
TEAMFL
Y

Team-Fly®

Developing Java™ Web Services
Architecting and Developing Secure

Web Services Using Java

Ramesh Nagappan
Robert Skoczylas

Rima Patel Sriganesh

Developing Java™

Web Services
Architecting and Developing Secure

Web Services Using Java

Publisher: Robert Ipsen
Editor: Theresa Hudson
Developmental Editors: Scott Amerman and James Russell
Editorial Manager: Kathryn A. Malm
Managing Editor: Angela Smith
Text Design & Composition: Wiley Composition Services

This book is printed on acid-free paper. ∞

Copyright © 2003 by Wiley Publishing Inc., Indianapolis, Indiana. All rights reserved.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or
otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright
Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rose-
wood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470. Requests to the Pub-
lisher for permission should be addressed to the Legal Department, Wiley Publishing, Inc.,
10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4447, E-mail:
PERMCOORDINATOR@WILEY.COM.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their
best efforts in preparing this book, they make no representations or warranties with respect
to the accuracy or completeness of the contents of this book and specifically disclaim any
implied warranties of merchantability or fitness for a particular purpose. No warranty may
be created or extended by sales representatives or written sales materials. The advice and
strategies contained herein may not be suitable for your situation. You should consult with
a professional where appropriate. Neither the publisher nor author shall be liable for any
loss of profit or any other commercial damages, including but not limited to special, inci-
dental, consequential, or other damages.

For general information on our other products and services please contact our Customer
Care Department within the United States at (800) 762-2974, outside the United States at
(317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears
in print may not be available in electronic versions.

For more information about Wiley products, visit our Web site at www.wiley.com.

Trademarks: Wiley, the Wiley Pubishing logo and related trade dress are trademarks or reg-
istered trademarks of Wiley Publishing, Inc., in the United States and other countries, and
may not be used without written permission. All other trademarks are the property of their
respective owners. Wiley Publishing, Inc., is not associated with any product or vendor
mentioned in this book.

Library of Congress Cataloging-in-Publication Data:

ISBN 0-471-23640-3

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

Foreword xiii

Introduction xv

Part One Evolution and Emergence of Web Services 1

Chapter 1 Evolution of Distributed Computing 3
What Is Distributed Computing? 4
The Importance of Distributed Computing 5
Client-Server Applications 6
CORBA 8
Java RMI 10
Microsoft DCOM 13
Message-Oriented Middleware 14
Common Challenges in Distributed Computing 16
The Role of J2EE and XML in Distributed Computing 17
The Emergence of Web Services 20
Summary 20

Chapter 2 Introduction to Web Services 21
What Are Web Services? 22
Motivation and Characteristics 24
Why Use Web Services? 26
Basic Operational Model of Web Services 26
Core Web Services Standards 27

Extensible Markup Language (XML) 28
Simple Object Access Protocol (SOAP) 28
Web Services Definition Language (WSDL) 29
Universal Description, Discovery, and Integration (UDDI) 29
ebXML 30

Contents

v

Other Industry Standards Supporting Web Services 31
Web Services Choreography Interface (WSCI) 31
Web Services Flow Language (WSFL) 31
Directory Services Markup Language (DSML) 31
XLANG 32
Business Transaction Protocol (BTP) 32
XML Encryption (XML ENC) 32
XML Key Management System (XKMS) 32
XML Signature (XML DSIG) 33
Extensible Access Control Markup Language (XACML) 33
Security Assertions Markup Language (SAML) 33

Known Challenges in Web Services 34
Web Services Software and Tools 34

BEA Systems Products 34
Cape Clear Products 35
IBM Products 35
IOPSIS Products 35
Oracle Products 35
Sun Products 36
Systinet Products 36

Web Services Strategies from Industry Leaders: An Overview 36
Sun ONE (Sun Open Net Environment) 37
IBM e-Business 37
Microsoft .NET 37

Key Benefits of Web Services 38
Summary 38

Part Two Web Services Architecture and Technologies 39

Chapter 3 Building the Web Services Architecture 41
Web Services Architecture and Its Core Building Blocks 42
Tools of the Trade 46

Simple Object Access Protocol (SOAP) 46
Web Services Description Language (WSDL) 47
Universal Description, Discovery, and Integration (UDDI) 49
ebXML 49

Web Services Communication Models 50
RPC-Based Communication Model 50
Messaging-Based Communication Model 51

Implementing Web Services 52
Developing Web Services-Enabled Applications 54

How to Develop Java-Based Web Services 55
Developing Web Services Using J2EE: An Example 60

Summary 101

Chapter 4 Developing Web Services Using SOAP 103
XML-Based Protocols and SOAP 104

The Emergence of SOAP 105
Understanding SOAP Specifications 106

vi Contents

Anatomy of a SOAP Message 107
SOAP Envelope 110
SOAP Header 111
SOAP Body 112
SOAP Fault 112
SOAP mustUnderstand 115
SOAP Attachments 116

SOAP Encoding 118
Simple Type Values 118
Polymorphic Accessor 119
Compound Type Values 120
Serialization and Deserialization 124

SOAP Message Exchange Model 124
SOAP Intermediaries 126
SOAP Actor 127

SOAP Communication 128
SOAP RPC 128

SOAP Messaging 130
SOAP Bindings for Transport Protocols 131

SOAP over HTTP 131
SOAP over SMTP 134
Other SOAP Bindings 136
SOAP Message Exchange Patterns 138

SOAP Security 140
SOAP Encryption 140
SOAP Digital Signature 142
SOAP Authorization 143

Building SOAP Web Services 144
Developing SOAP Web Services Using Java 145

Developing Web Services Using Apache Axis 146
Installing Axis for Web Services 147
Running Axis without Tomcat/Servlet Engine 149
Axis Infrastructure and Components 149
Axis Web Services Programming Model 154

Creating Web Services Using Axis: An Example 160
Building Axis-Based Infrastructure 161
Setting Up the ACME Web Services Environment 165
Implementing the ACME Web Services 173

Known Limitations of SOAP 199
Summary 199

Chapter 5 Description and Discovery of Web Services 201
Web Services Description Language (WSDL) 202

WSDL in the World of Web Services 202
Anatomy of a WSDL Definition Document 204
WSDL Bindings 211
WSDL Tools 214

Contents vii

Future of WSDL 221
Limitations of WSDL 222

Universal Description, Discovery, and Integration (UDDI) 222
UDDI Registries 223
Programming with UDDI 226
Inquiry API 235
Publishing API 249
Implementations of UDDI 254
Registering as a Systinet UDDI Registry User 255
Publishing Information to a UDDI Registry 257
Searching Information in a UDDI Registry 260
Deleting Information from a UDDI Registry 264
Limitations of UDDI 269

Summary 269

Chapter 6 Creating .NET Interoperability 271
Means of Ensuring Interoperability 272

Declaring W3C XML Schemas 273
Exposing WSDL 273
Creating SOAP Proxies 273
Testing Interoperability 274

Microsoft .NET Framework: An Overview 274
Common Language Runtime (CLR) 275
.NET Framework Class Library 275

Developing Microsoft .NET Client for Web Services 276
Key Steps in Creating a Web Service Requestor

Using the .NET Framework 276
Case Study: Building a .NET Client for Axis Web Services 278

Challenges in Creating Web Services Interoperability 289
Common SOAP/HTTP Transport Issues 290
XML Schema- and XML-Related Issues 290
SOAP/XML Message Discontinuities 290
Version and Compatibility 291

The WS-I Initiative and Its Goals 291
Public Interoperability testing efforts 292
Summary 292

Part Three Exploring Java Web Services Developer Pack 293

Chapter 7 Introduction to the Java Web Services
Developer Pack (JWSDP) 295
Java Web Services Developer Pack 296

Java XML Pack 297
Java APIs for XML 297
JavaServer Pages Standard Tag Library 309
Apache Tomcat Container 309
Java WSDP Registry Server 310
ANT Build Tool 310

viii Contents

Downloading the Web Services Pack 310
Summary 311

Chapter 8 XML Processing and Data Binding with Java APIs 313
Extensible Markup Language (XML) Basics 314

XML Syntax 316
Namespaces 322
Validation of XML Documents 324

Java API for XML Processing (JAXP) 337
JAXP 337
Uses for JAXP 338
JAXP API Model 339
JAXP Implementations 342
Processing XML with SAX 342
Processing XML with DOM 353
XSL Stylesheets: An Overview 364
Transforming with XSLT 372
Threading 383

Java Architecture for XML Binding (JAXB) 383
Data Binding Generation 386
Marshalling XML 393
Unmarshalling Java 395
Other Callback Methods 396
Sample Code for XML Binding 396

Summary 399

Chapter 9 XML Messaging Using JAXM and SAAJ 401
The Role of JAXM in Web Services 402

JAXM Application Architecture 403
JAXM Messaging: Interaction Patterns 406

JAXM API Programming Model 407
javax.xml.messaging 407
javax.xml.soap (SAAJ 1.1 APIs) 409

Basic Programming Steps for Using JAXM 413
Using a JAXM Provider 413
Using JAXM without a Provider (Using SOAPConnection) 419

JAXM Deployment Model 425
Deploying JAXM-Based Applications in JWSDP 1.0 425
Configuring JAXM Applications Using a JAXM Provider 427
Configuring a Client 428
Configuring a Provider 428

Developing JAXM-Based Web Services 430
Point-to-Point Messaging Using JAXM (SOAPConnection) 431
Asynchronous Messaging Using the JAXM Provider 439

JAXM Interoperability 450
JAXM in J2EE 1.4 450
Summary 450

Contents ix

Chapter 10 Building RPC Web Services with JAX-RPC 451
The Role of JAX-RPC in Web Services 452

Comparing JAX-RPC with JAXM 454
JAX-RPC Application Architecture 454

JAX-RPC APIs and Implementation Model 456
JAX-RPC-Based Service Implementation 456
JAX-RPC-Based Client Implementation 464

JAX-RPC-Supported Java/XML Mappings 471
Java/WSDL Definition Mappings 474

Developing JAX-RPC-Based Web Services 476
Creating a JAX-RPC-Based Service (BookPriceService) 476
Developing JAX-RPC Clients (BookPriceServiceClient) 484

JAX-RPC in J2EE 1.4 491
JAX-RPC Interoperability 491
Summary 492

Chapter 11 Java API for XML Registries 493
Introduction to JAXR 494
JAXR Architecture 494

JAXR Architectural Components 494
JAXR Capabilities and Capability Profiles 496
The JAXR Programming Model 498

JAXR Information Model 499
Classes and Interfaces 499
Classification of Registry Objects 502
Association of Registry Objects 508

JAXR Registry Services API 510
Connection Management API 510
Life Cycle Management API 516
Query Management API 522

JAXR Support in JWSDP 1.0 532
Registry Server 532
Registry Browser 534

Understanding JAXR by Examples 536
Publishing Using JAXR 536
Querying Using JAXR 549
Deleting Information Using JAXR 556

Summary 561

Chapter 12 Using the Java Web Services Developer Pack: Case Study 563
Case Study Overview 563

The Roles of Service Provider, Requestor, and Registry 564
Important Components and Entities 564

Case Study Architecture 567
Design of Components 568

Provider Environment 568
Designing the Publishing and Discovery Classes 572
Designing the Service Requestor Environment

(computerBuy.com) 575

x Contents

TEAMFL
Y

Team-Fly®

Implementation 582
Developing the Service Environment 582
Developing the Service Requestor Environment 593

Setting Up the JWSDP Environment 602
Service Provider Runtime Infrastructure (acmeprovider.com) 602
Service Registry Infrastructure 609
Service Requestor Runtime Infrastructure (computerBuy.com) 610

Executing a Scenario 612
Summary 615

Part Four Security in Web Services 617

Chapter 13 Web Services Security 619
Challenges of Securing Web Services 620

Technologies behind Securing Web Services 621
Rapid-Fire Cryptography 621

XML Encryption 630
What XML Encryption Is 631
Implementations of XML Encryption 633
XML Encryption 633
Encrypting <Accounts> XML Element 641
Decrypting the <Accounts> XML Element 643
Programming Steps for Encryption and Decryption 644

XML Signatures 650
Types of XML Signatures 650
XML Signature Syntax 652
Canonicalization 655
Implementations of XML Signature 656
XML Signature: An Example 657

XML Key Management Specification (XKMS) 668
XKMS Components 670
XKMS Implementations 671
XML Key Information Service Specification (X-KISS) 671
XML Key Registration Service Specification (X-KRSS) 677

Security Assertions Markup Language (SAML) 685
SAML Implementations 687
SAML Architecture 689
Authentication Assertion 691
Attribute Assertion 693
Authorization (Decision) Assertion 694
SAML Bindings and Protocols 696
Model of Producers and Consumers of SAML Assertions 697
Single Sign-On Using SAML 698

XML Access Control Markup Language (XACML) 706
Architecture of an XML Access Control System 707

Conclusion 710
Summary 711

Contents xi

Part Five Web Services Strategies and Solutions 713

Chapter 14 Introduction to Sun ONE 715
The Vision behind Sun ONE 715
Delivering Services on Demand (SoD) 718

Web Applications 718
Web Services 718
Web Clients 723

Sun ONE Architecture 724
Sun ONE Service Layers 724
Sun ONE Standards and Technologies 725
Sun ONE Product Stack: Integrated versus Integrate-able 727

Summary 731

Further Reading 733

Index 741

xii Contents

In the last decade of computing, we have seen a growing realization that
most of the cost of computing comes not from the initial purchase of the
hardware, not even from the purchase of the software, but from the cost of
responding to change throughout the life of the system. When one part
changes, the degree of tight coupling between the elements of the system
dictates the “brittleness” or probability that change will be forced else-
where. When you have to retest the software because the operating system
was “upgraded,” that’s brittleness. When you can’t open your word
processor documents because the software version is wrong, that’s brittle-
ness. When a policy change in the accounting department dictates a soft-
ware rewrite in the sales department, that’s brittleness.

In seeking to eliminate brittleness, there have been three significant steps
taken:

■■ The first was the introduction of Java technology, which separated
software from the platform and allowed the creation of business logic
that wasn’t greatly affected by changes to the underlying server.

■■ The second was the introduction of Extensible Markup Language
(XML), which separated the data from the software and enabled
different software systems to share data without being affected by
changes to the data structures unless they needed to respond to them.

■■ The most recent is the introduction of Web services. Web services
separate collaborating computer systems connected by networks,
enabling them to delegate processing without becoming coupled in
a brittle way.

Foreword

xiii

All three of these steps need one another. The maximum protection
against brittleness occurs when software written for the Java platform uses
agreed XML data formats to supply or consume services, which are
connected using Web services technologies such as SOAP and WSDL and
perhaps UDDI, if the application calls for it. Systems built with Java
technology, XML, and Web services are loosely coupled in all three dimen-
sions and will be the most resilient and flexible in the uncertain future that
faces us all.

The conjunction of Java for the software, XML for the data, and Web ser-
vices for the collaborative processing makes this book especially timely
and welcome. The majority of Web services development today is being
conducted using products from the extraordinarily rich Java community,
and the rapid integration of Web services into Java 2 Enterprise Edition
(J2EE) by the Java Community Process (JCP) offers the software developer
a comprehensive toolchest. In the pages that follow, you will find the
following:

■■ Discussion of the evolving standards landscape for Web services,
including the important developments at ebXML, the XML succes-
sor to EDI

■■ The Java APIs for XML (JAX) standards so skillfully evolved by the
JCP to address everything connected to XML and Web services in a
vendor-neutral way

■■ Information about the approaches being taken by all of the impor-
tant Web services vendors, including a variety of tools

■■ Practical examples that will help you get started with your own Java
Web services implementations

■■ A discussion of the essentials of Web services security that
considers both the needs of identity management and of in-transit
data protection

■■ A valuable case study of a real-world Web services deployment
using Java

Web services are such a fundamental idea in the world of connected
computing that they will rapidly become part of the everyday fabric of
information systems, just as Java technology and XML have already. I com-
mend this book to you as your springboard to the future of how to make
the Internet work.

—Simon Phipps (www.webmink.net)
Chief Technology Evangelist at Sun Microsystems, Inc.

xiv Foreword

“The big Web Services story is the end-to-end,
side-to-side integration of technology.”

James Gosling,
The father of Java Platform

In this age of Internet, the success of the Web-based applications played a
vital role in moving our businesses from brick-and-mortar infrastructures
to 24 × 7 online businesses running on different systems and locations. As
a next evolutionary step, Web services are a new breed of Web-based appli-
cations that address the new phenomenon of building a general-purpose
platform for creating efficient integration among business processes, appli-
cations, enterprises, partners, customers, and so on. Web services are the
next evolution phase of distributed computing, based on XML standards
and Internet protocols. Web services provide a promising mechanism for
communication and collaboration among business applications, which
were constructed using various resources, that enables them to work
together regardless of their differences in their underlying implementa-
tion.

This book is a developer’s guide for designing and developing Web ser-
vices using a Java platform. It bundles together a wealth of knowledge and
detailed study materials, focusing on concepts, technologies, and practical
techniques for implementing and deploying Web services. It combines the
Web services vision of the Java community by providing in-depth coverage
of the Java Web Services Developer Pack (JWSDP). In addition, this book
also addresses the fundamentals of Web services from the ground up.

Introduction

xv

Technologies Covered in This Book

The book covers the core Web services standards and technologies for
designing and implementing Web services. In particular, it focuses in
depth on the following subject areas:

■■ Web services standards, protocols, and technologies, including
SOAP, WSDL, and UDDI

■■ Web services architecture and exposing J2EE applications as Web
services.

■■ The development of Web services using Java APIs (JAXP, JAXB,
JAX-RPC, JAXM, and JAXR) on JWSDP

■■ Web services security technologies: XML Encryption, XML Signa-
ture, Security Assertion Markup Language (SAML), XML Key Man-
agement Services (XKMS), and XML Access Control Markup
Language (XACML)

■■ Interoperability with Microsoft .NET
■■ The real-world implementation of Web services on JWSDP, using a

case study
■■ Introduction to Sun ONE

In addition, the book also provides example illustrations using tools
such as Sun Microsystems JWSDP 1.0, BEA WebLogic 7.0, Systinet WASP
4.0, Apache Axis 1.0 Beta 3, IBM XML Security Suite, Exolab CASTOR, and
Microsoft .NET framework.

Target Audience

This book is for all Web services enthusiasts, architects, and developers
who perceive Java as their platform of choice for Web services develop-
ment and deployment.

This book presumes that the reader has the basic conceptual and program-
ming knowledge of implementing Web applications using Java and XML.

Organization of the Book

The content of this book is organized into following five parts, with exclu-
sive chapters concentrating on the Web services technologies:

xvi Introduction

Part One, “Evolution and Emergence of Web Services.” Introduces the
reader to Web services by taking a evolutionary journey of distrib-
uted computing and the emergence of Web services, and then it
devotes an exclusive overview on Web services, addressing its moti-
vation, characteristics, industry standards and technologies, strate-
gies and solutions, and its benefits and limitations.

Chapter 1, “Evolution of Distributed Computing.” The background
of distributed computing and the evolution of Internet-enabled
technologies is explored in the first chapter. Here, we will examine
the definition and reasons for using distributed computing and the
core distributed computing technologies.

Chapter 2, “Introduction to Web Services.” This chapter presents an
introduction to Web services, especially focusing on the definition
of Web services, the standards and technologies that the services
use, and the benefits of using these services.

Part Two, “Web Services Architecture and Technologies.” This section
walks through the different Web services standards and technologies
such as SOAP, WSDL, and UDDI with real-world examples. It fea-
tures an in-depth coverage of the Web services architecture on a J2EE
implementation model, with example illustrations showing how to
expose enterprise applications to Web services. It also demonstrates
an interoperability scenario with non-Java based Web services.

Chapter 3, “Building the Web Services Architecture.” This chapter
focuses on the Web services architecture, its core building blocks,
implementation models, and deployment processes for building
Web services-based application solutions. In addition, this chapter
illustrates, using an example, the development of a complete Web
services solution, exposing J2EE applications as services over the
Internet.

Chapter 4, “Developing Web services using SOAP.” This chapter
provides an in-depth discussion on SOAP and its role in develop-
ing Web services. It covers the W3C definition of SOAP’s stan-
dards, conventions, messages, communication models, and
implementation of SOAP-based applications for Web services. In
addition, the chapter also includes example illustrations of adopt-
ing different SOAP communication models in Web services.

Chapter 5, “Description and Discovery of Web Services.” This
chapter explains two important Web services specifications: WSDL
and UDDI. It provides a detailed explanation on the important

Introduction xvii

aspects of a WSDL specification and examples of using WSDL tools
within Web services development. UDDI specification also is cov-
ered in great detail, complete with practical examples on working
with UDDI registries. This chapter also covers issues with the cur-
rent WSDL and UDDI technologies.

Chapter 6, “Creating .NET Interoperability.” This chapter discusses
the Web services interoperability scenarios, challenges, and issues.
It also illustrates a full-featured interoperability example that
involves Java and Microsoft .NET environments.

Part Three, “Exploring Java Web Services Developer Pack (JWSDP).”
This section exclusively focuses on Java APIs for Web services: JAXP,
JAXB, JAXM, JAX-RPC, and JAX-R, and their reference implementa-
tion on JWSDP. This section provides complete example illustrations
and developer essentials for implementing and deploying Java-based
Web services on JWSDP. It also includes a special chapter that illus-
trates a case study demonstrating a real-world Web services imple-
mentation using JWSDP.

Chapter 7, “Introduction to the Java Web Services Developer Pack.”
This chapter introduces the reader to the Java Web Services Devel-
oper Pack (JWSDP) 1.0. It covers the Java XML Pack APIs and pro-
vides an overview of the runtime environment and tools used for
building, deploying, and testing Web services applications.

Chapter 8, “XML Processing and Data Binding with Java APIs.”
This chapter discusses the Java API for XML Processing (JAXP)
and Java Architecture for XML Binding (JAXB). It provides an
overview of XML, DTD, and W3C XML Schema and then provides
a walkthrough of the various techniques used for processing XML
data. The chapter also covers the Simple API for XML (SAX), Doc-
ument Object Model (DOM), and eXtensible Stylesheet transforma-
tions (XSLT). For completeness, it also dedicates a section on data
binding using JAXB.

Chapter 9, “XML Messaging Using JAXM and SAAJ.” This chapter
discusses the Java API for XML messaging (JAXM) and SOAP with
Attachment API for Java (SAAJ). It covers the JAXM/SAAJ-based
application architecture, an API programming model, and deploy-
ment. It also includes example illustrations of using JAXM and
SAAJ APIs.

Chapter 10, “Building RPC Web Services with JAX-RPC.” This
chapter discusses the Java API for XML RPC (Remote procedural
call) for developing RPC-based Web services. It also covers the

xviii Introduction

JAX-RPC application architecture, an API programming model,
deployment, and its different client Invocation models. It also
includes example illustrations using JAX-RPC and demonstrates
the different client invocations.

Chapter 11, “Java API for XML Registries.” This chapter provides
detailed information on the Java API for XML Registry (JAXR)
specification from the Java Community Process (JCP). It also dis-
cusses the various aspects of JAXR in terms of its classification sup-
port, association support, connection management, life cycle
management, and querying capabilities. Also provided with this
chapter is the discussion on the various JAXR examples about
working with UDDI registries.

Chapter 12, “Using theJava Web Services Developer Pack: Case
Study.” This chapter focuses on implementing a complete Web ser-
vices solution using the Java Web Services Developer Pack
(JWSDP) 1.0. It puts together all of the JWSDP-based APIs covered
in this book to demonstrate a working Web services example.

Part Four, “Security in Web Services.” This section covers Web services
security concepts and various security standards and technologies. In
addition, it illustrates real-world Web services security implementa-
tion scenarios on XML Encryption, XML Signature, and SAML-based
Single Sign-On.

Chapter 13, “Web Services Security.” This chapter provides great
details on the issues revolving around Web services security, which
is followed by a discussion on each of the five major Web services
security technologies: XML Encryption, XML Signature, XML Key
Management Services (XKMS) , Security Assertions Markup Lan-
guage (SAML), and XML Access Control Markup Language
(XACML). It also provides good examples of using tools for secur-
ing Web services through XML Encryption and XML Signature
technologies. In addition, the chapter provides a hypothetical use
case study of applying SAML for achieving Single Sign-On.

Part Five, “Web Services Strategies and Solutions.” This section intro-
duces the reader to the Sun ONE initiative and provides information on
Sun ONE tools and platform servers for implementing Web services.

Chapter 14, “Introduction to Sun ONE.” This chapter aims at intro-
ducing the Sun ONE platform technologies and products. It also
provides some brief information on the Sun ONE product stack,
including its tools and platform servers. In addition, it also intro-
duces ebXML technologies.

Introduction xix

Companion Web Site

All the source code from the example illustrations found within this book
is available for download from the companion Web site, www.wiley.com
/compbooks/nagappan.

In addition, this site also includes the following material:

■■ Errata
■■ Further reading and references
■■ Changes and updates

Support and Feedback

The authors would like to receive the reader’s feedback. You are encour-
aged to post questions and/or contact the authors at their prospective
email addresses. Contact information can be found at the companion Web
site to this book at www.wiley.com/compbooks/nagappan.

xx Introduction

TEAMFL
Y

Team-Fly®

The authors would like to extend their big thanks to the Wiley publishing
team, including Terri Hudson, Kathryn Malm, Scott Amerman, James Rus-
sell, and Angela Smith; and the reviewers for their constant help, from
beginning to end, in fulfilling this dream work.

Thanks to Simon Phipps for writing the Foreword and sharing his best
thoughts on Web services in this book.

Thanks, too, to Dave Martin and Chris Steel for having reviewed this
work and sharing their views.

Heartfelt gratitude to our friends at Sun Microsystems for their help and
support while accomplishing this work.

Ramesh Nagappan

After six months of hard work, it is an utter surprise for me to see the com-
pletion of the project, and it’s a great feeling to see the quality of work the
way we wanted.

It’s quite fun to recall the genesis of this book: Two friends, Sada
Rajagopalan and Sameer Tyagi, started gathering ideas for this mammoth
project on September 19, 2001, at the John Harvard’s Pub in Natick, Massa-
chusetts. Around 10:45 P.M., after most of us had three pitchers of a
seasonal flavor and all had shared rip-roaring hilarious talk, Sada, who
didn’t drink, came up with this idea of writing a book on Java Web ser-
vices. In the next few days, we created the proposal for this book. Both
Sameer and Sada helped us initiating this huge effort and in getting the
proposal written; much thanks to them for all their efforts. It’s always been

Acknowledgments

xxi

great fun calling Sameer in the middle of the night, especially to discuss
emerging technologies, as well as known bugs, changes, and issues.

My special thanks goes to Sunil Mathew and my fellow architects at the
Sun Java center for their constant encouragement for writing this book.
Thanks to the Apache Axis team and my friends at Apache Software Foun-
dation for being helpful, answering my questions, and updating me with
changes. Thanks also to the Exolab CASTOR, Systinet WASP, and W3C
SOAP discussion groups for answering my questions with insightful
responses and initiating valuable discussions.

Finally, the largest share of the credit goes to my loving wife, Joyce, my
little buddy Roger, and my parents for all their love and support. Only
through their love and support, am I able to accomplish any goal.

Robert Skoczylas

After long, long hours of hard work we are finally done with the chapters
and ready to thank and recognize the help of many people who gave us
guidance, direction, and support.

Special thanks to Sada Rajagopalan for his contributions to the first
chapter of the book. Your amazing motivation got this ball rolling. Thanks!

Big thanks to all the expert contributors of the Java, XML, and Web ser-
vices mailing lists out there, your feedback adds a great value to this work.

I want to thank all my friends at the Sun Java Center for all their support,
especially my manager, Sunil Mathew, for his constant encouragement.

Also, to the many people who have directly or indirectly influenced my
career: Albert Rudnicki, Paul Dhanjal, Mario Landreville, Ray Sabourin,
Jan Bratkowski, Sameer Tyagi, Tomasz Ratajczak, Carol McDonald, Chris
Steel, and Dan Hushon.

Thanks to my parents, Urszula and Jacek, and my brother Slawomir,
who always show me the way things need to be done.

Finally, I would like to thank my fiancée, Urszula Masalska, who put up
with this project for the last couple of months. Without your patience and
encouragement, I wouldn’t have had the strength to cross the finish line.
Thank you!

Rima Patel Sriganesh

This book has been an exciting roller-coaster ride of my life. When I first
started as a reviewer of this book, I never imagined that I would end up
being a co-author. All of a sudden when that opportunity came up, I was

xxii Acknowledgements

overwhelmed with joy as well as work. It was during the course of this
project that I realized how challenging this work was, not only for me, but
also for my husband, who’d happily let go of all the fun moments for the
sake of my venture.

In the memory of those fun times we lost, I would like to dedicate my
share of this hard work, success, and joy to my dearest and loving hus-
band, Sriganesh, without whom life would not have been so beautiful; and
my most wonderful parents, who spent the best years of their lives in
turning me into the person that I am today.

My special thanks goes to Max Goff, without whom I would have never
got to know this beautiful world of Technology Evangelism.

Also, I would like to thank my fellow Evangelist Carol McDonald for
introducing me to my cohorts on this book as well as the rest of the Sun Tech-
nology Evangelism group, including my manager, Reginald Hutcherson.

Acknowledgements xxiii

Ramesh Nagappan is an experienced software architect who specializes in
Java-, XML-, and CORBA-based distributed computing architectures for
Internet-based business applications and Web services. He is an active con-
tributor to popular Java- and XML-based open source applications. Prior to
this work, he has co-authored two books on J2EE and EAI. He is also an
avid Unix enthusiast. Before he hooked on to Java and CORBA, he worked
as a research engineer for developing software solutions for CAD/CAM,
fluid dynamics, system simulation, and aerodynamics applications.

Currently he is working for Sun Microsystems as an Enterprise Java
Architect with the Sun Java Center in Boston. He lives in the Boston suburb
with his wife and son. In his spare time, he enjoys water sports and playing
with his son Roger. He graduated from Harvard University, specializing in
applied sciences. He can be reached at nramesh@post.harvard.edu.

Robert Skoczylas is an Enterprise Java Architect with the Sun Java Center
in Boston, MA. He has many years of experience in Object-Oriented tech-
nologies. He has been focused on design and implementation of large-scale
enterprise applications using Java and XML technologies. He currently
consults and mentors large projects specializing in server side Java-based
distributed systems. He is driven by new technologies and loves reading
about them. His past experiences include working on Java applications for
performance and analysis of cellular networks with Ericsson Research
Canada (LMC).

About the Authors

xxv

Outside of Java World, Robert enjoys techno beats, playing golf, and any
extreme sport that involves a board, including snowboarding, wakeboard-
ing, and windsurfing. Robert holds a Computer Science degree from
Concordia University in Montreal, Quebec. He can be reached at
robert.skoczylas@sun.com

Rima Patel Sriganesh is a Technology Evangelist presently working for
Sun Microsystems, Inc. She specializes in Java, XML, and Integration plat-
forms. Her areas of technology passion include Distributed Computing
Models, Trust Computing, Semantic Web, and Grid Computing architec-
tures. She speaks frequently at premiere industry conferences such as
JavaOne, Web Services Edge, SIGS 101, and others. She also publishes on
Sun’s Technology Evangelism portal: www.sun.com/developers/evang-
central.

Rima and her husband live in the Greater Boston area. She most enjoys
eating spicy Indian food and reading Gujarati novels. Also, she loves
debating world politics and Vedic philosophy when energy permits her.
Rima holds a graduate degree in Mathematics. She can be reached at
rima.patel@sun.com.

xxvi About the Authors

PA R T

One

Evolution and Emergence
of Web Services

3

The Internet has revolutionized our business by providing an information
highway, which acts as a new form of communication backbone. This new
information medium has shifted business from the traditional brick-and-
mortar infrastructures to a virtual world where they can serve customers
not just the regular eight hours, but round-the-clock and around the world.
Additionally, it enhances our organizations with significant benefits in
terms of business productivity, cost savings, and customer satisfaction. As
a result, modern organizations are compelled to re-evaluate their business
models and plan on a business vision to interact with their customers, sup-
pliers, resellers, and partners using an Internet-based technology space. To
achieve this goal of obtaining an Internet business presence, organizations
are exposing and distributing their business applications over the Internet
by going through a series of technological innovations. The key phenome-
non of enabling business applications over the Internet is based on a fun-
damental technology called distributed computing.

Distributed computing has been popular within local area networks for
many years, and it took a major step forward by adopting the Internet as its
base platform and by supporting its open standard-based technologies.
This chapter discusses the background of distributed computing and the
evolution of Internet-enabled technologies by focusing on the following:

Evolution of Distributed
Computing

C H A P T E R

1

■■ The definition of distributed computing
■■ The importance of distributed computing
■■ Core distributed computing technologies such as the following:

■■ Client/server
■■ CORBA
■■ Java RMI
■■ Microsoft DCOM
■■ Message-Oriented Middleware

■■ Common challenges in distributed computing
■■ The role of J2EE and XML in distributed computing
■■ Emergence of Web services and service-oriented architectures

What Is Distributed Computing?

In the early years of computing, mainframe-based applications were consid-
ered to be the best-fit solution for executing large-scale data processing appli-
cations. With the advent of personal computers (PCs), the concept of software
programs running on standalone machines became much more popular
in terms of the cost of ownership and the ease of application use. With
the number of PC-based application programs running on independent
machines growing, the communications between such application programs
became extremely complex and added a growing challenge in the aspect
of application-to-application interaction. Lately, network computing gained
importance, and enabling remote procedure calls (RPCs) over a network pro-
tocol called Transmission Control Protocol/Internet Protocol (TCP/IP) turned
out to be a widely accepted way for application software communication.
Since then, software applications running on a variety of hardware platforms,
operating systems, and different networks faced some challenges when
required to communicate with each other and share data. This demanding
requirement lead to the concept of distributed computing applications.

As a definition, “Distributing Computing is a type of computing in which
different components and objects comprising an application can be located
on different computers connected to a network” (www.webopedia.com,
May 2001). Figure 1.1 shows a distributed computing model that provides
an infrastructure enabling invocations of object functions located anywhere
on the network. The objects are transparent to the application and provide
processing power as if they were local to the application calling them.

4 Chapter 1

TEAMFL
Y

Team-Fly®

Figure 1.1 Internet-based distributed computing model.

Today, Sun Java RMI (Remote Method Invocation), OMG CORBA (Com-
mon Object Request Broker Architecture), Microsoft DCOM (Distributed
Component Object Model), and Message-Oriented Middleware (MOM)
have emerged as the most common distributed computing technologies.
These technologies, although different in their basic architectural design
and implementation, address specific problems in their target environ-
ments. The following sections discuss the use of distributed computing
and also briefly describe the most popular technologies.

The Importance of Distributed Computing

The distributed computing environment provides many significant advan-
tages compared to a traditional standalone application. The following are
some of those key advantages:

Higher performance. Applications can execute in parallel and distribute
the load across multiple servers.

User

Application Internet

Object

Object

Object

TCP/IP

TCP/IP

TCP/IP

Evolution of Distributed Computing 5

Collaboration. Multiple applications can be connected through stan-
dard distributed computing mechanisms.

Higher reliability and availability. Applications or servers can be
clustered in multiple machines.

Scalability. This can be achieved by deploying these reusable distrib-
uted components on powerful servers.

Extensibility. This can be achieved through dynamic (re)configura-
tion of applications that are distributed across the network.

Higher productivity and lower development cycle time. By breaking
up large problems into smaller ones, these individual components
can be developed by smaller development teams in isolation.

Reuse. The distributed components may perform various services
that can potentially be used by multiple client applications. It saves
repetitive development effort and improves interoperability between
components.

Reduced cost. Because this model provides a lot of reuse of once
developed components that are accessible over the network, signifi-
cant cost reductions can be achieved.

Distributed computing also has changed the way traditional network
programming is done by providing a shareable object like semantics across
networks using programming languages like Java, C, and C++. The fol-
lowing sections briefly discuss core distributed computing technologies
such as Client/Server applications, OMG CORBA, Java RMI, Microsoft
COM/DCOM, and MOM.

Client-Server Applications

The early years of distributed application architecture were dominated by
two-tier business applications. In a two-tier architecture model, the first
(upper) tier handles the presentation and business logic of the user applica-
tion (client), and the second/lower tier handles the application organization
and its data storage (server). This approach is commonly called client-server
applications architecture. Generally, the server in a client/server application
model is a database server that is mainly responsible for the organization
and retrieval of data. The application client in this model handles most of the
business processing and provides the graphical user interface of the applica-
tion. It is a very popular design in business applications where the user

6 Chapter 1

interface and business logic are tightly coupled with a database server for
handling data retrieval and processing. For example, the client-server model
has been widely used in enterprise resource planning (ERP), billing, and
Inventory application systems where a number of client business applica-
tions residing in multiple desktop systems interact with a central database
server.

Figure 1.2 shows an architectural model of a typical client server system
in which multiple desktop-based business client applications access a cen-
tral database server.

Some of the common limitations of the client-server application model
are as follows:

■■ Complex business processing at the client side demands robust
client systems.

■■ Security is more difficult to implement because the algorithms and
logic reside on the client side making it more vulnerable to hacking.

■■ Increased network bandwidth is needed to accommodate many calls
to the server, which can impose scalability restrictions.

■■ Maintenance and upgrades of client applications are extremely diffi-
cult because each client has to be maintained separately.

■■ Client-server architecture suits mostly database-oriented standalone
applications and does not target robust reusable component-
oriented applications.

Figure 1.2 An example of a client-server application.

Application

TCP/IP

Application

TCP/IP

Application

TCP/IP

Database
Server

Evolution of Distributed Computing 7

CORBA

The Common Object Request Broker Architecture (CORBA) is an industry
wide, open standard initiative, developed by the Object Management
Group (OMG) for enabling distributed computing that supports a wide
range of application environments. OMG is a nonprofit consortium
responsible for the production and maintenance of framework specifica-
tions for distributed and interoperable object-oriented systems.

CORBA differs from the traditional client/server model because it pro-
vides an object-oriented solution that does not enforce any proprietary pro-
tocols or any particular programming language, operating system, or
hardware platform. By adopting CORBA, the applications can reside and
run on any hardware platform located anywhere on the network, and can
be written in any language that has mappings to a neutral interface defini-
tion called the Interface Definition Language (IDL). An IDL is a specific
interface language designed to expose the services (methods/functions) of
a CORBA remote object. CORBA also defines a collection of system-level
services for handling low-level application services like life-cycle, persis-
tence, transaction, naming, security, and so forth. Initially, CORBA 1.1 was
focused on creating component level, portable object applications without
interoperability. The introduction of CORBA 2.0 added interoperability
between different ORB vendors by implementing an Internet Inter-ORB
Protocol (IIOP). The IIOP defines the ORB backbone, through which other
ORBs can bridge and provide interoperation with its associated services.

In a CORBA-based solution, the Object Request Broker (ORB) is an
object bus that provides a transparent mechanism for sending requests and
receiving responses to and from objects, regardless of the environment and
its location. The ORB intercepts the client’s call and is responsible for find-
ing its server object that implements the request, passes its parameters,
invokes its method, and returns its results to the client. The ORB, as part of
its implementation, provides interfaces to the CORBA services, which
allows it to build custom-distributed application environments.

Figure 1.3 illustrates the architectural model of CORBA with an example
representation of applications written in C, C++, and Java providing IDL
bindings.

The CORBA architecture is composed of the following components:

IDL. CORBA uses IDL contracts to specify the application boundaries
and to establish interfaces with its clients. The IDL provides a mecha-
nism by which the distributed application component’s interfaces,
inherited classes, events, attributes, and exceptions can be specified
in a standard definition language supported by the CORBA ORB.

8 Chapter 1

Figure 1.3 An example of the CORBA architectural model.

ORB. It acts as the object bus or the bridge, providing the communi-
cation infrastructure to send and receive request/responses from the
client and server. It establishes the foundation for the distributed
application objects, achieving interoperability in a heterogeneous
environment.

Some of the distinct advantages of CORBA over a traditional
client/server application model are as follows:

OS and programming-language independence. Interfaces between
clients and servers are defined in OMG IDL, thus providing the fol-
lowing advantages to Internet programming: Multi-language and
multi-platform application environments, which provide a logical
separation between interfaces and implementation.

Legacy and custom application integration. Using CORBA IDL,
developers can encapsulate existing and custom applications as
callable client applications and use them as objects on the ORB.

Rich distributed object infrastructure. CORBA offers developers a
rich set of distributed object services, such as the Lifecycle, Events,
Naming, Transactions, and Security services.

Location transparency. CORBA provides location transparency: An
object reference is independent of the physical location and applica-
tion level location. This allows developers to create CORBA-based
systems where objects can be moved without modifying the underly-
ing applications.

CORBA - ORB (Object Bus)

Client Stubs Server Skeletons

C C++ Java C C++ Java

IDL IDL IDL

Evolution of Distributed Computing 9

Network transparency. By using the IIOP protocol, an ORB can inter-
connect with any ORB located elsewhere on the network.

Remote callback support. CORBA allows objects to receive asynchro-
nous event notification from other objects.

Dynamic invocation interface. CORBA clients can both use static
and dynamic methods invocations. They either statically define their
method invocations through stubs at compile time, or have the
opportunity to discover objects’ methods at runtime. With those
advantages, some key factors, which affected the success of CORBA
evident while implementing CORBA-based distributed applications,
are as follows:

High initial investment. CORBA-based applications require huge
investments in regard to new training and the deployment of
architecture, even for small-scale applications.

Availability of CORBA services. The Object services specified by
the OMG are still lacking as implementation products.

Scalability. Due to the tightly coupled nature of the connection-
oriented CORBA architecture, very high scalability expected in
enterprise applications may not be achieved.

However, most of those disadvantages may be out of date today. The
Internet community for the development of Intranet and Extranet applica-
tions has acknowledged using CORBA with IIOP and Java as their tools of
choice. Sun has already released its JDK 1.4 (Java development kit), which
includes a full-featured CORBA implementation and also a limited set of
services.

Java RMI

Java RMI was developed by Sun Microsystems as the standard mechanism
to enable distributed Java objects-based application development using the
Java environment. RMI provides a distributed Java application environ-
ment by calling remote Java objects and passing them as arguments or
return values. It uses Java object serialization—a lightweight object persis-
tence technique that allows the conversion of objects into streams.

Before RMI, the only way to do inter-process communications in the Java
platform was to use the standard Java network libraries. Though the
java.net APIs provided sophisticated support for network functionalities,

10 Chapter 1

they were not intended to support or solve the distributed computing chal-
lenges. Java RMI uses Java Remote Method Protocol (JRMP) as the inter-
process communication protocol, enabling Java objects living in different
Java Virtual Machines (VMs) to transparently invoke one another’s meth-
ods. Because these VMs can be running on different computers anywhere
on the network, RMI enables object-oriented distributed computing. RMI
also uses a reference-counting garbage collection mechanism that keeps
track of external live object references to remote objects (live connections)
using the virtual machine. When an object is found unreferenced, it is con-
sidered to be a weak reference and it will be garbage collected.

In RMI-based application architectures, a registry (rmiregistry)-oriented
mechanism provides a simple non-persistent naming lookup service that is
used to store the remote object references and to enable lookups from
client applications. The RMI infrastructure based on the JRMP acts as
the medium between the RMI clients and remote objects. It intercepts
client requests, passes invocation arguments, delegates invocation
requests to the RMI skeleton, and finally passes the return values of the
method execution to the client stub. It also enables callbacks from server
objects to client applications so that the asynchronous notifications can be
achieved.

Figure 1.4 depicts the architectural model of a Java RMI-based applica-
tion solution.

Figure 1.4 A Java RMI architectural model.

Java
Client

RMI
Stubs

Remote Ref. Layer

Java RMI
Server

RMI
Skeleton

Remote Ref. Layer

JRMP

Evolution of Distributed Computing 11

The Java RMI architecture is composed of the following components:

RMI client. The RMI client, which can be a Java applet or a stand-
alone application, performs the remote method invocations on a
server object. It can pass arguments that are primitive data types or
serializable objects.

RMI stub. The RMI stub is the client proxy generated by the rmi
compiler (rmic provided along with Java developer kit—JDK) that
encapsulates the network information of the server and performs
the delegation of the method invocation to the server. The stub also
marshals the method arguments and unmarshals the return values
from the method execution.

RMI infrastructure. The RMI infrastructure consists of two layers: the
remote reference layer and the transport layer. The remote reference
layer separates out the specific remote reference behavior from the
client stub. It handles certain reference semantics like connection
retries, which are unicast/multicast of the invocation requests. The
transport layer actually provides the networking infrastructure, which
facilitates the actual data transfer during method invocations, the
passing of formal arguments, and the return of back execution results.

RMI skeleton. The RMI skeleton, which also is generated using the RMI
compiler (rmic) receives the invocation requests from the stub and
processes the arguments (unmarshalling) and delegates them to the RMI
server. Upon successful method execution, it marshals the return values
and then passes them back to the RMI stub via the RMI infrastructure.

RMI server. The server is the Java remote object that implements the
exposed interfaces and executes the client requests. It receives incom-
ing remote method invocations from the respective skeleton, which
passes the parameters after unmarshalling. Upon successful method
execution, return values are sent back to the skeleton, which passes
them back to the client via the RMI infrastructure.

Developing distributed applications in RMI is simpler than developing
with Java sockets because there is no need to design a protocol, which is a
very complex task by itself. RMI is built over TCP/IP sockets, but the
added advantage is that it provides an object-oriented approach for inter-
process communications. Java RMI provides the Java programmers with
an efficient, transparent communication mechanism that frees them of all
the application-level protocols necessary to encode and decode messages
for data exchange. RMI enables distributed resource management, best
processing power usage, and load balancing in a Java application model.
RMI-IIOP (RMI over IIOP) is a protocol that has been developed for

12 Chapter 1

enabling RMI applications to interoperate with CORBA components.
Although RMI had inherent advantages provided by the distributed object
model of the Java platform, it also had some limitations:

■■ RMI is limited only to the Java platform. It does not provide lan-
guage independence in its distributed model as targeted by CORBA.

■■ RMI-based application architectures are tightly coupled because of
the connection-oriented nature. Hence, achieving high scalability in
such an application model becomes a challenge.

■■ RMI does not provide any specific session management support. In
a typical client/server implementation, the server has to maintain
the session and state information of the multiple clients who access
it. Maintaining such information within the server application with-
out a standard support is a complex task.

In spite of some of its limitations, RMI and RMI-IIOP has become the
core of the J2EE architectural model due to its widespread acceptance in
the Java distributed computing paradigm and rich features.

Microsoft DCOM

The Microsoft Component Object Model (COM) provides a way for
Windows-based software components to communicate with each other by
defining a binary and network standard in a Windows operating environ-
ment. COM evolved from OLE (Object Linking and Embedding), which
employed a Windows registry-based object organization mechanism.
COM provides a distributed application model for ActiveX components.

As a next step, Microsoft developed the Distributed Common Object
Model (DCOM) as its answer to the distributed computing problem in the
Microsoft Windows platform. DCOM enables COM applications to com-
municate with each other using an RPC mechanism, which employs a
DCOM protocol on the wire.

Figure 1.5 shows an architectural model of DCOM.
DCOM applies a skeleton and stub approach whereby a defined inter-

face that exposes the methods of a COM object can be invoked remotely
over a network. The client application will invoke methods on such a
remote COM object in the same fashion that it would with a local COM
object. The stub encapsulates the network location information of the COM
server object and acts as a proxy on the client side. The servers can poten-
tially host multiple COM objects, and when they register themselves
against a registry, they become available for all the clients, who then dis-
cover them using a lookup mechanism.

Evolution of Distributed Computing 13

Figure 1.5 Basic architectural model of Microsoft DCOM.

DCOM is quite successful in providing distributed computing support
on the Windows platform. But, it is limited to Microsoft application envi-
ronments. The following are some of the common limitations of DCOM:

■■ Platform lock-in
■■ State management
■■ Scalability
■■ Complex session management issues

Message-Oriented Middleware

Although CORBA, RMI, and DCOM differ in their basic architecture and
approach, they adopted a tightly coupled mechanism of a synchronous
communication model (request/response). All these technologies are
based upon binary communication protocols and adopt tight integration
across their logical tiers, which is susceptible to scalability issues.

Message-Oriented Middleware (MOM) is based upon a loosely coupled
asynchronous communication model where the application client does not
need to know its application recipients or its method arguments. MOM
enables applications to communicate indirectly using a messaging
provider queue. The application client sends messages to the message
queue (a message holding area), and the receiving application picks up the

Client COM
run time

Server
Component

COM
run time

RPC

DCOM
Protocol

RPC

COM
run time

Server
Component

14 Chapter 1

TEAMFL
Y

Team-Fly®

message from the queue. In this operation model, the application sending
messages to another application continues to operate without waiting for
the response from that application.

Figure 1.6 illustrates a high-level MOM architecture showing
application-to-application connectivity.

In MOM-based architecture, applications interacting with its messaging
infrastructure use custom adapters. Client applications communicate with
the underlying messaging infrastructure using these adapters for sending
and receiving messages. For reliable message delivery, messages can be
persisted in a database/file system as well.

Some of the widely known MOM-based technologies are SunONE Mes-
sage Queue, IBM MQSeries, TIBCO, SonicMQ, and Microsoft Messaging
Queue (MSMQ). The Java Platform provides a Java-based messaging API
(JMS-Java Message Service), which is developed as part of the Sun Java
Community Process (JCP) and also is currently part of the J2EE 1.3 specifi-
cations. All the leading MOM vendors like SunONE, TIBCO, IBM, BEA,
Talarian, Sonic, Fiorano, and Spiritwave support the JMS specifications.

JMS provides Point-to-Point and Publish/Subscribe messaging models
with the following features:

■■ Complete transactional capabilities
■■ Reliable message delivery
■■ Security

Figure 1.6 A typical MOM-based architectural model.

Application
A

Application
B

Persistence

Adapter APIAdapter API

MOM
Infrastructure

Evolution of Distributed Computing 15

Some of the common challenges while implementing a MOM-based
application environment have been the following:

■■ Most of the standard MOM implementations have provided native
APIs for communication with their core infrastructure. This has
affected the portability of applications across such implementations
and has led to a specific vendor lock-in.

■■ The MOM messages used for integrating applications are usually
based upon a proprietary message format without any standard
compliance.

Adopting a JMS-based communication model enables a standardized
way to communicate with a MOM provider without having to lock in to
any specific vendor API. It leverages the use of open standards l, thus
enhancing the flexibility in connecting together diverse applications.

Common Challenges in Distributed Computing

Distributed computing technologies like CORBA, RMI, and DCOM have
been quite successful in integrating applications within a homogenous
environment inside a local area network. As the Internet becomes a logical
solution that spans and connects the boundaries of businesses, it also
demands the interoperability of applications across networks. This section
discusses some of the common challenges noticed in the CORBA-, RMI-,
and DCOM-based distributed computing solutions:

■■ Maintenance of various versions of stubs/skeletons in the client and
server environments is extremely complex in a heterogeneous net-
work environment.

■■ Quality of Service (QoS) goals like Scalability, Performance, and
Availability in a distributed environment consume a major portion
of the application’s development time.

■■ Interoperability of applications implementing different protocols on
heterogeneous platforms almost becomes impossible. For example, a
DCOM client communicating to an RMI server or an RMI client
communicating to a DCOM server.

■■ Most of these protocols are designed to work well within local net-
works. They are not very firewall friendly or able to be accessed
over the Internet.

The biggest problem with application integration with this tightly
coupled approach spearheaded by CORBA, RMI, and DCOM was that it

16 Chapter 1

influenced separate sections of the developer community who were
already tied to specific platforms. Microsoft Windows platform developers
used DCOM, while UNIX developers used CORBA or RMI. There was no
big effort in the community to come up with common standards that
focused on the interoperability between these diverse protocols, thus
ignoring the importance, and hence, the real power of distributed comput-
ing. Enough said about the weaknesses, we now are going to discuss what
is becoming an alternative technology, which still has all the existing
strengths and targets to solve the complexities of current systems.

The Role of J2EE and XML
in Distributed Computing

The emergence of the Internet has helped enterprise applications to be eas-
ily accessible over the Web without having specific client-side software
installations. In the Internet-based enterprise application model, the focus
was to move the complex business processing toward centralized servers
in the back end.

The first generation of Internet servers was based upon Web servers that
hosted static Web pages and provided content to the clients via HTTP
(HyperText Transfer Protocol). HTTP is a stateless protocol that connects
Web browsers to Web servers, enabling the transportation of HTML con-
tent to the user.

With the high popularity and potential of this infrastructure, the push
for a more dynamic technology was inevitable. This was the beginning of
server-side scripting using technologies like CGI, NSAPI, and ISAPI.

With many organizations moving their businesses to the Internet, a
whole new category of business models like business-to-business (B2B)
and business-to-consumer (B2C) came into existence.

This evolution lead to the specification of J2EE architecture, which pro-
moted a much more efficient platform for hosting Web-based applications.
J2EE provides a programming model based upon Web and business
components that are managed by the J2EE application server. The applica-
tion server consists of many APIs and low-level services available to the
components. These low-level services provide security, transactions, con-
nections and instance pooling, and concurrency services, which enable a
J2EE developer to focus primarily on business logic rather than plumbing.

The power of Java and its rich collection of APIs provided the perfect
solution for developing highly transactional, highly available and scalable
enterprise applications. Based on many standardized industry specifica-
tions, it provides the interfaces to connect with various back-end legacy and

Evolution of Distributed Computing 17

information systems. J2EE also provides excellent client connectivity capa-
bilities, ranging from PDA to Web browsers to Rich Clients (Applets,
CORBA applications, and Standard Java Applications).

Figure 1.7 shows various components of the J2EE architecture.
A typical J2EE architecture is physically divided in to three logical tiers,

which enables clear separation of the various application components with
defined roles and responsibilities. The following is a breakdown of func-
tionalities of those logical tiers:

Presentation tier. The Presentation tier is composed of Web compo-
nents, which handle HTTP requests/responses, Session management,
Device independent content delivery, and the invocation of business
tier components.

Figure 1.7 J2EE application architecture.

IIOP

Applets/
Applications

J2EE Server

WEB CONTAINER

EJB CONTAINER

LEGACY
APPLICATIONS

HTTP

Web Browser PDA

HTTP

i iCLIENTS

PRESENTATION
TIER

APPLICATION
TIER

INTEGRATION
TIER

DATABASE

SQL/JDBC

18 Chapter 1

Application tier. The Application tier (also known as the Business
tier) deals with the core business logic processing, which may typi-
cally deal with workflow and automation. The business components
retrieve data from the information systems with well-defined APIs
provided by the application server.

Integration tier. The Integration tier deals with connecting and com-
municating to back-end Enterprise Information Systems (EIS), data-
base applications and legacy applications, or mainframe applications.

With its key functionalities and provisions for partitioning applications
into logical tiers, J2EE has been highly adopted as the standard solution for
developing and deploying mission critical Web-based applications. The
power of J2EE-based applications would be tremendous, if it is enabled
to interoperate with other potential J2EE-deployed applications. This
enables business components across networks to negotiate among them
and interact without human interaction. It also enables the realization of
syndication and collaboration of business processes across the Internet by
enabling them to share data and component-level processes in real time.
This phenomenon is commonly referred to as business-to-business (B2B)
communication.

The emergence of the Extensible Markup Language (XML) for defining
portable data in a structured and self-describing format is embraced by the
industry as a communication medium for electronic data exchange. Using
XML as a data exchange mechanism between applications promotes inter-
operability between applications and also enhances the scalability of the
underlying applications. Combining the potential of a J2EE platform and
XML offers a standard framework for B2B and inter-application communi-
cation across networks.

With J2EE enabling enterprise applications to the Internet and XML
acting as a “glue” bridges these discrete J2EE-based applications by facili-
tating them to interoperate with each other. XML, with its incredible
flexibility, also has been widely adopted and accepted as a standard by
major vendors in the IT industry, including Sun, IBM, Microsoft, Oracle,
and HP. The combination of these technologies offers more promising pos-
sibilities in the technology sector for providing a new way of application-
to-application communication on the Internet. It also promotes a new
form of the distributed computing technology solution referred to as Web
services.

Evolution of Distributed Computing 19

The Emergence of Web Services

Today, the adoption of the Internet and enabling Internet-based applica-
tions has created a world of discrete business applications, which co-exist
in the same technology space but without interacting with each other. The
increasing demands of the industry for enabling B2B, application-to-
application (A2A), and inter-process application communication has led to
a growing requirement for service-oriented architectures. Enabling ser-
vice-oriented applications facilitates the exposure of business applications
as service components enable business applications from other organiza-
tions to link with these services for application interaction and data
sharing without human intervention. By leveraging this architecture, it
also enables interoperability between business applications and processes.

By adopting Web technologies, the service-oriented architecture model
facilitates the delivery of services over the Internet by leveraging standard
technologies such as XML. It uses platform-neutral standards by exposing
the underlying application components and making them available to any
application, any platform, or any device, and at any location. Today, this
phenomenon is well adopted for implementation and is commonly referred
to as Web services. Although this technique enables communication
between applications with the addition of service activation technologies
and open technology standards, it can be leveraged to publish the services
in a register of yellow pages available on the Internet. This will further rede-
fine and transform the way businesses communicate over the Internet. This
promising new technology sets the strategic vision of the next generation of
virtual business models and the unlimited potential for organizations doing
business collaboration and business process management over the Internet.

Summary

In this chapter, we discussed the evolution and the basics of distributed
computing technologies and the emergence of Web services that define the
next generation of business services models and business process commu-
nication over the Internet.

In particular, we looked at the background of distributed computing; the
fundamentals of distributed computing techniques; the basics of industry-
accepted technologies like CORBA, RMI, DCOM, and MOM; the role of J2EE
and XML for enabling distributed computing over the Internet; and the con-
cept of service-oriented architectures and the emergence of Web services.

In the following chapters, we will go into a more detailed introduction to
Web services concepts and focus on the various aspects of designing and
developing Web services.

20 Chapter 1

21

Today, people use the Internet as an everyday service provider for reading
headline news, obtaining stock quotes, getting weather reports, shopping
online, and paying bills, and also for obtaining a variety of information
from different sources. These Web-enabled applications are built using
different software applications to generate HTML, and their access is lim-
ited only through an Internet browser or by using an application-specific
client. This is partially due to the limitations of HTML and the Web server-
based technologies, which are primarily focused on presentation and their
inability to interact with another application.

The emergence of Web services introduces a new paradigm for enabling
the exchange of information across the Internet based on open Internet
standards and technologies. Using industry standards, Web services
encapsulate applications and publish them as services. These services
deliver XML-based data on the wire and expose it for use on the Internet,
which can be dynamically located, subscribed, and accessed using a wide
range of computing platforms, handheld devices, appliances, and so on.
Due to the flexibility of using open standards and protocols, it also facili-
tates Enterprise Application Integration (EAI), business-to-business (B2B)
integration, and application-to-application (A2A) communication across
the Internet and corporate intranet. In organizations with heterogeneous
applications and distributed application architectures, the introduction of

Introduction to Web Services

C H A P T E R

2

Web services standardizes the communication mechanism and enables
interoperability of applications based on different programming languages
residing on different platforms.

This chapter presents an introduction on Web services, especially focus-
ing on the following:

■■ The definition of Web services
■■ Motivation and characteristics of Web services
■■ Web services industry standards and technologies
■■ Web services strategies and solutions
■■ Benefits of Web services

Today’s leading technology vendors have set their strategies around
providing infrastructure solutions for delivering Web services. With the
increasing adoption, acceptance, and availability of platforms, languages,
application tools, and supporting technology solutions, it is expected that
Web services will become a new service industry providing businesses
services over the Internet.

What Are Web Services?

Web services are based on the concept of service-oriented architecture
(SOA). SOA is the latest evolution of distributed computing, which enables
software components, including application functions, objects, and
processes from different systems, to be exposed as services.

According to Gartner research (June 15, 2001), “Web services are
loosely coupled software components delivered over Internet standard
technologies.”

In short, Web services are self-describing and modular business applica-
tions that expose the business logic as services over the Internet through
programmable interfaces and using Internet protocols for the purpose of
providing ways to find, subscribe, and invoke those services.

Based on XML standards, Web services can be developed as loosely cou-
pled application components using any programming language, any pro-
tocol, or any platform. This facilitates delivering business applications as a
service accessible to anyone, anytime, at any location, and using any
platform.

Consider the simple example shown in Figure 2.1 where a travel reser-
vation services provider exposes its business applications as Web services
supporting a variety of customers and application clients. These business
applications are provided by different travel organizations residing at
different networks and geographical locations.

22 Chapter 2

Figure 2.1 An example scenario of Web services.

The following is a typical scenario:

1. The Travel service provider deploys its Web services by exposing the
business applications obtained from different travel businesses like
airlines, car-rental, hotel accommodation, credit card payment, and
so forth.

Wireless
Device

Find
Services

Register
Services

Invoke
Services

Travel
Services
Registry

Service
Requestor

Travel
Reservation

Services
Provider

Desktop

PDA

Automobile

Organization

Airline
Reservation

System

Rental Car
Reservation

System

Hotel
Reservation

System

Map and Weather
Information

System

Credit Card
Payment System

Introduction to Web Services 23

2. The service provider registers its business services with descriptions
using a public or private registry. The registry stores the information
about the services exposed by the service provider.

3. The customer discovers the Web services using a search engine or by
locating it directly from the registry and then invokes the Web ser-
vices for performing travel reservations and other functions over the
Internet using any platform or device.

4. In the case of large-scale organizations, the business applications
consume these Web services for providing travel services to their
own employees through the corporate intranet.

The previous example provides a simple scenario of how an organiza-
tion’s business functionalities can be exposed as Web services and invoked
by its customers using a wide range of application clients.

As we discussed earlier, Web services are typically implemented based
on open standards and technologies specifically leveraging XML. The
XML-based standards and technologies, such as Simple Object Access Pro-
tocol (SOAP); Universal Description, Discovery, and Integration (UDDI);
Web Services Definition Language (WSDL); and Electronic Business XML
(ebXML), are commonly used as building blocks for Web services. These
technologies are discussed briefly in the section Core Web Services Stan-
dards, which follows later.

Motivation and Characteristics

Web-based B2B communication has been around for quite some time.
These Web-based B2B solutions are usually based on custom and propri-
etary technologies and are meant for exchanging data and doing transac-
tions over the Web. However, B2B has its own challenges. For example, in
B2B communication, connecting new or existing applications and adding
new business partners have always been a challenge. Due to this fact, in
some cases the scalability of the underlying business applications is
affected. Ideally, the business applications and information from a partner
organization should be able to interact with the application of the potential
partners seamlessly without redefining the system or its resources. To
meet these challenges, it is clearly evident that there is a need for standard
protocols and data formatting for enabling seamless and scalable B2B
applications and services. Web services provide the solution to resolve
these issues by adopting open standards. Figure 2.2 shows a typical B2B
infrastructure (e-marketplace) using XML for encoding data between
applications across the Internet.

24 Chapter 2

TEAMFL
Y

Team-Fly®

Figure 2.2 Using XML for encoding data in a B2B communication.

Web services enable businesses to communicate, collaborate, and con-
duct business transactions using a lightweight infrastructure by adopting
an XML-based data exchange format and industry standard delivery
protocols.

The basic characteristics of a Web services application model are as
follows:

■■ Web services are based on XML messaging, which means that the
data exchanged between the Web service provider and the user are
defined in XML.

■■ Web services provide a cross-platform integration of business appli-
cations over the Internet.

■■ To build Web services, developers can use any common program-
ming language, such as Java, C, C++, Perl, Python, C#, and/or
Visual Basic, and its existing application components.

■■ Web services are not meant for handling presentations like HTML
context—it is developed to generate XML for uniform accessibility
through any software application, any platform, or device.

Buyer

Partner Seller

Internet

XML XML

XML

Introduction to Web Services 25

■■ Because Web services are based on loosely coupled application com-
ponents, each component is exposed as a service with its unique
functionality.

■■ Web services use industry-standard protocols like HTTP, and they
can be easily accessible through corporate firewalls.

■■ Web services can be used by many types of clients.
■■ Web services vary in functionality from a simple request to a complex

business transaction involving multiple resources.
■■ All platforms including J2EE, CORBA, and Microsoft .NET provide

extensive support for creating and deploying Web services.
■■ Web services are dynamically located and invoked from public and

private registries based on industry standards such as UDDI and
ebXML.

Why Use Web Services?

Traditionally, Web applications enable interaction between an end user and
a Web site, while Web services are service-oriented and enable application-
to-application communication over the Internet and easy accessibility to
heterogeneous applications and devices. The following are the major tech-
nical reasons for choosing Web services over Web applications:

■■ Web services can be invoked through XML-based RPC mechanisms
across firewalls.

■■ Web services provide a cross-platform, cross-language solution
based on XML messaging.

■■ Web services facilitate ease of application integration using a light-
weight infrastructure without affecting scalability.

■■ Web services enable interoperability among heterogeneous
applications.

Basic Operational Model of Web Services

Web services operations can be conceptualized as a simple operational
model that has a lot in common with a standard communication model
(see Figure 2.3). Operations are conceived as involving three distinct roles
and relationships that define the Web services providers and users.

26 Chapter 2

Figure 2.3 Web services operational model, showing roles and relationships.

These roles and relationships are defined as follows:

Service provider. The service provider is responsible for developing
and deploying the Web services. The provider also defines the ser-
vices and publishes them with the service broker.

Service broker. The service broker (also commonly referred to as a
service registry) is responsible for service registration and discovery
of the Web services. The broker lists the various service types,
descriptions, and locations of the services that help the service
requesters find and subscribe to the required services.

Service requestor. The service requestor is responsible for the service
invocation. The requestor locates the Web service using the service
broker, invokes the required services, and executes it from the service
provider.

Let’s examine more closely some of the open standard technologies such
as SOAP, WSDL, UDDI, and ebXML that enable Web services.

Core Web Services Standards

The five core Web services standards and technologies for building and
enabling Web services are XML, SOAP, WSDL, UDDI, and ebXML. An
overview of each is presented in the following sections.

Service
Broker

Invoke Service

Register Service
Disc

ov
er

 Se
rvi

ce

Service
Requestor

Service
Provider

Introduction to Web Services 27

Extensible Markup Language (XML)
In February 1998, the Worldwide Web Consortium (W3C) officially
endorsed the Extensible Markup Language (XML) as a standard data for-
mat. XML uses Unicode, and it is structured self-describing neutral data
that can be stored as a simple text document for representing complex data
and to make it readable. Today, XML is the de facto standard for structuring
data, content, and data format for electronic documents. It has already been
widely accepted as the universal language lingua franca for exchanging
information between applications, systems, and devices across the Internet.

In the core of the Web services model, XML plays a vital role as the com-
mon wire format in all forms of communication. XML also is the basis for
other Web services standards. By learning XML, you will be well prepared
to understand and explore Web services. For more information on XML, go
to Chapter 8, “XML Processing and Data Binding with Java APIs,” or to the
official W3C Web site for XML at www.w3c.org/XML/.

Simple Object Access Protocol (SOAP)
Simple Object Access Protocol, or SOAP, is a standard for a lightweight
XML-based messaging protocol. It enables an exchange of information
between two or more peers and enables them to communicate with each
other in a decentralized, distributed application environment. Like XML,
SOAP also is independent of the application object model, language, and
running platforms or devices. SOAP is endorsed by W3C and key industry
vendors like Sun Microsystems, IBM, HP, SAP, Oracle, and Microsoft.
These vendors have already announced their support by participating in
the W3C XML protocol-working group. The ebXML initiative from
UN/CEFACT also has announced its support for SOAP.

In the core of the Web services model, SOAP is used as the messaging
protocol for transport with binding on top of various Internet protocols
such as HTTP, SMTP, FTP, and so on. SOAP uses XML as the message for-
mat, and it uses a set of encoding rules for representing data as messages.
Although SOAP is used as a messaging protocol in Web services, it also can
operate on a request/response model by exposing the functionality using
SOAP/RPC based on remote procedural calls. SOAP also can be used with
J2EE-based application frameworks. For more information about SOAP, go
to Chapter 4, “Developing Web Services Using SOAP,” or to the official
W3C Web site for SOAP at www.w3c.org/TR/SOAP/.

28 Chapter 2

Web Services Definition Language (WSDL)
The Web Services Definition Language (WSDL) standard is an XML format
for describing the network services and its access information. It defines a
binding mechanism used to attach a protocol, data format, an abstract
message, or set of endpoints defining the location of services.

In the core of the Web services model, WSDL is used as the metadata
language for defining Web services and describes how service providers
and requesters communicate with one another. WSDL describes the Web
services functionalities offered by the service provider, where the service is
located, and how to access the service. Usually the service provider creates
Web services by generating WSDL from its exposed business applications.
A public/private registry is utilized for storing and publishing the WSDL-
based information. For more information about WSDL, go to Chapter 5,
“Description and Discovery of Web Services,” or the official W3C Web site
for WSDL at www.w3c.org/TR/wsdl/.

Universal Description, Discovery, and Integration (UDDI)
Universal Description, Discovery, and Integration, or UDDI, defines the
standard interfaces and mechanisms for registries intended for publishing
and storing descriptions of network services in terms of XML messages. It
is similar to the yellow pages or a telephone directory where businesses
list their products and services. Web services brokers use UDDI as a stan-
dard for registering the Web service providers. By communicating with
the UDDI registries, the service requestors locate services and then
invoke them.

In the core Web services model, UDDI provides the registry for Web
services to function as a service broker enabling the service providers to
populate the registry with service descriptions and service types and the
service requestors to query the registry to find and locate the services. It
enables Web applications to interact with a UDDI-based registry using
SOAP messages. These registries can be either private services within an
enterprise or a specific community, or they can be public registries to ser-
vice the whole global business community of the Internet. The UDDI
working group includes leading technology vendors like Sun Microsys-
tems, IBM, HP, SAP, Oracle, and Microsoft. For more information about
UDDI, go to Chapter 5, “Description and Discovery of Web Services,” or to
the official Web site of UDDI at www.uddi.org/.

Introduction to Web Services 29

ebXML
ebXML defines a global electronic marketplace where enterprises find one
another and conduct business process collaborations and transactions. It
also defines a set of specifications for enterprises to conduct electronic
business over the Internet by establishing a common standard for business
process specifications, business information modeling, business process
collaborations, collaborative partnership profiles, and agreements and
messaging. ebXML is an initiative sponsored by the United Nations Center
for Trade Facilitation and Electronic Business (UN/CEFACT) and the
Organization for the Advancement of Structured Information Standards
(OASIS). Popular standards organizations like Open Travel Alliance
(OTA), Open Application Group, Inc. (OAGI), Global Commerce Initiative
(GCI), Health Level 7 (HL7, a healthcare standards organization), and
RosettaNet (an XML standards committee) also have endorsed it.

In the Web services model, ebXML provides a comprehensive frame-
work for the electronic marketplace and B2B process communication by
defining standards for business processes, partner profile and agreements,
registry and repository services, messaging services, and core components.
It complements and extends with other Web services standards like SOAP,
WSDL, and UDDI. In particular:

■■ ebXML Business Process Service Specifications (BPSS) enable busi-
ness processes to be defined.

■■ ebXML CPP/CPA enables business partner profiles and agreements
to be defined, and it provides business transaction choreography.

■■ ebXML Messaging Service Handler (MSH) deals with the transport,
routing, and packaging of messages, and it also provides reliability
and security, a value addition over SOAP.

■■ ebXML registry defines the registry services, interaction protocols,
and message definitions, and ebXML repository acts as storage for
shared information. The ebXML registries register with other reg-
istries as a federation, which can be discovered through UDDI. This
enables UDDI to search for a business listing point to an ebXML
Registry/Repository.

■■ ebXML Core components provide a catalogue of business process
components that provide common functionality to the business com-
munity. Examples of such components are Procurement, Payment,
Inventory, and so on.

For more information about ebXML, go to the official Web site of ebXML
standards at www.ebxml.org.

30 Chapter 2

Other Industry Standards Supporting Web Services

Many industry initiatives and standards supporting Web services are cur-
rently available and many more will be available in the future. The most
prominent initiatives to embrace Web services standards are described in
the following sections.

Web Services Choreography Interface (WSCI)
The Web Services Choreography Interface, or WSCI, is an initiative from
Sun Microsystems, BEA, Intalio, and SAP that defines the flow of messages
exchanged in a particular process of Web services communication. It
describes the collective message flow model among Web services by pro-
viding a global view of the processes involved during the interactions that
occur between Web services communication. This facilitates the bridging
of business processes and Web services by enabling Web services to be part
of the business processes of an organization or spanning multiple organi-
zations. For more information about WSCI, go to the Sun XML Web site at
www.sun.com/software/xml.

Web Services Flow Language (WSFL)
The Web Services Flow Language, or WSFL, is an XML-based language ini-
tiative from IBM for describing Web services compositions. These compo-
sitions are categorized as flow models and global models. Flow models can
be used for modeling business processes or workflows based on Web
services, and global models can be used for modeling links between
Web services interfaces that enable the interaction of one Web service with
an operation to another Web service interface. Using WSFL compositions
support a wide range of interaction patterns between the partners partici-
pating in a business process, especially hierarchical interactions and
peer-to-peer interaction between partners. For more information about
WSFL, go to the IBM Web site at www.ibm.com/software/solutions/
webservices/pdf/WSFL.pdf.

Directory Services Markup Language (DSML)
The Directory Services Markup Language, or DSML, defines an XML
schema for representing directory structural information as an XML docu-
ment, and it allows the publishing and sharing of directory information via
Internet protocols like HTTP, SMTP, and so forth. DSML does not define
the attributes for the directory structure or for accessing the information. A

Introduction to Web Services 31

DSML document defines the directory entries or a directory schema or
both, and it can be used on top of any industry standard directory proto-
cols like LDAP. DSML defines the standard for exchanging information
between different directory services and enables interoperability between
them. Bowstreet originally proposed DSML as a standard and later it
received support from leading vendors like IBM, Oracle, Sun Microsys-
tems, Microsoft, and so on. For more information about DSML standards,
visit www.dsml.org.

XLANG
Similar to WSFL, XLANG defines an XML-based standard specification for
defining business process flows in Web services. It also defines a notation
for expressing actions and complex operations in Web services. Microsoft
developed the XLANG specification and it has been implemented in
Microsoft BizTalk server 2000, especially for handling Enterprise Applica-
tion Integration (EAI) and B2B communication.

Business Transaction Protocol (BTP)
The Business Transaction Protocol (BTP) specification provides a support
for Web services-based distributed transactions enabling the underlying
transaction managers to provide the flexibility of handling XA-compliant,
two-phase commit transaction engines. BTP is an OASIS initiative that
facilitates large-scale business-to-business (B2B) deployments enabling
distributed transactions in Web services. For more information about
BTP, go to the OASIS Web site at www.oasis-open.org/committees
/business-transactions/.

XML Encryption (XML ENC)
The XML Encryption, or XML ENC, is an XML-based standard for securing
data by encryption using XML representations. In Web services, it secures
the exchange of data between the communicating partners. For more
information about XML Encryption, refer to Chapter 13, “Web Services
Security,” or go to the W3C Web site at www.w3.org/Encryption/.

XML Key Management System (XKMS)
The XML Key Management System, or XKMS, is an XML-based standard
for integrating public key infrastructure (PKI) and digital certificates used

32 Chapter 2

for securing Internet transactions, especially those used in Web services.
XKMS consists of two parts: the XML Key Information Service Specifica-
tion (X-KISS) and the XML Key Registration Service Specification
(X-KRSS). The X-KISS specification defines a protocol for a trust service
that resolves public key information contained in XML-SIG elements. The
X-KRSS describes how public key information is registered. For more
information about XKMS, refer to Chapter 13, “Web Services Security,” or
go to the W3C Web site at www.w3.org/2001/XKMS/.

XML Signature (XML DSIG)
The XML Encryption, or XML DSIG, is an XML-based standard for speci-
fying XML syntax and processing rules for creating and representing
digital signatures. In Web services, an XML digital signature helps XML-
based transactions by adding authentication, data integrity, and support
for non-repudiation to the data during data exchange among the commu-
nicating partners. For more information about XML Signature, refer to
Chapter 13, “Web Services Security” or go to the W3C Web site at www
.w3.org/Signature/.

Extensible Access Control Markup Language (XACML)
The Extensible Access Control Markup Language, or XACML, is an XML-
based standard for specifying policies and rules for accessing information
over Web-based resources. In Web services, XACML sets the rules and
permissions on resources shared among the communicating partners.
XACML is one of the security initiatives made by the OASIS security
services technical committee. For more information about XACML, refer to
Chapter 13, “Web Services Security,” or go to the OASIS Web site at
www.oasis-open.org/committees/xacml/.

Security Assertions Markup Language (SAML)
The Security Assertions Markup Language, or SAML, defines an XML-
based framework for exchanging authentication and authorization infor-
mation. SAML uses a generic protocol consisting of XML-based request
and response message formats, and it can be bound to many communica-
tion models and transport protocols. One of the key objectives of SAML is
to provide and achieve single sign-on for applications participating in Web
services. SAML is an initiative from the security services technical commit-
tee of OASIS. For more information about SAML, refer to Chapter 13, “Web

Introduction to Web Services 33

Services Security,” or go to the OASIS Web site at www.oasis-open.org
/committees/security/.

Known Challenges in Web Services

Web services present some key challenges associated with the mission-critical
business requirements. These challenges need to be addressed before the ser-
vices are fully implemented. Some of the key challenges are as follows:

Distributed transactions. If the environment requires distributed
transactions with heterogeneous resources, it should be studied and
tested with standard solutions based on BTP, WS-Transactions, and
WS-Coordination.

Quality of Service (QoS). In case of a mission-critical solution, the
service providers must examine the reliability and performance of
the service in peak load and uncertain conditions for high availabil-
ity. The exposed infrastructure must provide load balancing, and fail-
over and fault tolerance, to resolve these scenarios.

Security. Web services are exposed to the public using http-based pro-
tocols. As Web services is publicly available, it must be implemented
using authentication and authorization mechanisms and using SSL-
enabling encryption of the messages for securing the usage. Adopt-
ing open security standards like SAML, XML Encryption, XML
Signature, or XACML may be a solution.

Other challenges include the manageability and testing of the Web
services deployment, which is subjected to different operating system
environments and platforms and managing service descriptions in
public/private registries.

Web Services Software and Tools

Let’s now take a look at the Web services software and tool vendors
offering solutions for developing and deploying Java-based Web services
solutions. The following is a list of the most popular software solutions
commercially available for implementing Web services.

BEA Systems Products
BEA WebLogic Server 7.0 provides the infrastructure solution for Web ser-
vices supporting the standards and protocols of Web services. The BEA

34 Chapter 2

TEAMFL
Y

Team-Fly®

WebLogic Integration Server also enables complex Web services to be
deployed with transactional integrity, security, and reliability while sup-
porting the emerging ebXML and BTP standards.

In this book, we have provided some example illustrations of using BEA
WebLogic Server 7.0 in Chapter 3, “Building the Web Services Architec-
ture.” For more information about BEA Systems Products, go to their Web
site at www.bea.com.

Cape Clear Products
Cape Clear provides Web services infrastructure and product solutions
such as CapeConnect and CapeStudio, which enable the development of
Web services solutions based on industry standards such as XML, SOAP,
WSDL, and UDDI. Cape Clear also enables business applications from
diverse technologies such as Java, EJB, CORBA, and Microsoft .NET. These
components can be exposed as Web services over the Internet.

For more information about Cape Clear Systems Products, go to their
Web site at www.capeclear.com.

IBM Products
IBM WebSphere Application Server 4.5 provides an infrastructure solution
for deploying Web services-based applications. IBM also provides a Web
Services Tool Kit (WSTK) bundle (now part of WebSphere Studio) for
developers as a runtime environment that creates, publishes, and tests Web
services solutions based on open standards such as XML, SOAP, WSDL,
and UDDI. It also generates WSDL wrappers for existing applications
without any reprogramming. The IBM WSTK is available for download at
www.alphaworks.ibm.com/tech/webservicestoolkit.

IOPSIS Products
IOPSIS provides B2Beyond suite iNsight and W2Net, an Integrated Services
Development Framework (ISDF), that enables the creation, assembly,
deployment, and publication of Web services based on open standards such
as XML, SOAP, WSDL, and UDDI. It also provides tools for the deployment
of Web Services to popular J2EE-based Web application servers.

Oracle Products
Oracle’s Oracle9i Release 2 application server provides the J2EE-based
infrastructure solution for Web services supporting Web services standards

Introduction to Web Services 35

including SOAP, UDDI, and WSDL. It also has features that define and
coordinate business processes using Web services integrating legacy appli-
cations and back-end systems.

Sun Products
As part of the Java community process, Sun has already released its Java
and XML technology-based APIs and its implementation referred to as JAX
Pack for developing and testing Java and open standards-based Web ser-
vices solutions. In addition, Sun also has released a comprehensive set of
technologies specific to Web services that are referred to as the Java Web
Services Developer Pack (JWSDP). In this book, we have discussed exten-
sively JWSDP API technologies and provided example illustrations in
Chapters 7 to 12.

The suite of products of Sun ONE Application Server 7.0, formerly called
iPlanet Application Server 6.0, provide a J2EE- and open standards-based
infrastructure for implementing Web services. The Sun ONE suite is a key
component of Sun’s Open Net Environment (Sun ONE), a comprehensive
Web-services software environment for customers and developers inter-
ested in migrating to the next generation of Web services.

Systinet Products
Systinet provides Web services infrastructure and product solutions such
as WASP Server, WASP Developer, and WASP UDDI, which develops Web
services solutions based on industry standards such as XML, SOAP,
WSDL, and UDDI. Systinet also enables business applications from diverse
technologies such as Java, EJB, CORBA, and Microsoft .NET to be exposed
as Web services over the Internet. It enables integration with J2EE-based
applications and also supports security frameworks based on GSS API and
Kerberos. It also provides the implementation of Java XML API technolo-
gies that were especially meant for Web services.

In this book, we have provided example illustrations of using Systinet
WASP Server in Chapter 5, “Description and Discovery of Web Services.”

Web Services Strategies from Industry
Leaders: An Overview

Let’s take a brief look at the leading vendor initiatives and strategies
focused on the core of the Web services framework, which includes the

36 Chapter 2

architecture, platform, and software solutions for developing and deploy-
ing Web services. Adopting these frameworks offers a simplified imple-
mentation solution, interoperability, and industry standards compliance
for enabling Web services. The following are the most popular initiatives
for providing the core Web services frameworks that are offered by leading
technology vendors in the industry.

Sun ONE (Sun Open Net Environment)
Sun ONE is Sun’s open standards-based software vision, architecture, plat-
form, and solution for building and deploying Services on Demand-based
solutions that support the development and deployment of Web services.
Sun ONE’s architecture is based on open standards like SOAP, WSDL, and
UDDI and also adopts the Java/J2EE-based solutions as its core runtime
technology. The major strength of SunONE is that it does not exhibit any
vendor lock-in problems or issues caused by other proprietary solutions.
For more information on Sun ONE, refer to Chapter 14, “Introduction to
Sun ONE,” or refer to the Sun Web site at www.sun.com/software
/sunone/.

IBM e-Business
IBM e-business is IBM’s conceptual architecture and open standards-based
product offering for the development and deployment of Web services.
IBM’s offering is based on Java/J2EE and Web services standards like SOAP,
WSDL, and UDDI, and collectively reflects the set of Web services technolo-
gies for Dynamic e-Business. For more information on IBM e-business initia-
tives, refer to the IBM Web site at www.ibm.com/e-business/index.html.

Microsoft .NET
Microsoft .NET defines the framework and the programming model of the
.NET platform for developing and deploying standards-based Web
services and all types of applications. The framework defines three layers
consisting of the Microsoft operating system, enterprise servers, and .Net
building blocks using Visual Studio. The .NET-based Web services inter-
faces were developed using the .Net building blocks provided by the
Microsoft Visual Studio .NET framework supporting standards like SOAP,
WSDL, and UDDI. For more information about Microsoft .NET, go to
Microsoft’s Web site at www.microsoft.com.

Introduction to Web Services 37

Key Benefits of Web Services

The key benefits of implementing Web services are as follows:

■■ Provides a simple mechanism for applications to become services
that are accessible by anyone, anywhere, and from any device.

■■ Defines service-based application connectivity facilitating EAI, and
intra-enterprise and inter-enterprise communication.

■■ Defines a solution for businesses, which require flexibility and agility
in application-to-application communication over the Internet.

■■ Enables dynamic location and invocation of services through service
brokers (registries).

■■ Enables collaboration with existing applications that are modeled as
services to provide aggregated Web services.

Quite clearly, Web services are the next major technology for demon-
strating a new way of communication and collaboration.

Summary

In this chapter, we provided an introduction to Web services and the core
open standard technologies available today for implementing Web
services applications. We also discussed the operational model and charac-
teristics of Web services in business-to-business communication.

In general, we have looked at what Web services are; the core standards,
tools, and technologies for enabling Web services; the industry standards
that support those services; leading technology vendors; and the uses as
well as benefits and challenges of using Web services.

In the next chapter, we will explore the Web services architecture and its
core buildings blocks, and then illustrate an example of a J2EE-based Web
services application.

38 Chapter 2

PA R T

Two

Web Services
Architecture

and Technologies

41

This chapter focuses on the Web services architecture: its core building
blocks, implementation models, and deployment process for building Web
services-based application solutions. In addition, this chapter also illus-
trates an example demonstrating the development of a complete Web
services solution exposing J2EE applications as services over the Internet.

The Web services architecture represents the logical evolution of tradi-
tional computer-based applications to services-oriented applications over
the Internet. It defines a distributed computing mechanism by adopting a
service-oriented architecture (SOA), where all of the applications are
encapsulated as services and made available for invocation over a net-
work. These services can be leveraged from different applications and
platforms with varying technologies adopting common industry stan-
dards and platform-independent and language-neutral Internet protocols
for enabling application interoperability, thus making them easily accessi-
ble over the Internet. In addition, it provides a mechanism for categorizing
and registering the services in a common location by making them
available for discovery and collaboration over the Internet or corporate
networks. Using Web services architecture and adhering to its standards
also exposes existing and legacy applications as Web services, and the
clients invoking these services do not require that they are aware of their
target system environment and its underlying implementation model.

Building the Web Services
Architecture

C H A P T E R

3

Over the course of this chapter, we will study all about the Web services
architecture and its associated standards and technologies addressing
the challenges in implementation. In particular, we will be focusing on the
following:

■■ Understanding the basics of Web services architecture

■■ Key architectural requirements and constraints

■■ Building blocks of Web services architecture

■■ The role of Web services standards and technologies

■■ Web services communication models

■■ How to implement Web services

■■ How to develop a Web services provider environment using J2EE

■■ How to develop a client service requester environment

Because the key focus of this book is developing Web services using
the Java platform, this chapter will illustrate an example of building a
Web services solution by exposing a J2EE application deployed in a J2EE
application server.

Before moving forward, it is also important to note that during January
2002, W3C started its Web services activity as an ongoing effort to identify
the requirements and standards-based technologies for addressing the key
aspects of Web services, such as the architecture, protocols, and services
description and coordination, and so forth. Today, leading Web services tech-
nology vendors, joined together as part of the W3C Web services working
group, are working on identifying the requirements and developing full-
fledged Web services architecture-based solutions. To find out the status of
W3C working group activities on Web services architecture, refer to the W3C
URL at www.w3c.org/2002/ws/arch/.

Web Services Architecture
and Its Core Building Blocks

In the last chapter, we looked at the basic operational model of a Web ser-
vices environment with the three roles as service provider, service broker,
and service requestor associated with three operational relationships such
as registering, discovering, and invoking services.

