXP 1.1 support from http:/ /xml.apache.org/. Unzip
the download and copy the xerces.jar and xalan.jar filesto
TOMCAT_HOME\webapps\axis\WEB-INF\lib.

6. Download the PointBase database server from www.pointbase.com.
Install the download to your local system directory (that is,
d:\pointbase). Start the server, running startserver.bat,
available at the PointBase tools directory (that is, d:\pointbase
\tools\server\startserver.bat).

7. Make sure that you copy all of the PointBase drivers (pserver42.jar and
pbclient42 jar) to TOMCAT_HOME\webapps\axis\WEB-INF\lib.

8. Additionally, copy the PointBase drivers and JAX-RPC and JAXM
libraries to TOMCAT_HOME\common\lib. As part of the kit, Axis
provides class libraries for JAXRPC and JAXM as jaxrpc. jar and
jaxm. jar. You also will need to download the JDBC 2.0 optional
package from http:/ /java.sun.com/products/jdbc. Copy the JDBC
2.0 extension drivers from this optional package to TOMCAT
_HOME\common\lIib.

9. By performing these steps, the Axis environment setup is complete. To
test the Axis Web services environment, start the Tomcat server. Then,
use your Web browser and open http:/ /localhost:8080/axis/index
html. The browser will display the screen shown in Figure 4.18.

=10|

» Elo Edt Vew Search Go Bockmarks Twsks Help

a Ci;‘:’ G) (;3 @ [Setmpifiiocarostie | [Ciseardn | cﬂ&’!ﬂl

. 4 Home] Netscape O Search) shop | CJBockmarls & NetzPhane S Instant Message
Apache-AXIS

Hello! Weicoms to Apache-Asas.

What do you want to de today?

+ Admmister Awmis
+ Viat the Axis Servlet

B & A 9F B | pocumenti Done (0,41 1) ==
Figure 4.18 Browser displaying the Axis environment setup.

Developing Web Services Using SOAP 167

10. To compile and test the applications, create a run script (.bat or .sh)
to ensure that the CLASSPATH in the environment includes the
following:

TOMCAT_HOME \webapps\axis\WEB-INF\lib\axis.jar
TOMCAT_HOME\webapps\axis\WEB-INF\lib\jaxrpc.jar
TOMCAT_HOME \webapps\axis\WEB-INF\lib\saaj.jar
TOMCAT_HOME \webapps\axis\WEB-INF\lib\commons-logging.jar
TOMCAT_HOME\webapps\axis\WEB-INF\lib\tt-bytecode. jar
TOMCAT_HOME\webapps\axis\WEB-INF\lib\xmlsec.jar
TOMCAT_HOME \webapps\axis\WEB-INF\lib\wsdl4j.jar
TOMCAT_HOME\webapps\axis\WEB-INF\lib\xerces.jar
TOMCAT_HOME \webapps\axis\WEB-INF\lib\xalan.jar
TOMCAT_HOME \webapps\axis\WEB-INF\lib\log4j-1.2.4.jar
TOMCAT_HOME\webapps\axis\WEB-INF\lib\pbclient4?2.jar
TOMCAT_HOME \webapps\axis\WEB-INF\lib\pbserver42.jar
TOMCAT_HOME\common\1lib\jdbc2_0-stdext.jar
YOUR_DEVELOPMENT_ HOMEN\ .

11. Now, let’s create the ACME business specific database tables. The
following tables are required for storing and querying the product
catalog data and to save purchase order information including
buyer information and ordered items.

a. To store and query ACME product information, we create a
table by the name of product_catalog using the following
parameters:

COLUMN NAME COLUMN DATA TYPE

ITEM_NUM INT

ITEM_NAME VARCHAR(30)
ITEM_DESC VARCHAR(255)
ITEM_PRICE DOUBLE
CURRENCY VARCHAR(3)
ITEM_TYPE VARCHAR(3)

b. To store and query ACME buyer information, we create a table
by the name of purchase_order_header using the following
parameters:

168 Chapter 4

PO_NUM INT

PO_DATE VARCHAR(10)
BUYER_NO VARCHAR(10)
BUYER_NAME VARCHAR(55)
STREET_ADDR VARCHAR(150)
Ty VARCHAR(100)
STATE VARCHAR(100)
ZIP VARCHAR(10)
COUNTRY VARCHAR(10)
PAYMENT_TYPE VARCHAR(255)
PAYMENT_NUMBER VARCHAR(30)
TOTAL_AMOUNT DOUBLE

c. To store and query ACME order information, we create a table
by the name of purchase_order_1line using the following

parameters:
PO_NUM INT
LINE_NUM INT
PRODUCT_NO INT
QTY INT
UNIT_PRICE DOUBLE

To create the product_catalog, purchase_order_header,
and purchase_order_line tables and to populate the data, you
may choose to use the Java code ' CreateACMETables. java'
shown in Listing 4.38.

Developing Web Services Using SOAP

169

packag
import
import
import
import

public

publi

e jws.ch4d.db;
java.sqgl.*;
javax.sqgl.*;
javax.naming. *;
java.util.*;

class CreateACMETables {

c static void main(String argv[]) throws Exception {

java.sqgl.Connection con = null;

java.sqgl.Statement stmt = null;

try {

//
st
cl

St
co

Sy

//

Make driver connection to database
ring driver = "com.pointbase.jdbc.jdbcUniversalDriver";
ass.forName (driver) ;

ring URL = "jdbc:pointbase:server://localhost/sample";
n = DriverManager.getConnection (URL, "public",
"public") ;

stem.out.println("Making connection...\n");

execute SQL statements

stmt = con.createStatement () ;

try {

stmt .execute ("drop table product_catalog") ;
System.out.println("Table product_catalog dropped.") ;
stmt .execute ("drop table purchase_order_header") ;
System.out.println("Table po_header dropped.");
stmt.execute ("drop table purchase_order_line") ;
System.out.println("Table po_line dropped.") ;
catch (SQLException e) {

System.out.println("Tables already exists and

doesn't need to be dropped.") ;

stmt .execute ("create table product_catalog

Sy

(item_num int, item_name wvarchar (30),

item_desc varchar (255), item_price

double, currency varchar(3))");
stem.out.println("Table product_catalog created.");

stmt.execute("create table

Listing 4.38 CreateACMETables.java. (continues)

170 Chapter 4

purchase_order_header (po_num int,

po_date varchar (10),

buyer_no varchar (10),

buyer_name varchar (55),

street_addr varchar (150),

city wvarchar (100),

state varchar (100), zip varchar(10),

country wvarchar (10),

payment_type varchar (10),

payment_number varchar (30),

total_amount double)");
System.out.println ("Table product_purchase_order_header

created.") ;

stmt.execute("create table

purchase_order_line (po_num int,

line_num int,

product_no int,

gty int,

unit_price double)");
System.out.println("Table product_purchase_order_line

created.") ;

// Insert dummy data for Product Catalog

int numrows = stmt.executeUpdate ("insert into
product_catalog values (1001,
'ACME Blade 1000',
'Sparc III Processor,
1Ghz, 512MB, 42GB HD,
Linux', 1000.00, 'USD')");

System.out.println "Number of rows inserted = " +

numrows) ;

numrows = stmt.executeUpdate
("insert into product_catalog values

(1002, 'ACME Blade 2000', 'Sparc III Processor,
1.3Ghz x2, 512MB, 42GB HD, Solaris', 3000.00,
'USD')");

System.out.println
("Number of rows inserted = " + numrows) ;
} catch (Exception e) {
System.out.println("Exception was thrown: "
+ e.getMessage()) ;
} finally {

Listing 4.38 CreateACMETables.java.

Developing Web Services Using SOAP

171

try {
if (stmt != null)
stmt.close() ;
if (con != null)
con.close() ;
} catch (SQLException sgle) {
System.out.println ("SQLException during close() :
+ sgle.getMessage()) ;

Listing 4.38 CreateACMETables.java. (continued)

To create the ACME business tables, start the PointBase server,
ensure that the CLASSPATH is set, then compile
CreateACMETables. java, and run them preferably using

an Ant script. The successful execution of the program creates
the product_catalog, purchase_order_header, and
purchase_order_line tables in the PointBase database and
inserts Product records in to the product_catalog table.

If everything works successfully, you will get the output shown
in Figure 4.19.

:1 Conpiling 1 source file to D:\Tomcatd'webapp: s\ WEB-INF™

jus .chd.db.C ACHETables

Figure 4.19 Output showing the compiling and running of CreateACMETables.

172 Chapter 4

In order to access the database from the Axis environment, we
must declare a datasource resource reference in the Tomcat Web
application deployment descriptor located at TOMCAT_HOME

\webapps\axis\WEB-INF\web.xml. We use a JNDI name,
jdbc/AcmeDB, to access the resource.

<resource-ref>
<res-ref-name>jdbc/AcmeDB</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>

</resource-ref>

The INDI name jdbc/AcmeDB will be used by AcmeDAO to
access the data sources.

Now, configure the resource in the Tomcat server configuration
by providing the resource and resource parameters entries found
in Tomcat’s configuration file located at TOMCAT_HOME\conf\
server.xml, as shown in Listing 4.39.

<Context path="/axis" docBase="axis" debug="0"
reloadable="true" crossContext="true">
<Logger
className="org.apache.catalina.logger.FileLogger"
prefix="localhost_jws_log." suffix=".txt"
timestamp="true"/>
<Resource name="jdbc/AcmeDB" reloadable="true"
auth="Container"
type="javax.sqgl .DataSource" />
<ResourceParams name="jdbc/AcmeDB">
<parameter>
<name>user</name>
<value>public</value>
</parameter>
<parameter>
<name>password</name>
<value>public</value>
</parameter>
<parameter>
<name>driverClassName</name>
<value>com.pointbase.jdbc. jdbcUniversalDriver
</value>
</parameter>
<parameter>
<name>driverName</name>
<value>

Listing 4.39 Tomcat resource configuration (server.xml).

Developing Web Services Using SOAP

173

jdbc:pointbase:server://localhost/sample
</value>
</parameter>
</ResourceParams>
</Context>

Listing 4.39 Tomcat resource configuration (server .xml). (continued)

Restart the Tomcat server and ensure that the PointBase database
server has been started. This concludes the Axis configuration
requirements for the service provider environment.

Creating the Service Requestor Environment

1. Download the Apache Axis tool kit (current release) from
http:/ /xml.apache.org/axis/. Unzip or untar the package to your
local system directory (that is, d:\xml-axis-client) and set an envi-
ronment variable as AXIS_CLIENT_HOME to its home directory.

2. To compile and test the client applications, create a run script (.bat or
.sh) to ensure that the client CLASSPATH environment includes the
following:

AXIS_CLIENT_HOME\lib\axis.jar
AXIS_CLIENT_ HOME\lib\jaxrpc.jar
AXIS_CLIENT_HOME\lib\commons-logging.jar
AXIS_CLIENT HOME\lib\log4j-core.jar
AXIS_CLIENT_HOME\lib\tt-bytecode.jar
AXIS_CLIENT_ HOME\1lib\wsdl4j.jar
AXIS_CLIENT_HOME\lib\xerces.jar

The previous steps conclude the Axis configuration requirements for the
service requestor environment. Now, let’s explore the implementation of
the ACME business scenarios using the Axis Web services environment.

Implementing the ACME Web Services

As we discussed earlier in the section titled Understanding the Application
Design, we will be implementing the following two scenarios for the
ACME Web services provider:

174 Chapter 4

Scenario 1. Getting product information using ACME Web services.

Scenario 2. Submitting a purchase order using ACME Web services.

Creating RPC-Based Web Services (Scenario 1)

To implement this scenario, we will be reusing the components that we
built in Chapter 3, “Building the Web Services Architecture,” and we will
deploy them in an Axis environment. The components are as follows:

m AcmeDAO, a DAO class that provides access to the data source and
abstracts the underlying data access implementation for the product
catalog

m AcmeXMLHelper, a class that gathers the data and constructs an
XML document as a string for use by the business clients

To find out the programming steps and the source code implementation
of the previous classes, refer to Chapter 3, particularly the section titled
Developing Web Services Using J2EE: An Example.

Using the previous business classes as part of the application, we will be
creating ACMEProductInfoService and GetAcmeProductInfo
classes, which act as service providers and service requestors, respectively,
using the Axis environment.

m The ACMEProductInfoService class uses the AcmeXMLHelper
and AcmeDAO as helper classes for XML processing and database
interaction. The ACMEProductInfoService class will be then
deployed in the Axis environment as a service. This service will be
invoked as requests and responses using the Get AcmeProductInfo
application—a service requestor client using the Axis client engine.

m The GetAcmeProductInfo class acts as the service requestor using
the Axis client environment. During communication with the service
provider, it sends a SOAP request with a Product ID parameter
and fetches a SOAP response with the complete product information
as a string.

Now, let’s take a closer look at the implementation and walk through the
programming steps involved in building the service provider and service
requestor.

Developing Web Services Using SOAP

175

Implementing the Service Provider (ACMEProductinfoService.java)

The source code implementation for the ACMEProductInfoService
class is shown in Listing 4.40.

package jws.chd.acmerpcservice;

import jws.ch4.xmlhelper.*;
import java.io.*;
import java.util.*;

public class AcmeProductInfoService {
String pc;

// Helper method for getting the ProductInfo
public String getProduct (int productID)
throws Exception {

AcmeXMLHelper axh;

try {
// Instantiate the AcmeXMLHelper
axh = new AcmeXMLHelper () ;

// Call the Get Product method
ProductID pc =
axh.getProductXMLasString (productID) ;

} catch (Exception te) {
te.printStackTrace() ;

}
// Return ProductInfo XML as String

return pc;

Listing 4.40 AcmeProductInfoService.java.

To compile and run the previous class, ensure that the CLASSPATH is
set for the service provider environment. Then, navigate to the source
directory and run the Ant build script. After successful compilation,

176 Chapter 4

deploy the ACMEProductInfoService.class as a service in the
Axis environment. The deployment descriptor (WSDD) for deploying
the ACMEProductInfoService.class as a service is as shown in
Listing 4.41.

<deployment name="test"
xmlns="http://xml.apache.org/axis/wsdd/"
xmlns:java="http://xml.apache.org/axis/wsdd/providers/java"
xmlns:xsd="http://www.w3.0rg/2000/10/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2000/10/XMLSchema-instance">
<service name="acmerpcservice" provider="java:RPC">
<parameter name="className"
value="jws.ch4.acmerpcservice.AcmeProductInfoService" />
<parameter name="allowedMethods" value="*"/>
</service>

</deployment>

Listing 4.41 Web service deployment descriptor (wsdd.xm1) for AcmeProductinfoService.

If everything works successfully, you will get the output shown in
Figure 4.20.

Implementing the Service Requestor (GetACMEProductinfo.java)

The source code implementation for GetACMEProductInfo.java is
shown in Listing 4.42.

>java org.apache.axis.client.AdninClient deploy

Figure 4.20 Output showing the packaging and deployment of AcmeProductinfoService.

Developing Web Services Using SOAP 177

package client;

import org.apache.axis.AxisFault;

import org.apache.axis.client.Call;
import org.apache.axis.client.Service;
import org.apache.axis.encoding.XMLType;
import javax.xml.rpc.ParameterMode;
import javax.xml.namespace.QName;

import java.net.URL;

public class GetAcmeProductInfo {

// 'getProduct' method - Creates the Client
// SOAP request for obtaining product Info
// from the service provider

public String getProduct (int productID) throws Exception {
String endpoint =

"http://localhost:8080/axis/services/acmerpcservice";

// Create a new Service request
Service service = new Service();

// Create the SOAP request message
Call call = (Call) service.createCall();

// Set the provider location
call.setTargetEndpointAddress (endpoint) ;

// Set the service name and methods
call.setOperationName (
new QName ("acmeservice", "getProduct"));

// Set the input parameters of the SOAP request
call.addParameter ("productID",

XMLType.XSD_INT, ParameterMode.IN) ;

// Set the return parameters of the SOAP response
call.setReturnType (XMLType.XSD_STRING) ;

// Invoke the service by sending the
// request and retrieve the results

Listing 4.42 GetACMEProductInfo.java. (continues)

178 Chapter 4

// from the response
Object responseObj = call.invoke (
new Object[] {new Integer (productID)});

// Retrieve the values from the response object
String respString = (String) responseObj;

return respString;

// Main Method
public static void main(String argsl[]) {
if (args.length != 1) {
System.err.println(
"Usage: GetAcmeProductInfo <productID>") ;
System.exit (1) ;

String inp = args[0];
int product = Integer.valueOf (inp) .intValue() ;
try {
GetAcmeProductInfo gg = new GetAcmeProductInfol() ;
String val = gg.getProduct (product) ;
System.out.println ("ACME Product Info: " + wval);
}
catch(Exception e) {
// Trapping the SOAP Fault
if (e instanceof AxisFault) {
System.err.println (
((AxisFault)e) .dumpToString ()) 8
} else
e.printStackTrace() ;

Listing 4.42 GetACMEProductInfo.java. (continued)

Ensure that the CLASSPATH is set for the service requestor environment
and compile the source code. Upon successful compilation, the ACME Web
services for getting the product information is ready for testing and use.

Developing Web Services Using SOAP

179

Testing the Services

To test the services, ensure that the environment is ready and try out
following;:

1. Ensure that the Tomcat server and PointBase database server is up
and running. Also ensure that the AcmeProductInfoServiceis
deployed. To find out the list of deployed services, you may try the
following command:

java org.apache.axis.client.AdminClient list

2. To test out and to invoke the AcmeProductInfoService, set the
CLASSPATH to the service requestor environment and run the
following command:

java client.GetAcmeProductInfo 1001

If everything works successfully, you will get the output shown in
Figure 4.21.

Using the TCP monitor will show the SOAP request and responses. To
start TCP monitor, run the following command:

java org.apache.axis.utils.tcpmon 9999 localhost 8080

This command assumes that the client listening port is 9999, and that the
target server name is localhost running Tomcat using port 8080. Using
the previous command, start the tcpmon utility. Set the client calling port
as 9999 in GetAcmeProductInfo.java and then recompile it. Now,
rerun the service client application.

The successful execution of the SOAP requests and responses will
display the screen shown in Figure 4.22.

This summarizes the example scenario of creating SOAP RPC-based
Web services using the Axis environment.

Figure 4.21 Output showing the service requestor invoking the service.

180 Chapter 4

BB TCPMonitor =18 x|
Admin Fort2aas |
Stop Lizten Fort FEBD Host{locahost Port: [8080 |l
State Time Reguest Host Target Host Reguest.
Dofi DS/I602 11:46:24 P 127.000.1 [localhost |POST Fvigisaricasfacmarmesendce ..
= Rirmave Al
Request Response
05T saxis/services/acaerposervice HTTF/1.0 & orTesi.1 200 ok =
jontene-Length: 511 Content-Type: textfxxml; charset-utf-g
ost: localhoat Content-Leagth: 676
aneent-Type: text/wml; charsetsutf-8 Date: Mem, 27 May 2002 03:46:25 GNT
johrhcelon: Server: apache Tomoae(1.0.3 [MTTE/L.1 Comnector]
Mxml version="1.0" encoding="UTF-8" [menl wersion="1.0" encoding="UTF-8"
JS0AP-EXV: Envelope SOAP-ENV:encodingSeyle="h [<S0AP-ENV:Envelope xmlns: SOAP-EIV="hetp: //schexes.
< SOAF-ENV: Bodys <30AP-ENV:Body>
“nal:petfroduct xulna:nal="acneservice™> <mazlzgeth =BV ="
cproductID x=i:type="xsd: int™> 100k /produ <getProductReturn xsi:type="xsd: string'sele: sn
</nzl:getbroducts clusProduceCetalogagtsalesLineItencge; clu; Inentunk
< /SOAP-ENV: Body> | </msl:getProductResponses -
[/ SOAP-ENV: Envre Lope» <SSOAP-ENV: Body
</ S0AP-ENV:Envelope>
B | JfJ:L__J JIJ
[~ ¥MLFormat Sava I Resend | Switch Layout Close

Figure 4.22 tcpmon showing the SOAP requests and responses.

Creating Messaging-Based Web Services (Scenario 2)

To implement this scenario, we build on the components discussed in
Chapter 3, “Building the Web Services Architecture,” by adding new
business methods and then deploying them in the Axis environment.

Implementing the Business Methods

The following additional business methods are required for submitting the
purchase order XML in the ACME database:

AcmeDAO. ADAQO class abstracts the underlying data access imple-
mentation and enables the purchase order information to be stored to
the database. The AcmeDAO uses the following value object classes
POHeader, PurchaseOrder, and POLine, which represent the
business objects buyer information and product order.

The source code for the value object POHeader . java is shown in
Listing 4.43.

/ /POHeader . java
package jws.chd.model;

import java.util.*;
import java.io.*;

Listing 4.43 POHeader.java.

Developing Web Services Using SOAP 181

// Value object representing the Buyer information
public class POHeader {

private int poNumber;

private String poDate;
private String poBuyerNo;
private String poBuyerName;
private String shipToAddressStreet;
private String shipToCity;
private String shipToState;
private String shipToZip;
private String shipToCountry;
private String paymentType;
private String paymentNumber;
private double totalPrice;

// Accessor methods

public void setPONumber (int ponum) {
poNumber = ponum;

public int getPONumber () {
return poNumber;

public void setPODate (String podate) ({
poDate = podate;

public String getPODate () {
return poDate;

public void setBuyerNumber (String buyerno) {
poBuyerNo = buyerno;

public String getBuyerNumber () {
return poBuyerNo;

public void setBuyerName (String buyername) ({
poBuyerName = buyername;

public String getBuyerName () {
return poBuyerName;

Listing 4.43 POHeader . java. (continues)

182 Chapter 4

public void setShipToStreet (String shiptoaddr) {
shipToAddressStreet = shiptoaddr;

public String getShipToStreet () {
return shipToAddressStreet;

public void setShipToCity(String shiptocity) {
shipToCity = shiptocity;

public String getShipToCity () {
return shipToCity;

public void setShipToState(String shiptostate) {
shipToState = shiptostate;

public String getShipToState() ({
return shipToState;

public void setShipToZipcode (String shiptozip) {
shipToZip = shiptozip;

public String getShipToZipcode () {
return shipToZip;

public void setShipToCountry (String shiptocountry)
shipToCountry = shiptocountry;

public String getShipToCountry () {
return shipToCountry;

public void setPaymentType (String paymenttype) {
paymentType = paymenttype;

public String getPaymentType () {

Listing 4.43 POHeader.java.

Developing Web Services Using SOAP

183

return paymentType;

public void setPaymentNumber (String paymentnumber) {
paymentNumber = paymentnumber;

public String getPaymentNumber () {
return paymentNumber;

public void setTotalPrice(double price) {
totalPrice = price;

public double getTotalPrice() {
return totalPrice;

Listing 4.43 POHeader . java. (continued)

The source code for the value object PurchaseOrder . java is
shown in Listing 4.44.

package jws.chd4.model;
import java.util.*;
import java.io.*;

public class PurchaseOrder {
private POHeader poHeader = new POHeader () ;
private ArraylList polLines = new ArrayList();
public void setPOHeader (POHeader hdr) {

poHeader = hdr;

public POHeader getPOHeader () {
return poHeader;

public void setPOLines (ArrayList lines) {

Listing 4.44 PurchaseOrder.java. (continues)

184 Chapter 4

poLines = lines;

public ArrayList getPOLines () {
return poLines;

Listing 4.44 PurchaseOrder.java. (continued)

The source code for the value object POLines. java representing the
product order information is shown in Listing 4.45.

package jws.ch4.model;
import java.util.*;
import java.io.*;

// Value object representing
// the line Items (Product ordered)

public class POLine {
private int poNumber;
private int poProductNo;
private int poLineNo;
private int poProductQty;
private double poUnitPrice;

// Accessor methods

public void setPONumber (int ponum) {
poNumber = ponum;

public int getPONumber () {
return poNumber;

public void setProductNumber (int prodNo) ({
poProductNo = prodNo;

public int getProductNumber () {

Listing 4.45 POLines.java.

Developing Web Services Using SOAP 185

return poProductNo;

public void setLineNumber (int lineNo) {
poLineNo = lineNo;

public int getLineNumber () {
return poLineNo;

public void setProductQty (int prodQty) {
poProductQty = prodQty;

public int getProductQty () {
return poProductQty;

public void setUnitPrice(double unitPrice) {
poUnitPrice = unitPrice;

public double getUnitPrice() {

return poUnitPrice;

Listing 4.45 POLines.java. (continued)

The methods shown in Listing 4.46 are used by the DAO to insert the
business objects (POHeader, PurchaseOrder, and POLine)in
the database.

// Insert the purchase order
public boolean insertPurchaseOrder (PurchaseOrder poObj)

throws AcmeDAOException {
Connection ¢ = null;

PreparedStatement ps = null;
ResultSet rs = null;

Listing 4.46 DAO methods for inserting data (AcmeDAO . java). (continues)

186 Chapter 4

POHeader poHdr = poObj.getPOHeader () ;
ArrayList poLineList = poObj.getPOLines () ;

//Make Database connection and Insert data
try {
c = getDataSource () .getConnection() ;

ps = c.prepareStatement ("insert into
purchase_order_header (po_num, po_date,
buyer_no, buyer_name, street_addr, city,
state, zip, country, payment_type,
payment_number, total_amount)"
+ "values (2, 2, ?, ?, 2?2, 2?2, 2, 2?2, 2?2, 7?2, ?2,°?2) ",

ResultSet.TYPE_SCROLL_INSENSITIVE,
ResultSet.CONCUR_READ_ONLY) ;

ps.setInt (1, poHdr .get PONumber ()) ;
ps.setString (2, poHdr.getPODate()) ;
ps.setString (3, poHdr.getBuyerNumber ()) ;
ps.setString (4, poHdr.getBuyerName()) ;
, poHdr.getShipToStreet());
, PoHAr.getShipToCity());

(2
(3
(4
ps.setString (5
(6
ps.setString (7, poHdr.getShipToState());
(8
(9
(1
(1
(1

ps.setString
ps.setString (8, poHdr.getShipToZipcode()) ;
ps.setString (9, poHdr.getShipToCountry()) ;
ps.setString (10, poHdr.getPaymentType()) ;
ps.setString (11, poHdr.getPaymentNumber ()) ;
ps.setDouble (12, poHdr.getTotalPrice()) ;
boolean bSuccess = false;
if (ps.executeUpdate() > 0) {
Iterator itr = poLineList.iterator();
bSuccess = true;
while (itr.hasNext()) {
POLine poLine = (POLine)itr.next();
if (! insertPOLine (poLine)) {
bSuccess = false;

break;

}
ps.close() ;
c.close();
return bSuccess;
} catch (SQLException se) {
throw new AcmeDAOException ("SQLException: "
+ se.getMessage());

Listing 4.46 DAO methods for inserting data (AcmeD20. java).