The basic principles behind the Web services architecture are based on
SOA and the Internet protocols. It represents a composable application solu-
tion based on standards and standards-based technologies. This ensures that
the implementations of Web services applications are compliant to standard

42 Chapter 3

specifications, thus enabling interoperability with those compliant applica-
tions. Some of the key design requirements of the Web services architecture
are the following:

■■ To provide a universal interface and a consistent solution model to
define the application as modular components, thus enabling them
as exposable services

■■ To define a framework with a standards-based infrastructure model
and protocols to support services-based applications over the Internet

■■ To address a variety of service delivery scenarios ranging from
e-business (B2C), business-to-business (B2B), peer-to-peer (P2P),
and enterprise application integration (EAI)-based application com-
munication

■■ To enable distributable modular applications as a centralized and
decentralized application environment that supports boundary-less
application communication for inter-enterprise and intra-enterprise
application connectivity

■■ To enable the publishing of services to one or more public or private
directories, thus enabling potential users to locate the published ser-
vices using standard-based mechanisms that are defined by standards
organizations

■■ To enable the invocation of those services when it is required, subject
to authentication, authorization, and other security measures

To handle these requirements, a typical Web service architectural model
consists of three key logical components as core building blocks mapping
the operational roles and relationships of a Web services environment.
Figure 3.1 represents the core building blocks of a typical Web services
architecture.

Services container/runtime environment. The services container acts
as the Web services runtime environment and hosts the service
provider. Typical to a Web application environment, it defines the
Web services runtime environment meant for client communication
as a container of Web services interfaces by exposing the potential
components of the underlying applications. It facilitates the service
deployment and services administration. In addition, it also handles
the registration of the service description with the service registries.
Usually, the Web services platform provider implements the services
container. In some circumstances, the Web application servers pro-
vide system services and APIs that can be leveraged as the Web
services container.

Building the Web Services Architecture 43

Figure 3.1 Core building blocks of Web services architecture.

Services registry. The services registry hosts the published services
and acts as a broker providing a facility to publish and store the
description of Web services registered by the service providers. In
addition, it defines a common access mechanism for the service
requestors for locating the registered services.

Services delivery. It acts as the Web services client runtime environ-
ment by looking up the services registries to find the required ser-
vices and invoking them from the service provider. It is represented
as a presentation module for service requestors, by exposing the
appropriate interfaces or markups for generating content and deliv-
ery to a variety of client applications, devices, platforms, and so
forth.

To build the Web services architecture with these logical components, we
need to use standardized components and a communication model for
describing and invoking the services that are universally understood
between the service providers and their potential service requestors. It
also requires a standard way to publish the services by the service provider
and store them in the service broker. In turn, service requestors can find
them.

44 Chapter 3

TEAMFL
Y

Team-Fly®

WSDL. This resides in the services container and provides a stan-
dardized way to describe the Web services as a service description.
In ebXML-based architecture, ebXML CPP/A provides services
descriptions including business partner profiles and agreements.

UDDI. This provides a standard mechanism for publishing and
discovering registered Web services, and it also acts as the registry
and repository to store WSDL-based service descriptions. In ebXML-
based architecture, ebXML Registry & Repository provides a facility
to store CPP/CPA descriptions for business collaboration.

As we noted, Web services are accessed using standard Internet protocols
and XML—the Web services architecture forms the standard infrastructure
solution for building distributed applications as services that can be pub-
lished, discovered, and accessed over the Internet.

Tools of the Trade

Let’s take a closer look at the role of those Web services standards and tech-
nologies and how they are represented in Web services architecture and its
development process.

Simple Object Access Protocol (SOAP)
The Simple Object Access Protocol, or SOAP, plays the role of the messag-
ing protocol for exchanging information between the service provider and
the service requestor. It consists of the following:

SOAP Envelope. It describes the message, identifying the contents
and the envelope’s processing information.

SOAP Transport. It defines the bindings for the underlying transport
protocols such as HTTP and SMTP.

SOAP Encoding. It defines a set of encoding rules for mapping the
instances of the application-specific data types to XML elements.

SOAP RPC conventions. It defines the representation of the RPC
requests and responses. These SOAP requests and responses are mar-
shaled in a data type and passed in to a SOAP body.

Listing 3.1 represents a SOAP message using an HTTP post request for
sending a getBookPrice() method with <bookname> as an argument
to obtain a price of a book.

46 Chapter 3

POST /StockQuote HTTP/1.1

Host: www.acmeretailer.com

Content-Type: text/xml; charset=”utf-8”

Content-Length: 1000

SOAPAction: “getBookPrice”

<SOAP-ENV:Envelope

xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”

xmlns:xsi=”http://www.w3c.org/2001/XMLSchema-instance”

xmlns:xsd=”http://www.w3c.org/2001/XMLSchema”

SOAP-ENV:encodingStyle

=”http://schemas.xmlsoap.org/soap/encoding/”>

<SOAP-ENV:Body>

<m:getBookPrice

xmlns:m=”http://www.wiley.com/jws.book.priceList”>

<bookname xsi:type=’xsd:string’>

Developing Java Web services</bookname>

</m:getBookPrice>

/SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Listing 3.1 SOAP message using HTTP.

At the time of writing, the current version of SOAP is SOAP 1.2 with
attachments (SwA) and it is still being worked on in W3C. (For more infor-
mation on SOAP and developing Web services applications using SOAP,
refer to Chapter 4, “Developing Web Services Using SOAP.”)

Web Services Description Language (WSDL)
The Web Services Description Language, or WDDL, is an XML schema-
based specification for describing Web services as a collection of operations
and data input/output parameters as messages. WSDL also defines the
communication model with a binding mechanism to attach any transport
protocol, data format, or structure to an abstract message, operation, or
endpoint.

Listing 3.2 shows a WSDL example that describes a Web service meant
for obtaining a price of a book using a GetBookPrice operation.

<?xml version=”1.0”?>

<definitions name=”BookPrice”

targetNamespace=”http://www.wiley.com/bookprice.wsdl”

xmlns:tns=”http://www.wiley.com/bookprice.wsdl”

Listing 3.2 A WSDL document describing a Service. (continues)

Building the Web Services Architecture 47

xmlns:xsd=”http://www.w3.org/2000/10/XMLSchema”

xmlns:xsd1=”http://www.wiley.com/bookprice.xsd”

xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”

xmlns=”http://schemas.xmlsoap.org/wsdl/”>

<message name=”GetBookPriceInput”>

<part name=”bookname” element=”xsd:string”/>

</message>

<message name=”GetBookPriceOutput”>

<part name=”price” type=”xsd:float”/>

</message>

<portType name=”BookPricePortType”>

<operation name=”GetBookPrice”>

<input message=”tns:GetBookPriceInput”/>

<output message=”tns:GetBookPriceOutput”/>

</operation>

</portType>

<binding name=”BookPriceSoapBinding”

type=”tns:BookPricePortType”>

<soap:binding style=”rpc”

transport=”http://schemas.xmlsoap.org/soap/http”/>

<operation name=”GetBookPrice”>

<soap:operation

soapAction=”http://www.wiley.com/GetBookPrice”/>

<input>

<soap:body use=”encoded”

namespace=”http://www.wiley.com/bookprice”

encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”/>

</input>

<output>

<soap:body use=”encoded”

namespace=”http://www.wiley.com/bookprice”

encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”/>

</output>

</operation>>

</binding>

<service name=”WileyBookPriceService”>

<documentation>Wiley Book Price Service</documentation>

<port name=”BookPricePort”

binding=”tns:BookPriceSoapBinding”>

<soap:address

location=”http://www.wiley.com/bookprice”/>

</port>

</service>

</definitions>

Listing 3.2 A WSDL document describing a Service. (continued)

48 Chapter 3

At the time of writing, the current version of WSDL is WSDL 1.1 and it
has been discussed throughout this book. (For more information on WSDL,
refer to the section Describing Web Services Using WSDL in Chapter 5,
“Description and Discovery of Web Services.”)

Universal Description, Discovery, and Integration (UDDI)
Universal Description, Discovery, and Integration, or UDDI, defines a
mechanism to register and categorize Web services in a general-purpose
registry that users communicate to in order to discover and locate regis-
tered services. While querying a UDDI registry for a service, the WSDL
description describing the service interface will be returned. Using the
WSDL description, the developer can construct a SOAP client interface that
can communicate with the service provider.

UDDI can be implemented as a public registry to support the require-
ments of a global community or as a private registry to support an enterprise
or a private community.

At the time of this book’s writing, the current version of UDDI is UDDI
2.0 and it will be discussed throughout this book. (For more information on
UDDI, refer to Chapter 5, “Description and Discovery of Web Services.”)

ebXML
ebXML provides a standard framework for building an electronic market-
place by enabling the standardization of business processes, business part-
ner profiles, and partner agreements. In general, ebXML complements
other Web services standards like SOAP, WSDL, and UDDI.

The following are major features of ebXML:

■■ ebXML Messaging Service (MS) is a value-add over SOAP that
provides reliability and security mechanisms.

■■ ebXML BPSS enables business processes to be described.

■■ ebXML CPP/CPA is a value-add over WSDL that enables business
partner profiles and partner agreements to be described.

■■ ebXML reg/rep provides a registry and repository, while UDDI is
just a registry.

■■ ebXML Core components provide a catalogue of business process
components for the business community.

Building the Web Services Architecture 49

Although ebXML-based Web services are not in the scope of this book,
ebXML framework-based components will be discussed throughout the
book in all of the chapters where the complementing Web services
technologies are presented. For more information on ebXML, refer to the
official ebXML Web site at www.ebxml.org.

Web Services Communication Models

In Web services architecture, depending upon the functional requirements,
it is possible to implement the models with RPC-based synchronous or
messaging-based synchronous/asynchronous communication models.
These communication models need to be understood before Web services
are designed and implemented.

RPC-Based Communication Model
The RPC-based communication model defines a request/response-based
synchronous communication. When the client sends a request, the client
waits until a response is sent back from the server before continuing any
operation. Typical to implementing CORBA or RMI communication, the
RPC-based Web services are tightly coupled and are implemented with
remote objects to the client application. Figure 3.3 represents an RPC-based
communication model in Web services architecture.

The clients have the capability to provide parameters in method calls to
the Web service provider. Then, clients invoke the Web services by sending
parameter values to the Web service provider that executes the required
methods, and then sends back the return values. Additionally, using RPC-
based communication, both the service provider and requestor can register
and discover services, respectively.

Figure 3.3 RPC-based communication model in Web services.

Web Service
Requester

Web Service
Provider

REQUEST

RESPONSE

50 Chapter 3

Messaging-Based Communication Model
The messaging-based communication model defines a loosely coupled
and document-driven communication. The service requestor invoking a
messaging-based service provider does not wait for a response. Figure 3.4
represents a messaging-based communication model in Web services
architecture.

In Figure 3.4, the client service requestor invokes a messaging-based
Web service; it typically sends an entire document rather than sending a set
of parameters. The service provider receives the document, processes it,
and then may or may not return a message. Depending upon the imple-
mentation, the client can either send or receive a document asynchro-
nously to and from a messaging-based Web service, but it cannot do both
functionalities at an instant. In addition, it also is possible to implement
messaging with a synchronous communication model where the client
makes the service request to the service provider, and then waits and
receives the document from the service provider.

Adopting a communication model also depends upon the Web service
provider infrastructure and its compliant protocol for RPC and Messaging.
The current version of SOAP 1.2 and ebXML Messaging support these
communication models; it is quite important to ensure that the protocols
are compliant and supported by the Web services providers. It also is
important to satisfy other quality of services (QoS) and environmental
requirements like security, reliability, and performance.

Before jumping into the development approaches, let’s take a look at the
process steps of implementing a Web services model.

Figure 3.4 Messaging-based communication model.

Web Service
Requester

Web Service
Provider

MESSAGE

Building the Web Services Architecture 51

Implementing Web Services

The process of implementing Web services is quite similar to implementing
any distributed application using CORBA or RMI. However, in Web
services, all the components are bound dynamically only at its runtime
using standard protocols. Figure 3.5 illustrates the process highlights of
implementing Web services.

As illustrated in Figure 3.5, the basic steps of implementing Web services
are as follows:

1. The service provider creates the Web service typically as SOAP-
based service interfaces for exposed business applications. The
provider then deploys them in a service container or using a
SOAP runtime environment, and then makes them available for
invocation over a network. The service provider also describes
the Web service as a WSDL-based service description, which
defines the clients and the service container with a consistent
way of identifying the service location, operations, and its
communication model.

2. The service provider then registers the WSDL-based service
description with a service broker, which is typically a UDDI
registry.

3. The UDDI registry then stores the service description as binding
templates and URLs to WSDLs located in the service provider
environment.

4. The service requestor then locates the required services by querying
the UDDI registry. The service requestor obtains the binding infor-
mation and the URLs to identify the service provider.

5. Using the binding information, the service requestor then invokes
the service provider and then retrieves the WSDL Service descrip-
tion for those registered services. Then, the service requestor creates
a client proxy application and establishes communication with the
service provider using SOAP.

6. Finally, the service requestor communicates with the service
provider and exchanges data or messages by invoking the available
services in the service container.

52 Chapter 3

Figure 3.5 Process steps involved in implementing Web services.

In the case of an ebXML-based environment, the steps just shown are the
same, except ebXML registry and repository, ebXML Messaging, and ebXML
CPP/CPA are used instead of UDDI, SOAP, and WSDL, respectively. The
basic steps just shown also do not include the implementation of security and
quality of service (QoS) tasks. These subjects are discussed in Chapter 13,
“Web Services Security.” So far we have explored the Web services architec-
ture and technologies. Let’s now move forward to learn how to develop Web
services-enabled applications as services using the Web services architecture.

UDDI based
Registry
Services

Web Services Broker

Web Services Requester

Service Delivery

Stores service
descriptions as
binding templates
& URLs

Locates services and
its binding info

3

4 Register/Publish
services

2

Invoke &
obtain WSDL

5

Exchange data
using SOAP
RPC/Messaging

6

Create SOAP proxy interfaces
and WSDL based Service
descriptions

1

SOAP Clients

Web Services Provider

Service Container

MyWebService.xyz

SOAP Interfaces

WSDL Descriptions

Building the Web Services Architecture 53

Developing Web Services-Enabled Applications

The design and development process of creating a Web services-enabled
application is not different from the typical process of developing a dis-
tributed application. In case of Web services, it can be created as a new
application or from using an existing application by repurposing them as
services.

In a Web services implementation, it also is possible to expose existing/
legacy applications as services by encapsulating the core business func-
tionalities of those underlying applications. The underlying applications
can be of any application implemented in any programming language and
running on any platform.

Figure 3.6 represents a typical Web services implementation model
providing service-oriented interfaces supporting a variety of back-end
application environments.

The implementation steps generally involved in developing Web ser-
vices solutions by exposing back-end business applications are as follows:

1. The potential business component of the underlying application will
be encapsulated as service-oriented interfaces using SOAP and then
exposed as Web services by deploying them in a Web services service
container or a SOAP runtime environment. Using those SOAP-based
interfaces, the service container handles all the incoming SOAP
requests/responses or messaging-based operations and maps them
as methods and arguments of the underlying business application.

Figure 3.6 Exposing applications through Web services.

Invoke
Services

SOAP

Web Services
Requestor

Web Services Provider

Services Runtime
Environment

SOAP Interface
Classes

XML Descriptors

WSDL

MYWebservices.xyz

Service Delivery

SOAP
Client

Preferences

Microsoft .NET

CORBA

J2EE

54 Chapter 3

2. WSDL-based service descriptions will be generated and then reside
in a service container. WSDL defines the communication contract
required for invoking the SOAP-based service interfaces. These
WSDL-based service descriptions will be published in a UDDI reg-
istry as service templates and its location URLs. The interfaces
required for publishing in the UDDI registry are usually provided
by the Web service container provider.

3. The service requester finds the services using the discovery mecha-
nisms (registry API) and obtains the service description and its
provider location URL. It then connects to the service provider to
obtain WSDL.

4. To invoke the services exposed by the service provider, the service
requestor (service delivery environment) is required to implement
SOAP-based client interfaces according to the service description
defined in the WSDL.

The Web services container/runtime environment provider generally
provides the tools required for creating SOAP-based services interfaces
from existing applications and generating WSDL-based service descrip-
tions. Depending upon the Web services runtime environment, some
providers also include test environments for UDDI and interfaces for pub-
lishing services interfaces.

The previous steps are usually common at all levels of Web services
development, irrespective of the target application environment such as
J2EE, CORBA, Microsoft .NET, or standalone applications based on Java,
C++, Microsoft Visual Basic, and legacy applications based on, the Main-
frame environment. As a result, implementing Web services unifies J2EE,
CORBA, .NET, and other XML-based applications with interoperability
and data sharing.

Because the scope of this book is focused on developing the Web services
using the Java platform, let’s focus on the key technologies and develop-
ment processes required. We’ll begin with implementing Web services
using Java-based applications.

How to Develop Java-Based Web Services
With the overwhelming success of Java in Web and pervasive applications
running on a variety of platforms and devices, the Java platform has
become the obvious choice for enterprise architects and developers. In
addition to the Java platform, today the J2EE-based application environ-
ment also has become the preferred solution for running Web services-
based solutions.

Building the Web Services Architecture 55

TEAMFL
Y

Team-Fly®

Web services are generally driven using a Web-enabled application envi-
ronment for HTTP communication. Because of that fact, in most cases the
J2EE-based Web services environment plays a vital role as a service enabler
for deploying Java and J2EE components as Web services. In addition, the
adoption of a J2EE-based Web services environment carries one significant
advantage: the deployment of Web services interfaces by the automatic
inheritance of all the characteristics of the J2EE container-based services such
as transactions, application security, and back-end application/databases
connectivity.

Let’s take a closer look at how to build Web services implementation
using a J2EE environment.

Building Web Services in the J2EE Environment

The process of building Web services using a J2EE environment involves
exposing J2EE components such as servlets and EJBs. In addition, J2EE
applications also can access these exposed services using standard protocols.

In a typical implementation, a J2EE-based Web services model defines
another way of exposing their business components similar to Web appli-
cations and RMI/IIOP-based application connectivity and without chang-
ing the architectural model or code of the existing J2EE components. For
example, in a J2EE-based application server environment, J2EE compo-
nents can be exposed for remote access through RMI/IIOP. In the case of a
Web service provider using a J2EE environment, in addition to RMI/IIOP,
it also is possible to expose those components as a service via WSDL and
handle the exposed service by sending and receiving SOAP-based
requests/responses or messages.

Today, most Web services platform providers and J2EE application
server vendors have released their supporting toolsets for exposing the
J2EE components such as EJBs and Servlets as Web services. Typically,
these tools provide functionality to generate WSDL-based service descrip-
tions and service interface classes, which send and receive SOAP messages
based on the services defined in the WSDL.

The following steps are commonly involved in creating Web services
from a J2EE-based application component:

1. Select a Web services platform provider, which provides a consistent
platform for building and deploying Web services over the J2EE
applications.

2. Define a Web service-enabled application and its behavior.

a. Select the potential J2EE components (for example, EJBs, Servlets,
and JMS applications) that are required to be exposed as services
or are using the existing services.

56 Chapter 3

b. Choose the communication model (RPC-based synchronous or
messaging-based asynchronous) depending upon the required
behavior of the underlying components (for example, Session or
Entity EJBs using RPC-based communication or JMS applications
using messaging-based communication).

c. Ensure that the service uses only built-in/custom data types
mapping for XML and Java supported by the Web services con-
tainer. This applies only to RPC-based communication models.

3. Develop the Web service by writing the interfaces required for
accessing the exposed components (for example, EJBs, Servlets, and
JMS applications).

a. Develop the potential J2EE component (for example, EJBs,
Servlets, and JMS applications) that are required and deploy
them in a J2EE-compliant container. Ensure that the data types
used by the components are supported in the XML/Java map-
pings defined by the provider.

b. Implement the SOAP message handlers.

4. Assemble the required components into a required structure (defined
by the Web services platform provider), additionally creating the
deployment descriptors for the services (as defined by the Web ser-
vices platform provider) and package them as a deployable EAR.

a. Most Web service platform vendors provide utility tools to gener-
ate Web services components (SOAP interfaces) by introspecting
the components (especially its methods and values) and mapping
them to its supported data types.

b. Also it is important to note, the upcoming release of the J2EE 1.4
specification is expected to provide a complete J2EE-based Web
services platform and would enable the deployment of J2EE com-
ponents as Web services.

5. Deploy the Web service components in the Web services container
and make them available to its remote clients (based on the required
protocol bindings such as HTTP and SMTP).

6. Create test clients for invoking the deployed Web services.

7. Register and publish your Web service in a UDDI registry, in case
you require enabling the service available by searching public/pri-
vate UDDI registries for Web services.

These steps are common. They are based on the implementation avail-
able from most popular Web services platform vendors. Perhaps in the
future, implementation may vary, based on emerging standards.

Building the Web Services Architecture 57

J2EE and Java Web Services Developer Pack (JWSDP)

Sun Microsystems as part of its Java community process has already
released its Java API for Web Services for the developer community as the
Java Web Services Developer Pack (JWSDP). It provides a full-fledged
solution package for developing and testing Web services using the Java
APIs. In addition, leading Web services platform providers like Systinet,
CapeClear, and Mind Electric and leading J2EE vendors like BEA, IBM,
and Sun iPlanet also released their Web services capabilities, adopting a
Java platform and supporting Java APIs for Web services as per JWSDP.

JWSDP 1.0 provides a one-stop Java API solution for building Web ser-
vices using a Java platform. The key API components include the
following:

■■ Java API for XML Messaging (JAXM)

■■ Java API for XML Processing (JAXP)

■■ Java API for XML Registries (JAXR)

■■ Java API for XML Binding (JAXB)

■■ Java API for XML-Based RPC (JAX-RPC)

■■ Java WSDP Registry Server (JWSDP)

■■ Java Server Pages Standard Tag Library (JSTL)

Leading J2EE application server vendors have announced their support
to this effort and also started releasing their JWSDP API implementation.
This helps the developers to build Web services by exposing their existing
J2EE applications. The JWSDP and its API components are discussed with
examples in Part Three of this book, “Exploring Java Web Services Pack.”
At the time of writing this book, Sun Microsystems and its JCP partners are
currently working on a specification: Implementing Enterprise Web Ser-
vices (JSR 109). This specification essentially addresses how to implement
Web services in the J2EE platform defining a standard programming
model and J2EE container-based runtime architecture for implementing
Web services.

So far we have examined the Web services architecture and the concepts
of developing Java-based Web services. In the next section, let’s take a look
at how to develop Web services by exposing J2EE components deployed in
a J2EE application server.

Exposing J2EE Components as Web Services

This section explores the J2EE environment and the Web services tech-
niques available for leveraging J2EE components as Web services. The J2EE

58 Chapter 3

environment delivers platform-independent Java component-based
applications providing a multi-tiered distributed application model with
several advantages like security, scalability, administration tools, portabil-
ity between vendor implementations, and reliability of deployed applica-
tions. In general, it defines the following components residing in different
logical tiers:

■■ JavaServer Pages (JSP) and Java Servlet-based components act as
Web components running on the Web/Servlet container of the J2EE
server.

■■ Enterprise JavaBeans (EJB)-based components act as business or
persistence components running on the EJB container of the J2EE
server.

■■ JDBC (Java Database connectivity) and J2EE connector architecture-
based components act as the integration tier of the J2EE server for
integrating database applications and enterprise information systems.

The key differences between J2EE components and traditional Java
applications is that J2EE components are assembled and deployed into a
J2EE application server in compliance with the J2EE specification. These
components are managed by J2EE server system services such as synchro-
nization, multithreading, and connecting pooling. Additionally, the J2EE
server implementation also provides capabilities like clustering, transac-
tion coordination, messaging, and database connection pooling. Exposing
J2EE components as Web services provides robust Web services-based
applications by fully utilizing the potential of J2EE application server-
deployed components and standards-based communication provided by
the Web services container.

In short, developing Web services from J2EE-based applications requires
the implementation of components using J2EE component APIs (such as
EJBs and servlets), then packaging and deploying them in a J2EE container
environment as target enterprise applications. The components are then
hosted in a J2EE-compliant application server. Exposing these J2EE com-
ponents as Web services also requires a Web services container environ-
ment, which enables the creation and deployment of SOAP-based proxy
interfaces.

In a typical scenario, exposing a J2EE-based application component as
Web services involves the steps in the following list:

STEPS FOR THE SERVICE PROVIDER

1. The potential J2EE component deployed in an application server envi-
ronment will be encapsulated as a service-oriented interface using
SOAP and then deployed in a Web services runtime environment.

Building the Web Services Architecture 59

2. WSDL-based service descriptions are generated and then reside in
the services runtime environment. The service requestor clients cre-
ate SOAP-based client interfaces using the WSDL-based descriptions.

3. Using registry APIs, WSDLs are used for publishing the services in a
public/private UDDI registry.

STEPS FOR THE SERVICE REQUESTOR

1. The service requestor clients create SOAP-based client interfaces
using the WSDL-based descriptions exposed by the service provider.

2. The service requestor may choose to use any language for imple-
menting the client interfaces, but it must support the use of SOAP
for communication.

3. These client interfaces then are used to invoke the service provider-
deployed services.

At this time of writing, most J2EE application server vendors are devel-
oping their Web services runtime environment as a service container for a
J2EE environment; most of them have already made their beta available.
The upcoming release of J2EE 1.4 and EJB 2.1 specifications focuses on Web
services.

Now, let’s take a look at the full-featured implementation of a real-world
example of exposing J2EE components as Web services.

Developing Web Services Using J2EE: An Example
Before we start, let’s take a look at the background of this example illustra-
tion that is based on a fictitious company named ACME Web Services
Company. In this example, we will be implementing the J2EE components
using a J2EE application server and will expose them as service interfaces
using its service container for the service provider. We also will build the
client invocation interfaces using a SOAP provider.

The ACME Web Services Company is a Web-based services provider
that sells computer products by delivering XML-based data over the Inter-
net as Web services to its partners and resellers by exposing its business
functions. The functions exposed by the service provider are as follows:

■■ Catalog of computer system products to retail sellers

■■ Product specific information

■■ Selling computer systems and products to resellers

60 Chapter 3

The service requesters are partners and resellers who use ACME Web
services to obtain catalogs and product information, place orders, obtain
invoices, and the like. The service requesters use their own application
environment and do SOAP-based service invocation with ACME Web ser-
vices (see Figure 3.7).

To build and deploy ACME Web services, we chose to use the following
infrastructure solutions:

SERVICE PROVIDER SIDE FEATURES

■■ The ACME Web services provider will use BEA WebLogic 7.0 as its
J2EE application server and its Web services runtime environment/
container.

■■ BEA WebLogic 7.0 is a J2EE 1.3-compliant application server with
capabilities that enable the creation, assembly, and deployment of
Web services from the existing J2EE components. WebLogic Server
provides early access implementation of Sun JAX-RPC API that
enables the building of RPC-style Web services. It also includes
WebLogic Workshop—a development environment (IDE) for devel-
oping and testing Web services. The BEA WebLogic 7.0 server is
available for download as an evaluation copy for developers at
www.bea.com.

Figure 3.7 Developing Web services using a J2EE environment.

Apache Axis 1.0 BEA Weblogic 7.0

SOAP
Runtime
Environment

SOAP Clients Web Services

Invoke
services

Web
Applications

Web services
Runtime Env.

EJB
Container

Web
Container

Database

Building the Web Services Architecture 61

■■ WebLogic 7.0 provides servicegen, a SOAP and WSDL generation
utility that enables the creation of SOAP-based service-oriented
interfaces from J2EE components. It also provides a client generator
utility, clientgen, which enables the creation of Java-based clients
to invoke Web services. Additionally, it also provides serializer and
deserializer classes, which convert XML to Java representations of
data, and vice-versa.

■■ The ACME Web services provider also uses JAXP-compliant XML
parser and PointBase as its database for storing and querying
information. JAXP and PointBase also are available as part of the
BEA WebLogic bundle and no separate download is required. The
PointBase database also can be used as an evaluation copy for
development purposes. For more information on understanding
the PointBase database, refer to the documentation available at
www.pointbase.com.

SERVICE REQUESTOR SIDE FEATURES

■■ Apache Axis 1.0B3 is a SOAP 1.1-compliant implementation with
capabilities to enable Java-based SOAP services to be created, assem-
bled, and deployed. More importantly, it also provides a utility for
automatic WSDL generation from deployed services and a WSDL2
Java tool for building Java proxies and skeletons from WSDL
obtained from service providers.

■■ The service requestor will use Apache Axis 1.0B3 as its SOAP client
environment to invoke the services of an ACME Web services
provider.

■■ Apache Axis is an open-source effort from Apache and is available
as a free download from http://xml.apache.org/axis/index.html.

To build and deploy the J2EE components and SOAP interfaces, we cre-
ate XML-based build scripts using Apache Ant. Apache Ant is a Java-based
Makefile utility available as a free download at http://jakarta.apache.org
/ant/index.html.

Developing the ACME Web Services Provider

The following tasks are commonly involved in building the complete
ACME Web services provider in the BEA WebLogic 7.0 environment:

1. Design the business application understanding the problem, then
layout the sequence of events, choose the appropriate design pat-
tern, and then create the conceptual class model for implementation.

62 Chapter 3

2. Install and set up the WebLogic-based J2EE development environ-
ment, including the required class libraries in the Java compiler
class path.

3. Create the database tables required for the applications.

4. Implement the J2EE components and the required DAO (Data access
objects), XML helper classes, and database tables, and so on.

5. Build and test the J2EE component and other classes.

6. Generate the SOAP-based service-oriented interfaces and WSDL-
based service descriptions using WebLogic <servicegen> and
<clientgen> utilities.

7. Assemble and deploy components as Web services in the WebLogic
server.

8. Create test clients and test the environment.

To test this example, you may download the chapter-specific source code
and documentation available at this book’s companion Web site at www.
wiley.com/compbooks/nagappan. The source code and README for
installing and running this example are available as part of chapter-3.zip.

Let’s walk through the previous process with more details and demon-
strations.

Designing the Application

As mentioned, the ACME Web services provider will host its product cata-
log application as Web services over the Internet by exposing its associated
J2EE components. In particular, we will be looking at the following busi-
ness functions:

■■ Getting the complete product catalog listing from the ACME prod-
uct database

■■ Getting product details for the given product identifier

To understand the problem and flow of events, look at Figure 3.8. This
sequence diagram further illustrates the various sequences of actions per-
formed by a client invoking the ACME Web services and in the WebLogic
server.

Based on the previous sequence of events, we choose to use a façade pat-
tern by having a session bean act as a proxy by encapsulating the interac-
tions between the business service components such as AcmeXMLHelper
and AcmeDAO. AcmeXMLhelper will handle all the XML construction and
AcmeDAOwill do the database interaction. To find out more information on
J2EE design patterns and best practices, refer to the Sun Java site URL at
http://java.sun.com/blueprints/patterns/j2ee_patterns/catalog.html.

Building the Web Services Architecture 63

Figure 3.8 Sequence diagram illustrating flow of events.

Figure 3.9 depicts the class diagram of the J2EE components to support
the ACME Web services provider.

Now let’s take a look at how to set up the development environment and
implementation of those J2EE components.

Figure 3.9 Class diagram for the J2EE components.

<<<SessionEJB>>>
AcmeSession

AcmeXMLHelper
uses uses

obtains creates

encapsulates

Product

AcmeDAO

AcmeDAOlmpl AcmeDataSource

ACME
WebServiceClient

ACME
BusinessSession EJB

ACME
XMLHelper

ACME
ValueObject

ACME
Database

ACME
DAO Helper

Request for ACME
Product Data

Response ACME
product data
as XML String

Call business methods
for product information

Return Product
data as String

Return data
as XML String

Call DAO
helper to get
product data
from database

Return data
as ACME
value objects

ACME
WebServices

Return ACME product data

Create ACME
product
value object

ReturnACME
product value
object

Query ACME product tables

Call XML helper
for product data

64 Chapter 3

Setting Up the Development Environment

Ensure that all of the JDK classes, WebLogic libraries (Jars), and database
drivers are available in the CLASSPATH. Also ensure that the JDK,
WebLogic, and PointBase (database) bin directories are available in the sys-
tem PATH. To test, start the WebLogic server and ensure that the database
server also is started.

Creating the ACME Database Tables

Ensure that all of the JDK, WebLogic libraries (Weblogic JARs), and data-
base drivers are available in the CLASSPATH. Also ensure that the JDK,
WebLogic, and PointBase (database) bin directories are available in the sys-
tem PATH.

1. Create a WebLogic JDBC DataSource with JNDI name JWSPool-
DataSource to provide access to database connection pools required
for connecting the PointBase database. This can be accomplished by
using a WebLogic console or by editing the config.xml file.

2. Use the WebLogic Server Console (for example, http://localhost7001/
console), navigate to JDBC > Tx Data Sources, create a data
source using JNDI name JWSPoolDataSource. The data source
should have the following attributes:
JNDI Name: JWSPoolDataSource

Pool Name: JWSPool

Targets-Server (on the Targets tab:) myserver

3. Then navigate to JDBC > Connection Pools and create a con-
nection pool named JWSPool with the following attributes (in case
of PointBase):
URL: jdbc:pointbase:server://localhost/demo

Driver Classname:com.pointbase.jdbc.jdbcUniversalDriver

Properties: user=public

Password: (hidden)

Targets-Server (on the Targets tab): myserver

4. Restart the WebLogic server and ensure that the database server has
been started. The WebLogic server config.xml should look like
the following:
<JDBCConnectionPool

DriverName=”com.pointbase.jdbc.jdbcUniversalDriver”

Name=”JWSPool” Password=”yourchoice”

Properties=”user=public” Targets=”myserver”

URL=”jdbc:pointbase:server://localhost/demo”/>

<JDBCTxDataSource JNDIName=”JWSPoolDataSource”

Name=”JWSPoolDataSource” PoolName=”JWSPool”

Targets=”myserver”/>

Building the Web Services Architecture 65

TEAMFL
Y

Team-Fly®

Table 3.1 Database Table Parameters

COLUMN NAME COLUMN DATA TYPE

ITEM_NUM INT

ITEM_NAME VARCHAR(30)

ITEM_DESC VARCHAR(255)

ITEM_PRICE DOUBLE

CURRENCY VARCHAR(3)

With these steps, the WebLogic data source and database server are
ready for use.

1. Now let’s create the database table product_catalog required for
the ACME product catalog. We use the table parameters shown in
Table 3.1.

2. To create the product_catalog table and to populate the data,
you may choose to use the Java code CreateACMETables.java
(see Listing 3.3).

// CreateACMETables.java

package jws.ch3.db;

import java.sql.*;

import java.util.*;

import javax.naming.*;

public class CreateACMETables {

public static void main(String argv[])

throws Exception {

java.sql.Connection conn = null;

java.sql.Statement stmt = null;

try {

// === Make connection to database ==============

// Obtain a Datasource connection from JNDI tree.

Context ctx = null;

// Put connection properties in to a hashtable.

Listing 3.3 CreateACMETables.java.

66 Chapter 3

Hashtable ht = new Hashtable();

ht.put(Context.INITIAL_CONTEXT_FACTORY,

“weblogic.jndi.WLInitialContextFactory”);

ht.put(Context.PROVIDER_URL, “t3://localhost:7001”);

// Get a context for the JNDI look up

ctx = new InitialContext(ht);

javax.sql.DataSource ds

= (javax.sql.DataSource)

ctx.lookup (“JWSPoolDataSource”);

conn = ds.getConnection();

System.out.println(“Making connection...\n”);

// execute SQL statements.

stmt = conn.createStatement();

try {

stmt.execute(“drop table product_catalog”);

System.out.println(“Table

product_catalog dropped.”);

} catch (SQLException e) {

System.out.println(“Table product_catalog

doesn’t need to be dropped.”);

}

stmt.execute(“create table product_catalog

(item_num int, item_name

varchar(30), item_desc varchar(255),

item_price double,

currency varchar(3))”);

System.out.println(“Table product_catalog created.”);

int numrows = stmt.executeUpdate(“insert into

product_catalog values (1001,

‘ACME Blade 1000’, ‘Ultra Sparc III

Processor, 1Ghz, 512MB, 42GB HD,

Linux’, 1000.00, ‘USD’)”);

System.out.println(“Number of rows inserted = “

+ numrows);

numrows = stmt.executeUpdate(“insert into

product_catalog values (1002,

‘ACME Blade 2000’, ‘Sparc III

Processor, 1.3Ghz x2, 512MB, 42GB HD,

Solaris’, 3000.00, ‘USD’)”);

System.out.println(“Number of rows inserted = “

Listing 3.3 CreateACMETables.java. (continues)

Building the Web Services Architecture 67

+ numrows);

numrows = stmt.executeUpdate(“insert into

product_catalog values (1003, ‘ACME Server

e7000’, ‘Sparc III Processor, 1.3Ghz x12,

1GB, 1TB HD, Solaris’, 75000.00,

‘USD’)”);

System.out.println(“Number of rows inserted = “

+ numrows);

stmt.execute(“select * from product_catalog”);

ResultSet rs = stmt.getResultSet();

System.out.println(“Querying data ...”);

while (rs.next()) {

System.out.println(“Product No:

“ + rs.getString(“item_num”)

+ “ Product Name: “

+ rs.getString(“item_name”)

+ “ Product Desc: “

+ rs.getString(“item_desc”)

+ “ Price: “ + rs.getString(“item_price”)

+ “ Currency: “ + rs.getString(“currency”));

}

} catch (Exception e) {

System.out.println(“Exception was thrown: “

+ e.getMessage());

} finally {

try {

if (stmt != null)

stmt.close();

if (conn != null)

conn.close();

} catch (SQLException sqle) {

System.out.println(“SQLException

during close(): “

+ sqle.getMessage());

}

}

}

}

Listing 3.3 CreateACMETables.java. (continued)

68 Chapter 3

To compile and run the previous classes, ensure that the WebLogic JAR
and PointBase drivers are available in the CLASSPATH. Then navigate to
the source directory and run the Ant build script (build.xml). The
build.xml file for compiling and testing the previous classes is shown in
Listing 3.4.

<project name=”acme_tables” default=”all” basedir=”.”>

<property file=”../../../../mydomain.properties”/>

<property name=”build.compiler” value=”${JAVAC}”/>

<!-- set global properties for this build -->

<property name=”source” value=”.”/>

<target name=”all” depends=”compile”/>

<!-- Compile ‘CreateACMETables’ class into

the clientclasses directory -->

<target name=”compile”>

<javac srcdir=”${source}”

destdir=”${CLIENT_CLASSES}”

includes=”CreateACMETables.java” />

</target>

<!-- Run the ACME Tables Creation -->

<target name=”run”>

<java classname=”jws.ch3.db.CreateACMETables”

fork=”yes” failonerror=”true”>

<classpath>

<pathelement path=”${CLASSPATH}”/>

</classpath>

</java>

</target>

</project>

Listing 3.4 Ant script for creating ACME business tables.

Run the Ant utility in the source directory. The compiled classes will be
saved in the respective destinations defined in the build.xml file.

Now, to execute the CreateACMETables, you may execute the Ant
utility with run as an argument. The successful execution of the program
creates the product_catalog tables in the PointBase database and
inserts Product records in to the table.

If everything works successfully, you will get the output shown in
Figure 3.10.

Building the Web Services Architecture 69

Figure 3.10 Output showing creation of ACME business tables.

Implementing the J2EE Components

Based on the class diagram, the J2EE components required for implement-
ing the ACME Web service are as follows:

AcmeDAO A DAO class enables access to the data source and abstracts
the underlying data access implementation for the product catalog
business clients.

AcmeXMLHelper This class gathers the data and constructs an XML
document as a string for use by the business clients (AcmeSession-
Bean).

AcmeSessionBean This acts as a proxy by encapsulating the interac-
tions with back-end service components.

Building the DAO Classes

To implement the AcmeDAO, we need to define the AcmeDAO as an interface
class and AcmeDAOImpl implements the AcmeDAO. The source code
implementation for the AcmeDAO interface is shown in Listing 3.5.

70 Chapter 3

// AcmeDAO.java

package jws.ch3.dao;

import java.util.Collection;

import jws.ch3.exceptions.AcmeDAOException;

import jws.ch3.model.Product;

/**

* AcmeDAO.java is an interface and it is

* implemented by AcmeDAOImpl.java

*/

public interface AcmeDAO {

public Product getProduct(int productID)

throws AcmeDAOException;

public Iterator getProductCatalog()

throws AcmeDAOException;

}

Listing 3.5 AcmeDAO.java.

The source code implementation for AcmeDAOImpl.java is shown in
Listing 3.6.

// AcmeDAOImpl.java

package jws.ch3.dao;

import java.sql.Connection;

import java.sql.ResultSet;

import java.sql.SQLException;

import java.sql.Statement;

import java.sql.PreparedStatement;

import java.util.*;

import javax.naming.Context;

import javax.naming.InitialContext;

Listing 3.6 AcmeDAOImpl.java. (continues)

Building the Web Services Architecture 71

import javax.sql.DataSource;

import javax.naming.NamingException;

import jws.ch3.model.Product;

import jws.ch3.exceptions.AcmeDAOException;

/**

* This class implements AcmeDAO for PointBase DBs.

* This class encapsulates all the SQL calls

* and maps the relational data stored in the database

*/

public class AcmeDAOImpl implements AcmeDAO {

// data access methods

protected static DataSource getDataSource()

throws AcmeDAOException {

try {

// ======= Make connection to database ======

// Obtain Datasource connection from JNDI tree.

Context ctx = null;

// Put connection properties in a hashtable.

Hashtable ht = new Hashtable();

ht.put(Context.INITIAL_CONTEXT_FACTORY,

“weblogic.jndi.WLInitialContextFactory”);

ht.put(Context.PROVIDER_URL,

“t3://localhost:7001”);

// Get a context for the JNDI look up

ctx = new InitialContext(ht);

javax.sql.DataSource ds

= (javax.sql.DataSource)

ctx.lookup (“JWSPoolDataSource”);

return ds;

}

catch (NamingException ne) {

throw new AcmeDAOException

(“NamingException while looking up

DB context : “+ ne.getMessage());

}

}

Listing 3.6 AcmeDAOImpl.java.

72 Chapter 3

// Business methods

public Product getProduct(int productID)

throws AcmeDAOException {

Connection c = null;

PreparedStatement ps = null;

ResultSet rs = null;

Product ret = null;

try {

c = getDataSource().getConnection();

ps = c.prepareStatement(“select item_num,

item_name, item_desc, item_price,

currency “

+ “from product_catalog “

+ “where item_num = ? “,

ResultSet.TYPE_SCROLL_INSENSITIVE,

ResultSet.CONCUR_READ_ONLY);

ps.setInt(1, productID);

rs = ps.executeQuery();

if (rs.first()) {

ret = new Product(rs.getInt(1),

rs.getString(2),

rs.getString(3),

rs.getDouble(4),

rs.getString(5));

}

rs.close();

ps.close();

c.close();

return ret;

}

catch (SQLException se) {

throw new AcmeDAOException(“

SQLException: “ + se.getMessage());

}

}

public Iterator getProductCatalog()

throws AcmeDAOException {

Connection c = null;

PreparedStatement ps = null;

ResultSet rs = null;

Product prod = null;

Listing 3.6 AcmeDAOImpl.java. (continues)

Building the Web Services Architecture 73

try {

c = getDataSource().getConnection();

ps = c.prepareStatement(“select

item_num, item_name, item_desc,

item_price, currency “

+ “from product_catalog “,

ResultSet.TYPE_SCROLL_INSENSITIVE,

ResultSet.CONCUR_READ_ONLY);

rs = ps.executeQuery();

ArrayList prodList = new ArrayList();

while (rs.next()) {

prod = new Product(rs.getInt(1),

rs.getString(2),

rs.getString(3),

rs.getDouble(4),

rs.getString(5));

prodList.add(prod);

}

rs.close();

ps.close();

c.close();

return prodList.iterator();

}

catch (SQLException se) {

throw new AcmeDAOException(“

SQLException: “

+ se.getMessage());

}

}

public static void main(String[] arg) {

AcmeDAOImpl adi = new AcmeDAOImpl();

Product prod = adi.getProduct(1001);

prod.print();

Iterator itr = adi.getProductCatalog();

while(itr.hasNext())

{

Product p = (Product)itr.next();

p.print();

}

}

}

Listing 3.6 AcmeDAOImpl.java.

74 Chapter 3

We also need to implement the value object Product and exception
classes for the AcmeDAO and the source code for the value object
Product.java. The implementation is shown in Listing 3.7.

// Product.java

package jws.ch3.model;

import java.util.*;

import java.io.*;

/**

* This class acts as the value object for Product

* and it defines the accessor methods

*/

public class Product {

private int productID;

private String productName;

private String productDesc;

private double productPrice;

private String currency;

public Product(int prodID, String prodName,

String prodDesc, double prodPrice, String curr) {

productID = prodID;

productName = prodName;

productDesc = prodDesc;

productPrice = prodPrice;

currency = curr;

}

public int getProductID() {

return productID;

}

public String getProductName() {

return productName;

}

public String getProductDesc() {

return productDesc;

}

Listing 3.7 Product.java. (continues)

Building the Web Services Architecture 75

TEAMFL
Y

Team-Fly®

public double getProductPrice() {

return productPrice;

}

public String getCurrency() {

return currency;

}

public void setProductID(int aProductID) {

productID=aProductID;

}

public void setProductName(String aProductName) {

productName=aProductName;

}

public void setProductDesc(String aProductDesc) {

productDesc=aProductDesc;

}

public void setProductPrice(double aProductPrice) {

productPrice=aProductPrice;

}

public void setCurrency(String aCurrency) {

currency=aCurrency;

}

public void print() {

System.out.println(productID);

System.out.println(productName);

System.out.println(productDesc);

System.out.println(productPrice);

System.out.println(currency);

}

}

Listing 3.7 Product.java. (continued)

And the source code for the DAO Exceptions AcmeDAOException.java
is shown in Listing 3.8.

// AcmeDAOException.java

package jws.ch3.exceptions;

Listing 3.8 AcmeDAOException.java.

76 Chapter 3

/**

* AcmeDAOException is an exception that extends the standard

* RunTimeException Exception. This is thrown by the DAOs

* of the catalog

* component when there is some irrecoverable error

* (like SQLException)

*/

public class AcmeDAOException extends RuntimeException {

public AcmeDAOException (String str) {

super(str);

}

public AcmeDAOException () {

super();

}

}

Listing 3.8 AcmeDAOException.java. (continued)

To compile and run the previous classes, ensure that the WebLogic JAR
and PointBase drivers are available in the CLASSPATH. Then navigate to
the source directory and run the Ant build script (build.xml). The
build.xml for compiling and testing the previous classes is shown in
Listing 3.9.

<project name=”acme_dao” default=”all” basedir=”.”>

<property file=”../../../../mydomain.properties”/>

<property name=”build.compiler” value=”${JAVAC}”/>

<!-- set global properties for this build -->

<property name=”source” value=”.”/>

<target name=”all” depends=”compile”/>

<!-- Compile DAO class into the serverclasses directory -->

<target name=”compile”>

<javac srcdir=”${source}”

destdir=”${SERVER_CLASSES}”

includes=”AcmeDAO.java, AcmeDAOImpl.java”

/>

</target>

Listing 3.9 Ant build script for ACME DAO classes. (continues)

Building the Web Services Architecture 77

<!-- Run ACME DAO Test -->

<target name=”run”>

<java classname=”jws.ch3.dao.AcmeDAOImpl”

fork=”yes” failonerror=”true”>

<classpath>

<pathelement path=”${CLASSPATH}”/>

</classpath>

</java>

</target>

</project>

Listing 3.9 Ant build script for ACME DAO classes. (continued)

Now to execute the AcmeDAO classes, you may execute the Ant utility
with run as an argument. The successful execution of the program queries
the product_catalog tables from the PointBase database and inserts
Product records in to the table.

If everything works successfully, you will get the output shown in
Figure 3.11.

Figure 3.11 Output showing execution of the ACME DAO classes.

78 Chapter 3

Building the XML Helper Classes

To implement the AcmeXMLHelper classes, we need to define the XML
elements as constants in an AcmeConsts class, and the AcmeXMLHelper
is the class implementation that provides methods for constructing XML
mapping for the DAO data objects.

The source code for AcmeConsts.java is shown in Listing 3.10.

//AcmeConsts.java

package jws.ch3.xmlhelper;

public class AcmeConsts {

public static final String ProductCatalog=”ProductCatalog”;

public static final String LineItem=”LineItem”;

public static final String ItemNumber=”ItemNumber”;

public static final String ItemName=”ItemName”;

public static final String ItemDesc=”ItemDesc”;

public static final String ItemPrice=”ItemPrice”;

public static final String Currency=”Currency”;

}

Listing 3.10 AcmeConsts.java.

The source code for the AcmeXMLHelper.java is shown in Listing 3.11.

// AcmeXMLHelper.java

package jws.ch3.xmlhelper;

import java.io.*;

import java.util.*;

import org.w3c.dom.*;

import javax.xml.parsers.*;

import javax.xml.transform.*;

import javax.xml.transform.stream.*;

import javax.xml.transform.dom.DOMSource;

import jws.ch3.model.Product;

import jws.ch3.dao.*;

/**

Listing 3.11 AcmeXMLHelper.java. (continues)

Building the Web Services Architecture 79

* XML & XML String object mapping the DAO methods

*/

public class AcmeXMLHelper {

private Document doc;

private Element root;

// Helper methods

// Create the XML document

private void createXMLDocument(String rootTagName) {

DocumentBuilderFactory factory =

DocumentBuilderFactory.newInstance();

try {

factory.setNamespaceAware(true);

DocumentBuilder builder = factory.newDocumentBuilder();

doc = builder.newDocument();

root = doc.createElementNS(“ProductCatalog.xsd”,

rootTagName);

doc.appendChild(root);

} catch (ParserConfigurationException e) {

e.printStackTrace();

}

}

// Create the ProductCatalog XML document

private void createProductCatalogXML() {

createXMLDocument(AcmeConsts.ProductCatalog);

AcmeDAOImpl adi = new AcmeDAOImpl();

Iterator itr = adi.getProductCatalog();

while (itr.hasNext()) {

Product p = (Product)itr.next();

createLineItemNode(root, p);

}

}

// Create the Product XML document

private void createProductXML(int productID) {

createXMLDocument(AcmeConsts.ProductCatalog);

AcmeDAOImpl adi = new AcmeDAOImpl();

Product prod = adi.getProduct(productID);

createLineItemNode(root, prod);

}

Listing 3.11 AcmeXMLHelper.java.

80 Chapter 3

// Method to obtain Product Catalog as XML

public Document getProductCatalogDocument() {

createProductCatalogXML();

return doc;

}

// Method to obtain Product Catalog XML as String

public String getProductCatalogXMLasString()

throws TransformerException{

createProductCatalogXML();

return transformDOMtoString(doc);

}

// Method to obtain Product as XML

public Document getProductDocument(int productID) {

createProductXML(productID);

return doc;

}

// Method to obtain Product XML as String

public String getProductXMLasString(int productID)

throws TransformerException{

createProductXML(productID);

return transformDOMtoString(doc);

}

// Method to convert XML document as String

private String transformDOMtoString(Document xDoc)

throws TransformerException {

try{

// Use a Transformer for String output

TransformerFactory tFactory

= TransformerFactory.newInstance();

Transformer transformer =

tFactory.newTransformer();

DOMSource source = new DOMSource(xDoc);

StringWriter sw = new StringWriter();

transformer.transform(source,

new StreamResult(sw));

return sw.toString();

} catch (TransformerConfigurationException tce) {

Listing 3.11 AcmeXMLHelper.java. (continues)

Building the Web Services Architecture 81

throw new TransformerException(

tce.getMessageAndLocation());

} catch (TransformerException te) {

throw new TransformerException(

te.getMessageAndLocation());

}

}

// Methods to create Product XML adding the Line items

private void createLineItemNode(Node parent, Product p) {

try {

Element liElem =

doc.createElement(AcmeConsts.LineItem);

parent.appendChild(liElem);

//Make <ItemNumber> element and add it

Element elem =

doc.createElement(AcmeConsts.ItemNumber);

elem.appendChild(doc.createTextNode(

String.valueOf(p.getProductID())));

liElem.appendChild(elem);

// Make <ItemName> element and add it

elem = doc.createElement(AcmeConsts.ItemName);

elem.appendChild(doc.createTextNode(

p.getProductName()));

liElem.appendChild(elem);

// Make <ItemDesc> element and add it

elem = doc.createElement(AcmeConsts.ItemDesc);

elem.appendChild(doc.createTextNode(

p.getProductDesc()));

liElem.appendChild(elem);

// Make <ItemPrice> element and add it

elem =

doc.createElement(AcmeConsts.ItemPrice);

elem.appendChild(doc.createTextNode (

String.valueOf(p.getProductPrice())));

liElem.appendChild(elem);

// Make <Currency> element and add it

elem = doc.createElement(AcmeConsts.Currency);

elem.appendChild(doc.createTextNode(

p.getCurrency()));

liElem.appendChild(elem);

Listing 3.11 AcmeXMLHelper.java.

82 Chapter 3

} catch (Exception e) {

e.printStackTrace();

}

}

// Main method for testing

public static void main(String[] arg) {

try {

AcmeXMLHelper ax = new AcmeXMLHelper();

System.out.println(ax.getProductCatalogXMLasString());

System.out.println(“--------------------------”);

System.out.println(ax.getProductXMLasString(1001));

} catch (Exception e) {

e.printStackTrace();

}

}

}

Listing 3.11 AcmeXMLHelper.java. (continued)

To compile and run the AcmeXMLHelper classes, ensure that the
WebLogic JARs (includes a JAXP compliant XML parser) are available in
the CLASSPATH. Then navigate to the source directory and run the Ant
build script (build.xml). The build.xml for compiling and testing the
AcmeXMLHelper classes is shown in Listing 3.12.

<project name=”acme_xmlhelper” default=”all” basedir=”.”>

<property file=”../../../../mydomain.properties”/>

<property name=”build.compiler” value=”${JAVAC}”/>

<!-- set global properties for this build -->

<property name=”source” value=”.”/>

<target name=”all” depends=”compile”/>

<!-- Compile ACME XML helper classes In serverclasses dir -->

<target name=”compile”>

<javac srcdir=”${source}”

destdir=”${SERVER_CLASSES}”

includes=”AcmeXMLHelper.java, AcmeConsts.java”

/>

</target>

Listing 3.12 build.xml for compiling and testing the AcmeXMLHelper classes. (continues)

Building the Web Services Architecture 83

<!-- Run ACME XML Helper Test -->

<target name=”run”>

<java classname=”jws.ch3.xmlhelper.AcmeXMLHelper”

fork=”yes” failonerror=”true”>

<classpath>

<pathelement path=”${CLASSPATH}”/>

</classpath>

</java>

</target>

</project>

Listing 3.12 build.xml for compiling and testing the AcmeXMLHelper classes. (continued)

Now to execute the AcmeXMLHelper classes, you may execute the Ant
utility with run as an argument. The successful execution of the program
queries the ‘product_catalog tables from the PointBase database and
inserts Product records in to the table.

If everything works successfully, you will get the output shown in
Figure 3.12.

Figure 3.12 Testing the ACME XML helper Classes.

84 Chapter 3

Building the Session Bean

Finally, we need to implement the stateless session bean to act as the session
façade for all of the business service classes. Like any other EJB, it contains
the home interface AcmeSessionHome, a remote interface AcmeSession,
and the bean implementation class AcmeSessionBean.

The AcmeSessionHome interface simply defines a create() method
to return a reference to the AcmeSession remote interface. The source
code for the AcmeSessionHome interface is shown in Listing 3.13.

//AcmeSessionHome.java

package jws.ch3.ejb;

import javax.ejb.CreateException;

import java.rmi.RemoteException;

import javax.ejb.EJBHome;

/** The Home interface for Acme Session Bean*/

public interface AcmeSessionHome extends EJBHome {

public AcmeSession create() throws CreateException,

RemoteException;

}

Listing 3.13 AcmeSessionHome.java.

AcmeSession defines the remote interface for the Acme Web service
with two business methods. The source code for the AcmeSession inter-
face is shown in Listing 3.14.

//AcmeSession.java

package jws.ch3.ejb;

import java.rmi.RemoteException;

import javax.ejb.EJBObject;

/**

* This is the remote interface for the ACME Session EJB.

Listing 3.14 AcmeSession.java. (continues)

Building the Web Services Architecture 85

TEAMFL
Y

Team-Fly®

* It provides a session facade as an ejb-tier implementation

* for all ACME functions

*/

public interface AcmeSession extends EJBObject {

public String getProductCatalog() throws RemoteException;

public String getProduct(int productID)

throws RemoteException;

}

Listing 3.14 AcmeSession.java. (continued)

And finally the bean class AcmeSessionBean.java implementing the
business methods is defined by the remote interface. The source code for
the AcmeSessionBean class is shown in Listing 3.15.

// AcmeSessionBean.java

package jws.ch3.ejb;

import javax.ejb.SessionBean;

import javax.ejb.SessionContext;

import javax.ejb.EJBException;

import javax.naming.InitialContext;

import javax.naming.NamingException;

import jws.ch3.xmlhelper.AcmeXMLHelper;

/**

* Session Bean implementation for ACME business methods

* - Acts as a Session Facade which encapsulates the

* ACME XML Helper and DAO

*/

public class AcmeSessionBean implements SessionBean {

private static final boolean VERBOSE = true;

private SessionContext ctx;

public void ejbCreate() {

tracelog (“AcmeSessionBean: ejbCreate called”);

}

Listing 3.15 AcmeSessionBean.java.

86 Chapter 3

public void ejbActivate() {

tracelog(“AcmeSessionBean: ejbActivate called”);

}

public void ejbRemove() {

tracelog(“AcmeSessionBean: ejbRemove called”);

}

public void ejbPassivate() {

tracelog(“AcmeSessionBean: ejbPassivate called”);

}

public void setSessionContext(SessionContext ctx) {

tracelog(“AcmeSessionBean: setSessionContext called”);

this.ctx = ctx;

}

// Returns Product as XML based String

public String getProduct(int productID) {

try {

AcmeXMLHelper axh = new AcmeXMLHelper();

tracelog(“getProduct called”);

return axh.getProductXMLasString(productID);

} catch (Exception e) {

throw new EJBException(e.getMessage());

}

}

// Returns ProductCatalog as an XML String

public String getProductCatalog() {

try {

AcmeXMLHelper axh = new AcmeXMLHelper();

tracelog(“getProductCatalog called”);

return axh.getProductCatalogXMLasString();

} catch (Exception se) {

throw new EJBException(se.getMessage());

}

}

// Logging the EJB Calls

private void tracelog(String ts) {

if (VERBOSE) System.out.println(ts);

}

}

Listing 3.15 AcmeSessionBean.java. (continued)

Building the Web Services Architecture 87

Now let’s create the deployment descriptors for the EJB such as
ejb-jar.xml and weblogic-ejb-jar.xml to define its internal
dependencies and the assembly information. We will use the EJB name as
ACMEWebService and its JNDI name as jws-ch3-statelessejb-
AcmeSessionHome.

The deployment descriptor ejb-jar.xml is shown in Listing 3.16.

<?xml version=”1.0”?>

<!DOCTYPE ejb-jar PUBLIC

‘-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 2.0//EN’

‘http://java.sun.com/dtd/ejb-jar_2_0.dtd’>

<ejb-jar>

<enterprise-beans>

<session>

<ejb-name>ACMEWebservice</ejb-name>

<home>jws.ch3.ejb.AcmeSessionHome</home>

<remote>jws.ch3.ejb.AcmeSession</remote>

<ejb-class>jws.ch3.ejb.AcmeSessionBean</ejb-class>

<session-type>Stateless</session-type>

<transaction-type>Container</transaction-type>

</session>

</enterprise-beans>

<assembly-descriptor>

<container-transaction>

<method>

<ejb-name>ACMEWebservice</ejb-name>

<method-name>*</method-name>

</method>

<trans-attribute>Required</trans-attribute>

</container-transaction>

</assembly-descriptor>

</ejb-jar>

Listing 3.16 Deployment descriptor for AcmeSessionBean (ejb-jar.xml).

The WebLogic-specific deployment descriptor webLogic-ejb-
jar.xml is shown in Listing 3.17.

<?xml version=”1.0”?>

<!DOCTYPE WebLogic-ejb-jar PUBLIC

‘-//BEA Systems, Inc.//DTD WebLogic 7.0.0 EJB//EN’

‘http://www.bea.com/servers/wls700/dtd/Weblogic700-ejb-jar.dtd’>

Listing 3.17 WebLogic-specific deployment descriptor webLogic-ejb-jar.xml.

88 Chapter 3

<weblogic-ejb-jar>

<weblogic-enterprise-bean>

<ejb-name>ACMEWebservice</ejb-name>

<jndi-name>jws-ch3-statelessejb-AcmeSessionHome</jndi-name>

</weblogic-enterprise-bean>

</weblogic-ejb-jar>

Listing 3.17 WebLogic-specific deployment descriptor webLogic-ejb-jar.xml.
(continued)

To compile the EJB, we need to create the Ant build script (build.xml).
The build.xml for compiling, assembling, and deploying the EJB is
shown in Listing 3.18.

<project name=”ejb-build” default=”all” basedir=”.”>

<!-- set global properties for this build -->

<property environment=”env”/>

<property file=”../../../../mydomain.properties”/>

<property name=”build.compiler” value=”${JAVAC}”/>

<property name=”source” value=”.”/>

<property name=”build” value=”${source}/build”/>

<property name=”dist” value=”${source}/dist”/>

<target name=”all” depends=”clean, init,

compile_ejb, jar_ejb, ejbc,

ear_app, compile_client”/>

<target name=”init”>

<!-- Create the time stamp -->

<tstamp/>

<!-- Create the build directory structure used

by compile and copy the deployment descriptor

into it-->

<mkdir dir=”${build}”/>

<mkdir dir=”${build}/META-INF”/>

<mkdir dir=”${dist}”/>

<copy todir=”${build}/META-INF”>

<fileset dir=”${source}”>

<include name=”ejb-jar.xml”/>

<include name=”weblogic-ejb-jar.xml”/>

</fileset>

</copy>

</target>

Listing 3.18 Build.xml for compiling, assembling, and deploying the EJB. (continues)

Building the Web Services Architecture 89

<!-- Compile ejb classes into the build directory

(jar preparation) -->

<target name=”compile_ejb”>

<javac srcdir=”${source}” destdir=”${build}”

includes=”AcmeSession.java,

AcmeSessionHome.java, AcmeSessionBean.java”/>

</target>

<!-- Make a standard ejb jar file,

including XML deployment descriptors -->

<target name=”jar_ejb” depends=”compile_ejb”>

<jar jarfile=”${dist}/jws-ch3-statelessejb.jar”

basedir=”${build}”>

</jar>

</target>

<!-- Run ejbc to create the deployable jar file -->

<target name=”ejbc” depends=”jar_ejb”>

<java classname=”weblogic.ejbc”

fork=”yes” failonerror=”yes”>

<sysproperty key=”weblogic.home”

value=”${WL_HOME}/server”/>

<arg line=”-compiler javac

${dist}/jws-ch3-statelessejb.jar

${dist}/jws-ch3-statelessejb.jar”/>

<classpath>

<pathelement path=”${CLASSPATH}”/>

</classpath>

</java>

</target>

<!-- Put the ejb into an ear, to be

deployed from the ${APPLICATIONS} dir -->

<target name=”ear_app” depends=”jar_ejb”>

<ear earfile=”${APPLICATIONS}/

jws-ch3-statelessejb.ear”

appxml=”${source}/application.xml”>

<fileset dir=”${dist}”

includes=”jws-ch3-statelessejb.jar”/>

</ear>

</target>

<target name=”clean”>

<delete dir=”${build}”/>

<delete dir=”${dist}”/>

</target>

<project>

Listing 3.18 Build.xml for compiling, assembling, and deploying the EJB. (continued)

90 Chapter 3

Now to compile the AcmeSession EJB classes, you may execute the Ant
utility. The successful execution of the program assembles the EAR file and
deploys it in to the server and then displays “BUILD SUCCESSFUL.”

Generating the Web Services

After the successful creation of EJB, let’s include the WebLogic servicegen
and clientgen utilities as Ant tasks to generate the Web service interfaces
and client jar files for Web services clients.

In the WebLogic 7.0 environment, using the servicegenutility requires an
EJB jar file as input. It automatically generates the ‘JAX-RPC based’ service-
oriented interfaces, user-defined data type components (serializer and deseri-
alizer classes), and the web-services.xmldeployment descriptor, and then
packages them as a deployable EAR file by introspecting the input EJB.

Thus, by creating a servicegenAnt task in the build.xml, it is possi-
ble to generate all the service classes required for exposing an EJB as a Web
service. Listing 3.19 is an Ant task for generating the service classes for
AcmeSession EJB. For the deployed components, we will be using
ACMEWebService as the name of the Web service, and its URI and the
names for EAR, JAR, and WAR are webservices_acmes.ear,
acmes_ejb.jar, and acme_service.war, respectively.

<target name=”build-ear” depends=”build-ejb”>

<delete dir=”${build}” />

<mkdir dir=”${build}” />

<copy todir=”${build}” file=”${dist}/acme_ejb.jar”/>

<servicegen

destEar=”${build}/webservices_acme.ear”

warName=”acme_service.war”>

<service

ejbJar=”${build}/acme_ejb.jar”

targetNamespace=

“http://localhost:7001/acme_services/ACMEWebService”

serviceName=”ACMEWebService”

serviceURI=”/ACMEWebService”

generateTypes=”True”

expandMethods=”True” >

<client

packageName=”jws.ch3.ejb”

clientJarName=”${client_file}”/>

</service>

</servicegen>

</target>

Listing 3.19 Ant task for generating the service classes from AcmeSession EJB.

Building the Web Services Architecture 91

Similar to the servicegen utility, WebLogic 7.0 also provides a
clientgen utility that creates a client JAR file containing the client specific
stubs (JAX-RPC based), and serializer and deserializer classes used for
invoking the Web service deployed as an EAR file in the WebLogic server.
This helps the testing of the Web services deployed in the WebLogic server.

Adding a clientgenAnt task generates the required client stub classes
required for invoking the Web services. Listing 3.20 is an Ant task for gen-
erating the client classes required for invoking ACMEWebService.

<target name=”build-client” depends=”build-ear”>

<clientgen

ear=”${build}/webservices_acme.ear”

warName=”acme_service.war”

packageName=”jws.ch3.ejb”

clientJar=”acme_client.jar” />

</target>

Listing 3.20 Ant task for generating the client classes required for invoking ACMEWebService.

It also is important to create a client to test the Web service, and all that it
requires is to know the name of the Web service and signatures of its
operations. To find the signature of the Web service operations, un-JAR the
Web service-specific client JAR file acme_client.jar. The files
ACMEWebService_Impl.java and ACMEWebServicePort.java
contain the implementation of the Web service operations getProduct
Catalog() and getProduct(int productID), and ACMEWebService
refers to the name of the Web service.

To build a static client, no imports are required, just make sure that
‘acme_client.jar’ is available in the CLASSPATH. Listing 3.21 is the
complete source code of ACMEWebServiceClient.java.

package jws.ch3.ejb;

public class ACMEWebServiceClient {

public static void main(String[] args) throws Exception {

// Parse the argument list

ACMEWebServiceClient client = new ACMEWebServiceClient();

String wsdl = (args.length > 0? args[0] : null);

client.example(wsdl);

Listing 3.21 Complete source code of ACMEWebServiceClient.java.

92 Chapter 3

}

public void example(String wsdlURI) throws Exception {

// Set properties for JAX-RPC service factory

System.setProperty(“javax.xml.rpc.ServiceFactory”,

“weblogic.webservice.core.rpc.ServiceFactoryImpl”);

if (wsdlURI == null) {

System.out.println(“WSDL location not available”);

} else {

ACMEWebService_Impl awsI =

new ACMEWebService_Impl(wsdlURI);

ACMEWebServicePort aws = awsI.getACMEWebServicePort();

System.out.println(“==Getting Product info

for ProductID 1001==”);

System.out.println(aws.getProduct(1001));

System.out.println(“==Getting

Product Catalog==”);

System.out.println(aws.getProductCatalog());

}

}

Listing 3.21 Complete source code of ACMEWebServiceClient.java. (continued)

Now let’s include the compilation of the ACMEWebServiceClient.java
in the build.xml (see Listing 3.22).

<target name=”build-client” depends=”build-ear”>

<clientgen

ear=”${build}/${ear_file}”

warName=”${war_file}”

packageName=”jws.ch3.ejb”

clientJar=”${client_file}” />

<javac srcdir=”.” includes=”ACMEWebServiceClient.java”

fork =”true”

destdir=”${CLIENT_CLASSES}” >

<classpath>

<pathelement path=”${client_file}”/>

<pathelement path=”${java.class.path}”/>

</classpath>

</javac>

</target>

Listing 3.22 ACMEWebServiceClient.java in the build.xml.

Building the Web Services Architecture 93

With all of these steps, we have now completed all of the required
processes for creating the ACME Web services provider.

To compile and run the previous classes, ensure that the WebLogic JARs
and other required packages are available in the CLASSPATH. Then, navi-
gate to the source directory and run the Ant utility.

Upon successful completion, you will find the output shown in Fig-
ure 3.13.

Figure 3.13 Packaging and deployment of the ACME service provider.

94 Chapter 3

Testing the ACME Web Services Provider

So far we have looked at building the components and generating the ser-
vice classes for the ACME Web services provider. From now on, let’s test
the service classes using the static client and WebLogic server-provided
utilities.

To execute the static client AcmeWebServiceClient class, you may
execute the Ant utility with run as an argument. The successful execution
of the program invokes the ACMEWebService and then fetches the
Product Catalog as an XML base string.

If everything works successfully, you will get the output shown in
Figure 3.14.

As part of every Web service deployment, the WebLogic 7.0 server auto-
matically generates home pages for all of the deployed Web services.
Through this home page, it does the following:

■■ Tests the invoke operations to ensure the operations are working
correctly

■■ Displays SOAP request and response messages based on the invoca-
tion

■■ Displays the WSDL describing the service and operations provided
by the Web service

■■ Downloads the deployed Web service-specific client JAR file contain-
ing the JAX-RPC stub interfaces and classes required for invoking the
Web service from an application

Figure 3.14 Output showing the test invoking the service provider.

Building the Web Services Architecture 95

TEAMFL
Y

Team-Fly®

The WebLogic Web Services home page URLs for invoking the Web ser-
viced and for displaying the WSDL are as follows:

■■ http://host:port/war_name/service_uri

■■ http://host:port/war_name/service_uri/?WSDL

host refers to the WebLogic Server host, port refers to the server lis-
tening port, war_name refers to the name of the Web application WAR
file, and service_uri refers to the name of the Web service.

In our case, the URL to invoke the ACME Web services home page will
be as follows:

http://localhost7001/acme_service/ACMEWebService

You may choose to use localhost or your hostname. If everything
works successfully, you will get the output shown in Figure 3.15.

You will also notice the WebLogic home page of ACME Web services,
displaying the following supported operations:

■■ getProductCatalog

■■ getProduct

Figure 3.15 Output showing successful deployment of ACMEWebService.

96 Chapter 3

To test the operations, just click on the operation links. To invoke the
getProductCatalog operation, click on the link.

Then click on the Invoke button to display the results. The results page
shows the SOAP request and response messages and the data exchanged
as XML.

Upon successful execution, the browser will display the output shown in
Figure 3.16.

And, the final test is to display the WSDL-based service description
describing the service and operations provided by the Web service
provider. To display the WSDL-based service description, just execute the
following URL using your local http browser:

http://localhost:7001/acme_service/ ACMEWebService?WSDL

The browser will display the complete WSDL for the ACME Web service
in an XML format. The browser then will display the output shown in Fig-
ure 3.17.

This concludes the design, implementation, and testing of the ACME
Web service provider using a J2EE-based application environment.

Now let’s take a look at developing the service requester environment to
provide service delivery.

Figure 3.16 Output showing the SOAP request and response messages.

Building the Web Services Architecture 97

Figure 3.17 WSDL emitted from an ACME service provider.

Developing the ACME Web Service Requestor

To build the ACME Web service requestor, it is a requirement to create
SOAP-based client interfaces using the WSDL-based descriptions exposed
by the ACME Web service provider (WebLogic environment). Although it
is not mandatory to choose any programming language for implementing
the client interfaces, it must support the use of SOAP for communication.

As discussed earlier, we will be using Apache Axis 1.0B3 to build the
ACME service requestor client environment. Axis provides a WSDL2Java
tool to build Java-based proxies and skeletons for services with WSDL
descriptions.

To create the service requestor clients as Java proxies, the following tasks
are involved:

1. Install and set up the Apache Axis development environment.
Ensure that Axis class libraries and other optional libraries (that is,
Apache Xerces, Xalan) are in the Java compiler class path.

2. Create a test client directory and run the
org.apache.axis.wsdl.WSDL2Java utility by providing an
ACME Web services WSDL URI as an argument; this will generate
the Java-based client bindings.

98 Chapter 3

3. Using an Ant script, compile the generated source files along with
a stub client, which invokes the services from the ACME Web
services.

4. Test the client execution.

Let’s take a closer look at the details of demonstrating the previous steps.

Setting up the Axis Environment

Install the Apache Axis download and create a shell/batch script to set up
the CLASSPATH environment, including all the provided Axis libraries.

Generating the Java Proxies

Create a directory named ACMEClient and run the WSDL2Java utility
with the WSDL URI of ACMEWebService as an argument.

For example, you may execute the following command line:

java org.apache.axis.wsdl.WSDL2Java \

http://nramesh:7001/acme_service/ACMEWebService?WSDL

This will generate a package named localhost that includes a list of
client stub classes as follows:

ACMEWebService.java

ACMEWebServiceLocator.java

ACMEWebServicePort.java

ACMEWebServiceSoapBindingStub.java

Upon successful completion, you typically will find the output shown in
Figure 3.18.

Figure 3.18 Output showing the client side stubs generated by an Axis WSDL2Java utility.

Building the Web Services Architecture 99

Creating the Java Clients

Using the generated stub classes, implement a Java client for ACME Web
services. A typical implementation will be as follows:

■■ Use ACMEWebServicelocator to locate the service.

■■ Use ACMEWebServicePort to obtain the service port.

■■ Invoke the operations using the obtained port.

Listing 3.23 is the AxisWebServiceClient.java source code using
the generated stub classes.

// AxisWebServiceClient.java

package localhost;

import localhost.*;

public class AxisWebServiceClient {

public static void main(String [] args) throws Exception {

// Locate the service

ACMEWebServiceLocator service

= new ACMEWebServiceLocator();

// Obtain the service port

ACMEWebServicePortType port =

service.getACMEWebServicePort();

// Invoke the operations

String catalog = port.getProductCatalog();

String product = port.getProduct(1001);

System.out.println(“=====Get Product Catalog ====”);

System.out.println(catalog);

System.out.println(“= Get Product info for

product ID 1001 =”);

System.out.println(“=====”);

System.out.println(product);

}

}

Listing 3.23 AxisWebServiceClient.java using the generated stub classes.

To execute AxisWebServiceClient, compile using javac *.java
and execute the client running java localhost.AxisWebService-
Client. Upon successful completion, the system will display the output
shown in Figure 3.19.

100 Chapter 3

Figure 3.19 Output showing successful invocation of ACMEWebService.

This concludes the implementation and testing of the ACME service
requester environment using Apache Axis.

The complete source code and instructions for executing the previous
example are available as part of the source code bundle as Chapter3.zip
and they can be downloaded from this book’s companion Web site at
www.wiley.com/compbooks/nagappan.

In this section, we have illustrated a complete example of implementing
Web services by exposing J2EE components deployed in a J2EE application
server and accessing those services using a SOAP-based client environment.

Summary

This chapter has thoroughly studied building Web services architecture
and implementing J2EE-based Web services. It also has examined the
different strategies and architectural models of developing Web services.

In general, we have looked at such varied topics as Web service architec-
ture and its characteristics, the core building blocks of Web services, stan-
dards and technologies available for implementing Web services, Web
services communication models, how to develop Web services-enabled
applications, how to develop Web services from J2EE applications, and a
complete illustration of developing J2EE-based Web services.

In the following chapter, we will extensively discuss understanding
SOAP and how to develop Web services applications using SOAP.

Building the Web Services Architecture 101

103

This chapter presents an in-depth discussion on the core fundamentals of
Simple Object Access Protocol (SOAP) and the role of SOAP in developing
Web services architecture and its implementation. This chapter covers the
W3C definition of SOAP standards, conventions, messages, SOAP com-
munication models, and implementation of SOAP-based applications for
Web services. In addition, this chapter illustrates an example of developing
a Web services solution using a SOAP implementation.

With the emergence of Web services, SOAP has become the de facto com-
munication protocol standard for creating and invoking applications
exposed over a network. SOAP is similar to traditional binary protocols
like IIOP (CORBA) or JRMP (RMI), but instead of using a binary data rep-
resentation, it adopts text-based data representation using XML.

Using XML notation, SOAP defines a lightweight wire protocol and
encoding format to represent data types, programming languages, and
databases. SOAP can use a variety of Internet standard protocols (such as
HTTP and SMTP) as its message transport, and it provides conventions for
representing communication models like remote procedural calls (RPCs)
and document-driven messaging. This enables inter-application communi-
cation in a distributed environment and interoperability between hetero-
geneous applications over the networks. With its widespread acceptance
by leading IT vendors and Web developers, SOAP is gaining popularity

Developing Web Services
Using SOAP

C H A P T E R

4

and adoption in most popular business applications for enabling them as
Web services. It is important to note that SOAP is an ongoing W3C effort in
which leading IT vendors are participating in order to come to a consensus
on such important tasks associated with XML-based protocols and to
define their key requirements and usage scenarios.

In this chapter, we will explore the fundamentals of SOAP, implementation
details, and how to develop Web services using SOAP-based technologies. In
particular, we will be focusing on the following:

■■ Background of SOAP and XML-based protocols

■■ Anatomy of a SOAP message

■■ SOAP encoding

■■ SOAP message exchange models

■■ SOAP communication

■■ SOAP bindings for transport protocols

■■ SOAP security

■■ Java APIs for developing SOAP applications

■■ Development of a Web services application using a SOAP server

■■ Limitations of SOAP

Because the key focus of this book is developing Web services using
the Java platform, it will illustrate a Java API-based example using a SOAP
implementation for developing Web services. At the time of this book’s
writing, SOAP 1.1 has been released as a public specification and SOAP 1.2
is available as a W3C working draft. For consistency and better under-
standing, the chapter discusses both versions of SOAP and its features.

To find out the current status of SOAP from the W3C Working Group
activities, refer to the W3C Web site at www.23.org/2002/ws/.

XML-Based Protocols and SOAP

In the last chapter, we discussed typical Web services architecture and
looked at how the service provider and service requestor communicate
with each other using an XML-based wire protocol (such as SOAP). XML-
based protocols have been used in the industry for a while now—some
even before the W3C SOAP effort began—however, some of these proto-
cols did not get accepted by the industry for various reasons. Some of the
popular XML-based protocols are the following:

104 Chapter 4

XMI (XML Metadata Interchange). XMI was developed by OMG to
explore technological synergy between XML and OMG technologies
such as UML and CORBA. XMI defines an open information inter-
change model for CORBA and object-based technologies in a standard-
ized way, enabling them to interoperate using XML and providing the
ability to exchange programming data over the Internet. To find more
information on XMI, refer to the OMG Web site at http://cgi.omg.org
/news/pr99/xmi_overview.html.

XML RPC (XML - Remote Procedure Call). XML-RPC was originally
developed by Userland Inc. It is an RPC-based communication proto-
col that runs over the Internet using HTTP as its transport protocol. It
encodes RPC call parameters and return values in XML. The parame-
ters can consist of numbers, scalars, strings, dates, lists, and complex
records. To find more information on XML-RPC, refer to the XML-
RPC Web site at www.xmlrpc.com/spec.

WDDX (Web Distributed Data Exchange). Allaire (Macromedia, Inc.)
originally developed WDDX. It defines an XML-based data exchange
model between applications leveraging data syndication and B2B col-
laboration. It consists of XML data using document type definitions
(DTDs) and a set of modules for programming languages to use WDDX
and to transfer data. Additionally, it also uses standard protocols such
as HTTP, SMTP, and FTP for transport. To find more information on
WDDX, refer to the WDDX Web site at www.openwddx.org/.

JABBER. JABBER was developed by the JABBER Software Foundation
(JSF), a non-profit organization promoting XML-based protocols for
Internet-based instant messaging and presence. To find out more infor-
mation on JABBER, refer to the JABBER Web site at www.jabber.org.

The Emergence of SOAP
SOAP initially was developed by DevelopMentor, Inc., as a platform-
independent protocol for accessing services, objects between applications,
and servers using HTTP-based communication. SOAP used an XML-based
vocabulary for representing RPC calls and its parameters and return val-
ues. In 1999, the SOAP 1.0 specification was made publicly available as a
joint effort supported by vendors like RogueWave, IONA, ObjectSpace,
Digital Creations, UserLand, Microsoft, and DevelopMentor. Later, the
SOAP 1.1 specification was released as a W3C Note, with additional con-
tributions from IBM and the Lotus Corporation supporting a wide range of
systems and communication models like RPC and Messaging.

Developing Web Services Using SOAP 105

TEAMFL
Y

Team-Fly®

Nowadays, the current version of SOAP 1.2 is part of the W3C XML
Protocol Working Group effort led by vendors such as Sun Microsystems,
IBM, HP, BEA, Microsoft, and Oracle. At the time of this book’s writing,
SOAP 1.2 is available as a public W3C working draft. To find out the cur-
rent status of the SOAP specifications produced by the XML Protocol
Working Group, refer to the W3C Web site at www.w3c.org.

Understanding SOAP Specifications
The SOAP 1.1 specifications define the following:

■■ Syntax and semantics for representing XML documents as struc-
tured SOAP messages

■■ Encoding standards for representing data in SOAP messages
■■ A communication model for exchanging SOAP messages
■■ Bindings for the underlying transport protocols such as SOAP transport
■■ Conventions for sending and receiving messages using RPC and

messaging

Note that SOAP is not a programming language or a business applica-
tion component for building business applications. SOAP is intended for
use as a portable communication protocol to deliver SOAP messages,
which have to be created and processed by an application.

In general, SOAP is simple and extensible by design, but unlike other
distributed computing protocols, the following features are not supported
by SOAP:

■■ Garbage collection
■■ Object by reference
■■ Object activation
■■ Message batching

SOAP and ebXML are complementary to each other. In fact, SOAP is
leveraged by an ebXML Messaging service as a communication protocol
with an extension that provides added security and reliability for handling
business transactions in e-business and B2B frameworks.

More importantly, SOAP adopts XML syntax and standards like XML
Schema and namespaces as part of its message structure. To understand
the concepts of XML notations, XML Schema, and namespaces, refer to
Chapter 8, “XML Processing and Data Binding with Java APIs.”

Now, let’s take a closer look at the SOAP messages, standards, conven-
tions, and other related technologies, and how they are represented in a
development process.

106 Chapter 4

Anatomy of a SOAP Message

SOAP defines the structure of an XML document, rules, and mechanisms
that can be used to enable communication between applications. It does
not mandate a single programming language or a platform, nor does it
define its own language or platform.

Before we go exploring the SOAP features, let’s walk through an existing
SOAP message and understand the XML syntax, semantic rules, and con-
ventions. The example shown in Listing 4.1 is a SOAP request/response
message for obtaining book price information from a book catalog service
provider. The SOAP request accepts a string parameter as the name of the
book and returns a float as the price of the book as a SOAP response.

In the scenario in Listing 4.1, the SOAP message is embedded in an
HTTP request for getting the book price information from www.wiley.com
for the book Developing Java Web Services.

POST /BookPrice HTTP/1.1

Host: catalog.acmeco.com

Content-Type: text/xml; charset=”utf-8”

Content-Length: 640

SOAPAction: “GetBookPrice”

<SOAP-ENV:Envelope

xmlns:SOAP ENV=”http://schemas.xmlsoap.org/soap/envelope/”

xmlns:xsi=”http://www.w3c.org/2001/XMLSchema-instance”

xmlns:xsd=”http://www.w3c.org/2001/XMLSchema”

SOAP-ENV:encodingStyle

=”http://schemas.xmlsoap.org/soap/encoding/”>

<SOAP-ENV:Header>

<person:mail

xmlns:person=”http://acmeco.com/Header/”>xyz@acmeco.com

</person:mail>

</SOAP-ENV:Header>

<SOAP-ENV:Body>

<m:GetBookPrice

xmlns:m=”http://www.wiley.com/jws.book.priceList”>

<bookname xsi:type=’xsd:string’>

Developing Java Web Services</bookname>

</m:GetBookPrice>

</SOAP-ENV:Body>

</SOAP-ENV: Envelope>

Listing 4.1 SOAP request message.

Developing Web Services Using SOAP 107

Listing 4.2 shows the SOAP message embedded in an HTTP response
returning the price of the book.

HTTP/1.1 200 OK

Content-Type: text/xml; charset=”utf-8”

Content-Length: 640

<SOAP-ENV:Envelope

xmlns:SOAP-ENV=http://schemas.xmlsoap.org/soap/envelope/

xmlns:xsi=”http://www.w3c.org/2001/XMLSchema-instance”

xmlns:xsd=”http://www.w3c.org/2001/XMLSchema”

SOAP-ENV:

encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”/>

<SOAP-ENV:Header>

<wiley:Transaction

xmlns:wiley=”http://jws.wiley.com/2002/booktx”

SOAP-ENV:mustUnderstand=”1”> 5

</wiley:Transaction>

</SOAP-ENV:Header>

<SOAP-ENV:Body>

<m:GetBookPriceResponse xmlns:m=”

http://www.wiley.com/jws.book.priceList”>

<Price>50.00</Price>

</m:GetBookPriceResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Listing 4.2 SOAP response message.

In Listing 4.2, you might have noticed that the SOAP message contains a
SOAP Envelope SOAP-ENV:Envelope as its primary root element, and
it relies on defined “XML Namespaces” commonly identified with a
keyword xmlns and specific prefixes to identify the elements and
its encoding rules. All the elements in the message are associated with
SOAP-ENV-defined namespaces.

Note that a SOAP application should incorporate and use the relevant
SOAP namespaces for defining its elements and attributes of its sending
messages; likewise, it must be able to process the receiving messages with
those specified namespaces. These namespaces must be in a qualified W3C
XML Schema, which facilitates the SOAP message with groupings of
elements using prefixes to avoid name collisions.

108 Chapter 4

Usually a SOAP message requires defining two basic namespaces: SOAP
Envelope and SOAP Encoding. The following list their forms in both
versions 1.1 and 1.2 of SOAP.

SOAP ENVELOPE

■■ http://schemas.xmlsoap.org/soap/envelope/ (SOAP 1.1)

■■ http://www.w3.org/2001/06/soap-envelope (SOAP 1.2)

SOAP ENCODING

■■ http://schemas.xmlsoap.org/soap/encoding/ (SOAP 1.1)

■■ http://www.w3.org/2001/06/soap-encoding (SOAP 1.2)

Additionally, SOAP also can use attributes and values defined in W3C
XML Schema instances or XML Schemas and can use the elements based
on custom XML conforming to W3C XML Schema specifications. SOAP
does not support or use DTD-based element or attribute declarations. To
understand the fundamentals of XML namespaces, refer to Chapter 8,
“XML Processing and Data Binding with Java APIs.”

Typical to the previous example message, the structural format of a
SOAP message (as per SOAP version 1.1 with attachments) contains the
following elements:

■■ Envelope

■■ Header (optional)

■■ Body

■■ Attachments (optional)

Figure 4.1 represents the structure of a SOAP message with attachments.
Typically, a SOAP message is represented by a SOAP envelope with zero or
more attachments. The SOAP message envelope contains the header and
body of the message, and the SOAP message attachments enable the mes-
sage to contain data, which include XML and non-XML data (like
text/binary files). In fact, a SOAP message package is constructed using the
MIME Multipart/Related structure approaches to separate and identify the
different parts of the message.

Now, let’s explore the details and characteristics of the parts of a SOAP
message.

Developing Web Services Using SOAP 109

Figure 4.1 Structure of a SOAP message with attachments.

SOAP Envelope
The SOAP envelope is the primary container of a SOAP message’s structure
and is the mandatory element of a SOAP message. It is represented as the
root element of the message as Envelope. As we discussed earlier, it is
usually declared as an element using the XML namespace http://schemas
.xmlsoap.org/soap/envelope/. As per SOAP 1.1 specifications, SOAP
messages that do not follow this namespace declaration are not processed
and are considered to be invalid. Encoding styles also can be defined using
a namespace under Envelope to represent the data types used in the
message. Listing 4.3 shows the SOAP envelope element in a SOAP message.

<SOAP-ENV:Envelope

xmlns:SOAP-ENV=http://schemas.xmlsoap.org/soap/envelope/

xmlns:xsi=”http://www.w3c.org/2001/XMLSchema-instance”

xmlns:xsd=”http://www.w3.org/2001/XMLSchema”

SOAP-ENV:

encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”/>

<!--SOAP Header elements - -/>

Listing 4.3 SOAP Envelope element.

SOAP 1.1 Message
W/Attachments

SOAP Envelope

SOAP Header

Header entry

Header entry

SOAP Body

Body entry

Body entry

SOAP Envelope
(Primary MIME part)

Attachment

Attachment

Attachment

Attachment

110 Chapter 4

<!--SOAP Body element - -/>

</SOAP-ENV:Envelope>

Listing 4.3 SOAP Envelope element. (continued)

SOAP Header
The SOAP header is represented as the first immediate child element of a
SOAP envelope, and it has to be namespace qualified. In addition, it also
may contain zero or more optional child elements, which are referred to as
SOAP header entries. The SOAP encodingStyle attribute will be used to
define the encoding of the data types used in header element entries. The
SOAP actor attribute and SOAP mustUnderstand attribute can be used
to indicate the target SOAP application node (Sender/Receiver/Interme-
diary) and to process the Header entries. Listing 4.4 shows the sample rep-
resentation of a SOAP header element in a SOAP message.

<SOAP-ENV:Header>

<wiley:Transaction

xmlns:wiley=”http://jws.wiley.com/2002/booktx”

SOAP-ENV:mustUnderstand=”1”>

<keyValue> 5 </keyValue>

</wiley:Transaction>

</SOAP-ENV:Header>

Listing 4.4 SOAP Header element.

In Listing 4.4, the SOAP header represents a transaction semantics entry
using the SOAP mustUnderstand attribute. The mustUnderstand
attribute is set to “1”, which ensures that the receiver (URI) of this message
must process it. We will look into the mustUnderstand attributes in the
next section.

SOAP headers also provide mechanisms to extend a SOAP message for
adding features and defining high-level functionalities such as security,
transactions, priority, and auditing. These mechanisms are discussed in
Chapter 13, “Web Services Security.”

Developing Web Services Using SOAP 111

SOAP Body
A SOAP envelope contains a SOAP body as its child element, and it may
contain one or more optional SOAP body block entries. The Body repre-
sents the mandatory processing information or the payload intended for
the receiver of the message. The SOAP 1.1 specification mandates that
there must be one or more optional SOAP Body entries in a message. A
Body block of a SOAP message can contain any of the following:

■■ RPC method and its parameters

■■ Target application (receiver) specific data

■■ SOAP fault for reporting errors and status information

Listing 4.5 illustrates a SOAP body representing an RPC call for getting
the book price information from www.wiley.com for the book name Devel-
oping Java Web Services.

<SOAP-ENV:Body>

<m:GetBookPrice

xmlns:m=”http://www.wiley.com/jws.book.priceList/”>

<bookname xsi:type=’xsd:string’>

Developing Java Web services</bookname>

</m:GetBookPrice>

</SOAP-ENV:Body>

Listing 4.5 SOAP Body element.

Like other elements, the Body element also must have a qualified name-
space and be associated with an encodingStyle attribute to provide the
encoding conventions for the payload. In general, the SOAP Body can con-
tain information defining an RPC call, business documents in XML, and
any XML data required to be part of the message during communication.

SOAP Fault
In a SOAP message, the SOAP Fault element is used to handle errors and
to find out status information. This element provides the error and/or sta-
tus information. It can be used within a Body element or as a Body entry.

112 Chapter 4

It provides the following elements to define the error and status of the
SOAP message in a readable description, showing the source of the infor-
mation and its details:

Faultcode. The faultcode element defines the algorithmic mecha-
nism for the SOAP application to identify the fault. It contains stan-
dard values for identifying the error or status of the SOAP application.
The namespace identifiers for these faultcode values are defined in
http://schemas.xmlsoap.org/soap/envelope/. The following fault-
code element values are defined in the SOAP 1.1 specification:

VersionMismatch This value indicates that an invalid namespace is
defined in the SOAP envelope or an unsupported version of a
SOAP message.

MustUnderstand This value is returned if the SOAP receiver node
cannot handle and recognize the SOAP header block when the
MustUnderstand attribute is set to 1. The MustUnderstand
values can be set to 0 for false and 1 for true.

Client This faultcode is indicated when a problem originates
from the receiving client. The possible problems could vary from
an incorrect SOAP message, a missing element, or incorrect name-
space definition.

Server This faultcode indicates that a problem has been encoun-
tered during processing on the server side of the application, and
that the application could not process further because the issue is
specific to the content of the SOAP message.

Faultstring. The faultstring element provides a readable descrip-
tion of the SOAP fault exhibited by the SOAP application.

Faultactor. The faultactor element provides the information
about the ultimate SOAP actor (Sender/Receiver/Intermediary) in
the message who is responsible for the SOAP fault at the particular
destination of a message.

Detail. The detail element provides the application-specific error or
status information related to the defined Body block.

Let’s take a look at the common examples of SOAP fault scenarios.

Developing Web Services Using SOAP 113

How a SOAP Fault Is Represented in a SOAP Message

Listing 4.6 shows how a SOAP Fault is represented in a SOAP message.

<SOAP-ENV:Envelope xmlns:SOAP-ENV

=”http://schemas.xmlsoap.org/soap/envelope/”

SOAP-ENV:encodingStyle=

“http://schemas.xmlsoap.org/soap/encoding/”>

<SOAP-ENV:Body>

<SOAP-ENV:Fault>

<faultcode>SOAP-ENV:MustUnderstand</faultcode>

<faultstring>Header element missing</faultstring>

<faultactor>http://jws.wiley.com/GetBookPrice</faultactor>

<detail>

<wiley:error

xmlns:wiley=”http://jws.wiley.com/GetBookPrice”>

<problem>The Book name parameter missing.</problem>

</wiley:error>

</detail>

</SOAP-ENV:Fault>

</SOAP_ENV:Body>

</SOAP-ENV:Envelope>

Listing 4.6 SOAP Fault in a SOAP message.

SOAP Fault Is Caused Due to Server Failure

Listing 4.7 shows how a SOAP Fault is caused due to server failure.

<SOAP-ENV:Fault>

<faultcode> SOAP-ENV:Server</faultcode>

<faultstring> Server OS Internal failure - Reboot server</faultstring>

<faultactor>http://abzdnet.net/net/keysoap.asp</faultactor>

</SOAP-ENV:Fault>

Listing 4.7 SOAP Fault due to server failure.

114 Chapter 4

Listing 4.8 shows how a SOAP Fault is caused due to client failure.

<SOAP-ENV:Fault>

<faultcode>Client</faultcode>

<faultstring>Invalid Request</faultstring>

<faultactor>http://jws.wiley.com/GetCatalog</faultactor>

</SOAP-ENV:Fault>

Listing 4.8 SOAP Fault due to client failure.

SOAP mustUnderstand
The SOAP mustUnderstand attribute indicates that the processing of a
SOAP header block is mandatory or optional at the target SOAP node. The
following example is a SOAP request using mustUnderstand and the
response message from the server.

Listing 4.9 shows the request message where the SOAP message defines
the header block with a mustUnderstand attribute of 1.

<SOAP-ENV:Header>

<wiley:Catalog

xmlns:wiley=”http://jws.wiley.com/2002/bookList”

SOAP-ENV:mustUnderstand=”1”>

</wiley:Catalog>

</SOAP-ENV: Header>

Listing 4.9 SOAP mustUnderstand attribute.

Listing 4.10 is an example response message from the server when the
server could not understand the header block where the mustUnderstand
is set to 1. Listing 4.10 is the server-generated fault message detailing the
issues with the header blocks using misUnderstood and qname (faulting
SOAP nodes) and providing a complete SOAP fault.

Developing Web Services Using SOAP 115

TEAMFL
Y

Team-Fly®

<SOAP-ENV:Envelope xmlns:SOAP-ENV

=”http://www.w3.org/2001/06/soap-envelope/”

SOAP-ENV:encodingStyle=

“http://www.w3.org/2001/06/soap-encoding/”

xmlns:fx=”http://www.w3.org/2001/06/soap-faults/”>

<SOAP-ENV:Header>

<fx:misUnderstood qname=”wiley:Catalog”

xmlns:wiley=”http://jws.wiley.com/2002/bookList/” />

</SOAP-ENV:Header>

<SOAP-ENV:Body>

<SOAP-ENV:Fault>

<faultcode>SOAP-ENV:mustUnderstand</faultcode>

<faultstring>Could not understand

Header element</faultstring>

</SOAP-ENV:Fault>

</SOAP_ENV:Body>

</SOAP-ENV:Envelope>

Listing 4.10 SOAP response using SOAP mustUnderstand.

So far, we have discussed the basic structure and elements of a SOAP
message. Now, let’s take a look at how to represent application-specific
data in a SOAP message.

SOAP Attachments
As per SOAP 1.1 with the attachment specification, a SOAP message con-
tains the primary SOAP envelope in an XML format and SOAP attachments
in any data format that can be ASCII or binary (such as XML or non-text).
SOAP attachments are not part of the SOAP envelope but are related to the
message.

As the SOAP message is constructed using a MIME multipart/related
structure, the SOAP attachment part of the message is contained to a
MIME boundary (defined in the Context-Type header). Each MIME part in
the structure of the SOAP message is referenced using either Content-ID or
Content-Location as labels for the part. Both the SOAP header and body of
the SOAP message also can refer to these labels in the message. Each
attachment of the message is identified with a Content-ID (typically an
href attribute using a URL scheme) or Content-Location (a URI reference
associated to the attachment).

116 Chapter 4

Listing 4.11 uses “WileyCoverPage.gif” as an attachment and illustrates
the use of the Content-ID (CID) reference in the body of the SOAP 1.1 mes-
sage using absolute URI-referencing entities labeled for using Content-
Location headers.

MIME-Version: 1.0

Content-Type: Multipart/Related; boundary=MIME_boundary; type=text/xml;

start=”<http://jws.wiley.com/coverpagedetails.xml>”

Content-Description: SOAP message description.

--MIME_boundary--

Content-Type: text/xml; charset=UTF-8

Content-Transfer-Encoding: 8bit

Content-ID: <http://jws.wiley.com/coverpagedetails.xml>

Content-Location: http://jws.wiley.com/coverpagedetails.xml

<?xml version=’1.0’ ?>

<SOAP-ENV:Envelope

xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”>

<SOAP-ENV:Body>

<!-- SOAP BODY - ->

<theCoverPage href=”http://jws.wiley.com/DevelopingWebServices.gif”/>

<!-- SOAP BODY - ->

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

--MIME_boundary--

Content-Type: image/gif

Content-Transfer-Encoding: binary

Content-ID: <http://jws.wiley.com/DevelopingWebServices.gif>

Content-Location: http://jws.wiley.com/DevelopingWebServices.gif

<!--...binary GIF image... - ->

--MIME_boundary--

Listing 4.11 SOAP attachment in a MIME structure.

Although the SOAP 1.1 specification addressed the SOAP attachments
based on MIME Multipart/related, the W3C Working Group also is
evaluating the support of MIME Application/Multiplexed-based
attachments that facilitate the attachment binary data of the message can
be interleaved from the XML contents of the message. To find out more
information on the latest specification of SOAP attachments, refer to
www.w3.org/TR/SOAP-attachments.

Developing Web Services Using SOAP 117

SOAP Encoding

SOAP 1.1 specifications stated that SOAP-based applications can represent
their data either as literals or as encoded values defined by the “XML
Schema, Part -2” specification (see www.w3.org/TR/xmlschema-2/). Lit-
erals refer to message contents that are encoded according to the W3C
XML Schema. Encoded values refer to the messages encoded based on
SOAP encoding styles specified in SOAP Section 5 of the SOAP 1.1 specifi-
cation. The namespace identifiers for these SOAP encoding styles are
defined in http://schemas.xmlsoap.org/soap/encoding/ (SOAP 1.1) and
http://www.w3.org/2001/06/soap-encoding (SOAP 1.2).

The SOAP encoding defines a set of rules for expressing its data types. It
is a generalized set of data types that are represented by the programming
languages, databases, and semi-structured data required for an application.
SOAP encoding also defines serialization rules for its data model using an
encodingStyle attribute under the SOAP-ENV namespace that specifies
the serialization rules for a specific element or a group of elements.

SOAP encoding supports both simple- and compound-type values.

Simple Type Values
The definition of simple type values is based on the “W3C XML Schema,
Part -2: Datatypes” specification. Examples are primitive data types such
as string, integer, decimal, and derived simple data types including enu-
meration and arrays. The following examples are a SOAP representation of
primitive data types:

<int>98765</int>

<decimal> 98675.43</decimal>

<string> Java Rules </string>

The derived simple data types are built from simple data types and are
expressed in the W3C XML Schema.

Enumeration

Enumeration defines a set of names specific to a base type. Listing 4.12 is
an example of an enumeration data type expressed in a W3C XML Schema.

118 Chapter 4

<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”

elementFormDefault=”qualified”>

<xs:element name=”ProductType”>

<xs:simpleType base=”xsd:string”>

<xs:enumeration value=”Hardware”>

<xs:enumeration value=”Software”>

</xs:simpleType>

</xs:element>

</xs:schema>

Listing 4.12 Enumeration data type.

Array of Bytes

Listing 4.13 is an example of an array data type of an array of binary data
that is represented as text using base64 algorithms and expressed using a
W3C XML Schema.

<myfigure xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xmlns:enc=” http://schemas.xmlsoap.org/soap/encoding”>

xsi:type=”enc:base64”>

sD334G5vDy9898r32323</myfigure>

Listing 4.13 An array.

Polymorphic Accessor
The polymorphic accessor enables programming languages to access data
types during runtime. SOAP provides a polymorphic accessor instance by
defining an xsi: type attribute that represents the type of the value.

The following is an example of a polymorphic accessor named price
with a value type of "xsd:float" represented as follows:

<price xsi:type=”xsd:float”>1000.99</price>

And, the XML instance of the price data type will be as follows:

<price>1000.99</price>

Developing Web Services Using SOAP 119

Compound Type Values
Compound value types are based on composite structural patterns that
represent member values as structure or array types. The following sec-
tions list the main types of compound type values.

Structure Types

Listing 4.14 is an XML Schema of the Structure data type representing
the “Shipping address” with subelements like “Street,” “City,” and “State.”

<xs:element name=”ShippingAddress”

xmlns:xs=”http://www.w3.org/2001/XMLSchema” >

<xs:complexType>

<xs:sequence>

<xs:element ref=”Street”type=”xsd:string”/>

<xs:element ref=”City” type=”xsd:string”/>

<xs:element ref=”State” type=”xsd:string”/>

<xs:element ref=”Zip” type=”xsd:string”/>

<xs:element ref=”Country” type=”xsd:string”/>

</xs:sequence>

</xs:complexType>

</xs:element>

Listing 4.14 Structure data type.

And, the XML instance of the ShippingAddress data type is shown in
Listing 4.15.

<e:ShippingAddress>

<Street>1 Network Drive</Street>

<City>Burlington</City>

<State>MA</State>

<Zip>01803</Zip>

<Country>USA</Country>

</e:ShippingAddress>

Listing 4.15 Resulting XML instance of a structure data type.

120 Chapter 4

The structure also can contain both simple and complex data type values
that can reference each other (see Listing 4.16). The structure uses the
“href” attribute to reference the value of the matching element.

<e:Product>

<product>Sun Blade 1000</product>

<type>Hardware</type>

<address href=”#Shipping”/>

<address href=”#Payment”/>

<e:/Product>

<e:Address id=”Shipping”>

<Street>1 Network Drive</Street>

<City>Burlington</City>

<State>MA</State>

<Zip>01803</Zip>

<Country>USA</Country>

</e:Address>

<e:Address id=”Payment”>

<Street>5 Sunnyvale Drive</Street>

<City>Menlopark</City>

<State>CA</State>

<Zip>21803</Zip>

<Country>USA</Country>

</e:Address>

Listing 4.16 Structure data type using simple and complex types.

Array Types

Listing 4.17 is an XML Schema of an Array data type representing
MyPortfolio — a list of portfolio stock symbols.

<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”

xmlns:enc=”http://schemas.xmlsoap.org/soap/encoding” >

<xs:import

namespace=”http://schemas.xmlsoap.org/soap/encoding” >

<xs:element name=”MyPortfolio” type=”enc:Array”/>

</xs:schema>

Listing 4.17 Compound array types.

Developing Web Services Using SOAP 121

The XML instance of the MyPortfolio data type is shown in Listing
4.18.

<MyPortfolio xmlns:xs=”http://www.w3.org/2001/XMLSchema”

xmlns:enc=” http://schemas.xmlsoap.org/soap/encoding”

enc:arrayType=”xs:string[5]”>

<symbol>SUNW</symbol>

<symbol>IBM</symbol>

<symbol>HP</symbol>

<symbol>RHAT</symbol>

<symbol>ORCL</symbol>

</MyPortfolio>

Listing 4.18 Resulting XML instance of a compound array type.

Multiple References in Arrays

SOAP encoding also enables arrays to have other arrays as member values.
This is accomplished by having the id and href attributes to reference
the values. Listing 4.19 shows an example of an XML instance that has
arrays as member values.

<MyProducts xmlns:xs=”http://www.w3.org/2001/XMLSchema”

xmlns:enc=”

http://schemas.xmlsoap.org/soap/encoding”

enc:arrayType=”xs:string[][3]”>

<item href=”#product-hw”/>

<item href=”#product-sw”/>

<item href=”#product-sv”/>

<SOAP-ENC:Array id=”product-hw”

SOAP-ENC:arrayType=”xsd:string[3]”>

<item>SUN Blade 1000</item>

<item>SUN Ultra 100</item>

<item>SUN Enterprise 15000</item>

</SOAP-ENC:Array>

<SOAP-ENC:Array id=”product-sw”

SOAP-ENC:arrayType=”xsd:string[2]”>

<item>Sun Java VM</item>

<item>Sun Solaris OS</item>

</SOAP-ENC:Array>

<SOAP-ENC:Array id=”product-sv”

Listing 4.19 Multiple references in arrays.

122 Chapter 4

SOAP-ENC:arrayType=”xsd:string[2]”>

<item>Sun Java Center services</item>

<item>Sun Java Web Services</item>

</SOAP-ENC:Array>

Listing 4.19 Multiple references in arrays. (continued)

Partially Transmitted Arrays

Partially transmitted arrays are defined using a SOAP-ENC:offset,
which enables the offset position to be indicated from the first element
(counted as zero-origin), which is used as an offset of all the elements that
will be transmitted. Listing 4.20 is an array of size [6]; using SOAP-
ENC:offset=”4” transmits the fifth and sixth elements of a given array
of numbers (0,1,2,3,4,5).

<SOAP-ENC:Array SOAP-ENC:arrayType=”xsd:string[6]”

SOAP-ENC:offset=”[2]”>

<item> No: 2</item>

<item> No: 3</item>

<item> No: 4</item>

<item> No: 5</item>

</SOAP-ENC:Array>

Listing 4.20 Partially transmitted arrays.

Sparse Arrays

Sparse arrays are defined using a SOAP-ENC:position, which enables
the position of an attribute to be indicated with an array and returns its
value instead of listing every entry in the array. Listing 4.21 shows an
example of using a sparse array in an array.

<SOAP-ENC:Array SOAP-ENC:arrayType=”xsd:int[10]”>

<SOAP-ENC:int SOAP-ENC:position=”[0]”>0</SOAP-ENC:int>

<SOAP-ENC:int SOAP-ENC:position=”[10]”>9</SOAP-ENC:int>

</SOAP-ENC:Array>

Listing 4.21 Sparse arrays.

Developing Web Services Using SOAP 123

This summarizes the SOAP encoding defined in the SOAP 1.1 specifica-
tion. Now, let’s take a look at how to handle the custom encoding require-
ments specific to applications.

Serialization and Deserialization
In SOAP messages, all data and application-specific data types are repre-
sented as XML, and it is quite important to note that there is no generic
mechanism to serialize application-specific data types to XML. SOAP
implementation provides application-specific encoding for application
programming languages (such as Java and C++). It also enables developers
to define custom application-specific encoding, especially to handle the
data representation required and its data types adopting data types
defined by the “W3C XML Schema, Part -2” specification (see
www.w3.org/TR/xmlschema-2/). This is usually implemented as applica-
tion- or programming language-specific serialization and deserialization
mechanisms that represent application-specific data as XML and XML as
application-specific data.

Most SOAP implementations provide their own serialization and deseri-
alization mechanisms and a predefined XML Schema supporting the
SOAP encoding rules and mapping application-specific data types. These
serializers and deserializers supporting SOAP encoding rules provide the
encoding and decoding of data on runtime by mapping XML elements to
target application objects and vice versa. It leverages interoperability
between disparate applications using SOAP messages.

We will study the serializers and deserializers of a SOAP implementa-
tion in the example illustration using Apache Axis discussed in
the section titled Axis Infrastructure and Components. So far we discussed
the structure of a SOAP message and the representation of its data types.
Now, let’s take a look at how to exchange SOAP messages using SOAP
communication.

SOAP Message Exchange Model

Basically, SOAP is a stateless protocol by nature and provides a compos-
able one-way messaging framework for transferring XML between SOAP

124 Chapter 4

applications which are referred to as SOAP nodes. These SOAP nodes rep-
resent the logical entities of a SOAP message path to perform message rout-
ing or processing. In a SOAP message, SOAP nodes are usually represented
with an endpoint URI as the next destination in the message. In a SOAP
message, a SOAP node can be any of the following:

SOAP sender. The one who generates and sends the message.

SOAP receiver. The one who ultimately receives and processes the
message with a SOAP response, message, or fault.

SOAP intermediary. The one who can play the role of a SOAP sender
or SOAP receiver. In a SOAP message exchange model, there can be
zero or more SOAP intermediaries between the SOAP sender and
receiver to provide a distributed processing mechanism for SOAP
messages.

Figure 4.2 represents a basic SOAP message exchange model with differ-
ent SOAP nodes.

In a SOAP message exchange model, the SOAP message passes from the
initiator to the final destination by passing through zero to many interme-
diaries. In a SOAP messaging path, the SOAP intermediaries represent cer-
tain functionalities and provide routing to the next message destination. It
is important to note that SOAP does not define the actual SOAP senders,
intermediaries, and receivers of the SOAP message along its message path
or its order of destination. However, SOAP can indicate which part of the
message is meant for processing at a SOAP node. Thus, it defines a decen-
tralized message-exchanging model that enables a distributed processing
in the message route with a message chain.

Figure 4.3 represents an example of a complete message exchange model
with a sender, receiver, and its intermediaries. In the previous example, the
message originates from Sender A to Receiver D via Intermediaries B and
C as a request chain, and then as a response chain the message originates
from Receiver D to Sender A via Intermediary E.

Figure 4.2 Basic SOAP message exchange model.

SOAP
Sender

SOAP
Intermediary

SOAP
Receiver

Developing Web Services Using SOAP 125

TEAMFL
Y

Team-Fly®

Figure 4.3 SOAP message exchange model with intermediaries.

SOAP Intermediaries
SOAP defines intermediaries as nodes for providing message processing
and protocol routing characteristics between sending and receiving appli-
cations. Intermediary nodes reside in between the sending and receiving
nodes and process parts of the message defined in the SOAP header. The
two types of intermediaries are as follows:

Forwarding intermediaries. This type processes the message by
describing and constructing the semantics and rules in the SOAP
header blocks of the forwarded message.

Active intermediaries. This type handles additional processing by
modifying the outbound message for the potential recipient SOAP
nodes with a set of functionalities.

In general, SOAP intermediaries enable a distributed processing model
to exist within the SOAP message exchange model. By using SOAP inter-
mediaries, features can be incorporated like store and forward, intelligent
routing, transactions, security, and logging, as well as other value addi-
tions to SOAP applications.

SOAP
Sender

A

SOAP
Intermediary

B

SOAP
Intermediary

C

SOAP
Receiver

D

SOAP
Intermediary

E

Request Chain

Response Chain

126 Chapter 4

SOAP Actor
In a SOAP message to represent a target SOAP node, the SOAP actor
global attribute with a URI value can be used in the Header element.
SOAP defines an actor with a URI value, which identifies the name of the
SOAP receiver node as an ultimate destination. Listing 4.22 is an example
of a SOAP actor attribute.

<SOAP-ENV:Envelope xmlns:SOAP-

ENV=”http://schemas.xml.org/soap/envelope/”

SOAP-ENV:encodingStyle=”http://schemas.xml.org/soap/encoding/”/>

<SOAP-ENV:Header>

<b:Name xmlns:t=”http://www.wiley.com/BookService/”

SOAP-ENV:actor=”http://www.wiley.com/jws/”

SOAP-ENV :mustUnderstand=”1”>

WebServices</b:Name >

</SOAP-ENV:Header>

<SOAP:Body> <m:NewBook xmlns:m=”http://www.wiley.com/Books”>

<BookName>Developing Java Web services</BookName>

</m:NewBook>

</SOAP:Body>

</SOAP:Envelope>

Listing 4.22 SOAP actor attribute.

Additionally, SOAP defines the actor with a special URI http://
schemas.xmlsoap.org/soap/actor/next, which indicates a hop-by-hop
communication using the header element where the SOAP message is
routed via one to many intermediaries before its final destination. Listing
4.23 is an example of a SOAP message that is forwarded via two SOAP
intermediaries before the final receiving node.

<SOAP-ENV:Header>

<zz:path xmlns:zz=”http://schemas.xmlsoap.org/rp/”

SOAP-ENV:actor=”http://schemas.xmlsoap.org/soap/actor/next”

SOAP-ENV:mustUnderstand=”1”>

<zz:action></zz:action>

Listing 4.23 SOAP message forwarded via SOAP intermediaries. (continues)

Developing Web Services Using SOAP 127

<zz:to>http://www.wiley.com/soap/servlet/rpcrouter</zz:to>

<zz:fwd>

<zz:via>http://javabooks.congo.com/std/multihop/</zz:via>

<zz:via>http://linux.wiley.com/javawebservices/</zz:via>

</zz:fwd>

</zz:path>

</SOAP-ENV:Header>

Listing 4.23 SOAP message forwarded via SOAP intermediaries. (continued)

So far, we have looked at the SOAP message exchange model and the
different roles involved in a SOAP message path. Now, let’s take a look at
the SOAP communication and the supported message flow patterns.

SOAP Communication

SOAP is designed to communicate between applications independent of
the underlying platforms and programming languages. To enable commu-
nication between SOAP nodes, SOAP supports the following two types of
communication models:

SOAP RPC. It defines a remote procedural call-based synchronous
communication where the SOAP nodes send and receive messages
using request and response methods and exchange parameters and
then return the values.

SOAP Messaging. It defines a document-driven communication
where SOAP nodes send and receive XML-based documents using
synchronous and asynchronous messaging.

Now, let’s explore the details of both the communication model and how
it is represented in the SOAP messages.

SOAP RPC
The SOAP RPC representation defines a tightly coupled communication
model based on requests and responses. Using RPC conventions, the
SOAP message is represented by method names with zero or more para-
meters and return values. Each SOAP request message represents a call
method to a remote object in a SOAP server and each method call will have
zero or more parameters. Similarly, the SOAP response message will return
the results as return values with zero or more out parameters. In both

128 Chapter 4

SOAP RPC requests and responses, the method calls are serialized into
XML-based data types defined by the SOAP encoding rules.

Listing 4.24 is an example of a SOAP RPC request making a method call
GetBookPrice for obtaining a book price from a SOAP server namespace
http://www.wiley.com/jws.book.priceList using a ”book-
name” parameter of ”Developing Java Web Services”.

<SOAP-ENV:Envelope

xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”

xmlns:xsi=”http://www.w3c.org/2001/XMLSchema-instance”

xmlns:xsd=”http://www.w3c.org/2001/XMLSchema”

SOAP-ENV:encodingStyle

=”http://schemas.xmlsoap.org/soap/encoding/”>

<SOAP-ENV:Header>

</SOAP-ENV:Header>

<SOAP-ENV:Body>

<m:GetBookPrice

xmlns:m=”http://www.wiley.com/jws.book.priceList”>

<bookname xsi:type=’xsd:string’>

Developing Java Web services</bookname>

</m:GetBookPrice>

</SOAP-ENV:Body>

</SOAP-ENV: Envelope>

Listing 4.24 SOAP request using RPC-based communication.

The SOAP message in Listing 4.25 represents the SOAP RPC response
after processing the SOAP request, which returns the result of the Get-
BookPrice method from the SOAP server namespace http://www.
wiley.com/jws.book.priceList using a “Price” parameter with
“$50” as its value.

<SOAP-ENV:Envelope

xmlns:SOAP-ENV=http://schemas.xmlsoap.org/soap/envelope/

xmlns:xsi=”http://www.w3c.org/2001/XMLSchema-instance”

xmlns:xsd=”http://www.w3c.org/2001/XMLSchema”

SOAP-ENV:encodingStyle

=”http://schemas.xmlsoap.org/soap/encoding/”/>

<SOAP-ENV:Body>

<m:GetBookPriceResponse xmlns:m=”

http://www.wiley.com/jws.book.priceList”>

<Price>50.00</Price>

Listing 4.25 SOAP response message using RPC-based communication. (continues)

Developing Web Services Using SOAP 129

</m:GetBookPriceResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Listing 4.25 SOAP response message using RPC-based communication. (continued)

The communication model in Listing 4.25 is similar to a traditional
CORBA- or RMI-based communication model, except the serialized data
types are represented by XML and derived from SOAP encoding rules.

SOAP Messaging

SOAP Messaging represents a loosely coupled communication model
based on message notification and the exchange of XML documents. The
SOAP message body is represented by XML documents or literals encoded
according to a specific W3C XML schema, and it is produced and con-
sumed by sending or receiving SOAP node(s). The SOAP sender node
sends a message with an XML document as its body message and the
SOAP receiver node processes it.

Listing 4.26 represents a SOAP message and a SOAP messaging-based
communication. The message contains a header block InventoryNotice
and the body product, both of which are application-defined and not
defined by SOAP. The header contains information required by the
receiver node and the body contains the actual message to be delivered.

<env:Envelope xmlns:env=”http://www.w3.org/2001/12/soap-envelope”>

<env:Header>

<n:InventoryNotice xmlns:n=”http://jws.wiley.com/Inventory”>

<n:productcode>J6876896896</n:productcode>

</n: InventoryNotice>

</env:Header>

<env:Body>

<m:product xmlns:m=”http://jws.wiley.com/product”>

<m:name>Developing Java Web Services</m:name>

<m:quantity>25000</n:quantity>

<m:date>2002-07-01T14:00:00-05:00</n:date>

</m:product>

</env:Body>

</env:Envelope>

Listing 4.26 SOAP message using messaging-based communication.

130 Chapter 4

So far, we have looked at SOAP messages, conventions, encoding rules,
and its communication model. Now, let’s take a look at its bindings to the
transport protocols required for its messaging environment.

SOAP Bindings for Transport Protocols

In the last section, we looked at SOAP communication and how the SOAP
messages are represented using RPC- and messaging-based communica-
tion approaches. But, interestingly, the SOAP specifications do not specify
and mandate any underlying protocol for its communication as it chooses
to bind with a variety of transport protocols between the SOAP nodes.
According to the SOAP specifications for binding the framework, the
SOAP bindings define the requirements for sending and receiving mes-
sages using a transport protocol between the SOAP nodes. These bindings
also define the syntactic and semantic rules for processing the incom-
ing/outgoing SOAP messages and a supporting set of message exchang-
ing patterns. This enables SOAP to be used in a variety of applications and
on OS platforms using a variety of protocols.

Although SOAP can potentially be used over a variety of transport pro-
tocols, initially the SOAP 1.0 specification mandated the use of HTTP as
its transport protocol; the later specifications opened their support for
other Internet-based protocols like SMTP and FTP. Lately, major SOAP
vendors have made their implementations available using popular trans-
port protocol bindings like POP3, BEEP, JMS, Custom Message-Oriented-
Middleware, and proprietary protocols using TCP/IP sockets. SOAP uses
these protocol bindings as a mechanism for carrying the URI of the SOAP
nodes. Typically in an HTTP request, the URI indicates the endpoint of the
SOAP resource where the invocation is being made.

Now, let’s explore the SOAP bindings for HTTP and SMTP and under-
stand how the SOAP messages are represented in these transport protocols
during communication.

SOAP over HTTP
The use of HTTP as a transport protocol for SOAP communication
becomes a natural fit for SOAP/RPC. This enables a decentralized SOAP
environment to exist by using the HTTP request/response-based commu-
nication over the Internet or an intranet by sending SOAP request parame-
ters in an HTTP request and receiving SOAP response parameters in an
HTTP response. Using SOAP over HTTP does not require overriding any

Developing Web Services Using SOAP 131

existing syntactic and semantic rules of HTTP, but it maps the syntax and
semantics of HTTP.

By adopting SOAP over HTTP, SOAP messages can be sent through the
default HTTP port 80 without requiring and opening other firewall ports.
The only constraint while using SOAP over HTTP is the requirement to use
the special header tag for defining the MIME type as Content-Type:
text/xml.

Example of an HTTP-Based SOAP Request

Listing 4.27 is an example of an HTTP-based SOAP request for obtaining
the book price from http://jws.wiley.com/GetBookPrice using bookname
as its parameter.

POST /GetBookPrice HTTP/1.1

User Agent: Mozilla/4.0 (Linux)

Host: nramesh:8080

Content-Type: text/xml; charset=”utf-8”

Content-length: 546

SOAPAction: “/GetBookPrice”

<?xml version=”1.0”?>

<SOAP-ENV:Envelope

SOAP-ENV:encodingStyle=

“http://schemas.xmlsoap.org/soap/encoding/”

xmlns:SOAP-ENC=”http://schemas.xmlsoap.org/soap/encoding/”

xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”

xmlns:xsd=”http://www.w3.org/2001/XMLSchema”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”>

<SOAP-ENV:Body>

<m:getBookPrice xmlns:m=”http://jws.wiley.com/”>

<bookname xsi:type=”xsd:string”>

Developing Java Web Services</bookname>

</m:getBookPrice>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Listing 4.27 SOAP request message using HTTP.

Example of an HTTP-Based SOAP Response

Listing 4.28 is an example of an HTTP-based SOAP response returning the
results as the book price from http://jws.wiley.com/GetBookPrice.

132 Chapter 4

HTTP/1.1 200 OK

Connection: close

Content-Length: 524

Content-Type: text/xml; charset=”utf-8”

Date: Fri, 3 May 2002 05:05:04 GMT

Server: Apache/1.3.0

<?xml version=”1.0”?>

<SOAP-ENV:Envelope

SOAP-ENV:encodingStyle=”

http://schemas.xmlsoap.org/soap/encoding/”

xmlns:SOAP-ENC=”http://schemas.xmlsoap.org/soap/encoding/”

xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”

xmlns:xsd=”http://www.w3.org/2001/XMLSchema”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”>

<SOAP-ENV:Body>

<m:getBookPriceResponse

xmlns:m=”http://jws.wiley.com/GetBookPrice”>

<Result xsi:type=”xsd:string”>USD 50.00</Result>

</m:getBookPriceResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Listing 4.28 SOAP response message using HTTP.

In case of errors while processing the SOAP request, the SOAP applica-
tion will send a response message with HTTP 500 “Internal Server
Error” and include a SOAP Fault indicating the SOAP processing error.

The SOAP 1.1 specifications define the usage of HTTP as its primary
transport protocol for communication. SOAP 1.1 specifications also define
the usage of the HTTP extension framework—an extension of the HTTP
protocol for adding message extensions, encoding, HTTP-derived proto-
cols, and so on.

Using a SOAP/HTTP Extension Framework

How the HTTP extension framework is used as a transport binding
depends upon the SOAP communication requirements defined by the
SOAP nodes. It is similar to HTTP with additional mandatory declarations
in the header using an “M-” prefix for all HTTP methods (that is, M-GET,
M-POST, and so forth).

Developing Web Services Using SOAP 133

Listing 4.29 is a sample header using an HTTP extension framework-
based SOAP request.

M-POST /GetBookPrice HTTP/1.1

Man: “http://schemas.xmlsoap.org/soap/envelope/”;

Content-Type: text/xml; charset=”utf-8”

Content-Length: xxxx

SOAPAction: “http://jws.wiley.com/BookPrice#WebServices”

<SOAP-ENV:Envelope>

</SOAP-ENV:Envelope>

Listing 4.29 SOAP request message using an HTTP extension framework.

Listing 4.30 shows the response header using the HTTP extension
framework.

HTTP/1.1 200 OK

Ext:

Content-Type: text/xml; charset=”utf-8”

Content-Length: xxxx

<SOAP-ENV:Envelope>

</SOAP-ENV:Envelope>

Listing 4.30 SOAP response message using an HTTP extension framework.

In case of errors, the servers force a response message. If the extension
declarations do not match the resource, then it responds with a 510 (Not
Extended) HTTP status-code. If one or more mandatory extension declara-
tions are present and other following declarations are not true, then it
responds with a 505 (HTTP Version Not Supported) HTTP status-code.

SOAP over SMTP
The use of SOAP over the Simple Mail Transport Protocol (SMTP) permits
SOAP messages to be enabled with asynchronous communication and sup-
ports one-way notifications and document-driven messaging requirements.

134 Chapter 4

It also helps SOAP messaging where request/response messaging is not a
good fit and also where HTTP semantics do not apply naturally.

The SOAP 1.1 specifications define the usage of SMTP as a protocol bind-
ing for SOAP applications, especially where the HTTP-based request/
response is not possible and where document-driven messaging is
applicable. In case SOAP over SMTP is used to perform request/response
scenarios, it is handled using message correlation techniques by providing
unique Message-Id and Reply-To headers. This means that the SOAP
message will send the request with a Message-Id in the header and the
response SOAP message will contain an In-Reply-To header containing the
originator’s Message-Id.

Listing 4.31 shows an example of a SOAP request message using SOAP
over SMTP for obtaining the status information of a purchase order.

To: <webservices@wiley.com>

From: <nramesh@post.harvard.edu>

Reply-To: <nramesh@post.harvard.edu>

Date: Tue, 03 May 2002 02:21:00 -0200

Message-Id: <1E23B5F132D3EF3C44BCB54532167C5@post.harvard.edu>

MIME-Version: 1.0

Content-Type: text/xml; charset=utf-8

Content-Transfer-Encoding: QUOTED-PRINTABLE

<?xml version=”1.0” encoding=”UTF-8”?>

<SOAP-ENV:Envelope

SOAP-ENV:encodingStyle=

“http://schemas.xmlsoap.org/soap/encoding/”

xmlns:SOAP-ENC=”http://schemas.xmlsoap.org/soap/encoding/”

xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”

xmlns:xsd=”http://www.w3.org/2001/XMLSchema”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”>

<SOAP-ENV:Body>

<m:getStatusInfo xmlns:m=”http://jws.wiley.com/”>

<PurchaseOrderNo>JWS739794-04</PurchaseOrderNo>

</m:getStatusInfo>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Listing 4.31 SOAP request message using SMTP.

The response message returning the results will be as shown in Listing 4.32.
Most SOAP implementations providing the SOAP messaging-based

communication model use SMTP to transport SOAP documents between
the SOAP nodes.

Developing Web Services Using SOAP 135

TEAMFL
Y

Team-Fly®

To: <nramesh@post.harvard.edu>

From: <webservices@wiley.com>

Date: Tue, 03 May 2002 02:31:00 -0210

In-Reply-To: <1E23B5F132D3EF3C44BCB54532167C5@post.harvard.edu>

Message-Id: <1E23B5F132D3EF3C44BCB54532167C5@wiley.com>

MIME-Version: 1.0

Content-Type: TEXT/XML; charset=utf-8

Content-Transfer-Encoding: QUOTED-PRINTABLE

<?xml version=”1.0” encoding=”UTF-8”?>

<SOAP-ENV:Envelope

SOAP-ENV:encodingStyle=

“http://schemas.xmlsoap.org/soap/encoding/”

xmlns:SOAP-ENC=”http://schemas.xmlsoap.org/soap/encoding/”

xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”

xmlns:xsd=”http://www.w3.org/2001/XMLSchema”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”>

<SOAP-ENV:Body>

<m:getStatusResponse xmlns:m=”http://jws.wiley.com/”>

<status>Product Shipment scheduled - Fedex ID

866689689689</status>

</m:getStatusResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Listing 4.32 SOAP response message using SMTP.

Note that SMTP may not provide guaranteed message delivery in cases
of limitations of message size of the receiving SOAP nodes. Therefore, the
SOAP sender nodes may require using custom-delivery receipts and read-
ing the receipts for the email messages they send. The SOAP application
developers can use the Internet email messaging servers as the provider to
send SOAP messages as email text or attachments. And, it becomes the
application developer’s responsibility to parse through the email contents
and to process the contents of the messages. Some common problems are
the result of partial email messages and missing attachments.

Other SOAP Bindings
As already noted, SOAP does not mandate any protocol-specific require-
ments and it can be used with any transport protocols. Using it has a distinct
advantage for enabling application integration, interapplication communi-

136 Chapter 4

cation, and interoperability. Lately, SOAP application vendors have released
their implementations providing support for the SOAP bindings, especially
for the most popular industry standard protocols such as HTTP/S, JMS, and
BEEP.

Now, let’s take a brief look at those popular SOAP bindings for industry
protocols and their features.

SOAP over HTTP/SSL

In addition to using SOAP over HTTP, the SOAP messages can take advan-
tage of using Secure Socket Layer (SSL) for security and other HTTP-based
protocol features. SSL enables encrypted data to be securely transmitted
between the HTTP client and the server with the use of encryption algo-
rithms. Using SSL with SOAP messages enables the encryption of
messages with greater security and confidentiality between the SOAP
nodes. It also is possible to add MAC (Media access control) addresses of
network card interfaces in the transmitted messages.

Using HTTP/SSL requires certificates on both the sending and receiving
SOAP nodes. As SOAP does not define security or reliability mechanisms
as part of its messages, most SOAP implementations use HTTP/SSL as its
transport protocol for secure communication.

SOAP over JMS

To enable SOAP messages to communicate with J2EE-based components and
messaging applications, most SOAP vendors provide SOAP messaging over
JMS (Java Messaging Service) with JMS-compliant MOM providers such as
Sun One MQ, Sonic MQ, Websphere MQSeries, and so on. This allows SOAP-
based asynchronous messaging and enables the SOAP messages to achieve
reliability and guaranteed message delivery using a JMS provider.

In this case, the JMS destination queues are represented in the SOAP
messages as target destinations. The SOAP nodes use the JMS queue for send-
ing and receiving SOAP requests and SOAP responses. The JMS provider
then would implement methods to handle the SOAP message as a payload.

SOAP over BEEP

Blocks Extensible Exchange Protocol (BEEP) defines a generic application
transport protocol framework for connection-oriented, asynchronous mes-
saging that enables peer-to-peer, client-server, or server-to-server messaging.

Developing Web Services Using SOAP 137

SOAP over BEEP enables the use of BEEP as a protocol framework that
enables SOAP developers to focus on the aspects of the SOAP applications
instead of finding a way to establish communication. This means that
BEEP takes care of the communication protocol. BEEP, as a protocol, gov-
erns the connections, authentication, and sending and receiving of mes-
sages at the level of TCP/IP. At the time of this book’s writing, the SOAP
over BEEP specification is available as an IETF (Internet Engineering Task
Force) working draft that can be obtained from http://beepcore.org/beep
core/beep-soap.jsp.

So far, we have looked at SOAP communication and protocols. Let’s now
take a look at the different messaging patterns supported by them.

SOAP Message Exchange Patterns
Based on the underlying transport protocol, to enhance the communication
and message path model between the SOAP nodes, SOAP chooses an
interaction pattern depending upon the communication model. Although
it depends upon SOAP implementation, SOAP messages may support the
following messaging exchange patterns to define the message path and
transmission of messages between SOAP nodes, including intermediaries.
It is important to note that these patterns are introduced as part of SOAP
1.2 specifications.

The most common SOAP messaging patterns are as follows:

One-way message. In this pattern, the SOAP client application sends
SOAP messages to its SOAP server without any response being
returned (see Figure 4.4). It is typically found in email messages.

Request/response exchange. In this pattern, the SOAP client sends a
request message that results in a response message from the SOAP
server to the client (see Figure 4.5).

Figure 4.4 One-way message pattern.

SOAP
Client

SOAP Message SOAP
Server

138 Chapter 4

Figure 4.5 Request/Response pattern.

Figure 4.6 Request/N*Response pattern.

Request/N*Response pattern. It is similar to a request/response
pattern, except the SOAP client sends a request that results in zero to
many response messages from the SOAP server to the client (see
Figure 4.6).

Notification pattern. In this pattern, the SOAP server sends messages
to the SOAP client like an event notification, without regard
to a response (see Figure 4.7).

Solicit-response pattern. In this pattern, the SOAP server sends a
request message to the SOAP client like a status checking or an audit
and the client sends out a response message (see Figure 4.8).

Figure 4.7 Notification pattern.

Figure 4.8 Solicit-response pattern.

SOAP
Client

SOAP Message

SOAP Response Message
SOAP
Server

SOAP
Client

SOAP Message (s) SOAP
Server

SOAP
Client

SOAP Request Message

SOAP Response Message (s)

SOAP Response Message (s)

SOAP
Server

SOAP
Client

SOAP Request Message

SOAP Response Message
SOAP
Server

Developing Web Services Using SOAP 139

Note that the previous patterns can be implemented based on the
transport protocols and their supporting communication models.

SOAP Security

Security in SOAP messages plays a vital role in access control, encryption,
and data integrity during communication. In general, SOAP messages do
not carry or define any specific security mechanisms. However, using the
SOAP headers provides a way to define and add features enabling the
implementation of application-specific security in a form of XML-based
metadata. The metadata information can be application-specific informa-
tion incorporating message security with associated security algorithms
like encryption and digital signatures. More importantly, SOAP supports
various transport protocols for communication, thus it also is possible to
incorporate transport protocol-supported security mechanisms like
SSL/TLS for SOAP messages.

The first release of SOAP specifications (SOAP 1.0) did not specify any
security-related mechanisms; the following versions of W3C SOAP 1.1
draft specifications were considering enabling security by providing sup-
port for implementation of the XML-based security features. At the time of
this book’s writing, the W3C SOAP Security Extensions specifications were
available as a Note to define encryption, authorization, and digital signa-
tures in SOAP messages. But all of the security-related elements are identi-
fied using a single namespace identifier using the prefix SOAP-SEC and
with an associated URI using http://schemas.xmlsoap.org/soap
/security/. It also defines the three security element tags <SOAP-SEC:
Encryption>, <SOAP-SEC:Signature>, and <SOAP-SEC:Authorization>.
Use of these security tags enables the incorporation of encryption, digital
signatures, and authorization in SOAP messages.

The following section takes a look at how to represent these security tags
in a SOAP message.

SOAP Encryption
The use of XML-based encryption in SOAP permits secure communication
and access control to be implemented by encrypting any element in the
SOAP envelope. The W3C XML Encryption WG (XENC) defines the mech-
anisms of XML encryption in the SOAP messages. In SOAP communica-
tion, encryption can be done at the SOAP sender node or at any of the
intermediaries in the message path.

140 Chapter 4

Listing 4.33 is a sample representation of a SOAP message using XML
encryption for encrypting its data elements.

<SOAP-ENV:Envelope

xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”>

<SOAP-ENV:Header>

<SOAP-SEC:Encryption

xmlns:SOAP-SEC=”http://schemas.xmlsoap.org/soap/security/”

SOAP-ENV:actor=”some-URI”

SOAP-ENV:mustUnderstand=”1”>

<SOAP-SEC:EncryptedData>

<SOAP-SEC:EncryptedDataReference URI=”#encrypted-

element”/>

</SOAP-SEC:EncryptedData>

<xenc:EncryptedKey xmlns:xenc=

“http://www.w3.org/2001/04/xmlenc#”

Id=”myKey”

CarriedKeyName=”Symmetric Key”

Recipient=”Bill Allen”>

<xenc:EncryptionMethod

Algorithm=”http://www.w3.org/2001/04/xmlenc#rsa-1_5”/>

<ds:KeyInfo xmlns:ds=

“http://www.w3.org/2000/09/xmldsig#”>

<ds:KeyName>Bill Allen’s RSA Key</ds:KeyName>

</ds:KeyInfo>

<xenc:CipherData>

<xenc:CipherValue>ENCRYPTED KEY</xenc:CipherValue>

</xenc:CipherData>

<xenc:ReferenceList>

<xenc:DataReference URI=”#encrypted-element”/>

</xenc:ReferenceList>

</xenc:EncryptedKey>

</SOAP-SEC:Encryption>

</SOAP-ENV:Header>

<SOAP-ENV:Body>

.. </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Listing 4.33 SOAP message using XML encryption.

Listing 4.33 illustrates a SOAP message with a <SOAP-SEC:
Encryption> header entry to encrypt data referred to in the SOAP header.
It uses a symmetric key for encrypting the body element referred to in
the <xenc:EncryptedData> element. The <xenc:EncryptedData>
element in the header entry provides the reference to the <xenc:
EncryptedData> element and the symmetric key is defined in the

Developing Web Services Using SOAP 141

<xenc:EncryptedKey> element. On the SOAP receiver node, the
receiver decrypts each encrypted element by associating a Decryption-
InfoURI, which indicates <xenc:DecryptionInfo> for providing
information on how to decrypt it. To find out more information on the syn-
tax and processing rules of representing XML-based encryption, refer to
www.w3.org/TR/xmlenc-core/.

SOAP Digital Signature
The use of an XML-based digital signature in SOAP messages provides
message authentication, integrity, and non-repudiation of data during
communication. The SOAP sender node that originates the message
applies an XML-based digital signature to the SOAP body and the receiver
node validates the signature.

Listing 4.34 is a sample representation of a SOAP message using XML
digital signatures.

<SOAP-ENV:Envelope

xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”>

<SOAP-ENV:Header>

<SOAP-SEC:Signature

xmlns:SOAP-SEC=”http://schemas.xmlsoap.org/soap/security/”

SOAP-ENV:actor=”Some-URI”

SOAP-ENV:mustUnderstand=”1”>

<ds:Signature Id=”TestSignature”

xmlns:ds=”http://www.w3.org/2000/02/xmldsig#”>

<ds:SignedInfo>

<ds:CanonicalizationMethod

Algorithm=”http://www.w3.org/TR/2000/CR-xml-c14n-

20001026”>

</ds:CanonicalizationMethod>

<ds:SignatureMethod

Algorithm=”http://www.w3.org/2000/09/xmldsig#hmac-sha1”/>

<ds:Reference URI=”#Body”>

<ds:Transforms>

<ds:Transform Algorithm

=”http://www.w3.org/TR/2000/CR-xml-c14n-20001026”/>

</ds:Transforms>

<ds:DigestMethod Algorithm

=”http://www.w3.org/2000/09/xmldsig#sha1”/>

<ds:DigestValue>vAKDSiy987rplkju8ds:DigestValue>

</ds:Reference>

</ds:SignedInfo>

<ds:SignatureValue>JHJH2374e<ds:SignatureValue>

</ds:Signature>

</SOAP-SEC:Signature>

Listing 4.34 SOAP message using XML digital signatures.

142 Chapter 4

</SOAP-ENV:Header>

<SOAP-ENV:Body>

..

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Listing 4.34 SOAP message using XML digital signatures. (continued)

Listing 4.34 illustrates a SOAP message with a <SOAP-SEC: Signature>
entry applying an XML-based digital signature for signing data included
in the SOAP envelope. It uses <ds:CanonicalizationMethod>,
<ds:SignatureMethod>, and <ds:Reference> elements for defining
the algorithm methods and signing information. The <ds:Canonical-
izationMethod> refers to the algorithm for canonicalizing the Signed-
Info element digested before the signature. The SignatureMethod
defines the algorithm for converting the canonicalized SignedInfo as
a SignatureValue. To find more information on the syntax and pro-
cessing rules of representing XML-based digital signatures, refer to
www.w3.org/TR/xmldsig-core/.

SOAP Authorization
Using XML-based authorization in SOAP messages enables the authoriza-
tion of the SOAP messages using certificates from the originating SOAP
sender nodes. SOAP authorization applies an XML-based digital certificate
from an independent authorization authority to the SOAP message from
the sender.

Listing 4.35 is a sample representation of a SOAP message using an
XML-based authorization.

<SOAP-ENV:Envelope

xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”>

<SOAP-ENV:Header>

<SOAP-SEC:Authorization

xmlns:SOAP-SEC=”http://schemas.xmlsoap.org/soap/security/”

SOAP-ENV:actor=” actor-URI”

SOAP-ENV:mustUnderstand=”1”>

<AttributeCert xmlns=

“http://schemas.xmlsoap.org/soap/security/AttributeCert”>

An encoded certificate inserted here as

encrypted using actor’s public key.

</AttributeCert>

Listing 4.35 SOAP message using an XML-based authorization. (continues)

Developing Web Services Using SOAP 143

</SOAP-SEC:Authorization>

</SOAP-ENV:Header>

<SOAP-ENV:Body>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Listing 4.35 SOAP message using an XML-based authorization. (continued)

Listing 4.35 illustrates a SOAP message with a <SOAP-SEC: Autho-
rization> entry in the SOAP header applying an XML-based authoriza-
tion to authorize the SOAP message. It uses an <AttributeCert >
element to define the certificate from an independent authorization
authority. And, it can be encrypted using the receiver node or an actor’s
public key. On the SOAP receiving node, the actor uses its private key to
retrieve the certificate.

As we noted earlier, at the time of writing this chapter, the W3C SOAP
security specifications were released as a Note that is subject to change
without notice. To understand the core concepts of security and imple-
menting security in Web services security, refer to Chapter 13, “Web
Services Security.”

Building SOAP Web Services

We all are aware that SOAP provides an XML-based communication pro-
tocol solution for bridging disparate applications in a distributed environ-
ment using XML-based messaging or by remotely invoking methods.

From a Web services point of view, it defines and provides the following:

■■ A standardized way to transmit data using Internet-based protocols
and a common-wire format (XML) between the Web service
provider and its requestors.

■■ An extensible solution model using an XML-based framework
enabling the Web service providers and requestors to interoperate
with each other in a loosely coupled fashion and without knowing the
underlying application architecture (such as programming languages
and operating systems). This enables the creation of Web services over
existing applications without modifying the underlying applications.

144 Chapter 4

In a Web services implementation model, SOAP can be implemented as
a client, as a server application, or both, as follows:

■■ A SOAP-based client application plays the role of a Web services
requestor, which typically handles an XML-based request/response,
a message containing a XML document, parameters required to
invoke a remote method, or the calling of a SOAP server application.
A SOAP client can be a Web server or a traditional application run-
ning a SOAP-based proxy, which send SOAP requests or SOAP
messages using HTTP or any other supporting protocol.

■■ A SOAP server application plays the role of a Web services provider,
which processes the SOAP requests and messages from calling SOAP-
based clients. The SOAP server application interacts with its encapsu-
lated applications to process the requests or messages and then sends
a response to the calling SOAP client. SOAP server applications also
can act as SOAP intermediaries, which allows the extensibility of the
application to enable the processing and forwarding of messages
through a series of SOAP nodes or a final destination. In case of acting
SOAP intermediaries, the SOAP server application typically works as
a SOAP client application to the final destination of the message.

To understand the key challenges in the implementation of Web services
using SOAP, let’s take a look at how SOAP applications can be imple-
mented using Java and then deployed in a Java-based Web services run-
time environment.

Developing SOAP Web Services Using Java

SOAP does not mandate a single programming model nor does it define
programming language-specific bindings for its implementation. It is up to
the provider to choose a language and to define the implementation of its
language-specific bindings. In this context, to use Java as a language for
developing SOAP applications requires its Java implementation for SOAP-
specific bindings. As of today, there are many SOAP application vendors
that have made Java-based SOAP implementations for developing Web
applications to Web services.

In general, the use of Java for developing SOAP applications enables scal-
able and portable applications to be built that also can interoperate with
heterogeneous applications residing on different platforms by resolving the

Developing Web Services Using SOAP 145

TEAMFL
Y

Team-Fly®

platform-specific incompatibilities and other issues. Additionally, having
SOAP-based applications that adopt a J2EE-based infrastructure and com-
ponent framework allows the inheritance of the characteristics of J2EE con-
tainer-based services such as transactions, application security, and
back-end application/databases connectivity. The release of the Java Web
Services Developer Pack (JWSDP) also provides a full-fledged API solution
for developing SOAP-based Web services. A long list of open source com-
munities, Web services platform providers, and J2EE vendors also have
released their SOAP implementations adopting Java platform and Java-
based APIs.

To study and explore the features of a Java-based SOAP implementation,
we chose to use Apache Axis, a Java-based toolkit from Apache Software
foundation for developing SOAP-based Web services. Axis also supports
the JAX-RPC, JAXM, SAAJ, and SOAP 1.2 specifications in its forthcoming
implementations. Axis follows its predecessor efforts of Apache SOAP.
Apache refers to Axis as the next generation of Apache SOAP implementa-
tion that provides a complete solution kit for Web services, which is more
than sending and receiving SOAP messages. The Axis toolkit is available
for download at http://xml.apache.org/axis.

Developing Web Services Using Apache Axis
Apache Axis is an open-source implementation that provides a Java-based
SOAP implementation for developing Web services. To implement Web
services, it facilitates a SOAP runtime environment and Java-based API
framework for implementing the core components of Web services adopt-
ing compliant standards and protocols.

As a packaged solution, the Apache Axis environment provides the
following:

■■ A SOAP-compliant runtime environment that can be used as a
standalone SOAP server or as a plug-in component in a compliant
Java servlet engine (such as Tomcat, iPlanet, and Weblogic)

■■ An API library and runtime environment for developing SOAP RPC
and SOAP messaging-based applications and services

■■ A transport-independent means for adopting a variety of transport
protocols (such as HTTP, SMTP, and FTP)

■■ Automatic serialization and deserialization for Java objects to and
from XML in SOAP messages

■■ Support for exposing EJBs as Web services, especially the methods
of stateless session EJBs

146 Chapter 4

■■ Tools for creating WSDL from Java classes and vice-versa

■■ Tools for deploying, monitoring, and testing the Web services

Axis also provides full-fledged implementation support for Sun JWSDP
1.0 APIs, especially JAX-RPC and SAAJ. At the time of this book’s writing,
Axis 1.0B3 provides limited implementation support of JAX-RPC 1.0 and
SAAJ 1.1 specifications. To find out the current status of the Axis imple-
mentation and its availability for download, go to Apache’s XML Web site
at http://xml.apache.org/axis/.

Installing Axis for Web Services
The process of installing Axis for building a Web services environment is
quite simple. Axis can be installed as part of a Java servlet engine or as a
J2EE-compliant application server, or it also can run as an independent
server. Because our focus is creating Web services using Axis, we require
Axis installation using a Java servlet engine. For our illustration, we will be
using the Apache Tomcat 4.0.3 servlet engine available for download from
http://jakarta.apache.org/tomcat/index.html.

Now, let’s take a look at the steps involved in installing Axis within an
Apache Tomcat server environment:

1. Download the Apache Axis tool kit (current release) from
http://xml.apache.org/axis/. Unzip (Windows) or untar (UNIX)
the package to your local system directory (for example, d:\xml-
axis) and set an environment variable as AXIS_HOME.

2. Download Apache Tomcat 4.0.3 (or current release) from
http://jakarta.apache.org/builds/jakarta-tomcat-4.0/release/ and
then install it to your local system directory (that is, d:\tomcat4) and
set an environment variable as TOMCAT_HOME. After installation,
start the Tomcat server and ensure that it is working by locating
http://localhost:8080/index.html with your browser. The browser
will display the screen shown in Figure 4.9.

3. Navigate to your Axis installation home directory and copy the axis
folder from AXIS_HOME\webapps\ to TOMCAT_HOME\webapps\
to deploy the Axis libraries as an Axis servlet.

4. To deploy the Axis libraries as a servlet in the Tomcat container,
create a context in the Tomcat server configuration by editing
TOMCAT_HOME/conf/server.conf with the following lines:
<Context path=”/axis” docBase=”axis” debug=”0”

reloadable=”true” crossContext=”true”>

</Context>

Developing Web Services Using SOAP 147

Figure 4.9 Browser showing successful installation of the
Apache Tomcat environment.

5. Add axis-specific supporting class libraries (JARs) in the Tomcat
environment. The required supporting class libraries include the
following:

■■ Apache Xerces parser for Java (Xerces2) with JAXP 1.1 support,
which is available for download a http://xml.apache.org
/xerces2-j/index.html. Unzip the download and copy the
xerces.jar file to TOMCAT_HOME\webapps\axis
\WEB-INF\lib.

■■ If your application requires database connectivity or other appli-
cation access, ensure that you copy all of the JDBC drivers and
required class libraries to
TOMCAT_HOME\webapps\axis\WEB-INF\lib.

■■ As part of the kit, Axis provides class libraries for JAXRPC and
JAXM as jaxrpc.jar and saaj.jar. In the case of using JAX-RPC and
JAXM/SAAJ libraries, ensure that these JAR files are copied to
TOMCAT_HOME\common\lib.

6. To test the Axis Web services environment, start the Tomcat server.
Then, use your Web browser and open the followings URLs:

148 Chapter 4

■■ To confirm installation: http:localhost:8080/axis/index.html

■■ To validate the Axis environment: http://localhost:8080/axis
/happyaxis.jsp

■■ To list the available Axis services: http://localhost:8080/axis
/servlet/AxisServlet

7. To compile and test applications, create a run script (.bat or .sh) to
ensure that the CLASSPATH in the development environment
includes the following:
AXIS_HOME/lib/axis.jar

AXIS_HOME/lib/jaxrpc.jar

AXIS_HOME/lib/saaj.jar

AXIS_HOME/lib/commons-logging.jar

AXIS_HOME/lib/log4j-1.2.4.jar

AXIS_HOME/lib/xmlsec.jar

AXIS_HOME/lib/tt-bytecode.jar

AXIS_HOME/lib/wsdl4j.jar

AXIS_HOME/xerces.jar

AXIS_HOME/<DATABASE/OTHER_LIBRARIES.jar>

DEVELOPMENT_HOME/

Running Axis without Tomcat/Servlet Engine
The Axis toolkit also provides a server environment to test Axis-deployed
applications, which enables the services to be run and tested without
having a Web server or a J2EE environment. To start an Axis server, run
your AXIS CLASSPATH script and then execute the following:

java org.apache.axis.transport.http.SimpleAxisServer <port>

Although it helps to run and test applications in a developer environ-
ment, it is better to run the Axis environment from a Web server or a J2EE
container. Before creating services, let’s take a closer look at the Axis infra-
structure and components.

Axis Infrastructure and Components
In general, the Axis infrastructure consists of the following components as
modular subsystems functioning together as a server or client, depending
upon whether the Web services environment is a service provider or ser-
vice requestor.

Developing Web Services Using SOAP 149

Axis Engine

The Axis engine acts as the SOAP runtime environment for processing the
inbound and outbound messages by looking up the SOAPAction headers
for transport (that is, http.SOAPAction). To process messages, the Axis
engine facilitates a series of handlers as chains to invoke and process the
messages. The messages are passed to the handler for invocation as
MessageContext objects.

Handlers and Chains

The Axis engine provides both client- and server-side message processors
as client-side handlers and server-side handlers. The Axis engine processes
messages using a series of request handlers, and after the invocation of a
target service it returns as a series of response handlers. Axis defines the
group of handlers that contain similar responsibilities combined together
as chains. Axis provides a set of request and response chains grouped to
process messages on the message path and especially to support transport,
global request/response, and messaging. Axis provides service handlers to
facilitate RPC- and messaging-based Web services, depending upon the
type of the deployed services in the server environment.

The key characteristics of the Axis service handlers for RPC- and
messaging-based Web services are as follows:

In the RPC style of Web services, the service handler org.apache.
axis.providers.java.RPCProvider identifies the required method
for invocation and then executes it by providing the parameters obtained
as part of the SOAP request message. It uses serialization and deserializa-
tion of Java objects to XML and vice versa during the service request and
response.

In the messaging (document-style) type of services, the service handler
org.apache.axis.providers.java.MsgProvider calls the method
and passes the XML document obtained from the SOAP message.

Note that with the RPC-style services, the service handler processes
the messages using serialization and deserialization to convert XML
into Java objects and vice versa. With messaging-style services, the
XML data are handed over to the target method for processing. During
processing, the service handlers also throw SOAP faults as AxisFault
exceptions.

Figure 4.10 illustrates the server-side infrastructure representing the
Axis engine with the handlers and chains.

Figure 4.11 illustrates the client-side infrastructure representing the Axis
engine with the handlers and chains.

150 Chapter 4

Figure 4.10 Axis-based service provider infrastructure.

Figure 4.11 Axis-based service requestor infrastructure.

Axis Administration

The Axis administration provides the administration and configuration
information for the Axis engine to enable the runtime service chains and
other SOAP services. It allows the environment of the Axis engine to be
configured with a Web service deployment descriptor (WSDD) file.
The WSDD file defines the supported transports, global configuration
of the axis engine as handlers, and the deployed services. It is usually

HTTP,
FTP,

SMTP
etc.

Transport

Request Chain

Axis-based Service Requestor Environment

Response Chain

Global
Handler

Global
Handler

Sender/
Receiver

Transport
Handler

Transport
Handler

Client
Application

Service
Provider

Service
Handler

Service
Handler

Service
Requestor

HTTP,
FTP,
SMTP
etc.

Transport

Request Chain

Axis-based Service Provider Environment

Response Chain

Global
Handler

Global
Handler

Service
Handler

Service
Handler

Target
Application

Provider

RPC
or

Messaging
Provider

Transport
Listener

Transport
Handler

Transport
Handler

Developing Web Services Using SOAP 151

represented as server-config.wsdd. To obtain information about the Axis
engine installation and its supported transports, services, handlers, and so
on, run the following command:

java org.apache.axis.client.AdminClient list

It will bring up the listing that includes an Axis administration service
deployed as AdminService. Axis also allows remote administration, which
can be configured by setting an enableRemoteAdmin parameter as true.

We will take a closer look at configuring other administration and
deployment tasks in the section, "Creating Web Services Using Axis: An
Example," later in this chapter.

Serializers and Deserializers

Axis supports SOAP encoding to convert objects and their values between
the native programming language and XML representations. To support
SOAP encoding, Axis provides serializing and deserializing mechanisms,
which enable the conversion of the Java primitives and objects to XML-
based representations and vice versa, without writing any specific code. In
the case of Java Beans, Axis requires the Java classes to be mapped with a
W3C XML Schema type using a <beanMapping> tag in the WSDD file. If
bean mapping is not flexible, Axis allows the definition of custom serial-
ization using a <typeMapping> tag. In this case, the developer has to
implement the serializers and deserializers factory classes to convert the
object to XML and vice versa supporting SOAP encoding specifications. An
example mapping in an Axis WSDD file is shown as follows:

<typeMapping qname=”ns:BookCatalog”

xmlns:ns=”http://jws.wiley.com/Book.xsd”

languageSpecificType=”java:jws.wiley.CustomObject”

serializer=”com.jws.wiley.CustomSerializer”

deserializer=”com.jws.wiley.CustomDeserializer”

encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”/>

Tools for Emitting WSDL

Axis supports WSDL to describe Web services as service descriptions
representing the location of services, supported data types, supported
messaging styles and patterns, and so on. Axis facilitates WSDL support
with the following three options:

152 Chapter 4

■■ If an Axis-based service provider deployed its Web services using a
Web server, then the service requestor may obtain the WSDL by
appending ?WSDL to the end of the service URL. This would
generate the WSDL describing the deployed service at the service
provider. For example:
http://jws.wiley.com/axis/services/AcmeCatalogService?WSDL

■■ The WSDL2Java utility enables the creation of Java-based artifacts
such as stubs, skeletons, and its associated data types from WSDL.
This helps the service requestors to build Java proxy clients from the
WSDL generated by the service provider.
java org.apache.axis.wsdl.WSDL2Java <PROVIDER-WSDL-URL>

■■ The Java2WSDL utility enables the generation of WSDL from Java
classes, which helps developers to create and describe a Web service
from a Java interface.
java org.apache.axis.wsdl.Java2WSDL -o myService.wsdl

-l <Service_url_location>

-n <Namespace URL>

-p “java.class”

Axis TCP Monitor

Axis provides tcpmon, a TCP monitor utility that allows viewing, logging,
and debugging of the SOAP request and responses. It helps the Axis-based
Web services environment to monitor the SOAP requests and responses in
real time and also allows the testing of the SOAP requests by editing and
resubmitting them.

Use of the tcpmon utility requires a client listening port, a target SOAP
server host, and its port. The Axis client application should choose a local
client port through which the tcpmon can listen to the connections then
route them by tunneling to the target SOAP server host and using its port.
The tcpmon logs all the SOAP request and response traffic and displays it
in the GUI window.

To view the tcpmon utility, you may run the following command with
options:

java org.apache.axis.utils.tcpmon

<listeningport>

<targetservername>

<targetserverport>

Developing Web Services Using SOAP 153

For instance, to create a tcpmon session for a client sending requests to
a listening port 9999 and the target Axis server running on localhost
using port 8080, the command line option will be as follows:

java org.apache.axis.utils.tcpmon 9999 localhost 8080

This will display the Axis tcpmon utility, a GUI window as shown in
Figure 4.12.

The requests also can be modified and then resent. This enables the
behavior to be studied and the response message to be viewed without
changing the client application.

You also may execute the tcpmon command without options, which
would show up in an Administration window where those options could
be filled in. The tcpmon utility enables all of the requests and responses in
XML to be saved as a text file.

Axis Web Services Programming Model

To create a Web service in an Axis environment, implementation of the
following is required:

1. Create the service provider (server application)

2. Create the service requestor (client applications)

Figure 4.12 Axis TCP Monitor utility for viewing SOAP messages.

154 Chapter 4

Let’s take a look at the key concepts involved in implementing the Web
service provider and requestors using an Axis environment.

Creating the Service

Axis allows a service to be created from an existing Java-based Web appli-
cation just by identifying the methods required to be exposed and deploy-
ing them in the Axis server.

1. In an RPC-based communication model, a service client invokes the
exposed method and a response is returned. In this process, the Axis
server engine transforms the Java objects to XML and vice versa,
using automatic serializer and deserializer mechanisms during
communication. The following example is a simple service example,
which accepts a string parameter and invokes a method
justSayHello and returns a String parameter:
public class HelloAxis {

public String justSayHello(String s) {

return “Hello “ + s “, Welcome to Axis !!!”;

}

}

2. In a messaging-based communication model, the client sends an
XML document and the server application receives the XML as a
W3C Document object for processing. It is not mandatory for the
service to send a response back to the client. In case of sending a
response, the service returns a W3C Document object as a body of
the SOAP response message. The following snippet is a method that
receives a purchase order XML as a W3C document for processing.
Upon successful processing, it sends out a response message as a
W3C document with the shipping notice, otherwise it sends out a
product availability status notice.
public Document sendPODocument (Document poXML)

throws Exception {

// process purchase order

boolean processPO = submitPurchaseOrder(poXML);

if (processPO) {

//TRUE: create Shipping notice

Document doc = getShippingDoc(poXML);

}

else

Developing Web Services Using SOAP 155

TEAMFL
Y

Team-Fly®

// FALSE: create product availability status

Document doc = getAvailabilityStatus(poXML);

return doc;

}

Creating the Service Requestor

Axis allows service clients to be created in two different ways:

1. Having the required values for locating and invoking the service
provider, such as SOAP, endpoint of the service, methods, parame-
ters, and so on

2. Using a WSDL-based service description exposed by the service
provider

Now, let’s take a look at the programming steps involved in creating the
service client with all of the required parameters and how to invoke the
service exposed by the provider.

Creating a Normal Service Requestor Client

In case of an RPC-based communication model, the key programming
steps involved for creating a service client are as follows:

1. Import Axis packages, the most important ones of which are the
following:
import org.apache.axis.AxisFault;

import org.apache.axis.client.Call;

import org.apache.axis.client.Service;

import org.apache.axis.encoding.XMLType;

import javax.xml.rpc.ParameterMode;

import javax.xml.namespace.QName;

2. Define the endpoint of the service:
String endpoint =

“http://localhost:8080/axis/services/HelloService”;

3. Create a service:
Service service = new Service();

4. Create a SOAP request call:
Call call = (Call) service.createCall();

5. Set the target endpoint of the provider location:
call.setTargetEndpointAddress(endpoint);

156 Chapter 4

6. Set the service operation name and its methods:
call.setOperationName(

new QName(“HelloService”, “sayHello”));

7. Set the parameters required for the operation. The parameters must
provide the equivalent mapping of a W3C XML Schema:
call.addParameter(“myName”,

MLType.XSD_STRING, ParameterMode.IN);

8. Set the return type parameters from the SOAP response. The para-
meters must provide the equivalent mapping of a W3C XML
Schema:
call.setReturnType(XMLType.XSD_STRING);

9. Invoke the service by sending the request and retrieve the results.
The invoke() method returns a Java object with parameters of the
method and it is required to cast the return values as a Java object:
Object responseObj = call.invoke(new Object[]

{new Integer(myName)});

In case of a messaging-based communication model, the key program-
ming steps involved for creating the service client are as follows:

1. Import the Axis packages, the most important ones of which are the
following:
import org.apache.axis.client.Service;

import org.apache.axis.client.Call;

import org.apache.axis.message.*;

import org.apache.axis.*;

import java.net.URL;

import org.apache.axis.utils.XMLUtils;

import org.w3c.dom.*;

2. Define the endpoint of the service:
String endpoint =

“http://localhost:8080/axis/services/HelloMSG”;

3. Read the XML document as an input stream or string:
InputStream is =

ClassLoader.getSystemResourceAsStream(“hello.xml”);

4. Create a new service:
Service service = new Service();

5. Create a SOAP request call using the service:
Call call = (Call) service.createCall();

Developing Web Services Using SOAP 157

6. Set the target endpoint of the provider location:
call.setTargetEndpointAddress(endpoint);

7. Create a SOAP envelope with an XML payload:
SOAPEnvelope env = new SOAPEnvelope(is);

8. Send the SOAP envelope with an XML payload to the destination:
call.invoke(env);

9. In case of obtaining a response message, the response message also
will be a W3C document as well:
SOAPEnvelope elems = (SOAPEnvelope)call.invoke(env);

Creating the Service Requestor Client from WSDL

Axis provides a WSDL2Java utility for building Java proxies and skeletons
from WSDL obtained from service providers. To create Java proxy classes
from a WSDL, you would run the following command:

java org.apache.axis.wsdl.WSDL2Java <Provider-WSDL-URL>

It also is possible to create service clients dynamically using dynamic
invocation interfaces provided by JAX-RPC. This is discussed further in
Chapter 10, “Building RPC Web Services with JAX-RPC.”

To understand how to create Axis service clients from WSDL, refer to
the full-featured example in Chapter 3, “Building the Web Services
Architecture.”

Axis Deployment Model

Axis facilitates easy deployment and undeployment of services using XML-
based Web services deployment descriptors (WSDDs). It enables deploying
and undeploying services and also Axis-specific resources like handlers and
chains using an administration utility ‘AdminClient’ provided as part of
the Axis toolkit.

To deploy a service, ensure that the AXIS CLASSPATH is set and run the
following command:

java org.apache.axis.client.AdminClient deploy.wsdd

The deploy.wsdd refers to the deployment descriptor defining the ser-
vice, classes, methods, provider (RPC or Messaging), and its namespaces.

Listing 4.36 is a sample WSDD to deploy a service in an Axis environment.

158 Chapter 4

<deployment name=”test”

xmlns=”http://xml.apache.org/axis/wsdd/”

xmlns:java=”http://xml.apache.org/axis/wsdd/providers/java”

xmlns:xsd=”http://www.w3.org/2000/10/XMLSchema”

xmlns:xsi=”http://www.w3.org/2000/10/XMLSchema-instance”>

<service name=”HelloService” provider=”java:RPC”>

<parameter name=”className”

value=”jws.ch4.helloservice.HelloService”/>

<parameter name=”allowedMethods” value=”justSayHello”/>

</service>

</deployment>

Listing 4.36 Web services deployment descriptor (WSDD) for deploying a service.

The previous WSDD defines HelloService using a provider with
an RPC-based communication model by exposing its class jws.ch4
.helloservice.HelloService and its method justSayHello. The
deployment name test is an identifier and the namespaces define the
W3C XML schemas associated with the implementation.

Similarly, to undeploy a service, ensure that the AXIS CLASSPATH is set
and then run the following command:

java org.apache.axis.client.AdminClient undeploy.wsdd

The undeploy.wsdd defines the service required to undeploy from the
Axis runtime environment. Listing 4.37 is a sample WSDD defining the ser-
vices to be undeployed:

<undeployment name=”test”

xmlns=”http://xml.apache.org/axis/wsdd/”

xmlns:java=”http://xml.apache.org/axis/wsdd/providers/java”

xmlns:xsd=”http://www.w3.org/2000/10/XMLSchema”

xmlns:xsi=”http://www.w3.org/2000/10/XMLSchema-instance”>

<service name=” HelloService “/>

</undeployment>

Listing 4.37 Web services deployment descriptor (WSDD) for undeploying a service.

Developing Web Services Using SOAP 159

Additionally, to find out the list of services deployed in the Axis envi-
ronment, run the following command:

java org.apache.axis.client.AdminClient list

This command will list all the services deployed in an Axis environment. It
also is possible to deploy and undeploy the services in an Axis environment
by editing the server-config.xml file located at AXIS_HOME directory.

Deploying Axis Services Using JWS Files (.jws)

Axis allows the deployment of Web services using Java classes with .jws
extensions. It is quite typical to the Java server pages (JSP) deployed in a
servlet engine. By placing Java classes (source files) with .jws extensions in
the Web applications directory (that is, TOMCAT_HOME/webapps/axis/)
during runtime, Axis runtime automatically compiles and deploys the
classes with all of the methods as deployed services. In this case, it does not
require WSDD-deployment descriptors.

Creating Web Services Using Axis: An Example

In this section, we build on the case study example done in Chapter 3,
“Building the Web Services Architecture,” featuring the ‘ACME Web Ser-
vices Company’ with additional functionalities. Basically, the ACME Web
Services Company is a Web-based services provider that sells computer
products by delivering XML-based data over the Internet as Web services
to its partners and resellers by exposing its business functions.

This case study illustration discusses the following functions exposed as
services from the ACME Web Services provider:

■■ Getting the product information

■■ Submitting the purchase order

The service requesters invoke ACME Web Services to obtain product
information and then to submit a purchase order for a selected product.
The service requesters use an Axis-based application environment to do
SOAP-based service invocation with ACME Web services.

We will be creating Apache Axis-based Web service components for the
service provider, and for the client service requestor we will implement
client service components using an Axis client engine-based client invoca-
tion. It adopts a SOAP RPC and SOAP messaging-based communication
model to cater the specific functional scenarios.

160 Chapter 4

Building an Axis-Based Infrastructure
To build and deploy ACME Web services in the Axis environment, we
chose to use the following infrastructure solutions:

ON THE SERVICE PROVIDER SIDE

■■ The ACME Web services provider will use Apache Tomcat as its
Servlet engine/Web server, including the Axis-based SOAP runtime
environment.

■■ It also will use PointBase as its database for querying product catalog
information and storing its purchase orders. The PointBase database
also can be used as an evaluation copy for development purposes.
For more information on understanding the PointBase database, refer
to the documentation available at http://www.pointbase.com/.

ON THE SERVICE REQUESTOR SIDE

■■ The service requester will use Apache Axis as its SOAP client envi-
ronment to invoke the services of the ACME Web services provider.

To build and deploy the components and SOAP interfaces, we created
XML-based build scripts using Apache Ant. Apache Ant is a Java-based
Makefile utility available as a free download at http://jakarta.apache.org
/ant/index.html.

Figure 4.13 represents the Axis-based Web services infrastructure for
building ACME Web services.

Figure 4.13 Axis-based infrastructure for ACME Web services.

Apache Axis 1.0B

Axis Client
Runtime
Environment

Axis/
SOAP
Clients

Web
Services

SOAP

Messaging

Axis Web
Services
Environment

PointBase

Apache TOMCAT Server 4.0.x

Applications

Resources

Developing Web Services Using SOAP 161

To try out this example, you may download the chapter-specific source
code and documentation made available at http://www.wiley.com
/compbooks/nagappan. The source code and README for installing and
running this example are available as part of chapter-4.zip.

Understanding the Application Design

As we discussed earlier, the ACME Web services provider will host its
application as services over the Internet by exposing its underlying busi-
ness components. In particular, we will be implementing the following sce-
narios of the ACME business functions as services:

Scenario 1 (RPC model). Get the complete product information for a
particular product ID from the ACME product database. This will be
handled using SOAP RPC-based communication, where the service
requestor client sends a product ID and gets the product information
as it response.

Scenario 2 (Messaging model). Submit a purchase order to the
ACME PO database. This will be handled using SOAP messaging-
based communication, where the service requestor sends as purchase
order as an XML document to the service provider, and the service
provider processes the message and then writes it to a database. In
return, the service provider then sends a document containing a
response message, mentioning the success or failure of the process.

To understand the problem and flow of events, the sequence diagrams
shown in Figure 4.14 and Figure 4.15 illustrate the various sequences of
actions performed by a client invoking the ACME Web services deployed
in the Axis-based Web services environment.

Based on the previous sequence of events, we chose to use a façade pat-
tern (GoF) using an AcmeXMLHelper class to act as a proxy by encapsu-
lating the business functionalities, which also include database interaction,
XML construction, XML parsing operations, and so on. More specifically,
the AcmeXMLhelper will handle all of the XML construction tasks, and
AcmeDAO will handle the database interaction.

162 Chapter 4

Figure 4.14 Sequence diagram for ACME Web services (RPC scenario).

The following Figures 4.16 and 4.17 depict the class diagram of the
server-side components that support the ACME Web service provider for
RPC and Messaging scenarios.

ACME Service Requestor
:GetAcmeProductInfo

Request for
ACME Product
Information

Call business methods
for product information

Call DAO to
deliver data

Create ACME
value object

Return ACME
Value object

Return Data
as ACME
Value objects

Return Data
as XML String

Return
Response
ACME Product
Information
as XML String

Return ACME
Product data

Query ACME product
tables

ACME Service Provider
:AcmeProductInfoService

AcmeXMLHelper AcmeDAO Acme
ValueObject

Acme
Database

Developing Web Services Using SOAP 163

Figure 4.15 Sequence diagram for ACME Web services (Messaging scenario).

Figure 4.16 Class diagram for the service provider (RPC scenario).

uses uses encapsulates

Product

AcmeDAO

AcmeDataSourceAcmeDAOlmplAcmeXMLHelperACMEProductInfoService

Submit Purchase Order
:SubmitPOService

ACME Message Service
:AcmePOService

:AcmeXMLHelper ACME
ValueObject

:AcmeDAO ACME
Database

Request message with
Purchase order
Document

Call business
methods
to persist PO
in ACME Database

Return Response
message as XML
Document

Return
response data

Create ACME
Value objects

Return ACME
Value objects

Store PO data

Return Confirm
persist data

Call DAO to store PO
objects

Return Confirm data
Persisted

164 Chapter 4

Figure 4.17 Class diagram for the service provider (Messaging scenario).

Now, let’s take a look at how to set up the development environment
and implementation of those service components.

Setting Up the ACME Web Services Environment
Specific tasks are involved in setting up the development environment for
creating ACME Web services. They are described in the following sections.

Creating the Service Provider Environment

1. Download the Apache Axis toolkit (current release) from http://xml
.apache.org/axis/. Unzip or untar the package to your local system
directory (that is, d:\xml-axis) and set an environment variable as
AXIS_HOME to its home directory.

2. Download Apache Tomcat 4.0.3 (or current release) from
http://jakarta.apache.org/builds/jakarta-tomcat-4.0/release/ and
then install it to your local system directory (that is, d:\tomcat4) and
set an environment variable as TOMCAT_HOME. After installation,
start the Tomcat server and ensure that it is working by typing this
http://localhost:8080/index.html in your browser.

3. Navigate to your Axis installation home directory and copy the Axis
folder from AXIS_HOME\webapps\to TOMCAT_HOME\webapps\
in order to deploy the Axis libraries as an Axis servlet.

uses

creates obtains

uses encapsulates

PurchaseOrder

AcmeDAO

AcmeDAOlmplAcmeXMLHelperACMEPOService AcmeDataSource

Developing Web Services Using SOAP 165

TEAMFL
Y

Team-Fly®

4. To deploy the Axis libraries as a servlet in the Tomcat container,
create a context in the Tomcat server configuration by editing
TOMCAT_HOME/conf/server.conf with the following lines:
<Context path=”/axis” docBase=”axis” debug=”0”

reloadable=”true” crossContext=”true”>

</Context>

5. Download the Apache Xerces parser for Java (Xerces2) and Apache
Xalan with JAXP 1.1 support from http://xml.apache.org/. Unzip
the download and copy the xerces.jar and xalan.jar files to
TOMCAT_HOME\webapps\axis\WEB-INF\lib.

6. Download the PointBase database server from www.pointbase.com.
Install the download to your local system directory (that is,
d:\pointbase). Start the server, running startserver.bat,
available at the PointBase tools directory (that is, d:\pointbase
\tools\server\startserver.bat).

7. Make sure that you copy all of the PointBase drivers (pserver42.jar and
pbclient42.jar) to TOMCAT_HOME\webapps\axis\WEB-INF\lib.

8. Additionally, copy the PointBase drivers and JAX-RPC and JAXM
libraries to TOMCAT_HOME\common\lib. As part of the kit, Axis
provides class libraries for JAXRPC and JAXM as jaxrpc.jar and
jaxm.jar. You also will need to download the JDBC 2.0 optional
package from http://java.sun.com/products/jdbc. Copy the JDBC
2.0 extension drivers from this optional package to TOMCAT
_HOME\common\lib.

9. By performing these steps, the Axis environment setup is complete. To
test the Axis Web services environment, start the Tomcat server. Then,
use your Web browser and open http://localhost:8080/axis/index
.html. The browser will display the screen shown in Figure 4.18.

Figure 4.18 Browser displaying the Axis environment setup.