Developing Web Services Using SOAP

187

//Insert the product order
public boolean insertPOLine (POLine line)

AcmeXMLHelper.
string from the application and constructs Java objects for use with

throws AcmeDAOException {
Connection ¢ = null;
PreparedStatement ps = null;

ResultSet rs = null;

//Make connection and Insert data

try {
c = getDataSource () .getConnection() ;
ps = c.prepareStatement ("insert into

purchase_order_line (
line_num,
aty,
+ "values (2, 2, 2, 2?2, ?2) ",
ResultSet.TYPE_SCROLL_INSENSITIVE,
ResultSet.CONCUR_READ_ONLY) ;

po_num,

product_no, unit_price)"

ps.setInt (1,
ps.setInt (2,

line.getPONumber ()) ;

line.getLineNumber ()) ;
ps.setInt (3, line.getProductNumber ()) ;
ps.setInt (4, line.getProductQty());

ps.setDouble (5, line.getUnitPrice());

boolean bSuccess = false;

if (ps.executeUpdate() > 0) {
bSuccess = true;

}

ps.close() ;

c.close();

return bSuccess;
} catch (SQLException se) { throw new

AcmeDAOException ("SQLException: "+ se.getMessage()) ;

Listing 4.46 DAO methods for inserting data (AcmeDaO. java). (continued)

This class takes the Purchase order XML as a

188 Chapter 4

AcmeDAO. We will be adding the methods shown in Listing 4.47 to
convert the string (XML data) to business objects (POHeader,
PurchaseOrder, POLine) for persisting in the ACME database.

public boolean createPurchaseOrder (String POXML)
throws XMLException {
Document poDoc = null;

boolean bRetValue = false;

// Obtain an instance of DocumentBuilderFactory
// and get an Instance of DocumentBuilder

try {
DocumentBuilderFactory factory =
DocumentBuilderFactory.newInstance() ;
DocumentBuilder builder =
factory.newDocumentBuilder () ;
InputSource isStr;

// Use the DocumentBuilder to parse
// XML string and contruct a DOM

try {
StringReader xml = new StringReader (POXML) ;
isStr = new InputSource (xml) ;
poDoc = builder.parse(isStr);

} catch (Exception ee) {
System.out.println("parse exception....");
ee.printStackTrace() ;

if (poDoc == null)
return false;
else
System.out.println("poDoc not null....");

// Get the root element In the DOM tree
Element poRoot = poDoc.getDocumentElement () ;

if (poRoot == null) {
System.out.println("Root element is null")
} else
System.out.println("Root element is NOT null");

// Instantiate PurchaseOrder and POHeader objects
PurchaseOrder poObj = new PurchaseOrder () ;

Listing 4.47 XML helper methods for AcmePOService (AcmeXMLHelper . java)

Developing Web Services Using SOAP 189

POHeader poHdr = new POHeader () ;

// Get the necessary XML Node value
// one by one and the set the POHeader
// object attributes

int poNumber =
Integer.valueOf (getNodeValue
(poRoot, "PurchaseOrderNumber")) .intValue () ;
poHdr . set PONumber (poNumber) ;
System.out.println (poNumber) ;
poHdr.setPODate (getNodeValue (poRoot, "Date")) ;
poHdr . setBuyerNumber (getNodeValue (poRoot, "BuyerNumber")) ;
poHdr . setBuyerName (getNodeValue (poRoot, "BuyerName")) ;

NodeList nodes =
((Element)poRoot) .getElementsByTagName ("ShipToAddress") ;

if (nodes.getLength() < 0) {
throw new Exception ("getElementsByTagName
for ShipToAddress does not return any node") ;

Node shipNode = nodes.item(0) ;
poHdr.setShipToStreet (getNodeValue (shipNode, "Street")) ;
poHdr.setShipToCity (getNodeValue (shipNode, "City")) ;
poHdr.setShipToState (getNodeValue (shipNode, "State")) ;
poHdr.setShipToZipcode (getNodeValue (shipNode, "Zip")) ;

poHdr.setShipToCountry (getNodeValue (shipNode, "Country")) ;
nodes =
((Element)poRoot) .getElementsByTagName ("PaymentInfo") ;

if (nodes.getLength() < 0) {
throw new Exception ("getElementsByTagName for
PaymentInfo does not return any node");

Node paymentNode = nodes.item(0) ;
poHdr . setPaymentType (getNodeValue (paymentNode, "Type")) ;
poHdr . setPaymentNumber
(getNodeValue (paymentNode, "Number")) ;
poHdr.setTotalPrice (Double.valueOf
(getNodeValue (poRoot, "TotalAmount")) .doubleValue ()) ;

poObj .setPOHeader (poHdr) ;

// Print success message

Listing 4.47 XML helper methods for AcmePOService (AcmexXMLHelper . java). (continues)

190 Chapter 4

System.out.println("PO Header submission successful...");

// Get Line Item details In the DOM tree
// as a arraylist of POLine objects

ArrayList poLineList =
createPOLines (poDoc, poRoot, poNumber) ;

// Set the POLine list In the PurchaseOrder object
poObj.setPOLines (poLinelList) ;
System.out.println("Lineltems submission successful.");

AcmeDAOImpl adi = new AcmeDAOImpl () ;
bRetValue = adi.insertPurchaseOrder (poObj) ;
System.out.println("PO submission successful...");

} catch (Exception e) {
throw new XMLException(e.toString()) ;
}

return bRetValue;

public ArrayList createPOLines (Document poDoc,
Element poRoot, int PONumber) throws XMLException {

ArrayList poLinelList = new ArrayList();

// Get the necessary XML Node value
// one by one and the set the POLine object attributes

try {
NodeList cNodes = poDoc.getElementsByTagName ("LineItem") ;
int count = cNodes.getLength() ;
if (count > 0) {
for (int i = 0; i < count; i++) {

Node line = cNodes.item(1);

POLine poLine = new POLine() ;

poLine.setPONumber (PONumber) ;

poLine.setProductNumber (Integer.valueOf (getNodevValue
(line, i, "ProductNumber")).intValue());
poLine.setLineNumber (i+1) ;
poLine.setProductQty (Integer.valueOf
(getNodeValue (line, i, "Quantity")) .intValue()) ;
poLine.setUnitPrice (Double.valueOf
(getNodeValue (line, i, "UnitPrice")) .doublevValue()) ;
poLineList.add (poLine) ;

Listing 4.47 XML helper methods for AcmePOService (AcmeXMLHelper . java).

Developing Web Services Using SOAP

191

}
}
} catch (Exception e) {
throw new XMLException (e.toString());
}
return poLineList;

}

Listing 4.47 XML helper methods for AcmePOService (AcmeXMLHelper . java). (continued)

Now compile the classes and ensure that these classes are available as
part of your Tomcat webapps directory specific to the Axis environment.

Implementing the Service

Using the previous business classes as part of the application, we will be
creating ACMEPOService and SubmitPOService classes, which act as
service providers and service requestors, respectively, using the Axis
environment.

m The ACMEPOService classis the service provider application
deployed in the Axis environment as a service. It uses AcmeXML-
Helper and AcmeDAO as helper classes for processing the purchase
order XML and to persist the PO data in the ACME database. This
service will receive W3C documents as XML messages from the
SubmitPOService application—a service requestor client using
the Axis client engine.

m The SubmitPOService class acts as the service requestor using
the Axis client environment. During communication with the service
provider, it sends a purchase order as an XML message (W3C Docu-
ment) and then it receives a response message as an XML message
from the service provider.

Now, let’s take a closer look at the implementation and walk through the
programming steps involved in building the service provider and the
service requestor.

Implementing the Service Provider (ACMEPOService.java)

The source code implementation for the ACMEPOService class is shown
in Listing 4.48.

192 Chapter 4

package jws.chd.acmemsgservice;

import org.w3c.dom.*;

import org.apache.axis.*;

import java.io.*;

import java.util.*;

import javax.xml.parsers.*;

import jws.chd.xmlhelper.*;

import jws.ch4.dao.*;

import jws.ch4.model.*;

import jws.ch4d.exceptions.*;
import org.apache.xml.serialize.*;
import org.apache.xerces.dom. *;
import org.apache.axis.client.*;
import org.apache.axis.message.*;
import org.apache.axis.utils.XMLUtils;
import org.w3c.dom.Element;

public class AcmePOService {

String pc;
String poxml;

// Helper method for submitting the Purchase Order
public Document submitAcmePO (Document podoc) {
AcmeXMLHelper axh;
AcmeDAOImpl dao;
Document doc = null;

try {
axh = new AcmeXMLHelper () ;

// Convert W3C document to String
poxml = getXMLString (podoc) ;

// Submit the purchase order
boolean bSubmit = axh.createPurchaseOrder (poxml) ;

if (bSubmit) {
pc = "Submitted Purchase Order successfully";

}

else

Listing 4.48 AcmePOService.java.

Developing Web Services Using SOAP 193

pc = "Failed to submit Purchase Order";
// Creating a W3C document for response message

DOMImplementationImpl domImpl
= new DOMImplementationImpl () ;

doc = domImpl.createDocument (null, "POStatus", null) ;

Element root = doc.getDocumentElement () ;
Element e = doc.createElement ("status");
e.appendChild(doc.createTextNode (pc)) ;
root.appendChild(e) ;
doc.appendChild (root) ;
} catch (Exception te) {
)

7

te.printStackTrace (

// Return the response message
return doc;

// Helper method for converting W3C document to String
private String getXMLString (Document doc)
throws XMLException {
try {
StringWriter XMLStrWriter = new StringWriter () ;
XMLSerializer serializer = new XMLSerializer();
serializer.setOutputCharStream (XMLStrWriter) ;
OutputFormat fmt = new OutputFormat (doc) ;
fmt.setIndenting (true) ;
serializer.setOutputFormat (fmt) ;
serializer.serialize (doc) ;
String s = XMLStrWriter.toString() ;
System.out.println("getXMLString: "+s);
return s;
}
catch (Exception e) {
throw new XMLException (e.toString()) ;

Listing 4.48 AcmePOService.java. (continued)

194 Chapter 4

To compile and run the previous class, ensure that the CLASSPATH is set
for the service provider environment. Then, navigate to the source direc-
tory and run the Ant build script. After successful compilation, deploy
ACMEPOoService.class as a service in the Axis environment. The
deployment descriptor (WSDD) for deploying ACMEPOService.class
as a service is shown in Listing 4.49.

<deployment name="test" xmlns="http://xml.apache.org/axis/wsdd/"
xmlns:java="http://xml.apache.org/axis/wsdd/providers/java"
xmlns:xsd="http://www.w3.0rg/2000/10/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2000/10/XMLSchema-instance">

<service name="acmemsgservice" provider="java:MSG">
<parameter name="className"
value="jws.ch4.acmemsgservice.AcmePOService" />
<parameter name="allowedMethods" value="submitAcmePO"/>
</service>

</deployment>

Listing 4.49 Web service deployment descriptor (wsdd.xm1) for AcmePOService.

If everything works successfully, you will get the output shown in
Figure 4.23.

Implementing the Service Requestor (SubmitPOService.java)

The source code implementation for SubmitPOService.java is shown
in Listing 4.50.

build.xnl

javac] Compiling 1 source file to D:“Tomcatd'web.

client.AdninClient de

Figure 4.23 Output showing the packaging and deployment of AcmePOService.

Developing Web Services Using SOAP

195

package client;

import java.io.*;
import java.util.Vector;

import org.apache.axis.client.Service;
import org.apache.axis.client.Call;
import org.apache.axis.message.*;
import org.apache.axis.*;

import java.net.URL;

import org.apache.axis.utils.XMLUtils;
import org.w3c.dom.Element;

public class SubmitPOService {
String str;
public String execute() throws Exception {
try{
// Define the SOAP endpoint
String endpoint =
"http://localhost:8080/axis/services/acmemsgservice";
// Read the PurchaseOrder.xml
InputStream is =
ClassLoader.getSystemResourceAsStream

("PurchaseOrder.xml") ;

// Create a service
Service service = new Service();

// Create a Service request call to the server
Call call = (Call) service.createCall();

// Set the SOAP endpoint for the request call
call.setTargetEndpointAddress (endpoint) ;

// Create SOAP envelope with the
//PO document as payload

SOAPEnvelope env = new SOAPEnvelope(is);

// Send the PO document to the destination

Listing 4.50 SubmitPOService.java. (continues)

196 Chapter 4

// and wait for the response message.
// The response message will be a document as well.

SOAPEnvelope elems = (SOAPEnvelope)call.invoke (env) ;

//Retrieve the SOAP body element
//from the SOAP envelope.
SOAPBodyElement elem = elems.getFirstBody () ;

// Get the XML element from the SOAPBodyElement
Element e = elem.getAsDOM() ;

// Convert the XMLElement to String
str = XMLUtils.ElementToString (e) ;
}

catch (Exception e) {
e.printStackTrace() ;

// Return the response message as String
return(str);

public static void main(String[] args) throws Exception {

String res = (new SubmitPOService()) .execute();
// Print the response message
System.out.println (res) ;

Listing 4.50 SubmitPOService.java. (continued)

Ensure that the CLASSPATH is set for the service requestor environ-
ment and compile the source code. Upon successful compilation, the
ACME Web services for getting the product information is ready for test-
ing and use.

Testing the Services

To test the scenario, use the ACME purchase order (XML file) sample
shown in Listing 4.51. Ensure that this file exists in the CLASSPATH.

Developing Web Services Using SOAP

197

<PurchaseOrder>
<Header>
<PurchaseOrderNumber>212</PurchaseOrderNumber>
<Date>02/22/2002</Date>
<BuyerNumber>0002232</BuyerNumber>
<BuyerName>Roger Marrison</BuyerName>
<ShipToAddress>
<Street>233 St-John Blvd</Street>
<City>Boston</City>
<State>MA</State>
<Zip>03054</Zip>
<Country>USA</Country>
</ShipToAddress>
<TotalAmount>870.00</TotalAmount>
<PaymentInfo>
<Type>Visa</Type>
<Number>03239898989890</Number>
</PaymentInfo>
</Header>
<LineItem>
<ProductNumber>22112</ProductNumber>
<Quantity>250</Quantity>
<UnitPrice>10.00</UnitPrice>
</LineItem>
</PurchaseOrder>

Listing 4.51 Acme purchase order (XML file).

1. To test the services, ensure that the Tomcat and PointBase database
servers are up and running. Also, ensure that AcmePOService is
deployed. To find out the list of deployed services, you may try the
following command:

java org.apache.axis.client.AdminClient list

2. To test out and invoke AcmePOService, set the CLASSPATH to the
service requestor environment and run the following command:

java client.submitPOService

If everything works successfully, you will get the output shown in
Figure 4.24.

198

Chapter 4

Figure 4.24 Output showing the successful submission of a purchase order with
AcmePOService.

Use the TCP monitor to display the SOAP message sent and received. To
start TCP monitor, run the following command:

java org.apache.axis.utils.tcpmon 9999 localhost 8080

The previous command assumes that the client listening port is 9999 and
the target server name is localhost running the Tomcat server using
port 8080. Using the previous command, start the tcpmon utility. Set the
client calling port as 9999 in the SubmitPOService.java and then
recompile it. Now, rerun the service client application.

Upon successful execution of SubmitPOService, the TCP monitor will
display the output shown in Figure 4.25.

[Brotontor ~=lol x|
Adrin Port95a |
Stop | Lisien Port: 9590 Host{lnzalnost Port [s080 [T
State Time Request Host Targel Host Request..
Dionie TJ\]QUU 41 FM i? 001 wm-.l ST i BABCMEMS DS Ervic..
Remove Al
Request Response

POST sfaxiafservices/acnemsgservice HITE/L.0 o
Content-Length: 859 I~
[Host: localhost
Content-Type: text/xml; charset=ucf-§
S0APAction: "'

[RTTP/1.1 200 OK

Content-Type: cext/xul: charsetsutf-8
Content-Length: 346

Date: Men, 27 May 2002 17:00:43 GINT

Server: Apache Towcat/4.0.3 (HITP/L.l Comnnecto:x

<meml version="L.0" encodings"UTF-§":»
[<S0AP-ENV:Envelope SOAP-ENV:encodingStyle="h
[<SOAP-ENV: Body>
<Purchaselrders
<Headers
<Purchaselrderlumber>212</Pu
<Dare>02/22/2002</Date>
cBuyerlunbers0002232¢ /Buyerl
<Buyerlame>John Doed/Buyerla
<ShipTohddeesas
<Srreec>233 Su-John
=City-Boston</City>
<Erare-HAd/STare
<Eip»03054</Zip>

<CountEy>USA</COUNTE |
4 v “ |

[~ ML Format Save | Resand | Ewilch Lavout | Closa I
Figure 4.25 TCP monitor showing the SOAP messages with AcmePOService.

<#ml version="1.0" encoding="UTF-&"»
<S0AP-ENV:Envelope xmlna:50AP-EWV="http: //schea
<30AP-ENV: Body><P0Status><status>Subniceed Pur
< /S0AP-ENV: Enve lopo>

Developing Web Services Using SOAP

199

This concludes our case study example on creating SOAP RPC and
messaging-based Web services using Apache Axis.

So far, we have discussed SOAP specifications and the role of SOAP in
Web services, and we studied how we can use SOAP implementation for
developing Web services.

Now, let’s take a look at the some of the known limitations of SOAP.

Known Limitations of SOAP

Although the SOAP specifications define a promising communication
model for Web services, the following limitations exist that are not cur-
rently addressed by the SOAP specifications:

1. The specification does not address message reliability, secure message
delivery, transactional support, and its communication requirements
of a SOAP implementation.

2. The specification does not address issues like object activation and
object lifecycle management.

3. The specification discusses HTTP as the primary transport protocol
but does not discuss the usage of other transport protocols.

4. The specification does not address how to handle SOAP messages
out of a SOAP implementation.

Note that the limitations of SOAP have been currently well addressed by
the ebXML framework as part of the ebXML messaging service, which
complements SOAP and other Web services standards.

Summary

In this chapter, we have had a detailed discussion on the fundamentals of
SOAP and its role in developing Web services. We have looked at how
SOAP provides an XML-based communication protocol and a consistent
mechanism for RPC and messaging between applications, components,
objects, and systems across networks. We demonstrated a Web services-
based application using a SOAP implementation and studied how SOAP
provides the communication for Web services.

In general, we focused on the background and fundamentals of SOAP
and XML messaging, SOAP encoding, transport protocols and security,
and developing SOAP and Web services applications.

In the next chapter, we will discuss how to describe and publish Web ser-
vices using WSDL and UDDL

Description and Discovery
of Web Services

In Chapter 4, “Developing Web Services Using SOAP,” we saw how to
develop and deploy Web services that use the Simple Object Access Proto-
col, or SOAP. But there is more to Web services than just SOAP support. A
Web service can further its capabilities by supporting a description of its
interfaces so that its potential users can study it and determine whether the
Web service supports the behavior that they need. Also, an organization
that develops Web services can register these Web services at a location
that is well known, so that its potential users can discover them.

This chapter covers such description and discovery aspects of a Web
service. Detailed information is provided on two mainstream technologies
that are used today for describing and discovering Web services: the Web
Services Description Language (WSDL) and Universal Description, Dis-
covery, and Integration (UDDI). Furthermore, examples demonstrate how
to use these technologies in the real world.

The following are key topics covered in this chapter:

m Web Services Description Language (WSDL)
m WSDL in the World of Web services
m Anatomy of a WSDL definition document
m WSDL bindings
m WSDL tools

201

202 Chapter 5

m Universal Description, Discovery, and Integration (UDDI)
m Programming with UDDI

m Inquiry APIs

m Publishing APIs

m Implementations of UDDI

m Registering as a Systinet UDDI Registry user

m Publishing information to a UDDI registry

m Searching information in a UDDI registry

m Deleting information from a UDDI registry

Web Services Description Language (WSDL)

Microsoft, IBM, and Ariba released the first version of the WSDL specifica-
tion jointly, in September 2000, briefly after announcing a UDDI specification
along with 36 other companies. This version of WSDL was based on two
precedent description languages: Network Accessible Services Specification
Language (NASSL) and (SOAP Contract Language SCL), from IBM and
Microsoft, respectively. Later on in March 2001, the same companies joined
by a few others submitted the WSDL 1.1 specification to W3C. Thus, cur-
rently the WSDL specification is in works at W3C. Officially, it isa W3C Note
that forms the basis of the upcoming WSDL 1.2 specification from W3C. This
chapter goes into detail in understanding WSDL 1.1.

JSR 110 (Java API for WSDL) is currently in the works in the Java Com-
munity Process (JCP). When released, it will provide an API for manipulat-
ing WSDL documents instead of directly interacting with the XML syntax of
WSDL. This would avoid manipulating the WSDL documents with the help
of low level APIs such as JAXP. JIWSDL would be much easier and faster to
use, simplifying things further for a developer. More information on JWSDL
can be obtained from the JCP Web site at www.jcp.org/jsr/detail /110jsp.

WSDL in the World of Web Services

WSDL, as we know, is a description language for Web services. So what
does this exactly mean? This means that WSDL represents information
about the interface and semantics of how to invoke or call a Web service. A
WSDL definition contains four important pieces of information about the
Web service:

Description and Discovery of Web Services

203

m Interface information describing all the publicly available functions

m Data type information for the incoming (request) and outgoing
(response) messages to these functions

m Binding information about the protocol to be used for invoking the
specified Web service

m Address information for locating the specified Web service

Once we develop a Web service, we create its WSDL definition. We can
create this definition either manually or by using a tool. Many tools are
available for generating a WSDL definition from existing Java classes, J2EE
components (such as Servlets/E]Bs), or from scratch. Once the WSDL def-
inition is created, a link to it is published in a Web services registry (based
on UDD], for instance), so that the potential user(s) of this Web service can
follow this link and find out the location of the Web service, the function
calls that it supports, and how to invoke these calls. Finally, the user(s)
would use this information to formulate a SOAP request or any other type
of request based on the binding protocol supported, in order to invoke the
function on a Web service.

Web Service Life Cycle

Figure 5.1 illustrates the steps of the Web service life cycle.

Look Up the Web Service

SOAP
Request

Web Service -
Requestor 9

SOAP
Request
Invoke Call Web Service

UDDI Registry

__ Firewall
SOAP

. Request : Register Web Service
Retrieve__] + Publish }— Development Time
WSDL B'ﬂ) JAXR
Definition Servlets or

Specific API SOAP
Request

WSDL Document

Web Service Provider

Figure 5.1 Web service life cycle.

204 Chapter 5

In Figure 5.1, all of the communication over the wire takes place on
SOAP. The following list explains the steps depicted in Figure 5.1:

m Step 1 illustrates a service provider publishing its Web service to a
UDDI registry. This is when the service provider would create a
WSDL definition and publish a link to this definition along with the
rest of the Web service information to a UDDI registry.

m Step 2 illustrates an interested service user locating the Web service
and finally obtaining information about invoking the Web service
from the published WSDL definition. This step involves download-
ing a WSDL definition to the service user system and deserializing
WSDL to a Java class (or any other language). This Java interface
serves as a proxy to the actual Web service. It consists of the binding
information of the Web service.

m Step 3 shows the service user binding at runtime to the Web service.
In this step, the service user’s application would make use of the
Java interface representing WSDL as a proxy, in order to bind to the
Web service.

m Step 4 finally shows the service user invoking the Web service based
on the service invocation information it extracted from the Web service
WSDL definition. This is when the service user’s application would
make use of the Java interface representing WSDL as a proxy, in order
to invoke the methods/functions exposed by the Web service.

Language and Platform Independency of WSDL

WSDL is capable of describing Web services that are implemented using
any language and deployed on any platform. Thus, WSDL contributes
toward enabling interoperability in the Web service architecture. In other
words, as long as a WSDL definition can be understood and consumed by
the service user, the service user systems can obtain all of the information
necessary to invoke a Web service potentially developed and deployed
using a completely different set of platform tools and servers.

Now, let’s see what a typical WSDL document looks like and understand
its structural elements.

Anatomy of a WSDL Definition Document

A WSDL definition document consists of the following seven key struc-
tural elements:

Description and Discovery of Web Services 205

<definitions>. A WSDL document is a set of definitions. These
definitions are defined inside the <definitions> element, which is the
root element in a WSDL document. It defines the name of the Web
service and also declares the namespaces that are used throughout
the rest of the WSDL document.

<types>. This element defines all of the data types that would be
used to describe the messages that are exchanged between the Web
service and the service user. WSDL does not mandate the use of a
specific typing system. However, as per the WSDL specification,
XML Schema is the default typing system.

XML Schema was discussed in Chapter 4, “Developing Web Services
Using SOAD,” in the context of SOAP encoding.

<message>. This element represents a logical definition of the data
being transmitted between the Web service and the service user. This
element describes a one-way message, which may represent a
request or response sent to or from the Web service. It contains zero
or more message <part> elements, which basically refer to the
request parameters or response return values.

<portType>. This element defines the abstract definition of the oper-
ations supported by a Web service, by combining various request and
response messages defined by <message> elements. Each operation
refers to an input message and an output message.

<binding>. This element specifies a concrete protocol and data for-
mat used for representing the operations and messages defined by a
particular <portType>, on the wire.

<port>. This element specifies an address for binding to the Web
service.

<service>. This element aggregates a set of related <port> ele-
ments, each which uniquely specify the binding information of the
Web service. A <service> consisting of multiple <port> elements
essentially represents the capability of the service to be invoked over
multiple bindings. More information on WSDL bindings is discussed
in the next section.

We will further examine each of these elements later. First, let’s take a
look at Listing 5.1, which shows a WSDL document describing a weather
information Web service, WeatherInfoService. This WSDL definition
is present in the WeatherInfo.wsdl file.

206 Chapter 5

<?xml version="1.0"?>

<definitions name="WeatherInfo"
targetNamespace="http://myweather.com/weatherinfo.wsdl"
xmlns:tns="http://myweather.com/weatherinfo.wsdl"
xmlns:xsdl="http://myweather.com/weatherinfo.xsd"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns="http://schemas.xmlsoap.org/wsdl/">

<types>
<schema targetNamespace=
"http://myweather.com/weatherinfo.xsd" xmlns=
"http://www.w3.0rg/2000/10/XMLSchema ">
<element name="WeatherInfoRequest">
<complexType>
<all>
<element name="Country"
type="string"/>

<element name="Zip"
type="string" />

<element name="Instant"
type="string" />
</all>
</complexType>
</element>

<element name="WeatherInfo">
<complexType>
<all>
<element name="FTemp"
type="float"/>

<element name="Humidity"
type="float" />
</all>
</complexType>
</element>
</schema>

</types>

<message name="GetWeatherInfoInput">
<part name="WeatherInfoRequestSpec"
element="xsdl:WeatherInfoRequest" />

</message>

<message name="GetWeatherInfoOutput">
<part name="WeatherInfo"

Listing 5.1 WeatherInfo.wsdl.

Description and Discovery of Web Services

207

element="xsdl:WeatherInfo"/>
</message>

<portType name="WeatherInfoPortType">
<operation name="GetWeatherInfo">
<input message="tns:GetWeatherInfoInput"/>
<output message="tns:GetWeatherInfoOutput" />
</operation>

</portType>

<binding name="WeatherInfoSoapBinding"
type="tns:WeatherInfoPortType">

<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http" />

<operation name="GetWeatherInfo">

<soap:operation soapAction=
"http://myweather.com/GetWeatherInfo" />

<input>
<soap:body use="literal"/>
</input>

<output>
<soap:body use="literal"/>
</output>
</operation>
</binding>

<service name="WeatherInfoService">

<documentation>
Provides Weather Information

</documentation>

<port name="WeatherInfoPort"
binding="tns:WeatherInfoSoapBinding">
<soap:address location=
"http://myweather.com/provideweatherinfo" />
</port>
</service>
</definitions>

Listing 5.1 WeatherInfo.wsdl. (continued)

208 Chapter 5

Now, let’s understand how exactly WeatherInfo.wsdl describes the
WeatherInfoService Web service.

<definitions> Element

The <definitions> element specifies the name of the document in
which this WSDL definition is stored, which is WeatherInfo in our case.

This element specifies namespaces that would be used in the rest of the
WSDL document. The following are the two important namespaces that
the <definitions> element defines:

WSDL instance specific namespace. The targetNamespace
attribute of the <definitions> element lets the WSDL document
make references to itself as an XML Schema namespace. Note how-
ever that it is not required for the WSDL document to actually exist at
the address specified by the targetNamespace attribute. This
attribute is just a mechanism to refer to our WSDL definition in a
unique way.