166 Chapter 4

10. To compile and test the applications, create a run script (.bat or .sh)
to ensure that the CLASSPATH in the environment includes the
following:
TOMCAT_HOME\webapps\axis\WEB-INF\lib\axis.jar

TOMCAT_HOME\webapps\axis\WEB-INF\lib\jaxrpc.jar

TOMCAT_HOME\webapps\axis\WEB-INF\lib\saaj.jar

TOMCAT_HOME\webapps\axis\WEB-INF\lib\commons-logging.jar

TOMCAT_HOME\webapps\axis\WEB-INF\lib\tt-bytecode.jar

TOMCAT_HOME\webapps\axis\WEB-INF\lib\xmlsec.jar

TOMCAT_HOME\webapps\axis\WEB-INF\lib\wsdl4j.jar

TOMCAT_HOME\webapps\axis\WEB-INF\lib\xerces.jar

TOMCAT_HOME\webapps\axis\WEB-INF\lib\xalan.jar

TOMCAT_HOME\webapps\axis\WEB-INF\lib\log4j-1.2.4.jar

TOMCAT_HOME\webapps\axis\WEB-INF\lib\pbclient42.jar

TOMCAT_HOME\webapps\axis\WEB-INF\lib\pbserver42.jar

TOMCAT_HOME\common\lib\jdbc2_0-stdext.jar

YOUR_DEVELOPMENT_HOME\.

11. Now, let’s create the ACME business specific database tables. The
following tables are required for storing and querying the product
catalog data and to save purchase order information including
buyer information and ordered items.

a. To store and query ACME product information, we create a
table by the name of product_catalog using the following
parameters:

COLUMN NAME COLUMN DATA TYPE

ITEM_NUM INT

ITEM_NAME VARCHAR(30)

ITEM_DESC VARCHAR(255)

ITEM_PRICE DOUBLE

CURRENCY VARCHAR(3)

ITEM_TYPE VARCHAR(3)

b. To store and query ACME buyer information, we create a table
by the name of purchase_order_header using the following
parameters:

Developing Web Services Using SOAP 167

COLUMN NAME COLUMN DATA TYPE

PO_NUM INT

PO_DATE VARCHAR(10)

BUYER_NO VARCHAR(10)

BUYER_NAME VARCHAR(55)

STREET_ADDR VARCHAR(150)

CITY VARCHAR(100)

STATE VARCHAR(100)

ZIP VARCHAR(10)

COUNTRY VARCHAR(10)

PAYMENT_TYPE VARCHAR(255)

PAYMENT_NUMBER VARCHAR(30)

TOTAL_AMOUNT DOUBLE

c. To store and query ACME order information, we create a table
by the name of purchase_order_line using the following
parameters:

COLUMN NAME COLUMN DATA TYPE

PO_NUM INT

LINE_NUM INT

PRODUCT_NO INT

QTY INT

UNIT_PRICE DOUBLE

To create the product_catalog, purchase_order_header,
and purchase_order_line tables and to populate the data, you
may choose to use the Java code ‘CreateACMETables.java’
shown in Listing 4.38.

168 Chapter 4

package jws.ch4.db;

import java.sql.*;

import javax.sql.*;

import javax.naming.*;

import java.util.*;

public class CreateACMETables {

public static void main(String argv[]) throws Exception {

java.sql.Connection con = null;

java.sql.Statement stmt = null;

try {

// Make driver connection to database

String driver = “com.pointbase.jdbc.jdbcUniversalDriver”;

Class.forName(driver);

String URL = “jdbc:pointbase:server://localhost/sample”;

con = DriverManager.getConnection(URL, “public”,

“public”);

System.out.println(“Making connection...\n”);

// execute SQL statements

stmt = con.createStatement();

try {

stmt.execute(“drop table product_catalog”);

System.out.println(“Table product_catalog dropped.”);

stmt.execute(“drop table purchase_order_header”);

System.out.println(“Table po_header dropped.”);

stmt.execute(“drop table purchase_order_line”);

System.out.println(“Table po_line dropped.”);

} catch (SQLException e) {

System.out.println(“Tables already exists and

doesn’t need to be dropped.”);

}

stmt.execute(“create table product_catalog

(item_num int, item_name varchar(30),

item_desc varchar(255), item_price

double, currency varchar(3))”);

System.out.println(“Table product_catalog created.”);

stmt.execute(“create table

Listing 4.38 CreateACMETables.java. (continues)

Developing Web Services Using SOAP 169

purchase_order_header (po_num int,

po_date varchar(10),

buyer_no varchar(10),

buyer_name varchar(55),

street_addr varchar(150),

city varchar(100),

state varchar(100), zip varchar(10),

country varchar(10),

payment_type varchar(10),

payment_number varchar(30),

total_amount double)”);

System.out.println(“Table product_purchase_order_header

created.”);

stmt.execute(“create table

purchase_order_line (po_num int,

line_num int,

product_no int,

qty int,

unit_price double)”);

System.out.println(“Table product_purchase_order_line

created.”);

// Insert dummy data for Product Catalog

int numrows = stmt.executeUpdate(“insert into

product_catalog values (1001,

‘ACME Blade 1000’,

‘Sparc III Processor,

1Ghz, 512MB, 42GB HD,

Linux’, 1000.00, ‘USD’)”);

System.out.println “Number of rows inserted = “ +

numrows);

numrows = stmt.executeUpdate

(“insert into product_catalog values

(1002, ‘ACME Blade 2000’, ‘Sparc III Processor,

1.3Ghz x2, 512MB, 42GB HD, Solaris’, 3000.00,

‘USD’)”);

System.out.println

(“Number of rows inserted = “ + numrows);

} catch (Exception e) {

System.out.println(“Exception was thrown: “

+ e.getMessage());

} finally {

Listing 4.38 CreateACMETables.java.

170 Chapter 4

try {

if (stmt != null)

stmt.close();

if (con != null)

con.close();

} catch (SQLException sqle) {

System.out.println(“SQLException during close(): “

+ sqle.getMessage());

}

}

}

}

Listing 4.38 CreateACMETables.java. (continued)

To create the ACME business tables, start the PointBase server,
ensure that the CLASSPATH is set, then compile
CreateACMETables.java, and run them preferably using
an Ant script. The successful execution of the program creates
the product_catalog, purchase_order_header, and
purchase_order_line tables in the PointBase database and
inserts Product records in to the product_catalog table.

If everything works successfully, you will get the output shown
in Figure 4.19.

Figure 4.19 Output showing the compiling and running of CreateACMETables.

Developing Web Services Using SOAP 171

In order to access the database from the Axis environment, we
must declare a datasource resource reference in the Tomcat Web
application deployment descriptor located at TOMCAT_HOME
\webapps\axis\WEB-INF\web.xml. We use a JNDI name,
jdbc/AcmeDB, to access the resource.
<resource-ref>

<res-ref-name>jdbc/AcmeDB</res-ref-name>

<res-type>javax.sql.DataSource</res-type>

<res-auth>Container</res-auth>

</resource-ref>

The JNDI name jdbc/AcmeDB will be used by AcmeDAO to
access the data sources.

Now, configure the resource in the Tomcat server configuration
by providing the resource and resource parameters entries found
in Tomcat’s configuration file located at TOMCAT_HOME\conf\
server.xml, as shown in Listing 4.39.

<Context path=”/axis” docBase=”axis” debug=”0”

reloadable=”true” crossContext=”true”>

<Logger

className=”org.apache.catalina.logger.FileLogger”

prefix=”localhost_jws_log.” suffix=”.txt”

timestamp=”true”/>

<Resource name=”jdbc/AcmeDB” reloadable=”true”

auth=”Container”

type=”javax.sql.DataSource”/>

<ResourceParams name=”jdbc/AcmeDB”>

<parameter>

<name>user</name>

<value>public</value>

</parameter>

<parameter>

<name>password</name>

<value>public</value>

</parameter>

<parameter>

<name>driverClassName</name>

<value>com.pointbase.jdbc.jdbcUniversalDriver

</value>

</parameter>

<parameter>

<name>driverName</name>

<value>

Listing 4.39 Tomcat resource configuration (server.xml).

172 Chapter 4

jdbc:pointbase:server://localhost/sample

</value>

</parameter>

</ResourceParams>

</Context>

Listing 4.39 Tomcat resource configuration (server.xml). (continued)

Restart the Tomcat server and ensure that the PointBase database
server has been started. This concludes the Axis configuration
requirements for the service provider environment.

Creating the Service Requestor Environment

1. Download the Apache Axis tool kit (current release) from
http://xml.apache.org/axis/. Unzip or untar the package to your
local system directory (that is, d:\xml-axis-client) and set an envi-
ronment variable as AXIS_CLIENT_HOME to its home directory.

2. To compile and test the client applications, create a run script (.bat or
.sh) to ensure that the client CLASSPATH environment includes the
following:
AXIS_CLIENT_HOME\lib\axis.jar

AXIS_CLIENT_HOME\lib\jaxrpc.jar

AXIS_CLIENT_HOME\lib\commons-logging.jar

AXIS_CLIENT_HOME\lib\log4j-core.jar

AXIS_CLIENT_HOME\lib\tt-bytecode.jar

AXIS_CLIENT_HOME\lib\wsdl4j.jar

AXIS_CLIENT_HOME\lib\xerces.jar

The previous steps conclude the Axis configuration requirements for the
service requestor environment. Now, let’s explore the implementation of
the ACME business scenarios using the Axis Web services environment.

Implementing the ACME Web Services
As we discussed earlier in the section titled Understanding the Application
Design, we will be implementing the following two scenarios for the
ACME Web services provider:

Developing Web Services Using SOAP 173

Scenario 1. Getting product information using ACME Web services.

Scenario 2. Submitting a purchase order using ACME Web services.

Creating RPC-Based Web Services (Scenario 1)

To implement this scenario, we will be reusing the components that we
built in Chapter 3, “Building the Web Services Architecture,” and we will
deploy them in an Axis environment. The components are as follows:

■■ AcmeDAO, a DAO class that provides access to the data source and
abstracts the underlying data access implementation for the product
catalog

■■ AcmeXMLHelper, a class that gathers the data and constructs an
XML document as a string for use by the business clients

To find out the programming steps and the source code implementation
of the previous classes, refer to Chapter 3, particularly the section titled
Developing Web Services Using J2EE: An Example.

Using the previous business classes as part of the application, we will be
creating ACMEProductInfoService and GetAcmeProductInfo
classes, which act as service providers and service requestors, respectively,
using the Axis environment.

■■ The ACMEProductInfoService class uses the AcmeXMLHelper
and AcmeDAO as helper classes for XML processing and database
interaction. The ACMEProductInfoService class will be then
deployed in the Axis environment as a service. This service will be
invoked as requests and responses using the GetAcmeProductInfo
application—a service requestor client using the Axis client engine.

■■ The GetAcmeProductInfo class acts as the service requestor using
the Axis client environment. During communication with the service
provider, it sends a SOAP request with a Product ID parameter
and fetches a SOAP response with the complete product information
as a string.

Now, let’s take a closer look at the implementation and walk through the
programming steps involved in building the service provider and service
requestor.

174 Chapter 4

Implementing the Service Provider (ACMEProductInfoService.java)

The source code implementation for the ACMEProductInfoService
class is shown in Listing 4.40.

package jws.ch4.acmerpcservice;

import jws.ch4.xmlhelper.*;

import java.io.*;

import java.util.*;

public class AcmeProductInfoService {

String pc;

// Helper method for getting the ProductInfo

public String getProduct(int productID)

throws Exception {

AcmeXMLHelper axh;

try {

// Instantiate the AcmeXMLHelper

axh = new AcmeXMLHelper();

// Call the Get Product method

ProductID pc =

axh.getProductXMLasString(productID);

} catch (Exception te) {

te.printStackTrace();

}

// Return ProductInfo XML as String

return pc;

}

}

Listing 4.40 AcmeProductInfoService.java.

To compile and run the previous class, ensure that the CLASSPATH is
set for the service provider environment. Then, navigate to the source
directory and run the Ant build script. After successful compilation,

Developing Web Services Using SOAP 175

TEAMFL
Y

Team-Fly®

deploy the ACMEProductInfoService.class as a service in the
Axis environment. The deployment descriptor (WSDD) for deploying
the ACMEProductInfoService.class as a service is as shown in
Listing 4.41.

<deployment name=”test”

xmlns=”http://xml.apache.org/axis/wsdd/”

xmlns:java=”http://xml.apache.org/axis/wsdd/providers/java”

xmlns:xsd=”http://www.w3.org/2000/10/XMLSchema”

xmlns:xsi=”http://www.w3.org/2000/10/XMLSchema-instance”>

<service name=”acmerpcservice” provider=”java:RPC”>

<parameter name=”className”

value=”jws.ch4.acmerpcservice.AcmeProductInfoService”/>

<parameter name=”allowedMethods” value=”*”/>

</service>

</deployment>

Listing 4.41 Web service deployment descriptor (wsdd.xml) for AcmeProductInfoService.

If everything works successfully, you will get the output shown in
Figure 4.20.

Implementing the Service Requestor (GetACMEProductInfo.java)

The source code implementation for GetACMEProductInfo.java is
shown in Listing 4.42.

Figure 4.20 Output showing the packaging and deployment of AcmeProductInfoService.

176 Chapter 4

package client;

import org.apache.axis.AxisFault;

import org.apache.axis.client.Call;

import org.apache.axis.client.Service;

import org.apache.axis.encoding.XMLType;

import javax.xml.rpc.ParameterMode;

import javax.xml.namespace.QName;

import java.net.URL;

public class GetAcmeProductInfo {

// ‘getProduct’ method - Creates the Client

// SOAP request for obtaining product Info

// from the service provider

public String getProduct(int productID) throws Exception {

String endpoint =

“http://localhost:8080/axis/services/acmerpcservice”;

// Create a new Service request

Service service = new Service();

// Create the SOAP request message

Call call = (Call) service.createCall();

// Set the provider location

call.setTargetEndpointAddress(endpoint);

// Set the service name and methods

call.setOperationName(

new QName(“acmeservice”, “getProduct”));

// Set the input parameters of the SOAP request

call.addParameter(“productID”,

XMLType.XSD_INT, ParameterMode.IN);

// Set the return parameters of the SOAP response

call.setReturnType(XMLType.XSD_STRING);

// Invoke the service by sending the

// request and retrieve the results

Listing 4.42 GetACMEProductInfo.java. (continues)

Developing Web Services Using SOAP 177

// from the response

Object responseObj = call.invoke(

new Object[] {new Integer(productID)});

// Retrieve the values from the response object

String respString = (String) responseObj;

return respString;

}

// Main Method

public static void main(String args[]) {

if (args.length != 1) {

System.err.println(

“Usage: GetAcmeProductInfo <productID>”);

System.exit(1);

}

String inp = args[0];

int product = Integer.valueOf(inp).intValue();

try {

GetAcmeProductInfo gq = new GetAcmeProductInfo();

String val = gq.getProduct(product);

System.out.println(“ACME Product Info: “ + val);

}

catch(Exception e) {

// Trapping the SOAP Fault

if (e instanceof AxisFault) {

System.err.println(

((AxisFault)e).dumpToString());

} else

e.printStackTrace();

}

}

}

}

Listing 4.42 GetACMEProductInfo.java. (continued)

Ensure that the CLASSPATH is set for the service requestor environment
and compile the source code. Upon successful compilation, the ACME Web
services for getting the product information is ready for testing and use.

178 Chapter 4

Testing the Services

To test the services, ensure that the environment is ready and try out
following:

1. Ensure that the Tomcat server and PointBase database server is up
and running. Also ensure that the AcmeProductInfoService is
deployed. To find out the list of deployed services, you may try the
following command:
java org.apache.axis.client.AdminClient list

2. To test out and to invoke the AcmeProductInfoService, set the
CLASSPATH to the service requestor environment and run the
following command:
java client.GetAcmeProductInfo 1001

If everything works successfully, you will get the output shown in
Figure 4.21.

Using the TCP monitor will show the SOAP request and responses. To
start TCP monitor, run the following command:

java org.apache.axis.utils.tcpmon 9999 localhost 8080

This command assumes that the client listening port is 9999, and that the
target server name is localhost running Tomcat using port 8080. Using
the previous command, start the tcpmon utility. Set the client calling port
as 9999 in GetAcmeProductInfo.java and then recompile it. Now,
rerun the service client application.

The successful execution of the SOAP requests and responses will
display the screen shown in Figure 4.22.

This summarizes the example scenario of creating SOAP RPC-based
Web services using the Axis environment.

Figure 4.21 Output showing the service requestor invoking the service.

Developing Web Services Using SOAP 179

Figure 4.22 tcpmon showing the SOAP requests and responses.

Creating Messaging-Based Web Services (Scenario 2)

To implement this scenario, we build on the components discussed in
Chapter 3, “Building the Web Services Architecture,” by adding new
business methods and then deploying them in the Axis environment.

Implementing the Business Methods

The following additional business methods are required for submitting the
purchase order XML in the ACME database:

AcmeDAO. A DAO class abstracts the underlying data access imple-
mentation and enables the purchase order information to be stored to
the database. The AcmeDAO uses the following value object classes
POHeader, PurchaseOrder, and POLine, which represent the
business objects buyer information and product order.

The source code for the value object POHeader.java is shown in
Listing 4.43.

//POHeader.java

package jws.ch4.model;

import java.util.*;

import java.io.*;

Listing 4.43 POHeader.java.

180 Chapter 4

// Value object representing the Buyer information

public class POHeader {

private int poNumber;

private String poDate;

private String poBuyerNo;

private String poBuyerName;

private String shipToAddressStreet;

private String shipToCity;

private String shipToState;

private String shipToZip;

private String shipToCountry;

private String paymentType;

private String paymentNumber;

private double totalPrice;

// Accessor methods

public void setPONumber(int ponum) {

poNumber = ponum;

}

public int getPONumber() {

return poNumber;

}

public void setPODate(String podate) {

poDate = podate;

}

public String getPODate() {

return poDate;

}

public void setBuyerNumber(String buyerno) {

poBuyerNo = buyerno;

}

public String getBuyerNumber() {

return poBuyerNo;

}

public void setBuyerName(String buyername) {

poBuyerName = buyername;

}

public String getBuyerName() {

return poBuyerName;

}

Listing 4.43 POHeader.java. (continues)

Developing Web Services Using SOAP 181

public void setShipToStreet(String shiptoaddr) {

shipToAddressStreet = shiptoaddr;

}

public String getShipToStreet() {

return shipToAddressStreet;

}

public void setShipToCity(String shiptocity) {

shipToCity = shiptocity;

}

public String getShipToCity() {

return shipToCity;

}

public void setShipToState(String shiptostate) {

shipToState = shiptostate;

}

public String getShipToState() {

return shipToState;

}

public void setShipToZipcode(String shiptozip) {

shipToZip = shiptozip;

}

public String getShipToZipcode() {

return shipToZip;

}

public void setShipToCountry(String shiptocountry) {

shipToCountry = shiptocountry;

}

public String getShipToCountry() {

return shipToCountry;

}

public void setPaymentType(String paymenttype) {

paymentType = paymenttype;

}

public String getPaymentType() {

Listing 4.43 POHeader.java.

182 Chapter 4

return paymentType;

}

public void setPaymentNumber(String paymentnumber) {

paymentNumber = paymentnumber;

}

public String getPaymentNumber() {

return paymentNumber;

}

public void setTotalPrice(double price) {

totalPrice = price;

}

public double getTotalPrice() {

return totalPrice;

}

}

Listing 4.43 POHeader.java. (continued)

The source code for the value object PurchaseOrder.java is
shown in Listing 4.44.

package jws.ch4.model;

import java.util.*;

import java.io.*;

public class PurchaseOrder {

private POHeader poHeader = new POHeader();

private ArrayList poLines = new ArrayList();

public void setPOHeader(POHeader hdr) {

poHeader = hdr;

}

public POHeader getPOHeader() {

return poHeader;

}

public void setPOLines(ArrayList lines) {

Listing 4.44 PurchaseOrder.java. (continues)

Developing Web Services Using SOAP 183

poLines = lines;

}

public ArrayList getPOLines() {

return poLines;

}

}

Listing 4.44 PurchaseOrder.java. (continued)

The source code for the value object POLines.java representing the
product order information is shown in Listing 4.45.

package jws.ch4.model;

import java.util.*;

import java.io.*;

// Value object representing

// the line Items (Product ordered)

public class POLine {

private int poNumber;

private int poProductNo;

private int poLineNo;

private int poProductQty;

private double poUnitPrice;

// Accessor methods

public void setPONumber(int ponum) {

poNumber = ponum;

}

public int getPONumber() {

return poNumber;

}

public void setProductNumber(int prodNo) {

poProductNo = prodNo;

}

public int getProductNumber() {

Listing 4.45 POLines.java.

184 Chapter 4

return poProductNo;

}

public void setLineNumber(int lineNo) {

poLineNo = lineNo;

}

public int getLineNumber() {

return poLineNo;

}

public void setProductQty(int prodQty) {

poProductQty = prodQty;

}

public int getProductQty() {

return poProductQty;

}

public void setUnitPrice(double unitPrice) {

poUnitPrice = unitPrice;

}

public double getUnitPrice() {

return poUnitPrice;

}

}

Listing 4.45 POLines.java. (continued)

The methods shown in Listing 4.46 are used by the DAO to insert the
business objects (POHeader, PurchaseOrder, and POLine) in
the database.

// Insert the purchase order

public boolean insertPurchaseOrder(PurchaseOrder poObj)

throws AcmeDAOException {

Connection c = null;

PreparedStatement ps = null;

ResultSet rs = null;

Listing 4.46 DAO methods for inserting data (AcmeDAO.java). (continues)

Developing Web Services Using SOAP 185

TEAMFL
Y

Team-Fly®

POHeader poHdr = poObj.getPOHeader();

ArrayList poLineList = poObj.getPOLines();

//Make Database connection and Insert data

try {

c = getDataSource().getConnection();

ps = c.prepareStatement(“insert into

purchase_order_header (po_num, po_date,

buyer_no, buyer_name, street_addr, city,

state, zip, country, payment_type,

payment_number, total_amount)”

+ “values (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?) “,

ResultSet.TYPE_SCROLL_INSENSITIVE,

ResultSet.CONCUR_READ_ONLY);

ps.setInt(1, poHdr.getPONumber());

ps.setString(2, poHdr.getPODate());

ps.setString(3, poHdr.getBuyerNumber());

ps.setString(4, poHdr.getBuyerName());

ps.setString(5, poHdr.getShipToStreet());

ps.setString(6, poHdr.getShipToCity());

ps.setString(7, poHdr.getShipToState());

ps.setString(8, poHdr.getShipToZipcode());

ps.setString(9, poHdr.getShipToCountry());

ps.setString(10, poHdr.getPaymentType());

ps.setString(11, poHdr.getPaymentNumber());

ps.setDouble(12, poHdr.getTotalPrice());

boolean bSuccess = false;

if (ps.executeUpdate() > 0) {

Iterator itr = poLineList.iterator();

bSuccess = true;

while (itr.hasNext()) {

POLine poLine = (POLine)itr.next();

if (! insertPOLine(poLine)) {

bSuccess = false;

break;

}

}

}

ps.close();

c.close();

return bSuccess;

} catch (SQLException se) {

throw new AcmeDAOException(“SQLException: “

+ se.getMessage());

Listing 4.46 DAO methods for inserting data (AcmeDAO.java).

186 Chapter 4

}

}

//Insert the product order

public boolean insertPOLine(POLine line)

throws AcmeDAOException {

Connection c = null;

PreparedStatement ps = null;

ResultSet rs = null;

//Make connection and Insert data

try {

c = getDataSource().getConnection();

ps = c.prepareStatement(“insert into

purchase_order_line (

po_num, line_num,

product_no, qty, unit_price)”

+ “values (?, ?, ?, ?, ?) “,

ResultSet.TYPE_SCROLL_INSENSITIVE,

ResultSet.CONCUR_READ_ONLY);

ps.setInt(1, line.getPONumber());

ps.setInt(2, line.getLineNumber());

ps.setInt(3, line.getProductNumber());

ps.setInt(4, line.getProductQty());

ps.setDouble(5, line.getUnitPrice());

boolean bSuccess = false;

if (ps.executeUpdate() > 0) {

bSuccess = true;

}

ps.close();

c.close();

return bSuccess;

} catch (SQLException se) { throw new

AcmeDAOException(“SQLException: “+ se.getMessage());

}

}

Listing 4.46 DAO methods for inserting data (AcmeDAO.java). (continued)

AcmeXMLHelper. This class takes the Purchase order XML as a
string from the application and constructs Java objects for use with

Developing Web Services Using SOAP 187

AcmeDAO. We will be adding the methods shown in Listing 4.47 to
convert the string (XML data) to business objects (POHeader,
PurchaseOrder, POLine) for persisting in the ACME database.

public boolean createPurchaseOrder(String POXML)

throws XMLException {

Document poDoc = null;

boolean bRetValue = false;

// Obtain an instance of DocumentBuilderFactory

// and get an Instance of DocumentBuilder

try {

DocumentBuilderFactory factory =

DocumentBuilderFactory.newInstance();

DocumentBuilder builder =

factory.newDocumentBuilder();

InputSource isStr;

// Use the DocumentBuilder to parse

// XML string and contruct a DOM

try {

StringReader xml = new StringReader(POXML);

isStr = new InputSource(xml);

poDoc = builder.parse(isStr);

} catch (Exception ee) {

System.out.println(“parse exception....”);

ee.printStackTrace();

}

if (poDoc == null)

return false;

else

System.out.println(“poDoc not null....”);

// Get the root element In the DOM tree

Element poRoot = poDoc.getDocumentElement();

if (poRoot == null) {

System.out.println(“Root element is null”)

} else

System.out.println(“Root element is NOT null”);

// Instantiate PurchaseOrder and POHeader objects

PurchaseOrder poObj = new PurchaseOrder();

Listing 4.47 XML helper methods for AcmePOService (AcmeXMLHelper.java)

188 Chapter 4

POHeader poHdr = new POHeader();

// Get the necessary XML Node value

// one by one and the set the POHeader

// object attributes

int poNumber =

Integer.valueOf(getNodeValue

(poRoot,”PurchaseOrderNumber”)).intValue();

poHdr.setPONumber(poNumber);

System.out.println(poNumber);

poHdr.setPODate(getNodeValue(poRoot,”Date”));

poHdr.setBuyerNumber(getNodeValue(poRoot,”BuyerNumber”));

poHdr.setBuyerName(getNodeValue(poRoot,”BuyerName”));

NodeList nodes =

((Element)poRoot).getElementsByTagName(“ShipToAddress”);

if (nodes.getLength() < 0) {

throw new Exception(“getElementsByTagName

for ShipToAddress does not return any node”);

}

Node shipNode = nodes.item(0);

poHdr.setShipToStreet(getNodeValue(shipNode,”Street”));

poHdr.setShipToCity(getNodeValue(shipNode,”City”));

poHdr.setShipToState(getNodeValue(shipNode,”State”));

poHdr.setShipToZipcode(getNodeValue(shipNode,”Zip”));

poHdr.setShipToCountry(getNodeValue(shipNode,”Country”));

nodes =

((Element)poRoot).getElementsByTagName(“PaymentInfo”);

if (nodes.getLength() < 0) {

throw new Exception(“getElementsByTagName for

PaymentInfo does not return any node”);

}

Node paymentNode = nodes.item(0);

poHdr.setPaymentType(getNodeValue(paymentNode,”Type”));

poHdr.setPaymentNumber

(getNodeValue(paymentNode,”Number”));

poHdr.setTotalPrice(Double.valueOf

(getNodeValue(poRoot,”TotalAmount”)).doubleValue());

poObj.setPOHeader(poHdr);

// Print success message

Listing 4.47 XML helper methods for AcmePOService (AcmeXMLHelper.java). (continues)

Developing Web Services Using SOAP 189

System.out.println(“PO Header submission successful...”);

// Get Line Item details In the DOM tree

// as a arraylist of POLine objects

ArrayList poLineList =

createPOLines(poDoc, poRoot, poNumber);

// Set the POLine list In the PurchaseOrder object

poObj.setPOLines(poLineList);

System.out.println(“LineItems submission successful.”);

AcmeDAOImpl adi = new AcmeDAOImpl();

bRetValue = adi.insertPurchaseOrder(poObj);

System.out.println(“PO submission successful...”);

} catch (Exception e) {

throw new XMLException(e.toString());

}

return bRetValue;

}

public ArrayList createPOLines(Document poDoc,

Element poRoot, int PONumber) throws XMLException {

ArrayList poLineList = new ArrayList();

// Get the necessary XML Node value

// one by one and the set the POLine object attributes

try {

NodeList cNodes = poDoc.getElementsByTagName(“LineItem”);

int count = cNodes.getLength();

if (count > 0) {

for (int i = 0; i < count; i++) {

Node line = cNodes.item(i);

POLine poLine = new POLine();

poLine.setPONumber(PONumber);

poLine.setProductNumber(Integer.valueOf(getNodeValue

(line, i, “ProductNumber”)).intValue());

poLine.setLineNumber(i+1);

poLine.setProductQty(Integer.valueOf

(getNodeValue(line, i, “Quantity”)).intValue());

poLine.setUnitPrice(Double.valueOf

(getNodeValue(line, i, “UnitPrice”)).doubleValue());

poLineList.add(poLine);

Listing 4.47 XML helper methods for AcmePOService (AcmeXMLHelper.java).

190 Chapter 4

}

}

} catch (Exception e) {

throw new XMLException(e.toString());

}

return poLineList;

}

Listing 4.47 XML helper methods for AcmePOService (AcmeXMLHelper.java). (continued)

Now compile the classes and ensure that these classes are available as
part of your Tomcat webapps directory specific to the Axis environment.

Implementing the Service

Using the previous business classes as part of the application, we will be
creating ACMEPOService and SubmitPOService classes, which act as
service providers and service requestors, respectively, using the Axis
environment.

■■ The ACMEPOService class is the service provider application
deployed in the Axis environment as a service. It uses AcmeXML-
Helper and AcmeDAO as helper classes for processing the purchase
order XML and to persist the PO data in the ACME database. This
service will receive W3C documents as XML messages from the
SubmitPOService application—a service requestor client using
the Axis client engine.

■■ The SubmitPOService class acts as the service requestor using
the Axis client environment. During communication with the service
provider, it sends a purchase order as an XML message (W3C Docu-
ment) and then it receives a response message as an XML message
from the service provider.

Now, let’s take a closer look at the implementation and walk through the
programming steps involved in building the service provider and the
service requestor.

Implementing the Service Provider (ACMEPOService.java)

The source code implementation for the ACMEPOService class is shown
in Listing 4.48.

Developing Web Services Using SOAP 191

package jws.ch4.acmemsgservice;

import org.w3c.dom.*;

import org.apache.axis.*;

import java.io.*;

import java.util.*;

import javax.xml.parsers.*;

import jws.ch4.xmlhelper.*;

import jws.ch4.dao.*;

import jws.ch4.model.*;

import jws.ch4.exceptions.*;

import org.apache.xml.serialize.*;

import org.apache.xerces.dom.*;

import org.apache.axis.client.*;

import org.apache.axis.message.*;

import org.apache.axis.utils.XMLUtils;

import org.w3c.dom.Element;

public class AcmePOService {

String pc;

String poxml;

// Helper method for submitting the Purchase Order

public Document submitAcmePO(Document podoc) {

AcmeXMLHelper axh;

AcmeDAOImpl dao;

Document doc = null;

try {

axh = new AcmeXMLHelper();

// Convert W3C document to String

poxml = getXMLString(podoc);

// Submit the purchase order

boolean bSubmit = axh.createPurchaseOrder(poxml);

if (bSubmit) {

pc = “Submitted Purchase Order successfully”;

}

else

Listing 4.48 AcmePOService.java.

192 Chapter 4

pc = “Failed to submit Purchase Order”;

// Creating a W3C document for response message

DOMImplementationImpl domImpl

= new DOMImplementationImpl();

doc = domImpl.createDocument(null, “POStatus”, null);

Element root = doc.getDocumentElement();

Element e = doc.createElement(“status”);

e.appendChild(doc.createTextNode(pc));

root.appendChild(e);

doc.appendChild(root);

} catch (Exception te) {

te.printStackTrace();

}

// Return the response message

return doc;

}

// Helper method for converting W3C document to String

private String getXMLString(Document doc)

throws XMLException {

try {

StringWriter XMLStrWriter = new StringWriter();

XMLSerializer serializer = new XMLSerializer();

serializer.setOutputCharStream (XMLStrWriter);

OutputFormat fmt = new OutputFormat (doc);

fmt.setIndenting(true);

serializer.setOutputFormat (fmt);

serializer.serialize(doc);

String s = XMLStrWriter.toString();

System.out.println(“getXMLString: “+s);

return s;

}

catch (Exception e) {

throw new XMLException(e.toString());

}

}

}

Listing 4.48 AcmePOService.java. (continued)

Developing Web Services Using SOAP 193

To compile and run the previous class, ensure that the CLASSPATH is set
for the service provider environment. Then, navigate to the source direc-
tory and run the Ant build script. After successful compilation, deploy
ACMEPOoService.class as a service in the Axis environment. The
deployment descriptor (WSDD) for deploying ACMEPOService.class
as a service is shown in Listing 4.49.

<deployment name=”test” xmlns=”http://xml.apache.org/axis/wsdd/”

xmlns:java=”http://xml.apache.org/axis/wsdd/providers/java”

xmlns:xsd=”http://www.w3.org/2000/10/XMLSchema”

xmlns:xsi=”http://www.w3.org/2000/10/XMLSchema-instance”>

<service name=”acmemsgservice” provider=”java:MSG”>

<parameter name=”className”

value=”jws.ch4.acmemsgservice.AcmePOService”/>

<parameter name=”allowedMethods” value=”submitAcmePO”/>

</service>

</deployment>

Listing 4.49 Web service deployment descriptor (wsdd.xml) for AcmePOService.

If everything works successfully, you will get the output shown in
Figure 4.23.

Implementing the Service Requestor (SubmitPOService.java)

The source code implementation for SubmitPOService.java is shown
in Listing 4.50.

Figure 4.23 Output showing the packaging and deployment of AcmePOService.

194 Chapter 4

package client;

import java.io.*;

import java.util.Vector;

import org.apache.axis.client.Service;

import org.apache.axis.client.Call;

import org.apache.axis.message.*;

import org.apache.axis.*;

import java.net.URL;

import org.apache.axis.utils.XMLUtils;

import org.w3c.dom.Element;

public class SubmitPOService {

String str;

public String execute() throws Exception {

try{

// Define the SOAP endpoint

String endpoint =

“http://localhost:8080/axis/services/acmemsgservice”;

// Read the PurchaseOrder.xml

InputStream is =

ClassLoader.getSystemResourceAsStream

(“PurchaseOrder.xml”);

// Create a service

Service service = new Service();

// Create a Service request call to the server

Call call = (Call) service.createCall();

// Set the SOAP endpoint for the request call

call.setTargetEndpointAddress(endpoint);

// Create SOAP envelope with the

//PO document as payload

SOAPEnvelope env = new SOAPEnvelope(is);

// Send the PO document to the destination

Listing 4.50 SubmitPOService.java. (continues)

Developing Web Services Using SOAP 195

TEAMFL
Y

Team-Fly®

// and wait for the response message.

// The response message will be a document as well.

SOAPEnvelope elems = (SOAPEnvelope)call.invoke(env);

//Retrieve the SOAP body element

//from the SOAP envelope.

SOAPBodyElement elem = elems.getFirstBody();

// Get the XML element from the SOAPBodyElement

Element e = elem.getAsDOM();

// Convert the XMLElement to String

str = XMLUtils.ElementToString(e);

}

catch(Exception e){

e.printStackTrace();

}

// Return the response message as String

return(str);

}

public static void main(String[] args) throws Exception {

String res = (new SubmitPOService()).execute();

// Print the response message

System.out.println(res);

}

}

Listing 4.50 SubmitPOService.java. (continued)

Ensure that the CLASSPATH is set for the service requestor environ-
ment and compile the source code. Upon successful compilation, the
ACME Web services for getting the product information is ready for test-
ing and use.

Testing the Services

To test the scenario, use the ACME purchase order (XML file) sample
shown in Listing 4.51. Ensure that this file exists in the CLASSPATH.

196 Chapter 4

<PurchaseOrder>

<Header>

<PurchaseOrderNumber>212</PurchaseOrderNumber>

<Date>02/22/2002</Date>

<BuyerNumber>0002232</BuyerNumber>

<BuyerName>Roger Marrison</BuyerName>

<ShipToAddress>

<Street>233 St-John Blvd</Street>

<City>Boston</City>

<State>MA</State>

<Zip>03054</Zip>

<Country>USA</Country>

</ShipToAddress>

<TotalAmount>870.00</TotalAmount>

<PaymentInfo>

<Type>Visa</Type>

<Number>03239898989890</Number>

</PaymentInfo>

</Header>

<LineItem>

<ProductNumber>22112</ProductNumber>

<Quantity>250</Quantity>

<UnitPrice>10.00</UnitPrice>

</LineItem>

</PurchaseOrder>

Listing 4.51 Acme purchase order (XML file).

1. To test the services, ensure that the Tomcat and PointBase database
servers are up and running. Also, ensure that AcmePOService is
deployed. To find out the list of deployed services, you may try the
following command:
java org.apache.axis.client.AdminClient list

2. To test out and invoke AcmePOService, set the CLASSPATH to the
service requestor environment and run the following command:
java client.submitPOService

If everything works successfully, you will get the output shown in
Figure 4.24.

Developing Web Services Using SOAP 197

Figure 4.24 Output showing the successful submission of a purchase order with
AcmePOService.

Use the TCP monitor to display the SOAP message sent and received. To
start TCP monitor, run the following command:

java org.apache.axis.utils.tcpmon 9999 localhost 8080

The previous command assumes that the client listening port is 9999 and
the target server name is localhost running the Tomcat server using
port 8080. Using the previous command, start the tcpmon utility. Set the
client calling port as 9999 in the SubmitPOService.java and then
recompile it. Now, rerun the service client application.

Upon successful execution of SubmitPOService, the TCP monitor will
display the output shown in Figure 4.25.

Figure 4.25 TCP monitor showing the SOAP messages with AcmePOService.

198 Chapter 4

This concludes our case study example on creating SOAP RPC and
messaging-based Web services using Apache Axis.

So far, we have discussed SOAP specifications and the role of SOAP in
Web services, and we studied how we can use SOAP implementation for
developing Web services.

Now, let’s take a look at the some of the known limitations of SOAP.

Known Limitations of SOAP

Although the SOAP specifications define a promising communication
model for Web services, the following limitations exist that are not cur-
rently addressed by the SOAP specifications:

1. The specification does not address message reliability, secure message
delivery, transactional support, and its communication requirements
of a SOAP implementation.

2. The specification does not address issues like object activation and
object lifecycle management.

3. The specification discusses HTTP as the primary transport protocol
but does not discuss the usage of other transport protocols.

4. The specification does not address how to handle SOAP messages
out of a SOAP implementation.

Note that the limitations of SOAP have been currently well addressed by
the ebXML framework as part of the ebXML messaging service, which
complements SOAP and other Web services standards.

Summary

In this chapter, we have had a detailed discussion on the fundamentals of
SOAP and its role in developing Web services. We have looked at how
SOAP provides an XML-based communication protocol and a consistent
mechanism for RPC and messaging between applications, components,
objects, and systems across networks. We demonstrated a Web services-
based application using a SOAP implementation and studied how SOAP
provides the communication for Web services.

In general, we focused on the background and fundamentals of SOAP
and XML messaging, SOAP encoding, transport protocols and security,
and developing SOAP and Web services applications.

In the next chapter, we will discuss how to describe and publish Web ser-
vices using WSDL and UDDI.

Developing Web Services Using SOAP 199

201

In Chapter 4, “Developing Web Services Using SOAP,” we saw how to
develop and deploy Web services that use the Simple Object Access Proto-
col, or SOAP. But there is more to Web services than just SOAP support. A
Web service can further its capabilities by supporting a description of its
interfaces so that its potential users can study it and determine whether the
Web service supports the behavior that they need. Also, an organization
that develops Web services can register these Web services at a location
that is well known, so that its potential users can discover them.

This chapter covers such description and discovery aspects of a Web
service. Detailed information is provided on two mainstream technologies
that are used today for describing and discovering Web services: the Web
Services Description Language (WSDL) and Universal Description, Dis-
covery, and Integration (UDDI). Furthermore, examples demonstrate how
to use these technologies in the real world.

The following are key topics covered in this chapter:

■■ Web Services Description Language (WSDL)

■■ WSDL in the World of Web services

■■ Anatomy of a WSDL definition document

■■ WSDL bindings

■■ WSDL tools

Description and Discovery
of Web Services

C H A P T E R

5

■■ Universal Description, Discovery, and Integration (UDDI)

■■ Programming with UDDI

■■ Inquiry APIs

■■ Publishing APIs

■■ Implementations of UDDI

■■ Registering as a Systinet UDDI Registry user

■■ Publishing information to a UDDI registry

■■ Searching information in a UDDI registry

■■ Deleting information from a UDDI registry

Web Services Description Language (WSDL)

Microsoft, IBM, and Ariba released the first version of the WSDL specifica-
tion jointly, in September 2000, briefly after announcing a UDDI specification
along with 36 other companies. This version of WSDL was based on two
precedent description languages: Network Accessible Services Specification
Language (NASSL) and (SOAP Contract Language SCL), from IBM and
Microsoft, respectively. Later on in March 2001, the same companies joined
by a few others submitted the WSDL 1.1 specification to W3C. Thus, cur-
rently the WSDL specification is in works at W3C. Officially, it is a W3C Note
that forms the basis of the upcoming WSDL 1.2 specification from W3C. This
chapter goes into detail in understanding WSDL 1.1.

JSR 110 (Java API for WSDL) is currently in the works in the Java Com-
munity Process (JCP). When released, it will provide an API for manipulat-
ing WSDL documents instead of directly interacting with the XML syntax of
WSDL. This would avoid manipulating the WSDL documents with the help
of low level APIs such as JAXP. JWSDL would be much easier and faster to
use, simplifying things further for a developer. More information on JWSDL
can be obtained from the JCP Web site at www.jcp.org/jsr/detail/110.jsp.

WSDL in the World of Web Services
WSDL, as we know, is a description language for Web services. So what
does this exactly mean? This means that WSDL represents information
about the interface and semantics of how to invoke or call a Web service. A
WSDL definition contains four important pieces of information about the
Web service:

202 Chapter 5

■■ Interface information describing all the publicly available functions

■■ Data type information for the incoming (request) and outgoing
(response) messages to these functions

■■ Binding information about the protocol to be used for invoking the
specified Web service

■■ Address information for locating the specified Web service

Once we develop a Web service, we create its WSDL definition. We can
create this definition either manually or by using a tool. Many tools are
available for generating a WSDL definition from existing Java classes, J2EE
components (such as Servlets/EJBs), or from scratch. Once the WSDL def-
inition is created, a link to it is published in a Web services registry (based
on UDDI, for instance), so that the potential user(s) of this Web service can
follow this link and find out the location of the Web service, the function
calls that it supports, and how to invoke these calls. Finally, the user(s)
would use this information to formulate a SOAP request or any other type
of request based on the binding protocol supported, in order to invoke the
function on a Web service.

Web Service Life Cycle

Figure 5.1 illustrates the steps of the Web service life cycle.

Figure 5.1 Web service life cycle.

Call Web Service

Look Up the Web Service

4

1

Invoke

Publish

UDDI Registry

Retrieve
WSDL
Definition

SOAP
Request

SOAP
Request

SOAP
Request

Servlets

WSDL Document

Web Service Provider

SOAP
Request

Firewall

Register Web Service
at Development Time

Web Service
Requestor

3

Bind

2 Find

JAXR
or

Specific API

Description and Discovery of Web Services 203

In Figure 5.1, all of the communication over the wire takes place on
SOAP. The following list explains the steps depicted in Figure 5.1:

■■ Step 1 illustrates a service provider publishing its Web service to a
UDDI registry. This is when the service provider would create a
WSDL definition and publish a link to this definition along with the
rest of the Web service information to a UDDI registry.

■■ Step 2 illustrates an interested service user locating the Web service
and finally obtaining information about invoking the Web service
from the published WSDL definition. This step involves download-
ing a WSDL definition to the service user system and deserializing
WSDL to a Java class (or any other language). This Java interface
serves as a proxy to the actual Web service. It consists of the binding
information of the Web service.

■■ Step 3 shows the service user binding at runtime to the Web service.
In this step, the service user’s application would make use of the
Java interface representing WSDL as a proxy, in order to bind to the
Web service.

■■ Step 4 finally shows the service user invoking the Web service based
on the service invocation information it extracted from the Web service
WSDL definition. This is when the service user’s application would
make use of the Java interface representing WSDL as a proxy, in order
to invoke the methods/functions exposed by the Web service.

Language and Platform Independency of WSDL

WSDL is capable of describing Web services that are implemented using
any language and deployed on any platform. Thus, WSDL contributes
toward enabling interoperability in the Web service architecture. In other
words, as long as a WSDL definition can be understood and consumed by
the service user, the service user systems can obtain all of the information
necessary to invoke a Web service potentially developed and deployed
using a completely different set of platform tools and servers.

Now, let’s see what a typical WSDL document looks like and understand
its structural elements.

Anatomy of a WSDL Definition Document
A WSDL definition document consists of the following seven key struc-
tural elements:

204 Chapter 5

<definitions>. A WSDL document is a set of definitions. These
definitions are defined inside the <definitions> element, which is the
root element in a WSDL document. It defines the name of the Web
service and also declares the namespaces that are used throughout
the rest of the WSDL document.

<types>. This element defines all of the data types that would be
used to describe the messages that are exchanged between the Web
service and the service user. WSDL does not mandate the use of a
specific typing system. However, as per the WSDL specification,
XML Schema is the default typing system.

XML Schema was discussed in Chapter 4, “Developing Web Services
Using SOAP,” in the context of SOAP encoding.

<message>. This element represents a logical definition of the data
being transmitted between the Web service and the service user. This
element describes a one-way message, which may represent a
request or response sent to or from the Web service. It contains zero
or more message <part> elements, which basically refer to the
request parameters or response return values.

<portType>. This element defines the abstract definition of the oper-
ations supported by a Web service, by combining various request and
response messages defined by <message> elements. Each operation
refers to an input message and an output message.

<binding>. This element specifies a concrete protocol and data for-
mat used for representing the operations and messages defined by a
particular <portType>, on the wire.

<port>. This element specifies an address for binding to the Web
service.

<service>. This element aggregates a set of related <port> ele-
ments, each which uniquely specify the binding information of the
Web service. A <service> consisting of multiple <port> elements
essentially represents the capability of the service to be invoked over
multiple bindings. More information on WSDL bindings is discussed
in the next section.

We will further examine each of these elements later. First, let’s take a
look at Listing 5.1, which shows a WSDL document describing a weather
information Web service, WeatherInfoService. This WSDL definition
is present in the WeatherInfo.wsdl file.

Description and Discovery of Web Services 205

TEAMFL
Y

Team-Fly®

<?xml version=”1.0”?>

<definitions name=”WeatherInfo”

targetNamespace=”http://myweather.com/weatherinfo.wsdl”

xmlns:tns=”http://myweather.com/weatherinfo.wsdl”

xmlns:xsd1=”http://myweather.com/weatherinfo.xsd”

xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”

xmlns=”http://schemas.xmlsoap.org/wsdl/”>

<types>

<schema targetNamespace=

“http://myweather.com/weatherinfo.xsd” xmlns=

“http://www.w3.org/2000/10/XMLSchema”>

<element name=”WeatherInfoRequest”>

<complexType>

<all>

<element name=”Country”

type=”string”/>

<element name=”Zip”

type=”string”/>

<element name=”Instant”

type=”string”/>

</all>

</complexType>

</element>

<element name=”WeatherInfo”>

<complexType>

<all>

<element name=”FTemp”

type=”float”/>

<element name=”Humidity”

type=”float”/>

</all>

</complexType>

</element>

</schema>

</types>

<message name=”GetWeatherInfoInput”>

<part name=”WeatherInfoRequestSpec”

element=”xsd1:WeatherInfoRequest”/>

</message>

<message name=”GetWeatherInfoOutput”>

<part name=”WeatherInfo”

Listing 5.1 WeatherInfo.wsdl.

206 Chapter 5

element=”xsd1:WeatherInfo”/>

</message>

<portType name=”WeatherInfoPortType”>

<operation name=”GetWeatherInfo”>

<input message=”tns:GetWeatherInfoInput”/>

<output message=”tns:GetWeatherInfoOutput”/>

</operation>

</portType>

<binding name=”WeatherInfoSoapBinding”

type=”tns:WeatherInfoPortType”>

<soap:binding style=”document”

transport=”http://schemas.xmlsoap.org/soap/http”/>

<operation name=”GetWeatherInfo”>

<soap:operation soapAction=

“http://myweather.com/GetWeatherInfo”/>

<input>

<soap:body use=”literal”/>

</input>

<output>

<soap:body use=”literal”/>

</output>

</operation>

</binding>

<service name=”WeatherInfoService”>

<documentation>

Provides Weather Information

</documentation>

<port name=”WeatherInfoPort”

binding=”tns:WeatherInfoSoapBinding”>

<soap:address location=

“http://myweather.com/provideweatherinfo”/>

</port>

</service>

</definitions>

Listing 5.1 WeatherInfo.wsdl. (continued)

Description and Discovery of Web Services 207

Now, let’s understand how exactly WeatherInfo.wsdl describes the
WeatherInfoService Web service.

<definitions> Element

The <definitions> element specifies the name of the document in
which this WSDL definition is stored, which is WeatherInfo in our case.

This element specifies namespaces that would be used in the rest of the
WSDL document. The following are the two important namespaces that
the <definitions> element defines:

WSDL instance specific namespace. The targetNamespace
attribute of the <definitions> element lets the WSDL document
make references to itself as an XML Schema namespace. Note how-
ever that it is not required for the WSDL document to actually exist at
the address specified by the targetNamespace attribute. This
attribute is just a mechanism to refer to our WSDL definition in a
unique way.

Default namespace for a WSDL document. The default namespace is
specified by xmlns=”http://schemas.xmlsoap.org/wsdl/”.
The default namespace indicates that all of the elements in this
WSDL definition without a namespace prefix, such as <types>,
<message>, and <portType>, are part of this namespace.

<message> Element

WeatherInfo.wsdl defines two <message> elements.
The first <message> definition named GetWeatherInfoInput will be

used later to define the input message of the GetWeatherInfo operation.
The second <message> definition named GetWeatherInfoOutput will
be used later to define the output message of the GetWeatherInfo opera-
tion. This binding of <message> definitions to an actual operation is
defined in the <portType> element.

Again, each of these <message> definitions consists of a <part>
element. In case of the GetWeatherInfoInput message, <part> essen-
tially specifies the name, that is, WeatherInfoRequestSpec, and type,
that is, WeatherInfoRequest, of the request parameter to GetWeath-
erInfo operation. Whereas, in case of the GetWeatherInfoOutput
message, <part> refers to the name and type of the return value sent
within the response of the GetWeatherInfo operation. Note that both
WeatherInfoRequest and WeatherInfo, which were referred to by

208 Chapter 5

the type attribute of <part> element also were defined by the preceding
<types> element.

Also in cases where operations take multiple arguments or return multi-
ple values, the <message> element can define multiple <part> elements.

<portType> Element

The <portType> element in WeatherInfo.wsdl defines a single opera-
tion named GetWeatherInfo by combining the <input> message as
defined by the GetWeatherInfoInput <message> element and
the <output> message as defined by the GetWeatherInfoOutput
<message> element.

Note the use of WeatherInfo.wsdl as a target namespace by the
<input> and <output> elements.

Four types of operations are supported by WSDL:

One-way operation. One-way operation represents a service that just
receives the message, and thus a one-way operation is typically
defined by a single <input> message element.

Request-response operation. A request-response operation repre-
sents a service that receives a request message and sends a response
message. Typically, a request-response operation is defined by one
<input> message followed by one <output> message. An optional
<fault> element also can be included in the definition of a request-
response operation to specify the abstract message format for any
error messages that may be output as a result of the operation.

The GetWeatherInfo operation follows the request-response
transmission pattern.

Solicit-response operation. A solicit-response operation represents a
service that sends a request message and that receives the response
message. Such operations are therefore defined by one <output>
message, followed by an <input> message. A solicit-response opera-
tion also can include a <fault> element in order to specify the for-
mat of any error messages resulting from the operation.

Notification operation. This operation represents a service that sends
a message, hence this kind of operation is represented by a single
<output> element.

Figure 5.2 provides the pictorial representation of the previous four
transmission types.

Description and Discovery of Web Services 209

Figure 5.2 WSDL operation types.

<binding> Element

A binding defines the message format and protocol details for operations
and messages defined by a particular <portType>. There may be any
number of bindings for a given <portType>. The type attribute of the
<binding> element refers to the <portType> that it binds to, which is
WeatherInfoPortType in our case. Our WeatherInfoService speci-
fies a SOAP binding, as is defined in the WSDL 1.1 specification. The
WSDL 1.1 SOAP binding is discussed in detail in a later section titled SOAP
Binding.

<service> Element

The <service> element specifies the location of the service. Because our
WeatherInfoService is bound to SOAP, we use the <soap:address>
element and specify the service URL as http://myweather.com
/provideweatherinfo/.

Now, let’s take a look at the support for various bindings in the WSDL
1.1 specification.

CLIENT SERVICE

Solicit-
Response

Notification

Request-
Response

One-way <input>

<input>

<output>

<input>

<output>

<output>

210 Chapter 5

WSDL Bindings
In WSDL, the term binding refers to the process of associating protocol or
data format information with an abstract entity such as <message>,
<operation>, or <portType>. In this section, we examine the support
for bindings in the WSDL 1.1 specification. Let’s begin with the WSDL
binding extensions.

WSDL Binding Extensions

WSDL allows user-defined elements, also known as Extensibility Elements,
under various elements defined by a default WSDL namespace. These ele-
ments are commonly used to specify some technology-specific binding,
although they can be used for other purposes as well. Extensibility ele-
ments, when used to specify a technology-specific binding, are known as
WSDL Binding Extensions.

Extensibility elements provide a powerful mechanism for extending
WSDL because they enable support for network and message protocols to
be revised without having to revise the WSDL specification.

The base specification of WSDL defines three WSDL binding extensions,
which are as follows:

■■ SOAP binding

■■ HTTP GET & POST binding

■■ MIME binding

We will take a look at the most commonly used WSDL binding exten-
sion, the SOAP binding, in a later section titled SOAP Binding.

WSDL Binding Support for Operations

All four types of operations supported by WSDL—one-way, request-
response, solicit-response, and notification—represent an abstract notion
only. Binding describes the concrete correlation to these abstract notions.
Binding determines how the messages are actually sent, for instance,
within a single communication (for example, an HTTP request/response)
or as two independent communications (for example, two HTTP requests).
Thus, binding for a specific operation type must be defined in order to
successfully carry out that type of operation. Note that although the
WSDL structure supports the bindings for these four operations, the WSDL

Description and Discovery of Web Services 211

specification defines bindings for only one-way and request-response
operations. Hence, in order to use WSDL to describe services that support
solicit-response and/or notification types of operations, the communica-
tion protocol of the Web service must define the WSDL binding extensions,
thus enabling the use of these operations.

Let’s now take a look at SOAP binding as defined by the WSDL 1.1
specification.

SOAP Binding

WSDL 1.1 defines a binding for SOAP 1.1 endpoints. This binding provides
the following SOAP protocol specific information:

■■ An indication that the binding is bound to the SOAP 1.1 protocol

■■ A way of specifying an address for a SOAP endpoint

■■ The URI for the SOAP action HTTP header for the HTTP binding of
SOAP

■■ A list of definitions of headers that are transmitted as part of the
SOAP envelope

Let’s examine the SOAP binding of the request-response RPC operation
over HTTP as defined in the WeatherInfo.wsdl file shown earlier (see
the section titled Anatomy of a WSDL Definition Document).

<soap:binding>

The <soap:binding> element is defined in WeatherInfo.wsdl as
follows:

<soap:binding style=”document”

transport=”http://schemas.xmlsoap.org/soap/http”/>

The <soap:binding> element says that the binding is bound to the
SOAP protocol format, that is, envelope, header, and body. However, this
element does not give any information about the format or encoding of the
message. This element must be present whenever describing services that
have a SOAP binding.

The style attribute indicates whether the operations supported by this
binding are RPC-oriented or document-oriented. In RPC-oriented commu-
nication, the messages contain parameter and return values, whereas in
document-oriented communication, the messages contain document(s).
This information about the style of communication can be useful because it
helps in selecting the programming model for communicating with the

212 Chapter 5

Web service. For example, if a Web service is described to support RPC, we
can choose a JAX-RPC programming model to communicate with it, or if a
Web service is described to support document-style communication, we
can appropriately choose a JAXM programming model.

The transport attribute specifies the transport binding for the SOAP
protocol. The URI value of http://schemas.xmlsoap.org/soap/http
corresponds to the HTTP binding as defined in the SOAP specification. Sim-
ilarly, respective URIs can be used to indicate other types of transports such
as SMTP or FTP.

<soap:operation>

The <soap:operation> element is defined in WeatherInfo.wsdl as
follows:

<soap:operation soapAction=

“http://myweather.com/GetWeatherInfo”/>

The <soap:operation> element defines the information with regard
to communication style and the SOAP action header at that specific opera-
tion level.

The semantics of the style attribute remains the same as that for a
<soap:binding> element.

The soapAction attribute specifies the value of a SOAP action header
in the form of a URI. The usage of the SOAP action header was discussed
in Chapter 4, “Developing Web Services Using SOAP.”

<soap:body>

The <soap:body> element is defined in WeatherInfo.wsdl as follows:

<soap:body use=”literal”/>

This element defines how the message <part> elements appear
inside the SOAP body element. Based on the style of communication, RPC-
oriented or document-oriented, the <Body> element of the SOAP message
is constructed.

The use attribute indicates whether the message <part> elements are
encoded using some encoding rules or whether the <part> elements
already define the concrete schema of the message.

If the value of the use attribute is “encoded”, then each message
<part> refers to an abstract type defined through the type attribute. These
abstract types are then used to produce a concrete definition of the message
by applying the encoding specified by an encodingStyle attribute.

Description and Discovery of Web Services 213

Consider the following example:

<output>

<soap:body

encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”

namespace=”urn:acmens:acmeservice”

use=”encoded”/>

</output>

The <soap:body> element in this code depicts a SOAP binding
wherein the body of the output SOAP message consists of abstract <part>
elements that are used to produce the concrete definition of the message by
applying the encodingStyle as defined in http://schemas
.xmlsoap.org/soap/encoding/.

<soap:address>

The <soap:address> element is defined as follows in
WeatherInfo.wsdl:

<soap:address location=

“http://myweather.com/provideweatherinfo”/>

The <soap:address> element specifies an address for the given service
port.

WSDL Tools
WSDL tools typically provide functionality in terms of the following:

WSDL generation. Generating WSDL from an existing service
component—for example, a J2EE component or a Java Bean compo-
nent or from scratch.

WSDL compilation. A typical WSDL compiler would generate the
necessary data structures and a skeleton for the implementation of the
service. The generated implementation skeleton contains all the meth-
ods (operations) that are described in the given WSDL definition.

WSDL proxy generation. This functionality can read a WSDL and
produce a specific language binding (for example, Java or Perl)
consisting of all the code required to bind the Web service and to
invoke the Web service functions at runtime. This functionality is
typically used at the client end.

Many WSDL tools provide support for these three functionalities.
Table 5.1 lists some of the famous ones in the Java Web Services space.

214 Chapter 5

Table 5.1 WSDL Tools

TOOL DOWNLOAD FROM ...

Sun ONE Studio 4 wwws.sun.com/software/sundev/jde/index.html

Systinet WASP www.systinet.com/wasp

The Mind Electric GLUE www.themindelectric.com/glue/index.html

IBM Web Services Toolkit www.alphaworks.ibm.com/tech/webservicestoolkit/

BEA WebLogic Workshop www.bea.com/products/weblogic/workshop
/easystart/index.shtml

Apache Axis http://xml.apache.org/axis

In the following section, we examine the WSDL tools provided by the
Systinet WASP platform.

Support for WSDL in Systinet WASP 4.0

Systinet WASP provides two tools for working with WSDL: Java2WSDL
and WSDL Compiler. Both of these tools accomplish two different types of
functionalities related to WSDL:

Generating WSDL from a Java class that is a potential candidate for a
Web service. This functionality is taken care of by the Java2WSDL
tool.

Generating Java code from an existing WSDL. This functionality is
taken care of by the WSDL Compiler.

We will check out both these tools in the following two sections.

Generating WSDL from a Java Class

In situations in which an implementation of the Web service has already
been created first, the Java2WSDL tool can be used to generate WSDL. This
tool provides a lot of options for generating WSDL from an existing Java
implementation.

To understand the functioning of this tool, consider the following
Java class:

package jws.ch5;

public class WeatherInfoJavaService

{

public float GetWeatherInfo (String sCountry, String sZip,

Description and Discovery of Web Services 215

TEAMFL
Y

Team-Fly®

String sInstance)

{

// Talk to some backend services to get hold

// of the weather information

// Return the weather information;

// a manipulated value for now.

return 65.0f;

}

public void SetWeatherInfo (String sCountry, String sZip,

String sInstance, String sTemperature)

{

// Update the backend weather databases

// with this information

}

}

As can be seen from the previous listing, this class provides get and set
methods. The main job of this class is to manage information related to
weather. Note that this is a very simplistic version of such a weather infor-
mation service.

For example, we want to expose this class as a Web service. In which
case, we also decide to provide the description of the interface of this Web
service as a WSDL. Our Web service supports SOAP-based communica-
tion, and hence, a SOAP binding as well. Thus, this fact also should be
considered while generating WSDL using the Java2WSDL tool.

Once the WSDL has been generated, it can be registered in a registry
such as UDDI accompanied by the business- and other service-related
information. So when the prospective Web service users find the Web
service, they can obtain the WSDL description corresponding to this Web
service and start using it.

The following command line instruction shows the usage of the
Java2WSDL tool such that it would generate a WeatherInfo.wsdl from
the WeatherInfoJavaService class:

> Java2WSDL jws.ch5.WeatherInfoJavaService --package-mapping

“jws.ch5=http://www.myweather.com/WeatherInfo” --output-file-mapping

“http://www.myweather.com/WeatherInfo=

WeatherInfo.wsdl” —output-directory jws/ch5

This command would generate WeatherInfo.wsdl and place it in the
%DEMO_DIR%/jws/ch5 directory. Table 5.2 gives the explanation of the
arguments used in the previous command.

216 Chapter 5

Table 5.2 Java2WSDL Command Line Options

Package mapping Whenever a Java class is processed by a Java2WSDL
tool, it assumes that the package namespace is the
target namespace as well. Hence, in order to
provide a new mapping of package name to the
WSDL namespace, this argument must be provided.

Outputfile mapping By default, the Java2WSDL tool would generate a
WSDL document named as the package namespace,
preceded by “Definitions_”. Thus, in order to
give a new name to the WSDL definition document,
we can use this argument.

Output directory This argument specifies the directory where the
output WSDL definition would be stored. The
default is the current directory.

The Java2WSDL tool supports many more arguments than what are
shown in Table 5.2. To find detailed information on these arguments and
the Java2WSDL tool in general, please visit the Systinet Web site at
www.systinet.com/doc/wasp_jserver/tools/java2WSDL.html.

The output WeatherInfo.wsdl generated by the Java2WSDL tool is
shown in Listing 5.2.

<?xml version=’1.0’?>

<wsdl:definitions name=’jws.ch5.WeatherInfoJavaService’

targetNamespace=’http://www.myweather.com/WeatherInfo’

xmlns:wsdl=’http://schemas.xmlsoap.org/wsdl/’

xmlns:tns=’http://www.myweather.com/WeatherInfo’

xmlns:ns0=’http://systinet.com/xsd/SchemaTypes/’

xmlns:soap=’http://schemas.xmlsoap.org/wsdl/soap/’

xmlns:map=’http://systinet.com/mapping/’>

<wsdl:types>

<xsd:schema elementFormDefault=”qualified”

targetNamespace=

“http://systinet.com/xsd/SchemaTypes/”

xmlns:tns=”http://systinet.com/xsd/SchemaTypes/”

xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

<xsd:element name=”sCountry” nillable=”true”

Listing 5.2 WeatherInfo.wsdl generated by the Java2WSDL tool. (continues)

Description and Discovery of Web Services 217

type=”xsd:string”/>

<xsd:element name=”sZip” nillable=”true”

type=”xsd:string”/>

<xsd:element name=”sInstance” nillable=”true”

type=”xsd:string”/>

<xsd:element name=”float_res”

type=”xsd:float”/>

<xsd:element name=”sTemperature”

nillable=”true” type=”xsd:string”/>

</xsd:schema>

</wsdl:types>

<wsdl:message name=

‘WeatherInfoJavaService_GetWeatherInfo_1_Request’>

<wsdl:part name=’sCountry’ element=’ns0:sCountry’/>

<wsdl:part name=’sZip’ element=’ns0:sZip’/>

<wsdl:part name=’sInstance’ element=’ns0:sInstance’/>

</wsdl:message>

<wsdl:message name=

‘WeatherInfoJavaService_GetWeatherInfo_Response’>

<wsdl:part name=’response’ element=’ns0:float_res’/>

</wsdl:message>

<wsdl:message name

=’WeatherInfoJavaService_SetWeatherInfo_Response’/>

<wsdl:message name=

‘WeatherInfoJavaService_SetWeatherInfo_1_Request’>

<wsdl:part name=’sCountry’ element=’ns0:sCountry’/>

<wsdl:part name=’sZip’ element=’ns0:sZip’/>

<wsdl:part name=’sInstance’ element=’ns0:sInstance’/>

<wsdl:part name=’sTemperature’

element=’ns0:sTemperature’/>

</wsdl:message>

<wsdl:portType name=’WeatherInfoJavaService’>

<wsdl:operation name=’GetWeatherInfo’

parameterOrder=’sCountry sZip sInstance’>

<wsdl:input message=

Listing 5.2 WeatherInfo.wsdl generated by the Java2WSDL tool.

218 Chapter 5

‘tns:WeatherInfoJavaService_GetWeatherInfo_1_Request’/>

<wsdl:output message=

‘tns:WeatherInfoJavaService_GetWeatherInfo_Response’/>

</wsdl:operation>

<wsdl:operation name=’SetWeatherInfo’

parameterOrder=’sCountry sZip sInstance

sTemperature’>

<wsdl:input message=

‘tns:WeatherInfoJavaService_SetWeatherInfo_1_Request’/>

<wsdl:output message=

‘tns:WeatherInfoJavaService_SetWeatherInfo_Response’/>

</wsdl:operation>

</wsdl:portType>

<wsdl:binding name=’WeatherInfoJavaService’

type=’tns:WeatherInfoJavaService’>

<soap:binding transport=

‘http://schemas.xmlsoap.org/soap/http’

style=’document’/>

<wsdl:operation name=’GetWeatherInfo’>

<map:java-operation name=

‘GetWeatherInfo’ signature=’KExq...’/>

<soap:operation soapAction=’_10’

style=’document’/>

<wsdl:input>

<soap:body use=’literal’

namespace=’http://www.myweather.com/

WeatherInfoWeatherInfoJavaService’/>

</wsdl:input>

<wsdl:output>

<soap:body use=’literal’ namespace=

‘http://www.myweather.com/

WeatherInfoWeatherInfoJavaService’/>

</wsdl:output>

</wsdl:operation>

<wsdl:operation name=’SetWeatherInfo’>

<map:java-operation name=’SetWeatherInfo’

signature=’KExq...’/>

Listing 5.2 WeatherInfo.wsdl generated by the Java2WSDL tool. (continues)

Description and Discovery of Web Services 219

<soap:operation soapAction=’_11’

style=’document’/>

<wsdl:input>

<soap:body use=’literal’ namespace=

‘http://www.myweather.com/

WeatherInfoWeatherInfoJavaService’/>

</wsdl:input>

<wsdl:output>

<soap:body use=’literal’ namespace=

‘http://www.myweather.com/

WeatherInfoWeatherInfoJavaService’/>

</wsdl:output>

</wsdl:operation>

</wsdl:binding>

<wsdl:service name=’JavaService’>

<wsdl:port name=’WeatherInfoJavaService’

binding=’tns:WeatherInfoJavaService’>

<soap:address location=

‘urn:unknown-location-uri’/>

</wsdl:port>

</wsdl:service>

</wsdl:definitions>

Listing 5.2 WeatherInfo.wsdl generated by the Java2WSDL tool. (continued)

Generating Java Code from an Existing WSDL

In situations in which WSDL definitions are created before actually imple-
menting a Web service, the WSDLCompiler tool of WASP can be used to
generate the skeleton of a Java interface. A Java class consisting of the
actual method implementations then can implement this generated Java
interface.

The usage of the WSDLCompiler tool is as follows:

> WSDLCompiler WeatherInfo.wsdl

In this case, a Java interface with the name WeatherInfoJavaService
is created as shown in Listing 5.3.

220 Chapter 5

/**

*/

public interface WeatherInfoJavaService {/

/**

*/

float GetWeatherInfo(java.lang.String sCountry, java.lang.String

sZip, java.lang.String sInstance);

/**

*/

void SetWeatherInfo(java.lang.String sCountry, java.lang.String

sZip, java.lang.String sInstance, java.lang.String sTemperature);

}

/*

* Generated by WSDLCompiler, (c) 2002, Systinet Corp.

* http://www.systinet.com

*/

Listing 5.3 WeatherInfoJavaService Java class generated by the WSDLCompiler tool.

This tool also has various options that enable fine-tuning of the genera-
tion of the Java interface. Also, WSDLCompiler supports the generation of
Java Bean components from WSDL definitions. To find further informa-
tion about this tool, visit www.systinet.com/doc/wasp_jserver/tools
/wsdlCompiler.html.

Note that tools such as Apache Axis also provide support for generating
messaging implementation classes from WSDL.

Future of WSDL
As mentioned earlier, WSDL 1.2 is presently a work in progress under the
Web Services Description Working Group at W3C. W3C released the draft
specifications of WSDL 1.2 in July 2002. The WSDL 1.2 specification consists
of two documents: Web Services Description Language Version 1.2 and Web Ser-
vices Description Language Version 1.2 Bindings. The former defines the core
language that can be used to describe Web services based on an abstract
model of what the service offers. The latter describes how to use WSDL for
describing services that use SOAP 1.2, MIME, or HTTP 1.1 bindings.

Description and Discovery of Web Services 221

The following lists some of the important enhancements of WSDL 1.2
over WSDL 1.1:

■■ WSDL 1.2 provides support for W3C Recommendations, including
XML Schemas and XML Information Set.

■■ WSDL 1.2 removes non-interoperable features from WSDL 1.1.

■■ WSDL 1.2 clearly defines HTTP 1.1 binding.

To obtain further information on WSDL 1.2, visit www.w3.org/2002/ws
/desc/.

Limitations of WSDL
WSDL 1.1 has an obvious limitation: its incapability of being able to
describe complex business Web services, which typically are constituted by
orchestrating multiple finer-grained Web services. This drawback is due to
the lack of support for workflow descriptions in WSDL. To overcome these
limitations of WSDL, standards such as ebXML Collaborative Protocol
Profile/Collaborative Protocol Agreement (CCP/A), Business Process
Specification Schema (BPSS), and Web Services Choreography Interface
(WSCI) can be leveraged. An EbXML set of technologies can be used to
build business Web services. To find more information on EbXML technical
architecture, refer to Chapter 14, “Introduction to Sun ONE.” A WSCI
specification can be downloaded from wwws.sun.com/software/xml
/developers/wsci/. Also Chapter 2, “Introduction to Web Services,” pro-
vides a brief introduction to WSCI.

Apart from these, there are some low-level issues with WSDL 1.1 speci-
fication in terms of the clarity of specification. To get a complete listing of
WSDL 1.1 issues, visit wsdl.soapware.org/.

We will now begin our journey with UDDI.

Universal Description, Discovery,
and Integration (UDDI)

As already discussed, UDDI technology is the core and one of the building
blocks of Web services apart from SOAP and WSDL. UDDI enables the busi-
nesses providing services (in electronic form or in any other medium) to reg-
ister information to enable the discovery of their services and business
profile by prospective customers and/or partners. Similarly, it enables
businesses to discover other businesses for expanding potential business
partnerships. Thus, UDDI presents businesses with an opportunity to step

222 Chapter 5

into new markets and services. It powers all kinds of businesses, large,
medium, or small, to accelerate their business presence in this global market.

UDDI initially started as a joint effort from IBM, Microsoft, and Ariba.
Since then, a number of companies joined the UDDI community. As of this
book’s writing, the UDDI project community is looking forward to releas-
ing version 3.0 of the UDDI specification. This chapter covers version 2.0 of
the UDDI specification because it is widely implemented and adopted as
of this writing. To find more information on the UDDI effort, visit the
UDDI official Web site at www.uddi.org.

UDDI Registries
An implementation of the UDDI specification is termed as a UDDI registry.
UDDI registry services are a set of software services that provide access to
the UDDI registry. Meanwhile, registry services can perform a plethora of
other activities such as authenticating and authorizing registry requests,
logging registry requests, load-balancing requests, and so on.

Public and Private UDDI Registries

A UDDI registry can be operated in two modes: public mode and private
mode. A public UDDI registry is available for everyone to publish/query
the business and service information on the Internet. Such public registries
can be a logical single system built upon multiple UDDI registry nodes that
have their data synchronized through replication. Thus, all the UDDI reg-
istry node operators would each host a copy of the content and accessing
any node would provide the same information and quality of service as
any other operator node. Such global grouping of UDDI registry nodes is
known as a UDDI Business Registry, or UBR. Content can be added into a
UBR from any node, however, content can be modified or deleted only at a
node at which it was inserted.

A private UDDI registry is operated by a single organization or a group of
collaborating organizations to share the information that would be avail-
able only to the participating bodies. Private UDDI registries can impose
additional security controls to protect the integrity of the registry data and
to prevent access by unauthorized users. Note that a private node also can
participate in information replication.

A UDDI registry in itself is a Web service. A Web service consumer
queries the UDDI registry using the SOAP API defined by UDDI specifica-
tion. Also, the UDDI specification publishes a WSDL description of the
UDDI registry service.

Description and Discovery of Web Services 223

The UDDI project community members operate a UBR. This registry is
available to everyone for free publishing/querying of businesses and ser-
vices information. To find more information on this publicly operated
UDDI registry, visit the UDDI Web site at www.uddi.org.

Interacting with a UDDI Registry

Typically, vendors implementing a UDDI registry provide two ways of
interacting with a UDDI Registry Service.

■■ A graphical user interface (GUI), for interacting with a UDDI reg-
istry. These GUIs also can be browser-based. The following is a list
of public UDDI registries, operated by various companies such as
Microsoft, IBM, Hewlett Packard, and so on, that provide a browser-
based interface to these registries:

■■ https://uddi.rte.microsoft.com/search/frames.aspx

■■ https://www-3.ibm.com/services/uddi/v2beta/protect
/registry.html

■■ https://uddi.hp.com/uddi/index.jsp

■■ http://udditest.sap.com/

■■ http://www.systinet.com/uddi/web

Figure 5.3 shows a browser-based GUI provided by Systinet in order to
interact with its publicly hosted UDDI registry. This screenshot depicts the
interface provided for searching businesses registered with the Systinet
registry.

Figure 5.3 Web-based GUI to UDDI registry.

224 Chapter 5

■■ A programmatic interface for communicating with the UDDI reg-
istry. These programmatic interfaces are based on SOAP, because the
UDDI registry supports SOAP as the communication protocol.

■■ Most of the vendors providing the UDDI registry implementa-
tions support both of these types of access to the registry.

Uses of UDDI Registry

Businesses can use a UDDI registry at three levels:

White pages level. Businesses that intend to register just the very
basic information about their company, such as company name,
address, contact information, unique identifiers such as D-U-N-S
numbers or Tax IDs, or Web services use UDDI as white pages.

Yellow pages level. Businesses that intend to classify their informa-
tion based on categorizations (also known as classification schemes
or taxonomies) make use of the UDDI registry as yellow pages.

Green pages level. Businesses that publish the technical information
describing the behavior and supported functions on their Web ser-
vices make use of the UDDI registry as green pages.

Note that the UDDI specification does not explicitly make references to
these different types of usage levels of the UDDI registry. The categoriza-
tion of these levels is rather implicit.

UDDI Specifications

All versions of the UDDI specifications can be obtained from the UDDI
organization at their Web site at http://uddi.org/specification.html. The
UDDI 2.0 specification set includes the following documents:

UDDI replication. The document describes the data replication
process of the UDDI registries. Also, it describes the programmatic
interfaces supported by UDDI for achieving replication between
UDDI registries operated by different operators.

UDDI operators. This document provides information on the opera-
tional behavior that should be followed by UDDI node operators. For
example, the document defines guidelines that node operators can
follow in order to manage the data of the UDDI registry node. Such
guidelines include the following:

■■ Node operators’ responsibility for durable recording and backup
of all data.

Description and Discovery of Web Services 225

TEAMFL
Y

Team-Fly®

■■ Checking the validity of information provided by businesses
during registration, such as email addresses.

■■ Checking the integrity of data in the UDDI registry after it has
been modified. For example, if a business has been deleted from
the registry, then the operator should ensure that the services
corresponding to this business also are deleted.

Note that private UDDI node operators are not required to follow the
guidelines mentioned in this document.

UDDI programmer’s API. This document describes the programming
interfaces supported by a UDDI registry in terms of SOAP messages.
This document is targeted towards programmers who want to write
software that would interact with a UDDI registry operated at a pub-
lic or private level, using SOAP.

UDDI data structures. This document outlines the details of the XML
structures that are associated with the SOAP messages used to com-
municate with the UDDI registries. These SOAP messages are well
defined by the UDDI programmer’s API specification and are used to
perform the inquiry and publishing functions on the UDDI registry.

To begin with, let’s take a look at how to retrieve, search, and publish
information to a UDDI registry in the next section.

Programming with UDDI
This section introduces the APIs used for communicating with a UDDI reg-
istry. Also, important data structures and categorization support of UDDI
are discussed.

UDDI Programming API

The UDDI specification defines two XML-based programming APIs for
communicating with the UDDI registry node: inquiry API and publishing
API. The following sections describe each of these.

Inquiry API

The inquiry API consists of XML messages defined using a UDDI Schema,
which can be used to locate information about a business, such as the ser-
vices a business offers and the technical specification of those services (such
as a link to a WSDL document describing the interface of the service, the
binding of the service and the URL where the service is running, and so on).
A UDDI programmer would use these inquiry APIs to retrieve information

226 Chapter 5

stored in the registry. To retrieve information, a registry user does not need
to be authenticated.

The following is a list of inquiry API functions that can be used for
finding information in a UDDI registry:

■■ <find_business>

■■ <find_relatedBusinesses>

■■ <find_service>

■■ <find_binding>

■■ <find_tModel>

To get further detailed information from the UDDI registry, the follow-
ing inquiry API functions are available:

■■ <get_businessDetail>

■■ <get_businessDetailExt>

■■ <get_serviceDetail>

■■ <get_bindingDetail>

■■ <get_tModelDetail>

Publishing API

The publishing API consists of functions represented by a UDDI Schema,
which defines XML messages that can be used to create, update, and delete
the information present in a UDDI registry. Note that in order to publish to
a UDDI registry, the registry user needs to be authenticated.

The following is a list of publishing API functions that can be used for
adding/modifying information to a UDDI registry:

■■ <save_business>

■■ <set_publisherAssertions>

■■ <add_publisherAssertions>

■■ <save_service>

■■ <save_binding>

■■ <save_tModel>

The following is a list of publishing API functions that can be used for
deleting information from a UDDI registry:

■■ <delete_business>

■■ <delete_publisherAssertions>

Description and Discovery of Web Services 227

■■ <delete_service>

■■ <delete_binding>

■■ <delete_tModel>

Apart from the functions just mentioned, the publishing API also defines
functions that deal with the authentication of the registry users, which
is required in order to successfully execute the rest of the functions of
this API:

■■ <get_authToken>

■■ <discard_authToken>

We will discuss each of the aforementioned APIs in detail in the sections
titled Inquiry API and Publishing API, which follow.

The XML messages constituting the UDDI programmer APIs are defined
using a UDDI XML Schema. These XML messages are wrapped in a SOAP
message and then sent to the UDDI registry. In other words, all of the XML
messages are enveloped within a SOAP <body> element and then sent as
an HTTP POST request to the UDDI registry. The UDDI registry then
processes these SOAP messages and gets hold of the actual API function
represented by the XML message, which further instructs the registry ser-
vices to provide either publishing or querying services.

A UDDI registry node typically enables access to both inquiry and
publishing functionalities through different access point URLs. Table 5.3
lists the URLs for publicly operated UDDI registry nodes.

As we can see from Table 5.3, all of the URLs corresponding to the pub-
lishing access points support HTTPS, because publishing operations need
authenticated access.

Table 5.3 Access Point URLs

OPERATOR INQUIRY URL PUBLISHING URL

Microsoft http://uddi.microsoft.com/inquire https://uddi.microsoft.com
/publish

IBM http://www-3.ibm.com/services https://www-3.ibm.com
/uddi/inquiryapi /services/uddi/protect

/publishapi

HP http://uddi.hp.com/inquire https://uddi.hp.com/publish

SAP http://udditest.sap.com/uddi https://udditest.sap.com
/api/inquiry /uddi/api/publish

228 Chapter 5

Note that all the UDDI invocations follow a synchronous request/response
mechanism and are stateless in nature. This statelessness has a significant
impact on the authentication of a registry user to the UDDI registry, which is
required when performing a publishing operation on the registry. Because of
the stateless nature of the UDDI programming API, each time a registry
user uses a publishing programming API, the security credentials of the
identity associated with the registry user also are passed with each UDDI
invocation.

UDDI Data Structures

The information managed by a UDDI registry is represented as XML data
structures also known as UDDI data structures. The UDDI data structures
specification document defines the meaning of these data structures and
the relationship between them. Ultimately, it is these data structures with
which a UDDI client needs to work. A UDDI client makes use of these, in
conjunction with the XML messages of programming APIs, to manipulate
a specific type of information in a registry. Similarly, response to a search
operation received from the UDDI registry also would consist of these data
structures. Hence, the UDDI data structures are more or less input and out-
put parameters for the UDDI programming API.

The following are the five primary UDDI data structures defined in the
specification:

■■ <businessEntity>

■■ <publisherAssertion>

■■ <businessService>

■■ <bindingTemplate>

■■ <tModel>

Note that all of these data structures except <publisherAssertion>
are identified and referenced through a 128-bit globally unique identifier
also known as UUID. These UUIDs can later be used as keys to access the
specific data within the registry.

Now, let’s take a look at each of these one by one.

<businessEntity>

The <businessEntity>data structure represents the primary information
about a business, such as contact information, categorization of the business
according to a specific taxonomy or classification scheme, identifiers, rela-
tionships to other business entities, and descriptions about that particular

Description and Discovery of Web Services 229

business. The categorizations are discussed in a later section titled Support for
Categorization in UDDI Registries.

<publisherAssertion>

A business registered in a UDDI registry can have active business
relationships with other businesses. This relationship can be of any
form, for example, a relationship of business partners or a business-to-
customer relationship. Such relationships are represented by a
<publisherAssertion> data structure in a UDDI Registry. The
<publisherAssertion> structure is used to establish a relationship
between two <businessEntity> structures.

A very interesting aspect about relationships in a UDDI registry is its
ability to not make the relationship visible to the public unless and until
both of the parties establishing this association assert for the same. This
means that if a <businessEntity> structure representing Company A
asserts its relationship with a <businessEntity> structure representing
Company B through a <publisherAssertion> structure, a UDDI reg-
istry would not make this relationship public until Company B has created
another similar <publisherAssertion> structure. This provision is
supported by the UDDI registries in order to ensure that a company can
claim a business relationship with another company, only if the other part-
ner also asserts for the same relationship.

<businessService>

The <businessService> data structure represents the service of a busi-
ness. These services can be Web services or any other type of service. For
example, the <businessService> data structure may represent a service
that is offered over the telephone, such as a telephone banking service. The
<businessService> data structure is merely a logical representation of
services that a business has to offer.

A <businessEntity> structure contains one or more
<businessService> structures. The same <businessService> struc-
ture also can be used by multiple <businessEntity> structures. For
example, if a business has two departments—say, manufacturing and
sales— that are each published to a UDDI registry as a <businessEntity>
structure, then both of them can use the same <businessService> struc-
ture representing another business service—say, legal counseling.

<bindingTemplate>

The <bindingTemplate> structure consists of pointers to technical
descriptions and access URLs of the service. Each <businessService>

230 Chapter 5

structure can contain one or more <bindingTemplate> structures. So,
for example, if the <businessService> structure represents a Web ser-
vice, then its <bindingTemplate> would refer to a PDF document pro-
viding the technical description of this Web service and the URL at which
the Web service can be accessed. Also, the <bindingTemplate> structure
can provide an optional description of the Web service.

Note that the <bindingTemplate> structure does not provide the details
of the service specification, such as the interface of a service. That information
is provided by the <tModel> structures, and <bindingTemplate> simply
refers to one or more of such <tModel> structures.

<tModel>

The <tModel> structure provides a description of a particular specifica-
tion or behavior of the service. The <tModel> structure does not contain
the service specification directly; instead, it contains a link to the service
specification, which is managed elsewhere. The <tModel> thus defines
the interaction pattern in order to use the service. For example, a business
may provide a Web service whose WSDL interface may be referenced
through a link from within the <tModel> structure.

Thus, <tModel> defines the lowest-level and most concrete piece of
information about the services offered by a business. A UDDI client typi-
cally gets hold of the service specification pointed out by the <tModel>
structure in order to use a publicly available Web service registered by a
particular business.

The linking between these five core data structures of UDDI is depicted
in Figure 5.4.

Apart from these five primary data structures, two other structures exist
that represent the category and identification information of the primary
data structures: <identifierBag> and <categoryBag>. Let’s take a
look at each of them now.

<identifierBag>

The <identifierBag> structure enables <businessEntity> or
<tModel> structures to include information about the common forms of
identification such as D-U-N-S numbers and tax IDs. This data can be used
to signify the identity of <businessEntity>, or it can be used to signify
the identity of the publishing party. Including such identification informa-
tion is optional. However, when a published <businessEntity> or
<tModel> carries such common forms of identification, it greatly
enhances the search behaviors exposed via inquiry API functions.

Description and Discovery of Web Services 231

Figure 5.4 Primary UDDI data structures.

<categoryBag>

The <categoryBag> structure enables <businessEntity>,
<businessService>, and <tModel> structures to be categorized
according to any categorization system, such as an industry categorization
system or a geography categorization system. Categorizing the data
structures mentioned previously is optional. However, when these data
structures are published along with their categorization information, it
greatly enhances the search behaviors exposed via inquiry API functions.
The categorization support in a UDDI registry is discussed in the following
section.

<businessEntity>

Information about the party
who publishes information
about a family of services

<publisherAssertion>

Information about the
relationship between two parties,
asserted by one or both parties

<businessService>

Descriptive information about a
particular Web service

<bindingTemplate>

Technical information about a
service entry point and

construction specification

<tModel>

Descriptions of specifications for
services (or categorization

systems)

<bindingTemplate>
data contains
references to
<tModel>
structures. These
<tModel>
structures
designate the
interface
specifications for a
service.

232 Chapter 5

Support for Categorization in UDDI Registries

Categorization—also known as classification in JAXR terminology—is con-
sidered to be the prominent functionality of any registry. Categorization
enables the data to be classified with the help of various categorization sys-
tems (also known as taxonomies or classification schemes), such as an indus-
try categorization system or a geography categorization system. For example,
a business can be classified as being located in the United States with the help
of a standard geography categorization system such as ISO-3166.