Default namespace for a WSDL document. The default namespace is
specified by xmlns="http://schemas.xmlsoap.org/wsdl/".
The default namespace indicates that all of the elements in this
WSDL definition without a namespace prefix, such as <types>,
<message>, and <portType>, are part of this namespace.

<message> Element

WeatherInfo.wsdl defines two <message> elements.

The first <message> definition named GetWeatherInfoInput will be
used later to define the input message of the GetWeatherInfo operation.
The second <message> definition named GetWeatherInfoOutput will
be used later to define the output message of the GetWeatherInfo opera-
tion. This binding of <message> definitions to an actual operation is
defined in the <portType> element.

Again, each of these <message> definitions consists of a <part>
element. In case of the GetWeatherInfoInput message, <part> essen-
tially specifies the name, that is, WeatherInfoRequestSpec, and type,
that is, WeatherInfoRequest, of the request parameter to GetWeath-
erInfo operation. Whereas, in case of the GetWeatherInfoOutput
message, <part> refers to the name and type of the return value sent
within the response of the GetWeatherInfo operation. Note that both
WeatherInfoRequest and WeatherInfo, which were referred to by

Description and Discovery of Web Services

209

the type attribute of <part> element also were defined by the preceding
<types> element.

Also in cases where operations take multiple arguments or return multi-
ple values, the <message> element can define multiple <part> elements.

<portType> Element

The <portType> element in WeatherInfo.wsdl defines a single opera-
tion named GetWeatherInfo by combining the <input> message as
defined by the GetWeatherInfoInput <message> element and
the <output> message as defined by the GetWeatherInfoOutput
<message> element.

Note the use of WeatherInfo.wsdl as a target namespace by the
<input> and <output> elements.

Four types of operations are supported by WSDL:

One-way operation. One-way operation represents a service that just
receives the message, and thus a one-way operation is typically
defined by a single <input> message element.

Request-response operation. A request-response operation repre-
sents a service that receives a request message and sends a response
message. Typically, a request-response operation is defined by one
<input> message followed by one <output> message. An optional
<fault> element also can be included in the definition of a request-
response operation to specify the abstract message format for any
error messages that may be output as a result of the operation.

The GetWeatherInfo operation follows the request-response
transmission pattern.

Solicit-response operation. A solicit-response operation represents a
service that sends a request message and that receives the response
message. Such operations are therefore defined by one <output>
message, followed by an <input> message. A solicit-response opera-
tion also can include a <fault> element in order to specify the for-
mat of any error messages resulting from the operation.

Notification operation. This operation represents a service that sends
a message, hence this kind of operation is represented by a single
<output> element.

Figure 5.2 provides the pictorial representation of the previous four
transmission types.

210 Chapter 5

CLIENT SERVICE

<—@ Notification

Figure 5.2 \WSDL operation types.

<binding> Element

A binding defines the message format and protocol details for operations
and messages defined by a particular <portType>. There may be any
number of bindings for a given <portType>. The type attribute of the
<binding> element refers to the <portType> that it binds to, which is
WeatherInfoPortType in our case. Our WeatherInfoService speci-
ties a SOAP binding, as is defined in the WSDL 1.1 specification. The
WSDL 1.1 SOAP binding is discussed in detail in a later section titled SOAP
Binding.

<service> Element

The <service> element specifies the location of the service. Because our
WeatherInfoService is bound to SOAP, we use the <soap:address>
element and specify the service URL as http://myweather.com
/provideweatherinfo/.

Now, let’s take a look at the support for various bindings in the WSDL
1.1 specification.

Description and Discovery of Web Services

211

WSDL Bindings

In WSDL, the term binding refers to the process of associating protocol or
data format information with an abstract entity such as <message>,
<operation>, or <portType>. In this section, we examine the support
for bindings in the WSDL 1.1 specification. Let’s begin with the WSDL
binding extensions.

WSDL Binding Extensions

WSDL allows user-defined elements, also known as Extensibility Elements,
under various elements defined by a default WSDL namespace. These ele-
ments are commonly used to specify some technology-specific binding,
although they can be used for other purposes as well. Extensibility ele-
ments, when used to specify a technology-specific binding, are known as
WSDL Binding Extensions.

Extensibility elements provide a powerful mechanism for extending
WSDL because they enable support for network and message protocols to
be revised without having to revise the WSDL specification.

The base specification of WSDL defines three WSDL binding extensions,
which are as follows:

m SOAP binding
m HTTP GET & POST binding
m MIME binding

We will take a look at the most commonly used WSDL binding exten-
sion, the SOAP binding, in a later section titled SOAP Binding.

WSDL Binding Support for Operations

All four types of operations supported by WSDL—one-way, request-
response, solicit-response, and notification—represent an abstract notion
only. Binding describes the concrete correlation to these abstract notions.
Binding determines how the messages are actually sent, for instance,
within a single communication (for example, an HTTP request/response)
or as two independent communications (for example, two HTTP requests).
Thus, binding for a specific operation type must be defined in order to
successfully carry out that type of operation. Note that although the
WSDL structure supports the bindings for these four operations, the WSDL

212 Chapter 5

specification defines bindings for only one-way and request-response
operations. Hence, in order to use WSDL to describe services that support
solicit-response and/or notification types of operations, the communica-
tion protocol of the Web service must define the WSDL binding extensions,
thus enabling the use of these operations.

Let’s now take a look at SOAP binding as defined by the WSDL 1.1
specification.

SOAP Binding

WSDL 1.1 defines a binding for SOAP 1.1 endpoints. This binding provides
the following SOAP protocol specific information:

m An indication that the binding is bound to the SOAP 1.1 protocol
m A way of specifying an address for a SOAP endpoint

m The URI for the SOAP action HTTP header for the HTTP binding of
SOAP

m A list of definitions of headers that are transmitted as part of the
SOAP envelope

Let’s examine the SOAP binding of the request-response RPC operation
over HTTP as defined in the WeatherInfo.wsdl file shown earlier (see
the section titled Anatomy of a WSDL Definition Document).

<soap:binding>
The <soap:binding> element is defined in WeatherInfo.wsdl as
follows:

<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http" />

The <soap:binding> element says that the binding is bound to the
SOAP protocol format, that is, envelope, header, and body. However, this
element does not give any information about the format or encoding of the
message. This element must be present whenever describing services that
have a SOAP binding.

The style attribute indicates whether the operations supported by this
binding are RPC-oriented or document-oriented. In RPC-oriented commu-
nication, the messages contain parameter and return values, whereas in
document-oriented communication, the messages contain document(s).
This information about the style of communication can be useful because it
helps in selecting the programming model for communicating with the

Description and Discovery of Web Services

213

Web service. For example, if a Web service is described to support RPC, we
can choose a JAX-RPC programming model to communicate with it, or if a
Web service is described to support document-style communication, we
can appropriately choose a JAXM programming model.

The transport attribute specifies the transport binding for the SOAP
protocol. The URI value of http: //schemas.xmlsoap.org/soap/http
corresponds to the HTTP binding as defined in the SOAP specification. Sim-
ilarly, respective URIs can be used to indicate other types of transports such
as SMTP or FTP.

<soap:operation>

The <soap:operation> element is defined in WeatherInfo.wsdl as
follows:

<soap:operation soapAction=
"http://myweather.com/GetWeatherInfo" />

The <soap:operation> element defines the information with regard
to communication style and the SOAP action header at that specific opera-
tion level.

The semantics of the style attribute remains the same as that for a
<soap:binding> element.

The soapAction attribute specifies the value of a SOAP action header
in the form of a URIL The usage of the SOAP action header was discussed
in Chapter 4, “Developing Web Services Using SOAP.”

<soap:body>
The <soap :body> element is defined in WeatherInfo.wsdl as follows:

<soap:body use="literal"/>

This element defines how the message <part> elements appear
inside the SOAP body element. Based on the style of communication, RPC-
oriented or document-oriented, the <Body> element of the SOAP message
is constructed.

The use attribute indicates whether the message <part> elements are
encoded using some encoding rules or whether the <part> elements
already define the concrete schema of the message.

If the value of the use attribute is “encoded”, then each message
<part> refers to an abstract type defined through the type attribute. These
abstract types are then used to produce a concrete definition of the message
by applying the encoding specified by an encodingStyle attribute.

214 Chapter 5

Consider the following example:

<output>
<soap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="urn:acmens:acmeservice"
use="encoded" />

</output>

The <soap:body> element in this code depicts a SOAP binding
wherein the body of the output SOAP message consists of abstract <part>
elements that are used to produce the concrete definition of the message by
applying the encodingStyle as defined in http://schemas
.xmlsoap.org/soap/encoding/.

<soap:address>

The <soap:address> element is defined as follows in
WeatherInfo.wsdl:

<soap:address location=
"http://myweather.com/provideweatherinfo" />

The <soap:address> element specifies an address for the given service
port.

WSDL Tools
WSDL tools typically provide functionality in terms of the following:

WSDL generation. Generating WSDL from an existing service
component—for example, a J2EE component or a Java Bean compo-
nent or from scratch.

WSDL compilation. A typical WSDL compiler would generate the
necessary data structures and a skeleton for the implementation of the
service. The generated implementation skeleton contains all the meth-
ods (operations) that are described in the given WSDL definition.

WSDL proxy generation. This functionality can read a WSDL and
produce a specific language binding (for example, Java or Perl)
consisting of all the code required to bind the Web service and to
invoke the Web service functions at runtime. This functionality is
typically used at the client end.

Many WSDL tools provide support for these three functionalities.
Table 5.1 lists some of the famous ones in the Java Web Services space.

Description and Discovery of Web Services

215

Table 5.1 WSDL Tools

TOOL DOWNLOAD FROM ...

Sun ONE Studio 4 wwws.sun.com/software/sundev/jde/index.html
Systinet WASP www.systinet.com/wasp

The Mind Electric GLUE www.themindelectric.com/glue/index.html

IBM Web Services Toolkit www.alphaworks.ibm.com/tech/webservicestoolkit/
BEA WebLogic Workshop www.bea.com/products/weblogic/workshop

/easystart/index.shtml

Apache Axis http://xml.apache.org/axis

In the following section, we examine the WSDL tools provided by the
Systinet WASP platform.

Support for WSDL in Systinet WASP 4.0

Systinet WASP provides two tools for working with WSDL: Java2WSDL
and WSDL Compiler. Both of these tools accomplish two different types of
functionalities related to WSDL:

Generating WSDL from a Java class that is a potential candidate for a
Web service. This functionality is taken care of by the Java2WSDL
tool.

Generating Java code from an existing WSDL. This functionality is
taken care of by the WSDL Compiler.

We will check out both these tools in the following two sections.

Generating WSDL from a Java Class
In situations in which an implementation of the Web service has already
been created first, the Java2WSDL tool can be used to generate WSDL. This
tool provides a lot of options for generating WSDL from an existing Java
implementation.

To understand the functioning of this tool, consider the following
Java class:

package jws.ch5;
public class WeatherInfoJavaService

{
public float GetWeatherInfo (String sCountry, String sZip,

216 Chapter 5

String sInstance)

{
// Talk to some backend services to get hold
// of the weather information

// Return the weather information;
// a manipulated value for now.
return 65.0f;

public void SetWeatherInfo (String sCountry, String sZip,
String sInstance, String sTemperature)

{
// Update the backend weather databases
// with this information

As can be seen from the previous listing, this class provides get and set
methods. The main job of this class is to manage information related to
weather. Note that this is a very simplistic version of such a weather infor-
mation service.

For example, we want to expose this class as a Web service. In which
case, we also decide to provide the description of the interface of this Web
service as a WSDL. Our Web service supports SOAP-based communica-
tion, and hence, a SOAP binding as well. Thus, this fact also should be
considered while generating WSDL using the Java2WSDL tool.

Once the WSDL has been generated, it can be registered in a registry
such as UDDI accompanied by the business- and other service-related
information. So when the prospective Web service users find the Web
service, they can obtain the WSDL description corresponding to this Web
service and start using it.

The following command line instruction shows the usage of the
Java2WSDL tool such that it would generate a WeatherInfo.wsdl from
the WeatherInfoJavaService class:

> Java2WSDL jws.ch5.WeatherInfoJdavaService --package-mapping
"jws.ch5=http://www.myweather.com/WeatherInfo" --output-file-mapping
"http://www.myweather.com/WeatherInfo=

WeatherInfo.wsdl" —output-directory jws/ch5

This command would generate WeatherInfo.wsdl and place it in the
$DEMO_DIR%/Jjws/ch5 directory. Table 5.2 gives the explanation of the
arguments used in the previous command.

Description and Discovery of Web Services

217

Table 5.2 Java2WSDL Command Line Options

Package mapping

Whenever a Java class is processed by a Java2WSDL
tool, it assumes that the package namespace is the
target namespace as well. Hence, in order to
provide a new mapping of package name to the
WSDL namespace, this argument must be provided.

Outputfile mapping

By default, the Java2WSDL tool would generate a
WSDL document named as the package namespace,
preceded by “Definitions_". Thus, in order to
give a new name to the WSDL definition document,
we can use this argument.

Output directory

This argument specifies the directory where the
output WSDL definition would be stored. The
default is the current directory.

The Java2WSDL tool supports many more arguments than what are
shown in Table 5.2. To find detailed information on these arguments and
the Java2WSDL tool in general, please visit the Systinet Web site at
www.systinet.com/doc/wasp_jserver/tools/java2WSDL.html.

The output WeatherInfo.wsdl generated by the Java2WSDL tool is

shown in Listing 5.2.

<?xml version='1.0"'?>

<wsdl:definitions name='jws.ch5.WeatherInfoJavaService'

targetNamespace="http://www.myweather.com/WeatherInfo'

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"'

xmlns:tns="http://www.myweather.com/WeatherInfo'

xmlns:nsO0="'http://systinet.com/xsd/SchemaTypes/"'

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"'

xmlns:map="http://systinet.com/mapping/"'>

<wsdl: types>

<xsd:schema elementFormDefault="qualified"

targetNamespace=

"http://systinet.com/xsd/SchemaTypes/"

xmlns:tns="http://systinet.com/xsd/SchemaTypes/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

<xsd:element name="sCountry" nillable="true"

Listing 5.2 WeatherInfo.wsdl generated by the Java2WSDL tool. (continues)

218 Chapter 5

type="xsd:string"/>

<xsd:element name="sZip" nillable="true"
type="xsd:string" />

<xsd:element name="sInstance" nillable="true"
type="xsd:string"/>

<xsd:element name="float_res"
type="xsd:float" />

<xsd:element name="sTemperature"
nillable="true" type="xsd:string"/>
</xsd:schema>
</wsdl:types>

<wsdl :message name=
'WeatherInfoJavaService_GetWeatherInfo_1_ Request'>
<wsdl :part name='sCountry' element='ns0:sCountry'/>
<wsdl:part name='sZip' element='ns0:szip'/>
<wsdl:part name='sInstance' element='ns0:sInstance'/>
</wsdl :message>

<wsdl :message name=
'WeatherInfoJavaService_GetWeatherInfo_Response'>

<wsdl:part name='response' element='ns0:float_res'/>
</wsdl :message>

<wsdl :message name
='WeatherInfoJavaService_SetWeatherInfo_Response'/>

<wsdl :message name=
'WeatherInfoJavaService_SetWeatherInfo_1_ Request'>
<wsdl :part name='sCountry' element='ns0:sCountry'/>
<wsdl:part name='sZip' element='ns0:sZip'/>
<wsdl :part name='sInstance' element='ns0:sInstance'/>
<wsdl :part name='sTemperature'
element="'ns0:sTemperature' />
</wsdl :message>

<wsdl :portType name='WeatherInfoJavaService'>
<wsdl :operation name='GetWeatherInfo'
parameterOrder='sCountry sZip sInstance'>
<wsdl:input message=

Listing 5.2 WeatherInfo.wsdl generated by the Java2WSDL tool.

Description and Discovery of Web Services 219

'tns:WeatherInfoJavaService_GetWeatherInfo_1_Request'/>

<wsdl:output message=
'tns:WeatherInfoJavaService_GetWeatherInfo_Response'/>

</wsdl :operation>

<wsdl :operation name='SetWeatherInfo'
parameterOrder='sCountry sZip sInstance
sTemperature'>

<wsdl:input message=
'tns:WeatherInfoJavaService_SetWeatherInfo_1_Request'/>

<wsdl:output message=
'tns:WeatherInfoJavaService_SetWeatherInfo_Response'/>
</wsdl:operation>
</wsdl :portType>

<wsdl :binding name='WeatherInfoJavaService'
type="'tns:WeatherInfoJavaService'>

<soap:binding transport=
'http://schemas.xmlsoap.org/soap/http'
style='document' />

<wsdl :operation name='GetWeatherInfo'>
<map:java-operation name=

'GetWeatherInfo' signature='KExg...'/>

<soap:operation soapAction='_10"
style='document' />

<wsdl :input>
<soap:body use='literal'
namespace="http://www.myweather.com/
WeatherInfoWeatherInfoJavaService' />
</wsdl:input>

<wsdl : output>
<soap:body use='literal' namespace=
'http://www.myweather.com/
WeatherInfoWeatherInfoJavaService' />
</wsdl:output>
</wsdl:operation>

<wsdl :operation name='SetWeatherInfo'>
<map:java-operation name='SetWeatherInfo'

signature='KExq...'/>

Listing 5.2 \WeatherInfo.wsdl generated by the Java2WSDL tool. (continues)

220 Chapter 5

<soap:operation soapAction='_11"
style='document' />

<wsdl:input>
<soap:body use='literal' namespace=
'http://www.myweather.com/
WeatherInfoWeatherInfoJavaService'/>
</wsdl:input>

<wsdl:output>
<soap:body use='literal' namespace=
'http://www.myweather.com/
WeatherInfoWeatherInfoJavaService'/>
</wsdl:output>
</wsdl :operation>
</wsdl:binding>

<wsdl:service name='JavaService'>
<wsdl :port name='WeatherInfoJavaService'
binding="'tns:WeatherInfoJavaService'>

<soap:address location=
'urn:unknown-location-uri'/>
</wsdl :port>
</wsdl:service>
</wsdl:definitions>

Listing 5.2 WeatherInfo.wsdl generated by the Java2WSDL tool. (continued)

Generating Java Code from an Existing WSDL

In situations in which WSDL definitions are created before actually imple-
menting a Web service, the WSDLCompiler tool of WASP can be used to
generate the skeleton of a Java interface. A Java class consisting of the
actual method implementations then can implement this generated Java
interface.

The usage of the WSDLCompiler tool is as follows:

> WSDLCompiler WeatherInfo.wsdl

In this case, a Java interface with the name WeatherInfoJavaService
is created as shown in Listing 5.3.

Description and Discovery of Web Services 221

/) **

*/
public interface WeatherInfoJavaService {/
/**

*/
float GetWeatherInfo(java.lang.String sCountry, java.lang.String
sZip, java.lang.String sInstance) ;

/**

*/
void SetWeatherInfo(java.lang.String sCountry, java.lang.String
sZip, java.lang.String sInstance, java.lang.String sTemperature) ;

}

/*
* Generated by WSDLCompiler, (c) 2002, Systinet Corp.
* http://www.systinet.com
*/

Listing 5.3 \WeatherInfolavaService Java class generated by the WSDLCompiler tool.

This tool also has various options that enable fine-tuning of the genera-
tion of the Java interface. Also, WSDLCompiler supports the generation of
Java Bean components from WSDL definitions. To find further informa-
tion about this tool, visit www.systinet.com/doc/wasp_jserver/tools
/wsdlCompiler.html.

Note that tools such as Apache Axis also provide support for generating
messaging implementation classes from WSDL.

Future of WSDL

As mentioned earlier, WSDL 1.2 is presently a work in progress under the
Web Services Description Working Group at W3C. W3C released the draft
specifications of WSDL 1.2 in July 2002. The WSDL 1.2 specification consists
of two documents: Web Services Description Language Version 1.2 and Web Ser-
vices Description Language Version 1.2 Bindings. The former defines the core
language that can be used to describe Web services based on an abstract
model of what the service offers. The latter describes how to use WSDL for
describing services that use SOAP 1.2, MIME, or HTTP 1.1 bindings.

222 Chapter 5

The following lists some of the important enhancements of WSDL 1.2
over WSDL 1.1:

m WSDL 1.2 provides support for W3C Recommendations, including
XML Schemas and XML Information Set.

m WSDL 1.2 removes non-interoperable features from WSDL 1.1.
m WSDL 1.2 clearly defines HTTP 1.1 binding.

To obtain further information on WSDL 1.2, visit www.w3.org/2002/ws
/desc/.

Limitations of WSDL

WSDL 1.1 has an obvious limitation: its incapability of being able to
describe complex business Web services, which typically are constituted by
orchestrating multiple finer-grained Web services. This drawback is due to
the lack of support for workflow descriptions in WSDL. To overcome these
limitations of WSDL, standards such as ebXML Collaborative Protocol
Profile/Collaborative Protocol Agreement (CCP/A), Business Process
Specification Schema (BPSS), and Web Services Choreography Interface
(WSCI) can be leveraged. An EbXML set of technologies can be used to
build business Web services. To find more information on EbXML technical
architecture, refer to Chapter 14, “Introduction to Sun ONE.” A WSCI
specification can be downloaded from wwws.sun.com/software/xml
/developers/wsci/. Also Chapter 2, “Introduction to Web Services,” pro-
vides a brief introduction to WSCL

Apart from these, there are some low-level issues with WSDL 1.1 speci-
fication in terms of the clarity of specification. To get a complete listing of
WSDL 1.1 issues, visit wsdl.soapware.org/.

We will now begin our journey with UDDI.

Universal Description, Discovery,
and Integration (UDDI)

As already discussed, UDDI technology is the core and one of the building
blocks of Web services apart from SOAP and WSDL. UDDI enables the busi-
nesses providing services (in electronic form or in any other medium) to reg-
ister information to enable the discovery of their services and business
profile by prospective customers and/or partners. Similarly, it enables
businesses to discover other businesses for expanding potential business
partnerships. Thus, UDDI presents businesses with an opportunity to step

Description and Discovery of Web Services

223

into new markets and services. It powers all kinds of businesses, large,
medium, or small, to accelerate their business presence in this global market.

UDDI initially started as a joint effort from IBM, Microsoft, and Ariba.
Since then, a number of companies joined the UDDI community. As of this
book’s writing, the UDDI project community is looking forward to releas-
ing version 3.0 of the UDDI specification. This chapter covers version 2.0 of
the UDDI specification because it is widely implemented and adopted as
of this writing. To find more information on the UDDI effort, visit the
UDDI official Web site at www.uddi.org.

UDDI Registries

An implementation of the UDDI specification is termed as a UDDI registry.
UDDI registry services are a set of software services that provide access to
the UDDI registry. Meanwhile, registry services can perform a plethora of
other activities such as authenticating and authorizing registry requests,
logging registry requests, load-balancing requests, and so on.

Public and Private UDDI Registries

A UDDI registry can be operated in two modes: public mode and private
mode. A public UDDI registry is available for everyone to publish/query
the business and service information on the Internet. Such public registries
can be a logical single system built upon multiple UDDI registry nodes that
have their data synchronized through replication. Thus, all the UDDI reg-
istry node operators would each host a copy of the content and accessing
any node would provide the same information and quality of service as
any other operator node. Such global grouping of UDDI registry nodes is
known as a UDDI Business Registry, or UBR. Content can be added into a
UBR from any node, however, content can be modified or deleted only at a
node at which it was inserted.

A private UDDI registry is operated by a single organization or a group of
collaborating organizations to share the information that would be avail-
able only to the participating bodies. Private UDDI registries can impose
additional security controls to protect the integrity of the registry data and
to prevent access by unauthorized users. Note that a private node also can
participate in information replication.

A UDDI registry in itself is a Web service. A Web service consumer
queries the UDDI registry using the SOAP API defined by UDDI specifica-
tion. Also, the UDDI specification publishes a WSDL description of the
UDDI registry service.

224 Chapter 5

The UDDI project community members operate a UBR. This registry is
available to everyone for free publishing/querying of businesses and ser-
vices information. To find more information on this publicly operated
UDDI registry, visit the UDDI Web site at www.uddi.org.

Interacting with a UDDI Registry

Typically, vendors implementing a UDDI registry provide two ways of
interacting with a UDDI Registry Service.

m A graphical user interface (GUI), for interacting with a UDDI reg-
istry. These GUIs also can be browser-based. The following is a list
of public UDDI registries, operated by various companies such as
Microsoft, IBM, Hewlett Packard, and so on, that provide a browser-
based interface to these registries:

m https://uddi.rte.microsoft.com/search/frames.aspx

m https://www-3.ibm.com/services/uddi/v2beta/protect
/registry.html

m https://uddihp.com/uddi/index.jsp
m http://udditest.sap.com/
m http://www.systinet.com/uddi/web

Figure 5.3 shows a browser-based GUI provided by Systinet in order to
interact with its publicly hosted UDDI registry. This screenshot depicts the

interface provided for searching businesses registered with the Systinet
registry.

A Sy stmet WASE UDDL 4.0 - Microsoft Internet Explorer

| Fie Edt Yew Fauaites Took Heb

= R e e R e = e =Y

| ckivess [bz v spstrat comjuidjwes 4
Yoee |
© systinet b > Fird busness

Main Find business

Business query

Busmess name ; e

Smerch | Switchibo advancedmods |

Find qualifiers

precedence qualilier name qualifier vahue

general Souiwbes: * p Yes

1 Exact name match: & pg © yes

1 Case sensitive: % pa Yes
. z Sart by name: % Unsorted © Ascending © Descending
Jurand a Sart by date: Unseted O ascending © Descending

Figure 5.3 \Web-based GUI to UDDI registry.

Description and Discovery of Web Services 225

m A programmatic interface for communicating with the UDDI reg-
istry. These programmatic interfaces are based on SOAP, because the
UDDI registry supports SOAP as the communication protocol.

m Most of the vendors providing the UDDI registry implementa-
tions support both of these types of access to the registry.

Uses of UDDI Registry

Businesses can use a UDDI registry at three levels:

White pages level. Businesses that intend to register just the very
basic information about their company, such as company name,
address, contact information, unique identifiers such as D-U-N-S
numbers or Tax IDs, or Web services use UDDI as white pages.

Yellow pages level. Businesses that intend to classify their informa-
tion based on categorizations (also known as classification schemes
or taxonomies) make use of the UDDI registry as yellow pages.

Green pages level. Businesses that publish the technical information
describing the behavior and supported functions on their Web ser-
vices make use of the UDDI registry as green pages.

Note that the UDDI specification does not explicitly make references to
these different types of usage levels of the UDDI registry. The categoriza-
tion of these levels is rather implicit.

UDDI Specifications

All versions of the UDDI specifications can be obtained from the UDDI
organization at their Web site at http://uddi.org/specification.html. The
UDDI 2.0 specification set includes the following documents:

UDDI replication. The document describes the data replication
process of the UDDI registries. Also, it describes the programmatic
interfaces supported by UDDI for achieving replication between
UDDI registries operated by different operators.

UDDI operators. This document provides information on the opera-
tional behavior that should be followed by UDDI node operators. For
example, the document defines guidelines that node operators can
follow in order to manage the data of the UDDI registry node. Such
guidelines include the following:

m Node operators’ responsibility for durable recording and backup
of all data.

226 Chapter5

m Checking the validity of information provided by businesses
during registration, such as email addresses.

m Checking the integrity of data in the UDDI registry after it has
been modified. For example, if a business has been deleted from
the registry, then the operator should ensure that the services
corresponding to this business also are deleted.

Note that private UDDI node operators are not required to follow the
guidelines mentioned in this document.

UDDI programmer’s API. This document describes the programming
interfaces supported by a UDDI registry in terms of SOAP messages.
This document is targeted towards programmers who want to write
software that would interact with a UDDI registry operated at a pub-
lic or private level, using SOAP.

UDDI data structures. This document outlines the details of the XML
structures that are associated with the SOAP messages used to com-
municate with the UDDI registries. These SOAP messages are well
defined by the UDDI programmer’s API specification and are used to
perform the inquiry and publishing functions on the UDDI registry.

To begin with, let’s take a look at how to retrieve, search, and publish
information to a UDDI registry in the next section.

Programming with UDDI

This section introduces the APIs used for communicating with a UDDI reg-
istry. Also, important data structures and categorization support of UDDI
are discussed.

UDDI Programming API

The UDDI specification defines two XML-based programming APIs for
communicating with the UDDI registry node: inquiry API and publishing
API. The following sections describe each of these.

Inquiry API

The inquiry API consists of XML messages defined using a UDDI Schema,
which can be used to locate information about a business, such as the ser-
vices a business offers and the technical specification of those services (such
as a link to a WSDL document describing the interface of the service, the
binding of the service and the URL where the service is running, and so on).
A UDDI programmer would use these inquiry APISs to retrieve information

Description and Discovery of Web Services 227

stored in the registry. To retrieve information, a registry user does not need
to be authenticated.

The following is a list of inquiry API functions that can be used for
finding information in a UDDI registry:

<find_business>
<find_relatedBusinesses>
<find_service>
<find_binding>

<find_tModel>

To get further detailed information from the UDDI registry, the follow-
ing inquiry API functions are available:

<get_businessDetail>
<get_businessDetailExt>
<get_serviceDetail>
<get_bindingDetail>
<get_tModelDetail>

Publishing API

The publishing API consists of functions represented by a UDDI Schema,
which defines XML messages that can be used to create, update, and delete
the information present in a UDDI registry. Note that in order to publish to
a UDDI registry, the registry user needs to be authenticated.

The following is a list of publishing API functions that can be used for
adding/modifying information to a UDDI registry:

<save_business>
<set_publisherAssertions>
<add_publisherAssertions>
<save_service>
<save_binding>

<save_tModel>

The following is a list of publishing API functions that can be used for
deleting information from a UDDI registry:

<delete_business>

<delete_publisherAssertions>

228 Chapter 5

m <delete_ service>
m <delete_binding>

m <delete_tModel>

Apart from the functions just mentioned, the publishing API also defines
functions that deal with the authentication of the registry users, which
is required in order to successfully execute the rest of the functions of
this API:

m <get_authToken>

m <discard_authToken>

We will discuss each of the aforementioned APIs in detail in the sections
titled Inquiry API and Publishing API, which follow.

The XML messages constituting the UDDI programmer APIs are defined
using a UDDI XML Schema. These XML messages are wrapped in a SOAP
message and then sent to the UDDI registry. In other words, all of the XML
messages are enveloped within a SOAP <body> element and then sent as
an HTTP POST request to the UDDI registry. The UDDI registry then
processes these SOAP messages and gets hold of the actual API function
represented by the XML message, which further instructs the registry ser-
vices to provide either publishing or querying services.

A UDDI registry node typically enables access to both inquiry and
publishing functionalities through different access point URLs. Table 5.3
lists the URLSs for publicly operated UDDI registry nodes.

As we can see from Table 5.3, all of the URLs corresponding to the pub-
lishing access points support HTTPS, because publishing operations need
authenticated access.

Table 5.3 Access Point URLs

OPERATOR INQUIRY URL PUBLISHING URL

Microsoft http://uddi.microsoft.com/inquire https://uddi.microsoft.com

/publish
IBM http://www-3.ibm.com/services https://www-3.ibm.com
/uddi/inquiryapi /services/uddi/protect
/publishapi
HP http://uddi.hp.com/inquire https://uddi.hp.com/publish
SAP http://udditest.sap.com/uddi https://udditest.sap.com

/api/inquiry /uddi/api/publish

Description and Discovery of Web Services

229

Note that all the UDDI invocations follow a synchronous request/response
mechanism and are stateless in nature. This statelessness has a significant
impact on the authentication of a registry user to the UDDI registry, which is
required when performing a publishing operation on the registry. Because of
the stateless nature of the UDDI programming API, each time a registry
user uses a publishing programming API, the security credentials of the
identity associated with the registry user also are passed with each UDDI
invocation.

UDDI Data Structures

The information managed by a UDDI registry is represented as XML data
structures also known as UDDI data structures. The UDDI data structures
specification document defines the meaning of these data structures and
the relationship between them. Ultimately, it is these data structures with
which a UDDI client needs to work. A UDDI client makes use of these, in
conjunction with the XML messages of programming APIs, to manipulate
a specific type of information in a registry. Similarly, response to a search
operation received from the UDDI registry also would consist of these data
structures. Hence, the UDDI data structures are more or less input and out-
put parameters for the UDDI programming APIL.

The following are the five primary UDDI data structures defined in the
specification:

<businessEntity>

<publisherAssertion>

|

-

m <businessService>
m <bindingTemplate>
|

<tModel>

Note that all of these data structures except <publisherAssertion>
are identified and referenced through a 128-bit globally unique identifier
also known as UUID. These UUIDs can later be used as keys to access the
specific data within the registry.

Now, let’s take a look at each of these one by one.

<businessEntity>

The <businessEntity> data structure represents the primary information
about a business, such as contact information, categorization of the business
according to a specific taxonomy or classification scheme, identifiers, rela-
tionships to other business entities, and descriptions about that particular

230 Chapter 5

business. The categorizations are discussed in a later section titled Support for
Categorization in UDDI Registries.

<publisherAssertion>

A business registered in a UDDI registry can have active business
relationships with other businesses. This relationship can be of any
form, for example, a relationship of business partners or a business-to-
customer relationship. Such relationships are represented by a
<publisherAssertion> data structure in a UDDI Registry. The
<publisherAssertion> structure is used to establish a relationship
between two <businessEntity> structures.

A very interesting aspect about relationships in a UDDI registry is its
ability to not make the relationship visible to the public unless and until
both of the parties establishing this association assert for the same. This
means that if a <businessEntity> structure representing Company A
asserts its relationship with a <businessEntity> structure representing
Company B through a <publisherAssertion> structure, a UDDI reg-
istry would not make this relationship public until Company B has created
another similar <publisherAssertion> structure. This provision is
supported by the UDDI registries in order to ensure that a company can
claim a business relationship with another company, only if the other part-
ner also asserts for the same relationship.

<businessService>

The <businessService> data structure represents the service of a busi-
ness. These services can be Web services or any other type of service. For
example, the <businessService> data structure may represent a service
that is offered over the telephone, such as a telephone banking service. The
<businessService> data structure is merely a logical representation of
services that a business has to offer.

A <businessEntity> structure contains one or more
<businessService> structures. The same <businessService> struc-
ture also can be used by multiple <businessEntity> structures. For
example, if a business has two departments—say, manufacturing and
sales— that are each published to a UDDI registry as a <businessEntity>
structure, then both of them can use the same <businessService> struc-
ture representing another business service—say, legal counseling.

<bindingTemplate>

The <bindingTemplate> structure consists of pointers to technical
descriptions and access URLs of the service. Each <businessService>

Description and Discovery of Web Services

231

structure can contain one or more <bindingTemplate> structures. So,
for example, if the <businessService> structure represents a Web ser-
vice, then its <bindingTemplate> would refer to a PDF document pro-
viding the technical description of this Web service and the URL at which
the Web service can be accessed. Also, the <bindingTemplate> structure
can provide an optional description of the Web service.

Note that the <bindingTemplate> structure does not provide the details
of the service specification, such as the interface of a service. That information
is provided by the <tModel> structures, and <bindingTemplate> simply
refers to one or more of such <tModel> structures.

<tModel>

The <tModel> structure provides a description of a particular specifica-
tion or behavior of the service. The <tModel> structure does not contain
the service specification directly; instead, it contains a link to the service
specification, which is managed elsewhere. The <tModel> thus defines
the interaction pattern in order to use the service. For example, a business
may provide a Web service whose WSDL interface may be referenced
through a link from within the <tModel> structure.

Thus, <tModel> defines the lowest-level and most concrete piece of
information about the services offered by a business. A UDDI client typi-
cally gets hold of the service specification pointed out by the <tModel>
structure in order to use a publicly available Web service registered by a
particular business.

The linking between these five core data structures of UDDI is depicted
in Figure 5.4.

Apart from these five primary data structures, two other structures exist
that represent the category and identification information of the primary
data structures: <identifierBag> and <categoryBag>. Let’s take a
look at each of them now.

<identifierBag>

The <identifierBag> structure enables <businessEntity> or
<tModel> structures to include information about the common forms of
identification such as D-U-N-S numbers and tax IDs. This data can be used
to signify the identity of <businessEntity>, or it can be used to signify
the identity of the publishing party. Including such identification informa-
tion is optional. However, when a published <businessEntity> or
<tModel> carries such common forms of identification, it greatly
enhances the search behaviors exposed via inquiry API functions.

232 Chapter 5

| ——
<businessEntity> <publisherAssertion>
Information about the party Information about the
who publishes information relationship between two parties,
about a family of services | | asserted by one or both parties
<businessService> <tModel>
,| Descriptive information about a Descriptions of specifications for
particular Web service services (or categorization
systems)

Y

—— <bindingTemplate>
data contains

L . references to
»| Technical information abouta | | <tModel>

service entry point and structures. These
construction specification <tModel>

structures
designate the
interface
specifications for a
service.

<bindingTemplate>

Figure 5.4 Primary UDDI data structures.

<categoryBag>

The <categoryBag> structure enables <businessEntity>,
<businessService>, and <tModel> structures to be categorized
according to any categorization system, such as an industry categorization
system or a geography categorization system. Categorizing the data
structures mentioned previously is optional. However, when these data
structures are published along with their categorization information, it
greatly enhances the search behaviors exposed via inquiry API functions.
The categorization support in a UDDI registry is discussed in the following
section.

Description and Discovery of Web Services

233

Support for Categorization in UDDI Registries

Categorization—also known as classification in JAXR terminology—is con-
sidered to be the prominent functionality of any registry. Categorization
enables the data to be classified with the help of various categorization sys-
tems (also known as taxonomies or classification schemes), such as an indus-
try categorization system or a geography categorization system. For example,
a business can be classified as being located in the United States with the help
of a standard geography categorization system such as ISO-3166.

Categorizing data aids in searching for a particular piece of data. For
example, searching for a software organization whose name begins with
the letter M is much easier when that data is categorized as being located
in Redmond, Washington, than when it is not. Searching by the letter M for
an organization that does not have a geographical categorization returns a
much broader set of results, thus making it much more difficult to discover
the business in which one is interested. Hence, categorization is especially
useful in the discovery of information managed by a UDDI registry.

UDDI registries have built-in support for three industry standard cate-
gorization systems. Also, the registry specification enables support for an
open-ended categorization system that can be used in specific ways by a
UDDI registry node operator. In UDDI, the categorization system is repre-
sented by a <tModel> structure. These <tModel> structures have a
unique name across all the UDDI registry node operators; however, the
<tModel> UUID may change between the node operators.

UDDI-Supported Categorization Systems

The UDDI supported categorization systems and their <tModel> names
are shown in Table 5.4.

Checked and Unchecked Categorization System

UDDI version 2.0 included the capability of validating the categorization
of a particular UDDI data structure. Depending upon whether an organi-
zation chooses to use the validation service of a UDDI registry, one of the
two types of categorization systems will be supported:

Checked categorization system. Checked categorization systems are
used when the publisher of a categorization system wishes to ensure
that the categorization code values registered represent accurate and
validated information. The categorization code values represented by
UDDI structure <categoryBag> would be checked for valid values
during a <save_business>, <save_service>, Or
<save_tModel> API call.

234 Chapter 5

Table 5.4. UDDI-Supported Categorization Systems and Their <tModel> Names

CATEGORI- <TMODEL> NAME
ZATION

DESCRIPTION

SYSTEM

NAICS ntis-gov:naics
:1997

This is a standard industry and services
categorization system. NAICS abbreviates to
the North American Industry Classification
System. This system is the most elaborate
and comprehensive industry classification
scheme defined so far. Further information
on this categorization system can be
obtained from www.census.gov/epcd/www
/naics.html.

UNSPSC unspcs-org
:unspsc:3-1

This standard industry and services
categorization system abbreviates to the
Universal Standard Products and Services
Classification. This was the first such
industry classification scheme defined for
electronic businesses. Further information
on this categorization system can be
obtained from www.unspsc.org.

I1SO 3166 iso-ch:3166 This is the standard geography-based
:1999 categorization system. Further information
can be found at www.din.de/gremien/nas
/nabd/iso3166ma.
Operator uddi-org:general This categorization system is operator
Specific _keywords specific. This is an open-ended

categorization system that is not pre-
defined. As a result, it can consist of any
category entries that may be defined
specifically for that UDDI registry node.

UDDI version 2 also enables third parties registering new categoriza-
tion systems to control the categorization validation process. In such
case, the third party would implement a Web service, in the same
manner as UDDI does, that exposes a single XML API function

named <validate_ values>.

Unchecked categorization system. Unchecked categorization systems
are used for categorization without the need for a UDDI to perform
validation of categorization code values. Businesses can choose to

Description and Discovery of Web Services

235

make their categorization system available for categorization as an
unchecked categorization system. Registering a new <tModel>
structure and categorizing that <tModel> as a categorization system
would register it as an unchecked categorization system.

Now, let’s take a look at the available programming APIs for searching
information in a UDDI registry.

Inquiry API

This section will cover all of the XML messages that perform the function-
ality of inquiring certain information from a UDDI registry. Inquiry API
constitutes of two types of functions:

m Functions that return zero or more homogeneous data structures
containing abbreviated information

m Functions that return zero or more homogeneous data structures
containing detailed information

To begin with, we will take a look at the API functions, which return
abbreviated information in response.

Find _xx Inquiry API Functions

The find_xx functions follow the browse pattern. The browse pattern typi-
cally involves starting with some broad information, performing a search,
finding general result sets, and then selecting more specific information for
drill-down purposes.

The find_xx calls form the search capabilities such that the summary of
matched results are returned in the response message. Hence, a UDDI
client would get the overview information about the registered data by
using find_xx inquiry API calls. Once the client gets hold of the key for one
of the primary UDDI data structures, it then can use get_xx inquiry API
functions to get further details.

<find_business>

The <find_business> API function represented by an XML message is
used to locate information about one or more businesses. Given a regular
expression, business category, business identifier, or <tModel> as criteria,
this message retrieves zero or more <businessInfo> structures con-
tained within a single <businessList> structure.

236 Chapter 5

The syntax for this API is as follows:

<find_business [maxRows="nn"] generic="2.0"
xmlns="urn:uddi-org:api_v2">
[<findQualifiers/>]
[<name/> [<name/>]...]
[<discoveryURLs/>]
[<identifierBag/>]
[<categoryBag/>]
[<tModelBag/>]
</find_business>

Arguments to this function are listed in Table 5.5.

Table 5.5 <find_business> Function Arguments

ARGUMENT DESCRIPTION

maxRows This argument specifies the maximum number of
results that can be returned.

findQualifiers This argument represents a collection of search
qualifiers that form the criteria of the given
operation. The search qualifiers are discussed in
more detail in a later section.

name This argument can be a partial or full name of the
business being searched. The name pattern can
make use of the wildcard character % as well. Up to
five name values can be specified in the argument.
In cases when multiple name values are passed, the
match occurs on a logical OR basis.

The returned <businessList> contains
<businessInfo> structures for businesses whose
name matches the name value(s) passed in a lexical
(leftmost in left to right languages) fashion.

IdentifierBag This argument contains a list of business identifier
references.

The returned <businessList> contains
<businessInfo> structures matching any of the
identifiers passed (logical OR).

categoryBag This is a list of category references.

The returned <businessList> contains
<businessInfo> structures matching all of the
categories passed (logical AND).

Description and Discovery of Web Services 237

Table 5.5 (Continued)

ARGUMENT DESCRIPTION

tModelBag This argument enables searching for businesses that
have bindings exposing a specific fingerprint within
the <tModelInstanceDetails> structure.

The returned <businessList> structure contains
<businessInfo> consisting of a
<businessEntity> structure, which in turn
contains <bindingTemplate> referencing
<tModel> structures that match all the <tModel>
keys passed in this argument (logical AND).

discoveryURLs This argument contains a list of URLs to be matched
against the <discoveryURL> data associated with
any registered <businessEntity> structures.

The following code shows the <find_business> XML message that is
sent within the request SOAP message to the UDDI registry. This function
call basically suggests that the UDDI registry returns information on the
businesses that lexically match "ACM":

<uddi:find_business generic="2.0" maxRows="10">
<uddi :name>
ACM
</uddi :name>

</uddi:find_business>

The complete SOAP message response, containing the <businessList>
structure returned from the registry, is shown in Listing 5.4.

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV=
"http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<businessList xmlns="urn:uddi-org:api_v2"
generic="2.0" operator="SYSTINET">
<businessInfos>
<businessInfo businessKey=
"uuid:23453aef-af35-6a3f-c34a-
bf798dab965a">

Listing 5.4 Response to <find_business> function. (continues)

238 Chapter 5

<name xml:lang="en">
ACME Computer Services
</name>
<description xml:lang="en">
Provides professional services
in the areas of computer software
</description>

<gserviceInfos>
<serviceInfo

serviceKey=
"uuid:1245sdef-af35-6a3f-c34a-
bf798dab965a"

businessKey="uuid:523f3aef-
af35-6a3f-c34a-bf798dab965a">
<name xml:lang="en">
Billing Services
</name>
</serviceInfo>
</serviceInfos>
</businessInfo>
</businessInfos>
</businessList>
</SOAP-ENV : Body>
</SOAP-ENV:Envelope>

Listing 5.4 Response to <find_business> function. (continued)

Thus, as can be seen from the response in Listing 54, the
<businessList> structure contains information about each matching busi-
ness and summaries of the <businessServices> exposed by the individ-
ual businesses. If <tModelBag> were used in the search, the resulting
<serviceInfo> structures would only reflect data for the <busi-
nessServices> that contain the matching <bindingTemplate>.

If any error occurred in processing this API call, a <disposition
Report> structure would be returned to the caller in the SOAP Fault.

<find_relatedBusinesses>

Given the UUID of a <businessEntity>, this message returns a list
of UUIDs contained within a <relatedBusinessesList> structure. The
<relatedBusinessesList> structure would consist of <related

Description and Discovery of Web Services

239

BusinessInfo> structures consisting of information about the businesses
that have a relationship with this business.
The syntax for this APl is as follows:

<find_relatedBusinesses generic="2.0" xmlns="urn:uddi-org:api_v2">
[<findQualifiers/>]
<businessKey/>
[keyedReference/>

</find_relatedBusinesses>

Arguments for this function are listed in Table 5.6. Note that the
<findQualifiers> argument has been discussed before and hence is
not discussed again.

The following code shows the <find_relatedBusinesses> XML
message that is sent within the request SOAP message to the UDDI reg-
istry. This function call suggests that the UDDI registry return the busi-
nesses that are related to the <businessEntity> specified by the UUID
'23453aef-af35-6a3f-c34a-bf798dab965a':

<uddi:find_relatedBusinesses generic="2.0">
<uddi:businessKey>
23453aef-af35-6a3f-c34a-bf798dab965a
</uddi :name>
</uddi:find_relatedBusinesses>

Table 5.6 <find_relatedBusinesses> Function Arguments

ARGUMENT DESCRIPTION

businessKey This is a UUID that is used to specify a particular
<businessEntity> to use as the focal point of
the search. This is a mandatory argument, and it
must be used to specify an existing
<businessEntity> in the registry.

The results would include the businesses that are
related in some way to the <businessEntity>
whose key has been specified by this argument.

keyedReference This is a single, optional <keyedReference>
element that is used to specify that only businesses
related to the focal point in a specific way should be
included in the results. The <keyedReference>
structure is used to classify a data structure in a
UDDI registry. The usage of the <keyedReference>
structure is shown later.

240 Chapter5

The following code shows the partial SOAP message response, contain-
ing the <relatedBusinessesList> structure, returned from the reg-
istry:

<relatedBusinessesList generic="2.0" operator="SYSTINET"
xmlns="urn:uddi-org:api_v2">
<businessKey>
23453aef-af35-6a3f-c34a-bf798dab965a
</businessKey>

<relatedBusinessInfos>
<relatedBusinessInfo>
<businessKey>
22443aef-ac35-2f3f-c34a-cad423bb931c
</businessKey>

<name>
XYZ Corporation
</name>

<description>
Outsourced HR Services provider
</description>

<sharedRelationships>
<keyedReference tModelKey="uuid:..."
keyName="XYZ Provides HR Services to ACME
Computer Services"
keyValue="1">
</sharedRelationships>
</relatedBusinessInfo>

</relatedBusinessInfos>
</relatedBusinessesList>

<find_service>

Given the UUID of a <businessEntity> structure, the name of the ser-
vice, the <tModel> of a specification, or the service category, this message
returns a summary of matching services represented by <serviceInfo>
structures contained within a <serviceList> structure.

The following code shows the syntax for this API:

<find_service businessKey=uuid_key" [maxRows="nn"] generic="2.0"
xmlns="urn:uddi-org:api_v2">

[<findQualifiers/>]

[<name/>[<name/>]...]

[<categoryBag/>]

[<tModelBag/>]
</find_service>

Description and Discovery of Web Services

241

Semantics of the arguments to this API function have already been
discussed earlier in the “<find_business>" and “<find_relatedBusinesses>"
sections and hence are not covered again to avoid redundancy.

The following code shows the <find_service> XML message that is
sent within the request SOAP message to the UDDI registry. This function
call suggests that the UDDI registry return a list of services that match to
the name pattern ‘Bill” specified by the <name> element.

<uddi:find_service generic="2.0">
<findQualifiers>
<findQualifier>
caseSensitiveMatch
</findQualifier>
</findQualifiers>
<uddi :name>
Bill
</uddi :name>
</uddi: find_service>

Also, note how this query makes use of <findQualifiers> consisting
of an enumerated value 'caseSensitiveMatch' to instruct a case-
sensitive matching. Find qualifiers are discussed in detail in a later section.

The following code shows the partial SOAP message response, contain-
ing a <serviceList> structure, returned from the registry:

<servicelList generic="2.0" operator="SYSTINET"
xmlns="urn:uddi-org:api_v2">
<serviceInfos>
<serviceInfo
serviceKey=
"uuid:1245sdef-af35-6a3f-c34a-bf798dab965a"
businessKey=
"uuid:23453aef-af35-6a3f-c34a-bf798dab965a">
<name>
Billing Services
</name>
</serviceInfo>
</ServiceInfos>
</servicelList>

<find_binding>
Given the UUID of a <businessService> structure, the <find bind-
ing> message returns a <bindingDetail> structure containing zero or

more <bindingTemplate> structures matching the criteria specified by
the argument list.

242 Chapter 5

The syntax for this API is as follows:

<find_binding serviceKey=uuid_key" [maxRows="nn"] generic="2.0"
xmlns="urn:uddi-org:api_v2">

[<findQualifiers/>]

[<tModelBag/>]
</find_binding>

Semantics of the arguments to this API function have been discussed
earlier and hence will not be covered again.

The following code shows the <find_binding> XML message that is
sent within the request SOAP message to the UDDI registry. This function
call suggests that the UDDI registry return a list of <bindingTemplate>
structures that belong to the service whose key is '1245sdef-
af35-6a3f-c34a-bf798dab965a".

<uddi: find_binding serviceKey=
"uuid:1245sdef-af35-6a3f-c34a-bf798dab965a" generic="2.0">
<findQualifiers>
<findQualifier>
sortByNameAsc
</findQualifier>
</findQualifiers>
</uddi: find_binding>

Also, note this query makes use of <findQualifiers> carrying an
enumerated value of 'sortByNameAsc' to instruct the sorting of
returned results by names of the <tModel> structures, in an ascending
order. Find qualifiers are discussed in the Search Qualifiers section.

The partial SOAP message response, containing a <serviceList>
structure returned from the registry, is as follows:

<bindingDetail generic="2.0" operator="SYSTINET"
xmlns="urn:uddi-org:api_v2">

<bindingTemplate
bindingKey="uuid:acd5sdef-1235-6a3f-c34a-bf798dabl24a"
serviceKey="uuid:1245sdef-af35-6a3f-c34a-bf798dab965a">

<accessPoint URLType="http">
http://www.acmecomputerservices.com/
billingservices_entry/
</accessPoint>

<tModelInstanceDetails>

Description and Discovery of Web Services 243

<tModelInstanceInfo tModelKey=
"uuid:acd5sdef-1235-6a3f-c34a-bf798dabl24b">

<description>
Provides SOAP Interface. Described
by BillingServices_WSDL.wsdl.
</description>

</tModelInstanceInfo>
</tModelInstanceDetails>
</bindingTemplate>
</bindingDetail>

<find_tModel>

Given a name, a category, or an identifier, this message returns abbreviated
information of all the matching <tModel> structures contained in a
<tModelList> structure.

The syntax for this API is as follows:

<find_tModel [maxRows="nn"] generic="2.0"
xmlns="urn:uddi-org:api_v2">
[<findQualifiers/>]
[<name/>]
[<identifierBag/>]
[<categoryBag/>]
</find_tModel>

Semantics of the arguments to this API function have already been dis-
cussed earlier and hence are not covered again in order to avoid redundancy.

The following code shows the <find_tModel> XML message that is
sent within the request SOAP message to the UDDI registry. This function
call suggests that the UDDI registry return a list of <tModel> structures
that match to the name pattern 'WSDL'.

<uddi: find_tModel generic="2.0">
<name>
WSDL
</name>
</uddi:find_tModel>

The partial SOAP message response, containing a <tModelList> struc-
ture, returned from the registry is as follows:

244 Chapter 5

<tModelList generic="2.0" operator="SYSTINET"
xmlns="urn:uddi-org:api_v2">
<tModelInfos>
<tModelInfo tModelKey=
"uuid:acd5sdef-1235-6a3f-c34a-bf798dabl24b">
<name>
SOAP_WSDL_BillingServices
</name>
</tModelInfo>
</tModelInfos>
</tModelList>

Get_xx Inquiry API Functions

The get_xx functions follow the drill-down pattern. This pattern typically
involves getting more specific and detailed information about an entity
based on a unique key corresponding to the entity.

The get_xx calls form the search capabilities wherein once the UDDI
client has a UUID key for any of the primary UDDI data structures of
<businessEntity>, <businessService>, <bindingTemplate>,
and <tModel>, it can use that key to get access to the full registered details
of that particular structure. The client then can access the details of these
structures by passing a relevant key type to one of the get_xx Inquiry API
function calls.

All of these get_xx functions are quite straightforward. These functions
require a valid UUID for the data structure whose details need to be drilled
down.

Table 5.7 lists these four get_xx functions and an explanation of their
semantics. Also listed in the table are the response structures returned by
the UDDI registry in response to each of these calls.

Table 5.7 get xx Functions
GET_XX FUNCTION RETURNED STRUCTURE DESCRIPTION

<get_businessDetail> <businessDetail> This message returns a
<businessDetail>
structure consisting of one or
more <businessEntity>
structures matching the
UUID(s) passed as an
argument to this function call.

Description and Discovery of Web Services 245

Table 5.7 (Continued)
GET_XX FUNCTION RETURNED STRUCTURE DESCRIPTION

<get_serviceDetail> <serviceDetail> This message returns a
<serviceDetail> structure
containing one or more
<businessService>
structures matching the
UUID(s) passed as an
argument to this function call.