Categorizing data aids in searching for a particular piece of data. For
example, searching for a software organization whose name begins with
the letter M is much easier when that data is categorized as being located
in Redmond, Washington, than when it is not. Searching by the letter M for
an organization that does not have a geographical categorization returns a
much broader set of results, thus making it much more difficult to discover
the business in which one is interested. Hence, categorization is especially
useful in the discovery of information managed by a UDDI registry.

UDDI registries have built-in support for three industry standard cate-
gorization systems. Also, the registry specification enables support for an
open-ended categorization system that can be used in specific ways by a
UDDI registry node operator. In UDDI, the categorization system is repre-
sented by a <tModel> structure. These <tModel> structures have a
unique name across all the UDDI registry node operators; however, the
<tModel> UUID may change between the node operators.

UDDI-Supported Categorization Systems

The UDDI supported categorization systems and their <tModel> names
are shown in Table 5.4.

Checked and Unchecked Categorization System

UDDI version 2.0 included the capability of validating the categorization
of a particular UDDI data structure. Depending upon whether an organi-
zation chooses to use the validation service of a UDDI registry, one of the
two types of categorization systems will be supported:

Checked categorization system. Checked categorization systems are
used when the publisher of a categorization system wishes to ensure
that the categorization code values registered represent accurate and
validated information. The categorization code values represented by
UDDI structure <categoryBag> would be checked for valid values
during a <save_business>, <save_service>, or
<save_tModel> API call.

Description and Discovery of Web Services 233

Table 5.4. UDDI-Supported Categorization Systems and Their <tModel> Names

CATEGORI- <TMODEL> NAME DESCRIPTION
ZATION
SYSTEM

NAICS ntis-gov:naics This is a standard industry and services
:1997 categorization system. NAICS abbreviates to

the North American Industry Classification
System. This system is the most elaborate
and comprehensive industry classification
scheme defined so far. Further information
on this categorization system can be
obtained from www.census.gov/epcd/www
/naics.html.

UNSPSC unspcs-org This standard industry and services
:unspsc:3-1 categorization system abbreviates to the

Universal Standard Products and Services
Classification. This was the first such
industry classification scheme defined for
electronic businesses. Further information
on this categorization system can be
obtained from www.unspsc.org.

ISO 3166 iso-ch:3166 This is the standard geography-based
:1999 categorization system. Further information

can be found at www.din.de/gremien/nas
/nabd/iso3166ma.

Operator uddi-org:general This categorization system is operator
Specific _keywords specific. This is an open-ended

categorization system that is not pre-
defined. As a result, it can consist of any
category entries that may be defined
specifically for that UDDI registry node.

UDDI version 2 also enables third parties registering new categoriza-
tion systems to control the categorization validation process. In such
case, the third party would implement a Web service, in the same
manner as UDDI does, that exposes a single XML API function
named <validate_values>.

Unchecked categorization system. Unchecked categorization systems
are used for categorization without the need for a UDDI to perform
validation of categorization code values. Businesses can choose to

234 Chapter 5

make their categorization system available for categorization as an
unchecked categorization system. Registering a new <tModel>
structure and categorizing that <tModel> as a categorization system
would register it as an unchecked categorization system.

Now, let’s take a look at the available programming APIs for searching
information in a UDDI registry.

Inquiry API
This section will cover all of the XML messages that perform the function-
ality of inquiring certain information from a UDDI registry. Inquiry API
constitutes of two types of functions:

■■ Functions that return zero or more homogeneous data structures
containing abbreviated information

■■ Functions that return zero or more homogeneous data structures
containing detailed information

To begin with, we will take a look at the API functions, which return
abbreviated information in response.

Find_xx Inquiry API Functions

The find_xx functions follow the browse pattern. The browse pattern typi-
cally involves starting with some broad information, performing a search,
finding general result sets, and then selecting more specific information for
drill-down purposes.

The find_xx calls form the search capabilities such that the summary of
matched results are returned in the response message. Hence, a UDDI
client would get the overview information about the registered data by
using find_xx inquiry API calls. Once the client gets hold of the key for one
of the primary UDDI data structures, it then can use get_xx inquiry API
functions to get further details.

<find_business>

The <find_business> API function represented by an XML message is
used to locate information about one or more businesses. Given a regular
expression, business category, business identifier, or <tModel> as criteria,
this message retrieves zero or more <businessInfo> structures con-
tained within a single <businessList> structure.

Description and Discovery of Web Services 235

TEAMFL
Y

Team-Fly®

The syntax for this API is as follows:

<find_business [maxRows=”nn”] generic=”2.0”

xmlns=”urn:uddi-org:api_v2”>

[<findQualifiers/>]

[<name/> [<name/>]...]

[<discoveryURLs/>]

[<identifierBag/>]

[<categoryBag/>]

[<tModelBag/>]

</find_business>

Arguments to this function are listed in Table 5.5.

Table 5.5 <find_business> Function Arguments

ARGUMENT DESCRIPTION

maxRows This argument specifies the maximum number of
results that can be returned.

findQualifiers This argument represents a collection of search
qualifiers that form the criteria of the given
operation. The search qualifiers are discussed in
more detail in a later section.

name This argument can be a partial or full name of the
business being searched. The name pattern can
make use of the wildcard character % as well. Up to
five name values can be specified in the argument.
In cases when multiple name values are passed, the
match occurs on a logical OR basis.

The returned <businessList> contains
<businessInfo> structures for businesses whose
name matches the name value(s) passed in a lexical
(leftmost in left to right languages) fashion.

IdentifierBag This argument contains a list of business identifier
references.

The returned <businessList> contains
<businessInfo> structures matching any of the
identifiers passed (logical OR).

categoryBag This is a list of category references.

The returned <businessList> contains
<businessInfo> structures matching all of the
categories passed (logical AND).

236 Chapter 5

Table 5.5 (Continued)

ARGUMENT DESCRIPTION

tModelBag This argument enables searching for businesses that
have bindings exposing a specific fingerprint within
the <tModelInstanceDetails> structure.

The returned <businessList> structure contains
<businessInfo> consisting of a
<businessEntity> structure, which in turn
contains <bindingTemplate> referencing
<tModel> structures that match all the <tModel>
keys passed in this argument (logical AND).

discoveryURLs This argument contains a list of URLs to be matched
against the <discoveryURL> data associated with
any registered <businessEntity> structures.

The following code shows the <find_business> XML message that is
sent within the request SOAP message to the UDDI registry. This function
call basically suggests that the UDDI registry returns information on the
businesses that lexically match ‘ACM’:

<uddi:find_business generic=”2.0” maxRows=”10”>

<uddi:name>

ACM

</uddi:name>

</uddi:find_business>

The complete SOAP message response, containing the <businessList>
structure returned from the registry, is shown in Listing 5.4.

<?xml version=”1.0” encoding=”UTF-8”?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV=

“http://schemas.xmlsoap.org/soap/envelope/”>

<SOAP-ENV:Body>

<businessList xmlns=”urn:uddi-org:api_v2”

generic=”2.0” operator=”SYSTINET”>

<businessInfos>

<businessInfo businessKey=

“uuid:23453aef-af35-6a3f-c34a-

bf798dab965a”>

Listing 5.4 Response to <find_business> function. (continues)

Description and Discovery of Web Services 237

<name xml:lang=”en”>

ACME Computer Services

</name>

<description xml:lang=”en”>

Provides professional services

in the areas of computer software

</description>

<serviceInfos>

<serviceInfo

serviceKey=

“uuid:1245sdef-af35-6a3f-c34a-

bf798dab965a”

businessKey=”uuid:523f3aef-

af35-6a3f-c34a-bf798dab965a”>

<name xml:lang=”en”>

Billing Services

</name>

</serviceInfo>

</serviceInfos>

</businessInfo>

</businessInfos>

</businessList>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Listing 5.4 Response to <find_business> function. (continued)

Thus, as can be seen from the response in Listing 5.4, the
<businessList> structure contains information about each matching busi-
ness and summaries of the <businessServices> exposed by the individ-
ual businesses. If <tModelBag> were used in the search, the resulting
<serviceInfo> structures would only reflect data for the <busi-
nessServices> that contain the matching <bindingTemplate>.

If any error occurred in processing this API call, a <disposition
Report> structure would be returned to the caller in the SOAP Fault.

<find_relatedBusinesses>

Given the UUID of a <businessEntity>, this message returns a list
of UUIDs contained within a <relatedBusinessesList> structure. The
<relatedBusinessesList> structure would consist of <related

238 Chapter 5

BusinessInfo> structures consisting of information about the businesses
that have a relationship with this business.

The syntax for this API is as follows:

<find_relatedBusinesses generic=”2.0” xmlns=”urn:uddi-org:api_v2”>

[<findQualifiers/>]

<businessKey/>

[keyedReference/>

</find_relatedBusinesses>

Arguments for this function are listed in Table 5.6. Note that the
<findQualifiers> argument has been discussed before and hence is
not discussed again.

The following code shows the <find_relatedBusinesses> XML
message that is sent within the request SOAP message to the UDDI reg-
istry. This function call suggests that the UDDI registry return the busi-
nesses that are related to the <businessEntity> specified by the UUID
‘23453aef-af35-6a3f-c34a-bf798dab965a’:

<uddi:find_relatedBusinesses generic=”2.0”>

<uddi:businessKey>

23453aef-af35-6a3f-c34a-bf798dab965a

</uddi:name>

</uddi:find_relatedBusinesses>

Table 5.6 <find_relatedBusinesses> Function Arguments

ARGUMENT DESCRIPTION

businessKey This is a UUID that is used to specify a particular
<businessEntity> to use as the focal point of
the search. This is a mandatory argument, and it
must be used to specify an existing
<businessEntity> in the registry.

The results would include the businesses that are
related in some way to the <businessEntity>
whose key has been specified by this argument.

keyedReference This is a single, optional <keyedReference>
element that is used to specify that only businesses
related to the focal point in a specific way should be
included in the results. The <keyedReference>
structure is used to classify a data structure in a
UDDI registry. The usage of the <keyedReference>
structure is shown later.

Description and Discovery of Web Services 239

The following code shows the partial SOAP message response, contain-
ing the <relatedBusinessesList> structure, returned from the reg-
istry:

<relatedBusinessesList generic=”2.0” operator=”SYSTINET”

xmlns=”urn:uddi-org:api_v2”>

<businessKey>

23453aef-af35-6a3f-c34a-bf798dab965a

</businessKey>

<relatedBusinessInfos>

<relatedBusinessInfo>

<businessKey>

22443aef-ac35-2f3f-c34a-ca4423bb931c

</businessKey>

<name>

XYZ Corporation

</name>

<description>

Outsourced HR Services provider

</description>

<sharedRelationships>

<keyedReference tModelKey=”uuid:...”

keyName=”XYZ Provides HR Services to ACME

Computer Services”

keyValue=”1”>

</sharedRelationships>

</relatedBusinessInfo>

</relatedBusinessInfos>

</relatedBusinessesList>

<find_service>

Given the UUID of a <businessEntity> structure, the name of the ser-
vice, the <tModel> of a specification, or the service category, this message
returns a summary of matching services represented by <serviceInfo>
structures contained within a <serviceList> structure.

The following code shows the syntax for this API:

<find_service businessKey=uuid_key” [maxRows=”nn”] generic=”2.0”

xmlns=”urn:uddi-org:api_v2”>

[<findQualifiers/>]

[<name/>[<name/>]...]

[<categoryBag/>]

[<tModelBag/>]

</find_service>

240 Chapter 5

Semantics of the arguments to this API function have already been
discussed earlier in the “<find_business>” and “<find_relatedBusinesses>”
sections and hence are not covered again to avoid redundancy.

The following code shows the <find_service> XML message that is
sent within the request SOAP message to the UDDI registry. This function
call suggests that the UDDI registry return a list of services that match to
the name pattern ‘Bill’ specified by the <name> element.

<uddi:find_service generic=”2.0”>

<findQualifiers>

<findQualifier>

caseSensitiveMatch

</findQualifier>

</findQualifiers>

<uddi:name>

Bill

</uddi:name>

</uddi:find_service>

Also, note how this query makes use of <findQualifiers> consisting
of an enumerated value ‘caseSensitiveMatch’ to instruct a case-
sensitive matching. Find qualifiers are discussed in detail in a later section.

The following code shows the partial SOAP message response, contain-
ing a <serviceList> structure, returned from the registry:

<serviceList generic=”2.0” operator=”SYSTINET”

xmlns=”urn:uddi-org:api_v2”>

<serviceInfos>

<serviceInfo

serviceKey=

“uuid:1245sdef-af35-6a3f-c34a-bf798dab965a”

businessKey=

“uuid:23453aef-af35-6a3f-c34a-bf798dab965a”>

<name>

Billing Services

</name>

</serviceInfo>

</ServiceInfos>

</serviceList>

<find_binding>

Given the UUID of a <businessService> structure, the <find_bind-
ing> message returns a <bindingDetail> structure containing zero or
more <bindingTemplate> structures matching the criteria specified by
the argument list.

Description and Discovery of Web Services 241

The syntax for this API is as follows:

<find_binding serviceKey=uuid_key” [maxRows=”nn”] generic=”2.0”

xmlns=”urn:uddi-org:api_v2”>

[<findQualifiers/>]

[<tModelBag/>]

</find_binding>

Semantics of the arguments to this API function have been discussed
earlier and hence will not be covered again.

The following code shows the <find_binding> XML message that is
sent within the request SOAP message to the UDDI registry. This function
call suggests that the UDDI registry return a list of <bindingTemplate>
structures that belong to the service whose key is ‘1245sdef-
af35-6a3f-c34a-bf798dab965a’.

<uddi:find_binding serviceKey=

“uuid:1245sdef-af35-6a3f-c34a-bf798dab965a” generic=”2.0”>

<findQualifiers>

<findQualifier>

sortByNameAsc

</findQualifier>

</findQualifiers>

</uddi:find_binding>

Also, note this query makes use of <findQualifiers> carrying an
enumerated value of ‘sortByNameAsc’ to instruct the sorting of
returned results by names of the <tModel> structures, in an ascending
order. Find qualifiers are discussed in the Search Qualifiers section.

The partial SOAP message response, containing a <serviceList>
structure returned from the registry, is as follows:

<bindingDetail generic=”2.0” operator=”SYSTINET”

xmlns=”urn:uddi-org:api_v2”>

<bindingTemplate

bindingKey=”uuid:acd5sdef-1235-6a3f-c34a-bf798dab124a”

serviceKey=”uuid:1245sdef-af35-6a3f-c34a-bf798dab965a”>

<accessPoint URLType=”http”>

http://www.acmecomputerservices.com/

billingservices_entry/

</accessPoint>

<tModelInstanceDetails>

242 Chapter 5

<tModelInstanceInfo tModelKey=

“uuid:acd5sdef-1235-6a3f-c34a-bf798dab124b”>

<description>

Provides SOAP Interface. Described

by BillingServices_WSDL.wsdl.

</description>

</tModelInstanceInfo>

</tModelInstanceDetails>

</bindingTemplate>

</bindingDetail>

<find_tModel>

Given a name, a category, or an identifier, this message returns abbreviated
information of all the matching <tModel> structures contained in a
<tModelList> structure.

The syntax for this API is as follows:

<find_tModel [maxRows=”nn”] generic=”2.0”

xmlns=”urn:uddi-org:api_v2”>

[<findQualifiers/>]

[<name/>]

[<identifierBag/>]

[<categoryBag/>]

</find_tModel>

Semantics of the arguments to this API function have already been dis-
cussed earlier and hence are not covered again in order to avoid redundancy.

The following code shows the <find_tModel> XML message that is
sent within the request SOAP message to the UDDI registry. This function
call suggests that the UDDI registry return a list of <tModel> structures
that match to the name pattern ‘WSDL’.

<uddi:find_tModel generic=”2.0”>

<name>

WSDL

</name>

</uddi:find_tModel>

The partial SOAP message response, containing a <tModelList> struc-
ture, returned from the registry is as follows:

Description and Discovery of Web Services 243

<tModelList generic=”2.0” operator=”SYSTINET”

xmlns=”urn:uddi-org:api_v2”>

<tModelInfos>

<tModelInfo tModelKey=

“uuid:acd5sdef-1235-6a3f-c34a-bf798dab124b”>

<name>

SOAP_WSDL_BillingServices

</name>

</tModelInfo>

</tModelInfos>

</tModelList>

Get_xx Inquiry API Functions

The get_xx functions follow the drill-down pattern. This pattern typically
involves getting more specific and detailed information about an entity
based on a unique key corresponding to the entity.

The get_xx calls form the search capabilities wherein once the UDDI
client has a UUID key for any of the primary UDDI data structures of
<businessEntity>, <businessService>, <bindingTemplate>,
and <tModel>, it can use that key to get access to the full registered details
of that particular structure. The client then can access the details of these
structures by passing a relevant key type to one of the get_xx Inquiry API
function calls.

All of these get_xx functions are quite straightforward. These functions
require a valid UUID for the data structure whose details need to be drilled
down.

Table 5.7 lists these four get_xx functions and an explanation of their
semantics. Also listed in the table are the response structures returned by
the UDDI registry in response to each of these calls.

Table 5.7 get_xx Functions

GET_XX FUNCTION RETURNED STRUCTURE DESCRIPTION

<get_businessDetail> <businessDetail> This message returns a
<businessDetail>
structure consisting of one or
more <businessEntity>
structures matching the
UUID(s) passed as an
argument to this function call.

244 Chapter 5

Table 5.7 (Continued)

GET_XX FUNCTION RETURNED STRUCTURE DESCRIPTION

<get_serviceDetail> <serviceDetail> This message returns a
<serviceDetail> structure
containing one or more
<businessService>
structures matching the
UUID(s) passed as an
argument to this function call.

<get_bindingDetail> <bindingDetail> If the integrity of
<bindingTemplate> is not
intact, for example if the
document referred to by the
<tModel> referenced by
<bindingTemplate> has
been moved or deleted, this
function call should be used
to get hold of the new
<bindingDetail> structure.

<get_tModelDetail> <tModelDetail> This message returns a
<tModelDetail> structure
consisting of one or more
<tModel> data structures
matching the UUID(s)
passed as an argument to
this function call.

In order to understand the nature of get_xx functions, let’s examine the
working of the <get_businessDetail> function call.

The following code shows the <get_businessDetail> XML message
that is sent within the request SOAP message to the UDDI registry. This
function call suggests that the UDDI registry return the registered details
for business corresponding to the key ‘23453aef-af35-6a3f-c34a-
bf798dab965a’.

<uddi:get_businessDetail generic=”2.0”>

<businessKey>

23453aef-af35-6a3f-c34a-bf798dab965a

</businessKey>

</uddi:find_tModel>

Description and Discovery of Web Services 245

TEAMFL
Y

Team-Fly®

The partial SOAP message response, containing a <businessDetail>
structure, returned from the registry is as follows:

<businessDetail generic=”2.0” operator=”SYSTINET”

xmlns=”urn:uddi-org:api_v2”>

<businessEntity authorizedName = “John Smith”

businessKey=”uuid:23453aef-af35-6a3f-c34a-bf798dab965a”

operator=”SYSTINET”>

<discoveryURLs>

<discoverURL useType=”businessEntity”>

http://www.systinet.com/wasp/uddi/

discovery?businessKey=

23453aef-af35-6a3f-c34a-bf798dab965a

</discoveryURL>

</discoveryURLs>

<name>

ACME Computer Services

</name>

<description xml:lang=”en”>

Provides professional services in the areas of

computer software

</description>

<contacts>

<contact useType=”information”>

<description xml:lang=”en”>

For sales related information

</description>

<personName>

Joe Smith

</personName>

<address>

1, Computer Drive, Burlington,

MA 01803 USA

</address>

</contact>

</contacts>

<businessServices>

...

</businessServices>

</businessEntity>

</businessDetail>

246 Chapter 5

The <businessServices> structure in the previous listing is
expanded as follows:

<businessService

businessKey=”23453aef-af35-6a3f-c34a-bf798dab965a”

serviceKey=”1245sdef-af35-6a3f-c34a-bf798dab965a”>

<name xml:lang=”en”>

Billing Services

</name>

<description xml:lang=”en”>

Billing Services

</description>

<bindingTemplates>

<bindingTemplate bindingKey=

“uuid:acd5sdef-1235-6a3f-c34a-bf798dab124a”

serviceKey=”1245sdef-af35-6a3f-c34a-bf798dab965a “>

<description xml:lang=”en”>

Here is where you should be visiting to

get started with using billing services

provided by us.

</description>

<accessPoint URLType=”http”>

http://www.acmecomputerservices.com/

billingservices_entry/

</accessPoint>

<tModelInstanceDetails>

<tModelInstanceInfo tModelKey=

“uuid:acd5sdef-1235-6a3f-c34a-

bf798dab124b”>

<description xml:lang=”en”>

Provides SOAP Interface.

Described by

BillingServices_WSDL.wsdl.

</description>

<instanceDetails>

<overviewDoc>

<description

xml:lang=”en”>

Describes how to use

this service

</description>

<overviewURL>

Description and Discovery of Web Services 247

http://www.acmecomputer

services.com/billing_

services_description/

</overviewURL>

</overviewDoc>

</instanceDetails>

</tModelInstanceInfo>

</tModelInstanceDetails>

</bindingTemplate>

</bindingTemplates>

<categoryBag>

<keyedReference keyName=

“Custom Computer Programming Services “

keyValue=”541511”

tModelKey=

“uuid:C0B9FE13-179F-413D-8A5B-5004DB8E5BB2”/>

<keyedReference keyName=”United States”

keyValue=”US”

tModelKey=

“uuid:4e49a8d6-d5a2-4fc2-93a0-0411d8d19e88”/>

</categoryBag>

</businessService>

Thus, this business is classified by two categories:

The standard industry categorization system (NAICS). The first
<keyedReference> structure under <categoryBag> suggests
that ACME Computer Services is a “Custom Computer
Programming Services” company.

The standard geography categorization system (ISO-3166). The sec-
ond <keyedReference> structure under <categoryBag> in the
previous listing suggests that ACME Computer Services is geograph-
ically related to “United States”.

The next section talks about search qualifiers, one of the arguments to
most of the inquiry API functions.

Search Qualifiers

Most of the inquiry API functions accept <findQualifiers> as arguments.
The <findQualifiers> structure consists of search qualifiers expressed by
a <findQualifier> data structure. The UDDI Programmer’s API specifi-
cation document pre-defines search qualifiers as an enumeration.

Table 5.8 shows some of the most frequently used search qualifiers, rep-
resented by their enumerated values, and explains their semantics.

248 Chapter 5

Table 5.8 The Most Frequently Used Search Qualifiers

ENUMERATED SEARCH
QUALIFIER DESCRIPTION

exactNameMatch When this search qualifier is specified, only the entries
that exactly match the name pattern passed in the
<name> argument would be returned in the result.

caseSensitiveMatch This search qualifier signifies that case sensitive
matching between entries has been searched and the
entry has been specified by the <name> argument.

sortByNameAsc This is the default sort qualifier, if no other conflicting
sort qualifier is specified.

sortByNameDesc This signifies that the result returned by a find_xx or
get_xx Inquiry API call should be sorted based on the
name field in descending alphabetic sort order.

sortByDateAsc This is the default sort qualifier, if no other conflicting
sort qualifier is specified. Also, the sort qualifiers
involving a date are secondary in precedence to the
sortByName qualifiers. This causes the sortByName
elements to be sorted within name by date, oldest to
newest.

sortByDateDesc Also, because the sort qualifiers involving dates are
secondary in precedence to the sortByName
qualifiers, this causes sortByName elements to be
sorted within name by date, newest to oldest.

With this, now we will proceed to the publishing API of the UDDI
registry.

Publishing API
This section will cover all of the XML messages that perform the function-
ality of adding/modifying/deleting information from a UDDI registry. As
mentioned earlier, publishing to a UDDI registry requires an authenticated
access. UDDI specification does not define authentication mechanisms,
and hence, authentication is dependent upon the implementations of
UDDI. Also, a URL different from an inquiry URL usually handles
publishing-related API calls. Typically, HTTPS is used for carrying pub-
lishing call request/response information.

Table 5.9 lists the publishing API functions as well as their semantics.
The table also lists the structure that is returned in response to each of these
function calls.

Description and Discovery of Web Services 249

Ta
b

le
 5

.9
Pu

bl
is

hi
ng

 A
PI

 F
un

ct
io

ns

P
U

B
LI

S
H

I N
G

R

ET
U

R
N

E
D

A

P
I

FU
N

C
TI

O
N

ST
R

U
C

TU
R

E
D

ES
C

R
I P

TI
O

N

<
g
e
t
_
a
u
t
h
T
o
k
e
n
>

<
a
u
t
h
T
o
k
e
n
>

Th
e

U
D

D
I r

eg
is

tr
y

no
de

 w
ill

 r
et

ur
n

an
 a

ut
he

nt
ic

at
io

n
to

ke
n

in
 r

es
po

ns
e

to
 th

is
 m

es
sa

ge
 in

 a
n
<
a
u
t
h
T
o
k
e
n
>

st
ru

ct
ur

e.

Th
is

 m
es

sa
ge

 c
on

si
st

s
of

 a
 lo

gi
n

ID
 a

nd
 p

as
sw

or
d

co
rr

es
po

nd
in

g
to

 a
 r

eg
is

tr
y

us
er

 th
at

 th
e

U
D

D
I r

eg
is

tr
y

w
ou

ld
 u

se
 fo

r
au

th
en

tic
at

io
n

pu
rp

os
es

.

N
ot

e:
 A

 v
al

id
 a

ut
he

nt
ic

at
io

n
to

ke
n

is
 r

eq
ui

re
d

in
 o

rd
er

 to
ex

ec
ut

e
an

y
fu

nc
tio

n
in

 th
e

pu
bl

is
hi

ng
 A

PI
.

<
d
i
s
c
a
r
d
_
a
u
t
h
T
o
k
e
n
>

<
d
i
s
p
o
s
i
t
i
o
n
R
e
p
o
r
t
>

Th
e

m
es

sa
ge

 in
fo

rm
s

a
U

D
D

I r
eg

is
tr

y
no

de
 to

 d
is

ca
rd

 th
e

ac
tiv

e
au

th
en

tic
at

io
n

se
ss

io
n

as
so

ci
at

ed
 w

ith
 th

is
 u

se
r,

es
se

nt
ia

lly
 r

es
ul

tin
g

in
to

 a
 lo

go
ff

op
er

at
io

n.

Th
is

 m
es

sa
ge

 s
ho

ul
d

be
 s

en
t t

o
th

e
U

D
D

I r
eg

is
tr

y
no

de
af

te
r

th
e

ex
ec

ut
io

n
of

 p
ub

lis
hi

ng
 o

pe
ra

tio
ns

 h
as

 b
ee

n
co

m
pl

et
ed

.

U
D

D
I e

rr
or

s
ar

e
co

m
m

un
ic

at
ed

 to
 th

e
cl

ie
nt

 a
s

SO
AP

fa
ul

t m
es

sa
ge

s.
 T

he
 U

D
D

I d
at

a
st

ru
ct

ur
e

<
d
i
s
p
o
s
i
t
i
o
n
R
e
p
o
r
t
>

m
ap

s
to

 th
e
<
d
e
t
a
i
l
>

st
ru

ct
ur

al
 e

le
m

en
t o

f t
he

 S
O

AP
 fa

ul
t m

es
sa

ge
. T

hu
s,

<
d
i
s
p
o
s
i
t
i
o
n
R
e
p
o
r
t
>

is
 u

se
d

in
 a

ll
th

e
ca

se
s

w
he

re
er

ro
rs

 n
ee

d
to

 b
e

co
m

m
un

ic
at

ed
. H

ow
ev

er
, U

D
D

I a
ls

o
us

es
 th

is
 s

tr
uc

tu
re

 to
 c

om
m

un
ic

at
e

su
cc

es
se

s
in

 n
on

-
er

ro
r

si
tu

at
io

ns
. T

he
 <
d
i
s
p
o
s
i
t
i
o
n
R
e
p
o
r
t
>

m
es

sa
ge

is
 a

lw
ay

s
re

tu
rn

ed
 in

 r
es

po
ns

e
to

 d
el

et
e_

xx
 o

r
<
d
i
s
c
a
r
d
_
a
u
t
h
T
o
k
e
n
>

m
es

sa
ge

s.

250 Chapter 5

P
U

B
LI

S
H

I N
G

R

ET
U

R
N

E
D

A

P
I

FU
N

C
TI

O
N

ST
R

U
C

TU
R

E
D

ES
C

R
I P

TI
O

N

<
s
a
v
e
_
b
u
s
i
n
e
s
s
>

<
b
u
s
i
n
e
s
s
D
e
t
a
i
l
>

Th
is

 m
es

sa
ge

 c
on

si
st

s
of

 <
b
u
s
i
n
e
s
s
E
n
t
i
t
y
>

st
ru

ct
ur

e(
s)

co
rr

es
po

nd
in

g
to

 th
e

on
e

or
 m

or
e

bu
si

ne
ss

 in
st

an
ce

s
th

at
ne

ed
 to

 b
e

ad
de

d/
m

od
ifi

ed
 to

 th
e

U
D

D
I r

eg
is

tr
y.

C
ha

ng
es

 to
 a

n
ex

is
tin

g
<
b
u
s
i
n
e
s
s
E
n
t
i
t
y
>

st
ru

ct
ur

e
ca

n
im

pa
ct

 e
xi

st
in

g
re

fe
re

nc
es

 to
 <
p
u
b
l
i
s
h
e
r
A
s
s
e
r
t
i
o
n
>

,
<
b
u
s
i
n
e
s
s
S
e
r
v
i
c
e
>

, o
r <
b
i
n
d
i
n
g
T
e
m
p
l
a
t
e
>

st
ru

ct
ur

es
.

Th
e

re
gi

st
ry

 re
sp

on
se

 c
on

si
st

s
of

 th
e
<
b
u
s
i
n
e
s
s
D
e
t
a
i
l
>

st
ru

ct
ur

e
co

nt
ai

ni
ng

 th
e

fu
ll

de
ta

ils
 o

f t
he

 b
us

in
es

s
th

at
 h

as
ju

st
 b

ee
n

ad
de

d/
m

od
ifi

ed
.

<
d
e
l
e
t
e
_
b
u
s
i
n
e
s
s
>

<
d
i
s
p
o
s
i
t
i
o
n
R
e
p
o
r
t
>

Th
is

 m
es

sa
ge

 s
ug

ge
st

s
th

at
 th

e
U

D
D

I r
eg

is
tr

y
de

le
te

bu
si

ne
ss

es
 c

or
re

sp
on

di
ng

 to
 th

e
ke

ys
 s

pe
ci

fie
d

w
ith

in
th

e
<
d
e
l
e
t
e
_
b
u
s
i
n
e
s
s
>

m
es

sa
ge

. D
el

et
in

g
bu

si
ne

ss
es

 w
ou

ld
 c

au
se

 th
e

de
le

tio
n

of
 a

ny
 c

on
ta

in
ed

<
b
u
s
i
n
e
s
s
S
e
r
v
i
c
e
>

as
 w

el
l a

s
<
b
i
n
d
i
n
g
T
e
m
p
l
a
t
e
>

st
ru

ct
ur

es
. A

ls
o

an
y
<
p
u
b
l
i
s
h
e
r
A
s
s
e
r
t
i
o
n
>

st
ru

ct
ur

es
 c

re
at

ed
 w

ith
 th

e
U

U
ID

 o
f t

hi
s

bu
si

ne
ss

 w
ou

ld
be

 d
el

et
ed

 fr
om

 th
e

re
gi

st
ry

.

<
s
a
v
e
_
s
e
r
v
i
c
e
>

<
s
e
r
v
i
c
e
D
e
t
a
i
l
>

Th
is

 m
es

sa
ge

 c
on

si
st

s
of

 <
b
u
s
i
n
e
s
s
S
e
r
v
i
c
e
>

st
ru

ct
ur

e(
s)

 c
or

re
sp

on
di

ng
 to

 th
e

se
rv

ic
e(

s)
 th

at
 n

ee
d

to
be

 a
dd

ed
/m

od
ifi

ed
 to

 th
e

U
D

D
I r

eg
is

tr
y.

 C
ha

ng
es

 to
 a

n
ex

is
tin

g
<
b
u
s
i
n
e
s
s
S
e
r
v
i
c
e
>

st
ru

ct
ur

e
ca

n
im

pa
ct

ex
is

tin
g

re
fe

re
nc

es
 to

 <
b
i
n
d
i
n
g
T
e
m
p
l
a
t
e
>

st
ru

ct
ur

es
.

Th
e

re
gi

st
ry

 r
es

po
ns

e
co

ns
is

ts
 o

f t
he

 <
s
e
r
v
i
c
e
D
e
t
a
i
l
>

st
ru

ct
ur

e
co

nt
ai

ni
ng

 th
e

fu
ll

de
ta

ils
 o

f t
he

 s
er

vi
ce

(s
)

th
at

ha
ve

 ju
st

 b
ee

n
ad

de
d/

m
od

ifi
ed

.

(c
on

tin
ue

s)

Description and Discovery of Web Services 251

Ta
b

le
 5

.9
Pu

bl
is

hi
ng

 A
PI

 F
un

ct
io

ns
 (

co
nt

in
ue

d)

P
U

B
LI

S
H

I N
G

R

ET
U

R
N

E
D

A

P
I

FU
N

C
TI

O
N

ST
R

U
C

TU
R

E
D

ES
C

R
I P

TI
O

N

<
d
e
l
e
t
e
_
s
e
r
v
i
c
e
>

<
d
i
s
p
o
s
i
t
i
o
n
R
e
p
o
r
t
>

Th
is

 m
es

sa
ge

 in
fo

rm
s

th
e

re
gi

st
ry

 to
 d

el
et

e
th

e
se

rv
ic

e(
s)

in
st

an
ce

s
co

rr
es

po
nd

in
g

to
 th

e
U

U
ID

 k
ey

(s
)

sp
ec

ifi
ed

w
ith

in
 th

e
<
d
e
l
e
t
e
_
s
e
r
v
i
c
e
>

m
es

sa
ge

.

<
s
a
v
e
_
b
i
n
d
i
n
g
>

<
b
i
n
d
i
n
g
D
e
t
a
i
l
>

Th
e

re
gi

st
ry

 r
es

po
ns

e
to

 th
is

 m
es

sa
ge

 c
on

si
st

s
of

 th
e

<
b
i
n
d
i
n
g
D
e
t
a
i
l
>

st
ru

ct
ur

e
co

nt
ai

ni
ng

 th
e

fu
ll

de
ta

ils
of

 th
e

bi
nd

in
g(

s)
 th

at
 h

av
e

ju
st

 b
ee

n
ad

de
d/

m
od

ifi
ed

.

<
d
e
l
e
t
e
_
b
i
n
d
i
n
g
>

<
d
i
s
p
o
s
i
t
i
o
n
R
e
p
o
r
t
>

Th
is

 m
es

sa
ge

 in
fo

rm
s

th
e

re
gi

st
ry

 to
 d

el
et

e
on

e
or

 m
or

e
<
b
i
n
d
i
n
g
T
e
m
p
l
a
t
e
>

in
st

an
ce

s
co

rr
es

po
nd

in
g

to
 th

e
U

U
ID

 k
ey

(s
)

sp
ec

ifi
ed

 w
ith

in
 th

e
<
d
e
l
e
t
e
_
b
i
n
d
i
n
g
>

m
es

sa
ge

.

<
s
a
v
e
_
t
M
o
d
e
l
>

<
t
M
o
d
e
l
D
e
t
a
i
l
>

Th
e

re
gi

st
ry

 r
es

po
ns

e
to

 th
is

 m
es

sa
ge

 c
on

si
st

s
of

 th
e

<
t
M
o
d
e
l
D
e
t
a
i
l
>

st
ru

ct
ur

e
co

nt
ai

ni
ng

 th
e

fu
ll

de
ta

ils
 o

f
th

e
<
t
M
o
d
e
l
>

in
st

an
ce

s
th

at
 h

av
e

ju
st

 b
ee

n
ad

de
d/

m
od

ifi
ed

.

<
d
e
l
e
t
e
_
t
M
o
d
e
l
>

<
d
i
s
p
o
s
i
t
i
o
n
R
e
p
o
r
t
>

Th
e

re
as

on
 fo

r
no

t c
om

pl
et

el
y

de
st

ro
yi

ng
 <
t
M
o
d
e
l
>

in
st

an
ce

s
is

 to
 e

na
bl

e
or

ga
ni

za
tio

ns
 s

til
l u

si
ng

 th
at

sp
ec

ifi
c
<
t
M
o
d
e
l
>

st
ru

ct
ur

e
to

 g
et

 b
as

ic
 d

et
ai

ls
 a

bo
ut

 it
.

<
g
e
t
_
p
u
b
l
i
s
h
e
r
A
s
s
e
r
t
i
o
n
s
>

<
p
u
b
l
i
s
h
e
r
A
s
s
e
r
t
i
o
n
s
>

Th
is

 m
es

sa
ge

 r
et

ur
ns

 a
 li

st
 o

f <
p
u
b
l
i
s
h
e
r
A
s
s
e
r
t
i
o
n
>

st
ru

ct
ur

es
 th

at
 w

er
e

pu
bl

is
he

d
by

 th
is

 r
eg

is
tr

y
us

er
.

<
a
d
d
_
p
u
b
l
i
s
h
e
r
A
s
s
e
r
t
i
o
n
s
>

<
d
i
s
p
o
s
i
t
i
o
n
R
e
p
o
r
t
>

Th
is

 m
es

sa
ge

 a
dd

s
th

e
<
p
u
b
l
i
s
h
e
r
A
s
s
e
r
t
i
o
n
>

st
ru

ct
ur

es
 c

on
ta

in
ed

 w
ith

in
 th

is
 m

es
sa

ge
 to

 th
e

lis
t o

f
ex

is
tin

g
<
p
u
b
l
i
s
h
e
r
A
s
s
e
r
t
i
o
n
>

in
st

an
ce

s
as

so
ci

at
ed

w
ith

 th
is

 r
eg

is
tr

y
us

er
.

252 Chapter 5

P
U

B
LI

S
H

I N
G

R

ET
U

R
N

E
D

A

P
I

FU
N

C
TI

O
N

ST
R

U
C

TU
R

E
D

ES
C

R
I P

TI
O

N

<
s
e
t
_
p
u
b
l
i
s
h
e
r
A
s
s
e
r
t
i
o
n
s
>

<
p
u
b
l
i
s
h
e
r
A
s
s
e
r
t
i
o
n
s
>

Th
is

 r
et

ur
ns

 a
 <
p
u
b
l
i
s
h
e
r
A
s
s
e
r
t
i
o
n
s
>

st
ru

ct
ur

e
as

pa
rt

 o
f t

he
 r

es
po

ns
e,

 c
on

ta
in

in
g

a
co

lle
ct

io
n

of
 th

e
re

pl
ac

in
g
<
p
u
b
l
i
s
h
e
r
A
s
s
e
r
t
i
o
n
>

st
ru

ct
ur

es
.

<
g
e
t
_
a
s
s
e
r
t
i
o
n
S
t
a
t
u
s
R
e
p
o
r
t
>

<
a
s
s
e
r
t
i
o
n
S
t
a
t
u
s
R
e
p
o
r
t
>

Th
is

 is
 a

 q
ue

ry
 fu

nc
tio

n
th

at
 r

et
ur

ns
 a

 li
st

 o
f a

ll
th

e
<
p
u
b
l
i
s
h
e
r
A
s
s
e
r
t
i
o
n
>

in
st

an
ce

s,
 c

re
at

ed
 b

y
th

is
re

gi
st

ry
 u

se
r

or
 o

th
er

s,
 a

s
pa

rt
 o

f t
he

 s
tr

uc
tu

re
<
a
s
s
e
r
t
i
o
n
S
t
a
t
u
s
R
e
p
o
r
t
>

, w
hi

ch
 in

vo
lv

es
 th

e
<
b
u
s
i
n
e
s
s
E
n
t
i
t
y
>

in
st

an
ce

 p
ub

lis
he

d
by

 th
is

 r
eg

is
tr

y
us

er
.

<
g
e
t
_
r
e
g
i
s
t
e
r
e
d
I
n
f
o
>

<
r
e
g
i
s
t
e
r
e
d
I
n
f
o
>

Th
e

m
es

sa
ge

 r
et

ur
ns

 a
 li

st
 o

f a
ll

th
e

<
b
u
s
i
n
e
s
s
E
n
t
i
t
y
>

an
d
<
t
M
o
d
e
l
>

do
cu

m
en

ts
 th

at
ar

e
m

an
ag

ed
 (

ow
ne

d)
 b

y
th

is
 r

eg
is

tr
y

us
er

.

Description and Discovery of Web Services 253

Implementations of UDDI
The UDDI specification enjoys tremendous amounts of vendor support.
There are a lot of offerings in the UDDI space. Vendors provide UDDI
support in two ways:

UDDI client. Almost all of the vendors participating in the UDDI
space provide UDDI client support. A UDDI client basically provides
APIs required for working with the UDDI registry. These APIs can be
in a variety of languages such as Java, C++, Python, and so on. Note
that most of the vendors, as of this writing, provide proprietary
implementations of Java APIs for UDDI. JSR-093 JAXR is an effort to
provide a standard Java API for communicating with UDDI reg-
istries. Because the JAXR specification has just recently been final-
ized, vendors should now be able to start providing support for
JAXR in their API implementations. The JAXR specification is cov-
ered in more detail in Chapter 11, “Java API for XML Registries.” The
examples covered in this chapter do not make use of JAXR APIs.

UDDI registry server implementation. Many implementations of the
UDDI registry server are available now. Apart from the public reg-
istries hosted by Microsoft, HP, IBM, and Systinet, several vendors
also provide implementations of private UDDI registries.

Table 5.10 is a partial listing of the UDDI implementations.

Table 5.10 UDDI Implementations

IMPLEMENTATION DOWNLOAD FROM . . .

Java Web Services java.sun.com/xml/download.html
Developer Pack (JWSDP)*

Systinet WASP** www.systinet.com/wasp

The Mind Electric GLUE www.themindelectric.com/glue/index.html

IBM Web Services Toolkit www.alphaworks.ibm.com/tech/
webservicestoolkit/

BEA WebLogic Workshop www.bea.com/products/weblogic/workshop/
easystart/index.shtml

* JWSDP provides an implementation of private UDDI registry implemented on the Tomcat and Xindice
databases. Chapter 11, “Java API for XML Registries,” uses the JWSDP UDDI Registry Server for examples.

** UDDI examples in this chapter are developed using Systinet WASP UDDI APIs.

254 Chapter 5

UDDI Support in Systinet WASP 4.0

The Systinet WASP 4.0 platform includes extensive support for the UDDI
registry. WASP provides an implementation of the UDDI version 2.0 reg-
istry. Also, WASP provides a client API to work with the UDDI registry.

In the following three examples, we will examine how to work with the
UDDI registry on the Systinet WASP 4.0 platform:

SubmitBusiness (SubmitBusiness.java). This example
shows how to submit business information to the UDDI registry.

SearchBusiness (SearchBusiness.java). This example shows
how to look up the business information using name patterns.

DeleteBusiness (DeleteBusiness.java). This example demon-
strates the deletion of business information from a UDDI registry.

The examples are discussed in detail in the following sections: Publishing
Information to a UDDI Registry, Searching Information in a UDDI Registry,
and Deleting Information from a UDDI Registry. Note that all of these three
examples along with their source code and readme.txt consisting of setup
instructions can be downloaded from Wiley’s Web site at www.wiley.com
/compbooks/nagappan.

Note that we will run these examples against the public UDDI registry
that is hosted by Systinet at www.systinet.com/uddi/web. The following
are the inquiry and publishing URLs supported by Systinet’s public registry:

■■ www.systinet.com/wasp/uddi/inquiry

■■ www.systinet.com:443/wasp/uddi/publishing

In order to work with the Systinet UDDI client APIs, ensure that the
following JAR files are in the CLASSPATH:

uddiclient.jar. This archive implements UDDI Versions 1 and 2
inquiry and publishing. It can be found under $WASP_HOME/dist.

wasp.jar. This archive can be found under $WASP_HOME/lib.

In order to execute SubmitBusiness and DeleteBusiness, which
make use of the UDDI publishing API, we first need to register as a user of
the UDDI registry. Registration of the user is covered in the next section.

Registering as a Systinet UDDI Registry User
Anyone can easily register as a Systinet registry user. Figure 5.5 shows the
browser interface supported by Systinet for registering a user.

Description and Discovery of Web Services 255

TEAMFL
Y

Team-Fly®

Figure 5.5 Browser interface for registering a user.

Figure 5.6 shows registering a user with login ID: registry_user and
password: registry_user.

Our examples will make use of this account, in order to authenticate to
the UDDI registry. Hence, before trying to run the examples, please ensure
that this account does exist in the Systinet public UDDI registry. If it does
not, create a new account with the same credentials. If you are unable to
create the account with the same credentials, then create an account with
different credentials followed by changing the hard-coded login ID and
password to the new account login ID and password, in SubmitBusiness
.java and DeleteBusiness.java, and re-compiling them.

Figure 5.6 Registering a user.

256 Chapter 5

Now, let ‘s proceed with submitting new business information to the
UDDI registry.

Publishing Information to a UDDI Registry
SubmitBusiness.java shows us how to publish a business named
ACME Computer Services along with its description. In the coming sections,
we will examine the source code of SubmitBusiness.java, followed by
its compilation and execution.

Programming Steps for Publishing

The entire publishing logic is provided by the doSubmit() method of the
jws.ch5.SubmitBusiness class, and hence, its implementation is of
most interest to us. The following are the steps of doSubmit():

1. Construct the UDDIApiPublishing object. This is the object that
we will use to actually publish to the registry.

2. Get hold of the authentication token from the registry with the help
of the get_authToken()API call on the UDDIApiPublishing
object. Once we have the authentication token, we should be able to
publish to the registry.

3. Create the BusinessEntity structure and populate it with
the name and description of the business to submit. Note that
we do not have to create the key for this business because the
registry, upon submitting the business information, would
generate it.

4. Now, get hold of the SaveBusiness object. This object represents a
collection of businesses that we wish to submit at a time. Hence, we
will need to add the BusinessEntity object that we just created to
the SaveBusiness object using the addBusinessEntity()
method.

5. Now, publish the business information through a save_busi-
ness() call on UDDIApiPublishing object. This method call
takes the SaveBusiness object as an argument and returns the
BusinessDetail object upon completion.

6. After the publishing operation has been executed, discard the authen-
tication token. Finally, check whether the publishing operation was
successful or not.

Description and Discovery of Web Services 257

SubmitBusiness.java Source Code

Listing 5.5 shows the complete code listing of SubmitBusiness.java.

package jws.ch5;

import org.idoox.uddi.client.api.v2.*;

import org.idoox.uddi.client.api.v2.request.publishing.*;

import org.idoox.uddi.client.structure.v2.business.*;

import org.idoox.uddi.client.structure.v2.base.*;

import org.idoox.uddi.client.api.v2.response.*;

import org.idoox.uddi.*;

public class SubmitBusiness

{

public static void main(String args[]) throws Exception

{

// Call the method in order to submit new business to

// the public registry hosted by Systinet.

doSubmit();

}

public static void doSubmit() throws Exception

{

String sBusinessName = “ACME Computer Services”;

String sBusinessDescription = “Provides professional

services in the areas of Computer Software”;

System.out.println(“Saving business with the

following details:”);

System.out.println(“Name: “ + sBusinessName);

System.out.println(“Description: “ +

sBusinessDescription);

// Get hold of the UDDI Publishing API

// Note our usage of Publishing URL for the Systinet

// UDDI Registry

UDDIApiPublishing objUDDIApiPublishing =

UDDILookup.getPublishing(“https://www.systinet.com:443

/wasp/uddi/publishing/”);

// First we get hold of Authentication token from the

// Registry so that we can publish to the UDDI

// Registry. Note that registered a user in Systinet

// Public Registry with registry_user ID and

Listing 5.5 SubmitBusiness.java.

258 Chapter 5

// registry_user password.

AuthToken objAuthToken = objUDDIApiPublishing.

get_authToken (new GetAuthToken(new

UserID(“registry_user”), new Cred(“registry_user”)));

// Create the BusinessEntity Structure

BusinessEntity objBusinessEntity =

new BusinessEntity();

// Set the empty businessKey since we are creating a

// new business

objBusinessEntity.setBusinessKey

(new BusinessKey(“”));

// Set the name of the business

objBusinessEntity.addName(new Name(sBusinessName));

// Set the description of the business

objBusinessEntity.addDescription

(new Description(sBusinessDescription));

// Get hold of the SaveBusiness interface

SaveBusiness objSaveBusiness = new SaveBusiness();

// Set the Authentication Information on SaveBusiness

objSaveBusiness.setAuthInfo

(objAuthToken.getAuthInfo());

// Now add the BusinessEntity to save to the

// SaveBusiness interface

objSaveBusiness.addBusinessEntity(objBusinessEntity);

// Finally publish the SaveBusiness object to the

// registry

BusinessDetail objBusinessDetail =

objUDDIApiPublishing.save_business(objSaveBusiness);

// Discard the Authentication token now

objUDDIApiPublishing.discard_authToken

(new DiscardAuthToken(objAuthToken.getAuthInfo()));

// See if the Business has been published

// successfully

if (objBusinessDetail==null)

{

System.err.println(“\nUnsuccessful in

submitting the new business information to

registry.”);

Listing 5.5 SubmitBusiness.java. (continues)

Description and Discovery of Web Services 259

}

else

{

System.err.println(“\nSuccessful in submitting

the new business information to registry.”);

}

return;

}

}

Listing 5.5 SubmitBusiness.java. (continued)

Compiling and Executing SubmitBusiness.java

The following command line instruction compiles SubmitBusiness
.java:

> javac jws/ch5/SubmitBusiness.java

The following command line instruction executes SubmitBusiness
.java:

> java -classpath %CLASSPATH%;. jws.ch5.SubmitBusiness

Figure 5.7 shows the output of this execution.
You can verify the creation of this new business by visiting the Systinet

public registry or by executing SearchBusiness.

Searching Information in a UDDI Registry
SearchBusiness.java shows us how to search for businesses based on
the name pattern provided by the user. In the coming sections, we will
examine the source code of SearchBusiness.java, followed by its com-
pilation and execution.

Figure 5.7 Executing SubmitBusiness.java.

260 Chapter 5

Programming Steps for Searching

The entire querying logic is provided by the doSearch() method of the
jws.ch5.SearchBusiness class, and hence, its implementation is of most
interest to us. The following are the steps to implementing a doSearch():

1. Construct the FindBusiness object. This object represents the
criteria for the search operation. Hence, we will need to add our
criteria, that is, the name pattern that the user supplied, using the
addName() method on this object.

2. Construct the UDDIApiInquiry object that we would use for
placing the inquiry call.

3. Finally, invoke the business inquiry operation through the find
_business() method on the UDDIApiInquiry object. This
method returns a BusinessList object containing the
BusinessInfo structures.

4. Now, check whether the businesses are found matching the given
criteria. If there are matching businesses, we need to traverse
through their BusinessInfo structures and get hold of the name
and key UUID of the business.

SearchBusiness.java Source Code

Listing 5.6 is the complete code listing of SearchBusiness.java.

package jws.ch5;

import org.idoox.uddi.client.api.v2.request.inquiry.*;

import org.idoox.uddi.client.structure.v2.tmodel.*;

import org.idoox.uddi.client.structure.v2.base.*;

import org.idoox.uddi.client.api.v2.response.*;

import org.idoox.uddi.client.structure.v2.business.*;

import org.idoox.uddi.client.api.v2.*;

import org.idoox.uddi.*;

public class SearchBusiness

{

public static void main(String args[]) throws Exception

{

if (args.length != 1)

{

Listing 5.6 SearchBusiness.java. (continues)

Description and Discovery of Web Services 261

printUsage();

}

else

{

String sNameOfBusiness = args[0];

// Invoke the search operation

doSearch(sNameOfBusiness);

}

}

private static void printUsage()

{

System.err.println(“\nUsage: java

jws.ch5.SearchBusiness <BusinessNamePattern>”);

System.err.println(“\nwhere <BusinessNamePattern>

represents name of the business you want to

search.”);

}

public static void doSearch(String sNameOfBusiness) throws

Exception

{

// Create a FindBusiness object

FindBusiness objFindBusiness = new FindBusiness();

// Send the find criteria

objFindBusiness.addName(new Name(sNameOfBusiness));

// Set the maximum number of rows to return

objFindBusiness.setMaxRows(new MaxRows(“10”));

// Get hold of UDDILookup object to place the query

UDDIApiInquiry objUDDIApiInquiry =

UDDILookup.getInquiry(“http://www.systinet.com:80/

wasp/uddi/inquiry/”);

// Invoke the query on the UDDI Inquiry API

BusinessList objBusinessList=

objUDDIApiInquiry.find_business(objFindBusiness);

// Check whether anything was found matching the

Listing 5.6 SearchBusiness.java.

262 Chapter 5

// criteria

if (objBusinessList==null)

{

System.err.println(“No businesses were found

matching the criteria.”);

}

else

{

// Get hold of the BusinessInfo objects,

// contained by BusinessList

BusinessInfos objBusinessInfos =

objBusinessList.getBusinessInfos();

System.out.println(“\n” +

objBusinessInfos.size() + “ businesses found

matching the criteria...\n”);

BusinessInfo objBusinessInfo =

objBusinessInfos.getFirst();

BusinessKey objBusinessKey;

if (objBusinessInfo != null)

{

objBusinessKey=objBusinessInfo.

getBusinessKey();

// Traverse through the results.

while (objBusinessInfo!=null)

{

System.out.println(“Business Name =

“ + objBusinessInfo.getNames().

getFirst().getValue());

System.out.println(“Business UUID = “ +

objBusinessInfo.getBusinessKey());

System.out.println(“----------------

---------------------------------”);

// Next BusinessInfo

objBusinessInfo =

objBusinessInfos.getNext();

}

}

}

}

}

Listing 5.6 SearchBusiness.java. (continued)

Description and Discovery of Web Services 263

Compiling and Executing SearchBusiness.java

The following command line instruction compiles SearchBusiness
.java:

> javac jws/ch5/SearchBusiness.java

The following command line instruction executes SearchBusiness
.java in order to search for businesses with names starting with a ‘A’:

> java -classpath %CLASSPATH%;. jws.ch5.SearchBusiness A

Figure 5.8 shows the output of this execution.
As can be seen from the output in Figure 5.8, ACME Computer Services

is one of the businesses that matched our search criteria.

Deleting Information from a UDDI Registry
DeleteBusiness.java demonstrates how to delete a business from the
UDDI registry based on its key UUID, which is passed by the user as a com-
mand line argument. You can get hold of the business key either by brows-
ing the Systinet registry on the Web or by executing SearchBusiness. In
the coming sections, we will examine the source code of DeleteBusiness
.java, followed by its compilation and execution.

Figure 5.8 Executing SearchBusiness.java.

264 Chapter 5

Programming Steps for Deleting

The deletion logic is provided by the doDelete() method of the
jws.ch5.DeleteBusiness class, and hence, its implementation is of most
interest to us. The following are the steps to implementing doDelete():

1. Construct the UDDIApiPublishing object. This is the object that
we would use to actually delete information from the registry.

2. Get hold of the authentication token from the registry with the help
of the get_authToken() API call on the UDDIApiPublishing
object. Once we have a valid authentication token, we should be
able to delete from the registry.

3. Now, get hold of the DeleteBusiness object. This object represents a
collection of businesses that we wish to delete at a time. Hence, we will
need to add businesses referenced through BusinessKey to this
object, using the addBusinessKey() method on DeleteBusiness.

4. Now, delete the business information through the delete_busi-
ness() call on the UDDIApiPublishing object. This method call
takes the DeleteBusiness object as an argument and returns the
DispositonReport object upon completion.

5. Check the DispositionReport object to see if this operation was
a success or a failure.

DeleteBusiness.java Source Code

Listing 5.7 is the complete code listing of DeleteBusiness.java.

package jws.ch5;

import org.idoox.uddi.*;

import org.idoox.uddi.client.api.v2.*;

import org.idoox.uddi.client.api.v2.request.publishing.*;

import org.idoox.uddi.client.api.v2.response.*;

import org.idoox.uddi.client.structure.v2.business.*;

public class DeleteBusiness

{

public static void main(String args[]) throws Exception

Listing 5.7 DeleteBusiness.java. (continues)

Description and Discovery of Web Services 265

TEAMFL
Y

Team-Fly®

{

if (args.length != 1)

{

printUsage();

}

else

{

BusinessKey objBusinessKey =

new BusinessKey (args[0]);

doDelete(objBusinessKey);

}

}

private static void printUsage()

{

System.err.println(“\nUsage: java

jws.ch5.DeleteBusiness <BusinessKey>”);

System.err.println(“\nwhere <BusinessKey> is a string

representation of UUID corresponding to Business you

want to delete.”);

}

public static void doDelete(BusinessKey objBusinessKey)

throws Exception

{

System.out.println(“\nDeleting Business with Key: “);

System.out.println(objBusinessKey.toString());

UDDIApiPublishing objUDDIApiPublishing =

UDDILookup.getPublishing(“

https://www.systinet.com:443/wasp/uddi/publishing/”);

// First we get hold of Authentication token from the

// Registry so that we can delete

// business from the UDDI Registry. Note that

// registered a user in Systinet Publich Registry

// with registry_user ID and registry_user password.

AuthToken objAuthToken = objUDDIApiPublishing.

get_authToken(new GetAuthToken(

new UserID(“registry_user”),

new Cred(“registry_user”)));

// Now get hold of the DeleteBusiness structure

org.idoox.uddi.client.api.v2.request.

publishing.DeleteBusiness objDeleteBusiness =

Listing 5.7 DeleteBusiness.java.

266 Chapter 5

new org.idoox.uddi.client.api.v2.request.

publishing.DeleteBusiness();

// Set the login information on DeleteBusiness

objDeleteBusiness.setAuthInfo

(objAuthToken.getAuthInfo());

// Add business to delete to the DeleteBusiness

// Structure

objDeleteBusiness.addBusinessKey(objBusinessKey);

// Call Publishing API method delete_business

DispositionReport objDispositionReport =

objUDDIApiPublishing.delete_business

(objDeleteBusiness);

// Discard the Authentication token now

objUDDIApiPublishing.discard_authToken

(new DiscardAuthToken(objAuthToken.getAuthInfo()));

// Check to see if the delete operation was

// successful

if (objDispositionReport == null)

{

System.err.println(“Unsuccessful in deleting

the business information from the registry.”);

}

else

{

if (objDispositionReport.

resultIs(UDDIErrorCodes.E_SUCCESS))

{

System.out.println(“\nSuccessful in

deleting the business information from the

registry.”);

}

else

{

System.out.println(“\nUnsuccessful in

deleting the business information due to

following reason(s):”);

System.out.println(

Listing 5.7 DeleteBusiness.java. (continues)

Description and Discovery of Web Services 267

objDispositionReport.toXML());

}

}

}

}

Listing 5.7 DeleteBusiness.java. (continued)

Compiling and Executing SearchBusiness.java

The following command line instruction compiles DeleteBusiness
.java:

> javac jws/ch5/DeleteBusiness.java

The following command line instruction executes DeleteBusiness
.java in order to delete the ACME Computer Services business corre-
sponding to the key ‘fe4b2d70-9988-11d6-9917-b8a03c50a862’.

> java -classpath %CLASSPATH%;. jws.ch5.DeleteBusiness

fe4b2d70-9988-11d6-9917-b8a03c50a862

Figure 5.9 shows the output of this execution.
Deletion of ACME Computer Services can be verified either by visiting

the Systinet public registry or by executing SearchBusiness.

Figure 5.9 Executing DeleteBusiness.java.

268 Chapter 5

Limitations of UDDI
UDDI is an evolving standard. Currently, the most deployed version of
UDDI (2.0) is limiting in terms of the information model that it supports,
especially when compared to other registry specifications such as ebXML
Registry/Repository. UDDI provides support for storing only the basic
data structures, such as businesses, users, services, and service technical
descriptions. However, storing information about business Web services
requires more than just the basic support. For example, potential users of
business Web services should be able to publish/query extensive business-
oriented information, such as the business process models that a particular
business Web service relies upon. This is possible only if the target registry
provides a data structure representing the business process model. Thus,
an information model is an important feature for any registry. Registry
information model, are further discussed in Chapter 11, “Java API for XML
Registries.”

Also, UDDI is just a registry as opposed to ebXML Registry/Repository,
which is, as the name suggests, a registry as well as repository. The basic
difference between a registry and repository is that a registry holds just the
metadata of the objects submitted, whereas a repository actually stores the
submitted objects.

Summary

In this chapter we discussed in detail how to describe and discover Web
services. In this regard, we discussed two very important technologies in
the Web services space: WSDL and UDDI. We also discussed how to use
WSDL and UDDI for describing, publishing, and discovering Web services
using various tools in this chapter. In the next chapter, “Creating .NET
Interoperability,” we will see how to achieve interoperability between Java
Web services and .NET Web services.

Description and Discovery of Web Services 269

271

This chapter discusses the basics of Web services interoperability and illus-
trates an interoperable Web services scenario using Java and Microsoft
.NET-based application environments. As discussed in previous chapters,
one of the goals of Web services is to solve the interoperability problem by
adopting industry standard protocols and data formats, which enable
transparent application-to-application communication and data exchange
between applications, systems, networks, and devices. Examples have
been given using Web services technologies like XML, SOAP, WSDL, and
UDDI and have demonstrated how to create service-oriented applications
that communicate and interoperate with one another over a network.

Although Web services promote interoperability, creating and testing
interoperability between Web services becomes a real challenge when dif-
ferences and limitations exist among implementations, especially because
of application-specific dependencies and characteristics such as transport
protocols, data types, XML processing, and compatibility. In real-world
scenarios involving business partner collaborations, the Web service
provider needs to take particular care to define standard interoperability
mechanisms and communication protocol for the partner applications,
enabling them to build their own service clients. This enables partner
applications using different systems to easily interact with the Web service
provider and conduct seamless transactions with them.

Creating .NET Interoperability

C H A P T E R

6

This chapter provides an overview of Web services interoperability and
demonstrates a practical interoperability scenario involving a Java-based
Web services and Microsoft .NET Framework. It also discusses the key chal-
lenges and issues affecting interoperability in Web services. In particular,
we will be focusing on the following:

■■ Understanding interoperability in Web services

■■ Creating Web services interoperability between J2EE and .NET

■■ An overview of the Microsoft .NET Framework

■■ Developing a .NET Client for Java-based Web services

■■ Common interoperability challenges and issues

■■ Emergence of the Web Service Interoperability Organization (WS-1)
and its goals

Because the scope of this book is limited to developing Java-based Web
services, this chapter discusses only the required basics and the process
steps for developing .NET-based Web services requestor clients to enable
interoperability with Java-based Web services providers. To study more
about Microsoft .NET, refer to the Microsoft Web site at http://msdn
.microsoft.com/net.

Means of Ensuring Interoperability

In a Web services environment, the Simple Object Access Protocol, or
SOAP, is the de facto standard communication protocol. (For more on
SOAP, see the section titled Simple Object Access Protocol in Chapter 4,
“Developing Web Services Using SOAP.”) This protocol provides conven-
tions for representing data and application interaction models like remote
procedural calls (RPCs) and messaging. This facilitates inter-application
communication and seamless data sharing among applications residing on
a network, regardless of their native language implementation, operating
systems, hardware platforms, and the like. In turn, it also enables the
development of compatible Web services by leveraging interoperability
among business applications running across a wide range of systems and
devices.

Interoperability in Web services becomes a real challenge when a service
requestor finds problems while invoking a method in the service provider
environment or when it does not understand a message sent by the service
provider. This is usually caused by prerequisites and factors exposed by

272 Chapter 6

the service provider or service requestor environments, and it is mostly
caused by the dependencies of the underlying SOAP runtime provider
implementation. Thus, it becomes essential for Web services offered by a
service provider to ensure that the services are usable by a variety of
service requestor clients to the best possible accommodation of both con-
forming and non-conforming SOAP implementations. Different ways exist
to ensure service requestor interoperability with the service providers. The
following sections discuss the major ones.

Declaring W3C XML Schemas
Defining W3C XML Schema Definitions (XSD) and target namespaces for
all the application data types and having a supporting SOAP implementa-
tion for both the service provider and service requestor resolves almost all
interoperability issues specific to the data types. This helps to create com-
pliant SOAP proxy-based clients for the service requestors with all the
defined data types by providing automatic encoding and mapping for the
service provider-dispensed XSD data types.

Exposing WSDL
Most Web services platforms and SOAP implementations provide this as
an automatic mechanism by delivering WSDL for all its exposed services.
The exposed WSDL defines the service provider information and service
specific parameters required by a service requestor for invoking the ser-
vices, which enables the building service clients to interact with the service
provider, thus ensuring interoperability based on the WSDL. The service
clients also can be dynamically generated from a service provider’s WSDL
lookup. In such cases, the SOAP client runtime implementation must pro-
vide those dynamic invocation services.

Creating SOAP Proxies

For a Web service, the client SOAP proxies can be created manually or can
be generated dynamically based on the WSDL-provided details of the ser-
vice provider. In the automatic generation of SOAP proxies, sometimes
they may throw SOAP faults during service invocation and may require
some modifications in the SOAP headers or the encoded RPC calls. In most
cases, this problem occurs due to non-conforming WSDL and SOAP imple-
mentation in the infrastructure of the service provider or requestor.

Creating .NET Interoperability 273

Testing Interoperability
To ensure that interoperability between the service provider and requestor
exists, the underlying SOAP implementations also can be tested. In that
case, the SOAP implementations of the service provider and the requestor
must agree and conform to the following SOAP-specific dependencies:

■■ The defined SOAP transport protocol bindings (like http)

■■ The supported version of SOAP (like SOAP 1.1 or SOAP 1.2)

■■ The version of WSDL from the service provider and its ability to
support by the service requestor client

■■ The version of W3C XML Schema supported by the SOAP message,
especially the SOAP envelope and its body elements

Most Web services platforms and SOAP implementation providers test
their products among SOAP implementations using a standard test suite.
This suite can be used to ensure interoperability with other SOAP imple-
mentations for conformance testing.

To explore the concepts, let’s experiment with an interoperability sce-
nario using a Java-based Web services implementation to interact with a
Microsoft-based service client implementation. To try out this scenario, we
have chosen to use Apache Axis as the Java-based Web services provider
and the Microsoft .NET Framework as the client Web services requestor.

The development and deployment of a Web services requestor is done in
a unique part of the Microsoft .NET platform. Like any other Web services
platform providers, the Microsoft .NET Framework typically supports
industry-standard protocols and technologies, including XML, SOAP,
WSDL, and UDDI. The following section examines the basics of the .NET
Framework and its core components.

Microsoft .NET Framework: An Overview

Microsoft .NET is part of the Microsoft .NET platform—Microsoft’s strategy
for developing distributed applications through XML Web services. The
Microsoft .NET Framework provides a full-fledged development environ-
ment for developing XML Web services in a Microsoft Windows–based
environment. It facilitates a runtime infrastructure and APIs for developing
Web services applications using a variety of object-oriented programming
languages such as C#, Visual Basic, and so forth. The .NET Framework pro-
vides the infrastructure for defining the overall .NET platform. Microsoft
provides .NET compilers that generate a new code referred to as Microsoft

274 Chapter 6

Intermediate Language (MSIL). MSIL is a CPU-independent code instruc-
tion, which is able to run on any system supporting its native machine
language. The .NET compilers provided by Microsoft are as follows:

■■ VB.NET (Visual Basic for .NET)

■■ C++ .NET (Visual C++ for .NET)

■■ ASP.NET (Microsoft ASP for .NET)

■■ C# .NET (New language for .NET)

■■ JScript (Jscript for .NET)

The Microsoft .NET Framework consists of two core components, which
are described in the following sections.

Common Language Runtime (CLR)
The Common Language Runtime, or CLR, provides a managed runtime
environment (.NET Engine) for the .NET Framework. CLR enables appli-
cations to install and execute code, and it provides services such as mem-
ory management, including garbage collection, threading, exception
handling, deployment support, application runtime security, versioning,
and so on.

CLR provides a set of JIT (just-in-time) compilers, which compile MSIL
to produce native code specific to the target system. CLR defines a set of
rules as Common Type System (CTS) and Common Language System
(CLS) that specifies the .NET-supported languages required to use for
developing compilers supporting a .NET platform. This enables the com-
piler vendors to develop .NET-compliant compilers and to perform cross-
language integration. Cross language integration enables .NET-compliant
languages to run and interact with one another in a .NET environment.

.NET Framework Class Library
The .NET Framework class library acts as the base class library of the .NET
Framework. It provides a collection of classes and a type system as founda-
tion classes for .NET to facilitate CLR. It is included as part of the .NET
Framework SDK. The class libraries are reusable object-oriented classes that
support .NET programming tasks like establishing database connectivity,
data collection, file access, and so on. The class libraries also support the
rapid development of software applications such as the following:

■■ Console applications

■■ Windows GUI applications

Creating .NET Interoperability 275

TEAMFL
Y

Team-Fly®

■■ Windows services

■■ ASP .NET applications

■■ .NET XML Web services

■■ .NET Scripting applications

■■ .NET Client applications

The .NET class libraries can work with any CLS-compliant language and
can use CLR. At the time of this book’s writing, the supported languages
include Microsoft Visual Studio .NET, C#, and ASP.NET.

Microsoft initially released their .NET Framework to support a Windows-
based environment only, although Microsoft will be making .NET available
in other platforms. For more information on the Microsoft .NET Frame-
work, go to the Web site: http://msdn.microsoft.com/netframework/. To
download the Microsoft .NET Framework SDK, go to the Web site:
http://msdn .microsoft.com/net/.

To fully understand the interoperability scenario between Java-based
Web services and the Microsoft .NET client environment, you need to
understand the process model of developing Microsoft .NET clients.

Developing Microsoft .NET Client for Web Services

Typical to any other Web services requestor environment, the .NET based
clients also embrace Web services standards and protocols to communicate
with any Web services providers. This enables .NET client applications
running on Windows platforms to access Web services exposed from other
platforms, as long they are compliant with Web services standards.

To develop Microsoft .NET clients for invoking Web services, the .NET
Framework SDK provides toolsets for generating SOAP proxies and for
implementing the .NET clients. A .NET Framework SDK installation pro-
vides the proxy generators (wsdl.exe) for accessing WSDL and the gen-
erating proxy classes and compilers (csc.exe) for compiling the proxy
classes. It also enables clients to be created using any .NET-supported lan-
guage, such as C# or Visual Basic.

Key Steps in Creating a Web Service Requestor
Using the .NET Framework
The key steps involved in creating a Web services client using the .NET
Framework are provided in the following sections.

276 Chapter 6

Obtaining the WSDL of a Web Service

The first step in creating a Web services client is to locate the service
provider and obtain its WSDL, which describes the exposed Web services
defining its message type, operation, port type, binding, and so on.

Generating a Proxy for the Web Service

The .NET Framework SDK provides the WSDL.exe utility, which generates
proxy client classes for a Web service exposed using WSDL. To create a
.NET-based Web services proxy client class, you may run the following
from your Windows command prompt (in a single line):

wsdl.exe /l:CS

/protocol:SOAP

http://nramesh:8080/axis/AcmeService?WSDL

/out:AcmeService.cs

In the above command, the /l:CS option specifies the preferred language
as C#, the /protocol:SOAP option specifies the protocol as SOAP, the URL
refers to the WSDL location of the service provider, and /out:AcmeSer-
vice.cs refers to the name of the proxy class (AcmeService.cs). The pre-
vious command creates an AcmeService.cs as a proxy class source. To
create proxy code in Visual Basic, the command would be as follows:

wsdl.exe /l:vb

/protocol:SOAP

http://nramesh:8080/axis/AcmeService?WSDL

/out:AcmeService.vb

Compiling the SOAP Proxy as a Dynamic Link Library (DLL)

The .NET Framework SDK provides csc.exe, a C# compiler, which
enables you to build an assembly DLL from the C# proxy source code. To
compile the C# proxy client class, you may run the following from your
Windows command prompt (in a single line):

csc.exe /target:library

/r:System.Web.Services.dll

/r:System.Xml.dll

AcmeService.cs

/out:AcmeService.dll

The command creates a DLL library file to support a proxy class for the
client. In the previous command, the option /target:library indicates

Creating .NET Interoperability 277

the DLL library, /r: specifies the required libraries, AcmeService.cs
refers to the name of the source file, and the /out:AcmeService.dll
option indicates the output library file.

Creating a .NET Client Using Proxy Classes

The next step involves creating a .NET client, which uses the instance of the
proxy to the Web service to invoke the methods with parameters to get
results. You may choose any .NET language (Visual Basic, C#, and so on) to
create the client application.

Compiling the Client Application

The next step is to compile the client application including the proxy DLL.
To compile the client application, you may run the following from your
Windows command prompt (in a single line):

csc.exe /target:exe

/r:AcmeService.dll

AcmeClient.cs

/out:AcmeClient.exe

This command creates AcmeClient.exe, an executable .NET client
application file, to invoke the target service provider. In the command, the
/target:exe option indicates the executable, /r: specifies the required
libraries, AcmeClient.cs refers to the name of the client source file, and
the /out:AcmeClient.exe option indicates the output executable file.

Executing the Client from a Windows Environment

The final step is running the executable AcmeClient.exe file in a Win-
dows environment which will invoke the service provider application and
execute the required methods.

This summarizes the steps involved in creating a .NET service client for
a Web services provider. Now let’s take a look at a real-world case study
example of how to create interoperable Web services with a Java-based
Web services provider and .NET-based service requestor.

Case Study: Building a .NET Client for Axis Web Services
In this section, we build on the case study example reusing the components
used in the previous chapter (Chapter 4, “Developing Web Services Using

278 Chapter 6

SOAP,” featuring ACME Web Services Company. It discusses getting the Acme
products catalog service exposed by the ACME Web services provider:

For the service provider, we will be creating Apache Axis-based Web ser-
vice components using Java for the service provider and for the client ser-
vice requestor we will implement .NET-based client components using the
.NET Framework. To cater the Acme product catalog service scenario, we
will be using an RPC-based communication model between the Apache
Axis-based Web services and the .NET-based service requestor. We will be
reusing the ACME business specific components as discussed in Chapter 3,
“Building the Web Services Architecture.” The ACME components to han-
dle this scenario are as follows:

■■ AcmeDAO. A DAO class that provides access to the data source and
abstracts the underlying data access implementation for the product
catalog

■■ AcmeXMLHelper. A class that gathers the data and constructs an
XML document as a string for use by the business clients

To find out the programming steps and the source code implementation
of the previous classes, refer to Chapter 3, particularly the section titled
Developing Web Services Using J2EE: An Example.

To try out the example, you may download the chapter-specific code and
documentation made available at www.wiley.com/compbooks/nagappan.
Source code and README text for installing and running this example are
available as part of Chapter-6.zip.

Building the Infrastructure

To build and deploy ACME Web services in the Axis environment, we
chose to use the following infrastructure solutions:

ON THE SERVICE PROVIDER SIDE

■■ ACME Web services provider will use Apache Tomcat as its servlet
engine/Web server, including Axis-based SOAP runtime environment

■■ Will use PointBase as its database for querying product catalog
information

ON THE SERVICE REQUESTOR SIDE

■■ Service requestor will use the .NET Framework as its SOAP client
environment to invoke the services of the ACME Web services
provider

Creating .NET Interoperability 279

Figure 6.1 Apache Axis and Microsoft .NET-based Web services infrastructure.

Figure 6.1 represents the Web services infrastructure involving Apache
Axis and the Microsoft .NET Framework.

To understand the problem and flow of events, the sequence diagram in
Figure 6.2 illustrates the various sequences of actions performed by a .NET
client invoking the ACME Web services deployed in the Axis-based Web
services environment.

Based on the previous sequence of events, we have chosen to use an
AcmeXMLHelper class to act as a proxy by encapsulating the business
functionalities, which include database interaction, XML construction,
XML parsing operations, and so forth. More specifically, the AcmeXML-
Helper class will handle all of the XML construction tasks and AcmeDAO
will handle the database interaction.

Figure 6.3 depicts the class diagram of the server-side components to sup-
port the ACME Web service provider using the Apache Axis infrastructure.

To try out this example, download the chapter-specific source code and
documentation available at www.wiley.com/compbooks/nagappan. The
source code and README text for installing and running this example are
available as part of chapter-6.zip.

Now, let’s take a look at how to set up the development environment
and implementation of those service components.

Microsoft.NET
Framework

.NET
Common
Runtime
Environment

.NET
Clients

Web
Services

SOAP Axis Web
Services
Environment

PointBase

Apache TOMCAT w/Axis

Java
Components

Resources

280 Chapter 6

Figure 6.2 Sequence diagram representing the scenario.

Figure 6.3 Class diagram illustrating the service provider components.

uses uses encapsulates

Product

AcmeDAO

AcmeDAOlmplAcmeXMLHelperACMEProductCatalog AcmeDataSource

AcmeProductCatalogClient

Send Request for

ACME Product
Catalog

Call business methods
for product Catalog

Return Data
as XML String

Send Response
ACME Product
Catalog

as XML string

AcmeProductCatalog AcmeXMLHelper

Call DAO to
deliver data

Return Data
as ACME
Value objects

AcmeDAO ACME
ValueObject

ACME
Database

.NET Service Requestor Axis Service provider environment

Query ACME product
tables

Return ACME
Product catalog data

Create ACME
Value object

Return ACME
Value object

Creating .NET Interoperability 281

Setting Up the Environment

To set up the development environment for creating ACME Web services,
perform the following tasks:

1. Create the service provider environment.

a. Refer to Chapter 4, ”Developing Web Services Using SOAP,” in
the section titled Setting Up the Axis Web Services Environment,
and follow Steps 1 to 11.

2. Create the service requestor environment.

a. Download the Microsoft .NET Framework SDK (current release)
from http://msdn.microsoft.com/net and install the application to
your local directory. The installation process will update your system
path, and all of the .NET Framework utilities will be ready to use.

b. Create a working directory (for example, d:\msdotnetclient)
to create and test the .NET client applications.

These steps conclude the configuration requirements for the service
provider and requestor environment. Now, let’s explore the implementa-
tion of the ACME business scenarios by using them.

Creating the Service Provider (Axis Environment)

As was mentioned earlier, to implement the service provider environment,
we will be reusing the components that we built in Chapter 3, “Building
the Web Services Architecture,” and deploying them in Axis environment.
The components are as follows:

AcmeDAO. A DAO class that provides access to the data source and
abstracts the underlying data access implementation for the product
catalog.

AcmeXMLHelper. A class that gathers the data and constructs an
XML document as a string for use by the business clients.

To find out the programming steps and the source code implementation
of the previous classes (AcmeDAO and AcmeXMLHelper), refer to Chap-
ter 3, “Building the Web Services Architecture,” particularly the section
titled Developing Web Services Using J2EE: An Example.

As we discussed in Chapter 4, Axis enables Web services to be deployed
using Java classes with .jws extensions. It is quite typical to the Java Server
Pages (JSP) deployed in a servlet engine. By placing Java classes with .jws
extensions in the Web applications directory (that is, TOMCAT_HOME
/webapps/axis/) during runtime, the runtime of Axis automatically com-
piles and deploys the classes with all of the methods as services.

282 Chapter 6

Creating .NET Interoperability 283

We will be creating the Acme product catalog service as ACMEProduct
Catalog.jws, which will be acting as the service provider in the Axis
environment.

The ACMEProductCatalog.jws class uses AcmeXMLHelper and
AcmeDAO as helper classes for XML processing and database interaction.
The ACMEProductCatalog.jws then will be deployed in the Axis envi-
ronment as an Axis JWS service.

Now, let’s take a closer look at the implementation and walk through the
code of ACMEProductCatalog.jws .

Implementing the Service Provider (ACMEProductCatalog.jws)

The source code implementation for ACMEProductCatalog.jws is
shown in Listing 6.1.

// AcmeProductCatalog.jws

import jws.ch4.xmlhelper.AcmeXMLHelper;

public class AcmeProductCatalog {

String pc;

// Helper function: To obtain Product Catalog it calls

// AcmeXMLhelper method

public String getProductCatalog() throws Exception {

AcmeXMLHelper axh;

try {

// Instantiate the AcmeXMLhelper

axh = new AcmeXMLHelper();

// Call method

pc = axh.getProductCatalogXMLasString();

} catch (Exception e) {

e.printStackTrace();

}

// Return the response string

return pc;

}

}

Listing 6.1 ACMEProductCatalog.jws.

Figure 6.4 WSDL output for ACMEProductCatalog.jws.

To deploy AcmeProductCatalog.jws, just copy the source file in your
Apache Axis Web applications directory (that is, TOMCAT_HOME
/webapps/axis/). If your Tomcat server is not running, then start your Tom-
cat server. The Apache Axis environment will automatically deploy them as
a service and emit the ACME product catalog service details as WSDL. To
access the WSDL, use your Web browser and then try out the following URL:

http://localhost:8080/axis/AcmeProductCatalog.jws?WSDL

If everything works successfully, you will get the output shown in
Figure 6.4.

This summarizes the service provider environment using Apache Axis.

Creating the Service Requestor (.NET Environment)

The following steps are involved using the .NET Framework to access the
ACME product catalog service requestor.

Obtaining the WSDL of Acme Product Catalog Service

The first step is to locate the ACME service provider and obtain its WSDL.
It will be available to the service requestor as an URL. In our case, it will be
as follows:

http://localhost:8080/axis/AcmeProductCatalog.jws?WSDL

284 Chapter 6

Creating .NET Interoperability 285

Figure 6.5 Creation of the Proxy C# class.

Generating a Proxy for the Web Service

The next step is to use the WSDL.exe utility to generate proxy client classes
from the ACME service provider WSDL. To create the proxy client classes,
run the following command from your Windows command prompt (in a
single line):

wsdl.exe /l:CS

/protocol:SOAP

http://localhost:8080/axis/AcmeProductCatalog?WSDL

/out:AcmeServiceClient.cs

This command creates AcmeServiceClient.cs as a proxy class for
the ACME product catalog service, as shown in Figure 6.5.

Listing 6.2 shows the generated C# source code.

//

// This source code was auto-generated by wsdl, Version=1.0.3705.0.

//

using System.Diagnostics;

using System.Xml.Serialization;

using System;

using System.Web.Services.Protocols;

using System.ComponentModel;

using System.Web.Services;

[System.Diagnostics.DebuggerStepThroughAttribute()]

[System.ComponentModel.DesignerCategoryAttribute(“code”)]

[System.Web.Services.WebServiceBindingAttribute(

Name=”AcmeProductCatalogSoapBinding”,

Listing 6.2 Generated C# source code. (continues)

TEAMFL
Y

Team-Fly®

286 Chapter 6

Namespace=”http://localhost:8080/axis/AcmeProductCatalog.jws”)]

public class AcmeProductCatalogService :

System.Web.Services.Protocols.SoapHttpClientProtocol {

public AcmeProductCatalogService() {

this.Url =

“http://localhost:8080/axis/AcmeProductCatalog.jws”;

}

[System.Web.Services.Protocols.SoapRpcMethodAttribute

(“”, RequestNamespace=”getProductCatalog”,

ResponseNamespace=

“http://localhost:8080/axis/AcmeProductCatalog.jws”)]

[return:

System.Xml.Serialization.SoapElementAttribute(“return”)]

public string getProductCatalog() {

object[] results = this.Invoke

(“getProductCatalog”, new object[0]);

return ((string)(results[0]));

}

public System.IAsyncResult BegingetProductCatalog

(System.AsyncCallback callback, object asyncState) {

return this.BeginInvoke(“getProductCatalog”,

new object[0], callback, asyncState);

}

public string EndgetProductCatalog

(System.IAsyncResult asyncResult) {

object[] results = this.EndInvoke(asyncResult);

return ((string)(results[0]));

}

}

Listing 6.2 Generated C# source code. (continued)

Compiling the SOAP Proxy as a DLL

The next step is to use the .NET C# compiler csc.exe to build an assem-
bly DLL from the generated proxy source code. To compile the AcmeSer-
viceClient.cs, run the following command from your Windows
command prompt (in a single line):

Creating .NET Interoperability 287

Figure 6.6 Creation of a DLL library for the proxy class.

csc.exe /t:library

/r:System.Web.Services.dll

/r:System.Xml.dll

AcmeServiceClient.cs

This command creates a DLL library file which acts as a proxy stub class
for the client, as shown in Figure 6.6.

Creating a .NET Client Application

Next, create a .NET client application using the instances of proxy classes
and its methods. (The available proxy instances and the service methods
can be read from the proxy source code.) The .NET client application source
code AcmeServiceClientApp.cs using C# code is shown in Listing 6.3.

using System;

namespace AcmeServiceClient {

public class AcmeServiceClientApp {

public AcmeServiceClientApp() {

}

Listing 6.3 .NET client application source code, AcmeServiceClientApp.cs. (continues)

288 Chapter 6

public static void Main () {

// Create a proxy instance

AcmeProductCatalogService server

= new AcmeProductCatalogService();

// Invoke getProductCatalog method and

// get the XML as String

string catalog = server.getProductCatalog ();

// Print the Acme Product Catalog

Console.WriteLine (“The ACME Product Catalog :”+catalog);

}

}

}

Listing 6.3 .NET client application source code, AcmeServiceClientApp.cs. (continued)

Compiling the Client Application

The next step is to create an executable client application and to compile
the client source code AcmeServiceClientApp.cs. To compile the
client application, run the following command from your Windows com-
mand prompt (in a single line):

csc.exe /r:AcmeServiceClient.dll

/t:exe

/out:AcmeServiceClientApp.exe

AcmeServiceClientApp.cs

This command creates AcmeServiceClientApp.exe, which is an
executable .NET client application file that invokes the ACME service
provider, as shown in Figure 6.7.

Figure 6.7 The compilation of a client application.

Figure 6.8 Invocation of service from an ACME service provider.

Execute and Test the .NET Client from a Windows Environment

Finally, to invoke the ACME product catalog from the ACME service
provider (Axis environment), run the .NET client application AcmeSer-
viceClientApp.exe from the command prompt.

If everything works successfully, you will get the output shown in
Figure 6.8.

This summarizes our Web service interoperability example scenario
involving Apache Axis-based Java Web services and the Microsoft .NET
Framework.

Challenges in Creating Web Services
Interoperability

As of today, more than 50 Web services platforms, including SOAP imple-
mentations, are available to provide Web services support for a variety of
languages, APIs, applications, and systems. But not all of the services
exposed from these SOAP implementations are guaranteed to interoperate
and run across disparate applications and systems. Most interoperability
problems occur in RPC-based Web services because of the type mapping
issues between the service provider and requestor, which are due to the
lack of type mapping support in SOAP processing. In messaging-based
Web services, this is not the case, as the SOAP body is represented with an
XML document.

Creating .NET Interoperability 289

The challenges that affect interoperability in Web services will be exam-
ined in the following sections.

Common SOAP/HTTP Transport Issues
At the core of Web services, the transport protocols establish the communi-
cation and enable the services to send and receive messages. In case of
using HTTP protocol, if the service provider requires a SOAPAction with a
null value, most HTTP clients may not be able to provide a SOAPAction
with a null value. The possible solutions are to fix the service client APIs
and to ensure that certain service provider implementations require SOAP-
Action with a null value. To solve these problems, test the client to see if
they can handle those scenarios.

XML Schema- and XML-Related Issues
XML schema validation handling causes a lot of interoperability issues
among SOAP implementations. So defining data types using XMS
schema definitions must occur in both the service client and provider
implementations.