<get_bindingDetail> <bindingDetail> If the integrity of
<bindingTemplate> is not
intact, for example if the
document referred to by the
<tModel> referenced by
<bindingTemplate> has
been moved or deleted, this
function call should be used
to get hold of the new
<bindingDetail> structure

<get_tModelDetail> <tModelDetail> This message returns a
<tModelDetail> structure
consisting of one or more
<tModel> data structures
matching the UUID(s)
passed as an argument to
this function call.

In order to understand the nature of get_xx functions, let's examine the
working of the <get_businessDetail> function call.

The following code shows the <get_businessDetail> XML message
that is sent within the request SOAP message to the UDDI registry. This
function call suggests that the UDDI registry return the registered details
for business corresponding to the key '23453aef-af35-6a3f-c34a-
bf798dab965a’.

<uddi:get_businessDetail generic="2.0">
<businessKey>
23453aef-af35-6a3f-c34a-bf798dab965a
</businessKey>
</uddi: find_tModel>

246 Chapter 5

The partial SOAP message response, containing a <businessDetail>
structure, returned from the registry is as follows:

<businessDetail generic="2.0" operator="SYSTINET"
xmlns="urn:uddi-org:api_v2">

<businessEntity authorizedName = "John Smith"
businessKey="uuid:23453aef-af35-6a3f-c34a-bf798dab965a"
operator="SYSTINET">

<discoveryURLs>
<discoverURL useType="businessEntity">
http://www.systinet.com/wasp/uddi/
discovery?businessKey=
23453aef-af35-6a3f-c34a-bf798dab965a
</discoveryURL>
</discoveryURLs>

<name>
ACME Computer Services

</name>

<description xml:lang="en">
Provides professional services in the areas of
computer software

</description>

<contacts>

<contact useType="information">

<description xml:lang="en">
For sales related information
</description>

<personName>
Joe Smith
</personName>

<address>
1, Computer Drive, Burlington,
MA 01803 USA
</address>
</contact>
</contacts>

<businessServices>
</businessServices>

</businessEntity>
</businessDetail>

Description and Discovery of Web Services 247

The <businessServices> structure in the previous listing is
expanded as follows:

<businessService
businessKey="23453aef-af35-6a3f-c34a-bf798dab965a"
serviceKey="1245sdef-af35-6a3f-c34a-bf798dab965a">
<name xml:lang="en">
Billing Services
</name>

<description xml:lang="en">
Billing Services
</description>

<bindingTemplates>
<bindingTemplate bindingKey=
"uuid:acd5sdef-1235-6a3f-c34a-bf798dabl24a"
serviceKey="1245sdef-af35-6a3f-c34a-bf798dab965a ">

<description xml:lang="en">
Here is where you should be visiting to
get started with using billing services
provided by us.

</description>

<accessPoint URLType="http">
http://www.acmecomputerservices.com/
billingservices_entry/
</accessPoint>

<tModelInstanceDetails>
<tModelInstanceInfo tModelKey=
"uuid:acd5sdef-1235-6a3f-c34a-
bf798dabl24b" >

<description xml:lang="en">
Provides SOAP Interface.
Described by
BillingServices_WSDL.wsdl.
</description>

<instanceDetails>
<overviewDoc>
<description
xml:lang="en">
Describes how to use
this service

</description>

<overviewURL>

248

Chapter 5

http://www.acmecomputer
services.com/billing
services_description/
</overviewURL>
</overviewDoc>
</instanceDetails>
</tModelInstanceInfo>
</tModelInstanceDetails>
</bindingTemplate>
</bindingTemplates>

<categoryBag>
<keyedReference keyName=
"Custom Computer Programming Services "
keyValue="541511"
tModelKey=
"uuid:COBI9FE13-179F-413D-8A5B-5004DB8ESBB2" />

<keyedReference keyName="United States"

keyValue="US"

tModelKey=

"uuid:4ed49a8d6-d5a2-4fc2-93a0-0411d48d19e88" />
</categoryBag>

</businessService>

Thus, this business is classified by two categories:

The standard industry categorization system (NAICS). The first
<keyedReference> structure under <categoryBag> suggests
that ACME Computer Services is a “Custom Computer
Programming Services” company.

The standard geography categorization system (ISO-3166). The sec-
ond <keyedReference> structure under <categoryBag> in the
previous listing suggests that ACME Computer Services is geograph-
ically related to “United States”.

The next section talks about search qualifiers, one of the arguments to
most of the inquiry API functions.

Search Qualifiers

Most of the inquiry API functions accept <findQualifiers> as arguments.
The <findQualifiers> structure consists of search qualifiers expressed by
a <findQualifier> data structure. The UDDI Programmer’s API specifi-
cation document pre-defines search qualifiers as an enumeration.

Table 5.8 shows some of the most frequently used search qualifiers, rep-
resented by their enumerated values, and explains their semantics.

Description and Discovery of Web Services

249

Table 5.8 The Most Frequently Used Search Qualifiers

ENUMERATED SEARCH
QUALIFIER DESCRIPTION

exactNameMatch When this search qualifier is specified, only the entries
that exactly match the name pattern passed in the
<name> argument would be returned in the result.

caseSensitiveMatch This search qualifier signifies that case sensitive
matching between entries has been searched and the
entry has been specified by the <name> argument.

sortByNameAsc This is the default sort qualifier, if no other conflicting
sort qualifier is specified.

sortByNameDesc This signifies that the result returned by a find_xx or
get_xx Inquiry API call should be sorted based on the
name field in descending alphabetic sort order.

sortByDateAsc This is the default sort qualifier, if no other conflicting
sort qualifier is specified. Also, the sort qualifiers
involving a date are secondary in precedence to the
sortByName qualifiers. This causes the sortByName
elements to be sorted within name by date, oldest to
newest.

sortByDateDesc Also, because the sort qualifiers involving dates are
secondary in precedence to the sortByName
qualifiers, this causes sortByName elements to be
sorted within name by date, newest to oldest.

With this, now we will proceed to the publishing API of the UDDI
registry.

Publishing API

This section will cover all of the XML messages that perform the function-
ality of adding/modifying/deleting information from a UDDI registry. As
mentioned earlier, publishing to a UDDI registry requires an authenticated
access. UDDI specification does not define authentication mechanisms,
and hence, authentication is dependent upon the implementations of
UDDI. Also, a URL different from an inquiry URL usually handles
publishing-related API calls. Typically, HTTPS is used for carrying pub-
lishing call request/response information.

Table 5.9 lists the publishing API functions as well as their semantics.
The table also lists the structure that is returned in response to each of these
function calls.

250 Chapter5

'so8essall <USXOLY3Ine pPIeDSTIP>

10 XX 9)9|9p 0} asuodsal ul pauinial shkemje si

a8essaw <3x0deyguoT3TSOdsTIP> 9Y] "SUOIRNYS JOLID
-UOU Ul S3SS320NS 9)BIIUNWIWOD 0} 2INPNIIS SIY} SISN
os[e |adn “J9ASMOH "Pa3eJIUNWIWOD 3 0} Paau SI0LD
2I3YM $3sBI By} [|e ul pasn sI <3xodeyuoT]TsodsTp>
‘sny] -a3essawl }nej dyOS Y3 JO JUSWSIS [RINPNIS
<TTe3ep> ay} 0} sdew <3xodeguoTitsodsTp>
aInpnus elep |ddn dYL ‘sedessa }ney

dVOS Se Juai> Y} 0} pajedIUNWIWOD 3Je SI0Ld [ddn

‘palojdwod
uaaq sey suonesado 3uiysiignd jo uonndaxa ay} Jaye
apou Ansi8al |aan oy} 03 Juds aq pjnoys a3essaw sy

‘uonesado yo3oj e ojul Suiynsal Ajjenuassa
‘I9SN SIY} YA pa)eIDOSSe UOISSSS LOIedUayIne aAIpe
9y} piedsip 0} apou Ansi8al [d@n e swiojul a8essaw ay|

<3xodeyuoTaTsodsTp>

<ue3OLYIne pPILOSIP>

"Idv 8uiysiignd ayj ur uonduny Aub 31NdXd
0} 19pI0 Ul palinbal si ua%0) UOIIEIUSYINE PIjeA Y/ 910N

'sasodind uonednUaYINe 10§ 3SN pjNOM
Ansi3a1 |aan ay3 1ey3 1asn Ansi8ai e 03 Suipuodsaliod
plomssed pue | ut8oj e jo ssisuod a8essaw siy|

21NN
<usyoryane> ue ul agessaw siy} o} asuodsal ul usy o}
uoledUBYINE UR WIN}al [|IM dpou Aisi8al |gan aylL

NOlLdI¥dSs3a

<us3oryaines

JANLINYLS

aiNinliiy

<usyoLyine 326>

NOILLONNA IdY
ONIHSITaNnd

suoipund 1dy ulysiiqnd 6°s d|qeL

251

Description and Discovery of Web Services

(senunuod)

‘palipow/pappe uaaq 1snf aney
1ey3 (S)221A1S BY3 JO S|IeIdP [N} 9y} Suluieuod aInpPNI3s
<TTe3=geoTAISS> AU} JO S)SISU0D asuodsal Ansidal ay)

'saInpni)s <ojeTdws 1 BuUTPUTA> 0] SIIUBIJRI SunsIXd
pedwl ued aINPNI)s <80 TAISSSSaUTSNA> JUNSIXd

ue 01 saduey) "Ansi3al |gan 2y 03 payipow/pappe aq
01 paau 1ey} (s)921A19s Y3 03 Sulpuodsaliod (S)ainPnins
<®DTAIDSSSDUTSNCA> JO S)SISU0D d8eSsawl SIy|

<TTe32 oD TAISS> <9DTAIDS @ABRS>

"Aysi8a1 sy} woly pals|ep 9q

pInom ssauisnq siy} Jo aiNN Y3 YU pajeasd sainpnils
<uoT3I9sSyIaysTTand> Aue 0S|y 'salnjnus
<93eTdws LBUTPUTI> SB ||9M SB <D TAISSSSaUTSNA>
paulejuod Aue Jo uonld[Ap Y} SNED PJNOM SISSaUISN]
8unsaQ "o8essow <ssauTsNg @318TSP> Y}

ulyum payads shay ayy 03 Suipuodsaliod sassauisng
919[9p Ansi3al |gan ayi 1eys s1se83ns adessaw syl

<j3xo0dsyuoTlTsodsTp>

<SS2UTISNg 239TopP>

"palipouw/pappe uaaq jsnf
sey ey} ssauisnq ay} JO S|1eIdp [|N4 3y} SuIUIRUOD DINYONIIS
<TTe3=assauTsng> ayj Jo S)sisuod asuodsai Aisidal ay)

"SaInpni)s

<23eTdWS LOUTPUTJ> I0 ‘<@DTATSSSSaUTSN>
‘<uoT3IessvILYSTTAnd> 0} S9IUI)RI Sunsixa pedwl
ued AINPNIS <A3 TIUISSSUTSNA> JUSIXd ue 0} saduey)

"Ans13a1 |@an ays 03 payipow/pappe a9 0} pasu
1BU} S9dUR)SUI SSAUISNG I10W 10 dUO 3y} 0} Sulpuodsaiiod
(s)a1npnis <A3TuASSBUTSNA> JO SISISUOD dFessaw Siy|

NOIlLdIddS3a

<TTejisgss=utTsndg> <ssauTsng oaALS>

JANLINYULS
aiNinliy

NOILLONNA IdY
ONIHSITaNnd

252 Chapter 5

19sn Ansi3ai siyy yum

PS1eIDOSSE S9JURISUl <UOTIIDSSYISYS TTANd> 3unsixa
§0 1s1] 9y} 03 93eSSAaW SIY} UIYIM PaUIRIUOD SIINPINIIS
<uoT3IessYISYSTTqnd> 3y} sppp d8essaw siy|

<3xodeoyuoTaTsodsTp>

<suoTjIessyiaysITand ppe>

“19sn Ansi8ai siyy Aq paysijgnd a1am ey} sainpniis
Acoﬂuﬁmmmmﬁwsmﬂﬁﬂsav*ouﬂ_Mmc::whwwﬂaw:hﬁsh

<suoTjIossyIaysTTand>

<suoTt3xessyIaysIIand 396>

"}l IN0qe S|Ie3ap dIseq 198 0} INPNIIS <TSPOWI> dNyads
1eys Suisn |[i3s suoneziuedio s|qeus 0y SI SAdURISUI
<Topowr3> 3ulhonsap Aj@19]dwod jou Joy uoseal ayL

<3xodsyguoTaTsodsIp>

<TOPOWI @32T2pP>

"payipow/pappe

uaaq isnf aneYy 1LY} SADURISUI <TSPOKI> U}

Jo sj1e3ap ||} 9y} SuluIRIUOD BINPNIIS <TTLISATSPOWI >
3y} Jo s)sisuod adessaw siyy 0} asuodsai Ansi3al ayl

<TTe39qToPONI>

<TOPOW3 oAELS>

-a8essaw
<futputq @3=Tep> Y} UIyum paynads (s)Asy @inn
oy} 03 3uipuodsani0d seduesul <e3e AW LEUTPUTA>

alow 10 duo 313|9p 03 Aixsi8ai ayy swioyul d3essaw SIy|

<j3xodsyuoTiTsodsTp>

<Purtpurq s3sTSp>

"payipow/pappe ua3q isnf aney jey (s)3uipuiq sy Jo
s|ie3ap [|n} @Yy Sululeuod 3INPNIS < Te3l=qbuTtputys>
3y} Jo s)sisuod adessaw siyy 0} asuodsal Ansidal ayl

<ITelsgburputdg>

<burtpurq saes>

‘98essow <eDTAISS 232 T2P> 9y} UIYIM
paupads (s)A9y @inn ay3 o3 Suipuodsaniod saduejsul
(s)@21n19s 2y 9319[9p 01 A1si3a1 oy swiojul d8essaw siy |

NOIlLdI¥DS3a

<jxodsyuoTiTsodsTp>

JANLINYLS

aiNaniay

(panunuos) suonpung |dy 3ulysiiqnd 6°S d]qeL

<9DTAIDS ©19T9p>

NOILONNA IdY
DONIHSITand

253

Description and Discovery of Web Services

“19sn Ansi3al siyy Aq (paumo) padeuew aie
1By} SJUSWNDOp <TSPOWI> pue <A3T3UISSSaUTSN>
ay3 ||e Jo 151| e suin}as a3essaw ay|

<ojulpsis3stbhaa>

<ojuIp=aIs93sThaa 196>

"1asn

Ansi8ai siyy Aq paysijgnd aouejsul <A3T3ugsssursng>
93] SOAJOAUI YDIYMm ‘<3zodeysnieljsuoTjasasses>
ainpnis sy} Jo ued se ‘siayjo Jo 1asn Ansidal

siy} Aq pajeasd ‘sadue)sul <UOTIISSSYISYSTTANd>
9y} [|e JO 1sI| B suinial 1ey) uonpuny Aisnb e si siyp

<3x0day¥sSnie3suoTlIoSses

<jxodsysnielsuoIjaIsasse 326>

‘saInpni)s <uoT3xessyiaysITand> Supe|dal
9y} Jo uo13||0d e Zululeuod ‘asuodsal ay3 jo Hed
SB 9JN)INJjs <SsuoT3ASSSYISYSTTANd> B suInyal siyl

NOIlLdIddSs3a

<suoTjaessyIaysITqnd>

JANLINYLS

aiNinliy

<suoT3jIossvyIaysTTand 3os>

NOILLONNA IdY
ONIHSIT9Nnd

254 Chapter 5

Implementations of UDDI

The UDDI specification enjoys tremendous amounts of vendor support.
There are a lot of offerings in the UDDI space. Vendors provide UDDI
support in two ways:

UDDI client. Almost all of the vendors participating in the UDDI
space provide UDDI client support. A UDDI client basically provides
APIs required for working with the UDDI registry. These APIs can be
in a variety of languages such as Java, C++, Python, and so on. Note
that most of the vendors, as of this writing, provide proprietary
implementations of Java APIs for UDDI. JSR-093 JAXR is an effort to
provide a standard Java API for communicating with UDDI reg-
istries. Because the JAXR specification has just recently been final-
ized, vendors should now be able to start providing support for
JAXR in their API implementations. The JAXR specification is cov-
ered in more detail in Chapter 11, “Java API for XML Registries.” The
examples covered in this chapter do not make use of JAXR APIs.

UDDI registry server implementation. Many implementations of the
UDDI registry server are available now. Apart from the public reg-
istries hosted by Microsoft, HP, IBM, and Systinet, several vendors
also provide implementations of private UDDI registries.

Table 5.10 is a partial listing of the UDDI implementations.

Table 5.10 UDDI Implementations

IMPLEMENTATION DOWNLOAD FROM ...

Java Web Services java.sun.com/xml/download.html
Developer Pack (JWSDP)*

Systinet WASP** www.systinet.com/wasp
The Mind Electric GLUE www.themindelectric.com/glue/index.html
IBM Web Services Toolkit www.alphaworks.ibm.com/tech/

webservicestoolkit/

BEA WebLogic Workshop www.bea.com/products/weblogic/workshop/
easystart/index.shtml

* JWSDP provides an implementation of private UDDI registry implemented on the Tomcat and Xindice
databases. Chapter 11, “Java API for XML Registries,” uses the JWSDP UDDI Registry Server for examples.

** UDDI examples in this chapter are developed using Systinet WASP UDDI APIs.

Description and Discovery of Web Services

255

UDDI Support in Systinet WASP 4.0

The Systinet WASP 4.0 platform includes extensive support for the UDDI
registry. WASP provides an implementation of the UDDI version 2.0 reg-
istry. Also, WASP provides a client API to work with the UDDI registry.

In the following three examples, we will examine how to work with the
UDDI registry on the Systinet WASP 4.0 platform:

SubmitBusiness (SubmitBusiness.java). Thisexample
shows how to submit business information to the UDDI registry.

SearchBusiness (SearchBusiness.java). This example shows
how to look up the business information using name patterns.

DeleteBusiness (DeleteBusiness.java). This example demon-
strates the deletion of business information from a UDDI registry.

The examples are discussed in detail in the following sections: Publishing
Information to a UDDI Registry, Searching Information in a UDDI Registry,
and Deleting Information from a UDDI Registry. Note that all of these three
examples along with their source code and readme.txt consisting of setup
instructions can be downloaded from Wiley’s Web site at www.wiley.com
/compbooks/nagappan.

Note that we will run these examples against the public UDDI registry
that is hosted by Systinet at www.systinet.com/uddi/web. The following
are the inquiry and publishing URLSs supported by Systinet’s public registry:

m www.systinet.com/wasp/uddi/inquiry
m www.systinet.com:443/wasp/uddi/publishing

In order to work with the Systinet UDDI client APIs, ensure that the
following JAR files are in the CLASSPATH:

uddiclient.jar. This archive implements UDDI Versions 1 and 2
inquiry and publishing. It can be found under $WASP_HOME/dist.

wasp.jar. This archive can be found under SWASP_HOME/lib.

In order to execute SubmitBusiness and DeleteBusiness, which
make use of the UDDI publishing API, we first need to register as a user of
the UDDI registry. Registration of the user is covered in the next section.

Registering as a Systinet UDDI Registry User

Anyone can easily register as a Systinet registry user. Figure 5.5 shows the
browser interface supported by Systinet for registering a user.

256

Chapter 5

[l Systinet WASP LIDDI, 4.0 - Microsoll Internel Explorer

Flz Edt Wew Favortss ook Hel
dmboch » = < i)) A} | Boearch GiFoveites Fatoy |- S - EH DR
Adess |&] Hy (fave. systinet confuddfach
e
Main
@ systinet
Main Systinel WASP UDDI Live Regislry

il

VDD Registry

The D0 relsry eratbles bushesses t aucy, aaaly and dynamicaly find and transack busiass wih ang anothor wirg
their praferred aoplications. Systines WASP LECL s al aoouk sharmg tusness nformaban, making taasy bo puzlich vour
peeferred mens of dang business

) Systinel WASP UDDI

Figure 5.5 Browser interface for registering a user.

Figure 5.6 shows registering a user with login ID: registry_user and
password: registry_user.

Our examples will make use of this account, in order to authenticate to
the UDDI registry. Hence, before trying to run the examples, please ensure
that this account does exist in the Systinet public UDDI registry. If it does
not, create a new account with the same credentials. If you are unable to
create the account with the same credentials, then create an account with
different credentials followed by changing the hard-coded login ID and
password to the new account login ID and password, in SubmitBusiness
.Jjava and DeleteBusiness. java, and re-compiling them.

j Systinet WASP UDDI, 4.0 - Microseft Internet Bxplorer

Fl Edt Wiew Faworkes Tocls Help
dobuck ¢+ b+ (@ F | Dsewch Gmraones (Proy Tye S - H 2 R

addees [£] svtine, oo
[y

Ian > Ragiss acnint

@ systinet
Register account
Account Narme s [regisry iser
Account Password 't [rrstesiies
Re-Enker Password'; [P
Yo FMail [izbe smthEammecorpberszraces com
Your Name [onn s

Defnull Langiage: [Enlish -
Company Mame: K-"Ec:m Sareces

Yaus Phane sumber: |

Albernate Phone Number: |

Address: I

|
|
Country: |
[

Figure 5.6 Registering a user.

Description and Discovery of Web Services 257

Now, let ‘s proceed with submitting new business information to the
UDDI registry.

Publishing Information to a UDDI Registry

SubmitBusiness.java shows us how to publish a business named
ACME Computer Services along with its description. In the coming sections,
we will examine the source code of SubmitBusiness. java, followed by
its compilation and execution.

Programming Steps for Publishing

The entire publishing logic is provided by the doSubmit () method of the
jws.ch5.SubmitBusiness class, and hence, its implementation is of
most interest to us. The following are the steps of doSubmit ():

1.

Construct the UDDIApiPublishing object. This is the object that
we will use to actually publish to the registry.

Get hold of the authentication token from the registry with the help
of the get_authToken () API call on the UDDIApiPublishing
object. Once we have the authentication token, we should be able to
publish to the registry.

Create the BusinessEntity structure and populate it with
the name and description of the business to submit. Note that
we do not have to create the key for this business because the
registry, upon submitting the business information, would
generate it.

Now, get hold of the SaveBusiness object. This object represents a
collection of businesses that we wish to submit at a time. Hence, we
will need to add the BusinessEntity object that we just created to
the SaveBusiness object using the addBusinessEntity ()
method.

Now, publish the business information through a save_busi-
ness () call on UDDIApiPublishing object. This method call
takes the SaveBusiness object as an argument and returns the
BusinessDetail object upon completion.

After the publishing operation has been executed, discard the authen-
tication token. Finally, check whether the publishing operation was
successful or not.

258 Chapter 5

SubmitBusiness.java Source Code

Listing 5.5 shows the complete code listing of SubmitBusiness. java.

package jws.ch5;

import org.idoox.uddi.client.api.v2.%*;

import org.idoox.uddi.client.api.v2.request.publishing.*;
import org.idoox.uddi.client.structure.v2.business.*;
import org.idoox.uddi.client.structure.v2.base.*;

import org.idoox.uddi.client.api.v2.response.*;

import org.idoox.uddi.*;

public class SubmitBusiness
{
public static void main(String args[]) throws Exception
{
// Call the method in order to submit new business to
// the public registry hosted by Systinet.

doSubmit () ;

}

public static void doSubmit () throws Exception

{
String sBusinessName = "ACME Computer Services";
String sBusinessDescription = "Provides professional

services in the areas of Computer Software";

System.out.println("Saving business with the
following details:");

System.out.println("Name: " + sBusinessName) ;

System.out.println ("Description: " +
sBusinessDescription) ;

// Get hold of the UDDI Publishing API
// Note our usage of Publishing URL for the Systinet
// UDDI Registry

UDDIApiPublishing objUDDIApiPublishing =
UDDILookup.getPublishing ("https://www.systinet.com:443
/wasp/uddi/publishing/") ;

// First we get hold of Authentication token from the
// Registry so that we can publish to the UDDI

// Registry. Note that registered a user in Systinet
// Public Registry with registry user ID and

Listing 5.5 SubmitBusiness.java.

Description and Discovery of Web Services 259

// registry_user password.

AuthToken objAuthToken = objUDDIApiPublishing.
get_authToken (new GetAuthToken (new
UserID("registry user"), new Cred("registry_ user"))):;

// Create the BusinessEntity Structure
BusinessEntity objBusinessEntity =
new BusinessEntity () ;

// Set the empty businessKey since we are creating a
// new business
objBusinessEntity.setBusinessKey

(new BusinessKey (""));

// Set the name of the business
objBusinessEntity.addName (new Name (sBusinessName)) ;

// Set the description of the business
objBusinessEntity.addDescription
(new Description (sBusinessDescription)) ;

// Get hold of the SaveBusiness interface
SaveBusiness objSaveBusiness = new SaveBusiness();

// Set the Authentication Information on SaveBusiness
objSaveBusiness.setAuthInfo
(objAuthToken.getAuthInfo()) ;

// Now add the BusinessEntity to save to the
// SaveBusiness interface
objSaveBusiness.addBusinessEntity (objBusinessEntity) ;

// Finally publish the SaveBusiness object to the

// registry

BusinessDetail objBusinessDetail =
objUDDIApiPublishing.save_business (objSaveBusiness) ;

// Discard the Authentication token now
objUDDIApiPublishing.discard_authToken
(new DiscardAuthToken (objAuthToken.getAuthInfo())) ;

// See if the Business has been published

// successfully

if (objBusinessDetail==null)

{
System.err.println("\nUnsuccessful in
submitting the new business information to
registry.");

Listing 5.5 SubmitBusiness.java. (continues)

260 Chapter 5

else

System.err.println("\nSuccessful in submitting
the new business information to registry.");
}

return;

Listing 5.5 SubmitBusiness.java. (continued)

Compiling and Executing SubmitBusiness.java

The following command line instruction compiles SubmitBusiness
.Jjava:

> javac jws/ch5/SubmitBusiness.java

The following command line instruction executes SubmitBusiness
.Jjava:

> java -classpath $CLASSPATH%;. jws.ch5.SubmitBusiness

Figure 5.7 shows the output of this execution.
You can verify the creation of this new business by visiting the Systinet
public registry or by executing SearchBusiness.

Searching Information in a UDDI Registry

SearchBusiness. java shows us how to search for businesses based on
the name pattern provided by the user. In the coming sections, we will
examine the source code of SearchBusiness. java, followed by its com-
pilation and execution.

Figure 5.7 Executing SubmitBusiness.java.

Description and Discovery of Web Services

261

Programming Steps for Searching

The entire querying logic is provided by the doSearch () method of the
jws.ch5. SearchBusiness class, and hence, its implementation is of most
interest to us. The following are the steps to implementing a doSearch ():

1. Construct the FindBusiness object. This object represents the
criteria for the search operation. Hence, we will need to add our
criteria, that is, the name pattern that the user supplied, using the
addName () method on this object.

2. Construct the UDDIApiIngquiry object that we would use for
placing the inquiry call.

3. Finally, invoke the business inquiry operation through the find
_business () method on the UDDIApiInguiry object. This

method returns a BusinessList object containing the
BusinessInfo structures.

4. Now, check whether the businesses are found matching the given
criteria. If there are matching businesses, we need to traverse
through their BusinessInfo structures and get hold of the name
and key UUID of the business.