Some SOAP implementations specify the encoding of data as UTF-8 and
UTF-16 in the Content-Type header as

Content-Type: text/xml; charset=utf-8

And some implementations do not specify the charset in the Content-
Type header, which causes some SOAP implementations to be unable to
process messages. To correct this problem, ensure that the SOAP implemen-
tation and its encoding standards are compliant with the W3C specifications.

SOAP/XML Message Discontinuities
Message discontinuities cause a major problem between a SOAP imple-
mentation in fulfilling the request and response between the service client
and service provider. To overcome these issues, ensure that the application
is aware of the message discontinuities and throw SOAPFaults in the case
of missing elements in the SOAPBody of the request message.

290 Chapter 6

Version and Compatibility
The version of the supported XMLSchema, and the SOAP and WSDL spec-
ifications, and its compatibility between SOAP implementations affect
interoperability. To ensure that these issues are handled, the Web services
platform providers and its SOAP implementations must be tested for the
compatible versions of XML Schema definitions and the SOAP and WSDL
specifications.

The emergence of the WS-I initiative, which is examined in the next sec-
tion, will address these issues as part of its goals.

The WS-I Initiative and Its Goals

The Web Services Interoperability Organization, or WS-I, started as an
industry initiative by IBM and Microsoft, along with a handful of Web ser-
vices platform and application vendors. The ultimate goal of WS-I is to
promote interoperability in Web services implementations across plat-
forms, applications, programming languages, and devices. At the time of
this book’s writing, WS-I is in the very early stage of defining its goals and
planning its deliverables.

As part of its deliverable plan, WS-I is planning to introduce the concept
of WS-I profiles to address the interoperability issues on compatibility
problems due to specification versions, dependencies, and requirements.
The concept of the WS-I profiles focuses on the Web services applications
interoperability to conform their compliance on specifications and its sup-
port to profiles.

For example, the basic WS-I profile addresses the specifications listed in
Table 6.1.

Table 6.1 WS-I Basic Profile

SPECIFICATIONS VERSION

XML Schema XML Schema 1.0

SOAP SOAP 1.1

WSDL WSDL 1.1

UDDI UDDI 1.0

Creating .NET Interoperability 291

At the time of this book’s writing, WS-I is working on developing WS-I
profiles on the evolving Web services specifications and its associated W3C
standards. Also note that WS-I is still premature, as it still lacks participation
from some of the leading vendors on Web services platforms and systems.

Public Interoperability Testing Efforts

In addition to WS-I, an open interoperability testing effort is going on
through “WHITE MESA” a public organization that defines the testing
strategy for SOAP/WSDL tools interoperability and then maintains Web
services interoperability test information for leading vendor implementa-
tions. White Mesa demonstrates interoperability by running tests among
SOAP/Web services implementations particularly for WSDL, SOAP Data
types, and SOAP implementation for both RPC and document-style Web
services. The White Mesa tests most popular vendor implementations and
its tools for WSDL interoperability scenarios, especially the following:

■■ Generating WSDL documents for exposing services

■■ Consuming WSDL documents for service requestor and to generate
proxies

To find out White Mesa interoperability results for Sun JWSDP 1.0,
refer to http://soapinterop.java.sun.com/soapbuilders/round3.html. For
more information on White Mesa interoperability tests, refer to www.
whitemesa.net.

Summary

This chapter has discussed the core concepts of Web services interoperabil-
ity and the key challenges in developing interoperable Web services. An
interoperable Web services application scenario also was demonstrated
between a Java-based Web services and a Microsoft .NET Framework
based service requestor.

In general, this chapter has focused on the fundamentals of Web services
interoperability, the development of interoperable Web services between
Java and .NET, and the challenges in Web service interoperability.

The following chapter introduces the Java Web Services Developer Pack
(JWSDP 1.0).

292 Chapter 6

PA R T

Three

Exploring Java Web
Services Developer Pack

295

As discussed in earlier chapters, XML is a cross platform neutral-data
format and Java is a cross platform programming language. These tech-
nologies provide a perfect solution for developing network independent
and extensible applications; they enable interoperability, portability, and
flexibility. They also provide a standard solution for integrating hetero-
geneous applications and systems ranging from cell phones to large-scale
enterprise applications. An application can be written in Java and ported
to various supported platforms (hence, the “Write Once, Run Anywhere”
mantra trademarked for Java by Sun Microsystems). In addition, XML
also has the capability to talk to Java as well as non-Java applications run-
ning on diverse platforms.

With the overwhelming success of XML and Java in enterprise applica-
tions, the use of XML has required the development of parsers and other
supporting technologies to process the XML data. Many XML-based
technologies have been developed over the last few years using vendor-
specific APIs that require specific vendor implementation knowledge.
The introduction of the Java XML APIs provides standard interfaces that
are independent of any vendor-specific implementation. For example, in
using a JAXP-compliant parser, this standardization provides better sup-
port for maintaining application code and enables the application provider
to exchange the underlying implementation of the parser. This change

Introduction to the Java Web
Services Developer Pack

(JWSDP)

C H A P T E R

7

TEAMFL
Y

Team-Fly®

does not require any modification in the application code because the
method calls are the same due to compliance of the two parsers.

This chapter presents an introduction to Sun Microsystems’ Java XML
APIs and runtime environments, which together make up a software
toolkit for developing Web services. This API toolkit, which is commonly
referred to as the Java Web Services Developer Pack (JWSDP), provides Java
developers with a one-stop API solution for the development of Java Web
service applications.

This chapter provides an introduction to JWSDP focusing on the follow-
ing topics:

■■ The core components of JWSDP
■■ Java XML APIs for Web services and their features
■■ The infrastructure for running Web service applications using JWSDP

■■ Java XML Pack
■■ Apache Tomcat container
■■ JWSDP Registry Server
■■ JavaServer Pages Standard Tag libraries
■■ ANT Build tool

Java Web Services Developer Pack

A Web service cannot be executed as a standalone program. It is usually a
component, which resides in a container that manages the life cycle of
these components by providing low-level services, such as security, trans-
action support, session management, and so forth. JWSDP includes a Web
container for hosting applications or services created using servlets and
Java Server Pages (JSPs).

Java Web Services Developer Pack (JWSDP) brings together a set of Java
APIs for XML-based Java applications by supporting key XML standards
such as SAX, DOM, XSLT, SOAP, WSDL, UDDI, and ebXML. These APIs
and their reference implementations are bundled together with a set of
runtime tools to form a JWSDP to provide a build, deploy, and test envi-
ronment for Web services applications and components. The pack includes
the following toolset:

■■ Java XML Pack
■■ JavaServer Pages Standard Tag Libraries

296 Chapter 7

■■ Apache Tomcat container
■■ Java WSDP Registry Server
■■ ANT Build Tool

Java XML Pack
Java XML Pack is an architectural solution toolkit that is intended to ease
software development by providing a set of high-level APIs and refer-
ence implementations that abstract the complexities behind XML pro-
cessing. These APIs also enrich the development of XML applications
with a modular and simple set of interfaces leading to superior code
quality and increased developer productivity. With the rapid emergence
of new technologies such as Web services, pervasive computing, and
enterprise computing, these APIs become a standard supporting an API
solution to cater Java- and XML-enabled applications.

Java XML Pack is very beneficial for Web services development because
it leverages most of the aspects of XML-related processing in a typical Web
service environment. At the time of this book’s publication, the Sun Web
services pack contains the following Java XML APIs:

■■ Java API for XML Processing (JAXP)
■■ Java API for XML Registries (JAXR)
■■ Java API for XML-based RPC (JAX-RPC)
■■ SOAP with Attachments API for Java (SAAJ)
■■ Java API for XML Messaging (JAXM)

With the overwhelming success of Java and J2EE in enterprise applica-
tions, it is likely that the API solutions provided by the Java XML pack
and Web services pack will soon emerge as an industry-wide solution for
providing and building robust XML-based Web services.

Java APIs for XML
The Java APIs for XML provide a set of Java classes and interfaces for
working with the processing of XML data. They are categorized as follows:

Document-oriented APIs. These APIs enable the processing of XML
documents that contain XML data (for example, parsing a purchase
order defined in XML). Document-oriented APIs are generally used
for interpreting data stored in an XML format. The Java XML Pack
includes the following document-oriented APIs:

Introduction to the Java Web Services Developer Pack (JWSDP) 297

■■ Java API for XML Processing (JAXP)
■■ Java Architecture for XML Binding (JAXB)

Procedure-oriented APIs. These APIs facilitate the sending and receiv-
ing of XML documents using network services (for example, sending
a SOAP message in a B2B communication). Procedure-oriented APIs
are generally used for interfacing between Web services applications.
The Java XML Pack includes the following APIs:

■■ Java API for XML Processing (JAXP)
■■ Java API for XML Messaging (JAXM)
■■ SOAP with Attachments API for Java (SAAJ)
■■ Java API for XML Registries (JAXR)
■■ Java API for XML-based RPC (JAX-RPC)

The following sections briefly describe each of these APIs.

Java API for XML Parsing (JAXP)

Java API for XML Parsing (JAXP) is used for the parsing and transforma-
tion of XML documents. Parsing is the process of interpreting the content of
a structured XML document. XML transformation consists of applying a
template to the XML data in order to produce a document in a desired for-
mat. JAXP version 1.1 supports the following three different standards for
XML processing:

FOR PARSING:

■■ Simple API for XML (SAX)
■■ Document Object Model (DOM) API

FOR TRANSFORMATIONS:

■■ Extensible Stylesheet Language Transformation (XSLT) API

JAXP also provides a pluggable interface independent of any particular
XML processor implementation. JAXP is an abstraction that enables the
exchange of any compliant XML parser. The following sections describe
the processing standards supported by these APIs in more detail.

298 Chapter 7

Simple API for XML (SAX)

The Simple Access for XML (SAX) API is a public domain based on an
event-driven processing model where data elements are interpreted on a
sequential basis and events are triggered based on selected constructs. SAX
is similar to the AWT 1.1 Event Delegation Model, where UI components
generate events based on user input, and event listeners perform actions
when these events are triggered. The biggest advantage of SAX is that it
does not load any XML documents into memory, therefore it is considered
to be very fast and lightweight. SAX supports validation by using Docu-
ment Type Definition (DTD) but does not enforce the use of it. By having
validation, a document is checked for conformance against the DTD. It
uses a sequential read-only approach and does not support random access
to XML elements. Figure 7.1 shows an XML document being processed by
a JAXP-compliant parser with some events triggered by the elements
encountered in the document. These events are the callback methods
implemented in the application handler class.

SAX was developed by an XML working group called XML-DEV, which
is managed by OASIS. The list is used for implementation and develop-
ment discussions using SAX. For more information about XML-DEV mail-
ing list initiatives, refer to www.xml.org/xml/xmldev.shtml.

Figure 7.1 JAXP using the SAX processing model.

event

Default
Handler

XML
Document

<xml>
<>
</>

</xml>

input JAXP
Compliant

Parser

event

event

event

e

e

e

e

Introduction to the Java Web Services Developer Pack (JWSDP) 299

Document Object Model (DOM)

The Document Object Model (DOM) API was defined and is maintained
by the W3C working group (www.w3org/TR/WD-DOM/): “As per W3C
definition the Document Object Model is a platform- and language-neutral
interface that will allow programs and scripts to dynamically access and
update the content, structure, and style of documents.”

The DOM processing model consists of reading the entire XML document
into memory and building a tree representation of the structured data, as
shown in Figure 7.2. This model can require a substantial amount of memory
when the XML document is large. By having the data in memory, DOM
introduces the capability of manipulating the XML data by inserting, editing,
or deleting tree elements. Unlike the SAX API, DOM supports random
access to any node in the tree. It also supports validation by using DTD, but
it does not enforce the use of validation.

Extensible Stylesheet Language Transformation (XSLT)

Extensible Stylesheet Language Transformation (XSLT) is an XML pro-
cessing standard used with eXtensible Stylesheet Language (XSL) for
XML-based document transformation. XSLT is a process by which XSL
templates are applied to XML documents to create new documents in
desired formats (XML, HTML, PDF, WML, and so forth). XSL provides the
syntax and semantics for specifying formatting and XSLT is the processor
that performs the formatting task.

Figure 7.2 JAXP using the DOM processing model.

XML
Document

<xml>
<>
</>

</xml>

input JAXP
Compliant

Parser

Build
DOM

Document

300 Chapter 7

XSLT is often used for the purpose of generating various output formats
for applications that enable access to heterogeneous client types (such as
Web browsers, cell phones, Java applications, and so on). XSLT also is used
to format one XML representation to another; this is typical in a B2B type
environment. Figure 7.3 illustrates a scenario where an application hosts a
component that is able to generate various types of output based on the
requesting client’s type.

JAXP Pluggable Interface

JAXP provides a pluggable layer that enables application developers to
change parser implementations without affecting the application logic.
With JAXP, one JAXP-compliant parser can be exchanged for another
seamlessly, without much effort. JAXP provides a set of standard interfaces
that encapsulate the details behind the parser interactions. These interfaces
act as abstractions that prevent the developer from working with XML
directly. The abstractions are implementations of the SAX and DOM pars-
ing standards and the XSLT transformation standard.

Figure 7.4 shows the high-level blocks that compose the JAXP model. In
order for a parser and transformer to be compliant, they must follow the
JAXP specification. The freedom to choose any parser is very important:
This flexibility enables application developers to choose a parser provider
that best suits the requirements of the service.

Figure 7.3 Using JAXP for XSLT transformation.

JAXP
Compliant

XSLT
Processor

Other
Services

XML
Document

<xml>
<>
</>

</xml>

XSL

MIDP
Client

Client
Application

(Web browser)

input

xml

html

wml

Welcome to
the Internet

You have 1 e-mail
and 1 page.

21 ABC 3 DEF

4 GHI 5 JKL 6 MNO

7 PQRS

0

5 TUV 6 WXYZ

Introduction to the Java Web Services Developer Pack (JWSDP) 301

Figure 7.4 JAXP pluggable interface.

For more information on JAXP, refer to Chapter 8 “XML Processing and
Data Binding with Java APIs.”

Java Architecture for XML Binding (JAXB)

The XML Binding technology provides application developers with a way
to generate Java objects based on XML definitions. The Java Architecture
for XML Binding (JAXB), formerly known as JCP project Adelard, is a high-
level API that abstracts the binding semantics via classes and interfaces.
JAXB takes the developer away from the manual steps of parsing and pro-
cessing the data. It provides the necessary utilities that enable developers
to work with the XML data in the form of Java objects. In other words, it
provides the means for the developers to generate Java object models
based on XML definitions and vice versa.

Compliant
Parser

Compliant
Parser

Compliant
Parser

JAXP Pluggable Interface

Application

302 Chapter 7

JAXB architecture provides services such as a schema compiler, binding
framework, and a binding language or a runtime API (interfaces and
classes) that provide the following services:

Marshalling. The process of converting a Java object tree into an XML
document.

Unmarshalling. The process of converting an XML document into a
Java object tree.

Validation. The process where an XML document is checked for con-
formance with a DTD schema.

When building a Java object tree, each object in the tree refers to an ele-
ment in the XML document. The object in the tree is an instance of a class
that was generated by the compiler, based on the DTD and a binding
schema. Figure 7.5 shows the life cycle of a Java binding process.

Introduction to the Java Web Services Developer Pack (JWSDP) 303

JAXP REFERENCE IMPLEMENTATIONS

The current release of JAXP (1.1) is packaged with reference implementations of
the API specifications. The parser implementation is based on the Crimson code-
base, which originates from Sun Project X parser. JAXP is a Sun Microsystems
initiative to make the API available to the public for redistribution in commercial
products. This parser codebase is currently maintained by the Apache Software
Foundation and has moved to a different codebase called Xerces 2. Industry
leaders such as Sun, IBM, BEA, and iPlanet have accepted JAXP as a standard
API. The XSLT processor is called Xalan and is an implementation of the W3C
Recommendation for XSL Transformations (XSLT).

At the time of this publication, JAXP v1.1 conforms to the following
standards:

◆ XML 1.0 Second Edition

◆ XML Namespaces 1.0

◆ SAX 2.0

◆ SAX2 Extensions version 1.0

◆ DOM Level 2 Core Recommendation

◆ XSLT 1.0

For more information on the current release of JAXP, refer to the following
site:

http://java.sun.com/xml/jaxp/

Figure 7.5 Java binding process.

JAXB provides a schema compiler, which follows an XML schema and
defines what elements to extract from an XML document. JAXB then com-
piles the XML schema by generating a Java class. An instance of a Java
object can be instantiated manually from the Java class or by unmar-
shalling the XML document.

In the current release of JWSDP, JAXB is not included due to functional-
ity limitations with validation, W3C schema, and XML namespaces. For
more information on JAXB, refer to Chapter 8.

Java API for XML Messaging (JAXM)

The Java API for XML Messaging (JAXM) is designed to be used as a light-
weight XML messaging API for application-to-application (A2A) integra-
tion and B2B communication, especially Web services environments. It

Java
Object

XML
Document

Marshalling

CompilingXML
Schema

C
on

fo
rm

s
to

In
st

an
ce

O
f

Unmarshalling

<xml>
<>
</>

</xml>

Java
Object

Java Class

304 Chapter 7

enables the transfer of business-level documents between two parties
involved in a transaction. It also enables loosely coupled services to inter-
act with each other using SOAP messaging protocol (specifically, SOAP 1.1
and SOAP with attachments). Through its API, JAXM enables the develop-
ment of SOAP-compliant messages by making Java API calls. The under-
lying message delivery infrastructure (message provider) is independent
of the JAXM. It is therefore possible to have asynchronous providers that
provide services such as reliable message delivery or synchronous
providers using a simple request/response model. The specification
requires that JAXM supports the following five messaging interaction pat-
terns: Asynchronous inquiry, Asynchronous update with acknowledge-
ment, Synchronous Update, Synchronous Inquiry, and Fire and Forget. For
details on these interaction patterns, refer to Chapter 9, “XML Messaging
Using JAXM and SAAJ.”

The JAXM specification does not enforce any particular messaging pro-
tocol standard; it currently focuses around SOAP and SOAP extensions
such as ebXML. The JAXM specification also does not mandate the use of
any particular communication protocols; the current support focuses
around industry standards such as HTTP, SMTP, and FTP.

JAXM clients can be either message provider-driven or non-managed.
The API can be used by non-managed clients (standalone applications) for
building SOAP-compliant XML messages and for sending them directly to
the final destination. In a non-managed environment, the client and its des-
tination can communicate only in a point-to-point fashion. Message
providers handle the transmission and routing of messages from the
sender to receiver(s), as shown in Figure 7.6. By using message providers,
asynchronous communication can be achieved where the underlying archi-
tecture is based upon a Java Messaging Service (JMS) implementation. For
more information on JMS, refer to http://java.sun.com/products/
jms/. The JAXM specification does not mandate the use of any particular
messaging architecture. The provider architecture is completely transpar-
ent to the JAXM sender or receiver.

In a message provider environment, a sender builds a SOAP-compliant
message by using a JAXM API. The sender then sends a message by going
through its provider, at which point the message is then transmitted over
the network and is forwarded to the receiver’s provider. The receiver then
gets the message and processes it using the JAXM API. Figure 7.6 illus-
trates a simple JAXM messaging example of sending and receiving SOAP
messages using HTTP.

Introduction to the Java Web Services Developer Pack (JWSDP) 305

TEAMFL
Y

Team-Fly®

Figure 7.6 JAXM messaging over HTTP.

Because there are other APIs (such as JAX-RPC) that use the SOAP
package from JAXM, the specification of JAXM was separated and a new
specification called SOAP Attachments API for Java (SAAJ) was formed.
This API specification only consists of the java.xml.soap package origi-
nally designed for JAXM.

For more information on the current releases, refer to Chapter 9.

Java API for XML Remote Procedure Calls (JAX-RPC)

Java API for XML RPC (JAX-RPC) provides a set of high-level Java APIs for
XML-based RPCs and makes the XML-RPC model easy to understand and
implement. Because JAX-RPC is based around XML messaging, it is plat-
form independent and can be used in a heterogeneous distributed environ-
ment without being limited by a specific platform or technology (unlike its
complementary standards such as RMI or CORBA). See Chapter 1, “Evolu-
tion of Distributed Computing,” for an overview of RMI and CORBA.

JAX-RPC enables XML-based Java applications to interoperate using
RPC. The RPC mechanism enables a client to make remote procedure
calls that are communicated to a remote server. An XML-based RPC is a
remote procedure call encoded using an XML protocol, such as SOAP 1.1.
The SOAP message is encoded with an RPC definition to send complex

soap
msg

JAXM
Messaging
Provider

JAXM API

JAXM
Messaging
Provider

Receiver
Application

JAXM API

Sender
Application

HTTP HTTP

306 Chapter 7

structures and commands to remote servers. The JAX-RPC specification
is protocol neutral, but it does require the support of HTTP 1.1 for SOAP
messaging. The API facilitates the development of Web services using
RPC protocols by encapsulating the plumbing of marshalling and
unmarshalling SOAP messages. JAX-RPC supports several modes of
interaction: synchronous request-response, one-way RPC, and non-
blocking RPC invocation.

Figure 7.7 illustrates a simple JAX-RPC example of Web services. The
following are the steps taken in the example:

1. A client looks up a service definition in a UDDI registry. The infor-
mation is stored using WSDL.

2. The service information is retrieved from the registry to determine
the functionality that is offered to the client by the service.

3. The client then encodes a SOAP message and sends it to the server.

4. The JAX-RPC runtime environment parses the request and makes a
call to the service using the JAX-RPC API.

5. After the result is computed, it is encoded and returned as a SOAP
response.

Figure 7.7 Web Services example using JAX-RPC.

3. soap/http request

4. soap/http response
Client

1.
 L

oo
ku

p
 s

er
vi

ce

2.
 R

et
ur

n
in

fo
rm

at
io

n

UDDI

Application Server

JA
X

-R
PC

Ru
nt

im
e

JA
X

-R
PC

 A
PI

Service
endpoint

Introduction to the Java Web Services Developer Pack (JWSDP) 307

For more information on JAX-RPC, refer to Chapter 10, “Building RPC
Web services with JAX-RPC.”

Java API for XML Registries (JAXR)

Registries are external entities that are accessed by various sources to find
out information about particular business services. They hold information
such as the name of the business and the services offered by the business.
A registry can be public by being exposed to any other application on the
network, or it can be private by being exposed to a local network. Client
applications use the information provided by these registries to make calls
to the services.

Registry providers have the responsibility to provide the implementa-
tion of the registry specifications. A JAXR provider acts as a wrapper to the
registry provider: that is, it encapsulates all of the plumbing information a
developer does not need to worry about by exposing only those interfaces
that are needed by the application (JAXR client). JAXR clients can use
generic or specific business-type APIs to access the registry.

Java API for XML Registries (JAXR) facilitates access to diverse business
registries and repositories, such as UDDI and ebXML. It enables applica-
tions to register with a registry or to look for Web services offered by other
businesses. Figure 7.8 shows an example scenario of using a JAXR API to
enable uniform access to various types of registries.

For more information on the current release of JAXR, refer to Chapter 11,
“Java API for XML Registries.”

Figure 7.8 Accessing service registries with JAXR.

Client
Application

UDDI

ebXML

http

http

JAXR
Pluggable
Provider

eb
X

M
L

Pr
ov

id
er

U
D

D
I

Pr
ov

id
er

308 Chapter 7

JavaServer Pages Standard Tag Library
JavaServer Pages Standard Tag Library (JSTL) is an initiative to standardize
on a single set of reusable taglibs that expose functionality to solve common
problems faced in Web application development. The idea is to implement
one standard solution instead of many different proprietary ones. By doing
this, developers will only have to learn one set of functions to perform their
work instead of many different taglibs which, in the end, perform the same
functionality. The JSTL implementation is vendor neutral, which means that
it will run in most Web containers that conform to the required Java specifi-
cations. Having this kind of specification enables vendors to implement
different strategies for their Web containers.

The current implementation of JSTL tags supports functionality for the
following:

Core tags. Provide support for conditional processing, iteration over
collections, and expression language support.

XML tags. Provide support for XML processing, including the parsing
and transformation of XML documents.

Internationalisation tags. Provide support for I18N and localized
formatting.

SQL tags. Provide support for database access.

Chapter 12, “Using the Java Web Services Developer Pack: Case Study,”
provides some examples on how to use JSTL tag libraries. For more infor-
mation on JSTL, refer to the JSTL home page at: http://java.sun.com
/products/jsp/jstl/.

This ends the coverage of the Java XML APIs and standard tag libraries
that are part of the JWSDP. The following section will talk about the infra-
structure, runtime environment, and tools that aid in the development of
Web services.

Apache Tomcat Container
Apache Tomcat is an open-source implementation of a Web container
under the Apache Software Foundation. The container conforms to the lat-
est specifications and provides runtime services for hosting and executing
servlets and JSPs.

For more information on Tomcat, refer to http://jakarta.apache.org
/tomcat/index.html.

Introduction to the Java Web Services Developer Pack (JWSDP) 309

Java WSDP Registry Server
JWSDP Registry Server is an implementation of the UDDI version 2.0. The
JWSDP Registry Server serves the purpose of testing applications written
using Java API for XML Registries (JAXR).

For more information about the Registry Server, UDDI, and JAXR, refer
to the following sources:

■■ Registry Server: Java Sun’s Web site at http://java.sun.com/web
services/docs/1.0/tutorial/doc/RegistryServer.html#67421

■■ UDDI: See Chapter 5
■■ JAXR: See Chapter 11

ANT Build Tool
Apache ANT is a build tool similar to make and gnumake. It has gained a
lot of attention and acceptance from the community for building and
deploying Java code. ANT uses XML for specifying the various tasks that
must be executed in the build process. It provides many defined tasks that
can be used by the developer while compiling, building, or deploying the
application code. ANT is extensible because it enables a new task to be
implemented and used in the build process. A task is a Java class that
implements a specific functionality and conforms to a specific interface.
For example, if the developer wants to achieve class files in a jar, she would
call the jar task to accomplish this step. The jar task is part of the core set of
tasks available with ANT.

For more information on the ANT build tool, refer to http://jakarta
.apache.org/ant/index.html.

Downloading the Web Services Pack

JWSDP is available at the Sun Java site. Full documentation, which
explains the functionality of each Java XML API included in the pack, also
is available for downloading. In addition, the Web services tutorial also is
for downloading. This tutorial takes the developer through each API with
examples, and it provides instructions on how to set up the JWSDP envi-
ronment and how to deploy and test Web service applications.

A separate download of the Java XML Pack software bundle is available at
http://java.sun.com/xml/javaxmlpack.html. This pack only includes the
APIs available in JWSDP, and it does not provide a runtime environment to

310 Chapter 7

test Web service applications. JWSDP is available at http://java.sun.com/
webservices/webservicespack.html, and it includes the Java XML APIs
and a runtime environment.

These development packs are released by Sun on a quarterly basis, thus
ensuring support for emerging XML standards and the most recent speci-
fications.

Summary

In this chapter, we introduced the JAVA XML Pack APIs and the Java Web
Services Developer Pack (JWSDP) runtime environment for developing
and running Web services applications.

This introduction provided a walk-through on document- and procedure-
oriented API solutions for XML processing and the importance of JAVA XML
Pack in Web services.

In the following chapters, we will take a closer look at these APIs with best
practices and real-world example illustrations. Chapter 12, “Using Java Web
Services Developer Pack: Case Study,” focuses on JWSDP and provides a
case study example using various APIs from the pack.

Introduction to the Java Web Services Developer Pack (JWSDP) 311

313

Java and XML are known to be a perfect fit for building portable business
applications, where Java provides the portability of code that can be exe-
cuted on various platforms and XML provides the portability of data that
can be processed on diverse platforms. These two technologies can be
ported from one platform to another without any effort, and in addition,
Java applications can talk to non-Java applications by using XML as the
communication protocol. The first generation of Java XML APIs dealt with
the parsing of XML covering industry standards like SAX and DOM. By
high demand from the developer community, other standards followed
such as XML transformations and XML data binding. These emerging
XML technologies are a key solution in the Web services arena, where pars-
ing is used for processing XML messages and binding provides an object
view of the XML data.

This chapter provides an overview of Java API for XML processing and
data binding, focusing on the following:

■■ Overview of XML and its complementing standards

■■ Simple API for XML

■■ Document Object Model (DOM)

■■ The JAXP processing model and its features

XML Processing and Data
Binding with Java APIs

C H A P T E R

8

■■ Using JAXP in Web services development

■■ Using Java XML binding

The specification of Java API for XML processing is currently at version
1.2 and provides support for XML parsing and XML transformation. Also,
the specification for XML data binding API is at version 1.0. These two
specifications are very important because they set the fundamentals for
XML processing and are essential in understanding the processing as well
as benefits of using XML. Before describing the APIs, let’s look at the basics
of XML.

Extensible Markup Language (XML) Basics

XML is an ASCII-based structured meta-data language that has been widely
adopted in the industry. Currently, it is adopted in many areas such as secu-
rity (for example, SAML and XACML), meta data (for example, XML
Schema and TopicMaps), and presentation (for example, XHTML and XSLT).

XML was created in 1996 and embodied by the W3C group since early
1998. It is a derivative of the well-known SGML markup language, which
has been around for a long time but has not gotten as much acceptance as
XML due to its complexity. XML was created as an extensible way to rep-
resent data. It is considered extensible because it does not define a standard
and well-defined set of tags (such as HTML) but rather provides the capa-
bility to create custom tags. It has the flexibility to define complex data
structures in a modular way, thus promoting clarity and consistency.

HTML has tags <>, also referred to as markup, that have a specific mean-
ing. When interpreted by a browser, the HTML tags have a particular
presentation-oriented function within the document. For example, the tag
<Body> marks the beginning of a page. Anything that is put inside the
<Body> tag is rendered by the browser and displayed on the Web page.
The <Body> tag also contains a closing tag, which is represented by the
</Body> tag. In XML, the same set of tags could have hundreds of differ-
ent meanings. For example, consider an XML file that describes the charac-
teristics of a person. The Person tag contains a Body tag that will contain
the weight and height of a person. The following is an XML representation
of such a description:

<?xml version=”1.0” ?>

<Friends>

<Person>

<Name>Jane Doe</Name>

<Age>21</Age>

<Body>

314 Chapter 8

<Weight Unit=”lbs”>126</Weight>

<Height Unit=”inches”>62</Height>

</Body>

</Person>

<Person>

<Name>John Doe</Name>

<Age>26</Age>

<Body>

<Weight Unit=”kg”>80</Weight>

<Height Unit=”meters”>1.67</Height>

</Body>

</Person>

</Friends>

The document starts with a prolog, which is a processing instruction
statement identifying the XML document and the version of the document.
The XML structure represents data about two people, each identified with
the <person> tag. Within the person tag, there is a description of the body
characteristics of each person such as weight and height. Body characteris-
tics can have different types of measuring units such as kilograms (kg) or
pounds (lbs). This is a representation of hierarchical data where the
<Name>, <Age>, and <Body> tags are enclosed within the scope of the
<Person> tag. This makes XML very extensible, where the creator of the
XML determines what meaning and content the markup must have.

XML is currently being used in various areas of enterprise computing.
One area that all J2EE developers are familiar with is the area of the
deployment descriptors, which is used for the configuration of the J2EE
components hosted in an application server. Some application servers use
XML for storing their setup, configuration, and deployment information.
XML also is known to be a perfect solution for integration with legacy sys-
tems, because it is a platform and vendor-neutral solution.

Note that XML as a meta language, in most circumstances, is very easy
to understand. It only uses ASCII encoding, thus making it readable with
simple text editors. By looking at the previous example, one could easily
interpret what is meant by the XML structure. To put things into perspec-
tive, the following is an equivalent comma-delimited data file representing
the equivalent data:

Rima P, 18,100, 54

Urszula M, 21, 126, 62

Slawomir S, 45, 80, 1.55

Robert S, 26, 90, 1.67

In this particular scenario, commas are used to delimit the data, which
was a very frequently used option prior to the standardization of XML.
Just by looking at this sample, you will be hard pressed to determine what

XML Processing and Data Binding with Java APIs 315

TEAMFL
Y

Team-Fly®

each entry means. There is no explanation of the data in an intuitive way.
Also, the mixing of units into one single file is impossible, because there is
no indication of the type of unit being used. Even though it’s possible to
use these types of data files, they are extremely difficult to maintain
because they are very difficult to understand and validate. In fact, they can
cause a maintenance nightmare.

XML provides a structured and well-defined syntax that enables data to
be defined in a uniform way. This syntax is not very hard to learn, but
understanding the different concepts is important. By understanding all of
these concepts, a developer will be able to use various tools that will aid in
XML development.

Before starting with the API discussion, let’s look at the very basics of
XML.

XML Syntax
This section will discuss some terminology associated with XML that
describes XML-specific syntax and what it means.

XML Naming Conventions

Naming has to be respected for the XML document to be well formed.
Blank spaces are not permitted in XML names. A name must start with an
alphabetical letter (A to Z or a to z) or an underscore (_). It then can be fol-
lowed with more letters, digits [0 to 9], underscores, hyphens (-), periods
(.), and colons (:). Although a colon is permitted, it is mostly used when a
document uses namespaces (see the section titled Namespaces that follows).
Names are also case-sensitive in an XML document, therefore <product>
and <Product> are considered to be two different elements. It is up to the
developer to choose whether the structure is only in lowercase, uppercase,
or mixed. For example, the following XML structure would not be valid
due to the case mixing of the product:

<product>

<id>1234</id>

<price>19.99</price>

</Product>

The following is the correct product representation because both of the
product elements are of the same case:

<product>

<id>1234</id>

<price>19.99</price>

</product>

316 Chapter 8

Prolog

Prolog is the declaration statement that identifies the document as an XML
document. It is the first line in an XML file. It identifies the version of the
XML specification used, the encoding being used, and whether it is stand-
alone. The prolog is not necessary, but it is a good practice to use it in dec-
larations for internationalization and future extensions set by the W3C.
The version attribute is mandatory where the other two are optional. The
following is a sample of a prolog:

<?xml version=”1.0” ?>

or

<?xml version=”1.0” encoding=”ISO-8859-1” standalone=”yes” ?>

Some additional and optional attributes can be provided, including the
following:

Encoding. Identifies the character set used for encoding the data.

Standalone. Identifies whether the source accesses external data
sources.

Root

A root is the topmost element in an XML document. For a document to be
syntactically correct, it must contain only one root element.

The following is not a correct XML document because it does not contain
a single root element:

<?xml version=”1.0”?>

<person1>

<name>john</name>

</person1>

<person2>

<name>jane</name>

</person2>

The following is a correct version of the same document with the
employee element as the root.

<?xml version=”1.0”?>

<Employee>

<Person1>

<Name>john</Name>

</Person1>

XML Processing and Data Binding with Java APIs 317

<Person2>

<Name>jane</Name>

</Person2>

<Employees>

Processing Instructions

Processing instructions (PIs) are used for providing information to the
XML processing application. Things like scripts could be embedded in
XML documents for extra processing. A prolog is considered to be a pro-
cessing instruction but is reserved for XML standards. Processing instruc-
tions usually are used in special applications to perform special tasks.

The following is an example of a processing instruction:

<?target instructions?>

where the following are indicated:

target. It is the name of the application that will be performing the
processing.

instruction. String containing information that is passed to the target
application. An example of a PI that is seen in the majority of XML
documents is the prolog:

<?xml version=”1.0” ?>

Comments

Comments are used for documenting parts of an XML structure. Com-
ments are defined using the same syntax as HTML. The following is an
example of a comment:

<!— this is a comment —>

Tags

A tag is the element markup identified by the angle brackets. Each tag
must have a start tag and a close tag. An XML file that contains a closing
tag for every tag in a nested form is considered to be a well-formed file.
Atag is considered to be an empty tag if it stands by itself without any attrib-
utes. An empty tag serves the purpose of an identifier in a XML structure.

318 Chapter 8

For example,

<LineItem Product_No=”210020” Quantity=”4000”/>

can be equivalently represented as

<LineItem>

<Product_No>210020</Product_No>

<Quantity>4000</Quantity>

</LineItem>

The first example shows how the attributes can be used in a tag. This also
is an example of an empty tag where no data is present. It simply defines
the name and age and closes itself with the slash (/).

A number of things need to be kept in mind when an XML structure is
designed. For example, when data is very large, it makes more sense to use
elements rather then attributes for clarity. Data that contains various
HTML or formatting tags also should be defined as an element. On the
other hand, if the data is short and does not change very often, defining it
as an attribute might be the right approach to take.

Elements

An element is the data delimited by a start tag and an end tag. It is the
building block used for creating XML documents. An XML document
essentially is composed of many elements. The topmost element is called
the root element. All elements that are directly under the root are referred
to as child elements of the root element. In the following code, the root ele-
ment is the Catalog element and the child elements of the root elements
are the CatalogId, Product, and EuroProducts elements. These
three elements are considered to be siblings in relation to one another, and
the root element is considered to be an ancestor of the three siblings. This
tree structure can span multiple levels, nesting much deeper than we are
able to show in the following simple example code:

<!-- Catalog Is a Start or Root element -->

<Catalog>

<CatalogId Id=’123456’ />

<!--Product element contains children elements -->

<Product>

<!-- Id element contains character data -->

<Id>1234</Id>

<!-- Price contains attribute currency -->

<Price currency=’USD’>199.99</Price>

XML Processing and Data Binding with Java APIs 319

</Product>

<!-- Empty element -->

<EuroProducts/>

<!-- Closing element -->

</Catalog>

Attributes

Attributes provide additional information about an element. They have a
key and value pair that identifies the different attribute. Many attributes
can exist in one element. If attributes are used, the XML document can have
a reduced number of tags, as shown in the following code:

<Price currency=”USD”>12.99</Price>

<Price currency=”CND”>21.99</Price>

In the code, the Price attribute specifies the currency type for the
enclosed data. Attributes also apply to all of the elements that are nested
within the element holding the attribute. The following example shows
how the currency attribute applies to different scotch brands:

<Price currency=”CND”>

<Scotch>

<Name>Lagavulin</Name>

<Value>49.99</Value>

</Scotch>

<Scotch>

<Name>Talisker</Name>

<Value>54.99</Name>

</Scotch>

</Price>

<Price currency=”USD”>

<Scotch>

<Name>Cardhu</Name>

<Value>29.99</Value>

</Scotch>

</Price>

The Lagavulin and Talisker brands have CND currency, where the Cardhu
brand holds the USD price.

Entities

Entities are variables used to define common text or shortcuts to text. Table
8.1 shows the common ones used in XML specification. For example, the
less-than sign (<) can be interpreted as the beginning of a tag; it is therefore
important to make use of entities in these situations. Entities are inter-
preted and expanded at parsing time.

320 Chapter 8

Table 8.1 Entities Supported in XML Specification

ENTITY CHARACTER

< <

> >

& &

" “

' ‘

The following is a sample of an XML structure representing a purchase
order; it includes most of the concepts discussed in this section:

<!-- Prolog -->

<?xml version=”1.0”?>

<!- Root element -->

<PurchaseOrder>

<Header>

<PO_Number>2123536673005</PO_Number>

<Date>02/22/2002</Date>

<Customer_No>0002232</Customer_No>

<!-- This Is the shipping address -->

<Address>

<Street1>233 St-John Blvd</Street1>

<Street2>Building A42</Street2>

<City>Boston</City>

<State>MA</State>

<Zip>03054</Zip>

<Country>USA</Country>

</Address>

<!-- This Is the payment Information -->

<PaymentInfo>

<Type>Visa</Type>

<Number>0323235664664564</Number>

<Expires>02/2004</Expires>

<Owner>John Doe</Owner>

</PaymentInfo>

</Header>

<!-- The following section contains a list of -->

<!-- ordered Items -->

<Products/>

<LineItem type=”Software”>

<Product_No>21112</Product_No>

<Quantity>250</Quantity>

</LineItem>

<LineItem type=”Software”>

XML Processing and Data Binding with Java APIs 321

<Product_No>343432</Product_No>

<Quantity>1000</Quantity>

</LineItem>

<LineItem type=”Hardware”>

<Product_No>210020</Product_No>

<Quantity>4000</Quantity>

</LineItem>

</PurchaseOrder>

This XML structure is a representation of a purchase order. It starts with
the XML prolog, followed by the root element of the structure called Pur-
chaseOrder. PurchaseOrder has child elements, starting with Header,
which contain the buyer information followed by many LineItem ele-
ments that contain the product number and quantity of the ordered prod-
ucts. Between the Header and first LineItem is an empty tag called
Products. This empty tag serves as a delimeter between the header and
the line items. Each LineItem contains the type of product that it repre-
sents. For example, Product_No 21112 is of type software.

Namespaces
Namespaces in an XML document are used to prevent naming collisions
within same or different XML documents. The namespace syntax enables a
prefix definition and an associated URI/URL to exist. By specifying the
URL, the namespace becomes a unique identifier. A URL is usually com-
bined with a prefix to make the different elements distinguishable from
each other. The URL does not refer to any particular file or directory on the
Web, it simply acts as a unique association or label for the defined name-
space. The XML namespaces specification indicates that each XML element
is in a namespace. If the namespaces are not explicitly defined, the XML
elements are considered to reside in a default namespace.

Consider the following example XML structure where the <Name> tag is
found in two distinct places:

Buyer.xml

<!-- This Is a fragment of the xml file -->

<Buyer>

<Name>Urszula M</Name>

<email>urszulam@acme.com</email>

</Buyer>

<!-- This Is a fragment of the xml file -->

<Product>

<Id>090902343</Id>

<Name>Foo</Name>

</Product>

322 Chapter 8

This is a simple example, which calls for namespace support to avoid
conflicts when both documents are used together. The most common con-
flicts arise when multiple XML documents use identical tags that have dif-
ferent meanings. <Name> is a child of both the product and buyer
elements. The parser must understand to which <Name> tag the applica-
tion is referring. Having said that, the syntax using namespaces specifica-
tion will convert the <Name> tags into something less ambiguous, such as
<Person:Name> and <Item:Name>. Namespaces can be found in XML-
related documents, schema documents, and XSL stylesheets. The following
sample shows the distinction of both tags:

<!-- Buyer.xml provides Information about the buyer -->

<PersonInfo:Buyer xmlns:PersonInfo=

“http://www.acme-computers.com/warehouse/personinfo/”>

<PersonInfo:Name>Robert S</Name>

<PersonInfo:email>roberts@acme.com</email>

</PersonInfo:Buyer>

<!-- Catalog.xml listing of all Items available for sale -->

<Catalog:Product xmlns:Catalog=

“http://www.acme-computers.com/warehouse/catalog/”

xmlns=”http://www.acme-computers.com/warehouse/default/”>

<!-- uses default namespace -->

<Header>

<LastUpdated>05/20/2001</LastUpdated>

</Header>

<Catalog:Item>

<Catalog:Id>090902343</Catalog:Id>

<Catalog:Name>Futsji</Catalog:Name>

</Catalog:Item>

<Catalog:Item>

<Catalog:Id>123242343</Catalog:Id>

<Catalog:Name>Sony</Catalog:Name>

</Catalog:Item>

</Catalog:Product>

Element collision is prevented by placing prefixes in front of each XML
element. The Header element of the catalog XML document does not use
the Catalog namespace, instead, it uses the default namespace without
any prefixes.

Validation of XML Documents
Before the parser processes a document, it is checked for well-formedness.
A well-formed document is a document in which every tag has an

XML Processing and Data Binding with Java APIs 323

equivalent closing tag meaning; it conforms to the XML specification. A
document that is well formed may not necessarily be valid. A valid docu-
ment is a document that conforms to certain constraints defined in a
schema definition. Validity is used for checking whether a document con-
forms to certain standards agreed upon by collaborating parties (for exam-
ple, two businesses conducting the exchange of computer parts). These
two businesses must provide the data in such a way that they both under-
stand what is represented and what is meant by it.

The following example demonstrates a structure that is not well formed:

<!-- Not well-formed document -->

<?xml version=”1.0”?>

<Employees>

<Person>Jane</Person>

<Age>21

</Employee>

</Age>

In the previous example, the Age and Employee elements are not prop-
erly nested. The order in which the paired tags are opened and closed is
very important for a document to be considered well formed.

This error is corrected in the following example, in which the two ele-
ments are properly nested:

<!-- Well-formed document -->

<?xml version=”1.0”?>

<Employee>

<Person>Jane</Person>

<Age>21</Age>

</Employee>

Well-formedness is very important because it enables the parser to
process the XML document in a more efficient way.

In order for validity to be checked, a definition document must be pro-
vided to define what the document is allowed to have as tags and attributes
and the type of elements that should be present within a particular tag.

Consider a simple example in which the Product element contains a
type defining the type of product that a company is offering. The company
offers two types of products (hardware or software). Suppose that its
Product element is defined as follows:

<Product type=”hardware”>

<Name>Generic Mouse</Name>

<Price>19.99</Price>

324 Chapter 8

</Product>

<Product type=”service”>

<Name>Upgrade Services</Name>

<Price>100.00</Price>

</Product>

In the previous code, a new type called service is introduced. In this case,
this document would not be considered valid, because the receiving party
would not know what the additional type means.

The following sections describe the different standards used for creating
XML schemas for validating XML documents. Document Type Definitions
(DTDs) were among the first specifications for validating XML data. The
newest generation of validation standards is based on the XML Schema
Definition, which is a more complete feature set that enables developers to
define restrictions using XML syntax.

Document Type Definition

A Document Type Definition (DTD)—commonly known as a DOCTYPE—
is a document containing the element restrictions an XML data document
must follow in order to be considered valid. A DTD can be defined within
the XML document or saved in an external file with a .dtd extension.

XML elements are declared with an element declaration using the fol-
lowing syntax:

<!ELEMENT element-name (element-content)>

Element-name is the XML element definition. Element-content defines
the type of element. It defines whether the element is a data type or a com-
pound type consisting of other elements and data. Various element types
can be defined in an element, among which are the following:

EMPTY. Empty tag.

#CDATA. Character data; should not be parsed by the XML parser.

#PCDATA. Parsed character data; parsed by the XML parser. If ele-
ments are declared in #PCDATA, then these elements also must be
defined.

ANY. Any content.

If a DTD is defined inside the XML, the declaration is included in the
DOCTYPE construct. The following examples show how to define DTDs in

XML Processing and Data Binding with Java APIs 325

TEAMFL
Y

Team-Fly®

both internal and external ways. These examples demonstrate how to
define an element Product with children sequences of Id and Price:

<?xml version=”1.0”?>

<!DOCTYPE Product [

<!ELEMENT Product (Id,Price)>

<!ELEMENT Id (#PCDATA)>

<!ELEMENT Price (#PCDATA)>

]>

<Product>

<Id>3124090231</Id>

<Price>49.99</Price>

</Product>

The following example is an equivalent DTD, but it is defined in an
external file called Product.dtd:

<?xml version=”1.0”?>

<!ELEMENT Product (Id, Price)>

<!ELEMENT Id (#PCDATA)>

<!ELEMENT Price (#PCDATA)>

The XML file size is reduced to the following:

<?xml version=”1.0”?>

<!DOCTYPE Product SYSTEM “product.dtd”>

<Product>

<Id>3124090231</Id>

<Price>49.99</Price>

</Product>

It also is possible to control the occurrence of the children within an ele-
ment. See Table 8.2 for a list of the most common occurrence controls and a
description of what they do.

Table 8.2 DTD Element Occurrence Controls

ELEMENT DEFINITION ATTRIBUTE DESCRIPTION

<!ELEMENT Product None The Product element may only
(Price)> contain one instance of the child

element.

<!ELEMENT Product * The Product element can contain
(Price*)> multiple child elements.

326 Chapter 8

Table 8.2 (Continued)

ELEMENT DEFINITION ATTRIBUTE DESCRIPTION

<!ELEMENT Product + The Product element can contain
(Price+)> one or more instances of the child

elements.

<!ELEMENT Product ? The Product element can contain
(Price?)> zero or one instance of the child

element.

DTD attributes are used in cases where XML elements contain attributes
that need validation. The syntax for a single attribute is as follows:

<!ATTLIST element-name attribute-name CDATA “default-value”>

<!ATTLIST Product type CDATA “hardware”>

The syntax for a multi-attribute element is as follows:

<!ATTLIST element-name attribute-name (enum1|enum2...) “default-value”>

<!ELEMENT Product (#PCDATA)>

<!ATTLIST Product type(hardware|software|services) “hardware”>

The following XML code respects the definitions of the enumerated
attribute values defined previously. Product could be of the type hard-
ware, software, or services. The default value, if not provided in the
attribute list definition, is hardware because this is the first entry in the
enumeration.

<Product type=”hardware”>

<Id>34254030546</Id>

</Product>

<Product type=”software”>

<Id>99321254030122</Id>

</Product>

In the case where text is reused multiple times, entities can be used
to define a variable once and then be reused throughout the document
thereafter.
Entity can be used for internal definitions, as follows:

<!ENTITY entity-name “entity-value”>

<!ENTITY companyname “ABC Sports”>

XML Processing and Data Binding with Java APIs 327

Entities also can be used for external definitions, as follows:

<!ENTITY entity-name SYSTEM “URI/URL”>

<!ENTITY companyname SYSTEM “http://www.myxml.com/entities/myentity.xml “>

The XML data is the same whether or not an internal or external entity
source is used.

<Information>&companyname;</Information>

DTD has been the first and only constraint language for validating XML
documents. It has solved many problems that developers were facing. In
the current wave of technological evolutions, DTDs are not able to handle
some requirements with ease.

For example, one disadvantage of the DTD is that it is hard to read and
does not use XML as the definition format. DTDs are not very good at
expressing sophisticated constraints on elements, such as the number of
maximum and minimum occurrences of a particular element. DTDs do not
have the capability to reuse previously defined structures. They also do not
have support for type inheritance, subtyping, and abstract declarations.

A more flexible standard that covers most of the limitations of DTDs is
XML Schema. This standard is becoming more popular as the definition
format, because it is easier to understand and maintain.

XML Schema

XML Schema is currently a W3C recommendation (www.w3.org/XML/
Schema). XML Schema is hierarchical and enables type, structure, and rela-
tionship definitions to exist as well as field validations within elements. XML
Schema is harder to learn and create than DTDs but solves the major limita-
tions of DTDs. The schema definition is written in XML, which seems like a
natural fit in the XML world with great tool support for creating and editing
XML documents. XML Schema is not part of the XML 1.0 specification,
which means that valid XML documents only apply to documents that are
validated by DTDs using the DOCTYPE declaration.

Comparing DTD to XML Schema

The following demonstrates the difference between a DTD and an XML
Schema definition for the same XML file:

<Product>123456</Product>

<Price>49.99</Price>

328 Chapter 8

The DTD for the previous XML code is as follows:

<?xml version=”1.0”?>

<!DOCTYPE Product [

<!ELEMENT Product (Id,Price)>

<!ELEMENT Price (#PCDATA)>

]>

The XML Schema for the same XML code is as follows:

<!-- This Is the xml schema for the XML above -->

<element name=’Product’ type=’string’/>

<element name=’Price’ type=’string’/>

XML Schema Declaration Using Namespace

The schema declarations begin the same way a regular XML document
begins, with a prolog. It starts with <schema> as the root element. It then
includes references to an XML Schema namespace declaration. Namespace
declarations are needed in this case because the document being operated
upon references specific elements from the schema. The schema elements
provide the semantics for constraining elements in the other namespace of
the XML document being processed. The following is a fragment of an
XML Schema declaration:

<?xml version=”1.0” ?>

<schema targetNamespace=”http://www.acme.com/warehouse/catalog”

xmlns=”http://www.w3.org/2001/XMLSchema”

xmlns:Catalog=”http://www.acme.com/warehouse/catalog”>

<element name=’Product’ type=’string’/>

<element name=’Price’ type=’string’/>

The root element <schema> contains a targetNamespace attribute,
which specifies the target that the schema will constrain. The previous
example shows that two different namespaces are defined. One is the
default namespace (unqualified) used by the XML Schema and the second
(qualified) is the target document defined using the Catalog prefix. There
are no general rules for choosing a namespace as the default. There are sug-
gestions to make the default namespace the same as the targetName-
space. There is not an optimal solution to this problem; which default
namespace is optimal truly depends upon whether the schema will be
extended, whether it will import different schemas, and any number of
other things.

XML Processing and Data Binding with Java APIs 329

Using Multiple Schemas

There could be a case where the XML document refers to names of ele-
ments found in multiple namespaces that are defined in multiple schemas.
In that case, the location of the XML schemas must be specified using the
schemaLocation attribute. The following example shows a fragment of an
XML document:

<?xml version=”1.0” ?>

<Catalog:Product xmlns:Catalog=”http://www.acme.com/warehouse/catalog/”

xmlns:Buyer=”http://www.acme.com/warehouse/buyers/”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:schemaLocation=”http://www.acme.com/warehouse/catalog

http://www.acme.com/schema/catalogs.xsd

http://www.acme.com/warehouse/buyers

http://www.acme.com/schema/customers.xsd”>

<!-- uses default namespace -->

<Buyer:Name>

John Doe

</Buyer:Name>

<Catalog:Item>

<Catalog:Id>090902343</Catalog:Id>

<Catalog:Name>Futsji</Catalog:Name>

</Catalog:Item>

</Catalog:Product>

Another way to use multiple schemas is to import one schema into
another, which is achieved in the following code:

<schema targetNamespace=”http://www.acme.com/warehouse/catalog”

xmlns=”http://www.w3.org/2001/XMLSchema”

xmlns:Catalog=”http://www.acme.com/warehouse/catalog”

xmlns:Buyer=”http://www.acme.com/warehouse/buyers”>

<import namespace=”http://www.acme.com/warehouse/buyers”

schemaLocation==”http://www.acme.com/schema/customer.xsd”/>

The import element is used to specify the namespace along with the URI
location of the schema definition.

Now that we have the root element defined, the rest should be straight-
forward. A schema definition is composed of elements and attributes that
describe the content of the XML document.

Elements

XML schema elements provide definitions for the content of an XML data
document. A name and a type represent an element. The type sets a restric-
tion to which the XML document elements must conform. Element types

330 Chapter 8

Table 8.3 XML Schema Data Types

TYPE DESCRIPTION

String Character string

Binary Binary data

Boolean Logic value (true or false)

Decimal Positive or negative integer value

Double 64-bit floating point value

Float 32-bit floating point value

Uri Uniform resource Indicator

TimeInstant Date and time stamp

TimeDuration Duration of time

RecurringInstant A recurrence of time occurring over a timeDuration

come in two different forms: primitive or complex. Primitive or simple
element types are defined by the XML Schema specification. Table 8.3 lists
most of the data types supported by the XML Schema specification.

Simple data types cannot contain other elements or any other attributes.
The schema element, using simple data types, is defined using the follow-
ing syntax:

<element name=”[name of element]” type=”[type of element] [option(s)]>

For example:

<element name=”Price” type=”decimal” />

Name is used to identify the XML element that the schema is constrain-
ing. type refers to the type of data that is expected to be stored between
the elements. There also are other possibilities of various options, such as
the occurrence of an element in the XML document.

Similarly to DTDs, XML Schema provides an equivalent to (+,*,?) attrib-
utes, which are called minOccurs and maxOccurs. Revisiting the syntax,
we get

<element name=”[name of element]”

type=”[type of element]”

XML Processing and Data Binding with Java APIs 331

minOccurs=”[Min occurences]”

maxOccurs=”[Max occurences]”

>

When unspecified, both options default to 1, meaning that one occur-
rence exists per definition. On the other hand, if a finite occurrence number
is not defined, a wildcard (*) character is used. For example, the following
is a definition for the LineItem element, which has to occur at least many
times and has no maxOccurs limit:

<element name=LineItem type=complexType minOccurs=1>

Complex or user-defined elements are used to define elements that con-
sist of other elements and attributes. The syntax used for complex types is
represented in the following order:

<complexType name=”[name of type]”>

<[Element specification] />

<[Element specification] />

...

</complexType>

For example, a Product contains a name, description, and price, and is
considered to be a complex type, as shown in the following fragment:

<Product>

<Name>Product A</Product>

<Description>

This Is a description for Product A

</Description>

<Price>20.99</Price>

</Product>

<complexType name=”ProductType”>

<element name=”Name” type=”string” />

<element name=”Description” type=”string” />

<element name=”Price” type=”decimal” />

</complexType>

In this hierarchical structure of elements, the lowest level of elements is
considered to be a simple type, the rest are all complex types. The nesting
of elements could be very deep; schema does not impose any restrictions
on this. For example, a PurchaseOrder is composed of POID, Buyer, and
Product. The POID (Purchase Order ID) is an integer and is considered to
be a simple type. Buyer and Product are user-defined types that contain
more embedded elements. The purchase order requires one POID, one

332 Chapter 8

buyer, and many products, which can be accomplished by setting minOc-
curs and maxOccurs on the elements. One last restriction is that the
product description appears zero or one times. This is realized by setting
the description element to maxOccurs=”0”. The following is an example
of this scenario:

<schema targetNamespace=”http://www.acme.com/warehouse/po”

xmlns=”http://www.w3.org/2001/XMLSchema”

xmlns:PO=”http://www.acme.com/warehouse/po”

xmlns:Catalog=”http://www.acme.com/warehouse/catalog”

xmlns:Buyer=”http://www.acme.com/warehouse/buyers”

>

<element name=”PurchaseOrder” type=”PO:PurchaseOrderType”>

<complexType name=”PurchaseOrderType”>

<element name=”PurchaseOrderNumber” type=”Integer” />

<element name=”PurchaseDate” type=”string”/>

<element name=”BuyerID” type=”Integer”/>

<element name=”BuyerName” type=”string”/>

<element name=”Order” type=”PO:OrderType”/>

</complexType>

<complexType name=”OrderType”>

<element name=”LineItem” type=”LineItemType” />

</complexType>

<complexType name=”LineItemType”>

<element name=”ProductNumber” type=”decimal” />

<element name=”Quantity” type=”decimal”/>

</complexType>

The types used in the previous example are called explicit types. Explicit
types are defined in such a way that they can be reused in the same or dif-
ferent document. There also are cases where the element contains a type,
which is unique to a specific element definition and will not be reused any-
where else. This is referred to as an implicit type or a nameless type. Implicit
type enables the definition of a user-defined type within an element. The
following example demonstrates the use of an implicit type. The Buyer-
Info type cannot be reused anywhere else in this XML document except in
the definition of PurchaseOrderType, which is shown in the following
fragment of code:

<complexType name=”PurchaseOrderType”>

<element name=”POID” type=”Integer” />

<element name=”BuyerInfo”>

<complexType>

<element name=”BuyerName” type=”string” />

<element name=”BuyerPhone” type=”string” />

XML Processing and Data Binding with Java APIs 333

</complexType>

</element>

</complexType>

In addition, there is a notion of local and global definitions for elements,
which are shown in the following example.

This example demonstrates an instance of a local definition because the
elements of Name, Description, and Price belong to the ProductType
element.

<element name=”Product” type=”ProductType” />

<complexType name=”ProductType”>

<element name=”Name” type=”string” />

<element name=”Description” type=”string” />

<element name=”Price” type=”decimal” />

</complexType>

The following example uses global definitions, where Name, Descrip-
tion, and Price can be reused in other elements throughout the
document:

<element name=”Name” type=”string” />

<element name=”Description” type=”string” />

<element name=”Price” type=”decimal” />

<element name=”Product” type=”ProductType” />

<complexType name=”ProductType”>

<element ref=”Name” />

<element ref=”Description” />

<element ref=”Price” />

</complexType>

The use of global and local definitions is really a matter of taste. Some of
the best practices suggest making the declarations local if the elements are
specific to the element being defined. Otherwise, if the elements can be
reused throughout the document, then make the declarations global.

Figure 8.1 demonstrates how one XML Schema Definition file can be
composed of many different schema files. In this case, XML Schema is used
as the default to provide a set of simple data types that can be used to
define certain elements in an XML document. In addition, the Catalog
schema is used to provide more extensible user-defined types used within
the XML document.

334 Chapter 8

Figure 8.1 XML Schema definition.

Previous sections of this chapter have discussed empty tags. These
empty tags also can be constrained by the XML Schema definitions. This is
accomplished by defining an element name containing a complexType of
type empty, as follows:

<element name=”SomeFlag”>

<complexType content=”empty” />

</element>

Attributes

Attributes are used to provide additional information to an XML data ele-
ment. For example, the element Price can have an attribute identifying
the currency of the price, as shown in the following:

<Price currency=”USD”>20.99</Price>

XML schemas can be used to enforce constraints on element attributes.
The syntax for attribute definitions is as follows:

<attribute name=”[name of attribute]”

type=”[type of attribute]”

[Option(s)]

>

http://www.w3.org/2001/XMLSchema

element
document
annotation
string
sequence
schema
complexType

http://www.acme.com/warehouse/catalog

Product
Item
Buyer

MySchema.xsd

XML Processing and Data Binding with Java APIs 335

TEAMFL
Y

Team-Fly®

If an attribute definition for the Product element were provided, the
following would be the result:

<complexType name=”ProductType”>

<element name=”Name” type=”string” />

<element name=”Description” type=”string” minOccurs=”0” />

<element name=”Price”>

<complexType content=”decimal”>

<attribute name=”currency” type=”string” />

</complexType>

</element>

</complexType>

Simple types cannot have attributes; therefore they must be defined as a
complexType because of the attribute addition. The attribute for Price is
currency, which identifies the kind of currency of the price. The power of
this definition can be extended by adding an option for making the
attribute mandatory, thus providing a default currency or restricting the
attribute to a list of possible currencies.

To make an attribute mandatory, use the minOccurs option by setting it
to “1”. The minOccurs option defaults to “0” because it is not always
required:

<attribute name=”currency” type=”string” minOccurs=”1” />

To add a default value for an attribute, use the “default” option:

<attribute name=”currency” type=”string” default=”USD” />

To add a list of restricted values for an attribute, use an enumeration
option:

<attribute name=”currency” default=”USD” />

<simpleType base=”string”>

<enumeration value=”USD” />

<enumeration value=”CND” />

<enumeration value=”ERO” />

</simpleType>

</attribute>

XML Schema is more powerful and more intuitive than DTDs, but it
does not solve all of the problems. There are still limitations that cannot be
solved with this standard alone. Instead, other technologies must be added
and combined to solve more complex problems revolving around data
restrictions and validations. For example, imagine an element, which has
the following restrictions: The <Price> element of a Product is smaller or
equal to the <TotalPrice> element of a Purchase Order. Additional XML

336 Chapter 8

schema languages must be used to solve this problem. There are many
different standards and tools that solve problems that DTDs and XML
schemas cannot handle, such as the following languages:

■■ TREX

■■ Schematron

■■ SOX

■■ XDR

■■ RELAX

In the following sections, XML validation will be used to constrain XML
data. We will see how to use XML validation with JAXP parsing and XML
data binding using Castor. Parsing of the data is an essential mechanism
used for interpreting the tags and elements that compose an XML data
structure. There have been many vendor implementations that enable the
parsing of XML, but one major factor was lacking: the standardization of
XML processing. This is how Java APIs for XML processing and binding
were born—these standards also are known as JAXP and JAXB. These two
standards provide a standardized and vendor-neutral approach for XML
processing. The following sections describe the two standards by going
through the APIs and examples.

Java API for XML Processing (JAXP)

Now that we have seen an overview of XML, we can begin looking at the
various APIs available for the processing of XML. The process in which the
XML is being interpreted is called parsing and the process where various
templates are applied to XML to produce a different output is called trans-
formation. The API that embraces both of these processes is called Java API
for XML Processing, or JAXP. We give an overview of JAXP in Chapter 7,
“Introduction to the Java Web Services Developer Pack (JWSDP).” JAXP
also is an integral part of JWSDP and it facilitates the role of XML process-
ing in Java Web services.

JAXP
In the last couple of years, XML parsing has been standardized to two
distinct processing models: Simple API for XML (SAX) and Document
Object Model (DOM). These two standards address different parsing needs
by providing APIs that enable developers to work with XML data. Many
vendors have implemented their own specific parsers that address the two

XML Processing and Data Binding with Java APIs 337

most common parsing models of SAX and DOM. This led to API standard-
ization complexities where applications using one specific vendor were
using specific method calls to perform equivalent parsing tasks. In the case
where the parsers needed to be swapped, developers had to rewrite the
parsing code to adapt to the new specific vendor standard.

To address these complexities, in late 1999, Sun Microsystems came up
with a draft of the Java API for XML Parsing (JAXP) 1.0 specification. The
purpose of the specification was to provide a standard high-level API layer
for abstracting lower-level details of XML parsing. The first version of
JAXP (1.0) supported SAX 1.0 and DOM Level 1 parsing specifications. The
feature set focused around parsing, which was a limitation that many have
complained about because it did not provide support for any XML trans-
formation processing. The latest version of JAXP 1.1 supports SAX 2.0, SAX
2 extensions, and DOM level 2. It also includes transformation support
based on the eXtensible Stylesheet Language Transformations (XSLT) spec-
ification. The purpose behind JAXP is to provide an abstraction so that
parsing using SAX or DOM looks the same no matter what type of SAX or
DOM parser is being used by the application. This abstraction is referred to
as pluggable interface.

Uses for JAXP
JAXP provides a pluggability layer, which enables application developers
to change parser implementations without affecting the application logic.
One JAXP-compliant parser can be exchanged for another parser seam-
lessly, without much effort. JAXP provides a set of standard interfaces that
encapsulate the details behind parser interactions. These interfaces act as
abstractions that prevent the developer from working with XML directly.
These abstractions are implementations of the SAX and DOM parsing stan-
dards and the XSLT transformation standard.

Figure 8.2 shows the high-level blocks that compose the JAXP model. In
order for a parser and transformer to be compliant, it must follow the JAXP
specification. The flexibility of having the freedom to choose any parser is
very important. It enables an application developer to choose a parser
provider that best suits the requirements of the service.

In addition to the pluggability layer, JAXP is made simple. The APIs are
very straightforward and the learning curve is much smaller than learning
a new proprietary API. The following section steps through the API for
parsing and transforming XML documents.

338 Chapter 8

Figure 8.2 JAXP pluggable interface.

JAXP API Model
The JAXP API model is quite easy to understand and simple to use. The
parsing classes and interfaces are packaged under the javax.
xml.parsers package and sit on top of existing SAX or DOM APIs.
Transformation classes and interfaces are packaged in javax.xml.
transform and provide utilities for performing XSLT transformations.
Something really important to understand about JAXP is that it ships with
Sun’s Crimson parser, which is the reference implementation of the JAXP
parser. The parser implementation is packaged in parser.jar with pack-
age name com.sun.xml.parser, which is not part of the JAXP specifica-
tions. Developers have the tendency to refer to the com.sun.
xml.parser package as JAXP. The use of this package also misuses the
concept of JAXP by bypassing the high-level interfaces by calling the
parser API directly.

Table 8.4 is a listing of classes and interfaces of the JAXP package
(javax.xml.parsers.* and javax.xml.transform.*).

Compliant
Parser

Compliant
Parser

Compliant
Parser

JAXP Pluggable Interface

Application

XML Processing and Data Binding with Java APIs 339

340 Chapter 8

Ta
b

le
 8

.4
C

la
ss

es
 a

nd
 In

te
rf

ac
es

 o
f J

A
XP

 P
ac

ka
ge

N
A

M
E

U
S

E
C

LA
S

S
 O

R
 I

N
TE

R
FA

C
E

N
A

M
E

SA
X

Pa
rs

er
 F

ac
to

ry
In

st
an

tia
tin

g
th

e
SA

X
Pa

rs
er

j
a
v
a
x
.
x
m
l
.
p
a
r
s
e
r
s
.
S
A
X
P
a
r
s
e
r
F
a
c
t
o
r
y

SA
XP

ar
se

r
JA

XP
 Im

pl
em

en
ta

tio
n

us
ed

fo

r
pa

rs
in

g
XM

L
j
a
v
a
x
.
x
m
l
.
p
a
r
s
e
r
s
.
S
A
X
P
a
r
s
e
r

D
oc

um
en

t B
ui

ld
er

Fa

ct
or

y
In

st
an

tia
tin

g
D

O
M

 B
ui

ld
er

a
v
a
x
.
x
m
l
.
p
a
r
s
e
r
s
.
D
o
c
u
m
e
n
t
B
u
i
l
d
e
r
F
a
c
t
o
r
y

D
oc

um
en

t B
ui

ld
er

C
re

at
in

g
th

e
D

O
M

 e
le

m
en

t t
re

e
j
a
v
a
x
.
x
m
l
.
p
a
r
s
e
r
s
.
D
o
c
u
m
e
n
t
B
u
i
l
d
e
r

Pa
rs

er
 C

on
fig

ur
at

io
n

Ex
ce

pt
io

n
cl

as
s

us
ed

 fo
r

j
a
v
a
x
.
x
m
l
.
p
a
r
s
e
r
s
.
P
a
r
s
e
r
C
o
n
f
i
g
u
r
a
t
i
o
n
E
x
c
e
p
t
i
o
n

ha
nd

lin
g

co
nf

ig
ur

at
io

n
er

ro
rs

Fa
ct

or
y

C
on

fig
ur

at
io

n
Ex

ce
pt

io
n

cl
as

s
us

ed
 fo

r h
an

dl
in

g
j
a
v
a
x
.
x
m
l
.
p
a
r
s
e
r
s
.
F
a
c
t
o
r
y
C
o
n
f
i
g
u
r
a
t
i
o
n
E
r
r
o
r

Er
ro

r
fa

ct
or

y
co

nf
ig

ur
at

io
n

er
ro

rs

Tr
an

sf
or

m
er

 F
ac

to
ry

U
se

d
fo

r
In

st
an

tia
tin

g
th

e
j
a
v
a
x
.
x
m
l
.
t
r
a
n
s
f
o
r
m
.
T
r
a
n
s
f
o
r
m
e
r
F
a
c
t
o
r
y

Tr
an

sf
or

m
er

 c
la

ss

Tr
an

sf
or

m
er

Tr
an

sf
or

m
er

 c
la

ss
 u

se
d

fo
r

XS
L

j
a
v
a
x
.
x
m
l
.
t
r
a
n
s
f
o
r
m
.
T
r
a
n
s
f
o
r
m
e
r

tr
an

sf
or

m
at

io
ns

Tr
an

sf
or

m
er

 F
ac

to
ry

Er

ro
r

cl
as

s
us

ed
 fo

r
ca

tc
hi

ng

j
a
v
a
x
.
x
m
l
.
t
r
a
n
s
f
o
r
m
.
T
r
a
n
s
f
o
r
m
e
r
F
a
c
t
o
r
y
C
o
n
f
i
g
u
r
a
t
i
o
n
E
r
r
o
r

C
on

fig
ur

at
io

n
Er

ro
r

Fa
ct

or
y

co
nf

ig
ur

at
io

n
er

ro
rs

XML Processing and Data Binding with Java APIs 341

Ta
b

le
 8

.4
(C

on
ti

nu
ed

)

N
A

M
E

U
S

E
C

LA
S

S
 O

R
 I

N
TE

R
FA

C
E

N
A

M
E

St
re

am
 S

ou
rc

e
In

pu
t s

tr
ea

m
 u

se
d

fo
r

XS
L

j
a
v
a
x
.
x
m
l
.
t
r
a
n
s
f
o
r
m
.
s
t
r
e
a
m
.
S
t
r
e
a
m
S
o
u
r
c
e

tr
an

sf
or

m
at

io
ns

St
re

am
 R

es
ul

t
Re

su
lt

st
re

am
 u

se
d

fo
r

XS
L

j
a
v
a
x
.
x
m
l
.
t
r
a
n
s
f
o
r
m
.
s
t
r
e
a
m
.
S
t
r
e
a
m
R
e
s
u
l
t

tr
an

sf
or

m
at

io
ns

D
O

M
 S

ou
rc

e
D

O
M

 tr
ee

 s
ou

rc
e

j
a
v
a
x
.
x
m
l
.
t
r
a
n
s
f
o
r
m
.
d
o
m
.
D
O
M
S
o
u
r
c
e

D
O

M
 R

es
ul

t
D

O
M

 tr
ee

 r
es

ul
t

j
a
v
a
x
.
x
m
l
.
t
r
a
n
s
f
o
r
m
.
d
o
m
.
D
O
M
R
e
s
u
l
t

D
O

M
 L

oc
at

or
D

O
M

 lo
ca

to
r

j
a
v
a
x
.
x
m
l
.
t
r
a
n
s
f
o
r
m
.
d
o
m
.
D
O
M
L
o
c
a
t
o
r

SA
X

So
ur

ce
SA

X
So

ur
ce

j
a
v
a
x
.
x
m
l
.
t
r
a
n
s
f
o
r
m
.
s
a
x
.
S
A
X
S
o
u
r
c
e

SA
X

Re
su

lt
SA

X
Re

su
lt

j
a
v
a
x
.
x
m
l
.
t
r
a
n
s
f
o
r
m
.
s
a
x
.
S
A
X
R
e
s
u
l
t

The factory class is the fundamental pattern of JAXP. It provides the
transparent instantiation of the parser implementation. In reality, this is the
mechanism that promotes the pluggability approach by enabling the
developers to define the factory implementation as a parameter passed to
the Java virtual machine. The definition of the factory class can be done in
many ways (for example, using SAXParserFactory):

System Property java -Djavax.xml.parsers.SAXParserFactory

Property file $JAVA_HOME/jre/lib/jaxp.properties

JAR Service Provider META-INF/services/javax.xml.parsers.SAX
ParserFactory

Default Use the platform default as the last fallback

The same configuration settings apply to DocumentBuilderFactory
and TransformerFactory classes.

JAXP Implementations
Many implementations of JAXP 1.1 currently exist, including Sun Crim-
son, Apache Xerces, XML parser from IBM, and Oracle. For this chapter
and throughout the book, we will use the Apache Xerces 2 XML parser and
Xalan 2 Transformer, which are JAXP 1.1-compliant implementations.

A new change found in the new Java Development Toolkit (JDK) 1.4 is
the addition of JAXP APIs and reference implementations. The reference
implementations include Crimson for XML parsing and Xalan for XML
transformations. The Endorsed Standards Override Mechanism must be
used in order to override the JAXP implementation classes found in the
JDK 1.4 with other JAXP compliant ones. For more information on how the
mechanism works, refer to http://java.sun.com/j2se/1.4/docs/guide/
standards/.

The following sections discuss the API and the different standards that it
supports.

Processing XML with SAX
The Simple Access for XML (SAX) API is based on an event-driven pro-
cessing model where the data elements are interpreted on a sequential
basis and callbacks are called based on selected constructs. It is similar to
the AWT 1.1 Event Delegation Model, where UI components generate
events based on user input and where event listeners perform actions
when these events are triggered. SAX’s biggest advantage is that it does

342 Chapter 8

not load any XML documents into memory; therefore it is considered to be
very fast and lightweight. SAX supports validation but does not enforce the
use of it. By having validation, a document is checked for conformance
against a schema document (DTD or XML Schema). It uses a sequential read-
only approach and does not support random access to the XML elements.

There are several ways to process XML data using SAX APIs. One way of
doing it is to use a JAXP (javax.xml.parsers.*) API, which abstracts
many low-level SAX specific calls or uses the SAX (org.xml.sax.*) API
directly. Using the SAX API directly is more difficult because it requires
more steps to perform equivalent functionality that is encapsulated in the
JAXP API. In this section, we will focus around the JAXP specifics and will
not cover vendor-specific SAX APIs in great detail because this topic spans
a very large area.

SAX as a processing model is very simple (see Figure 8.3). The basics
consist of the following three steps:

1. Implement a class that extends the DefaultHandler and holds
callback methods for every type of construct found in XML that con-
tains implementation based on your needs.

2. Instantiate a new SAX Parser class. The Parser reads the XML source
file and triggers a callback implemented in the DefaultHandler
class.

3. Read the XML source sequentially. With the sequential reading, it is
not possible to randomly access elements in the structure. The rest
depends upon your implementation residing in the Handler class.

Figure 8.3 JAXP using the SAX processing model.

event

Default
Handler

XML
Document

<xml>
<>
</>

</xml>

input JAXP
Compliant

Parser

event

event

event

e

e

e

e

XML Processing and Data Binding with Java APIs 343

The following sections describe JAXP-specific SAX processing. These
steps consist of the following:

1. Getting Factory and Parser classes to perform XML parsing

2. Setting options such as namespaces, validation, and features

3. Creating a DefaultHandler implementation class

Getting a Factory and Parser

The JAXP SAXParser class is responsible for parsing the XML data, and
the implementation of the org.xml.sax.DefaultHandler handles all
of the callbacks for specific tags. In order for an application to obtain an
instance of the parser, it must get an instance of the SAXParserFactory.
It then gets a SAXParser upon which it can call parse methods.

How to Get a SAX Parser

The following is a step-by-step demonstration on how to create a SAX
parser.

1. Instantiate the implemented Handler class. JAXP1.1 requires that
the handler extend from DefaultHandler class as opposed to
HandlerBase, which was an implementation used in JAXP 1.0:
DefaultHandler handler = new MyImplOfHandler();

2. Obtain a factory class using the SAXParserFactory’s static
newInstance() method.
SAXParserFactory factory =

SAXParserFactory.newInstance();

3. Obtain the SAX parser class from the factory by calling the
newSAXParser() static method:
SAXParser parser = factory.newSAXParser() ;

4. Parse the XML data by calling the parse method on SAXParser and
passing in the XML input as the first parameter and the Default-
Handler implementation as the second. See SAXParser javadoc
for different options available in the parse method.
parser.parse(“PurchaseOrder.xml”, handler);

The factory class used in the second step is provided as a system prop-
erty, jar service, or platform default. This type of implementation is
referred to as the JAXP pluggability layer, because it is very generic the
way the factory class is retrieved. Parser vendors can be swapped without
much effort as long as they comply to the JAXP 1.1 specification. If the

344 Chapter 8

property is not found at runtime, a FactoryConfigurationError is
thrown with a message describing the origin and cause of the problem. The
parser factory can additionally be configured to instantiate validating
and/or namespace-aware parsers. A ParserConfigurationExcep-
tion is thrown when the parser is not returned properly.

Configuration of the Factory

The following code shows how to define a factory class by using a
key/value pair set as a system property. This line can be placed in a con-
figuration file (java.util.Properties) or simply passed as an argu-
ment to the Java call. The most common implementations known to
developers are the Sun Crimson reference implementation and Apache
Xerces. The following is an example of setting Xerces 2 and Crimson JAXP
SAXParserFactory.

APACHE XERCES 2

javax.xml.parsers.SAXParserFactory=org.apache.xerces.jaxp.SAXParser

FactoryImpl

SUN REFERENCE IMPLEMENTATION (CRIMSON)

javax.xml.parsers.SAXParserFactory=com.sun.xml.parser.SAXParserFactory

Impl

Setting Namespaces

A parser that is namespace aware is a parser that can handle naming colli-
sions. This is important when multiple documents are used with the same
application.

To configure the parser to be namespace aware, perform the following
steps:

/** Set to namespace aware parsers */

factory.setNameSpaceAware(true);

To verify if the parser supports namespaces, perform the following
steps:

If (parser.isNamespaceAware()) {

System.out.println(“Parser supports namespaces”);

} else {

System.out.println(“Parser does not support namespaces”);

}

XML Processing and Data Binding with Java APIs 345

TEAMFL
Y

Team-Fly®

Setting Validation

Validation is based on providing a validation document that imposes
certain constraints on the XML data. Many standards provide validating
capabilities based on DTDs and W3C XML schemas.

To configure the parser to be a validation-aware parser, perform the
following steps:

/** Set to validating parsers */

factory.setValidating(true);

The factory class will try to look for a validation-capable parser. If the
parser is not available, a factory configuration exception is thrown.

To verify whether a parser supports validation, the following method is
available from the parser class:

If (parser.isValidating()) {

System.out.println(“Parser supports validation.”);

} else {

System.out.println(“Parser does not support validation.”);

}

Setting Features

SAX 2.0 enables a more flexible configuration option to exist through a
method called setFeature(). This method is called on the factory class
just like setNamespaceAware() and setValidating(). This option
sets various features implemented by the vendors to be configured in a
parser. For example, setting a schema validation on/off would have the
following syntax:

Factory.setFeature(“http://www.acme.com/xml/schema”, true);

The getFeature() method enables the application to verify whether a
particular feature is set by returning a boolean.

Creating a Default Handler

JAXP 1.1 supports SAX 2.0, which promotes the extension from Default
Handler rather than from HandlerBase like in SAX 1.0. The parser’s
parse method provides backward compatibility by exposing methods that
take both DefaultHandler and HandlerBase. The following sample
shows a sample handler that extends from the DefaultHandler. Because

346 Chapter 8

the SAX parser consists of a sequential reading of XML documentation,
callback methods from the handler class will be invoked for every occur-
rence of a document, element, and character. The developer has full control
over the action that can take place while the XML document is read. The
following code lists the methods that need to be implemented when
extending from DefaultHandler:

public class MySAXExampleHandler extends DefaultHandler {

public MySAXExampleHandler() {

}

public void startDocument() throws SAXException {

}

public void endDocument() throws SAXException {

}

public void characters(char buf [],

int offset,

int len)

throws SAXException {

}

public void startElement(String namespaceURI,

String localName,

String rawName,

Attributes attrs)

throws SAXException {

}

public void endElement(String namespaceURI,

String localName,

String rawName)

throws SAXException {

}

In this code, the following callback methods are called:

startDocument(). This method is called only once at the start of
the XML document.

endDocument(). This method is called when the parser reaches the
end of the XML document.

characters(). This method is called for character data residing
inside an element.

XML Processing and Data Binding with Java APIs 347

startElement(). This method is called every time a new opening
tag of an element is encountered (for example, <element>).

endElement(). This method is called when an element ends (for
example, </element>).

In the SAX sample code section, the default handler will be implemented
to read and output the XML to the terminal.

Using SAX Parser

Data can be parsed with SAX in many different ways. The JAXP-compliant
parser is obtained from the factory class and is called SAXParser. This
parser is an implementation that is provided by many vendors. Because it
conforms to the specification, it can be easily exchanged. Obtaining the
parser object is pretty straightforward. Developers must instantiate the fac-
tory class, and from the factory class they must instantiate a new parser
class:

SAXParserFactory saxFactory = SAXParserFactory.newInstance();

javax.xml.parsers.SAXParser saxParser =

saxFactory.newSAXParser();

While getting an instance of the factory and parser, there are a couple of
things that can go wrong. The factory configuration can be wrong, and an
exception will be thrown to indicate this problem. The exception is called
FactoryConfigurationException, and it must be caught during the
instantiation of the factory object. The second area where the application
can fail is while the parser object is instantiated. In this case, the Parser-
ConfigurationException must be caught while the factory instanti-
ates a new parser. The following is a listing of more complete code:

try {

SAXParserFactory saxFactory = SAXParserFactory.newInstance();

javax.xml.parsers.SAXParser saxParser =

saxFactory.newSAXParser();

} catch (FactoryConfigurationError fce) {

// handle exception here

} catch (ParserConfigurationException pce) {

// handle exception here

}

348 Chapter 8

The next step, once the parser is obtained, is to call the parse() method
by passing the XML data to be parsed and a Handler class to handle the
data that is being passed. The following are possibilities in which the
parser can be used:

/** Passing file as a parameter */

saxParser.parse(new File(someFileString), mySAXExampleHanlder);

/** Passing a URI as a String parameter */

saxParser.parse(“http://www.acme.com/xml/PurchaseOrder.xml”,

mySAXExampleHandler);

/** Parsing Input stream as a parameter */

saxParser.parse(someInputStream, mySAXExampleHanlder);

There are options with HandlerBase in the parse() method, but
these are SAX 1.0 implementations. The current JAXP version implements
those for backward compatibility, but you should use DefaultHandler
when JAXP 1.1 is used.

Data also can be parsed with non-JAXP parsers such as the underlying
org.xml.sax.Parser, but these approaches aren’t vendor-neutral and
will be omitted in this book. SAX 2.0 introduced the XMLReader, which is
essentially a parser class that is wrapped by the SAXParser implementa-
tion. XMLReader is obtained by calling getXMLReader() from the XML-
Parser. Because low-level SAX parsing is not in the scope of this book, it
will not be covered in more detail.

Reading and Writing XML

Reading and writing XML documents with SAX requires a parsing handler
class (extended from DefaultHandler) to be implemented. This handler
class provides logic coded in the callback methods defined by the pro-
grammer. The parser then processes the input stream and invokes the han-
dler’s callback methods to perform the actual work (see Figure 8.4). The
parse method accepts various input parameters, including java.io.
InputStream, org.xml.sax.InputSource, java.io.File, and
java.lang.String. The second parameter is the implementation of the
DefaultHandler class.

XML Processing and Data Binding with Java APIs 349

Figure 8.4 Sequence diagram showing JAXP parsing using SAX.

Sample SAX Source Code

The following is a sample Handler class and an implementation class,
which uses the SAX approach to parse an XML file and to output the whole
file into the console (system out).

Before running the code, compile the java files using the ANT script pro-
vided with the examples. To run, execute the following command:

SAXParserFactory SAXParser

MyApplication

MyDefaultHandlerImpl

newInstance

new

parse

newSAXParser

startDocument

startElement

characters

endElement

endDocument

350 Chapter 8

java -classpath d:\xerces-1_4_4\xerces.jar;. -

Djavax.xml.parsers.SAXParserFactory=org.apache.xerces.jaxp.SAXParserFact

oryImpl jws.ch08.sax.MySAXExample

Listing 8.1 is a code listing for MySAXExampleHandler.java.

package jws.ch08.sax;

import org.xml.sax.*;

import org.xml.sax.helpers.*;

import org.xml.sax.ext.*;

public class MySAXExampleHandler extends DefaultHandler {

public MySAXExampleHandler() {

}

public void startDocument() throws SAXException {

System.out.println(“START DOCUMENT”);

System.out.println(“<?xml version=’1.0’?>”);

}

public void endDocument () throws SAXException {

System.out.println(“END DOCUMENT”);

}

public void characters (char buf [],

int offset,

int len)

throws SAXException {

String s = new String(buf, offset, len);

System.out.println (s);

}

public void startElement(String namespaceURI,

String localName,

String rawName,

Attributes attrs)

throws SAXException {

System.out.print(“<”+localName);

int length = attrs.getLength();

for (int i=0; i < length; i++) {

System.out.print(“ “+attrs.getLocalName(i)+

“=”+attrs.getValue(i));

}

System.out.println(“>”);

}

Listing 8.1 MySAXExampleHandler. (continues)

XML Processing and Data Binding with Java APIs 351

public void endElement(String namespaceURI,

String localName,

String rawName)

throws SAXException {

System.out.println (“</”+localName+”>”);

}

}

Listing 8.1 MySAXExampleHandler. (continued)

Listing 8.2 shows a code listing for MySAXExample.java.

package jws.ch08.sax;

import javax.xml.parsers.*;

class MySAXExample {

public MySAXExample () {

}

public static void main (String [] args) {

try {

SAXParserFactory factory =

SAXParserFactory.newInstance();

SAXParser parser = factory.newSAXParser();

parser.parse(“PurchaseOrder.xml”,

new MySAXExampleHandler()) ;

} catch (FactoryConfigurationError fce) {

System.out.println(“FactoryConfigurationError occurred : “+fce);

} catch (ParserConfigurationException pce) {

System.out.println(“ParserConfigurationException occurred :

“+pce);

} catch (Exception e) {

System.out.println(“Exception occurred : “+e);

}

}

}

Listing 8.2 MySAXExample.java.

Listing 8.3 is a partial result output of the classes implemented previ-
ously. The SAX implementation class reads the XML document and out-
puts the same XML in the console. When it starts the parsing and reaches

352 Chapter 8

the beginning of the XML document, it prints out START DOCUMENT. At
the end of the document, it prints END DOCUMENT.

START DOCUMENT

<?xml version=’1.0’?>

<PurchaseOrder>

<Header>

<PurchaseOrderNumber>

2123536673005

</PurchaseOrderNumber>

<Date>

02/22/2002

</Date>

<BuyerNumber>

0002232

</BuyerNumber>

<BuyerName>

John Doe

</BuyerName>

...

<LineItem type=SW>

<ProductNumber>

33333

</ProductNumber>

<Quantity>

145

</Quantity>

</LineItem>

</Order>

</PurchaseOrder>

END DOCUMENT

Listing 8.3 Sample SAX parsing output.

Processing XML with DOM
The Document Object Model (DOM) API was defined and is maintained by
the W3C working group. The W3C definition (www.w3.org/TR/WD-
DOM/) states that “the Document Object Model is a platform- and
language-neutral interface that will allow programs and scripts to dynami-
cally access and update the content, structure and style of documents.”

XML Processing and Data Binding with Java APIs 353

Figure 8.5 JAXP using DOM processing model.

The DOM processing model consists of reading the entire XML docu-
ment into memory and building a tree representation of the structured
data (see Figure 8.5). This process can require a substantial amount of
memory when the XML document is large. By having the data in memory,
DOM introduces the capability of manipulating the XML data by inserting,
editing, or deleting tree elements. Unlike the SAX, it supports random
access to any node in the tree. DOM supports validation by using DTD or
a W3C XML Schema, but it does not enforce the use of validation.

The DOM processing model is more complete than the SAX alternative.
It is considered more intensive on the resources, because it loads the entire
XML document into memory. The basic steps for using DOM processing
are as follows:

1. Instantiate a new Builder class. The Builder class is responsible for
reading the XML data and transforming it into a tree representation.

2. Create the Document object once the data is transformed.

3. Use the Document object to access nodes representing elements
from the XML document.

The XML source is read entirely into memory and is represented by the
Document object. This enables the application to access any node ran-
domly, which is something that SAX cannot do. One disadvantage of DOM
is that it can be inefficient when large data is read into memory.

The following sections describe JAXP-specific SAX processing. These
steps consist of the following:

■■ Getting a Factory and Builder class

■■ Setting namespaces, validation, and features

XML
Document

<xml>
<>
</>

</xml>

input JAXP
Compliant

Parser

Build
DOM

Document

354 Chapter 8

■■ Obtaining a Document object representing the XML element tree

■■ Traversing through the DOM node tree

Getting a Factory and Builder Class

DOM provides a document builder class for parsing XML data. The DOM
model is slightly different from SAX, however, because in most implemen-
tations it does rely on the SAX model for reading the XML into memory.
This is not something that is mandated by the JAXP 1.1 specification, but it
makes sense to leverage to existing capabilities of the API to build the doc-
ument object model. The process of processing XML is very similar to that
of SAX with a few class name changes. The following is an example show-
ing the steps for getting a Document (org.w3.dom.Document) object,
which consists of an in-memory tree structure composed of nodes. The
nodes are representations of XML elements and attributes read from the
XML input document.

1. Obtain a new instance of the DOM Factory class by calling the
DocumentBuilderFactory class’s newInstance() static
method:
DocumentBuilderFactory factory=

DocumentBuilderFactory.newInstance();

2. Instantiate a new document builder class, once the factory is
obtained, by calling the newDocumentBuilder() static method:
DocumentBuilder builder =

DocumentBuilder.newDocumentBuilder();

The document builder is used for loading the XML data into mem-
ory and for creating the Document object representation of the XML
data.

3. Parse, using the Builder class, which contains a parse method that
accepts an input stream representing the XML data:

Document document =

builder.parse(http://www.acme.com/warehouse/PurchaseOrder.xml);

The result of the parse method returns a Document object that is used
for accessing nodes of the tree representing the XML data.

The configuration of the factory class is exactly the same as the SAX con-
figuration, except for the class names. The following is an example of the
java system property option for a DocumentBuilderFactory class:

-Djavax.xml.parsers.DocumenBuilderFactory=

org.apache.xerces.jaxp.DocumentBuilderFactoryImpl

XML Processing and Data Binding with Java APIs 355

TEAMFL
Y

Team-Fly®

Figure 8.6 Sequence diagram showing JAXP parsing using DOM.

Figure 8.6 shows the different steps that are required in order to parse an
XML document into a DOM structure. It uses the steps explained previ-
ously to produce a Document object that represents the parsed XML data.

Using Namespaces

A parser that is namespace-aware is a parser that is able to handle naming
collisions. This is important when multiple documents are used with the
same application.

To configure the parser to be namespace-aware, the factory class must be
configured. To configure the factory class, perform the following steps:

/** Set to namespace aware parsers */

factory.setNameSpaceAware(true);

Once configured, the factory class will return a parser that is namespace-
aware. The application can always perform checks by calling isName-
spaceAware() on the DocumentBuilder class to verify whether
namespaces are supported by the parser:

DocumentBuilderFactory DocumentBuilder

MyApplication

Document

newInstance

parse

newDocumentBuilder

return

create

356 Chapter 8

If (builder.isNamespaceAware()) {

// Builder provides namespace support

} else {

// Builder does not support namespace support

}

Using Validation

Validation is based on providing a validation document that imposes cer-
tain constraints on the XML data. Many standards provide validating capa-
bilities, including DTDs and W3C XML Schemas.

To configure the parser to have validation turned on, the factory class
must be configured to return validation-aware parsers only. To configure
the factory class to do so, perform the following steps:

/** Set to validating parsers */

factory.setValidating(true);

Once configured, the factory class will return a parser that is validation
capable. The application can always perform checks by calling isVali-
dating() on the DocumentBuilder class to verify whether validation is
supported by the parser:

If (builder.isValidating()) {

// Builder is validation capable

} else {

// Builder is not validation capable

}

If the factory class is configured to be namespace-aware or validating, it
will try to locate a parser that supports these settings. If it cannot return a
correct parser that supports the configurations, it will throw a Parser-
ConfigurationException.

Using DocumentBuilder

The document builder is analogous to the SAXParser class and is used for
parsing XML data. DocumentBuilder is used for building the Document
object (org.w3c.xml.Document). This Document object is the object
graph, which consists of nodes representing the elements and attributes
contained in the parsed XML input. In order to obtain the Document
object, the builder must parse the input XML by using one of the methods
shown in Table 8.5.

XML Processing and Data Binding with Java APIs 357

Table 8.5 Methods for Parsing Input XML

METHOD PURPOSE

builder.parse (java.io.File file) Passing file Input as a parameter

builder.parse(java.lang.String uri) Passing a string URI as a parameter

builder.parse(java.io.InputStream input) Passing InputStream as a
parameter

builder.parse(org.xml.sax.InputSource input) Passing InputSource as a
parameter

The following is a snippet of code for obtaining a Document object:

try {

DocumentBuilderFactory factory =

DocumentBuilderFactory.newInstance();

DocumentBuilder builder = factory.newDocumentBuilder();

if (builder.isNamespaceAware()) {

System.out.println(“Builder is namespace aware”);

} else {

System.out.println(“Builder is not namespace aware”);

}

if (builder.isValidating()) {

System.out.println(“Builder is validation capable”);

} else {

System.out.println(“Builder is not validation capable”);

}

Document document =

builder.parse(new File(“PurchaseOrder.xml”));

} catch (ParserConfigurationException pce) {

System.out.println(“ParserConfigurationException occured:”+pce);

} catch (FactoryConfigurationError fce) {

System.out.println(“FactoryConfigurationError occured:”+fce);

} catch (FileNotFoundException fnfe) {

System.out.println(“FileNotFoundException occured:”+fnfe);

}

358 Chapter 8

While getting an instance of the factory and builder objects, there is the
possibility of the same exceptions being thrown as in SAX. The factory con-
figuration can be wrong in this case—an exception is thrown to indicate
this problem. The exception is called FactoryConfigurationExcep-
tion, and it is required that it be caught during the instantiation of the fac-
tory object. The second area where the application can fail is while
instantiating the builder object. In this case, the ParserConfigura-
tionException is required to be caught while the factory instantiates a
new document builder. The following sections outline some of the impor-
tant concepts when dealing with DOM trees. These sections cover some
aspects that will help you understand the naming of each element or node
within a tree.

Traversal of a DOM Tree

A DOM tree is composed of nodes. A node is the most essential object of
the DOM tree; it is the representation of the XML data structure. When a
parser processes the XML input, it produces a Document object. This
Document object extends the node interface. The following are names of
properties provided for each type of node in a Document tree. These prop-
erties help in the traversal of the tree.

NodeName The name of the XML element that this node represents.

NodeValue Text value that resides between the start and close
element.

NodeType A code representing the type of object (for example, ele-
ment, attribute, text, and so on . . .).

ParentNode The parent of the current node (if any).

ChildNode List of children of the current node.

FirstChild Current node’s first child.

LastChild Current node’s last child.

PreviousSibling The node immediately preceding the current
node.

NextSibling The node immediately following the current node.

Attributes List of attributes of the current node (if any).

XML Processing and Data Binding with Java APIs 359

Sample Source Code

The following (MyDOMExample) is an implementation class that uses the
DOM builder for reading the XML input into memory and then prints out
the contents to the console.

Before running the code, compile the Java files using the ANT script pro-
vided with the examples. To run the code, execute the following command:

java -classpath D:\jaxp-1.1\crimson.jar;D:\jaxp-1.1\jaxp.jar;. -

Djavax.xml.parsers.DocumentBuilderFactory=org.apache.crimson.jaxp.Docume

ntBuilderFactoryImpl jws.ch08.dom.MyDOMExample

Listing 8.4 is a code listing for MyDOMExample.java.

package jws.ch08.dom;

import javax.xml.parsers.*;

import java.io.*;

import org.w3c.dom.*;

class MyDOMExample {

private int indent = 0;

private final String basicIndent = “ “;

public MyDOMExample () {}

private void printlnCommon(Node n) {

String val = n.getNamespaceURI();

if (val != null) {

System.out.print(“ uri=\”” + val + “\””);

}

val = n.getPrefix();

if (val != null) {

System.out.print(“ pre=\”” + val + “\””);

}

val = n.getLocalName();

if (val != null) {

System.out.print(“ local=\”” + val + “\””);

}

val = n.getNodeValue();

if (val != null) {

if (!val.trim().equals(“”)) {

System.out.print(“ nodeValue=\”” +

n.getNodeValue() + “\””);

Listing 8.4 MyDOMExample.java.

360 Chapter 8

}

}

System.out.println();

}

private void outputIndentation() {

for (int i = 0; i < indent; i++) {

System.out.print(basicIndent);

}

}

private void printDocTree(Node n) {

outputIndentation();

int type = n.getNodeType();

// verify what type of node we are dealing with

switch (type) {

case Node.DOCUMENT_TYPE_NODE:

printlnCommon(n);

NamedNodeMap nodeMap =

((DocumentType)n).getEntities();

indent += 2;

for (int i = 0; i < nodeMap.getLength(); i++) {

Entity entity = (Entity)nodeMap.item(i);

printDocTree(entity);

}

indent -= 2;

break;

case Node.ELEMENT_NODE:

printlnCommon(n);

// verify for more nodes

NamedNodeMap atts = n.getAttributes();

indent += 2;

for (int i = 0; i < atts.getLength(); i++) {

Node att = atts.item(i);

printDocTree(att);

}

indent -= 2;

break;

default:

printlnCommon(n);

break;

}

// Print children if any

indent++;

for (Node child = n.getFirstChild(); child != null;

child = child.getNextSibling()) {

printDocTree(child);

Listing 8.4 MyDOMExample.java. (continues)

XML Processing and Data Binding with Java APIs 361

}

indent--;

}

public static void main (String [] args) {

try {

DocumentBuilderFactory factory =

DocumentBuilderFactory.newInstance();

DocumentBuilder builder = factory.newDocumentBuilder();

if (builder.isNamespaceAware()) {

System.out.println(“Builder is namespace aware”);

} else {

System.out.println(“Builder is not namespace aware”);

}

if (builder.isValidating()) {

System.out.println(“Builder is validation capable”);

} else {

System.out.println(“Builder is not validation capable”);

}

Document document =

builder.parse(new File(“PurchaseOrder.xml”));

new MyDOMExample().printDocTree(document);

} catch (ParserConfigurationException pce) {

System.out.println(“ParserConfigurationException occurred :

“+pce);

} catch (FactoryConfigurationError fce) {

System.out.println(“FactoryConfigurationError occurred :

“+fce);

} catch (FileNotFoundException fnfe) {

System.out.println(“FileNotFoundException occurred : “+fnfe);

} catch (Exception e) {

System.out.println(“Exception occurred : “+e);

}

}

}

Listing 8.4 MyDOMExample.java. (continued)

Listing 8.5 is a sample output for the DOM example. It prints the XML
data file to the console and prints the type of node that is being processed.

local=”PurchaseOrder”

local=”Header”

local=”PurchaseOrderNumber”

Listing 8.5 Sample DOM output.

362 Chapter 8

nodeValue=”2123536673005”

local=”Date”

nodeValue=”02/22/2002”

local=”BuyerNumber”

nodeValue=”0002232”

local=”BuyerName”

nodeValue=”John Doe”

local=”BuyerAddress”

local=”Street”

nodeValue=”233 St-John Blvd”

local=”City”

nodeValue=”Boston”

local=”State”

nodeValue=”MA”

local=”Zip”

nodeValue=”03054”

local=”Country”

nodeValue=”USA”

local=”ShippingAddress”

local=”Street”

nodeValue=”233 St-John Blvd”

local=”City”

nodeValue=”Boston”

local=”State”

nodeValue=”MA”

local=”Zip”

nodeValue=”03054”

local=”Country”

nodeValue=”USA”

local=”PaymentInfo”

local=”Type”

nodeValue=”Visa”

local=”Number”

nodeValue=”0323235664664564”

local=”Expires”

nodeValue=”02/2004”

local=”Owner”

nodeValue=”John Doe”

local=”Order”

local=”LineItem”

local=”type” nodeValue=”SW”

local=”ProductNumber”

nodeValue=”221112”

local=”Quantity”

nodeValue=”250”

local=”LineItem”

local=”type” nodeValue=”HW”

local=”ProductNumber”

nodeValue=”343432”

Listing 8.5 Sample DOM output. (continues)

XML Processing and Data Binding with Java APIs 363

local=”Quantity”

nodeValue=”12”

local=”LineItem”

local=”type” nodeValue=”HW”

local=”ProductNumber”

nodeValue=”210020”

local=”Quantity”

nodeValue=”145”

local=”LineItem”

local=”type” nodeValue=”SW”

local=”ProductNumber”

nodeValue=”33333”

local=”Quantity”

nodeValue=”145”

Listing 8.5 Sample DOM output. (continued)

The following section is the new addition to JAXP 1.1. It deals with XML
transformations and is referred to as Extensible Stylesheet Language
Transformations (XSLT). Before we dive into this fascinating technology,
we will look at an overview of the Extensible Stylesheet Language (XSL),
which is the building block used for XSLT.

XSL Stylesheets: An Overview
A stylesheet is used to apply a set of rules to transform input in order to pro-
duce a desired output format. By nature, XML does not focus on formatting,
instead it provides data to the business logic. Stylesheets such as cascading
style sheets (CSSs) or Extensible Stylesheet Language (XSL) are used for
defining the way input will be formatted to take on a new output form.

Cascading style sheets are mostly used for HTML formatting, where
they define the fonts, margins, colors, and so on. CSSs do have a very lim-
ited capability when it comes to transformations. XSL is a standard that has
a more sophisticated model and provides richer capabilities for XML trans-
forming.

The XSL constructs comply with the XML specification and therefore must
be well formed and valid before they are used. This means that the syntax of
XSL is restricted to ensure that the processing constructs are correct.

364 Chapter 8

Conceptually, XSL deals with tree structures of data, where the process-
ing instructions indicate what elements should be processed. Templates
are used to match the root and leaf elements of the XML document. A large
amount of data can be processed at a time, thus making searching and pro-
cessing really efficient. For example, we can have thousands of
<LineItem> elements under the <Order> element. If you select the
<Order> element and apply a template to it, then the <LineItem> ele-
ments also can be affected by the selection. This makes XSL processing
really efficient, because a large amount of data is processed at one time.
The traversal of the tree is achieved by using the XPath standard. This stan-
dard provides the foundation for XSLT processing, where expression pat-
terns are defined using XPath.

XPath is a standard that provides the mechanism for accessing the ele-
ments of an XML document. XPath expressions are important in XSLT
because they enable stylesheet instructions to flexibly identify the parts of
the input document to be transformed.

The specification itself is complex. While including extensive coverage
would be impossible in this section, enough material is presented for you
to understand the fundamentals of XSLT processing. These fundamentals
enable you to traverse an XML document and select the set of elements that
need to be included or excluded from the processing.

When anyone is operating on an XML document, the most common
approach is to use relative paths to the element or attribute that is being
worked on. When selecting a node to use as a starting point in our traver-
sal, we identify what is called an axis. An axis is the path of the tree that is
being used for the transformation.

Figure 8.7 shows a path traversed during the transformation. It starts at
the root node and traverses only the order containing LineItems.

In the following paragraphs, some examples of XPath expressions are
given. Consider the following XML:

<PurchaseOder>

<Header>

<BuyderName>Robert</BuyerName>

</Header>

<Order>

<LineItem type=SW>Item A</LineItem>

<LineItem type=HW>Item B</LineItem>

<LineItem type=SW>Item c</LineItem>

</Order>

</PurchaseOrder>

XML Processing and Data Binding with Java APIs 365

TEAMFL
Y

Team-Fly®

Figure 8.7 Sample axis path used for transformation.

The following XPath expressions are used to access elements and attrib-
utes of the previous XML expression:

<!-- Order is an element that can be accessed from the current element

(PurchaseOrder) -->

<xsl:value-of select=”Order” />

<!-- Match the LineItem element that is nested in the Order element -->

<xsl:value-of select=”Order/LineItem” />

<!-- Match LineItem using the absolute path starting from the root

element -->

<xsl:value-of select=”/PurchaseOrder/Order/LineItem” />

<!-- Match the ‘type’ attribute of the current element -->

<xsl:value-of select=”@type” />

<!-- Match the ‘type’ element of LineItem element while being at the

root element -->

<xsl:value-of select=”/PurchaseOrder/Order/LineItem/@type” />

After evaluating XML using the XPath syntax, we get an element or a set
of elements as a result. This also is referred to as a node or node set,

Purchase
Order

Order Catalog
Id

Product
Id

LineItemLineItem

Quantity

Euro-
Product

Root

366 Chapter 8

because it represents the structured tree-like data. The resulting node set
can be operated using additional XPath functionality. The following is the
syntax that will help you understand the powerful yet complex mecha-
nism for retrieving XML data for XML transformations. Because XSL is
defined using XML, it must contain the following constructs in order to be
considered valid:

■■ XML Declaration

■■ XSL root element: <xsl:stylesheet> </xsl:stylesheet>

■■ Declaration of used namespaces

XML Declaration

An XSL stylesheet uses the following standard XML declaration:

<?xml version=”1.0” ?>

XSL Root Element

Because XSL stylesheets are defined in XML, they must contain a root ele-
ment. This root element is defined by the following:

<xsl:stylesheet ...>

...

</xsl:stylesheet>

XSL Namespaces

The root element defines the namespaces used within the template and it
also provides the version number, which is required. For example,

<xsl:stylesheet xmlns:xsl=”http://www.w3.org/2002/XSL/Transform”

version=”1.0”>

</xsl:stylesheet>

The namespace www.we.org/2002/XSL/Transform recognizes XSL-
specific elements. A namespace used for any transformation-related work
is prefixed with “xsl:”. For example,

<xsl:template match=”PurchaseOrder” />

...

</xsl:template>

XML Processing and Data Binding with Java APIs 367

A document may refer to a stylesheet using the following processing
instruction:

<?xml-stylesheet type=”text/xsl” href=”order.xsl”?>

XSL Syntax

Many operations can be used to process the data in XML, including locat-
ing a particular element, iterating through a document, the conditional
processing of elements, sorting, and numbering. In the following text, we
look closely at the following topics:

■■ Templates used for locating parts of a document

■■ Conditional processing, which is done only when certain criteria are
examined

■■ Looping used for iterating through results

■■ Sorting used for displaying the output in some logical order

Templates

Templates are mostly used for locating one or more elements of an XML
document. Using a template consists of using various rules that have spe-
cific requirements or conditions, which also are referred to as patterns. The
template matching is defined by specific XPath expressions. To locate a
particular element within a document, the Match attribute is used with an
XPath expression that will match to zero or more elements in the docu-
ment. The following is an example that will match the root element
(PurchaseOrder) of our sample XML document:

<xsl:template match=”PurchaseOrder”>

/* The content in this block is written to the output.

</xsl:template>

In this example, we matched the PurchaseOrder element, which is the
first element in our path. At this stage of processing, we have matched the
portion of the document that we would like to process, and the template
has that portion of the XML hierarchy loaded into its memory. This hierar-
chy is an immutable structure that is used for XSL processing. This means
that if you select an element, the process simply selects it but does not
remove it. Also, if some elements of the hierarchy should become
excluded, there must be a set of templates that tell the processor to ignore
them. The most basic way to achieve access to elements is to use relative

368 Chapter 8

path expressions. Therefore, in relation to where we stand within the doc-
ument, we can access various sections by simply specifying the paths to
them. For instance, having

<xsl:template match=”Order\LineItem”>

as the first matching entry of the template would not take us there, because
according to the root, the relative path to LineItem would be Purchase-
Order\Order\LineItem.

The apply-templates construct tells the processor to match the elements
defined in the select attribute or if nothing is specified to match any ele-
ment relative to the current path with any template defined within the XSL
stylesheet:

/* apply pattern on selected nodes, the default node Is *all* */

<xsl:apply-templates select=”node set expression” ... />

If a particular element must be fetched, it sometimes may be overkill to
create a template for it. To retrieve particular elements, the xsl:value-of
construct is used. For instance, getting the buyer ID number from the pur-
chase order would look like the following:

<xsl:template match=”PurchaseOrder\Header”>

Buyer Number Is : <xsl:value-of select=”BuyerNumber”/>

</xsl:template>

In the case where we want to ignore an element, a simple solution is to
create a template for that element with no action. This is a case where some
information needs to be ignored, for instance, if we don’t want to trans-
form sensitive information, such as a credit card number or personal infor-
mation of the buyer. This would result in the following template:

<xsl:template match=”PurchaseOrder\Header\PaymentInfo”>

Of course, this isn’t the only solution for this sort of processing. We also
could use conditional processing, which will be covered in the following
section.

An example of conditional processing would look like the following:

<xsl:template math=”PurchaseOder”>

<H1><xsl:apply-templates select=”header”/></h1>

</xsl:template>

<xsl:template match=”PurchaseOrder\Header\PaymentInfo”>

XML Processing and Data Binding with Java APIs 369

Apart from locating or matching elements in a document, we can per-
form a lot of other tasks by applying certain rules, which will traverse the
XML tree and apply the expected changes under certain conditions.

Conditional Processing

We can have conditional constructs that will apply to an XML document
under certain conditions. A good example is one used in the previous section
where personal information should not be transformed. In order to ignore
the particular elements, we constructed an empty template. While it was a
working solution, this example is not as clean as the one proposed in this sec-
tion. Taking the same example, let’s build a condition that will not select the
“PurchaseOrder\Header\PaymentInfo” element and anything within
it. This is accomplished by using the not() node function provided by
XPath. The following is the syntax when using the not() function:

<xsl:apply-templates select=”*[not(some expression)]” />

Our example would look like the following:

<xsl:template match=”PurchaseOrder\Header”>

<xsl:apply-templates select=”*[not(self:Paymentinfo)]” />

</xsl:template>

The self-parameter in the expression indicates what the frame of refer-
ence is. This lets the processor know that anything after the self-element is
a child of the element.

Other conditional constructs can evaluate expressions based on expres-
sions similar to if-then statements. One of these constructs is the xsl:if
construct, which returns nodes that conform (evaluate to TRUE) to the
expression. For example,

/* If expression is TRUE evaluate the template */

<xsl:if test=”expression”> ... </...>

The test attribute contains the pattern that is evaluated to determine
whether the condition is processed or not. In our example, we will separate
the hardware (HW) and software (SW) type items:

<xsl:template math=”PurchaseOrder\Order\LineItem”>

<xsl:if test=”@type=’SW’”>

Software Product # :<xsl:value-of select=”ProductNumber”>

</xsl:if>

</xsl:template>

370 Chapter 8

The @ sign indicates that we are referring to an attribute rather than an
element, and the single quotes around the SW string refers us to a static
string. Another way to process conditional code is to use the xsl:choose
construct. This construct behaves as an if-then-else type statement, where
<xsl:when ...> evaluates the conditions, and if those fail then it exe-
cutes <xsl:otherwise>. The <xsl:when ...> statement can occur
many times within the xsl:choose construct, as shown as follows:

/* Apply a template to the conditions that evaluate to TRUE */

<xsl:choose>

<xsl:when test=”expression”> ...</xsl:when>

[<xsl:when test=”expression”> ...</xsl:when>]

...

<xsl:otherwise> ...</xsl:otherwise>

</xsl:choose>

The following code is an example of an XSL stylesheet. It takes in the
PurchaseOrder xml file as input and sorts the LineItems according to
their type: hardware, software, or unknown in the case of an unknown
type:

<xsl:template math=”PurchaseOrder\Order\LineItem”>

<xsl:choose>

<xsl:when test=”@type=’SW’”>

Software Product # :<xsl:value-of select=”ProductNumber”>

</xsl:when>

<xsl:when test=”@type=’HW’”>

Hardware Product # :<xsl:value-of select=”ProductNumber”>

</xsl:when>

<xsl:otherwise>

Unknown Product # :<xsl:value-of select=”ProductNumber”>

</xsl:otherwise>

</xsl:choose>

</xsl:template>

Looping

Sometimes looping is needed when traversing a tree. XSL provides these
constructs to facilitate the definition of repeating occurrences. The
xsl:for-each construct is one of the constructs used for looping. In our
example, we will iterate over the order and print out all of the product
numbers:

<xsl:template math=”PurchaseOrder\Order”>

<xsl:for-each select=”LineItem”>

XML Processing and Data Binding with Java APIs 371

Product # :<xsl:value-of select=”ProductNumber”>

</xsl:for-each>

</xsl:template>

Although this can be produced with templates, it is much clearer to use
the for-loop construct.

Sorting

Sorting may be essential when formatting output based on a certain crite-
ria, such as ascending or descending numbers or names. When sorting
<xsl:apply-templates ...>, <xsl:for-each ...> constructs are
used when evaluating the XML input. The following is a sorting construct
that is used for sorting elements retrieved by templates (xsl:apply-
templates or xsl:for-each) in its body:

<xsl:sort select=”expression”/>

The constructs have additional parameters that can be provided:

■■ order=”ascending|descending”

■■ data-type=”text|number”

■■ case-order=”upper-first|lower-first”

■■ lang=”...”

The following example takes the product number and sorts it in ascend-
ing order based on the ProductNumber:

<xsl:template math=”PurchaseOrder\Order”>

<xsl:apply-template select=”LineItem”>

Product # : <xsl:sort select=”ProductNumber”/>

</xsl:apply-template>

</xsl:template>

The following section will use some of the important constructs dis-
cussed in this section and apply transformation to an XML document.

Transforming with XSLT
Extensible Stylesheet Language Transformation (XSLT) is an XML process-
ing standard used with XSL for XML-based document transformation. This
is the process by which XSL templates are applied to XML documents in
order to create new documents in desired formats (for example, XML,
HTML, PDF, and WML). XSL provides the syntax and semantics for specify-
ing formatting, and XSLT is the processor that performs the formatting task.

372 Chapter 8

Figure 8.8 Use of JAXP for XSLT transformation.

XSLT is often used for the purpose of generating various output formats
for an application that enables access to heterogeneous client types (such as
Web browsers, cell phones, and Java applications). It also is used to format
one XML representation to another—this is typical in a B2B-type environ-
ment. Figure 8.8 depicts a scenario in which an application hosts a compo-
nent that is able to generate various types of output based on the client type.

XSLT is supported in JAXP 1.1. This was achieved by incorporating
Transformations for XML (TRaX) to provide a vendor-neutral solution for
XML transformations. The various implementations of XSL processors
drastically changed from one vendor to the next and a need for a standard
solution was inevitable. The JAXP specification supports most of the XML
transformations and is discussed in the next sections.

Processing Model

The processing model of XSLT consists of various rules defined by tem-
plates. A rule is defined as a combination of a template and pattern. The
output is obtained by passing an input XML source (for example, Input-
Stream, InputSource, File, or URL) to the processor. A node is processed by

JAXP
Compliant

XSLT
processor

Other
Services

XML
Document

<xml>
<>
</>

</xml>

XSL

MIDP
client

Client
Application

(web browser)

input

xml

html

wml

Welcome to
the Internet

You have 1 e-mail
and 1 page.

21 ABC 3 DEF

4 GHI 5 JKL 6 MNO

7 PQRS

0

5 TUV 6 WXYZ

XML Processing and Data Binding with Java APIs 373

locating a template rule that contains the matching pattern. Once located,
the template is instantiated and a result is created. This process continues
until traversed recursively through the data. When many nodes are
processed, the end result is known as the node list, which is a concatena-
tion of all the node results. The following is a snippet of a template rule def-
inition in an XSL stylesheet file:

<xsl:template match=”some pattern”>

template

</xsl:template>

Patterns are sets of XPath expressions (location paths) that are used for
evaluating node sets. A node matches a defined pattern when the node is a
result from an evaluation of the expression, with respect to some context. A
node is an additional attribute to the xsl:template construct, which
enables an element to be processed many times in different ways.

The steps required for transformation follow these logical steps:

1. Obtain a transformation factory class used for instantiating a trans-
former class. This step is not much different from the previous SAX
or DOM factory classes.

2. Once the factory class is instantiated, create a new transformer class
by passing it the stylesheet for formatting the output.

3. Use the transformer class for transforming the data by specifying the
XML input source and the output source where the results will be
sent.

The XSL stylesheet is defined in a separate file with extension *.xsl.
This stylesheet is passed when the transformer class is instantiated. Once the
transformer class is obtained, the transformation can take place. We input
the input source and output source when calling the transform method.

The following sections describe the JAXP-specific XSLT processing steps.
These steps consist of the following:

■■ Getting a factory and transformer class

■■ Transforming the XML

Getting the Factory and Transformer Class

Working with XSLT is similar to working with the parsers. The class respon-
sible for performing the transformation is called the Transform class, and
it can only be obtained through a factory class (see Figure 8.9). The factory
class is called TransformerFactory and is instantiated by calling its static

374 Chapter 8

method newInstance(). Once the factory class is instantiated, the new-
Transformer()method is called to get an instance of the transformer. The
newTransformer() method takes a StreamSource as a parameter,
which is the XSL template that will be applied to the XML input.

The steps for instantiating the class are as follows:

1. As with SAX and DOM, use the factory class for instantiating a
transformer implementation class:
TransformerFactory factory =

TransformerFactory.newInstance();

2. Use the transformer class for applying the stylesheet to the input
XML data. When getting a new instance, the stylesheet is passed as a
parameter to the newTransformer() method:
Transformer transformer =

factory.newTransformer(new StreamSource(“order.xsl”));

3. The transformer then calls the transform method to invoke the
transformation process. The parameters required in the transform
method are input stream and output result:
transformer.transform(new StreamSource(“PurchaseOrder.xml”),

new StreamResult(System.out));

Figure 8.9 Sequence diagram showing a JAXP transformation with XSLT.

TransformerFactory Transformer

MyApplication

newInstance

transform

newTransformer

XML Processing and Data Binding with Java APIs 375

TEAMFL
Y

Team-Fly®

The factory implementation class can be supplied as a Java system prop-
erty using the following syntax:

javax.xml.transform.TransformerFactory=org.apache.xalan.processor

.TransformerFactoryImpl

Many options can be set on the factory class that affect the instance of the
transformer. Some of these options are vendor-specific, such as attributes
that can be passed to the transformer. Another more JAXP-related option
would be the setting for the javax.xml.transform.ErrorListener
interface for catching transformation-related errors. The ErrorListener
interface defines a list of methods:

public void warning (TransformerException exception)

throws TransformerException;

public void error (TransformerException exception)

throws TransformerException;

public void fatalError (TransformerException exception)

throws TransformerException;

To use the ErrorListener interface, an implementation must be pro-
vided that implements the various error levels. This implementation of
ErrorListener then is passed to the factory with a setter method called
setErrorListener():

factory.setErrorListener(new MyErrorListener());

Another useful option is to set the URI to handle URIs found in XML in
order for them to be properly handled (for example, constructs such as
xsl:import or xsl:output). The URIResolver interface defines one
method:

public Source resolve (String href, String base) throws

TransformerException;

The implementation of the URIResolver interface can be set on the fac-
tory class with a method called setURIResolver().

Transforming XML

Transforming XML consists of creating a new transformer instance by
passing it an XSL template. The template defines the logic that needs to be
applied to the XML input. In our example, a purchase order (Purchase-
Order.xml) is sent to the ACME Web Service retailer who processes the

376 Chapter 8

purchase order to determine what items were ordered. Based on the type
of item ordered, the retailer creates new orders (SWOrder.xml and
HWOrder.xml) that are sent to the appropriate warehouse. The following
is a snippet of the code that instantiates the transformer:

TransformerFactory factory = TransformerFactory.newInstance();

factory.setErrorListener(new MyErrorListener());

Transformer transformer =

factory.newTransformer(new StreamSource(“order.xsl”));

The instantiation of a new transformer takes in a source stream repre-
senting the stylesheet for transforming XML. The source stream is the
mechanism responsible for locating the stylesheet. The specification pro-
vides the implementation of the following classes as input sources:

javax.xml.transform.stream.StreamSource. Reads the input
from I/O devices. The constructor accepts InputStream, Reader,
and String.

javax.xml.transform.dom.DOMSource. Reads the input from a
DOM tree (org.w3c.dom.Node).

javax.xml.transform.sax.SAXSource. Reads the input from
SAX input source events (org.xml.sax.InputSource or
org.xml.sax.XMLReader).

In the case where multiple stylesheets are applied to a single or multiple
XML input, multiple transformers need to be instantiated for each
stylesheet. Different types can be provided as input streams, such as URL,
XML streams, DOM trees, SAX events, or custom data types. As for the
output, it contains just as many possibilities with various combinations.
The developer does not have to provide the same type of output as the
input. It can be a variety of combinations that make this process very flex-
ible and extensible. The following are some of the output classes provided
by the specification:

javax.xml.transform.stream.StreamResult. Writes to an
I/O device. The writer, OutputStream, is one of the available
parameters.

javax.xml.transform.dom.DOMResult. Writes to a Document
object (org.w3c.dom.Document).

javax.xml.transform.sax.SAXResult. Writes using Con-
tentHandler callback methods.

XML Processing and Data Binding with Java APIs 377

XSLT Sample Code

Our sample scenario will use the PurchaseOrder XML input and will
produce two resulting outputs. The resulting outputs will be orders that
are sent to two different warehouses. Each warehouse specializes in differ-
ent types of products: software or hardware. The idea behind this service is
to provide a transformation capability to take the original order and split it
into two different orders, depending upon the product’s type. We will gen-
erate software and hardware XML orders that will be sent to the respective
warehouse. Listing 8.6 is the PurchaseOrder.xml file.

<?xml version=”1.0”?>

<PurchaseOrder>

<Header>

<PurchaseOrderNumber>2123536673005</PurchaseOrderNumber>

<Date>02/22/2002</Date>

<BuyerNumber>0002232</BuyerNumber>

</Header>

<!-- type indicates whether the item is a Software or Hardware

product -->

<Order>

<LineItem type=’SW’>

<ProductNumber>221112</ProductNumber>

<Quantity>250</Quantity>

</LineItem>

<LineItem type=’HW’>

<ProductNumber>343432</ProductNumber>

<Quantity>12</Quantity>

</LineItem>

<LineItem type=’HW’>

<ProductNumber>210020</ProductNumber>

<Quantity>145</Quantity>

</LineItem>

<LineItem type=’SW’>

<ProductNumber>33333</ProductNumber>

<Quantity>145</Quantity>

</LineItem>

</Order>

</PurchaseOrder>

Listing 8.6 PurchaseOrder.xml.

The following are the two XSL stylesheets for the software and hardware
orders. They take in the PurchaseOrder and transform it to Software-
Order.xml and HardwareOrder.xml. In order to produce two types of
outputs, the sample client uses two different stylesheets for producing two
different outputs.

378 Chapter 8

Listing 8.7 is the hw-order.xsl stylesheet.

<?xml version=”1.0”?>

<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”

version=”1.0”>

<xsl:output method=”xml” indent=”no”/>

<!-- Header is needed in all warehouses -->

<xsl:template match=”PurchaseOrder”>

<HardwareOrder>

<xsl:apply-templates select=”*”/>

</HardwareOrder>

</xsl:template>

<xsl:template match=”Header”>

<ShippingInfo>

<xsl:apply-templates select=”ShippingAddress”/>

</ShippingInfo>

</xsl:template>

<xsl:template match=”Order”>

<OrderInfo>

<xsl:apply-templates select=”*” />

</OrderInfo>

</xsl:template>

<!-- Software and Hardware orders go to different warehouse locations. -

->

<xsl:template match=”LineItem”>

<xsl:if test=”@type=’HW’”>

<ProductNo>

<xsl:value-of select=”ProductNumber”/>

</ProductNo>

<ProductQty>

<xsl:value-of select=”Quantity”/>

</ProductQty>

</xsl:if>

</xsl:template>

</xsl:stylesheet>

Listing 8.7 hw-order.xsl stylesheet.

Listing 8.8 shows the sw-order.xsl stylesheet.

<?xml version=”1.0”?>

<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”

version=”1.0”>

<xsl:output method=”xml” indent=”no”/>

Listing 8.8 sw-order.xsl. (continues)

XML Processing and Data Binding with Java APIs 379

<!-- Header is needed in all warehouses -->

<xsl:template match=”PurchaseOrder”>

<SoftwareOrder>

<xsl:apply-templates select=”*”/>

</SoftwareOrder>

</xsl:template>

<xsl:template match=”Header”>

<ShippingInfo>

<xsl:apply-templates select=”ShippingAddress”/>

</ShippingInfo>

</xsl:template>

<xsl:template match=”Order”>

<OrderInfo>

<xsl:apply-templates select=”*” />

</OrderInfo>

</xsl:template>

<!-- Software and Hardware orders go to different warehouse locations. -

->

<xsl:template match=”LineItem”>

<xsl:if test=”@type=’SW’”>

<ProductNo>

<xsl:value-of select=”ProductNumber”/>

</ProductNo>

<ProductQty>

<xsl:value-of select=”Quantity”/>

</ProductQty>

</xsl:if>

</xsl:template>

</xsl:stylesheet>

Listing 8.8 sw-order.xsl. (continued)

Listing 8.9 is a sample test class MyXSLTExample.java that performs the
transformation and generates the output to the console for demonstration.

package jws.ch08.xslt;

import javax.xml.parsers.*;

import org.w3c.dom.*;

import org.xml.sax.*;

import java.io.*;

import javax.xml.transform.*;

import javax.xml.transform.stream.*;

Listing 8.9 MyXSLTExample.java.

380 Chapter 8

import javax.xml.transform.dom.*;

class MyXSLTExample {

public MyXSLTExample () {}

public static void main (String [] args) {

System.out.println(“Transforming “);

try {

TransformerFactory tFactory = TransformerFactory.newInstance();

tFactory.setErrorListener(new MyErrorListener());

if (tFactory.getFeature(DOMSource.FEATURE) &&

tFactory.getFeature(DOMResult.FEATURE)) {

//Instantiate a DocumentBuilderFactory.

DocumentBuilderFactory dFactory =

DocumentBuilderFactory.newInstance();

// And setNamespaceAware, which is required when parsing xsl files

dFactory.setNamespaceAware(true);

//Use the DocumentBuilderFactory to create a DocumentBuilder.

DocumentBuilder dBuilder = dFactory.newDocumentBuilder();

//Use the DocumentBuilder to parse the Software XSL stylesheet.

Document xslSWDoc = dBuilder.parse(“sw-order.xsl”);

//Use the DocumentBuilder to parse the Hardware XSL stylesheet.

Document xslHWDoc = dBuilder.parse(“hw-order.xsl”);

// Use the DOM Document to define a DOMSource object.

DOMSource xslDomSWSource = new DOMSource(xslSWDoc);

// Use the DOM Document to define a DOMSource object.

DOMSource xslDomHWSource = new DOMSource(xslHWDoc);

// Set the systemId: note this is actually a URL, not a local

// filename

xslDomSWSource.setSystemId(“sw-order.xsl”);

// Set the systemId: note this is actually a URL, not a local

// filename

xslDomHWSource.setSystemId(“hw-order.xsl”);

// Process the stylesheet DOMSource and generate a Transformer.

Transformer swTransformer =

tFactory.newTransformer(xslDomSWSource);

// Process the stylesheet DOMSource and generate a Transformer.

Transformer hwTransformer =

tFactory.newTransformer(xslDomHWSource);

//Use the DocumentBuilder to parse the XML input.

Document xmlDoc = dBuilder.parse(“PurchaseOrder.xml”);

// Use the DOM Document to define a DOMSource object.

DOMSource xmlDomSource = new DOMSource(xmlDoc);

Listing 8.9 MyXSLTExample.java. (continues)

XML Processing and Data Binding with Java APIs 381

// Set the base URI for the DOMSource so any relative URIs it

// contains can be resolved.

xmlDomSource.setSystemId(“PurchaseOrder.xml”);

// write to System.out

System.out.println(“\n--- Software Order ---\n”);

swTransformer.transform(xmlDomSource,

new StreamResult(System.out));

System.out.println(“\n--- Hardware Order ---\n”);

hwTransformer.transform(xmlDomSource,

new StreamResult(System.out));

} else {

System.out.println(“Transformer does not support DOM source and

result!”);

}

} catch (TransformerConfigurationException tce) {

System.out.println(“TransformerConfigurationException occurred :

“+tce);

} catch (ParserConfigurationException pce) {

System.out.println(“ParserConfigurationexception occurred : “+pce);

} catch (TransformerException te) {

System.out.println(“TransformerException occurred : “+te);

} catch (SAXException se) {

System.out.println(“SAXException occurred : “+se);

} catch (IOException ioe) {

System.out.println(“IOException occurred : “+ioe);

}

}

}

Listing 8.9 MyXSLTExample.java. (continued)

The output of the XSLT transformation sample is shown in Listing 8.10.
It uses two distrinct XSL stylesheets, sw-order.xsl and hw-
order.xsl, to separate the software and hardware orders, respectively.
The output shows a shipping address in both the orders and the Line
Items.

-------------- Software Order -----------------

<?xml version=”1.0” encoding=”UTF-8”?>

<SoftwareOrder>

Listing 8.10 Output of an XSLT transformation sample.

382 Chapter 8

<ShippingInfo>

233 St-John Blvd

Boston

MA

03054

USA

</ShippingInfo>

<OrderInfo>

<ProductNo>221112</ProductNo>

<ProductQty>250</ProductQty>

<ProductNo>33333</ProductNo>

<ProductQty>145</ProductQty>

</OrderInfo>

</SoftwareOrder>

-------------- Hardware Order -----------------

<?xml version=”1.0” encoding=”UTF-8”?>

<HardwareOrder>

<ShippingInfo>

233 St-John Blvd

Boston

MA

03054

USA

</ShippingInfo>

<OrderInfo>

<ProductNo>343432</ProductNo>

<ProductQty>12</ProductQty>

<ProductNo>210020</ProductNo>

<ProductQty>145</ProductQty>

</OrderInfo>

</HardwareOrder>

Listing 8.10 Output of an XSLT transformation sample. (continued)

Threading
The JAXP specification does not mandate that the processor implementa-
tions provide thread safety. The common practice is to instantiate one
processor instance per thread to avoid any synchronization issues. In the
case where one instance is used by many threads, the application devel-
oper must provide the correct synchronized blocks so that the execution
does not corrupt the data or produce unexpected results.

XML Processing and Data Binding with Java APIs 383

Java Architecture for XML Binding (JAXB)

The XML binding technology provides application developers with a way
to generate Java objects based on XML definitions and XML definitions
based on Java objects. The Java Architecture for XML Binding (JAXB), for-
merly known as JCP project Adelard, is a high-level specification that
defines an abstraction for binding semantics via classes and interfaces.
XML data binding provides a way for applications to work with objects
rather than complex data trees.

Converting XML to Java can be achieved by using parsing (with JAXP)
and then constructing Java objects. The idea behind using a standard such
as JAXB is to provide ease of use and performance enhancement. When
developers are faced with the design and implementation of such solu-
tions, in many cases they find themselves locked to their homegrown solu-
tions with unnecessary complexities. This is potentially a maintenance
nightmare where applications do not scale very well due to poor design
decisions. A binding specification aims at taking all that away from the
developer by implementing the various techniques in the parser where the
classes are generated. It provides a standardized way to validate docu-
ments by defining the XML schema and data type mapping definitions to
enforce correctness.

The current reference implementation of the JAXB 1.0 specification from
Sun is limited to using DTDs as the schema language. This is a limitation
that has a significant impact on today’s industry requirements especially
for Web services. This limitation is solved by XML schema support in the
next version of JAXB. In this chapter, we will take a look at a JAXB-like
Java/XML data binding framework named CASTOR. CASTOR is an open
source project from Exolab (castor.exolab.org). It provides a Java/XML
data binding framework with W3C XML schema support. CASTOR is
available for download from the Exolab Web site at http://castor.
exolab.org/.

XML binding using CASTOR is done with the following steps:

1. Create a W3C XML schema defining the data structure, data types,
and semantics of the XML data instance used in the application. In a
Java class, it corresponds to a class variable or a property using
accessor methods.

2. Using a CASTOR source code generator, transform the XML Schema
to bind Java objects.

384 Chapter 8

3. Using the CASTOR implementation enables the binding Java objects
to be transformed into XML instances (marshalling), and the XML
instances then can be transformed into binding Java objects (unmar-
shalling) dynamically.

The binding runtime APIs then are used for converting XML data into
Java objects and vice versa (see Figure 8.10). The Java objects then can be
operated on as regular Java objects; creating and appending objects or
deleting them is performed using standard Java semantics. This makes the
work transparent of the XML hierarchy and much easier to work with.

■■ CASTOR provides a code generator, org.exolab.castor.
builder.SourceGenerator, for generating Java binding objects
from an XML Schema.

■■ CASTOR provides a full-fledged Java object and XML attribute
mapping, which enables you to cast the data in the XML format to
the proper Java type and vice-versa. The complete list of supported
Java object types and XML Schema attributes are available at
http://castor.exolab.org/xml-mapping.html.

Figure 8.10 XML binding life cycle.

Java
Object

XML
Document

Marshal

CompileXML
Schema

Fo
llo

w
s

In
st

an
ce

O
f

Unmarshal

<xml>
<>
</>

</xml>

Java
Object

Java Class

XML Processing and Data Binding with Java APIs 385

TEAMFL
Y

Team-Fly®

The following section will walk you through an example taking a modi-
fied version of our PurchaseOrder.xml and using binding techniques to
generate domain objects representing data stored in the XML input. The
data-binding runtime used for this will be the CASTOR implementation,
which provides support for an XML Schema unlike a JAXB reference imple-
mentation, which is limited to DTDs. Due to this limitation (as of this book’s
writing), the specification is going through a major revision. It will soon
provide a much richer feature set aligned more with the current needs.

Data Binding Generation
In order to create Java classes, an XML data schema must be created. For
our example, we will use the following Purchase Order XML data file (see
Listing 8.11) and generate a validation W3C XML Schema.

<?xml version=”1.0”?>

<PurchaseOrder>

<Header>

<PurchaseOrderNumber>2123536673005</PurchaseOrderNumber>

<Date>02/22/2002</Date>

<BuyerNumber>0002232</BuyerNumber>

<BuyerName>John Doe</BuyerName>

<BuyerAddress>

<Street>233 St-John Blvd</Street>

<City>Boston</City>

<State>MA</State>

<Zip>03054</Zip>

<Country>USA</Country>

</BuyerAddress>

<ShippingAddress>

<Street>233 St-John Blvd</Street>

<City>Boston</City>

<State>MA</State>

<Zip>03054</Zip>

<Country>USA</Country>

</ShippingAddress>

Listing 8.11 PurchaseOrder.xml file.

386 Chapter 8

<PaymentInfo>

<Type>Visa</Type>

<Number>0323235664664564</Number>

<Expires>02/2004</Expires>

<Owner>John Doe</Owner>

</PaymentInfo>

</Header>

<!-- type indicates whether the item is a Software or Hardware product

-->

<Order>

<LineItem type=’SW’>

<ProductNumber>221112</ProductNumber>

<Quantity>250</Quantity>

</LineItem>

<LineItem type=’HW’>

<ProductNumber>343432</ProductNumber>

<Quantity>12</Quantity>

</LineItem>

<LineItem type=’HW’>

<ProductNumber>210020</ProductNumber>

<Quantity>145</Quantity>

</LineItem>

<LineItem type=’SW’>

<ProductNumber>33333</ProductNumber>

<Quantity>145</Quantity>

</LineItem>

</Order>

</PurchaseOrder>

Listing 8.11 PurchaseOrder.xml file. (continued)

Once the XML input is defined, we can create an XML Schema file to be
used for generating the supporting data binding classes. This can be
accomplished manually or by using the functionality provided by an XML-
based IDE (for example, XML Spy, Breeze XML, Oracle XDK, or Jbuilder).
Figure 8.11 is a screenshot of the XML Spy 4.2 screen that enables us to gen-
erate the XML Schema for our input file.

XML Processing and Data Binding with Java APIs 387

Figure 8.11 XML Schema generation using XML Spy 4.2.

Listing 8.12 shows the purchase order PurchaseOrder.xsd XML
Schema generated from the PurchaseOrder.xml input.

<?xml version=”1.0” encoding=”UTF-8”?>

<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”

elementFormDefault=”qualified”>

<xs:element name=”BuyerAddress”>

<xs:complexType>

<xs:sequence>

<xs:element ref=”Street”/>

<xs:element ref=”City”/>

<xs:element ref=”State”/>

<xs:element ref=”Zip”/>

<xs:element ref=”Country”/>

</xs:sequence>

</xs:complexType>

Listing 8.12 ‘PurchaseOrder.xsd’ XML Schema generated from the Purchase
Order.xml input.

388 Chapter 8

</xs:element>

<xs:element name=”BuyerName” type=”xs:string”/>

<xs:element name=”BuyerNumber” type=”xs:short”/>

<xs:element name=”City” type=”xs:string”/>

<xs:element name=”Country” type=”xs:string”/>

<xs:element name=”Date” type=”xs:string”/>

<xs:element name=”Expires” type=”xs:string”/>

<xs:element name=”Header”>

<xs:complexType>

<xs:sequence>

<xs:element ref=”PurchaseOrderNumber”/>

<xs:element ref=”Date”/>

<xs:element ref=”BuyerNumber”/>

<xs:element ref=”BuyerName”/>

<xs:element ref=”BuyerAddress”/>

<xs:element ref=”ShippingAddress”/>

<xs:element ref=”PaymentInfo”/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name=”LineItem”>

<xs:complexType>

<xs:sequence>

<xs:element ref=”ProductNumber”/>

<xs:element ref=”Quantity”/>

</xs:sequence>

<xs:attribute name=”type” use=”required”>

<xs:simpleType>

<xs:restriction base=”xs:NMTOKEN”>

</xs:restriction>

</xs:simpleType>

<xs:attribute>

</xs:complexType>

</xs:element>

<xs:element name=”Number” type=”xs:long”/>

<xs:element name=”Order”>

<xs:complexType>

<xs:sequence>

<xs:element ref=”LineItem” maxOccurs=”unbounded”/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name=”Owner” type=”xs:string”/>

<xs:element name=”PaymentInfo”>

<xs:complexType>

<xs:sequence>

<xs:element ref=”Type”/>

Listing 8.12 ‘PurchaseOrder.xsd’ XML Schema generated from the Purchase
Order.xml input. (continues)

XML Processing and Data Binding with Java APIs 389

<xs:element ref=”Number”/>

<xs:element ref=”Expires”/>

<xs:element ref=”Owner”/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name=”ProductNumber”>

<xs:simpleType>

<xs:restriction base=”xs:int”>

</xs:restriction>

</xs:simpleType>

</xs:element>

<xs:element name=”PurchaseOrder”>

<xs:complexType>

<xs:sequence>

<xs:element ref=”Header”/>

<xs:element ref=”Order”/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name=”PurchaseOrderNumber” type=”xs:long”/>

<xs:element name=”Quantity”>

<xs:simpleType>

<xs:restriction base=”xs:short”>

</xs:restriction>

</xs:simpleType>

</xs:element>

<xs:element name=”ShippingAddress”>

<xs:complexType>

<xs:sequence>

<xs:element ref=”Street”/>

<xs:element ref=”City”/>

<xs:element ref=”State”/>

<xs:element ref=”Zip”/>

<xs:element ref=”Country”/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name=”State” type=”xs:string”/>

<xs:element name=”Street” type=”xs:string”/>

<xs:element name=”Type” type=”xs:string”/>

<xs:element name=”Zip” type=”xs:short”/>

</xs:schema>

Listing 8.12 ‘PurchaseOrder.xsd’ XML Schema generated from the Purchase
Order.xml input. (continued)

390 Chapter 8

Now that we have an XML Schema definition, we can generate a set of
supporting Java classes. The following is an example:

java org.exolab.castor.builder.SourceGenerator -i PurchaseOrder.xsd

-package jws.ch08.castor

This code will generate a set of Java binding object source files and Java
mapping descriptors from the XML Schema, PurchaseOrder.xsd, and it
will place them in the jws.ch08.castor.* package. This package con-
tains the accessor methods, which also include the ‘marshal’ and
‘unmarshal’ methods required for transforming an XML instance to
Java objects and vice-versa.

The source code generator also provides the ability to use the following
types of collections when generating source code:

■■ Java 1.1 (default). Java.util.Vector.

■■ Java 1.2. Use the option types -j2. The collection type is
java.util.Collection.

The generated classes reflect the definition of the XML Schema. After
running the schema compiler (org.exolab.castor.builder.Source
Generator), we get the following classes:

■■ PurchaseOrder.java

■■ Header.java

■■ BuyerAddress.java

■■ ShippingAddress.java

■■ PaymentInfo.java

■■ Order.java

■■ LineItem.java

These classes contain the getter and setter methods for all of the attributes
defined in the schema. In addition to these accessor methods, there are call-
back methods that contain the logic to create XML from Java or Java from
XML. These terms are referred to as marshalling and unmarshalling, respec-
tively. The idea here is to work with the Java classes and not XML. The Pur-
chaseOrder class contains references to Header and Order classes. The
Order class is composed of one or many LineItems, which compose the
Order. The Header contains information about the buyer, such as buyer’s
address (BuyerAddress), shipping address (ShippingAddress), and

XML Processing and Data Binding with Java APIs 391

payment information (PaymentInfo). Figure 8.12 is a class diagram that
shows the relationship between all of the classes involved in building a
PurchaseOrder.

The following is a list of the methods generated for Purchase-
Order.java. The first part of the class consists of the accessor methods
for the Header and Order objects.

public class PurchaseOrder implements java.io.Serializable {

private Header _header;

private Order _order;

public PurchaseOrder()

public Header getHeader()

public Order getOrder()

public void setHeader(Header header)

public void setOrder(Order order)

Figure 8.12 Purchase order class diagram.

PurchaseOrder Order

Header
BuyerAddress

PaymentInfo

ShippingAddress

LineItem

392 Chapter 8

The rest of the methods are callbacks for binding specific tasks:

public boolean isValid()

public void marshal(java.io.Writer out)

throws MarshalException, ValidationException

public void marshal(org.xml.sax.DocumentHandler handler)

throws MarshalException, ValidationException

public static PurchaseOrder unmarshal(java.io.Reader reader)

throws MarshalException, ValidationException

public void validate()throws ValidationException

Marshalling XML
When the JAXB provider (CASTOR) is used, the Java object can be dynam-
ically transformed to an XML file. This transformation is based on the
binding mapping of the XML Schema, which determines how the given
object’s property has to be transformed to an XML element (for example,
the element or attribute). This process is called marshalling. The following
is an extract from the client test program that makes a call to the Pur-
chaseOrder marshal method to read an XML input and to transform it to
an object representation.

PurchaseOrder purchaseOrder;

purchaseOrder= PurchaseOrder.marshal(new

FileWriter(“UpdatePurchaseOrder.xml”));

Now that the object is created, we can add or remove components. If we
want to add a new LineItem object to the graph, it is very simple:

1. Create a LineItem object.

2. Set the attributes (ProductNumber or Quantity).

3. Get a reference to the Order object stored in PurchaseOrder.

4. Add the LineItem to the Order by calling its setter method.

5. Add the Order back to the PurchaseOrder and voila!

6. The following code shows how to add a LineItem to the purchase
order:
/* create the new line Item */

LineItem item = new LineItem();

XML Processing and Data Binding with Java APIs 393

item.setProductNumber(“123456”);

item.setQuantity(“200”);

/* SW or HW */

item.setType(“SW”);

/* get a reference to order object */

Order order = PurchaseOrder.getOrder();

/* set the new line Item */

Order.setLineItem(Item);

/* set the updated oder */

PurchaseOrder.setOrder(order);

To remove an Object from the graph is just as easy. Suppose we want to
remove the LineItem with a product number of “33333”. Here are the
steps to do so:

1. Create a LineItem object.

2. Set the attributes (ProductNumber or Quantity).

3. Get a reference to the Order object stored in PurchaseOrder.

4. Call removeLineItem() passing the LineItem that we want to
delete.

5. The following is the code that removes the LineItem from the pur-
chase order:

/*Create the line Item to remove */

LineItem item = new LineItem();

item.setProductNumber(“33333”);

item.setQuantity(“145”);

item.setType(“SW”);

/* get order from purchase order */

Order order = PurchaseOrder.getOrder();

/* remove the line Item from list */

Order.removeLineItem(Item);

/* set the updated order */

PurchaseOrder.setOrder(order);

We can now save the new changes back to the same or different file. This
process is called unmarshalling and is examined in the following section.

394 Chapter 8

Unmarshalling Java
The XML instance created by an application can be dynamically trans-
formed to a Java object based on the mapping XML schema, which deter-
mines how a given XML element/attribute is transformed into the Java
object model. This is performed by the Java introspection to determine
the function form getXxxYyy() or setXxxYyy(<type> z). The acces-
sor then is associated with an XML element/attribute named ‘xxx-yyy’,
which is based on the mapping XML schema. This process is referred to
as unmarshalling.

In order to unmarshal the XML data into a Java class graph, we must use
the callback method provided in the PurchaseOrder class:

PurchaseOrder purchaseOrder;

purchaseOrder = PurchaseOrder.unmarshal(new

FileReader(“PurchaseOrder.xml”));

If we take the example where a new LineItem was added and then
unmarshaled, the PurchaseOrder that we would get is shown in the fol-
lowing output:

<Order>

<LineItem type=’SW’>

<ProductNumber>221112</ProductNumber>

<Quantity>250</Quantity>

</LineItem>

<LineItem type=’HW’>

<ProductNumber>343432</ProductNumber>

<Quantity>12</Quantity>

</LineItem>

<LineItem type=’HW’>

<ProductNumber>210020</ProductNumber>

<Quantity>145</Quantity>

</LineItem>

<LineItem type=’SW’>

<ProductNumber>33333</ProductNumber>

<Quantity>145</Quantity>

</LineItem>

<LineItem type=’SW’>

<ProductNumber>123456</ProductNumber>

<Quantity>200</Quantity>

</LineItem>

</Order>

XML Processing and Data Binding with Java APIs 395

TEAMFL
Y

Team-Fly®

Other Callback Methods
Additional methods are generated by the binding compiler to provide fur-
ther functionality. Validation is something that occurs before the data
objects are written to the output source (that is, the XML file). The binding
compiler generates validate() and isValid() methods. The isVali-
date(“)method is a wrapper of validate but returns true or false. The
validate method itself throws a ValidateException if the new data
graph does not conform to the XML schema.

This covers the surface of XML binding and should be sufficient for per-
forming most of the binding operations. The most challenging part in bind-
ing is to generate a correct XML Schema definition. Once this is achieved,
the rest is magic. Most of the operation is handled by the runtime of the
binding provider. This is a significant improvement over doing it manu-
ally, where fewer method calls are needed, thus resulting in a much cleaner
code. The code in the following section is the complete list of code used in
this section.

Sample Code for XML Binding
The source code shown in Listing 8.13 uses the PurchaseOrder.xml
and PurchaseOrder.xsd files used in previous examples.

The sample data-binding client code unmarshals the XML input source
into a Java object representation. The code then traverses the Object and
prints out all the LineItem objects of the Order. Finally, it adds a new
LineItem object to the vector and marshals the object back to an XML for-
mat, saving it as MyPurchaseOrder.xml.

package jws.ch08.castor;

import java.io.*;

import org.exolab.castor.xml.ClassDescriptorResolver;import

org.exolab.castor.xml.Unmarshaller;

import org.exolab.castor.xml.Marshaller;

import org.exolab.castor.xml.MarshalException;

import org.exolab.castor.xml.util.ClassDescriptorResolverImpl;

import java.beans.PropertyChangeEvent;

import java.beans.PropertyChangeListener;

import org.exolab.castor.types.Duration;

Listing 8.13 ProductOrderClient.java.

396 Chapter 8

import org.exolab.castor.types.Date;

import org.exolab.castor.types.Time;

public class PurchaseOrderClient implements PropertyChangeListener {

public void propertyChange(PropertyChangeEvent event) {

System.out.println(“PropertyChange: “ + event.getPropertyName());

} //-- propertyChange

public static void main(String[] args) {

try {

System.out.println(“Unmarshalling Purchase Order”);

PurchaseOrder purchaseOrder = null;

purchaseOrder = PurchaseOrder.unmarshal(new

FileReader(“PurchaseOrder.xml”));

System.out.println();

System.out.println(“unmarshalled...performing tests...”);

System.out.println();

System.out.println(“Getting Header ...”);

Header header = purchaseOrder.getHeader();

System.out.println(“Getting Buyer Address ...”);

BuyerAddress buyerAddress = header.getBuyerAddress();

System.out.println(“Getting Shipping Address ...”);

ShippingAddress shipAddress = hader.getShippingAddress();

System.out.println(“Getting Order ...”);

Order order = purchaseOrder.getOrder();

LineItem [] itemList = order.getLineItem();

for (int i=0; i<itemList.length; i++) {

//-- Display unmarshalled address to the screen

System.out.println(“Purchase Order - Unmarshalling from XML to

JavaObject”);

System.out.println(“------------------”);

System.out.println();

System.out.println(“Order Type”);

System.out.println(“” + itemList[i].getType());

System.out.println(“Product Number”);

System.out.println(“”+

itemList[i].getProductNumber());

System.out.println(“Quantity:”);

System.out.println(“” + itemList[i].getQuantity());

Listing 8.13 ProductOrderClient.java. (continues)

XML Processing and Data Binding with Java APIs 397

}

System.out.println(“==UnMarshalling complete==”);

System.out.println(“Add a new Item ...”);

LineItem newItem = new LineItem();

newItem.setProductNumber(98234);

newItem.setQuantity((short)666);

newItem.setType(“HW”);

System.out.println(“Set item in order”);

int index = order.getLineItemCount();

System.out.println(“Count before:”+index);

order.addLineItem(newItem);

System.out.println(“Count before:”+

order.getLineItemCount());

System.out.println(“Set order in purchase order”);

purchaseOrder.setOrder(order);

System.out.println(“\n\n=Marshalling PrescriberMessage Java object

to XML =”);

purchaseOrder.marshal(new FileWriter(“MyPurchaseOrder.xml”));

} catch (Exception e) {

e.printStackTrace();

}

}

}

Listing 8.13 ProductOrderClient.java. (continued)

The client generates the output shown in Listing 8.14. This code displays
the contents of an Order and adds a new Order saving it to My
PurchaseOrder.xml.

Getting Header ...

Getting Buyer Address ...

Getting Shipping Address ...

Getting Order ...

Purchase Order - Unmarshalling from XML to JavaObject

Order Type

SW

Pruduct Number

221112

Listing 8.14 A sample binding output.

398 Chapter 8

Quantity:

250

Purchase Order - Unmarshalling from XML to JavaObject

Order Type

HW

Pruduct Number

343432

Quantity:

12

Purchase Order - Unmarshalling from XML to JavaObject

Order Type

HW

Pruduct Number

210020

Quantity:

145

Purchase Order - Unmarshalling from XML to JavaObject

Order Type

SW

Pruduct Number

33333

Quantity:

145

===================UnMarshalling complete============

Add a new Item ...

Set item in order

Count before adding the item: 4

Count after adding item : 5

Set order in purchase order

Listing 8.14 A sample binding output. (continued)

Summary

You now should have a better understanding of Java APIs for XML pro-
cessing and binding. These APIs provide the functionality that is essential
in developing Java Web services.

In this chapter, we addressed Java APIs for XML processing and binding.
We covered such varied topics as XML and XSL basics, JAXP and its APIs,
how to process XML data with SAX and DOM, how to parse and transform
XML documents using the JAXP API, and data binding between Java and
XML using CASTOR.

XML Processing and Data Binding with Java APIs 399

401

This chapter discusses the Java API for XML messaging (JAXM) and SOAP
with Attachment API for Java (SAAJ). Both JAXM and SAAJ enable XML-
based messaging for B2B and Web services applications supporting a wide
range of industry standards, including SOAP and ebXML.

JAXM is an integral part of the JWSDP, which provides synchronous and
asynchronous messaging capabilities in the Web services environment and
enables the exchanging of XML documents over the intranet or Internet.
JAXM provides a messaging infrastructure and standard API mechanisms
for building, sending, and receiving XML messages. In addition to JAXM,
JWSDP provides SAAJ, which facilitates the sending and receiving of XML
documents as SOAP-messages without a JAXM provider infrastructure
and the handling of SOAP-based HTTP requests/responses. Initially, SAAJ
was part of the JAXM 1.0 API bundle, and from JAXM 1.1 this package is
referred to as SAAJ 1.1 APIs.

Both the JAXM and SAAJ APIs are fully compliant with SOAP 1.1 speci-
fications and SOAP 1.1 with attachments, which helps Java Web services
developers write JAXM- or SAAJ-based XML messaging applications with
minimal effort and little understanding of SOAP messaging. In a business
context using JAXM or SAAJ, the XML documents exchanged can be
product information, purchase orders, invoices, order confirmations, or
whatever.

XML Messaging Using
JAXM and SAAJ

C H A P T E R

9

This chapter provides in-depth coverage of the JAXM- and SAAJ-based
API mechanisms and illustrates its usage scenarios for developing and
deploying Web services applications. In particular, we will be focusing on
the following:

■■ The role of JAXM in Web services
■■ JAXM application architecture
■■ JAXM APIs and its programming model
■■ SAAJ APIs and its programming model
■■ Understanding JAXM implementation scenarios
■■ JAXM deployment model
■■ Developing JAXM-based XML messaging applications
■■ Using JAXM provider and without provider scenarios

At the time of this book’s writing, JAXM 1.1 and SAAJ 1.1 are the most
recent specifications. The reference implementation and API libraries for
JAXM and SAAJ are available for downloading as part of JWSDP 1.0 at
http://java.sun.com/xml/download.html.

Both JAXM and SAAJ are developed by Sun Microsystems as part of its
Java Community Process (JCP) backed by J2EE vendors and most Java-
based Web services platforms. In the upcoming J2EE 1.4 specifications, it is
expected that JAXM and SAAJ will be available as part of the J2EE server
implementations to support Web services. In this chapter, we will be using
JWSDP Reference Implementation (RI) for discussion and also to illustrate
the case study examples.

The Role of JAXM in Web Services

JAXM is an API framework based on the messaging protocols defined by
the SOAP 1.1 specifications and SOAP attachments. JAXM uses a standard
messaging provider infrastructure and Java-based APIs to facilitate the
sending and receiving of XML-based messages asynchronously in a Web
services environment and supporting Web services standards and proto-
cols. The core features of JAXM are as follows:

■■ Has portable XML messaging applications
■■ Has synchronous (request/response) and asynchronous (one-way)

messaging
■■ Transmits and routes messages to many providers

402 Chapter 9

■■ Ensures message delivery through reliable messaging
■■ Supports standard Internet protocols, such as HTTP, SMTP, and FTP

When using JAXM without a provider infrastructure, the messages can
be sent and received as requests and responses through a SOAP connection
using the SAAJ 1.1 APIs provided with JWSDP 1.0.

JAXM provides the notion of messaging profiles, which enable messaging
protocols to be implemented over SOAP messaging. A JAXM-based appli-
cation client must use a messaging profile to identify its underlying trans-
port bindings, message structure, and semantics. This establishes an
agreement between the JAXM client and its JAXM messaging provider.

JAXM-based applications (senders and receivers) can be deployed in
Java servlet 2.2- or J2EE 1.3-compliant server providers. JAXM runs as an
asynchronous application and executes methods upon receiving messages
from the provider. JAXM applications running without providers can run
as standalone clients, exchanging messages as requests and responses with
another JAXM/SOAP 1.1-compliant application.

In a Web services scenario, the JAXM messaging infrastructure acts like
a SOAP intermediary to route messages between destinations. The Web
services requestor application sends messages to its JAXM messaging
provider, which then routes the messages to the Web service provider’s
JAXM messaging provider. The Web services provider receives the mes-
sage and then executes the appropriate methods as required by the service
requestor or it may reroute the message to its next intermediate destination
or its final destination.

JAXM Application Architecture
Figure 9.1 represents a JAXM-based application architecture and its core
elements.

A typical JAXM application architecture consists of the following elements:

JAXM clients. JAXM clients are JAXM-based application components
that send and receive JAXM messages. The JAXM clients (senders
and receivers) can run using a JAXM provider or without a provider.
JAXM clients using a provider connection can send and receive mes-
sages asynchronously as one-way transmissions. A JAXM client also
can take advantage of the provider-offered features like message
reliability and ensured delivery. In the case of using JAXM without a
provider, the JAXM client can send and receive messages as requests
and responses over a SOAP connection. In general, a JAXM receiver
client does not require a JAXM provider.

XML Messaging Using JAXM and SAAJ 403

Figure 9.1 A JAXM-based application architecture.

JAXM messages. JAXM messages are XML documents based on
SOAP standards and conventions that define the basic message for-
mat during a JAXM communication. The SAAJ 1.1 API provides the
low-level Java APIs for constructing SOAP 1.1-compliant XML mes-
sages (with or without attachments). To understand the basic struc-
ture of a SOAP 1.1 message, refer to Chapter 4, “Developing Web
Services Using SOAP,” in the section Anatomy of a SOAP Message.

JAXM connections. JAXM connections are a set of pre-configured
JAXM client connections to a JAXM provider or a SOAP implemen-
tation. The JAXM clients send and receive messages using these
connections. A JAXM connection using a provider is quite similar
to a connection to a message-oriented middleware. In the case of
connections without a JAXM provider, it works quite similar to a
peer-to-peer communication model where the destination is refer-
ring to a SOAP endpoint.

JAXM profiles. JAXM messaging profiles provide the flexibility to
use messaging protocols implemented over SOAP messaging. In a
client application, the profile defines the underlying transport bind-
ings, message header definitions, and semantics specific to SOAP
messages. The JAXM client using a JAXM provider is required to

SOAP
Client

SOAP 1.1
Service

HTTP

JAXM
Client

JAXM Provider

JAXM
Client

JAXM Provider

HTTP
HTTP SMTP,

FTP, POP

SOAP CONNECTION
Point-To-Point Messaging

PROVIDER CONNECTION
Sync/Asynchronous Messaging

HTTP SMTP,
FTP, POP

PROFILES PROFILES

Request/Response Receive

Send

404 Chapter 9

Figure 9.2 A JAXM provider administration console.

use a messaging profile, which is usually provided as a URL
referring to an XML schema that defines the message structure.
For instance, the profile for the ebXML Message Service (MS) speci-
fication can be found at http://www.ebxml.org/project_teams/
transport/messageHeader.xsd. The JAXM 1.1 reference imple-
mentation provided with JWSDP 1.0 supplies messaging profiles
for SOAP-RP and ebXML.

JAXM administration console. The JAXM administration console
enables the configuration of JAXM provider-specific properties such
as a number of retries for message delivery, retry intervals, logging,
and so forth. (See Figure 9-2.) The console also enables the configura-
tion of application endpoint mappings with the provider. In a JWSDP
1.0 default installation (JAXM 1.1 Reference implementation), the
JAXM administration console can be accessed through a Web
browser at http://localhost:8081/jaxm-provideradmin/index.jsp.

JAXM provider. The JAXM provider is a JAXM-compliant messaging
infrastructure that implements the JAXM API interfaces and classes.
It facilitates the transmission and routing of JAXM messages. When
there is a transmission failure, the provider takes the responsibility of
resending it. The provider also facilitates other reliability requirements
like message persistence, acknowledgement, and so on. The JAXM
infrastructure providers are required to be in compliance with SOAP
1.1 specifications and its supported transport protocol bindings,

XML Messaging Using JAXM and SAAJ 405

TEAMFL
Y

Team-Fly®

which enables messaging interoperability with non-JAXM clients
with SOAP 1.1 compliance. A provider can be set up and configured
as part of a Java servlet 2.2-compliant Web container or a J2EE 1.3-
compliant application server. To send and receive messages, the
JAXM client establishes a connection with the provider. The provider
tracks the sending and receiving of messages, ensuring guaranteed
message delivery as defined by the underlying messaging protocol.
The JAXM provider uses profiles to support the messaging protocols
implemented over SOAP 1.1. The JAXM 1.1 RI currently provides
messaging profiles for SOAP-RP and ebXML.

JAXM Messaging: Interaction Patterns
As per the JAXM 1.1 specifications, all JAXM provider implementations
must provide and facilitate the following message interaction patterns:

Asynchronous inquiry. In this pattern, a message producer applica-
tion sends a message and does not wait for a response from the
message consumer. The message consumer processes the message
and returns a response as a new operation. That is, the process of
both sending and receiving the messages occurs in two separate
operations.

Asynchronous update with acknowledgment. The message con-
sumer acknowledges the receipt of the message to the provider or
its message sender. This acknowledgment depends upon the imple-
mentation of the provider.

Synchronous inquiry. Synchronous inquiries are typical to request/
response-based communication: The message sender waits for a
response after sending a message to the receiver using the same
connection.

Synchronous update. Like the asynchronous update, in a synchronous
update after sending the initial request, the message’s sender waits for
a response as an acknowledgement that the message was sent.

Fire and forget. The message sender does not wait or anticipate a
response from the message receiver.

Now, let’s explore the previous JAXM features and how they are repre-
sented in the JAXM programming model.

406 Chapter 9

JAXM API Programming Model

The JAXM 1.1 API defines a single package structure with a set of inter-
faces and classes to support the JAXM clients intending to do messaging
with a JAXM provider or directly to a SOAP service:

javax.xml.messaging

JAXM also depends upon the javax.xml.soap package provided by
the SAAJ 1.1 API. SAAJ 1.1 provides the high-level abstraction factory
classes for constructing and handling SOAP 1.1-compliant messages with
or without attachments.

javax.xml.messaging
This package provides a set of interfaces and classes for creating JAXM
clients. JAXM clients can send and receive messages as asynchronous or
synchronous one-way transmissions with a JAXM provider- or SOAP-
based service. The JAXM API interfaces and classes are discussed in the
following text.

Interfaces

javax.xml.messaging.OneWayListener. An asynchronous
messaging listener interface for the JAXM client components intended
to be the asynchronous consumers of JAXM messages. JAXM clients
can implement this interface and use an onMessage() method to
consume messages. The onMessage() method is invoked when the
message arrives at the destination endpoint of the JAXM provider.
OneWayListener can be implemented as a servlet by extending
a JAXM servlet interface and deploying Java servlet 2.2-compliant
servlet containers (like Apache Tomcat or J2EE 1.3-compliant applica-
tion servers). It also can be implemented as a MessageDrivenBean
in the future J2EE environment because the upcoming J2EE 1.4-
compliant application server is expected to support it.
public class ConsumerServlet extends JAXMServlet

implements OnewayListener {

public void onMessage(SOAPMessage msg) {

//Implement your business logic here

}

}

XML Messaging Using JAXM and SAAJ 407

javax.xml.messaging.ReqRespListener. Provides a synchro-
nous messaging listener interface for the JAXM client components
to consume JAXM messages as http-based requests and responses.
In this case, the client sending the request javax.xml.soap.
SOAPConnection via a call method waits for a response from the
receiver. The receiver receives the ReqRespListener interface
and uses an onMessage() method to receive and send a response
back to the sender. When using the OneWayListener, the
ReqRespListener interface can be implemented as a servlet by
extending a JAXM servlet interface and deploying Java Servlet
2.2-compliant servlet containers (like Apache Tomcat or J2EE 1.3-
compliant application servers). But in this case, the JAXM provider
connection is not required because the request/responses, using a
SOAP connection, are directly bound to HTTP.
public class ConsumerServlet extends JAXMServlet

implements ReqRespListener {

public void onMessage(SOAPMessage msg) {

//Implement your business logic here

}

}

javax.xml.messaging.ProviderConnection. Creates a client
connection to a JAXM provider. The connection is obtained from a
ProviderConnectionFactory object that defines a set of pre-
configured connections to a JAXM provider. The JAXM client does
a JNDI lookup of a ProviderConnectionFactory and then
uses a createConnection() method to obtain a connection to
the JAXM provider.
Context myCtx = new InitialContext();

ProviderConnectionFactory pcf =

(ProviderConnectionFactory)

myCtx.lookup(“SunOneProvider”);

ProviderConnection pcon = pcf.createConnection();

javax.xml.messaging.ProviderMetaData. Provides the details
of the JAXM provider to which the client has a connection.

Classes

javax.xml.messaging.JAXMServlet. A utility class for imple-
menting a JAXM client as an HTTP servlet. It also facilitates sending
and receiving JAXM messages synchronously or asynchronously
using HTTP.

408 Chapter 9

javax.xml.messaging.Endpoint. An object that represents an
application’s endpoint, which represents the actual destination of
messages and is identified using a URI. It is a messaging provider
that identified with a destination, which has to be configured to be
an endpoint.

javax.xml.messaging.URLEndpoint. Represents a URL as a
special endpoint for JAXM client applications that communicate
directly with another SOAP-based application without using a
JAXM provider.

Exceptions

javax.xml.messaging.JAXMException. Throws an exception
while a JAXM exception occurs. The exception details the reasons
such as failure to obtain provider connection, message header issues,
and so on.

javax.xml.soap (SAAJ 1.1 APIs)
The JAXM APIs depend upon this package for creating and handling SOAP
messages and its attachments. In addition to creating and handling SOAP
messages, this package also provides a SOAP client view for enabling
point-to-point or request/response messaging with any SOAP 1.1-compli-
ant service. The SAAJ API interfaces and classes are discussed in the fol-
lowing text.

Interfaces

javax.xml.soap.SOAPEnvelope. The container of the
SOAPHeader and SOAPBody object entries. It also is part of a
SOAPPart object. The client can access the SOAPHeader and
SOAPBody objects by using its setter or getter methods for creating
or retrieving elements.
SOAPPart soapPart = message.getSOAPPart();

SOAPEnvelope soapEnv = soapPart.getEnvelope();

SOAPHeader soapHeader = soapEnv.getHeader();

SOAPBody soapBody = soapEnv.getBody();

javax.xml.soap.SOAPBody. Represents the contents of the SOAP
body element in a SOAP message.

XML Messaging Using JAXM and SAAJ 409

javax.xml.soap.SOAPBodyElement. Represents the contents in
a SOAPBody object. The SOAPBodyElement object can be added to
a SOAPBody object with a SOAPBody method
(addBodyElement(elementName).
SOAPBodyElement

soapBodyElement = soapBody.addBodyElement(bookName);

javax.xml.soap.SOAPHeader. Represents the contents of the
SOAPHeader element. A SOAPHeader object can be created using
the SOAPEnvelope method addHeader().
SOAPHeader soapHeader = soapEnv.addHeader();

javax.xml.soap.SOAPHeaderElement. Represents the contents
in the SOAPHeader part of the SOAP envelope. The SOAPHeader-
Element object can be created using addHeaderElement, which
adds a header element to the SOAPHeader object.
SOAPHeaderElement soapHeaderElem

= soapHeader.addHeaderElement(elementName);

javax.xml.soap.SOAPConstants. Defines a number of constants
specific to the SOAP 1.1 protocol, such as namespace, URI identifier
for SOAP encoding, and so on.

javax.xml.soap.SOAPElement. Represents the contents of a
SOAPBody object, SOAPHeader object, SOAPFault object, and the
content in a SOAPEnvelope object, and so forth. It acts as the base
class\representation for all of the SOAP objects as per the SOAP 1.1
specifications.

javax.xml.soap.SOAPFault. Contains the error/status informa-
tion of a SOAP message. It provides the getter and setter methods for
getting the SOAP fault information contained in a SOAPFault
object and for setting the fault code, the fault actor, and fault
string. The contents of a SOAPFault object can be defined with the
SOAPFaultElement object using the SOAPElement method
addTextNode(String).

javax.xml.soap.Detail. Is the part of a SOAPFault object that
provides detailed error information. It also is a container for the
DetailEntry objects that contain application-specific error or status
information.

javax.xml.soap.DetailEntry. Represents the contents of a
Detail object that provides details for a SOAPFault object.

410 Chapter 9

javax.xml.soap.Name. A representation of an XML name that
declares namespace-qualified names and obtains the prefix associated
with the namespace. An example of an application-specific name-
space declaration of an element is shown as follows:
<wiley:GetBookPrice

xmlns:wiley=”http://jws.wiley.com/JavaWebservices”>

where <wiley:GetBookPrice> refers to the qualified name, wiley
refers to the prefix, GetBookPrice refers to the name, and http:
//jws.wiley.com/JavaWebservices refers to its namespace URI.

To create an application-specific XML name object in a
SOAPEnvelope, see the following sample code snippet:
Name nameObj = soapEnvelope.createName

(“GetBookPrice”, “wiley”,

“http://jws.wiley.com/JavaWebservices”);

javax.xml.soap.Node. Represents the DOM representation of a
node in an XML document and provides methods for manipulating
a DOM tree—like adding, setting the values of a node, and removing
a node from the tree.

javax.xml.soap.Text. Represents the value of node as a text
object.

Classes

javax.xml.soap.MessageFactory. Provides a factory class for
creating SOAPMessage objects. The SOAP message object can be
created by obtaining an instance of the MessageFactory class:
MessageFactory msgFactory = MessageFactory.newInstance();

SOAPMessage soapMsg = msgFactory.createMessage();

In the case of using a JAXM provider connection, the SOAP message
objects can be created using a messaging profile:
MessageFactory msgFactory

= providerConn.createMessageFactory(ProfileURI);

SOAPMessage soapMsg = msgFactory.createMessage();

where ProfileURI refers to the URI of the XML schema of the
messaging profile.

javax.xml.soap.SOAPConnection. Using the SOAPConnection
object, a SOAP client can send and receive messages as requests and

XML Messaging Using JAXM and SAAJ 411

responses. To create a SOAPConnection, the client can obtain an
instance of SOAPConnectionFactory and then use the factory to
create a connection:
SOAPConnectionFactory scf =

SOAPConnectionFactory.newInstance();

SOAPConnection con = factory.createConnection();

javax.xml.soap.SOAPMessage. A SOAPMessage is the root class
for all messages. It can be created using a MessageFactory object.
Using a messaging profile with the MessageFactory, it can produce
SOAP messages conforming to the profile. A SOAPMessage object
contains a SOAP part and zero or more SOAP attachment parts.

javax.xml.soap.SOAPPart. When a SOAPMessage is created,
it contains a SOAPPart object that acts as the MIME part container,
including the MIME headers and the SOAPEnvelope. To obtain the
SOAPPart object of a SOAPMessage object, call a getSOAPPart
method:
SOAPMessage soapMsg = msgFactory.createMessage();

SOAPPart soapPart = soapMsg.getSOAPPart();

javax.xml.soap.AttachmentPart. To add application-specific
attachments to a SOAPMessage, an AttachmentPart object can
be created using the SOAPMessage.createAttachmentPart
method. The following sample code snippet creates an attachment
to a SOAP message with a string data by name myContentString
and the MIME type text/plain:
SOAPMessage soapMsg = msgFactory.createMessage();

AttachmentPart attPart = soapMsg.createAttachmentPart();

attPart.setContent(myContentString, “text/plain”);

soapMsg.addAttachmentPart(attPart);

To attach non-text or binary data:
SOAPMessage soapMsg = msgFactory.createMessage();

AttachmentPart attPart = soapMsg.createAttachmentPart();

attPart.setContent

(new ByteArrayInputStream(dukeJPG), “image/jpeg”);

soapMsg.addAttachmentPart(attPart);

javax.xml.soap.SOAPFactory. Provides the factory class
for creating SOAP element fragments, such as adding child
elements of a SOAPEnvelope, a SOAPBodyElement, or a
SOAPHeaderElement. To add a SOAPElement object, call a
createElement method:

412 Chapter 9

Exceptions

javax.xml.soap.SOAPException. Throws an exception while a
SOAP exception is occurring. The exception details the reasons such
as failure to obtain a SOAP connection, SOAP message header issues,
and so forth.

Basic Programming Steps for Using JAXM

The JAXM 1.1 specification defines two different types of communication
scenarios where we can use the JAXM APIs for creating, sending, and
receiving messages. These scenarios depend upon using a JAXM provider
or directly connecting a SOAP service without using a JAXM provider.

Let’s take a look at those scenarios and walk through the programming
steps required for handling these scenarios.

Using a JAXM Provider
Figure 9.3 illustrates a JAXM provider-based communication scenario.

Figure 9.3 JAXM communication using providers.

JAXM
Application

Company A

Send

SOAP/ebXML messages

Receive

Messaging
Profiles

JAXM
Provider

JAXM
Application

Company B

Messaging
Profiles

JAXM
Provider

XML Messaging Using JAXM and SAAJ 413

The key features of using a JAXM provider-based communication are as
follows:

■■ It defines an asynchronous communication model where the sender
and receiver do not need to be connected at all times and the receiver
does not require blocking of the destination for receiving messages.

■■ It provides reliability mechanisms to store and forward messages
to one-to-many destinations and uses messaging profiles to adopt
high-level messaging protocols like ebXML.

If a JAXM messaging provider is used, when a client sends a message,
the message goes to the messaging provider and then is forwarded to its
recipient. The provider facilitates the transmission to its destination receiv-
ing the message on behalf of the application. It is important to note that to
run a JAXM application using a messaging provider, we must configure the
JAXM client and the messaging provider.

Steps for Sending Messages with a Message Provider

The key programming steps for sending messages using JAXM APIs with
a messaging provider are as follows:

1. Create a connection to the provider.

2. Create a message factory.

3. Create a message.

4. Populate the message.

5. Add the attachment parts.

6. Save the message.

7. Send the message.

8. Close the provider connection.

Each of these steps is described in the following paragraphs.

Creating a Connection to the Provider

First, we need to instantiate a ProviderConnection object to create an
active connection to the messaging provider. To create this connection, we
use a JNDI lookup to obtain an instance of the ProviderConnection-
Factory class. Once we get an instance of the connection factory, we then
can create a connection to the messaging provider.