SearchBusiness.java Source Code

Listing 5.6 is the complete code listing of SearchBusiness. java.

package jws.ch5;

import org.idoox.uddi.client.api.v2.request.inquiry.*;
import org.idoox.uddi.client.structure.v2.tmodel.*;
import org.idoox.uddi.client.structure.v2.base.*;

import org.idoox.uddi.client.api.v2.response.*;
import org.idoox.uddi.client.structure.v2.business.*;
import org.idoox.uddi.client.api.v2.*;

import org.idoox.uddi.*;

public class SearchBusiness
{
public static void main(String args[]) throws Exception
{
if (args.length != 1)
{

Listing 5.6 SearchBusiness.java. (continues)

262 Chapter 5

printUsage () ;

}

else

{
String sNameOfBusiness = args[0];
// Invoke the search operation
doSearch (sNameOfBusiness) ;

}

private static void printUsage ()

{

System.err.println("\nUsage: java
jws.ch5.SearchBusiness <BusinessNamePattern>") ;

System.err.println ("\nwhere <BusinessNamePattern>
represents name of the business you want to

search.");

public static void doSearch(String sNameOfBusiness) throws

Exception

{

// Create a FindBusiness object
FindBusiness objFindBusiness = new FindBusiness();

// Send the find criteria
objFindBusiness.addName (new Name (sNameOfBusiness)) ;

// Set the maximum number of rows to return
objFindBusiness.setMaxRows (new MaxRows ("10")) ;

// Get hold of UDDILookup object to place the query
UDDIApiInquiry objUDDIApilIngquiry =
UDDILookup.getInquiry ("http://www.systinet.com:80/
wasp/uddi/inquiry/") ;

// Invoke the query on the UDDI Inquiry API
BusinessList objBusinessList=

objUDDIApiIngquiry.find business (objFindBusiness) ;

// Check whether anything was found matching the

Listing 5.6 SearchBusiness.java.

Description and Discovery of Web Services 263

// criteria
if (objBusinessList==null)

{
System.err.println("No businesses were found
matching the criteria.");

}

else

{

// Get hold of the BusinessInfo objects,
// contained by BusinessList
BusinessInfos objBusinessInfos =
objBusinessList.getBusinessInfos () ;

System.out.println("\n" +
objBusinessInfos.size() + " businesses found
matching the criteria...\n");

BusinessInfo objBusinessInfo =
objBusinessInfos.getFirst () ;

BusinessKey objBusinessKey;

if (objBusinessInfo != null)

{
objBusinessKey=objBusinessInfo.
getBusinessKey () ;

// Traverse through the results.

while (objBusinessInfo!=null)

{
System.out.println("Business Name =
" + objBusinessInfo.getNames () .
getFirst () .getValue()) ;

System.out.println("Business UUID = " +
objBusinessInfo.getBusinessKey ()) ;

// Next BusinessInfo
objBusinessInfo =
objBusinessInfos.getNext () ;

Listing 5.6 SearchBusiness.java. (continued)

264 Chapter 5

Compiling and Executing SearchBusiness.java

The following command line instruction compiles SearchBusiness
.Jjava:

> javac jws/ch5/SearchBusiness.java

The following command line instruction executes SearchBusiness
. java in order to search for businesses with names starting witha ‘A ':

> java -classpath $CLASSPATH%;. jws.ch5.SearchBusiness A

Figure 5.8 shows the output of this execution.
As can be seen from the output in Figure 5.8, ACME Computer Services
is one of the businesses that matched our search criteria.

Deleting Information from a UDDI Registry

DeleteBusiness.java demonstrates how to delete a business from the
UDDI registry based on its key UUID, which is passed by the user as a com-
mand line argument. You can get hold of the business key either by brows-
ing the Systinet registry on the Web or by executing SearchBusiness. In
the coming sections, we will examine the source code of DeleteBusiness
. Java, followed by its compilation and execution.

[| Command Prampt

va -classpath SPATHH; . jws.chb.

ound matching the criteria...

Figure 5.8 Executing SearchBusiness.java.

Description and Discovery of Web Services

265

Programming Steps for Deleting

The deletion logic is provided by the doDelete() method of the
jws.ch5.DeleteBusiness class, and hence, its implementation is of most
interest to us. The following are the steps to implementing doDelete ():

1.

Construct the UDDIApiPublishing object. This is the object that
we would use to actually delete information from the registry.

Get hold of the authentication token from the registry with the help
of the get_authToken () API call on the UDDIApiPublishing
object. Once we have a valid authentication token, we should be
able to delete from the registry.

Now, get hold of the DeleteBusiness object. This object represents a
collection of businesses that we wish to delete at a time. Hence, we will
need to add businesses referenced through BusinessKey to this

object, using the addBusinessKey () method on DeleteBusiness.

Now, delete the business information through the delete_busi-
ness () call on the UDDIApiPublishing object. This method call
takes the DeleteBusiness object as an argument and returns the
DispositonReport object upon completion.

Check the DispositionReport object to see if this operation was
a success or a failure.

DeleteBusiness.java Source Code

Listing 5.7 is the complete code listing of DeleteBusiness. java.

package jws.ch5;

import org.idoox.uddi.*;

import org.idoox.uddi.client.api.v2.*;

import org.idoox.uddi.client.api.v2.request.publishing.*;

import org.idoox.uddi.client.api.v2.response.*;

import org.idoox.uddi.client.structure.v2.business.*;

public class DeleteBusiness

{

public static void main(String args[]) throws Exception

Listing 5.7 DeleteBusiness.java. (continues)

266 Chapter 5

if (args.length != 1)
{
printUsage () ;
}
else

BusinessKey objBusinessKey =
new BusinessKey (args([0]);

doDelete (objBusinessKey) ;

private static void printUsage ()

{
System.err.println("\nUsage: java
jws.ch5.DeleteBusiness <BusinessKey>") ;

System.err.println("\nwhere <BusinessKey> is a string
representation of UUID corresponding to Business you
want to delete.");

public static void doDelete (BusinessKey objBusinessKey)
throws Exception
{
System.out.println("\nDeleting Business with Key: ");
System.out.println(objBusinessKey.toString()) ;

UDDIApiPublishing objUDDIApiPublishing =
UDDILookup.getPublishing ("
https://www.systinet.com:443/wasp/uddi/publishing/") ;

// First we get hold of Authentication token from the
// Registry so that we can delete

// business from the UDDI Registry. Note that

// registered a user in Systinet Publich Registry

// with registry user ID and registry user password.

AuthToken objAuthToken = objUDDIApiPublishing.
get_authToken (new GetAuthToken (

new UserID("registry user"),

new Cred("registry user")));

// Now get hold of the DeleteBusiness structure

org.idoox.uddi.client.api.v2.request.
publishing.DeleteBusiness objDeleteBusiness =

Listing 5.7 DeleteBusiness.java.

Description and Discovery of Web Services 267

new org.idoox.uddi.client.api.v2.request.
publishing.DeleteBusiness () ;

// Set the login information on DeleteBusiness
objDeleteBusiness.setAuthInfo
(objAuthToken.getAuthInfo()) ;

// Add business to delete to the DeleteBusiness
// Structure
objDeleteBusiness.addBusinessKey (objBusinessKey) ;

// Call Publishing API method delete_business
DispositionReport objDispositionReport =
objUDDIApiPublishing.delete_business
(objDeleteBusiness) ;

// Discard the Authentication token now
objUDDIApiPublishing.discard_authToken
(new DiscardAuthToken (objAuthToken.getAuthInfo())) ;

// Check to see i1f the delete operation was

// successful

if (objDispositionReport == null)

{
System.err.println("Unsuccessful in deleting
the business information from the registry.");

else

if (objDispositionReport.
resultIs (UDDIErrorCodes.E_SUCCESS))

{
System.out.println("\nSuccessful in
deleting the business information from the
registry.");

}

else

{

System.out.println("\nUnsuccessful in
deleting the business information due to
following reason(s):");

System.out.println(

Listing 5.7 DeleteBusiness.java. (continues)

268

Chapter 5

objDispositionReport.toXML()) ;

Listing 5.7 DeleteBusiness.java. (continued)

Compiling and Executing SearchBusiness.java

The following command line instruction compiles DeleteBusiness
.Jjava:

> javac jws/ch5/DeleteBusiness.java

The following command line instruction executes DeleteBusiness
.Java in order to delete the ACME Computer Services business corre-
sponding to the key ' £e4b2d70-9988-11d6-9917-b8a03c50a862".

> java -classpath $CLASSPATH%;. jws.ch5.DeleteBusiness
fedb2d70-9988-11d6-9917-b8a03c50a862

Figure 5.9 shows the output of this execution.
Deletion of ACME Computer Services can be verified either by visiting
the Systinet public registry or by executing SearchBusiness.

T e T

Figure 5.9 Executing DeleteBusiness.java.

Description and Discovery of Web Services

269

Limitations of UDDI

UDDI is an evolving standard. Currently, the most deployed version of
UDDI (2.0) is limiting in terms of the information model that it supports,
especially when compared to other registry specifications such as ebXML
Registry/Repository. UDDI provides support for storing only the basic
data structures, such as businesses, users, services, and service technical
descriptions. However, storing information about business Web services
requires more than just the basic support. For example, potential users of
business Web services should be able to publish/query extensive business-
oriented information, such as the business process models that a particular
business Web service relies upon. This is possible only if the target registry
provides a data structure representing the business process model. Thus,
an information model is an important feature for any registry. Registry
information model, are further discussed in Chapter 11, “Java API for XML
Registries.”

Also, UDDI is just a registry as opposed to ebXML Registry/Repository,
which is, as the name suggests, a registry as well as repository. The basic
difference between a registry and repository is that a registry holds just the
metadata of the objects submitted, whereas a repository actually stores the
submitted objects.

Summary

In this chapter we discussed in detail how to describe and discover Web
services. In this regard, we discussed two very important technologies in
the Web services space: WSDL and UDDI. We also discussed how to use
WSDL and UDDI for describing, publishing, and discovering Web services
using various tools in this chapter. In the next chapter, “Creating .NET
Interoperability,” we will see how to achieve interoperability between Java
Web services and .NET Web services.

Creating .NET Interoperability

This chapter discusses the basics of Web services interoperability and illus-
trates an interoperable Web services scenario using Java and Microsoft
NET-based application environments. As discussed in previous chapters,
one of the goals of Web services is to solve the interoperability problem by
adopting industry standard protocols and data formats, which enable
transparent application-to-application communication and data exchange
between applications, systems, networks, and devices. Examples have
been given using Web services technologies like XML, SOAP, WSDL, and
UDDI and have demonstrated how to create service-oriented applications
that communicate and interoperate with one another over a network.

Although Web services promote interoperability, creating and testing
interoperability between Web services becomes a real challenge when dif-
ferences and limitations exist among implementations, especially because
of application-specific dependencies and characteristics such as transport
protocols, data types, XML processing, and compatibility. In real-world
scenarios involving business partner collaborations, the Web service
provider needs to take particular care to define standard interoperability
mechanisms and communication protocol for the partner applications,
enabling them to build their own service clients. This enables partner
applications using different systems to easily interact with the Web service
provider and conduct seamless transactions with them.

271

272 Chapter 6

This chapter provides an overview of Web services interoperability and
demonstrates a practical interoperability scenario involving a Java-based
Web services and Microsoft . NET Framework. It also discusses the key chal-
lenges and issues affecting interoperability in Web services. In particular,
we will be focusing on the following;:

m Understanding interoperability in Web services
Creating Web services interoperability between J2EE and .NET
An overview of the Microsoft NET Framework
Developing a .NET Client for Java-based Web services

Common interoperability challenges and issues

Emergence of the Web Service Interoperability Organization (WS-1)
and its goals

Because the scope of this book is limited to developing Java-based Web
services, this chapter discusses only the required basics and the process
steps for developing .NET-based Web services requestor clients to enable
interoperability with Java-based Web services providers. To study more
about Microsoft .NET, refer to the Microsoft Web site at http://msdn
.microsoft.com/net.

Means of Ensuring Interoperability

In a Web services environment, the Simple Object Access Protocol, or
SOAP, is the de facto standard communication protocol. (For more on
SOAP, see the section titled Simple Object Access Protocol in Chapter 4,
“Developing Web Services Using SOAP.”) This protocol provides conven-
tions for representing data and application interaction models like remote
procedural calls (RPCs) and messaging. This facilitates inter-application
communication and seamless data sharing among applications residing on
a network, regardless of their native language implementation, operating
systems, hardware platforms, and the like. In turn, it also enables the
development of compatible Web services by leveraging interoperability
among business applications running across a wide range of systems and
devices.

Interoperability in Web services becomes a real challenge when a service
requestor finds problems while invoking a method in the service provider
environment or when it does not understand a message sent by the service
provider. This is usually caused by prerequisites and factors exposed by

Creating .NET Interoperability

273

the service provider or service requestor environments, and it is mostly
caused by the dependencies of the underlying SOAP runtime provider
implementation. Thus, it becomes essential for Web services offered by a
service provider to ensure that the services are usable by a variety of
service requestor clients to the best possible accommodation of both con-
forming and non-conforming SOAP implementations. Different ways exist
to ensure service requestor interoperability with the service providers. The
following sections discuss the major ones.

Declaring W3C XML Schemas

Defining W3C XML Schema Definitions (XSD) and target namespaces for
all the application data types and having a supporting SOAP implementa-
tion for both the service provider and service requestor resolves almost all
interoperability issues specific to the data types. This helps to create com-
pliant SOAP proxy-based clients for the service requestors with all the
defined data types by providing automatic encoding and mapping for the
service provider-dispensed XSD data types.

Exposing WSDL

Most Web services platforms and SOAP implementations provide this as
an automatic mechanism by delivering WSDL for all its exposed services.
The exposed WSDL defines the service provider information and service
specific parameters required by a service requestor for invoking the ser-
vices, which enables the building service clients to interact with the service
provider, thus ensuring interoperability based on the WSDL. The service
clients also can be dynamically generated from a service provider’s WSDL
lookup. In such cases, the SOAP client runtime implementation must pro-
vide those dynamic invocation services.

Creating SOAP Proxies

For a Web service, the client SOAP proxies can be created manually or can
be generated dynamically based on the WSDL-provided details of the ser-
vice provider. In the automatic generation of SOAP proxies, sometimes
they may throw SOAP faults during service invocation and may require
some modifications in the SOAP headers or the encoded RPC calls. In most
cases, this problem occurs due to non-conforming WSDL and SOAP imple-
mentation in the infrastructure of the service provider or requestor.

274 Chapter 6

Testing Interoperability

To ensure that interoperability between the service provider and requestor
exists, the underlying SOAP implementations also can be tested. In that
case, the SOAP implementations of the service provider and the requestor
must agree and conform to the following SOAP-specific dependencies:

m The defined SOAP transport protocol bindings (like http)
m The supported version of SOAP (like SOAP 1.1 or SOAP 1.2)

m The version of WSDL from the service provider and its ability to
support by the service requestor client

m The version of W3C XML Schema supported by the SOAP message,
especially the SOAP envelope and its body elements

Most Web services platforms and SOAP implementation providers test
their products among SOAP implementations using a standard test suite.
This suite can be used to ensure interoperability with other SOAP imple-
mentations for conformance testing.

To explore the concepts, let’s experiment with an interoperability sce-
nario using a Java-based Web services implementation to interact with a
Microsoft-based service client implementation. To try out this scenario, we
have chosen to use Apache Axis as the Java-based Web services provider
and the Microsoft NET Framework as the client Web services requestor.

The development and deployment of a Web services requestor is done in
a unique part of the Microsoft .NET platform. Like any other Web services
platform providers, the Microsoft .NET Framework typically supports
industry-standard protocols and technologies, including XML, SOAP,
WSDL, and UDDI. The following section examines the basics of the NET
Framework and its core components.

Microsoft .NET Framework: An Overview

Microsoft .NET is part of the Microsoft NET platform—Microsoft’s strategy
for developing distributed applications through XML Web services. The
Microsoft NET Framework provides a full-fledged development environ-
ment for developing XML Web services in a Microsoft Windows-based
environment. It facilitates a runtime infrastructure and APIs for developing
Web services applications using a variety of object-oriented programming
languages such as C#, Visual Basic, and so forth. The NET Framework pro-
vides the infrastructure for defining the overall .NET platform. Microsoft
provides .NET compilers that generate a new code referred to as Microsoft

Creating .NET Interoperability 275

Intermediate Language (MSIL). MSIL is a CPU-independent code instruc-
tion, which is able to run on any system supporting its native machine
language. The .NET compilers provided by Microsoft are as follows:

m VB.NET (Visual Basic for .NET)

m C++ .NET (Visual C++ for .NET)
m ASP.NET (Microsoft ASP for .NET)
m C# .NET (New language for .NET)
m JScript (Jscript for .NET)

The Microsoft NET Framework consists of two core components, which
are described in the following sections.

Common Language Runtime (CLR)

The Common Language Runtime, or CLR, provides a managed runtime
environment (.NET Engine) for the .NET Framework. CLR enables appli-
cations to install and execute code, and it provides services such as mem-
ory management, including garbage collection, threading, exception
handling, deployment support, application runtime security, versioning,
and so on.

CLR provides a set of JIT (just-in-time) compilers, which compile MSIL
to produce native code specific to the target system. CLR defines a set of
rules as Common Type System (CTS) and Common Language System
(CLS) that specifies the .NET-supported languages required to use for
developing compilers supporting a .NET platform. This enables the com-
piler vendors to develop .NET-compliant compilers and to perform cross-
language integration. Cross language integration enables .NET-compliant
languages to run and interact with one another in a .NET environment.

.NET Framework Class Library

The .NET Framework class library acts as the base class library of the NET
Framework. It provides a collection of classes and a type system as founda-
tion classes for .NET to facilitate CLR. It is included as part of the .NET
Framework SDK. The class libraries are reusable object-oriented classes that
support .NET programming tasks like establishing database connectivity,
data collection, file access, and so on. The class libraries also support the
rapid development of software applications such as the following:

m Console applications

m Windows GUI applications

276 Chapter 6

m Windows services

m ASP NET applications

m .NET XML Web services

m .NET Scripting applications
m .NET Client applications

The .NET class libraries can work with any CLS-compliant language and
can use CLR. At the time of this book’s writing, the supported languages
include Microsoft Visual Studio .NET, C#, and ASP.NET.

Microsoft initially released their .NET Framework to support a Windows-
based environment only, although Microsoft will be making .NET available
in other platforms. For more information on the Microsoft NET Frame-
work, go to the Web site: http:/ /msdn.microsoft.com/netframework/. To
download the Microsoft .NET Framework SDK, go to the Web site:
http://msdn .microsoft.com/net/.

To fully understand the interoperability scenario between Java-based
Web services and the Microsoft .NET client environment, you need to
understand the process model of developing Microsoft .NET clients.

Developing Microsoft .NET Client for Web Services

Typical to any other Web services requestor environment, the .NET based
clients also embrace Web services standards and protocols to communicate
with any Web services providers. This enables .NET client applications
running on Windows platforms to access Web services exposed from other
platforms, as long they are compliant with Web services standards.

To develop Microsoft .NET clients for invoking Web services, the NET
Framework SDK provides toolsets for generating SOAP proxies and for
implementing the .NET clients. A NET Framework SDK installation pro-
vides the proxy generators (wsdl . exe) for accessing WSDL and the gen-
erating proxy classes and compilers (csc.exe) for compiling the proxy
classes. It also enables clients to be created using any .NET-supported lan-
guage, such as C# or Visual Basic.

Key Steps in Creating a Web Service Requestor
Using the .NET Framework

The key steps involved in creating a Web services client using the .NET
Framework are provided in the following sections.

Creating .NET Interoperability

277

Obtaining the WSDL of a Web Service

The first step in creating a Web services client is to locate the service
provider and obtain its WSDL, which describes the exposed Web services
defining its message type, operation, port type, binding, and so on.

Generating a Proxy for the Web Service

The .NET Framework SDK provides the WSDL.exe utility, which generates
proxy client classes for a Web service exposed using WSDL. To create a
NET-based Web services proxy client class, you may run the following
from your Windows command prompt (in a single line):

wsdl.exe /1:CS
/protocol:SOAP
http://nramesh:8080/axis/AcmeService?WSDL
/out:AcmeService.cs

In the above command, the /1:CS option specifies the preferred language
as C#, the /protocol : SOAP option specifies the protocol as SOAP, the URL
refers to the WSDL location of the service provider, and /out :AcmeSer-
vice. cs refers to the name of the proxy class (AcmeService.cs). The pre-
vious command creates an AcmeService.cs as a proxy class source. To
create proxy code in Visual Basic, the command would be as follows:

wsdl.exe /1:vb
/protocol:SOAP
http://nramesh:8080/axis/AcmeService?WSDL
/out :AcmeService.vb

Compiling the SOAP Proxy as a Dynamic Link Library (DLL)

The .NET Framework SDK provides csc.exe, a C# compiler, which
enables you to build an assembly DLL from the C# proxy source code. To
compile the C# proxy client class, you may run the following from your
Windows command prompt (in a single line):

csc.exe /target:library
/r:System.Web.Services.dll
/r:System.Xml.dll
AcmeService.cs
/out:AcmeService.dll

The command creates a DLL library file to support a proxy class for the
client. In the previous command, the option /target:library indicates

278 Chapter 6

the DLL library, /r: specifies the required libraries, AcmeService.cs
refers to the name of the source file, and the /out:AcmeService.dll
option indicates the output library file.

Creating a .NET Client Using Proxy Classes

The next step involves creating a .NET client, which uses the instance of the
proxy to the Web service to invoke the methods with parameters to get
results. You may choose any .NET language (Visual Basic, C#, and so on) to
create the client application.

Compiling the Client Application

The next step is to compile the client application including the proxy DLL.
To compile the client application, you may run the following from your
Windows command prompt (in a single line):

csc.exe /target:exe
/r:AcmeService.dll
AcmeClient.cs
/out:AcmeClient.exe

This command creates AcmeClient.exe, an executable .NET client
application file, to invoke the target service provider. In the command, the
/target:exe option indicates the executable, /r: specifies the required
libraries, AcmeClient . cs refers to the name of the client source file, and
the /out :AcmeClient.exe option indicates the output executable file.

Executing the Client from a Windows Environment

The final step is running the executable AcmeClient . exe file in a Win-
dows environment which will invoke the service provider application and
execute the required methods.

This summarizes the steps involved in creating a .NET service client for
a Web services provider. Now let’s take a look at a real-world case study
example of how to create interoperable Web services with a Java-based
Web services provider and .NET-based service requestor.

Case Study: Building a .NET Client for Axis Web Services

In this section, we build on the case study example reusing the components
used in the previous chapter (Chapter 4, “Developing Web Services Using

Creating .NET Interoperability

279

SOAP,” featuring ACME Web Services Company. It discusses getting the Acme
products catalog service exposed by the ACME Web services provider:

For the service provider, we will be creating Apache Axis-based Web ser-
vice components using Java for the service provider and for the client ser-
vice requestor we will implement .NET-based client components using the
NET Framework. To cater the Acme product catalog service scenario, we
will be using an RPC-based communication model between the Apache
Axis-based Web services and the .NET-based service requestor. We will be
reusing the ACME business specific components as discussed in Chapter 3,
“Building the Web Services Architecture.” The ACME components to han-
dle this scenario are as follows:

m AcmeDAO. A DAO class that provides access to the data source and
abstracts the underlying data access implementation for the product
catalog

m AcmeXMLHelper. A class that gathers the data and constructs an
XML document as a string for use by the business clients

To find out the programming steps and the source code implementation
of the previous classes, refer to Chapter 3, particularly the section titled
Developing Web Services Using J2EE: An Example.

To try out the example, you may download the chapter-specific code and
documentation made available at www.wiley.com/compbooks/nagappan.
Source code and README text for installing and running this example are
available as part of Chapter-6.zip.

Building the Infrastructure

To build and deploy ACME Web services in the Axis environment, we
chose to use the following infrastructure solutions:

ON THE SERVICE PROVIDER SIDE

m ACME Web services provider will use Apache Tomcat as its servlet
engine/Web server, including Axis-based SOAP runtime environment

m Will use PointBase as its database for querying product catalog
information

ON THE SERVICE REQUESTOR SIDE

m Service requestor will use the .NET Framework as its SOAP client
environment to invoke the services of the ACME Web services
provider

280 Chapter 6

Microsoft.NET Apache TOMCAT w/Axis
Framework
NET c Java
Common NET |[] soaP Web Axis Web omponents
Runtime Clients | [¢ > Services Ser\{ices
Environment Environment Resources

Y

Figure 6.1 Apache Axis and Microsoft .NET-based Web services infrastructure.

Figure 6.1 represents the Web services infrastructure involving Apache
Axis and the Microsoft NET Framework.

To understand the problem and flow of events, the sequence diagram in
Figure 6.2 illustrates the various sequences of actions performed by a .NET
client invoking the ACME Web services deployed in the Axis-based Web
services environment.

Based on the previous sequence of events, we have chosen to use an
AcmeXMLHelper class to act as a proxy by encapsulating the business
functionalities, which include database interaction, XML construction,
XML parsing operations, and so forth. More specifically, the AcmeXML-
Helper class will handle all of the XML construction tasks and AcmeDAO
will handle the database interaction.

Figure 6.3 depicts the class diagram of the server-side components to sup-
port the ACME Web service provider using the Apache Axis infrastructure.

To try out this example, download the chapter-specific source code and
documentation available at www.wiley.com/compbooks/nagappan. The
source code and README text for installing and running this example are
available as part of chapter-6.zip.

Now, let’s take a look at how to set up the development environment
and implementation of those service components.

Creating .NET Interoperability 281

<—.NET Service Requestor —» < Axis Service provider environment

A4

AcmeProductCatalogClient | | AcmeProductCatalog AcmeXMLHelper AcmeDAO ACME ACME
ValueObject Database

Send Request for Call business methods lfl lfl lfl LF
ACME Product for product Catalog | Call DAO to | Query ACME product |
Catalog |:| ” deliver data i |

Y

tables
I

Return ACME

Product catalog data
|

— —

Value object

>

Return Data Return ACME

as ACME Value object

Value objects
<« —— — ¢ — —

|
| «

| Create ACME
|

|

|

|

|

Return Data

as XML String
Send Response -

ACME Product

Catalog
as XML string

- — —

Figure 6.2 Sequence diagram representing the scenario.

AcmeDAO
ACMEProductCatalog AcmeXMLHelper AcmeDAOImpl AcmeDataSource
uses uses encapsulates
AN /
N /
4
Product

Figure 6.3 Class diagram illustrating the service provider components.

282 Chapter 6

Setting Up the Environment

To set up the development environment for creating ACME Web services,
perform the following tasks:

1. Create the service provider environment.

a. Refer to Chapter 4, "Developing Web Services Using SOAP,” in
the section titled Setting Up the Axis Web Services Environment,
and follow Steps 1 to 11.

2. Create the service requestor environment.

a. Download the Microsoft NET Framework SDK (current release)
from http:/ /msdn.microsoft.com/net and install the application to
your local directory. The installation process will update your system
path, and all of the NET Framework utilities will be ready to use.

b. Create a working directory (for example, d: \msdotnetclient)
to create and test the .NET client applications.

These steps conclude the configuration requirements for the service
provider and requestor environment. Now, let’s explore the implementa-
tion of the ACME business scenarios by using them.

Creating the Service Provider (Axis Environment)

As was mentioned earlier, to implement the service provider environment,
we will be reusing the components that we built in Chapter 3, “Building
the Web Services Architecture,” and deploying them in Axis environment.
The components are as follows:

AcmeDAO. A DAO class that provides access to the data source and
abstracts the underlying data access implementation for the product
catalog.

AcmeXMLHelper. A class that gathers the data and constructs an
XML document as a string for use by the business clients.

To find out the programming steps and the source code implementation
of the previous classes (AcmeDAO and AcmeXMLHelper), refer to Chap-
ter 3, “Building the Web Services Architecture,” particularly the section
titled Developing Web Services Using J2EE: An Example.

As we discussed in Chapter 4, Axis enables Web services to be deployed
using Java classes with .jws extensions. It is quite typical to the Java Server
Pages (JSP) deployed in a servlet engine. By placing Java classes with .jws
extensions in the Web applications directory (that is, TOMCAT_HOME
/webapps/axis/) during runtime, the runtime of Axis automatically com-
piles and deploys the classes with all of the methods as services.

Creating .NET Interoperability

283

We will be creating the Acme product catalog service as ACMEProduct
Catalog.jws, which will be acting as the service provider in the Axis

environment.

The ACMEProductCatalog.jws class uses AcmeXMLHelper and
AcmeDAO as helper classes for XML processing and database interaction.
The ACMEProductCatalog. jws then will be deployed in the Axis envi-

ronment as an Axis JWS service.

Now, let’s take a closer look at the implementation and walk through the

code of ACMEProductCatalog. jws .

Implementing the Service Provider (ACMEProductCatalog.jws)

The source code implementation for ACMEProductCatalog.jws is

shown in Listing 6.1.

// AcmeProductCatalog.jws
import jws.chd4.xmlhelper.AcmeXMLHelper;
public class AcmeProductCatalog {

String pc;

// Helper function: To obtain Product Catalog it calls

// AcmeXMLhelper method

public String getProductCatalog() throws Exception {

AcmeXMLHelper axh;

try {
// Instantiate the AcmeXMLhelper
axh = new AcmeXMLHelper () ;

// Call method

pc = axh.getProductCatalogXMLasString() ;

} catch (Exception e) {
e.printStackTrace () ;
}
// Return the response string
return pc;

Listing 6.1 ACMEProductCatalog.jws.

284 Chapter 6

M Source for: http:/ localhost-B080/ axis/AcmeProduct Catalog.jwsTWSDL - Netscape =10l x|

-~ Ble Edt Yew Help

<wgdl:definitions targetWamespace="http://localhost:8080/axis/ heweProductlatalog. jus" xmlne="h
<wsdl ge name="gecFroductCatalogy "y
</wsdl:message>
<wsdlimessage name="Exception’>
</wsdl:messayge:
<wedl:message name="gecrProducclatalogResponse”>
<wsdl:part name="return” type="xsd:string"f>
</wsdl:message:
<wegdl:portType name="AicmeProductCatalog™
<wsdl:operation name="gerProduccCaralog”s> =
<wsdl:input intf:getFrod atal "f>
awgdl:omtput meggage="intf:getProductCataloghesponae’ />
<wsdl:fault message="intI:Exception” name="Exception™f:
</wsdl:operations
</wsdl:portType>
<wsdl:binding name="LereProductCatalogdoapBinding” type="intf:AcmeProductCatalog™s
<waidlsoap:binding style="rpco™ transport="htop://schemas.xmlsoap.ory/soap/hoep' /s
<wsdl:operation name="gerProductCacalog”>
<wsdlsoap:operation soaphction=""/>
argdl:ingut -
<wgdlsoap :body encodingStyle="http://schemas.xmlaoap. org/ soap/encoding/ ™ namespace="ge[
</wsdl: input>
“wsdl:output>
<wsdlsoap :body encodingStyle="http://=chemas.xmlscap.org/=oap/encoding/"” namespace="ht|
</wsdl: outputs>
</uwsdl:operation>

T T S S e T T 1

Figure 6.4 WSDL output for ACMEProductCatalog. jws.

To deploy AcmeProductCatalog. jws, justcopy the source file in your
Apache Axis Web applications directory (that is, TOMCAT_HOME
/webapps/axis/). If your Tomcat server is not running, then start your Tom-
cat server. The Apache Axis environment will automatically deploy them as
a service and emit the ACME product catalog service details as WSDL. To
access the WSDL, use your Web browser and then try out the following URL:

http://localhost:8080/axis/AcmeProductCatalog.jws?WSDL

If everything works successfully, you will get the output shown in
Figure 6.4.
This summarizes the service provider environment using Apache Axis.

Creating the Service Requestor (.NET Environment)

The following steps are involved using the NET Framework to access the
ACME product catalog service requestor.

Obtaining the WSDL of Acme Product Catalog Service

The first step is to locate the ACME service provider and obtain its WSDL.
It will be available to the service requestor as an URL. In our case, it will be
as follows:

http://localhost:8080/axis/AcmeProductCatalog.jws?WSDL

Creating .NET Interoperability 285

=[O0l

Language Utility
1.8.3785.81]

R> .N Franewor Uer -8,
Copyright <(C» Microsoft Corporation 1998-2881. All rights reserved.

Writing file 'AcmeServiceClient.cs’.

D:smsdotnet>

Figure 6.5 Creation of the Proxy C# class.

Generating a Proxy for the Web Service

The next step is to use the WSDL.exe utility to generate proxy client classes
from the ACME service provider WSDL. To create the proxy client classes,
run the following command from your Windows command prompt (in a
single line):

wsdl.exe /1:CS
/protocol:SOAP
http://localhost:8080/axis/AcmeProductCatalog?WSDL
/out:AcmeServiceClient.cs

This command creates AcmeServiceClient.cs as a proxy class for
the ACME product catalog service, as shown in Figure 6.5.
Listing 6.2 shows the generated C# source code.

//

// This source code was auto-generated by wsdl, Version=1.0.3705.0.
//

using System.Diagnostics;

using System.Xml.Serialization;

using System;

using System.Web.Services.Protocols;

using System.ComponentModel;

using System.Web.Services;

[System.Diagnostics.DebuggerStepThroughAttribute ()]

[System.ComponentModel .DesignerCategoryAttribute ("code")]

[System.Web.Services.WebServiceBindingAttribute (
Name="AcmeProductCatalogSoapBinding",

Listing 6.2 Generated C# source code. (continues)

286 Chapter 6

Namespace="http://localhost:8080/axis/AcmeProductCatalog.jws")]
public class AcmeProductCatalogService
System.Web.Services.Protocols.SoapHttpClientProtocol {

public AcmeProductCatalogService() {
this.Url =
"http://localhost:8080/axis/AcmeProductCatalog.jws";

[System.Web.Services.Protocols.SoapRpcMethodAttribute
("", RequestNamespace="getProductCatalog",
ResponseNamespace=
"http://localhost:8080/axis/AcmeProductCatalog.jws")]

[return:

System.Xml.Serialization.SoapElementAttribute ("return")]
public string getProductCatalog() {

object[] results = this.Invoke

("getProductCatalog", new object[0]);
return ((string) (results([0]));

public System.IAsyncResult BegingetProductCatalog
(System.AsyncCallback callback, object asyncState) {
return this.BeginInvoke ("getProductCatalog",
new object[0], callback, asyncState) ;

public string EndgetProductCatalog
(System.IAsyncResult asyncResult) {
object[] results = this.EndInvoke (asyncResult) ;
return ((string) (results([0]));

Listing 6.2 Generated C# source code. (continued)

Compiling the SOAP Proxy as a DLL

The next step is to use the NET C# compiler csc.exe to build an assem-
bly DLL from the generated proxy source code. To compile the AcmeSer-
viceClient.cs, run the following command from your Windows
command prompt (in a single line):

Creating .NET Interoperability 287

=|ol
stilibrary sr:Systen.Web.Services.dll sr:System.X¥ml.d1l]
1 Cit .MET Compiler version 7.88.9466
@

Uis
ft (R> _NET Framework verszion 1.8.3785
ht <G> Microsoft Corporation 2881. All rights reserved.

X

D:smsdotnet>dir

Uplume in drive D is Apps

Uolume Serial Humber is DBAB-B255
Directory of D:msdotnet

<DIR>
<DIR>

ileds?
irds)

D:smsdotnet >

Figure 6.6 Creation of a DLL library for the proxy class.

csc.exe /t:library
/r:System.Web.Services.dll
/r:System.Xml.dll
AcmeServiceClient.cs

This command creates a DLL library file which acts as a proxy stub class

for the client, as shown in Figure 6.6.

Creating a .NET Client Application

Next, create a .NET client application using the instances of proxy classes
and its methods. (The available proxy instances and the service methods
can be read from the proxy source code.) The .NET client application source
code AcmeServiceClientApp.cs using C# code is shown in Listing 6.3.

using System;
namespace AcmeServiceClient {
public class AcmeServiceClientApp {

public AcmeServiceClient2App () {
}

Listing 6.3 .NET client application source code, AcmeServiceClientApp.cs. (continues)

288 Chapter 6

public static void Main () {

// Create a proxy instance
AcmeProductCatalogService server
= new AcmeProductCatalogService() ;

// Invoke getProductCatalog method and
// get the XML as String
string catalog = server.getProductCatalog ();

// Print the Acme Product Catalog
Console.WriteLine ("The ACME Product Catalog :"+catalog) ;

Listing 6.3 .NET client application source code, AcmeServiceClientApp.cs. (continued)

Compiling the Client Application

The next step is to create an executable client application and to compile
the client source code AcmeServiceClientApp.cs. To compile the
client application, run the following command from your Windows com-
mand prompt (in a single line):

csc.exe /r:AcmeServiceClient.dll
/t:exe
/out:AcmeServiceClientApp.exe
AcmeServiceClientApp.cs

This command creates AcmeServiceClientApp.exe, which is an
executable .NET client application file that invokes the ACME service
provider, as shown in Figure 6.7.

D:snsdotnet>_

Figure 6.7 The compilation of a client application.

Creating .NET Interoperability 289

Currency
2888</1t

‘ProductCatalog’

Figure 6.8 Invocation of service from an ACME service provider.

Execute and Test the .NET Client from a Windows Environment

Finally, to invoke the ACME product catalog from the ACME service
provider (Axis environment), run the .NET client application AcmeSer-
viceClientApp.exe from the command prompt.

If everything works successfully, you will get the output shown in
Figure 6.8.

This summarizes our Web service interoperability example scenario
involving Apache Axis-based Java Web services and the Microsoft .NET
Framework.

Challenges in Creating Web Services
Interoperability

As of today, more than 50 Web services platforms, including SOAP imple-
mentations, are available to provide Web services support for a variety of
languages, APIs, applications, and systems. But not all of the services
exposed from these SOAP implementations are guaranteed to interoperate
and run across disparate applications and systems. Most interoperability
problems occur in RPC-based Web services because of the type mapping
issues between the service provider and requestor, which are due to the
lack of type mapping support in SOAP processing. In messaging-based
Web services, this is not the case, as the SOAP body is represented with an
XML document.

290 Chapter 6

The challenges that affect interoperability in Web services will be exam-
ined in the following sections.

Common SOAP/HTTP Transport Issues

At the core of Web services, the transport protocols establish the communi-
cation and enable the services to send and receive messages. In case of
using HTTP protocol, if the service provider requires a SOAPAction with a
null value, most HTTP clients may not be able to provide a SOAPAction
with a null value. The possible solutions are to fix the service client APIs
and to ensure that certain service provider implementations require SOAP-
Action with a null value. To solve these problems, test the client to see if
they can handle those scenarios.

XML Schema- and XML-Related Issues

XML schema validation handling causes a lot of interoperability issues
among SOAP implementations. So defining data types using XMS
schema definitions must occur in both the service client and provider
implementations.

Some SOAP implementations specify the encoding of data as UTF-8 and
UTF-16 in the Content-Type header as

Content-Type: text/xml; charset=utf-8

And some implementations do not specify the charset in the Content-
Type header, which causes some SOAP implementations to be unable to
process messages. To correct this problem, ensure that the SOAP implemen-
tation and its encoding standards are compliant with the W3C specifications.

SOAP/XML Message Discontinuities

Message discontinuities cause a major problem between a SOAP imple-
mentation in fulfilling the request and response between the service client
and service provider. To overcome these issues, ensure that the application
is aware of the message discontinuities and throw SOAPFaults in the case
of missing elements in the SOAPBody of the request message.

Creating .NET Interoperability

291

Version and Compatibility

The version of the supported XMLSchema, and the SOAP and WSDL spec-
ifications, and its compatibility between SOAP implementations affect
interoperability. To ensure that these issues are handled, the Web services
platform providers and its SOAP implementations must be tested for the
compatible versions of XML Schema definitions and the SOAP and WSDL
specifications.

The emergence of the WS-I initiative, which is examined in the next sec-
tion, will address these issues as part of its goals.

The WS-I Initiative and Its Goals

The Web Services Interoperability Organization, or WS-I, started as an
industry initiative by IBM and Microsoft, along with a handful of Web ser-
vices platform and application vendors. The ultimate goal of WS-I is to
promote interoperability in Web services implementations across plat-
forms, applications, programming languages, and devices. At the time of
this book’s writing, WS-1 is in the very early stage of defining its goals and
planning its deliverables.

As part of its deliverable plan, WS-1 is planning to introduce the concept
of WS-I profiles to address the interoperability issues on compatibility
problems due to specification versions, dependencies, and requirements.
The concept of the WS-I profiles focuses on the Web services applications
interoperability to conform their compliance on specifications and its sup-
port to profiles.

For example, the basic WS-I profile addresses the specifications listed in
Table 6.1.

Table 6.1 WS-| Basic Profile

SPECIFICATIONS VERSION

XML Schema XML Schema 1.0
SOAP SOAP 1.1
WSDL WSDL 1.1

UDDI uDDI 1.0

292 Chapter 6

At the time of this book’s writing, WS-I is working on developing WS-I
profiles on the evolving Web services specifications and its associated W3C
standards. Also note that WS-1 is still premature, as it still lacks participation
from some of the leading vendors on Web services platforms and systems.

Public Interoperability Testing Efforts

In addition to WS-I, an open interoperability testing effort is going on
through “WHITE MESA” a public organization that defines the testing
strategy for SOAP/WSDL tools interoperability and then maintains Web
services interoperability test information for leading vendor implementa-
tions. White Mesa demonstrates interoperability by running tests among
SOAP/Web services implementations particularly for WSDL, SOAP Data
types, and SOAP implementation for both RPC and document-style Web
services. The White Mesa tests most popular vendor implementations and
its tools for WSDL interoperability scenarios, especially the following:

m Generating WSDL documents for exposing services

m Consuming WSDL documents for service requestor and to generate
proxies

To find out White Mesa interoperability results for Sun JWSDP 1.0,
refer to http://soapinterop.java.sun.com/soapbuilders/round3.html. For
more information on White Mesa interoperability tests, refer to www.
whitemesa.net.

Summary

This chapter has discussed the core concepts of Web services interoperabil-
ity and the key challenges in developing interoperable Web services. An
interoperable Web services application scenario also was demonstrated
between a Java-based Web services and a Microsoft .NET Framework
based service requestor.

In general, this chapter has focused on the fundamentals of Web services
interoperability, the development of interoperable Web services between
Java and .NET, and the challenges in Web service interoperability.

The following chapter introduces the Java Web Services Developer Pack
(JWSDP 1.0).

avl

Three

Exploring Java Web
Services Developer Pack

Introduction to the Java Web
Services Developer Pack
(JWSDP)

As discussed in earlier chapters, XML is a cross platform neutral-data
format and Java is a cross platform programming language. These tech-
nologies provide a perfect solution for developing network independent
and extensible applications; they enable interoperability, portability, and
flexibility. They also provide a standard solution for integrating hetero-
geneous applications and systems ranging from cell phones to large-scale
enterprise applications. An application can be written in Java and ported
to various supported platforms (hence, the “Write Once, Run Anywhere”
mantra trademarked for Java by Sun Microsystems). In addition, XML
also has the capability to talk to Java as well as non-Java applications run-
ning on diverse platforms.

With the overwhelming success of XML and Java in enterprise applica-
tions, the use of XML has required the development of parsers and other
supporting technologies to process the XML data. Many XML-based
technologies have been developed over the last few years using vendor-
specific APIs that require specific vendor implementation knowledge.
The introduction of the Java XML APIs provides standard interfaces that
are independent of any vendor-specific implementation. For example, in
using a JAXP-compliant parser, this standardization provides better sup-
port for maintaining application code and enables the application provider
to exchange the underlying implementation of the parser. This change

295

296 Chapter7

does not require any modification in the application code because the
method calls are the same due to compliance of the two parsers.

This chapter presents an introduction to Sun Microsystems’ Java XML
APIs and runtime environments, which together make up a software
toolkit for developing Web services. This API toolkit, which is commonly
referred to as the Java Web Services Developer Pack (JWSDP), provides Java
developers with a one-stop API solution for the development of Java Web
service applications.

This chapter provides an introduction to JWSDP focusing on the follow-
ing topics:

m The core components of JWSDP

m Java XML APIs for Web services and their features

m The infrastructure for running Web service applications using JWSDP

m Java XML Pack

m Apache Tomcat container

m JWSDP Registry Server

m JavaServer Pages Standard Tag libraries
m ANT Build tool

Java Web Services Developer Pack

A Web service cannot be executed as a standalone program. It is usually a
component, which resides in a container that manages the life cycle of
these components by providing low-level services, such as security, trans-
action support, session management, and so forth. JWSDP includes a Web
container for hosting applications or services created using servlets and
Java Server Pages (JSPs).

Java Web Services Developer Pack (JWSDP) brings together a set of Java
APIs for XML-based Java applications by supporting key XML standards
such as SAX, DOM, XSLT, SOAP, WSDL, UDDI, and ebXML. These APIs
and their reference implementations are bundled together with a set of
runtime tools to form a JWSDP to provide a build, deploy, and test envi-
ronment for Web services applications and components. The pack includes
the following toolset:

m Java XML Pack

m JavaServer Pages Standard Tag Libraries

Introduction to the Java Web Services Developer Pack (JWSDP) 297

m Apache Tomcat container
m Java WSDP Registry Server
m ANT Build Tool

Java XML Pack

Java XML Pack is an architectural solution toolkit that is intended to ease
software development by providing a set of high-level APIs and refer-
ence implementations that abstract the complexities behind XML pro-
cessing. These APIs also enrich the development of XML applications
with a modular and simple set of interfaces leading to superior code
quality and increased developer productivity. With the rapid emergence
of new technologies such as Web services, pervasive computing, and
enterprise computing, these APIs become a standard supporting an API
solution to cater Java- and XML-enabled applications.

Java XML Pack is very beneficial for Web services development because
it leverages most of the aspects of XML-related processing in a typical Web
service environment. At the time of this book’s publication, the Sun Web
services pack contains the following Java XML APIs:

m Java API for XML Processing (JAXP)

m Java API for XML Registries (JAXR)

m Java API for XML-based RPC (JAX-RPC)

m SOAP with Attachments API for Java (SAAJ)
m Java API for XML Messaging (JAXM)

With the overwhelming success of Java and J2EE in enterprise applica-
tions, it is likely that the API solutions provided by the Java XML pack
and Web services pack will soon emerge as an industry-wide solution for
providing and building robust XML-based Web services.

Java APIs for XML

The Java APIs for XML provide a set of Java classes and interfaces for
working with the processing of XML data. They are categorized as follows:

Document-oriented APIs. These APIs enable the processing of XML
documents that contain XML data (for example, parsing a purchase
order defined in XML). Document-oriented APIs are generally used
for interpreting data stored in an XML format. The Java XML Pack
includes the following document-oriented APIs:

298 Chapter 7

m Java API for XML Processing (JAXP)
m Java Architecture for XML Binding (JAXB)

Procedure-oriented APIs. These APIs facilitate the sending and receiv-
ing of XML documents using network services (for example, sending
a SOAP message in a B2B communication). Procedure-oriented APIs
are generally used for interfacing between Web services applications.
The Java XML Pack includes the following APIs:

m Java API for XML Processing (JAXP)

m Java API for XML Messaging (JAXM)

m SOAP with Attachments API for Java (SAAJ)
m Java API for XML Registries (JAXR)

m Java API for XML-based RPC (JAX-RPC)

The following sections briefly describe each of these APIs.

Java API for XML Parsing (JAXP)

Java API for XML Parsing (JAXP) is used for the parsing and transforma-
tion of XML documents. Parsing is the process of interpreting the content of
a structured XML document. XML transformation consists of applying a
template to the XML data in order to produce a document in a desired for-
mat. JAXP version 1.1 supports the following three different standards for
XML processing:

FOR PARSING:

m Simple API for XML (SAX)
m Document Object Model (DOM) API

FOR TRANSFORMATIONS:
m Extensible Stylesheet Language Transformation (XSLT) API

JAXP also provides a pluggable interface independent of any particular
XML processor implementation. JAXP is an abstraction that enables the
exchange of any compliant XML parser. The following sections describe
the processing standards supported by these APIs in more detail.

Introduction to the Java Web Services Developer Pack (JWSDP)

299

simple API for XML (SAX)

The Simple Access for XML (SAX) API is a public domain based on an
event-driven processing model where data elements are interpreted on a
sequential basis and events are triggered based on selected constructs. SAX
is similar to the AWT 1.1 Event Delegation Model, where Ul components
generate events based on user input, and event listeners perform actions
when these events are triggered. The biggest advantage of SAX is that it
does not load any XML documents into memory, therefore it is considered
to be very fast and lightweight. SAX supports validation by using Docu-
ment Type Definition (DTD) but does not enforce the use of it. By having
validation, a document is checked for conformance against the DTD. It
uses a sequential read-only approach and does not support random access
to XML elements. Figure 7.1 shows an XML document being processed by
a JAXP-compliant parser with some events triggered by the elements
encountered in the document. These events are the callback methods
implemented in the application handler class.

SAX was developed by an XML working group called XML-DEV, which
is managed by OASIS. The list is used for implementation and develop-
ment discussions using SAX. For more information about XML-DEV mail-
ing list initiatives, refer to www.xml.org/xml/xmldev.shtml.

Default
Handler
event
e
<xml> event
2 we -\ @
</> Compliant
Parser event
</xml>) °
event
L -
XML
Document

Figure 7.1 JAXP using the SAX processing model.

300 Chapter7

Document Object Model (DOM)

The Document Object Model (DOM) API was defined and is maintained
by the W3C working group (www.w3org/TR/WD-DOM/): “As per W3C
definition the Document Object Model is a platform- and language-neutral
interface that will allow programs and scripts to dynamically access and
update the content, structure, and style of documents.”

The DOM processing model consists of reading the entire XML document
into memory and building a tree representation of the structured data, as
shown in Figure 7.2. This model can require a substantial amount of memory
when the XML document is large. By having the data in memory, DOM
introduces the capability of manipulating the XML data by inserting, editing,
or deleting tree elements. Unlike the SAX API, DOM supports random
access to any node in the tree. It also supports validation by using DTD, but
it does not enforce the use of validation.

Extensible Stylesheet Language Transformation (XSLT)

Extensible Stylesheet Language Transformation (XSLT) is an XML pro-
cessing standard used with eXtensible Stylesheet Language (XSL) for
XML-based document transformation. XSLT is a process by which XSL
templates are applied to XML documents to create new documents in
desired formats (XML, HTML, PDF, WML, and so forth). XSL provides the
syntax and semantics for specifying formatting and XSLT is the processor
that performs the formatting task.

Document
<xml> . Build
< input JAXP DOM
</> _— Compliant —
</xml> Parser
XML
Document

Figure 7.2 JAXP using the DOM processing model.

Introduction to the Java Web Services Developer Pack (JWSDP)

301

XSLT is often used for the purpose of generating various output formats
for applications that enable access to heterogeneous client types (such as
Web browsers, cell phones, Java applications, and so on). XSLT also is used
to format one XML representation to another; this is typical in a B2B type
environment. Figure 7.3 illustrates a scenario where an application hosts a
component that is able to generate various types of output based on the
requesting client’s type.

JAXP Pluggable Interface

JAXP provides a pluggable layer that enables application developers to
change parser implementations without affecting the application logic.
With JAXP, one JAXP-compliant parser can be exchanged for another
seamlessly, without much effort. JAXP provides a set of standard interfaces
that encapsulate the details behind the parser interactions. These interfaces
act as abstractions that prevent the developer from working with XML
directly. The abstractions are implementations of the SAX and DOM pars-
ing standards and the XSLT transformation standard.

Figure 7.4 shows the high-level blocks that compose the JAXP model. In
order for a parser and transformer to be compliant, they must follow the
JAXP specification. The freedom to choose any parser is very important:
This flexibility enables application developers to choose a parser provider
that best suits the requirements of the service.

XSL

]AXI? input <xml>
Compliant - <>
html |« XSLT </>
Processor </xml>
Client
Application / XML
(Web browser) Document

xml

Other
Services

-~
-~

Figure 7.3 Using JAXP for XSLT transformation.

302 Chapter 7

Application

JAXP Pluggable Interface

Compliant Compliant Compliant

Parser Parser Parser

Figure 7.4 JAXP pluggable interface.

For more information on JAXD, refer to Chapter 8 “XML Processing and
Data Binding with Java APIs.”

Java Architecture for XML Binding (JAXB)

The XML Binding technology provides application developers with a way
to generate Java objects based on XML definitions. The Java Architecture
for XML Binding (JAXB), formerly known as JCP project Adelard, is a high-
level API that abstracts the binding semantics via classes and interfaces.
JAXB takes the developer away from the manual steps of parsing and pro-
cessing the data. It provides the necessary utilities that enable developers
to work with the XML data in the form of Java objects. In other words, it
provides the means for the developers to generate Java object models
based on XML definitions and vice versa.

Introduction to the Java Web Services Developer Pack (JWSDP) 303

JAXP REFERENCE IMPLEMENTATIONS

The current release of JAXP (1.1) is packaged with reference implementations of
the API specifications. The parser implementation is based on the Crimson code-
base, which originates from Sun Project X parser. JAXP is a Sun Microsystems
initiative to make the API available to the public for redistribution in commercial
products. This parser codebase is currently maintained by the Apache Software
Foundation and has moved to a different codebase called Xerces 2. Industry
leaders such as Sun, IBM, BEA, and iPlanet have accepted JAXP as a standard
APL. The XSLT processor is called Xalan and is an implementation of the W3C
Recommendation for XSL Transformations (XSLT).

At the time of this publication, JAXP v1.1 conforms to the following
standards:

4 XML 1.0 Second Edition

4 XML Namespaces 1.0

¢ SAX 2.0

& SAX2 Extensions version 1.0

4 DOM Level 2 Core Recommendation
¢ XSLT 1.0

For more information on the current release of JAXP, refer to the following
site:
http://java.sun.com/xml/jaxp/

JAXB architecture provides services such as a schema compiler, binding
framework, and a binding language or a runtime API (interfaces and
classes) that provide the following services:

Marshalling. The process of converting a Java object tree into an XML
document.

Unmarshalling. The process of converting an XML document into a
Java object tree.

Validation. The process where an XML document is checked for con-
formance with a DTD schema.

When building a Java object tree, each object in the tree refers to an ele-
ment in the XML document. The object in the tree is an instance of a class
that was generated by the compiler, based on the DTD and a binding
schema. Figure 7.5 shows the life cycle of a Java binding process.

304 Chapter 7

Java Class

XML Compiling
Schema >

Conforms to
InstanceOf

Marshalling

<xml>
<>
</>

</xml>

Unmarshalling

XML
Document

Figure 7.5 Java binding process.

JAXB provides a schema compiler, which follows an XML schema and
defines what elements to extract from an XML document. JAXB then com-
piles the XML schema by generating a Java class. An instance of a Java
object can be instantiated manually from the Java class or by unmar-
shalling the XML document.

In the current release of JWSDP, JAXB is not included due to functional-
ity limitations with validation, W3C schema, and XML namespaces. For
more information on JAXB, refer to Chapter 8.

Java API for XML Messaging (JAXM)

The Java API for XML Messaging (JAXM) is designed to be used as a light-
weight XML messaging API for application-to-application (A2A) integra-
tion and B2B communication, especially Web services environments. It

Introduction to the Java Web Services Developer Pack (JWSDP)

305

enables the transfer of business-level documents between two parties
involved in a transaction. It also enables loosely coupled services to inter-
act with each other using SOAP messaging protocol (specifically, SOAP 1.1
and SOAP with attachments). Through its API, JAXM enables the develop-
ment of SOAP-compliant messages by making Java API calls. The under-
lying message delivery infrastructure (message provider) is independent
of the JAXM. It is therefore possible to have asynchronous providers that
provide services such as reliable message delivery or synchronous
providers using a simple request/response model. The specification
requires that JAXM supports the following five messaging interaction pat-
terns: Asynchronous inquiry, Asynchronous update with acknowledge-
ment, Synchronous Update, Synchronous Inquiry, and Fire and Forget. For
details on these interaction patterns, refer to Chapter 9, “XML Messaging
Using JAXM and SAAJ.”

The JAXM specification does not enforce any particular messaging pro-
tocol standard; it currently focuses around SOAP and SOAP extensions
such as ebXML. The JAXM specification also does not mandate the use of
any particular communication protocols; the current support focuses
around industry standards such as HTTP, SMTP, and FTP.

JAXM clients can be either message provider-driven or non-managed.
The API can be used by non-managed clients (standalone applications) for
building SOAP-compliant XML messages and for sending them directly to
the final destination. In a non-managed environment, the client and its des-
tination can communicate only in a point-to-point fashion. Message
providers handle the transmission and routing of messages from the
sender to receiver(s), as shown in Figure 7.6. By using message providers,
asynchronous communication can be achieved where the underlying archi-
tecture is based upon a Java Messaging Service (JMS) implementation. For
more information on JMS, refer to http://java.sun.com/products/
jms/. The JAXM specification does not mandate the use of any particular
messaging architecture. The provider architecture is completely transpar-
ent to the JAXM sender or receiver.

In a message provider environment, a sender builds a SOAP-compliant
message by using a JAXM API. The sender then sends a message by going
through its provider, at which point the message is then transmitted over
the network and is forwarded to the receiver’s provider. The receiver then
gets the message and processes it using the JAXM API. Figure 7.6 illus-
trates a simple JAXM messaging example of sending and receiving SOAP
messages using HTTP.

306 Chapter7

Sender Receiver
Application Application
JAXM API JAXM API
JAXM JAXM
Messaging Messaging
Provider Provider
HTTP soap HTTP T

msg

Figure 7.6 JAXM messaging over HTTP.

Because there are other APIs (such as JAX-RPC) that use the SOAP
package from JAXM, the specification of JAXM was separated and a new
specification called SOAP Attachments API for Java (SAAJ) was formed.
This API specification only consists of the java.xml.soap package origi-
nally designed for JAXM.

For more information on the current releases, refer to Chapter 9.

Java API for XML Remote Procedure Calls (JAX-RPC)

Java API for XML RPC (JAX-RPC) provides a set of high-level Java APIs for
XML-based RPCs and makes the XML-RPC model easy to understand and
implement. Because JAX-RPC is based around XML messaging, it is plat-
form independent and can be used in a heterogeneous distributed environ-
ment without being limited by a specific platform or technology (unlike its
complementary standards such as RMI or CORBA). See Chapter 1, “Evolu-
tion of Distributed Computing,” for an overview of RMI and CORBA.
JAX-RPC enables XML-based Java applications to interoperate using
RPC. The RPC mechanism enables a client to make remote procedure
calls that are communicated to a remote server. An XML-based RPC is a
remote procedure call encoded using an XML protocol, such as SOAP 1.1.
The SOAP message is encoded with an RPC definition to send complex

Introduction to the Java Web Services Developer Pack (JWSDP) 307

structures and commands to remote servers. The JAX-RPC specification
is protocol neutral, but it does require the support of HTTP 1.1 for SOAP
messaging. The API facilitates the development of Web services using
RPC protocols by encapsulating the plumbing of marshalling and
unmarshalling SOAP messages. JAX-RPC supports several modes of
interaction: synchronous request-response, one-way RPC, and non-

blocking RPC invocation.
Figure 7.7 illustrates a simple JAX-RPC example of Web services. The

following are the steps taken in the example:
1. A client looks up a service definition in a UDDI registry. The infor-
mation is stored using WSDL.

2. The service information is retrieved from the registry to determine
the functionality that is offered to the client by the service.

3. The client then encodes a SOAP message and sends it to the server.

4. The JAX-RPC runtime environment parses the request and makes a
call to the service using the JAX-RPC APL

5. After the result is computed, it is encoded and returned as a SOAP
response.

Application Server

3. soap/http request

A4

o
O e <
s E Y Service
_ 4. soap/http response xS || & endpoint
Client < <z %3
N —
o |8
(W) -
= <
>
g £
a2 L
S £
) £
S 2
- (]
- I~
v ~
uDDI

Figure 7.7 Web Services example using JAX-RPC.

308 Chapter 7

For more information on JAX-RPC, refer to Chapter 10, “Building RPC
Web services with JAX-RPC.”

Java API for XML Registries (JAXR)

Registries are external entities that are accessed by various sources to find
out information about particular business services. They hold information
such as the name of the business and the services offered by the business.
A registry can be public by being exposed to any other application on the
network, or it can be private by being exposed to a local network. Client
applications use the information provided by these registries to make calls
to the services.

Registry providers have the responsibility to provide the implementa-
tion of the registry specifications. A JAXR provider acts as a wrapper to the
registry provider: that is, it encapsulates all of the plumbing information a
developer does not need to worry about by exposing only those interfaces
that are needed by the application (JAXR client). JAXR clients can use
generic or specific business-type APIs to access the registry.

Java API for XML Registries (JAXR) facilitates access to diverse business
registries and repositories, such as UDDI and ebXML. It enables applica-
tions to register with a registry or to look for Web services offered by other
businesses. Figure 7.8 shows an example scenario of using a JAXR API to
enable uniform access to various types of registries.

For more information on the current release of JAXR, refer to Chapter 11,
“Java API for XML Registries.”

Y
MM]
a3 | http
Qax |— uDDI
52
o
JAXR ~
_— Pluggable
Provider . —
= oo
Client > 'C;i
Application 53 | htp
ox |7 | ebXML
N~

Figure 7.8 Accessing service registries with JAXR.

Introduction to the Java Web Services Developer Pack (JWSDP)

309

JavaServer Pages Standard Tag Library

JavaServer Pages Standard Tag Library (JSTL) is an initiative to standardize
on a single set of reusable taglibs that expose functionality to solve common
problems faced in Web application development. The idea is to implement
one standard solution instead of many different proprietary ones. By doing
this, developers will only have to learn one set of functions to perform their
work instead of many different taglibs which, in the end, perform the same
functionality. The JSTL implementation is vendor neutral, which means that
it will run in most Web containers that conform to the required Java specifi-
cations. Having this kind of specification enables vendors to implement
different strategies for their Web containers.

The current implementation of JSTL tags supports functionality for the
following;:

Core tags. Provide support for conditional processing, iteration over
collections, and expression language support.

XML tags. Provide support for XML processing, including the parsing
and transformation of XML documents.

Internationalisation tags. Provide support for I18N and localized
formatting.

SQL tags. Provide support for database access.

Chapter 12, “Using the Java Web Services Developer Pack: Case Study,”
provides some examples on how to use JSTL tag libraries. For more infor-
mation on JSTL, refer to the JSTL home page at: http://java.sun.com
/products/jsp/jstl/.

This ends the coverage of the Java XML APIs and standard tag libraries
that are part of the JWSDP. The following section will talk about the infra-
structure, runtime environment, and tools that aid in the development of
Web services.

Apache Tomcat Container

Apache Tomcat is an open-source implementation of a Web container
under the Apache Software Foundation. The container conforms to the lat-
est specifications and provides runtime services for hosting and executing
servlets and JSPs.

For more information on Tomcat, refer to http://jakarta.apache.org
/tomcat/index.html.

310 Chapter 7

Java WSDP Registry Server

JWSDP Registry Server is an implementation of the UDDI version 2.0. The
JWSDP Registry Server serves the purpose of testing applications written
using Java API for XML Registries (JAXR).

For more information about the Registry Server, UDDI, and JAXR, refer
to the following sources:

m Registry Server: Java Sun’s Web site at http:/ /java.sun.com/web
services/docs/1.0/tutorial /doc/RegistryServer.html#67421

m UDDI: See Chapter 5
m JAXR: See Chapter 11

ANT Build Tool

Apache ANT is a build tool similar to make and gnumake. It has gained a
lot of attention and acceptance from the community for building and
deploying Java code. ANT uses XML for specifying the various tasks that
must be executed in the build process. It provides many defined tasks that
can be used by the developer while compiling, building, or deploying the
application code. ANT is extensible because it enables a new task to be
implemented and used in the build process. A task is a Java class that
implements a specific functionality and conforms to a specific interface.
For example, if the developer wants to achieve class files in a jar, she would
call the jar task to accomplish this step. The jar task is part of the core set of
tasks available with ANT.

For more information on the ANT build tool, refer to http://jakarta
.apache.org/ant/index.html.

Downloading the Web Services Pack

JWSDP is available at the Sun Java site. Full documentation, which
explains the functionality of each Java XML API included in the pack, also
is available for downloading. In addition, the Web services tutorial also is
for downloading. This tutorial takes the developer through each API with
examples, and it provides instructions on how to set up the JWSDP envi-
ronment and how to deploy and test Web service applications.

A separate download of the Java XML Pack software bundle is available at
http:/ /java.sun.com/xml/javaxmlpack.html. This pack only includes the
APIs available in JWSDP, and it does not provide a runtime environment to

Introduction to the Java Web Services Developer Pack (JWSDP) 311

test Web service applications. JWSDP is available at http:/ /java.sun.com/
webservices/webservicespack.html, and it includes the Java XML APIs
and a runtime environment.

These development packs are released by Sun on a quarterly basis, thus
ensuring support for emerging XML standards and the most recent speci-
fications.

Summary

In this chapter, we introduced the JAVA XML Pack APIs and the Java Web
Services Developer Pack (JWSDP) runtime environment for developing
and running Web services applications.

This introduction provided a walk-through on document- and procedure-
oriented API solutions for XML processing and the importance of JAVA XML
Pack in Web services.

In the following chapters, we will take a closer look at these APIs with best
practices and real-world example illustrations. Chapter 12, “Using Java Web
Services Developer Pack: Case Study,” focuses on JWSDP and provides a
case study example using various APIs from the pack.

XML Processing and Data
Binding with Java APIs

Java and XML are known to be a perfect fit for building portable business
applications, where Java provides the portability of code that can be exe-
cuted on various platforms and XML provides the portability of data that
can be processed on diverse platforms. These two technologies can be
ported from one platform to another without any effort, and in addition,
Java applications can talk to non-Java applications by using XML as the
communication protocol. The first generation of Java XML APIs dealt with
the parsing of XML covering industry standards like SAX and DOM. By
high demand from the developer community, other standards followed
such as XML transformations and XML data binding. These emerging
XML technologies are a key solution in the Web services arena, where pars-
ing is used for processing XML messages and binding provides an object
view of the XML data.

This chapter provides an overview of Java API for XML processing and
data binding, focusing on the following;:

m Overview of XML and its complementing standards
m Simple API for XML

m Document Object Model (DOM)

m The JAXP processing model and its features

313

314 Chapter 8

m Using JAXP in Web services development
m Using Java XML binding

The specification of Java API for XML processing is currently at version
1.2 and provides support for XML parsing and XML transformation. Also,
the specification for XML data binding API is at version 1.0. These two
specifications are very important because they set the fundamentals for
XML processing and are essential in understanding the processing as well
as benefits of using XML. Before describing the APIs, let’s look at the basics
of XML.

Extensible Markup Language (XML) Basics

XML is an ASCII-based structured meta-data language that has been widely
adopted in the industry. Currently, it is adopted in many areas such as secu-
rity (for example, SAML and XACML), meta data (for example, XML
Schema and TopicMaps), and presentation (for example, XHTML and XSLT).

XML was created in 1996 and embodied by the W3C group since early
1998. It is a derivative of the well-known SGML markup language, which
has been around for a long time but has not gotten as much acceptance as
XML due to its complexity. XML was created as an extensible way to rep-
resent data. It is considered extensible because it does not define a standard
and well-defined set of tags (such as HTML) but rather provides the capa-
bility to create custom tags. It has the flexibility to define complex data
structures in a modular way, thus promoting clarity and consistency.

HTML has tags <>, also referred to as markup, that have a specific mean-
ing. When interpreted by a browser, the HTML tags have a particular
presentation-oriented function within the document. For example, the tag
<Body> marks the beginning of a page. Anything that is put inside the
<Body> tag is rendered by the browser and displayed on the Web page.
The <Body> tag also contains a closing tag, which is represented by the
</Body> tag. In XML, the same set of tags could have hundreds of differ-
ent meanings. For example, consider an XML file that describes the charac-
teristics of a person. The Person tag contains a Body tag that will contain
the weight and height of a person. The following is an XML representation
of such a description:

<?xml version="1.0" ?>
<Friends>
<Person>
<Name>Jane Doe</Name>
<Age>21</Age>
<Body>

XML Processing and Data Binding with Java APIs

315

<Weight Unit="lbs">126</Weight>
<Height Unit="inches">62</Height>

</Body>

</Person>

<Person>

<Name>John Doe</Name>

<Age>26</Age>

<Body>
<Weight Unit="kg">80</Weight>
<Height Unit="meters">1.67</Height>

</Body>

</Person>

</Friends>

The document starts with a prolog, which is a processing instruction
statement identifying the XML document and the version of the document.
The XML structure represents data about two people, each identified with
the <person> tag. Within the person tag, there is a description of the body
characteristics of each person such as weight and height. Body characteris-
tics can have different types of measuring units such as kilograms (kg) or
pounds (Ibs). This is a representation of hierarchical data where the
<Name>, <Age>, and <Body> tags are enclosed within the scope of the
<Person> tag. This makes XML very extensible, where the creator of the
XML determines what meaning and content the markup must have.

XML is currently being used in various areas of enterprise computing.
One area that all J2EE developers are familiar with is the area of the
deployment descriptors, which is used for the configuration of the J2EE
components hosted in an application server. Some application servers use
XML for storing their setup, configuration, and deployment information.
XML also is known to be a perfect solution for integration with legacy sys-
tems, because it is a platform and vendor-neutral solution.

Note that XML as a meta language, in most circumstances, is very easy
to understand. It only uses ASCII encoding, thus making it readable with
simple text editors. By looking at the previous example, one could easily
interpret what is meant by the XML structure. To put things into perspec-
tive, the following is an equivalent comma-delimited data file representing
the equivalent data:

Rima P, 18,100, 54
Urszula M, 21, 126, 62
Slawomir S, 45, 80, 1.55
Robert S, 26, 90, 1.67

In this particular scenario, commas are used to delimit the data, which
was a very frequently used option prior to the standardization of XML.
Just by looking at this sample, you will be hard pressed to determine what

316 Chapter 8

each entry means. There is no explanation of the data in an intuitive way.
Also, the mixing of units into one single file is impossible, because there is
no indication of the type of unit being used. Even though it’s possible to
use these types of data files, they are extremely difficult to maintain
because they are very difficult to understand and validate. In fact, they can
cause a maintenance nightmare.

XML provides a structured and well-defined syntax that enables data to
be defined in a uniform way. This syntax is not very hard to learn, but
understanding the different concepts is important. By understanding all of
these concepts, a developer will be able to use various tools that will aid in
XML development.

Before starting with the API discussion, let’s look at the very basics of
XML.

XML Syntax

This section will discuss some terminology associated with XML that
describes XML-specific syntax and what it means.

XML Naming Conventions

Naming has to be respected for the XML document to be well formed.
Blank spaces are not permitted in XML names. A name must start with an
alphabetical letter (A to Z or a to z) or an underscore (_). It then can be fol-
lowed with more letters, digits [0 to 9], underscores, hyphens (-), periods
(.), and colons (:). Although a colon is permitted, it is mostly used when a
document uses namespaces (see the section titled Namespaces that follows).
Names are also case-sensitive in an XML document, therefore <product>
and <Product> are considered to be two different elements. It is up to the
developer to choose whether the structure is only in lowercase, uppercase,
or mixed. For example, the following XML structure would not be valid
due to the case mixing of the product:

<product>
<id>1234</id>
<price>19.99</price>
</Product>

The following is the correct product representation because both of the
product elements are of the same case:

<product>
<id>1234</id>
<price>19.99</price>
</product>

XML Processing and Data Binding with Java APIs 317

Prolog

Prolog is the declaration statement that identifies the document as an XML
document. It is the first line in an XML file. It identifies the version of the
XML specification used, the encoding being used, and whether it is stand-
alone. The prolog is not necessary, but it is a good practice to use it in dec-
larations for internationalization and future extensions set by the W3C.
The version attribute is mandatory where the other two are optional. The
following is a sample of a prolog;:

<?xml version="1.0" ?>

or

<?xml version="1.0" encoding="IS0-8859-1" standalone="yes" ?>

Some additional and optional attributes can be provided, including the
following:

Encoding. Identifies the character set used for encoding the data.

Standalone. Identifies whether the source accesses external data
sources.

Root

A root is the topmost element in an XML document. For a document to be
syntactically correct, it must contain only one root element.

The following is not a correct XML document because it does not contain
a single root element:

<?xml version="1.0"?>

<personl>
<name>john</name>

</personl>

<person2>
<name>jane</name>

</person2>

The following is a correct version of the same document with the
employee element as the root.

<?xml version="1.0"?>

<Employee>

<Personl>
<Name>john</Name>

</Personl>

318 Chapter 8

<Person2>
<Name>jane</Name>
</Person2>
<Employees>

Processing Instructions

Processing instructions (PIs) are used for providing information to the
XML processing application. Things like scripts could be embedded in
XML documents for extra processing. A prolog is considered to be a pro-
cessing instruction but is reserved for XML standards. Processing instruc-
tions usually are used in special applications to perform special tasks.

The following is an example of a processing instruction:

<?target instructions?>

where the following are indicated:

target. Itis the name of the application that will be performing the
processing.

instruction. String containing information that is passed to the target
application. An example of a PI that is seen in the majority of XML
documents is the prolog:

<?xml version="1.0" ?>

Comments

Comments are used for documenting parts of an XML structure. Com-
ments are defined using the same syntax as HTML. The following is an
example of a comment:

<!— this is a comment —>

Tags

A tag is the element markup identified by the angle brackets. Each tag
must have a start tag and a close tag. An XML file that contains a closing
tag for every tag in a nested form is considered to be a well-formed file.
Atagis considered to be an empty tag if it stands by itself without any attrib-
utes. An empty tag serves the purpose of an identifier in a XML structure.

XML Processing and Data Binding with Java APIs

319

For example,

<LineItem Product_No="210020" Quantity="4000"/>

can be equivalently represented as

<LineItem>
<Product_No>210020</Product_No>
<Quantity>4000</Quantity>
</LineItem>

The first example shows how the attributes can be used in a tag. This also
is an example of an empty tag where no data is present. It simply defines
the name and age and closes itself with the slash (/).

A number of things need to be kept in mind when an XML structure is
designed. For example, when data is very large, it makes more sense to use
elements rather then attributes for clarity. Data that contains various
HTML or formatting tags also should be defined as an element. On the
other hand, if the data is short and does not change very often, defining it
as an attribute might be the right approach to take.

Elements

An element is the data delimited by a start tag and an end tag. It is the
building block used for creating XML documents. An XML document
essentially is composed of many elements. The topmost element is called
the root element. All elements that are directly under the root are referred
to as child elements of the root element. In the following code, the root ele-
ment is the Catalog element and the child elements of the root elements
are the CatalogId, Product, and EuroProducts elements. These
three elements are considered to be siblings in relation to one another, and
the root element is considered to be an ancestor of the three siblings. This
tree structure can span multiple levels, nesting much deeper than we are
able to show in the following simple example code:

<!-- Catalog Is a Start or Root element -->
<Catalog>
<CatalogId Id='123456"' />
<!--Product element contains children elements -->
<Product>
<!-- Id element contains character data -->
<Id>1234</Id>
<!-- Price contains attribute currency -->

<Price currency='USD'>199.99</Price>

320 Chapter 8

</Product>
<!-- Empty element -->
<EuroProducts/>
<!-- Closing element -->
</Catalog>

Attributes

Attributes provide additional information about an element. They have a
key and value pair that identifies the different attribute. Many attributes
can exist in one element. If attributes are used, the XML document can have
a reduced number of tags, as shown in the following code:

<Price currency="USD">12.99</Price>
<Price currency="CND">21.99</Price>

In the code, the Price attribute specifies the currency type for the
enclosed data. Attributes also apply to all of the elements that are nested
within the element holding the attribute. The following example shows
how the currency attribute applies to different scotch brands:

<Price currency="CND">
<Scotch>
<Name>Lagavulin</Name>
<Value>49.99</Value>
</Scotch>
<Scotch>
<Name>Talisker</Name>
<Value>54.99</Name>
</Scotch>
</Price>
<Price currency="USD">
<Scotch>
<Name>Cardhu</Name>
<Value>29.99</Value>
</Scotch>

</Price>

The Lagavulin and Talisker brands have CND currency, where the Cardhu
brand holds the USD price.

Entities

Entities are variables used to define common text or shortcuts to text. Table
8.1 shows the common ones used in XML specification. For example, the
less-than sign (<) can be interpreted as the beginning of a tag; it is therefore
important to make use of entities in these situations. Entities are inter-
preted and expanded at parsing time.

XML Processing and Data Binding with Java APIs 321

Table 8.1 Entities Supported in XML Specification

ENTITY CHARACTER

< <
> >
& &
" “
' !

The following is a sample of an XML structure representing a purchase
order; it includes most of the concepts discussed in this section:

<!-- Prolog -->

<?xml version="1.0"7?>

<!- Root element -->

<PurchaseOrder>
<Header>

<PO_Number>2123536673005</PO_Number>
<Date>02/22/2002</Date>
<Customer_No>0002232</Customer_No>
<!-- This Is the shipping address -->
<Address>
<Streetl>233 St-John Blvd</Streetl>
<Street2>Building A42</Street2>
<City>Boston</City>
<State>MA</State>
<Zip>03054</Zip>
<Country>USA</Country>
</Address>
<!-- This Is the payment Information -->
<PaymentInfo>
<Type>Visa</Type>
<Number>0323235664664564</Number>
<Expires>02/2004</Expires>
<Owner>John Doe</Owner>

</PaymentInfo>
</Header>
<!-- The following section contains a list of -->
<!-- ordered Items -->

<Products/>

<LinelItem type="Software">
<Product_No>21112</Product_No>
<Quantity>250</Quantity>

</LineItem>

<LineItem type="Software">

322 Chapter 8

<Product_No>343432</Product_No>
<Quantity>1000</Quantity>

</LineItem>

<LineItem type="Hardware">
<Product_No>210020</Product_No>
<Quantity>4000</Quantity>

</LineItem>

</PurchaseOrder>

This XML structure is a representation of a purchase order. It starts with
the XML prolog, followed by the root element of the structure called Pur-
chaseOrder. PurchaseOrder has child elements, starting with Header,
which contain the buyer information followed by many LineItem ele-
ments that contain the product number and quantity of the ordered prod-
ucts. Between the Header and first LineItem is an empty tag called
Products. This empty tag serves as a delimeter between the header and
the line items. Each LineItem contains the type of product that it repre-
sents. For example, Product_No 21112 is of type software.

Namespaces

Namespaces in an XML document are used to prevent naming collisions
within same or different XML documents. The namespace syntax enables a
prefix definition and an associated URI/URL to exist. By specifying the
URL, the namespace becomes a unique identifier. A URL is usually com-
bined with a prefix to make the different elements distinguishable from
each other. The URL does not refer to any particular file or directory on the
Web, it simply acts as a unique association or label for the defined name-
space. The XML namespaces specification indicates that each XML element
is in a namespace. If the namespaces are not explicitly defined, the XML
elements are considered to reside in a default namespace.

Consider the following example XML structure where the <Name> tag is
found in two distinct places:

Buyer .xml
<!-- This Is a fragment of the xml file -->
<Buyer>
<Name>Urszula M</Name>
<email>urszulam@acme.com</email>
</Buyer>
<!-- This Is a fragment of the xml file -->
<Product>

<Id>090902343</Id>
<Name>Foo</Name>
</Product>

XML Processing and Data Binding with Java APIs

323

This is a simple example, which calls for namespace support to avoid
conflicts when both documents are used together. The most common con-
flicts arise when multiple XML documents use identical tags that have dif-
ferent meanings. <Name> is a child of both the product and buyer
elements. The parser must understand to which <Name> tag the applica-
tion is referring. Having said that, the syntax using namespaces specifica-
tion will convert the <Name> tags into something less ambiguous, such as
<Person:Name> and <Item:Name>. Namespaces can be found in XML-
related documents, schema documents, and XSL stylesheets. The following
sample shows the distinction of both tags:

<!-- Buyer.xml provides Information about the buyer -->
<PersonInfo:Buyer xmlns:PersonInfo=
"http://www.acme-computers.com/warehouse/personinfo/">
<PersonInfo:Name>Robert S</Name>
<PersonInfo:email>roberts@acme.com</email>
</PersonInfo:Buyer>

<!-- Catalog.xml listing of all Items available for sale -->
<Catalog:Product xmlns:Catalog=
"http://www.acme-computers.com/warehouse/catalog/"
xmlns="http://www.acme-computers.com/warehouse/default/">
<!-- uses default namespace -->
<Header>
<LastUpdated>05/20/2001</LastUpdated>
</Header>
<Catalog:Item>
<Catalog:Id>090902343</Catalog:Id>
<Catalog:Name>Futsji</Catalog:Name>
</Catalog:Item>
<Catalog:Item>
<Catalog:Id>123242343</Catalog:Id>
<Catalog:Name>Sony</Catalog:Name>
</Catalog:Item>
</Catalog:Product>

Element collision is prevented by placing prefixes in front of each XML
element. The Header element of the catalog XML document does not use
the Catalog namespace, instead, it uses the default namespace without
any prefixes.

Validation of XML Documents

Before the parser processes a document, it is checked for well-formedness.
A well-formed document is a document in which every tag has an

324 Chapter 8

equivalent closing tag meaning; it conforms to the XML specification. A
document that is well formed may not necessarily be valid. A valid docu-
ment is a document that conforms to certain constraints defined in a
schema definition. Validity is used for checking whether a document con-
forms to certain standards agreed upon by collaborating parties (for exam-
ple, two businesses conducting the exchange of computer parts). These
two businesses must provide the data in such a way that they both under-
stand what is represented and what is meant by it.

The following example demonstrates a structure that is not well formed:

<!-- Not well-formed document -->
<?xml version="1.0"?>
<Employees>
<Person>Jane</Person>
<Age>21
</Employee>
</Age>

In the previous example, the Age and Employee elements are not prop-
erly nested. The order in which the paired tags are opened and closed is
very important for a document to be considered well formed.

This error is corrected in the following example, in which the two ele-
ments are properly nested:

<!-- Well-formed document -->

<?xml version="1.0"?>

<Employee>
<Person>Jane</Person>
<Age>21</Age>

</Employee>

Well-formedness is very important because it enables the parser to
process the XML document in a more efficient way.

In order for validity to be checked, a definition document must be pro-
vided to define what the document is allowed to have as tags and attributes
and the type of elements that should be present within a particular tag.

Consider a simple example in which the Product element contains a
type defining the type of product that a company is offering. The company
offers two types of products (hardware or software). Suppose that its
Product ele