414 Chapter 9

//Use a JNDI lookup to create the Initial naming context

Context ctx = new InitialContext();

// Look up a JAXM provider connection factory

ProviderConnectionFactory pcf

= (ProviderConnectionFactory)ctx.lookup(providerURI);

// Create a JAXM provider connection

ProviderConnection pc = pcf.createConnection();

Creating a Message Factory

Use the connection to create a MessageFactory object, which is used
to create a message. When you create a MessageFactory object, the
MessageFactory returned creates instances of SOAPMessage subclasses
appropriate to the given messaging profile. Before creating Message-
Factory, we first must find out the provider-supported profiles from its
metadata information and ensure that the provider supports the profile we
need to use. In the following snippet, the profile that matches the ebXML
profile is passed as a String to the method createMessageFactory:

// Use the Provider connection to obtain provider metadata

ProviderMetaData metaData = pc.getMetaData();

// Find out the Provider supported profiles

String[] supportedProfiles = metaData.getSupportedProfiles();

String profile = null;

// find the profile that matches the ‘ebxml’ profile

for(int i=0; i < supportedProfiles.length; i++) {

if(supportedProfiles[i].equals(“ebxml”)) {

profile = supportedProfiles[i];

break;

}

}

// Create a message factory from the Connection

// and using profile

MessageFactory msgFactory = pc.createMessageFactory(profile);

Creating a Message

Using the MessageFactory object, create a SOAPMessage object accord-
ing to a messaging profile provided with the JAXM 1.1 RI. For instance,
using the ebXML profile and its API implementation, the code snippet will
be as follows:

XML Messaging Using JAXM and SAAJ 415

TEAMFL
Y

Team-Fly®

//Create SOAP message using the ebXML Profile

EbXMLMessageImpl message =

(EbXMLMessageImpl)msgFactory.createMessage();

// Set the sender and receiver destination endpoints

message.setSender(new Party(senderEndpoint));

message.setReceiver(new Party(receiverEndpoint));

Because ebXML message packaging complies with SOAP 1.1 specifica-
tions and SOAP messages with attachments in addition to the ebXML mes-
sage headers and ebXML specific body elements, it also is possible to use
SOAP header elements and SOAP body elements.

Populating the Message

All messages are created with a SOAP part that contains a SOAP envelope,
and in turn, the SOAP envelope contains the SOAP header and SOAP
body. The SOAP part of the message including its header and body elements
can contain only data formatted using XML, whereas a SOAP attachment
part can contain any kind of data, including XML, non-XML, and binary
data. To populate the message, first do the following:

1. Get the message’s SOAPPart object, and then get its envelope object:
// Get the SOAP Part from the message.

SOAPPart soapPart = message.getSOAPPart();

// Get the SOAP Envelope

SOAPEnvelope soapEnvelope = soapPart.getEnvelope();

2. Use the SOAPEnvelope object to obtain both the SOAPHeader
object and SOAPBody object, which is used for setting the contents
of the SOAP part of the message:
// Create a soap header from the envelope

SOAPHeader soapHeader = soapEnvelope.getHeader();

// Create the SOAPBody

SOAPBody soapBody = soapEnvelope.getBody();

3. Add content to the header using a SOAPHeader object that contains
SOAPHeaderElement objects, so a new SOAPHeaderElement
object is created and added to the header. The new SOAPHeader-
Element object is initialized with the specified Name object.
SOAPHeaderElement headerElement =

soapHeader.addHeaderElement(

soapEnvelope.createName(“BookNo”,

“wiley”,”http://jws.wiley.com/jws”));

headerElement.addTextNode(“JWS100002”);

416 Chapter 9

4. Add content to the SOAPBody using SOAPBodyElement objects, so
a new SOAPBodyElement object is created and initialized with the
specified Name object.
// Create a Name object and add to SOAPBodyElement

Name bodyName = soapEnvelope.createName(

“SubmitPurchaseOrder”,”wiley”,

“http://jws.wiley.com/jws”);

SOAPBodyElement sbe =

soapBody.addBodyElement(bodyName);

// Create a Name object and add body child elements

Name elemName = soapEnvelope.createName(“BookName”);

se.addTextNode(“Developing Java Web services”);

Adding Attachment Parts

Our next step is to add AttachmentPart to the message using JavaBeans
Activation Framework (JAF) API. To add an attachment to the message, we
create an AttachmentPart object:

// Access the URL of an image attachment

URL url = new URL(“http://www.wiley.com/jws/jwsbookcover.jpg”);

// Use JAF, and create a JAF DataHandler with this URL

DataHandler dataHandler = new DataHandler(url);

// Create and Add an AttachmentPart

message.addAttachmentPart(

message.createAttachmentPart(dataHandler));

Saving the Message

Update the SOAPMessage object with all the additions to the message by
calling the saveChanges() method:

// Save the message

message.saveChanges();

Sending the Message

Now that the message has been created and the contents added and it is
ready to be sent, the message can be sent asynchronously using the
ProviderConnection method send():

// Send the message

pc.send(message);

XML Messaging Using JAXM and SAAJ 417

Closing the Provider Connection

The last step to do is close ProviderConnection by calling Provider-
Connection.close().

// Close the provider connection

pc.close();

Receiving Messages

To receive messages, we need to implement a JAXMServlet object or a
message-driven bean (J2EE 1.4) using a OneWayListener interface, and
then register it with the endpoint. When the message arrives at its destina-
tion, the messaging provider receives the message asynchronously and
then calls the registered JAXMServlet or MDB’s onMessage() method of
OneWayListener by passing it with the SOAPMessage object. The imple-
mentation of the onMessage() method determines how the message is
processed. In the case of receiving messages using request/response-based
messaging, we need to use ReqRespListener. Using ReqRespListener
does not require a messaging provider connection because it is bound to
use SOAPConnection using HTTP.

The key implementation steps for asynchronously receiving messages
using a JAXM provider (using OneWayListener) are as follows:

1. Create a servlet extending JAXMServlet and implementing the
OneWayListener interface that registers as a listener within the
servlet container.

2. Use JNDI to look up and create a JAXM ProviderConnection-
Factory instance.

3. Create ProviderConnection using ProviderConnection-
Factory.

4. Set MessageFactory for the required messaging profile.

5. Implement the onMessage() method to receive from the provider
and then to process the message.

A typical JAXM-based servlet implementation of receiving messages
using OneWayListener is shown in Listing 9.1.

418 Chapter 9

XML Messaging Using JAXM and SAAJ 419

// Upon receiving messages, the messaging provider

// calls the onMessage method of the OneWayListener,

// and then the SOAPMessage object.

public class ReceivingServlet extends JAXMServlet

implements OnewayListener {

//Initialize variables...

private ProviderConnectionFactory pcf;

private ProviderConnection pc;

public void init(ServletConfig servletConfig){

// lookup connection factory, create a connection and

// initialize the message factory

// Using a Local Provider (no URI required)

ProviderConnectionFactory pcf =

ProviderConnectionFactory.newInstance();

ProviderConnection pc = pcf.createConnection();

// Set message factory with the required

// profile API Implementation (ex. ebXML)

setMessageFactory(new EbXMLMessageFactoryImpl());

}...

// onMessage() method receives message

public void onMessage(SOAPMessage message) {

// process the message

....

}

}

Listing 9.1 A code snippet showing a JAXM servlet implementation for a provider-based
connection.

Using JAXM without a Provider (Using SOAPConnection)
When using JAXM without a messaging provider, application clients
send and receive messages directly with their remote partners via a SOAP
connection. The following figure illustrates a JAXM messaging scenario,
using SOAPConnection without a provider.

Figure 9.4 A JAXM communication without a provider or using SOAPConnection.

The key features of using JAXM without a provider are as follows:

■■ The JAXM-without-a-provider scenario defines a point-to-point
interaction and synchronous communication model where the
sender and receiver exchange messages as requests and responses.
The sender sends a message and waits for a response blocking the
destination. (See Figure 9-4.)

■■ The connection between partners is established directly and bound
to HTTP.

Steps for Sending a Message without a Message Provider

The key programming steps for sending messages using JAXM APIs with-
out a messaging provider or using a SOAP connection are as follows:

1. Create a SOAP connection.

2. Create a message factory.

3. Create a message.

4. Populate the SOAP message.

5. Add the SOAP attachment parts.

6. Save the SOAP message.

7. Send the message and receive the response.

8. Close the provider connection.

Each of these steps is described in the following paragraphs.

SOAP
Application
Client

Company A

SOAP connection Over HTTP

JAXM/SAAJ APIs

Messaging
Profiles

JAXM
Provider

Company B

SOAP Messages

Request/Responses

JAXM
ReqResp
Listener

JAXM/SAAJ APIs

420 Chapter 9

Creating a SOAP Connection

The first step is to create a SOAPConnection object for sending messages
directly with its partner application. To create this connection, we must
obtain an instance from the SOAPConnectionFactory class. Once we get
an instance of the connection factory, then we can create a SOAPConnection:

// Create an Instance of SOAP connection factory

SOAPConnectionFactory scf

= SOAPConnectionFactory.newInstance();

// Create a SOAP connection using the factory Instance

SOAPConnection sc = scf.createConnection();

Creating a Message Factory

Create an instance of a MessageFactory object, which enables the cre-
ation of instances of SOAPMessage:

// Create an instance of the message factory

MessageFactory msgFactory = MessageFactory.newInstance();

Creating a Message

Using the MessageFactory instance, create SOAPMessage objects:

SOAPMessage message = msgFactory.createMessage();

Populating the SOAP Message

All messages are created with a SOAP part that contains a SOAP envelope,
and in turn, it contains the SOAP header and SOAP body. The SOAP part
of the message, including its header and body elements, can contain only
data formatted using XML, whereas a SOAP attachment part can contain
any kind of data, including XML, non-XML, and binary data. This is the
same process that we discussed earlier when using the provider.

To populate the message, first we must get the message’s SOAPPart
object and then its envelope object:

// Get the SOAP Part from the message.

SOAPPart soapPart = message.getSOAPPart();

// Get the SOAP Envelope

SOAPEnvelope soapEnvelope = soapPart.getEnvelope();

Then, we must use the SOAPEnvelope object to obtain both the SOAP-
Header and SOAPBody objects used for setting the contents of the SOAP
part of the message:

XML Messaging Using JAXM and SAAJ 421

// Create a soap header from the envelope

SOAPHeader soapHeader = soapEnvelope.getHeader();

// Create the SOAPBody

SOAPBody soapBody = soapEnvelope.getBody();

Then, we add content to the header using a SOAPHeader object that con-
tains SOAPHeaderElement objects. A new SOAPHeaderElement object
then is created and added to the header. The new SOAPHeaderElement
object is initialized with the specified Name object:

SOAPHeaderElement headerElement

= soapHeader.addHeaderElement(

soapEnvelope.createName(“BookNo”, “wiley”,

“http://jws.wiley.com/jws”));

headerElement.addTextNode(“JWS100002”);

Next, we add content to the SOAPBody using SOAPBodyElement
objects, and a new SOAPBodyElement object is created and initialized
with the specified Name object:

// Create a Name object and add to SOAPBodyElement

Name bodyName = soapEnvelope.createName(

“SubmitPurchaseOrder”,”wiley”,”http://jws.wiley.com/jws”);

SOAPBodyElement sbe = body.addBodyElement(bodyName);

// Create a Name object and add body child elements

Name elemName = soapEnvelope.createName(“BookName”);

SOAPElement se = body.addChildElement(elemName);

se.addTextNode(“Developing Java Web services”);

Adding SOAP Attachment Parts

Our next step is to add AttachmentPart to the message using the JAF
API. This is the same process that we discussed earlier when using the
provider.

Now, to add attachments to the message, we create an Attachment-
Part object:

// Access the URL of an image attachment

URL url = new URL(“http://www.wiley.com/jws/jwsbookcover.jpg”);

// Use JAF, and create a JAF DataHandler with this URL

DataHandler dataHandler = new DataHandler(url);

// Create and Add an AttachmentPart

422 Chapter 9

message.addAttachmentPart(

message.createAttachmentPart(dataHandler));

Saving the SOAP Message

Update the SOAPMessage object with all the additions to the message by
calling the saveChanges() method:

// Save the message

message.saveChanges();

Sending the Message and Receiving a Response

Create a URLEndpoint, pass it with the URI of the remote partner, and
then send the messages using the SOAPConnection.call() method:

// Create an Endpoint of the remote partner

URLEndpoint urlEndpoint

= new URLEndpoint(“http://www.coffee.com/purchase”);

// Send the message and wait for response

SOAPmessage response = sc.call(message, urlEndpoint);

if (response != null) {

// do something here...

} else {

System.err.println(“No response received from partner”);

}

Closing the Provider Connection

The last step is to close the SOAPConnection by calling SOAPConnection
.close():

// Close the SOAP connection

sc.close();

Receiving Messages

On the client side, to receive messages synchronously and to send a
response message back to the sender, it is required that we use a JAXM-
Servlet implementing ReqRespListener.

The key implementation steps for synchronously receiving messages
using a ReqRespListener are as follows:

1. Create a servlet extending JAXMServlet and implementing the
ReqRespListener interface. This registers as a listener within the
servlet container.

XML Messaging Using JAXM and SAAJ 423

2. Create a MessageFactory instance.

3. Implement the onMessage() method to process the incoming
message and use the MessageFactory instance to create and
send a response message.

A typical JAXM-based servlet implementation using ReqRespListener
for receiving and sending response messages to the sender is shown in
Listing 9.2.

public class MyReqRespServlet extends JAXMServlet

implements ReqRespListener {

MessageFactory mf = null;

// Create a MessageFactory instance

static {

try {

mf = MessageFactory.newInstance();

} catch (Exception ex) {

e.printStackTrace();

}

};

public void init(ServletConfig sc) throws ServletException {

// Initialize servlet config...

}

// Upon receiving messages, calls the onMessage method

// Process the Incoming message and return a response

public SOAPMessage onMessage(SOAPMessage msg) {

try {

System.out.println(“The Incoming message: “);

msg.writeTo(System.out);

// Create and return a response message

SOAPMessage resp = mf.createMessage();

SOAPEnvelope se = resp.getSOAPPart().getEnvelope();

env.getBody().addChildElement(

se.createName(“ResponseMessage”)).addTextNode

(“Received Message, Thanks”);

return resp;

} catch(Exception e) {

// ...

}

}

}

Listing 9.2 A code snippet showing a JAXM servlet implementation for a SOAP-based
connection.

424 Chapter 9

This summarizes the JAXM API programming model and the program-
ming steps required to handle the different scenarios defined by the JAXM
1.1 specification.

JAXM Deployment Model

As per the JAXM 1.1 specification, the JAXM-based applications can be
packaged and deployed in Java servlet 2.2-compliant or J2EE 1.3-complaint
servlet containers. It also is expected that the upcoming J2EE 1.4 specifica-
tion and reference implementation will address JAXM-specific deploy-
ment information and its relationship with message driven Beans.

In the case of the JAXM applications not using a JAXM provider and
running as request/response-based SOAP communications, there is no
need to follow any packaging or deployment requirements except for the
JAXM API and SAAJ API libraries, which are required to be available in its
CLASSPATH. In general, it applies to JAXM applications that do not use a
servlet/J2EE container environment.

Deploying JAXM-Based Applications in JWSDP 1.0
In a JWSDP 1.0 environment, JAXM applications are implemented as a
servlet and are packaged either as a Web Application (WAR) or a J2EE
Application (EAR). Typical to servlet deployment, the deployment infor-
mation is provided using an XML-based deployment descriptor (web.xml).

The key steps in JAXM-based application deployment are as follows:

1. Ensure that the JWSDP environment is up and running. Log
onto your JWSDP/Tomcat administration console at http://
localhost:8080/admin/index.jsp. Navigate through the sidebar
options, Service (Internal Services) Host (jwsdp-services), and check
the CONTEXT for /jaxm-provider and /jaxm-provideradmin
available. This ensures that the JAXM provider is deployed and
available for use.

2. Create a working directory (for example, d:\jwsdp1_0\mywork\)
and build an environment (build.xml), ensuring that the CLASS-
PATH includes the following JAXM-specific class libraries and
application-specific class libraries (JARs).
activation.jar

mail.jar

jaxm-api.jar

saaj-api.jar

crimson.jar

dom4j.jar

XML Messaging Using JAXM and SAAJ 425

TEAMFL
Y

Team-Fly®

commons-logging.jar

servlet.jar

jaxp-api.jar

sax.jar

dom.jar

xercesImpl.jar

xalan.jar

xsltc.jar

3. As we discussed earlier in the JAXM programming model, the
JAXM-based applications using the provider must be implemented
as a servlet extending the JAXMServlet interface. In the case of a
message-receiving application, it is required that we implement an
onMessage() method. Create a build script ensuring that the pre-
viously listed libraries are included in the CLASSPATH. Compile
the application classes.

4. Create a Web application deployment descriptor (web.xml), defin-
ing the servlet-specific deployment parameters such as class name,
mapping, and so forth. For example:
<servlet>

<servlet-name>

consumerservlet

</servlet-name>

<servlet-class>

ch9.jaxmprovider.WileyConsumerServlet

</servlet-class>

<load-on-startup>

1

</load-on-startup>

</servlet>

<servlet-mapping>

<servlet-name>

consumerservlet

</servlet-name>

<url-pattern>

/wileyconsumer

</url-pattern>

</servlet-mapping>

5. Typical to any servlet deployment, ensure that the classes and
deployment descriptor reside in a WEB-INF directory. Package the
classes, including the deployment descriptor (web.xml), as a Web
application (WAR).

426 Chapter 9

The sample ANT build and deploy script will be shown as follows:
<—Compile the source code‡

<target name=”compile”>

<javac srcdir=”${work_dir}/src_dir”

destdir=”${build.dir}/${appname}/WEB-INF/classes”

<classpath >

<fileset refid=”jaxm-appclasspath” />

<fileset refid=”jaxm-classpath” />

<pathelement location=”${servlet.jar}” />

</classpath>

</javac>

<—Copy classes and deployment decriptor to WEB-INF directory‡

<copy todir=”${build.dir}/${appname}/WEB-INF/classes”>

<fileset dir=”${work_dir}/src_dir”>

<include name=”**/*.xml” />

</fileset>

</copy>

</target>

<—Package the application as WAR‡

<target name=”war”

depends=”main”

description=”Creating the WAR file”>

<jar jarfile=”webapps/jaxm-${appname}.war”

basedir=”${build.dir}/${appname}” >

<include name=”**”/>

</jar>

</target>

Copy the application WAR file, to the /webapps directory in the
JWSDP environment and restart the server. Using a Web browser,
check to see whether the servlet application is deployed and then
test the JAXM services using its clients.

Configuring JAXM Applications Using a JAXM Provider
In the case of JAXM-based applications using a JAXM provider, it is
required that we configure the applications with the provider, especially in
order to provide information about the mapping endpoint, message retry
intervals, logging, and so forth.

XML Messaging Using JAXM and SAAJ 427

Configuring a Client
To configure a client sending messages to a provider, a JAXM provider
requires the configuration descriptor file client.xml, which defines the
Endpoint, CallbackURL, Provider information, and so forth. The Call-
backURL defines a message consumer servlet to receive messages in case
of callbacks. This client.xml must be packaged along with the other
classes of the Web/J2EE application during deployment. Listing 9.3 shows
a code listing of a sample client.xml.

<?xml version=”1.0” encoding=”ISO-8859-1”?>

<!DOCTYPE ClientConfig

PUBLIC “-//Sun Microsystems, Inc.//DTD JAXM Client//EN”

“http://java.sun.com/xml/dtds/jaxm_client_1_0.dtd”>

<ClientConfig>

<Endpoint>

http://jws.wiley.com/jaxmapp/producer

</Endpoint>

<CallbackURL>

http://localhost:8080/jaxm-jaxmapp/messageconsumer

</CallbackURL>

<Provider>

<URI>http://java.sun.com/xml/jaxm/provider</URI>

<URL>http://localhost:8081/jaxm-provider/sender</URL>

</Provider>

</ClientConfig>

Listing 9.3 Sample Client.xml.

Configuring a Provider
The JAXM 1.1 RI provides a JAXM provider administration tool, which
enables the configuration of the JAXM provider with the application. It
also enables the identification of the JAXM application with the profile
used (ebXML, SOAP-RP) and the transport protocol (HTTP(s)), and it also
enables the definition of the destination endpoints, parameters required
for message retry interval, message logging, and so forth.

In a JWSDP 1.0 environment, the JAXM provider administration
console can be accessed via the Web browser at http://localhost:8081/
jaxm-provideradmin/index.jsp. In case of provider to provider communi-
cation running on different machines, the target provider URL needs to be
defined specific to the machine. The provider also can be configured using

428 Chapter 9

an XML-based configuration (provider.xml). Listing 9.4 is a code listing
of a sample provider.xml.

<?xml version=”1.0” encoding=”UTF-8”?>

<!DOCTYPE ProviderConfig PUBLIC “-//Sun Microsystems, Inc.//DTD JAXM

Provider//EN” “http://java.sun.com/xml/dtds/jaxm_provider_1_0.dtd”>

<ProviderConfig>

<Profile profileId=”ebxml”>

<Transport>

<Protocol>http</Protocol>

<Endpoint type=”uri”>

<URI>http://www.wiley.com/jaxmebxml/consumer</URI>

<URL>http://192.168.168.100:8081/jaxm-receiver/ebxml</URL>

</Endpoint>

<Endpoint type=”uri”>

<URI>http://www.wiley.com/jaxmebxml/producer</URI>

<URL>http://192.168.168.101:8081/receiver/ebxml</URL>

</Endpoint>

<ErrorHandling>

<Retry>

<MaxRetries>5</MaxRetries>

<RetryInterval>2000</RetryInterval>

</Retry>

</ErrorHandling>

<Persistence>

<Directory>ebxml/wiley</Directory>

<RecordsPerFile>10</RecordsPerFile>

</Persistence>

</Transport>

<Transport>

<Protocol>https</Protocol>

<Persistence>

<Directory>ebxml-https/</Directory>

<RecordsPerFile>10</RecordsPerFile>

</Persistence>

</Transport>

</Profile>

<Profile profileId=”soaprp”>

<Transport>

<Protocol>http</Protocol>

<Endpoint type=”uri”>

<URI>http://www.wiley.com/jaxmsoaprp/producer</URI>

<URL>http://127.0.0.1:8081/jaxm-provider/receiver/soaprp</URL>

</Endpoint>

<ErrorHandling>

Listing 9.4 Sample Provider.xml for configuring a provider-based communication.
(continues)

XML Messaging Using JAXM and SAAJ 429

<Retry>

<MaxRetries>3</MaxRetries>

<RetryInterval>2000</RetryInterval>

</Retry>

</ErrorHandling>

<Persistence>

<Directory>soaprp/</Directory>

<RecordsPerFile>20</RecordsPerFile>

</Persistence>

</Transport>

</Profile>

<ErrorHandling>

<Retry>

<MaxRetries>3</MaxRetries>

<RetryInterval>2000</RetryInterval>

</Retry>

</ErrorHandling>

<Persistence>

<Directory>tempdir/</Directory>

<RecordsPerFile>11</RecordsPerFile>

</Persistence>

</ProviderConfig>

Listing 9.4 Sample Provider.xml for configuring a provider-based communication.
(continued)

The following section discusses how to develop and deploy JAXM-based
applications and services in a JWSDP 1.0 environment.

Developing JAXM-Based Web Services

In this section, we illustrate and discuss example scenarios of developing
JAXM-based Web services applications using the JAXM 1.1 reference
implementation (JAXM RI) provided in the JWSDP 1.0 bundle. In particu-
lar, we will be implementing Web services using the following JAXM-
based messaging scenarios:

■■ Point-to-point/Synchronous messaging without using a JAXM
provider

■■ Asynchronous messaging using a JAXM provider

430 Chapter 9

To illustrate the previous scenarios, we implement a purchase order sub-
mission process in a B2B connectivity between a seller (service provider)
and buyer (service requestor). The buyer sends out an XML message with
purchase order information to the service provider, and the service provider
receives and acknowledges the message.

Point-to-Point Messaging
Using JAXM (SOAPConnection)
In this example scenario, we implement a standalone JAXM application
client (service requestor) and a JAXM-based servlet (service provider) run-
ning in a JWSDP/Tomcat container environment. Both the service requestor
and service provider communicate directly through requests and responses
through the same SOAP Connection and without using a JAXM provider.
The application client sends a request (purchase order) directly to the JAXM
servlet endpoint and passes an XML document, and the JAXM servlet
receives the XML document and returns a response.

Creating a Standalone JAXM Client

The JAXM RI provides class libraries to generate SOAP messages using the
JAXM/SAAJ APIs and a client-side runtime library to send and receive
messages from the remote application partner. We will use these libraries
to implement and test them.

Listing 9.5 shows a code listing for a standalone JAXM client (Stand-
aloneSOAPClient.java).

package jws.ch9.jaxmp2p.sender;

import java.io.*;

import java.net.URL;

import javax.xml.transform.*;

import javax.xml.transform.stream.*;

import org.dom4j.*;

import javax.xml.soap.*;

/*

* StandaloneSOAPClient.java

Listing 9.5 StandaloneSOAPClient.java. (continues)

XML Messaging Using JAXM and SAAJ 431

* Usage: StandaloneSOAPClient <endpoint URL> <XML Document>

*/

public class StandaloneSOAPClient {

// Main method

public static void main(String args[]) {

try {

URL endpoint = null;

if (args.length != 2) {

System.err.println(“Usage:StandaloneSOAPClient

<endpointURL> <XMLDocument>”);

System.exit(1);

}

// Obtain the endpoint URL of the JAXM receiver as an argument

endpoint=new URL(args[0]);

// Create an Instance of SOAP connection factory

SOAPConnectionFactory scf

= SOAPConnectionFactory.newInstance();

// Create a SOAP connection using the factory Instance

SOAPConnection sc = scf.createConnection();

// Create an instance of the message factory

MessageFactory msgFactory = MessageFactory.newInstance();

// Create a message from the message factory.

SOAPMessage message = msgFactory.createMessage();

// Get the SOAP Part from the message.

SOAPPart soapPart = message.getSOAPPart();

// Get the SOAP Envelope

SOAPEnvelope envelope = soapPart.getEnvelope();

// Get the XML content from the current dir (file)

// as a Stream source

StreamSource ssrc=new StreamSource(

new FileInputStream(args[1]));

// Set the Content as SOAP part

Listing 9.5 StandaloneSOAPClient.java.

432 Chapter 9

soapPart.setContent(ssrc);

// Save the Message

message.saveChanges();

System.out.println(“Sending XML message to URL: “+ endpoint);

// Send the message and obtain the response

SOAPMessage response = sc.call(message, endpoint);

System.out.println(“\n=======================================\n”);

System.err.println(“\nMessage sent to :” + endpoint + “

\nSent Message logged to file:

P2PMessageSent.txt”);

// Write the sent message to log

FileOutputStream sentFile =

new FileOutputStream(“P2PMessageSent.txt”);

message.writeTo(sentFile);

sentFile.close();

// Receive the response and display its content as String

boolean receivedResponse =true;

if(receivedResponse) {

System.out.println(“\n=====================================\n”);

System.out.println(“Displaying the response message:”);

// Create an Instance of Transformer factory

TransformerFactory tFact=TransformerFactory.newInstance();

// Create a Transformer using the factory Instance

Transformer transformer = tFact.newTransformer();

// Obtain the SOAPPart/Content from the SOAP message

Source content=response.getSOAPPart().getContent();

// Write the content as String

StreamResult respMsg=new StreamResult(System.out);

Listing 9.5 StandaloneSOAPClient.java. (continues)

XML Messaging Using JAXM and SAAJ 433

// Transform the received XML document to String

transformer.transform(content, respMsg);

}

// Close the SOAP connection

sc.close();

} catch(Throwable e) {

e.printStackTrace();

}

}

}

Listing 9.5 StandaloneSOAPClient.java. (continued)

Ensure that the JAXM RI and other dependent class libraries are avail-
able in CLASSPATH. (For CLASSPATH requirement details, refer to the
section titled JAXM Deployment Model earlier in this chapter.) Then, compile
StandaloneSOAPClient.java using the Ant build script (build.xml).
Figure 9.5 shows the output of the compilation.

JAXM Receiver Servlet

Now, let’s take a look at the remote partner running as servlet in a JWSDP
environment (using a Tomcat servlet container). The servlet extends the
JAXM servlet, implements ReqRespListener, receives the messages as a
SOAP request, and returns a SOAR response message over HTTP. Listing 9.6
shows the code for the JAXM servlet (JAXMReceiverServlet.java).

Figure 9.5 Compiling StandaloneSOAPClient.java.

434 Chapter 9

package jws.ch9.jaxmp2p.receiver;

import javax.servlet.*;

import javax.servlet.http.*;

import javax.xml.transform.*;

import javax.naming.*;

import javax.xml.soap.*;

import javax.xml.messaging.*;

/**

* JAXMReceiverServlet.java.

* Runs as a Servlet in a Servlet container based JWSDP environment

*/

public class JAXMReceiverServlet extends JAXMServlet

implements ReqRespListener

{

static MessageFactory mf = null;

// Create an instance of the message factory

static {

try {

mf = MessageFactory.newInstance();

} catch (Exception e) {

e.printStackTrace();

}

};

// Initialize servlet config

public void init(ServletConfig sc) throws ServletException {

super.init(sc);

}

// Upon receiving messages, calls the onMessage method

// Process the Incoming message and return a response

public SOAPMessage onMessage(SOAPMessage msg) {

SOAPMessage message = null;

System.out.println(“Running JAXMReceiverClient”);

try {

Listing 9.6 JAXMReceiverServlet.java. (continues)

XML Messaging Using JAXM and SAAJ 435

TEAMFL
Y

Team-Fly®

System.out.println(“Incoming message: “);

// Write out Incoming message

msg.writeTo(System.out);

// Create a SOAP message using message factory instance

message = mf.createMessage();

// Get the SOAP Part and create an envelope

SOAPEnvelope envelope

= message.getSOAPPart().getEnvelope();

// Add elements to the SOAP body

envelope.getBody()

.addChildElement(envelope.createName(“Response”))

.addTextNode(“Purchase order received successfully”);

} catch(Exception e) {

e.printStackTrace();

}

// Return the response message

return message;

}

}

Listing 9.6 JAXMReceiverServlet.java. (continued)

Create a Web application deployment descriptor (web.xml) for JAXM-
ReceiverServlet. Listing 9.7 shows the code for the deployment
descriptor (web.xml).

<?xml version=”1.0” encoding=”ISO-8859-1”?>

<!DOCTYPE web-app

PUBLIC “-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN”

“http://java.sun.com/j2ee/dtds/web-app_2_2.dtd”>

<web-app>

<servlet>

<servlet-name>

jaxmreceiver

</servlet-name>

<servlet-class>

jws.ch9.jaxmp2p.receiver.JAXMReceiverServlet

</servlet-class>

Listing 9.7 Web deployment descriptor (web.xml).

436 Chapter 9

<load-on-startup>

2

</load-on-startup>

</servlet>

<servlet-mapping>

<servlet-name>

jaxmreceiver

</servlet-name>

<url-pattern>

/jaxmreceiver

</url-pattern>

</servlet-mapping>

</web-app>

Listing 9.7 Web deployment descriptor (web.xml). (continued)

Now, we are all set to compile and deploy the servlet (see Figure 9.6).
First, we must ensure that the JAXM RI and other dependent class libraries
are available in CLASSPATH as per the CLASSPATH requirement details,
provided in the section titled JAXM Deployment Model. Navigate to the
source directory and run the Ant build script (build.xml).

Figure 9.6 Packaging and deploying the JAXMReceiverServlet.

XML Messaging Using JAXM and SAAJ 437

The build script will compile and copy the jaxm-jaxmreceiver.war
file to the Tomcat Webapps directory. Restart the Tomcat server and ensure
that the servlet is deployed and JAXMReceiverServlet is ready for use.
The deployed servlet facilitates a JAXM service endpoint available for use
at http://localhost:8080/jaxm-jaxmreceiver/jaxmreceiver.

Testing the Scenario

To test the scenario, ensure that the CLASSPATH is set. Then, run the client
program providing the endpoint URL of the receiver and the name of the
XML document as parameters for using the following command:

java jws.ch9.jaxmp2p.sender.StandaloneSOAPClient

http://localhost:8080/jaxm-jaxmreceiver/jaxmreceiver

PurchaseOrder.xml

If everything works successfully, you should receive the output in
Figure 9.7.

As the output shows, the StandaloneSOAPClient sends the SOAP
message to the endpoint URL of the JAXMReceiverServlet as a request.
In turn, the JAXMReceiverServlet returns a reply message via the
same connection, which contains the response “Purchase order received
successfully.”

Now that you have seen an example of a point-to-point messaging
scenario, the following section gives you a look at the asynchronous
messaging scenario using the JAXM provider.

Figure 9.7 Output showing the message sent to JAXMReceiverServlet.

438 Chapter 9

Asynchronous Messaging Using the JAXM Provider
In this example scenario, we implement both the producer and consumer
of messages as servlets using JAXM providers running on a local JWSDP/
Tomcat container environment. Both the message producer (service
requestor) and message consumer (service provider) communicate asyn-
chronously using the JAXM provider.

We will be using the ebXML messaging profile and its API implementa-
tion provided with the JAXM RI. In addition to constructing the basic SOAP
message, we also will add ebXML headers in the message, using the APIs
provided with JAXM RI. This enables the SOAP message to take advantage
of the JAXM provider and the characteristics of ebXML messaging.

The message producer servlet sends a document to its JAXM provider,
and in turn, the provider forwards the message to the next destination end-
point. The provider associated with that endpoint receives the message
asynchronously and then forwards it to its ultimate destination, which is a
message consumer servlet.

ebXML Producer Servlet

Because ebXML is built on SOAP and complies with the SOAP 1.1 specifi-
cations and SOAP Messages with Attachments, in this section we will be
constructing a SOAP message using the ebXML message profile and its
API implementation provided with JAXM 1.1 RI. We will be using a
JWSDP 1.0/Tomcat container as our JAXM provider, and both the message
producer and consumer servlet will run in the same environment.

The message producer servlet sends a book purchase order (an XML
document) to the Wiley Web services provider. As part of the message, it
also uses an attachment URL showing the book information.

Listing 9.8 shows the code for the ebXML producer servlet (ebXMLPro-
ducerServlet.java).

package jws.ch9.jaxmebxml.producer;

import java.net.*;

import java.io.*;

import java.util.*;

import javax.servlet.http.*;

import javax.servlet.*;

import javax.xml.messaging.*;

import javax.xml.soap.*;

Listing 9.8 ebXMLProducerServlet.java. (continues)

XML Messaging Using JAXM and SAAJ 439

import javax.activation.*;

// Import ebXML profile implementation

import com.sun.xml.messaging.jaxm.ebxml.*;

/**

* ebXMLProducerServlet.java

* Uses a provider based connection to send messages

* Runs as a servlet in a container based environment

*/

public class ebXMLProducerServlet extends HttpServlet {

private String MessageFrom

=”http://www.wiley.com/jaxmebxml/producer”;

private String MessageTo =

“http://www.wiley.com/jaxmebxml/consumer”;

private String attachmentURL =

“http://www.wiley.com/cda/product/0,,0471236403,00.html”;

private ProviderConnectionFactory pcf;

private ProviderConnection pc;

private MessageFactory mf = null;

public void init(ServletConfig servletConfig)

throws ServletException {

super.init(servletConfig);

try {

// Creates an instance of ProviderConnectionFactory and

// establishes Provider connection

pcf = ProviderConnectionFactory.newInstance();

pc = pcf.createConnection();

} catch(Exception e) {

e.printStackTrace();

}

}

public void doGet(HttpServletRequest req,

HttpServletResponse resp)

throws ServletException, IOException {

PrintWriter out = resp.getWriter();

Listing 9.8 ebXMLProducerServlet.java.

440 Chapter 9

resp.setContentType(“text/html”);

try {

if (mf == null) {

// Get Provider supported messaging profiles

ProviderMetaData metaData = pc.getMetaData();

String[] supportedProfiles

= metaData.getSupportedProfiles();

String profile = null;

for(int i=0; i < supportedProfiles.length; i++) {

// Find out the ebXML profile by matching ebXML

if(supportedProfiles[i].equals(“ebxml”)) {

profile = supportedProfiles[i];

break;

}

}

// Create a Message factory instance using the profile

mf = pc.createMessageFactory(profile);

}

// Create an ebXML message from the message factory.

EbXMLMessageImpl ebxmlMsg

= (EbXMLMessageImpl)mf.createMessage();

// Set the Message sender and receiver

ebxmlMsg.setSender(new Party(MessageFrom));

ebxmlMsg.setReceiver(new Party(MessageTo));

// Get the SOAP Part from the message.

SOAPPart soapPart = ebxmlMsg.getSOAPPart();

// Get the SOAP Envelope

SOAPEnvelope soapEnvelope = soapPart.getEnvelope();

// Create the SOAPBody

SOAPBody soapBody = soapEnvelope.getBody();

// Create a Name object and add to SOAPBodyElement

Name bodyName =

Listing 9.8 ebXMLProducerServlet.java. (continues)

XML Messaging Using JAXM and SAAJ 441

soapEnvelope.createName(“SubmitPurchaseOrder”,

“wiley”,”http://jws.wiley.com/jws”);

SOAPBodyElement sbe = soapBody.addBodyElement(bodyName);

// Create a Name object and add body child elements

Name elemName = soapEnvelope.createName(“BookName”);

SOAPElement se = soapBody.addChildElement(elemName);

se.addTextNode(“Developing Java Web services”);

// Set Attachment URL

URL url = new URL(attachmentURL);

// Add Attachment URL as an attachment

AttachmentPart ap =

ebxmlMsg.createAttachmentPart(new DataHandler(url));

ap.setContentType(“text/html”);

// Add the attachment part to the message.

ebxmlMsg.addAttachmentPart(ap);

// Print the message delivery status of Message

out.println(“<html><head><title>”);

out.println(“ebXML Producer Servlet

- Status </title></head>”);

out.println(“<H1> ebXML Producer Servlet

- Status </H1></HR>”);

out.println(“<H3>Message sent to : “

+ ebxmlMsg.getTo() + “</H3><HR>”);

// Write the sent message to a file

out.println(“<H3>Sent Message saved to file

in \”e:\\jaxm\\messages\\ebXMLsent.msg\”</H3>”);

FileOutputStream sentFile =

new FileOutputStream(“e:\\jaxm\\messages\\ebXMLsent.msg”);

ebxmlMsg.writeTo(sentFile);

sentFile.close();

// Send the message using the provider connection

pc.send(ebxmlMsg);

out.println(“<H3>Message delivered

to the provider</H3><HR>”);

out.close();

// Close the provider connection

Listing 9.8 ebXMLProducerServlet.java.

442 Chapter 9

pc.close();

} catch(Throwable e) {

e.printStackTrace();

}

}

}

Listing 9.8 ebXMLProducerServlet.java. (continued)

Create a client configuration descriptor (client.xml) for the ebXML-
ProducerServlet, providing the client endpoint, callbackURL,
and its provider URL. Listing 9.9 shows the code for the Client.xml.

<?xml version=”1.0” encoding=”ISO-8859-1”?>

<!DOCTYPE ClientConfig

PUBLIC “-//Sun Microsystems, Inc.//DTD JAXM Client//EN”

“http://java.sun.com/xml/dtds/jaxm_client_1_0.dtd”>

<ClientConfig>

<Endpoint>

http://www.wiley.com/jaxmebxml/producer

</Endpoint>

<CallbackURL>

http://localhost:8080/jaxm-jaxmebxml/ebxmlconsumer

</CallbackURL>

<Provider>

<URI>http://java.sun.com/xml/jaxm/provider</URI>

<URL>http://localhost:8081/jaxm-provider/sender</URL>

</Provider>

</ClientConfig>

Listing 9.9 Client.xml.

ebXML Consumer Servlet

Now, let’s take a look at the remote partner running as a servlet in a JWSDP
environment (using a Tomcat servlet container). The ebXMLConsumer-
Servlet acts as a service to consume and process incoming JAXM
messages. The servlet extends JAXMServlet and implements OneWay-
Listener to receive the messages over HTTP. Listing 9.10 shows a sample
code listing for the ebXMLConsumerServlet.java.

XML Messaging Using JAXM and SAAJ 443

package jws.ch9.jaxmebxml.consumer;

import javax.xml.messaging.*;

import javax.xml.soap.*;

import javax.servlet.*;

import javax.servlet.http.*;

import javax.xml.transform.*;

import java.io.*;

import java.util.*;

// import ebXML profile implementation (JAXM 1.1)

import com.sun.xml.messaging.jaxm.ebxml.*;

/**

* ebXMLConsumerServlet.java

* Uses provider based connection to receive messages

* Runs as a servlet in a container based environment

*/

public class ebXMLConsumerServlet extends JAXMServlet implements

OnewayListener {

private ProviderConnectionFactory pcf;

private ProviderConnection pc;

public void init(ServletConfig sc) throws ServletException {

super.init(sc);

try {

// Creates an intance of ProviderConnectionFactory and

// ProviderConnection

pcf = ProviderConnectionFactory.newInstance();

pc = pcf.createConnection();

// Sets the Message factory to ebXML profile implementation

setMessageFactory(new EbXMLMessageFactoryImpl());

} catch (Exception ex) {

ex.printStackTrace();

throw new ServletException(“Initialization failed : “ +

ex.getMessage());

}

}

// Upon receiving messages, calls the onMessage method

Listing 9.10 ebXMLConsumerServlet.java.

444 Chapter 9

// processes the Incoming message

public void onMessage(SOAPMessage msg) {

try {

System.out.println(“Receiving the incoming ebXML message: “);

// Saves the incoming message

msg.saveChanges();

// Writes to a file in a desired location

FileOutputStream receivedFile

= new FileOutputStream\

(“e:\\jaxm\\messages\\ebXMLreceived.msg”);

msg.writeTo(receivedFile);

receivedFile.close();

} catch(Exception e) {

e.printStackTrace();

}

}

}

Listing 9.10 ebXMLConsumerServlet.java. (continued)

Deployment

Create a Web application deployment descriptor (web.xml) for both the
ebXMLProducerServlet and ebXMLConsumerServlet. The code list-
ing for the deployment descriptor (web.xml) is shown in Listing 9.11.

<?xml version=”1.0” encoding=”ISO-8859-1”?>

<!DOCTYPE web-app

PUBLIC “-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN”

“http://java.sun.com/j2ee/dtds/web-app_2_2.dtd”>

<web-app>

<servlet>

<servlet-name>

ebxmlproducerservlet

</servlet-name>

<servlet-class>

jws.ch9.jaxmebxml.producer.ebXMLProducerServlet

</servlet-class>

Listing 9.11 Deployment descriptor (web.xml). (continues)

XML Messaging Using JAXM and SAAJ 445

TEAMFL
Y

Team-Fly®

<load-on-startup>

2

</load-on-startup>

</servlet>

<servlet>

<servlet-name>

ebxmlconsumerservlet

</servlet-name>

<servlet-class>

jws.ch9.jaxmebxml.consumer.ebXMLConsumerServlet

</servlet-class>

<load-on-startup>

2

</load-on-startup>

</servlet>

<servlet-mapping>

<servlet-name>

ebxmlproducerservlet

</servlet-name>

<url-pattern>

/ebxmlproducer

</url-pattern>

</servlet-mapping>

<servlet-mapping>

<servlet-name>

ebxmlconsumerservlet

</servlet-name>

<url-pattern>

/ebxmlconsumer

</url-pattern>

</servlet-mapping>

</web-app>

Listing 9.11 Deployment descriptor (web.xml). (continued)

In a JAXM provider-based messaging environment, we need to config-
ure the provider specifying the profile used, the protocol, endpoints for the
producer and the consumer of messages, and any other information spe-
cific to message retry interval, such as message logging, error handling,
and so forth. To accomplish this, use a JAXM 1.1 RI provider configuration
tool through a Web browser (for example, http://127.0.0.1:8081/jaxm-
provideradmin/index.jsp), and choose Select Profiles → ebXML → HTTP.

446 Chapter 9

Then choose Create a new Endpoint mapping from the Available Action
pull-down menu. Then, add the endpoint mappings, as follows:

URI URL

http://www.wiley.com/ http://receivermachine:8081/jaxm-provider/
jaxmebxml/producer receiver/ebxml

Finally, save the changes to the profile. If everything is saved success-
fully, the JAXM administration console should look like Figure 9.8.

At this point, we are all set to compile and build the Web application.
Using an Ant script (build.xml), compile the producer and consumer
servlets. Create a Web application (WAR) file containing the ebXMLPro-
ducerServlet and ebXMLConsumerServlet classes, also including the
deployment descriptors Client.xml and Web.xml. Copy the WAR file
to the Tomcat/Webapps directory. If everything works successfully, the
build process displayed will look like Figure 9.9.

Then, restart the Tomcat server.

Figure 9.8 Configuring the provider environment.

XML Messaging Using JAXM and SAAJ 447

Figure 9.9 Packaging and deploying the ebXMLProducer and Consumer servlets.

Testing the Scenario

To test the scenario, use a Web browser to run the following URL:

http://localhost:8080/jaxm-jaxmebxml/ebxmlproducer

If everything works successfully, the browser will display the informa-
tion shown in Figure 9.10.

To ensure the message delivery destination, using a Web browser open
the message ebXMLReceived.msg that was saved by ebXMLConsumer-
Servlet. If everything works successfully, the browser will display the
information shown in Figure 9.11.

Figure 9.10 Browser showing the status of message sent.

448 Chapter 9

Figure 9.11 Browser showing the contents of attachment in ebXMLReceived.msg.

Figure 9.12 shows the messages logged by the JAXM provider during
communication. To find out the provider’s log of messages, navigate to the
JAXM provider logging location, using a Web browser or listing the direc-
tory to the following location: %JWSDP_HOME%/work/ServicesEngine
/jwsdp-services/jaxm-provider/ebxml/wiley. This applies to the JAXM
Reference implementation provided with Sun JWSDP. In case of other
JAXM implementations, refer to the provider documentation.

Figure 9.12 Browser showing the JAXM provider message logs.

XML Messaging Using JAXM and SAAJ 449

JAXM Interoperability

A JAXM-based service can interoperate with any SOAP 1.1 provider and its
messages with attachments. In an interoperability scenario, the documents
exchanged between the JAXM service and the SOAP 1.1-compliant provider
have to adopt and agree upon a common message structure, communication
protocol, and other supported mechanisms like security, reliability, and so
on. In a JAXM provider-based communication model, this is achieved by
Messaging profiles. In a SOAP-based communication model without using a
JAXM provider, it is important that the SOAP sender and receiver must
communicate using a common message structure and protocol bindings.

JAXM in J2EE 1.4

The upcoming release of J2EE 1.4 platform specifications focuses on
enabling J2EE components to participate in Web services. As a key require-
ment, it mandates the implementation of EJB 2.1 specifications that
addresses the role of JAXM by enhancing the capabilities of Message-
driven beans (MDB) to enable asynchronous processing of JAXM-based
messages. In addition to its existing JMS support, the EJB 2.1-compliant
MDBs will act as a JAXM message consumer.

In a JAXM-based messaging scenario, the MDBs will implement
java.xml.messaging.ReqRespListener (for synchronous commu-
nication) or java.xml.messaging.OneWayListener (for asynchro-
nous communication) as its message listener interfaces. The message
destination-specific properties like message type and endpoint will be
defined in the EJB deployment descriptor. The key advantages of using
MDBs in JAXM communication will allow consuming messages from Web
services, enabling J2EE components to participate in Web services.

Summary

In this chapter, we have discussed how to employ JAXM-based XML mes-
saging solutions for enabling Java Web services. We noted that JAXM pro-
vides a reliable means of XML-based communication between applications
supporting industry standard messaging protocols. In general, we covered
the role of JAXM in Web service, JAXM APIs and the programming model,
and developing JAXM-based Web services applications.

In the next chapter, we will discuss how to develop Web services appli-
cations with remote procedural calls using JAX-RPC.

450 Chapter 9

451

This chapter discusses the Java API for XML RPC (JAX-RPC), which
enables the development of Web services incorporating XML-based remote
procedural calls (RPCs).

As we discussed in Chapter 7, “Introduction to the Java Web Services
Developer Pack (JWSDP),” JAX-RPC is an integral part of the JWSDP. In a
JWSDP-based Web services environment, JAX-RPC provides XML-based
RPC functionality between the service requestors and the service provider.
JAX-RPC provides standard API mechanisms for creating RPC-based Web
services and a runtime services environment for Web services applications.
Through these applications, a service requestor client can invoke remote
calls to access the services exposed by a service provider. JAX-RPC also
defines mappings between WSDL-based service descriptions and Java
classes and provides tools to generate WSDL from Java classes and vice-
versa. This enables developers to create JAX-RPC clients for Web services
that enable interoperability to occur between Web services applications
written using different languages and/or running on heterogeneous
platforms.

JAX-RPC is quite typical to Java Remote Method Invocation (RMI),
which handles RPC mechanisms by passing serialized Java objects between
Java applications in a distributed computing environment; whereas JAX-
RPC uses SOAP-based RPC and WSDL mechanisms to invoke Web services

Building RPC Web Services
with JAX-RPC

C H A P T E R

10

running on heterogeneous environments. More importantly, JAX-RPC
hides all of the complexities of the underlying SOAP packaging and mes-
saging by providing the required mapping between Java and XML/WSDL.

Currently, the JAX-RPC 1.0 is fully compliant with the SOAP 1.1 protocol
and WSDL specifications and supports HTTP as its primary transport pro-
tocol. This helps the Java Web services developers write JAX-RPC-based
Web services applications with minimal effort and little understanding of
SOAP RPC. In a Web services business context, using JAX-RPC the service
requestor and service provider can execute SOAP-based requests and
responses and exchange XML as parameters or return values.

This chapter provides in-depth coverage on the JAX-RPC-based API
mechanisms and illustrates its usage scenarios for developing and deploy-
ing Web services applications. In particular, we will be focusing on the
following:

■■ The role of JAX-RPC in Web services
■■ JAX-RPC application architecture
■■ JAX-RPC implementation model
■■ JAX-RPC deployment model
■■ Data type mappings between XML and Java
■■ Understanding Java to WSDL and WSDL to Java mappings
■■ Developing JAX-RPC-based Web services.
■■ JAX-RPC in J2EE 1.4

At the time of this book’s writing, JAX-RPC 1.0 has been released as a
final specification; its reference implementation and API libraries are avail-
able for downloading as part of JWSDP 1.0 at Sun’s Web site: http://
java.sun.com/xml/download.html.

JAX-RPC was developed by Sun Microsystems as part of its Java Com-
munity Process (JCP), backed by J2EE vendors and most Java-based Web
services platforms. In this chapter, we will be using the JWSDP 1.0 Refer-
ence Implementation (RI) for discussion and also to illustrate the case
study examples.

The Role of JAX-RPC in Web Services

In a Web services environment, JAX-RPC defines an API framework
and runtime environment for creating and executing XML-based remote
procedural calls. The Web service requestors invoke the service provider’s

452 Chapter 10

methods and transmit parameters and then receive return values as XML-
based requests and responses. Typically, the Web service endpoints and the
participating application clients use JAX-RPC for defining and executing
the RPC-based Web services.

The core features of JAX-RPC are as follows:

■■ Provides APIs for defining RPC-based Web services, hiding the
underlying complexities of SOAP packaging and messaging

■■ Provides runtime APIs for invoking RPC-based Web services
based on
■■ Stub and ties
■■ Dynamic proxy
■■ Dynamic invocation

■■ Using WSDL, JAX-RPC enables interoperability with any SOAP
1.1-based Web services

■■ Provides data types mapping between Java and XML
■■ Supports standard Internet protocols such as HTTP
■■ Service endpoints and service clients are portable across JAX-RPC

implementations

The JAX-RPC-based Web services can be deployed in the Java servlet
2.2- or the J2EE 1.3-compliant server providers. JAX-RPC-based services
and clients are developed and deployed as J2EE components.

In a Web services scenario, using JAX-RPC, the service requestor and
service provider can communicate and execute SOAP-based requests
and responses and exchange XML as parameters or return values. For
the service provider, JAX-RPC provides support for exposing business
components as Web services; for the service requestor, JAX-RPC defines a
mechanism to access and invoke JAX-RPC-based services or any SOAP
1.1-compliant RPC-based Web services. JAX-RPC provides APIs for data
type mappings between Java and XML, which enables on-the-fly Java-to-
XML and XML-to-Java mappings during communication; that is, when a
client invokes a JAX-RPC service, its XML parameters are mapped to Java
objects. Similarly, while returning a response, the Java objects are mapped
to XML elements as return values. JAX-RPC also enables the development
of pluggable serializers and deserializers to support any data type map-
ping between Java and XML, which can be packaged with a JAX-RPC ser-
vice. In addition, JAX-RPC defines mappings between WSDL and Java,
through which a WSDL document provided by Web services can be
mapped to Java classes as client stubs and server-side ties.

Building RPC Web Services with JAX-RPC 453

Table 10.1 Comparison of JAX-RPC with JAXM

JAX-RPC JAXM

Synchronous RPC-based Asynchronous/synchronous messaging-based
service interaction service interaction

Message sent as XML-based Message sent as document-driven
requests and responses XML messages

Exposes internals to Loosely coupled and does not expose internals
service requestors to service requestors

Provides a variety of client Does not provide a client-specific
invocation models programming model

No reliability mechanisms Provides guaranteed message delivery and
reliability mechanisms

Comparing JAX-RPC with JAXM
While comparing JAX-RPC with JAXM, both are an integral part of JWSDP
but provide different API-based mechanisms for developing Web services.
Table 10.1 compares the features of JAX-RPC to JAXM.

JAX-RPC is also a best-fit solution over JAXM especially in request/
response communications where high performance, limitations in mem-
ory, and maintaining client state are defined as the key requirements.

Now, let’s take a closer look at a JAX-RPC-based Web services applica-
tion and explore its features.

JAX-RPC Application Architecture
Figure 10.1 represents a JAX-RPC-based application architectural model
and its core elements.

A typical JAX-RPC application architectural model consists of the fol-
lowing elements:

JAX-RPC service. Represents a business component that can be
implemented in Java or generated from existing Java classes or from
a WSDL document. In a J2EE environment, it can be implemented as
a servlet, stateless session bean, or a message-driven bean. During
deployment, the JAX-RPC service is assigned with one or more
service endpoints and then is configured to a transport protocol
binding. For instance, a JAX-RPC service can be bound to HTTP
and all the messages are exchanged as HTTP-based requests and

454 Chapter 10

responses using its assigned endpoint. The JAX-RPC services do not
dictate that it has to be accessed by a JAX-RPC client and thus a non-
Java client running on heterogeneous environments can access it.

JAX-RPC service client. Represents a JAX-RPC-based service client
that can access a service. The service client is independent of the
target implementation on the service provider. This means that the
accessed service can be a service implemented using a Java platform
or a SOAP 1.1-compliant service running on a non-Java platform. To
support these client scenarios, JAX-RPC defines a variety of client
invocation models using different mechanisms, such as stubs-based
mechanisms, dynamic proxies, and dynamic invocation. The JAX-
RPC service clients can import WSDL exposed by a service provider
and can generate Java-based client classes to access the service.

Serialization and deserialization. During communication, JAX-RPC
uses serializing and deserializing mechanisms to facilitate Java-to-
XML and XML-to-Java mappings, which enables the conversion of
the Java primitives and objects to XML-based representations and
vice versa. It also is possible to create serializers and deserializers
for custom data types.

Figure 10.1 JAX-RPC-based Web services application architecture.

JAX-RPC
Client

Invocation

Stubs/
Dynamic Proxy/

Dll

Request/Response

Soap over HTTP

JAX-RPC
Runtime

J2SE environment

WSDL

JWSDP 1.0 environment

JAX-RPC
based
Service

TIES

JAX-RPC
Runtime

Building RPC Web Services with JAX-RPC 455

TEAMFL
Y

Team-Fly®

xrpcc tool. The JAX-RPC provides the xrpcc tool, which enables
the generation of the required client and server-side class files and
WSDL to enable communication between a service provider and a
requestor. In particular, xrpcc generates a WSDL document repre-
senting the service and the stubs and ties that define the lower-level
Java classes. In a service client scenario, xrpcc also enables Stub
classes to generate using a WSDL exposed by a service provider.

JAX-RPC runtime environment. Defines the runtime mechanisms
and execution environment for the JAX-RPC services and service
clients by providing the required runtime libraries and system
resources. The JAX-RPC 1.0 specification mandates a servlet 2.3 or
J2EE 1.3-based servlet container environment for its services and
service clients. As per JAX-RPC 1.0, both the JAX-RPC services
and service clients using JAX-RPC APIs are required to be imple-
mented as servlets running a servlet 2.2-complaint container. Upcom-
ing J2EE 1.4 specifications will likely provide support for JAX-RPC
and enable the creation of JAX-RPC-based services using session
beans and message-driven beans. The JAX-RPC 1.0 runtime services
also provide support for HTTP-based basic authentication and
session management.

Now, let’s explore the previous JAX-RPC features and how they are rep-
resented using the JAX-RPC APIs and implementation.

JAX-RPC APIs and Implementation Model

As per JAX-RPC 1.0 specifications, JAX-RPC defines both service and client
implementation models intending to do RPC-based messaging using a
JAX-RPC runtime environment or directly to a SOAP service. The core
JAX-RPC APIs are packaged as javax.xml.rpc, which provides the run-
time mechanisms package and javax.xml.rpc.handler.* as its SOAP
message handler API package.

JAX-RPC-Based Service Implementation
The JAX-RPC 1.0 specification does not define any APIs for implementing
JAX-RPC-based services. JAX-RPC-based services can be implemented
using Java classes (similar to writing an RMI application) or by using a
WSDL document. In both cases, JAX-RPC does not specify any requirements
for its service client implementation to access and use the deployed services.

456 Chapter 10

The following two sections look at those two different ways of services
implementation and walk through the programming steps required.

Developing a JAX-RPC Service from Java Classes

As we mentioned earlier, developing a JAX-RPC-based service (also referred
to as a JAX-RPC service definition) is quite similar to developing an RMI
application. The steps involved are as follows:

1. Define the remote interface (Service Definition).

2. Implement the remote interface (Service Implementation).

3. Configure the service.

4. Generate the stubs and ties.

5. Package and deploy the service.

Now, let’s take a look at the previous steps by walking through a sample
application.

Defining the Remote Interface (Service Definition)

The service interface defines the set of exposed methods that can be
invoked by the service requestor clients. In JAX-RPC, it is referred to as
Service Definition. The client stubs and server ties are generated based on
this interface. From a programming model’s standpoint, the programming
rules involved in defining the remote interface are as follows:

■■ The remote interface of the service definition must be declared
as public.

■■ The remote interface must extend the java.rmi.Remote
interface and all of the methods must throw a java.rmi.
RemoteException.

■■ The remote interface must not contain any declaration as static
constants.

■■ All of the parameters and return values of the methods must be sup-
ported as part of JAX-RPC-supported data types. In case of unsup-
ported data types, then it is required to use custom serializers and
deserializers to facilitate Java-to-XML and XML-to-Java mappings.

For example, the following is a code listing that defines a remote inter-
face of a service definition (BookPriceIF.java):

Building RPC Web Services with JAX-RPC 457

import java.rmi.Remote;

import java.rmi.RemoteException;

public interface BookPriceIF extends Remote {

public String getBookPrice(String bookName)

throws RemoteException;

}

Implementing the Remote Interface (Service Implementation)

The implementation of the remote interface is the actual class that imple-
ments all of the exposed methods defined in the remote interface. In JAX-
RPC, it is referred to as Service Implementation. For example, a typical
service implementation of a remote interface is as follows:

import java.rmi.Remote;

import java.rmi.Remote.*;

public class BookPriceImpl implements BookPriceIF {

public String getBookPrice (String bookName) {

System.out.println(“The price of the book titled “+ bookName);

return new String(“13.25”);

}

}

The service implementation can also implement the javax.xml.rpc.
server.ServiceLifeCycle interface that allows handling the com-
plete lifecycle of a JAX-RPC service. The ServiceLifeCycle interface
provides init() and destroy() methods, which are quite similar to the
init() and destroy() methods in a Servlet lifecycle for initializing and
releasing resources. In the case of a service implementation implementing
a ServiceLifeCycle interface, also allows to set ServletEndpoint-
Context, which is quite similar to SessionContext (in EJBs) that
enables to maintain state information. For example, a typical service imple-
mentation of a remote interface implementing ServiceLifeCycle is as
follows:

import java.rmi.Remote;

import java.rmi.Remote.*;

import javax.xml.rpc.server.ServiceLifeCycle;

import javax.xml.rpc.server.ServletEndpointContext;

import javax.xml.rpc.handler.soap.SOAPMessageContext;

public class BookPriceImpl implements BookPriceIF, ServiceLifeCycle {

private ServletEndpointContext serviceContext;

458 Chapter 10

public void init(java.lang.Object context){

serviceContext=(ServletEndpointContext)context;

}

public String getBookPrice (String bookName) {

SOAPMessageContext soapMsgContext=

(SOAPMessageContext) (serviceContext.getMessageContext());

HttpSession session = serviceContext.getHttpSession();

//...Obtain state information here

System.out.println(“The price of the book titled “+ bookName);

return new String(“13.25”);

}

}

Configuring the Service

To configure the service, you first need to create a configuration file in an
XML format that provides information such as

■■ The name of the service
■■ The name of the package containing the stubs and ties
■■ The target namespace for the generated WSDL and its XML schema

and class names of the remote interface and its implementation

The xrpcc tool uses this configuration file to generate the stubs and ties
of the service.

Listing 10.1 is a code listing of a sample configuration file (service-
config.xml):

<?xml version=”1.0” encoding=”UTF-8”?>

<configuration xmlns=”http://java.sun.com/xml/ns/jax-rpc/ri/config”>

<service name=”WileyBookCatalog”

targetNamespace=”http://www.wiley.com/jws/wsdl”

typeNamespace=”http://www.wiley.com/jws/types”

packageName=”com.wiley.jws.ch10.jaxrpc”>

<interface name=”jws.wiley.jaxrpc.BookPriceIF”

servantName=”jws.wiley.jaxrpc.BookPriceImpl”/>

</service>

</configuration>

Listing 10.1 Sample configuration of a service definition.

To find out the other optional elements of the service configuration file,
refer to the JAX-RPC API documents provided with the JWSDP 1.0 bundle.

Building RPC Web Services with JAX-RPC 459

Generating the Stubs and Ties

Before generating the stubs and ties, ensure that the source code of the
remote interface and the implementation is compiled using javac and
that it is available in CLASSPATH.

Use the xrpcc tool to generate the stubs and tie classes, the WSDL doc-
ument associated with the service, and the property files required by the
JAX-RPC runtime environment. In a typical scenario, the xrpcc tool can
be executed as a command line utility, as follows:

In a Windows environment:

xrpcc -classpath %CLASSPATH% -keep

-both -d build\classes serviceconfig.xml

In a UNIX environment:

xrpcc -classpath $CLASSPATH -keep

-both -d build/classes serviceconfig.xml

In this command, the option -classpath refers to the CLASSPATH,
including the service interface and implementation classes and JAX-RPC
libraries; -keep refers to saving the generated source files (.java) and the
WSDL documents; -both refers to the generating of both the stubs and tie
classes; and -d refers to the destination directory. To find out more xrpcc
options, refer to the JAX-RPC implementation documentation for syntax
and usage information.

As a result, the preceding command generates the following:

■■ Client-side stubs and server-side tie classes
■■ Serialization and deserialization classes representing the data-type

mappings between Java primitives and XML data types
■■ A WSDL document
■■ Property files associated with the service

Packaging and Deployment

According to JWSDP 1.0, JAX-RPC-based services are specified with only
servlet-based service endpoints and the JAX-RPC services are required to
be deployed as a servlet in a Java servlet 2.2-based container. This mandates
that the JAX-RPC-based services be packaged as a Web application (WAR).

To package a JAX-RPC service as a Web application, we need to create a
WAR file that includes the following classes and other configuration files:

460 Chapter 10

■■ Remote interface of the service
■■ Service implementation of the remote interface
■■ Serializer and deserializer classes
■■ Server-side (tie) classes created by xrpcc
■■ Property files created by xrpcc
■■ Other supporting classes required by the service implementation
■■ WSDL document describing the service
■■ Web application deployment descriptor (web.xml)

Except for the deployment descriptor, we have seen the process required
for creating those classes and property files using xrpcc.

In a JAX-RPC environment, the deployment descriptor is similar to a
servlet deployment descriptor (web.xml), which provides information
about the class name of the JAX-RPC service, its associated property file cre-
ated by the xrpcc tool, the servlet mappings and URL pattern, and so on.
Listing 10.2 is a sample code listing of a deployment descriptor (web.xml).

<?xml version=”1.0” encoding=”UTF-8”?>

<!DOCTYPE web-app

PUBLIC “-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN”

“http://java.sun.com/j2ee/dtds/web-app_2_3.dtd”>

<web-app>

<display-name>WileyProductServices</display-name>

<description>Wiley Web Services Company</description>

<servlet>

<servlet-name>JAXRPCEndpoint</servlet-name>

<display-name>JAXRPCEndpoint</display-name>

<description>Endpoint for Wiley Book Catalog

Service</description>

<servlet-class>com.sun.xml.rpc.server.http.JAXRPCServlet

</servlet-class>

<init-param>

<param-name>configuration.file</param-name>

<param-value>/WEB-INF/WileyBookCatalog_Config.properties

</param-value>

</init-param>

<load-on-startup>0</load-on-startup>

</servlet>

Listing 10.2 Sample deployment descriptor for a JAX-RPC service definition. (continues)

Building RPC Web Services with JAX-RPC 461

<servlet-mapping>

<servlet-name>JAXRPCEndpoint</servlet-name>

<url-pattern>/jaxrpc/wiley/*</url-pattern>

</servlet-mapping>

<session-config>

<session-timeout>60</session-timeout>

</session-config>

</web-app>

Listing 10.2 Sample deployment descriptor for a JAX-RPC service definition. (continued)

To package the service as Web application, use the jar utility and create
a Web application archive (WAR). For example,

jar cvf wileywebapp.war .

Finally, to deploy the service as a Web application running in a
JWSDP 1.0/Tomcat environment, just copy the WAR file to the servlet
engine / webapps directory. For example, to deploy in a Tomcat servlet
container in a Windows environment, deploy the following:

copy wileywebapp.war %CATALINA%/webapps

Then restart the Tomcat server, which automatically deploys the service
as an application. To verify the service deployment, use your Web browser
and execute the following URL (using the URL pattern defined in the
deployment descriptor):

http://localhost:8080/bookpriceservice/jaxrpc/wiley

If everything has been deployed successfully, the browser will display
“A Web Service is installed at this URL” (see Figure 10.2).

Figure 10.2 Browser showing successful installation of a JAX-RPC-based service.

462 Chapter 10

Developing a JAX-RPC-Based Service from a WSDL Document

In this section, we will look at developing a JAX-RPC-based service using
a WSDL document exposed by an existing Web services environment. In
this case, by importing a WSDL document from an existing Web service,
the xrpcc utility generates the JAX-RPC services classes. The key steps
involved are as follows:

1. Create a service configuration referring to the WSDL.

2. Generate the client-side stubs and server-side ties using xrpcc.

3. Package and deploy the service.

To illustrate the previous steps, read the following sections. For the
example, assume that a Web service and its WSDL location are available at
the following URL:

http://nramesh:80/axis/AcmeProductCatalog.jws?WSDL

Create a Service Configuration Using WSDL

To configure the service, you first must create a configuration file in an XML
format that provides information about the URL location of the WSDL,
including the name of the service and the name of the package for the gen-
erated stubs and ties. The xrpcc tool uses this configuration file to gener-
ate the stubs and ties and the RMI interfaces of the service.

Listing 10.3 is a sample code listing of a sample configuration file
(serviceconfig.xml).

<?xml version=”1.0” encoding=”UTF-8”?>

<configuration

xmlns=”http://java.sun.com/xml/ns/jax-rpc/ri/config”>

<wsdl location=” http://nramesh:80/axis/AcmeProductCatalog.jws?WSDL”

packageName=”com.wiley.jws.ch10.jaxrpc.wsdl”>

</wsdl>

</configuration>

Listing 10.3 Sample service configuration using WSDL.

To find out other optional elements of the service configuration file, refer
to the JAX-RPC API documents.

Generating the Stubs and Ties

Before generating the stubs and ties, ensure that the source code of the
remote interface and the implementation is compiled using javac. Also
ensure that the code is available in CLASSPATH.

Building RPC Web Services with JAX-RPC 463

Use the xrpcc tool to generate the stubs and tie classes, the WSDL doc-
ument associated with this service, and the property files required by the
JAX-RPC runtime environment. In a typical scenario, the xrpcc tool can
be executed as a command line utility shown as follows:

In a Windows environment:

xrpcc -classpath %CLASSPATH% -keep

-both -d build\classes serviceconfig.xml

In a UNIX environment:

xrpcc -classpath $CLASSPATH -keep

-both -d build/classes serviceconfig.xml

In the previous command, the option -classpath refers to the CLASS-
PATH including the service interface and implementation classes and JAX-
RPC libraries, -keep refers to saving the generated source files (.java) and
the WSDL documents, -both refers to the generating of both the stubs and
tie classes, and -d refers to the destination directory. To find out more
xrpcc options, refer to the JAX-RPC implementation documentation for
syntax and usage information.

As a result, the previous command generates the following:

■■ Client-side stubs and server-side tie classes
■■ Serialization and deserialization classes representing the data-type

mappings between Java primitives and XML data types
■■ A WSDL document for the service
■■ Property files for service configuration

Packaging and Deployment

The packaging and deployment steps are quite similar to those we discussed
in the earlier section titled Developing a JAX-RPC from Service using Java
Classes. Because JWSDP 1.0 specifies only servlet-based service endpoints,
the JAX-RPC-based services are packaged as a Web Application (WAR).

JAX-RPC-Based Client Implementation
According to the JAX-RPC 1.0 specification, JAX-RPC-based service clients
are independent of target service implementation, and the service client
does not depend upon its service provider or its running platform using

464 Chapter 10

Java or non-Java environments. The JAX-RPC provides client-side APIs and
defines a client invocation model for accessing and invoking Web services.

Now, let’s take a look at the JAX-RPC client-side APIs and the client
invocation models.

JAX-RPC Client-Side APIs

The JAX-RPC 1.0 client-side APIs are defined in a single package structure
as javax.xml.rpc, which provides a set of interfaces and classes that
support the JAX-RPC clients intending to invoke RPC-based services, and
the JAX-RPC runtime implements them.

The javax.xml.rpc package provides a set of interfaces and classes
for creating JAX-RPC clients, which support the different JAX-RPC client
invocation models. The JAX-RPC API interfaces and classes are as follows:

INTERFACES

javax.xml.rpc.Stub Is the base interface for the JAX-RPC stub
classes. All JAX-RPC stub classes are required to implement this
interface. This interface represents the client-side proxy or an
instance of the target endpoint.
private static Stub createMyProxy() {

return (Stub)(new StockPrice_Impl().getStockPriceIFPort());

}

javax.xml.rpc.Service Acts as a factory class for creating a
dynamic proxy of a target service and for creating Call instances for
invoking the service.
Service service =

serviceFactory.createService(new QName(qService));

Call call = service.createCall(target_port);

javax.xml.rpc.Call Provides support for the JAX-RPC client
components to dynamically invoke a service. In this case, after a call
method is created, we need to use the setter and getter methods to
configure the call interface for the parameters and return values.
Call call = service.createCall(target_port);

call.setTargetEndpointAddress(target_endpoint);

.

call.setOperationName

(new QName(BODY_NAMESPACE_VALUE, “getStockPrice”));

Building RPC Web Services with JAX-RPC 465

TEAMFL
Y

Team-Fly®

CLASSES

javax.xml.rpc.ServiceFactory Is an abstract class that
provides a factory class for creating instances of javax.xml.
rpc.Service services.
ServiceFactory sfactory =

ServiceFactory.newInstance();

Service service =

serviceFactory.createService(new QName(qService));

javax.xml.rpc.ParameterMode Provides a type-safe enumera-
tion of the parameter mode.
call.addParameter(“stocksymbol”, QNAME_TYPE_STRING,

ParameterMode.IN);

javax.xml.rpc.NamespaceConstants Defines the constants
used in JAX-RPC for the XML schema namespace prefixes and URIs.

EXCEPTIONS

javax.xml.rpc.JAXRPCException Throws an exception while a
JAX-RPC exception is occurring. The exception details the reasons for
the failure, which are related to JAX-RPC runtime-specific problems.

javax.xml.rpc.SERVICEException Throws an exception
from the methods in the JAVAX.XML.RPC.SERVICE interface
and ServiceFactory class.

JAX-RPC Client Invocation Programming Models

The JAX-RPC 1.0 specification defines the implementation of a JAX-RPC-
based client using any of the following client invocation programming
models:

■■ Stub-based
■■ Dynamic proxy
■■ Dynamic invocation

Now, let’s take a look at these different ways of client implementation
and walk through the programming steps required for each.

Stub-Based Client

A stub-based model is the simplest client-programming model. This
model uses the local stub classes generated by the xrpcc tool. To create the

466 Chapter 10

stub-based client invocation, ensure that the stub classes are available in
the CLASSPATH.

Listing 10.4 is a sample code listing of a client using stub-based client
invocation.

// Import the Stub Interface

import javax.xml.rpc.Stub;

public class BookCatalogClient {

// Main method

public static void main(String[] args) {

try {

// Obtain the Instance of the Stub Interface

BookCatalogIF_Stub stub = (BookCatalogIF_Stub)

(new BookCatalog_Impl().getBookCatalogIFPort());

// Configure the stub setting required properties

// Setting the target service endpoint

stub._setProperty(

javax.xml.rpc.Stub.ENDPOINT_ADDRESS_PROPERTY,

“http://www.wiley.com/jws/jaxrpc/bookcatalog”);

// Execute the remote method

System.out.println (stub.getBookPrice(“JAX-RPC in 24 hours”));

} catch (Exception ex) {

ex.printStackTrace();

}

}

}

Listing 10.4 Sample code illustrating a stub-based client invocation.

Dynamic Proxy-Based Client

A dynamic proxy client enables the invocation of a target service endpoint
dynamically at runtime, without requiring a local stub class. This type of
client uses the dynamic proxy APIs provided by the Java reflection API
(java.lang.reflect.Proxy class and java.lang.reflect.Invo-
cationHandler interface). Particularly, the getPort method on the
javax.xml.rpc.Service interface enables a dynamic proxy to be cre-
ated. Listing 10.5 is a sample code listing of a client using a dynamic proxy-
based client invocation.

Building RPC Web Services with JAX-RPC 467

// Import Service & ServiceFactory

import javax.xml.rpc.Service;

import javax.xml.rpc.ServiceFactory;

import javax.xml.namespace.QName;

import java.net.URL;

public class BookCatalogProxyClient {

// Main Method

public static void main(String[] args) {

try {

// WSDL location URL

String wsdlURL =

“http://www.wiley.com/jws/jaxrpc/BookCatalog.wsdl”;

// WSDL namespace URI

String nameSpaceURI = “http://www.wiley.com/jws/wsdl”;

// Service Name

String serviceName = “BookCatalogService”;

// Service port Name

String portName = “BookCatalogIFPort”;

URL bookCatalogWSDL = new URL(wsdlURL);

// Obtain an Instance of Service factory

ServiceFactory serviceFactory = ServiceFactory.newInstance();

// Create a service from Instance using WSDL

Service bookCatalogService =

serviceFactory.createService(bookCatalogWSDL,

new QName(nameSpaceURI,

serviceName));

// Get the proxy object

BookCatalogIF bcProxy = (BookCatalogIF)

bookCatalogService.getPort(

new

QName(nameSpaceURI,portName),proxy.BookCatalogIF.class);

// Invoke the remote methods

System.out.println(bcProxy.getBookPrice(“JAX-RPC in 24 hours “));

} catch (Exception ex) {

Listing 10.5 Sample code illustrating a client using dynamic proxy.

468 Chapter 10

ex.printStackTrace();

}

}

}

Listing 10.5 Sample code illustrating a client using dynamic proxy. (continued)

Dynamic Invocation Interface (DII) Client

Using the Dynamic Invocation Interface (DII) enables the client to discover
target services dynamically on runtime and then to invoke methods. Dur-
ing runtime, the client uses a set of operations and parameters, establishes a
search criterion to discover the target service, and then invokes its methods.
This also enables a DII client to invoke a service and its methods without
knowing its data types, objects, and its return types.

DII looks up a service, creates a Call object by setting the endpoint spe-
cific parameters and operations, and finally invokes the call object to exe-
cute the remote methods. Listing 10.6 is a sample code listing of a client
using DII-based client invocation.

// imports

import javax.xml.rpc.Call;

import javax.xml.rpc.Service;

import javax.xml.rpc.JAXRPCException;

import javax.xml.namespace.QName;

import javax.xml.rpc.ServiceFactory;

import javax.xml.rpc.ParameterMode;

public class BookCatalogDIIClient {

// Service Name

private static String qService = “BookCatalogService”;

// Port Name

private static String qPort = “BookCatalogIF”;

// Name space URI

private static String BODY_NAMESPACE_VALUE =

“http://www.wiley.com/jws/wsdl”;

// Encoding style

private static String ENCODING_STYLE_PROPERTY =

Listing 10.6 Sample code illustrating a JAX-RPC client using DII. (continues)

Building RPC Web Services with JAX-RPC 469

“javax.xml.rpc.encodingstyle.namespace.uri”;

// XML Schema

private static String NS_XSD =

“http://www.w3.org/2001/XMLSchema”;

// SOAP encoding URI

private static String URI_ENCODING =

“http://schemas.xmlsoap.org/soap/encoding/”;

// Main method

public static void main(String[] args) {

try {

String target_endpoint =

“http://www.wiley.com/jws/jaxrpc/bookcatalog”;

// Obtain an Instance of Service factory

ServiceFactory sFactory =

ServiceFactory.newInstance();

// Create a Service

Service service =

sFactory.createService(new QName(qService));

// Define a port

QName port = new QName(qPort);

// Create a Call object using the service

Call call = service.createCall(port);

// Set the target service endpoint

call.setTargetEndpointAddress(target_endpoint);

// Set properties - SOAP URI, Encoding etc.

call.setProperty(Call.SOAPACTION_USE_PROPERTY,

new Boolean(true));

call.setProperty(Call.SOAPACTION_URI_PROPERTY, “”);

call.setProperty(ENCODING_STYLE_PROPERTY, URI_ENCODING);

// Set Parameter type and Return value type as String

QName QNAME_TYPE_STRING = new QName(NS_XSD, “string”);

call.setReturnType(QNAME_TYPE_STRING);

// Set operations

call.setOperationName(new QName(BODY_NAMESPACE_VALUE,

Listing 10.6 Sample code illustrating a JAX-RPC client using DII.

470 Chapter 10

“getBookPrice”));

// Set Parameters

call.addParameter(“BookName”, QNAME_TYPE_STRING,

ParameterMode.IN);

String[] BookName = {“JAX-RPC in 24 hours”};

// Invoke and obtain response object

Object response = (Object)call.invoke(BookName);

System.out.println(response.toString());

} catch (Exception ex) {

ex.printStackTrace();

}

}

}

Listing 10.6 Sample code illustrating a JAX-RPC client using DII. (continued)

A DII client also can be invoked using one-way RPC mechanisms. In that
case, the client does not require setting the return value types, and the call
can be invoked as follows:

call.invokeOneWay(parameter);

Now, let’s take a look at the JAX-RPC-supported data types mapping
between Java and XML.

JAX-RPC-Supported Java/XML Mappings

JAX-RPC abstracts and hides the complexities of SOAP and XML data
types by providing serialization and deserialization features and by per-
forming automatic mapping between Java classes and XML data (and vice
versa). To handle these chores, JAX-RPC 1.0 provides APIs and conven-
tions for mappings between the Java data types and XML/WSDL data as
per the XML schema 1.0 representation (XSD) and SOAP 1.1 encoding
(SOAP-ENC) specifications. The online locations of those specifications are
as follows:

http://www.w3.org/2001/XMLSchema

http://www.w3.org/2001/XMLSchema-instance

http://schemas.xmlsoap.org/soap/encoding/

Building RPC Web Services with JAX-RPC 471

The xrpcc tool provides these features by automating the tasks of map-
ping XML to Java classes and also the mapping between WSDL definitions
and their mapping Java representations.

In a JAX-RPC-based Web services scenario, when a JAX-RPC service is
invoked, the JAX-RPC runtime transforms the XML-based RPC call to its
corresponding Java object representation and then executes the required
service using them; this process is referred to as deserialization. After execu-
tion, the service returns the call to its service client by transforming the
returning Java objects as an XML-based data representation; this process is
referred to as serialization.

Now, let’s take a look at the standard mappings that are supported by
JAX-RPC 1.0.

Java/XML Data Type Mappings

JAX-RPC 1.0 provides support for the following mapping between Java
classes and XML data types as defined in XML schema 1.0 (xsd) and SOAP
1.1 encoding (SOAP-ENC). Table 10.2 shows the JAX-RPC-supported Java
primitives and their mapping XML data types.

In an example scenario, using a Java primitive, such as

float price;

is mapped to an XML schema representation as

<element name=”price” type=”xsd:float”/>

Table 10.3 shows the JAX-RPC-supported Java classes and their map-
ping XML data types.

Table 10.2 JAX-RPC-Supported Java Primitives and Mapping XML Data Types

JAVA PRIMITIVES XML SCHEMA DEFINITION

int xsd:int

long xsd:long

float xsd:float

double xsd:double

short xsd:short

boolean xsd:boolean

byte xsd:byte

472 Chapter 10

Table 10.3 JAX-RPC-Supported Java Classes and Mapping XML Data Types

JAVA CLASSES XML SCHEMA DEFINITION

String xsd:string

BigDecimal xsd:decimal

BigInteger xsd:integer

Calendar xsd:dateTime

Date xsd:dateTime

Arrays

JAX-RPC supports the mapping of XML-based array types to a Java array.
This enables mapping an XML array containing elements of XML data types
to corresponding types of the Java array. For example, a Java array, such as

int [] employees;

is mapped to an XML schema representation as

<element name=”employees” type=”xsd:Array”/>

<employees arrayType=”xsd:int[2]”>

<employeeID>1001</employeeID>

<employeeID>1002</employeeID>

</employees>

Java Classes to XML Structure and Complex Types

JAX-RPC provides support for mapping XML structure and complex value
types as JavaBeans with the getter and setter methods. The bean property
must be a JAX-RPC-supported Java type, as in the code in the following
example.

The following XML schema represents information about a product:

<element name=”Product”/>

<complexType>

<all>

<element name=”productID” type=”xsd:int”/>

<element name=”productDesc” type=”xsd:string”/>

<element name=”price” type=”xsd:float”/>

<element name=”color” type=”xsd:string”/>

<all>

</complexType>

Building RPC Web Services with JAX-RPC 473

The preceding schema is mapped to a Java class representation as follows:

public class Product implements java.io.Serializable {

// ...

public String getProductID() { ... }

public void setProductID(int productID) { ... }

public String getProductDesc() { ... }

public void setProductDesc(String productDesc) { ... }

public float getPrice() { ... }

public void setPrice(float price) { ... }

public String getColor() { ... }

public void setColor(String color) { ... }

}

Java/WSDL Definition Mappings
JAX-RPC specifies the mappings for a JAX-RPC-based service endpoint
definition to a WSDL service description and vice versa. The xrpcc tool
facilitates these mappings by mapping a WSDL document to a Java pack-
age, including Java interfaces and classes that provide bindings of a WSDL
document in a Java representation.

The Java representation mapping to the abstract WSDL definitions is as
follows:

wsdl:types Maps the WSDL message types to the Java method
parameter types of the target service.

wsdl:message Maps the WSDL message to the Java method
parameters of the target service.

wsdl:operation Maps the WSDL operation to the Java method
of the service interface.

wsdl:portType Maps the WSDL port type to the service interface.

The following WSDL document represents a service for obtaining a book
price from a book catalog service:

<message name=”GetBookPriceInput”>

<part name=”bookName” type=”xsd:string”/>

</message>

<message name=”GetBookPriceOutput”?

<part name=”price” type=”xsd:float”/>

</message>

<portType name=”BookCatalogServiceIF”>

<operation name=”GetBookPrice” parameterOrder=”bookName”>

474 Chapter 10

<input message=”tns:GetBookPriceInput”/>

<output message=”tns:GetBookPriceOutput”/>

</operation>

</portType>

The preceding document is mapped to a Java class representation
(BookCatalogServiceIF.java) as

public interface BookCatalogServiceIF extends java.rmi.Remote {

public float getBookPrice(String bookName)

throws java.rmi.RemoteException;

}

As we discussed earlier, the xrpcc tool facilitates the WSDL-to-Java and
Java-to-WSDL mappings. In the future, it is expected that JAX-RPC will
support Java APIs for XML binding (JAXB) for providing Java-to-XML and
XML-to-Java mappings. To find out more information on JAXB, refer to
Chapter 8, “XML Processing and Data Binding with Java APIs.”

Handling SOAP Attachments in JAX-RPC

As per SOAP 1.1 specifications, a SOAP message may contain zero to many
attachment parts using MIME encoding. JAX-RPC allows attaching SOAP
attachment parts using JavaBeans Activation Framework (JAF). During
runtime, JAX-RPC uses javax.activation.Datahandler and javax.
activation.DataContentHandler, which provide access to the
attachments using the getContent method of the DataHandler class.

Table 10.4 lists the standard Java data type mapping of the attachment
parts for certain MIME types.

Table 10.4 Mapping of MIME Types to Java Data Types

MIME TYPE JAVA DATA TYPE

image/gif java.awt.Image

image/jpeg java.awt.Image

text/plain java.lang.String

multipart/* javax.mail.internet.MimeMultipart

text/xml or javax.xml.transform.Source
application/xml

Building RPC Web Services with JAX-RPC 475

TEAMFL
Y

Team-Fly®

Developing JAX-RPC-Based Web Services

In this section, we illustrate and discuss an example scenario of developing
JAX-RPC-based Web services applications and JAX-RPC-based service
client invocation models using the JWSDP 1.0 environment.

To demonstrate this, we use a fictitious example implementing a JAX-
RPC-based request/response scenario showing how a service requestor
(service client) obtains a book price from a JAX-RPC-based Web services
provider. The service client makes a request using a book name (string) as a
parameter, and the service provider returns a response to the service client
with the book price (float).

Creating a JAX-RPC-Based Service (BookPriceService)
The key steps for creating a JAX-RPC-based service (BookPriceService)
using a JWSDP 1.0/Tomcat-based environment are as follows:

1. Develop the remote interface of the service
(BookPriceServiceIF.java).

2. Create the implementation class of the remote interface
(BookPriceServiceImpl.java).

3. Configure the service (BookPriceService.xml).

4. Set up the environment and compile the source code.

5. Generate the server-side artifacts (ties) and the WSDL document.

6. Package and deploy the service (BookPriceService.war).

7. Test the service deployment and the WSDL.

8. Generate the client stubs and package as a client JAR
(BookPriceServiceStubs.jar).

The following sections will explore the preceding tasks involved in creat-
ing BookPriceService and will walk you through them.

Develop the Service’s Remote Interface

The service’s remote interface defines the remote methods of the
BookPriceService that are invoked by the service requestor clients.
Listing 10.7 is a code listing that defines a service’s remote interface.

476 Chapter 10

(BookPriceServiceIF.java):

package jws.ch10.jaxrpc.bookprice;

import java.rmi.Remote;

import java.rmi.RemoteException;

public interface BookPriceServiceIF extends Remote {

public String getBookPrice(String bookName)

throws RemoteException;

}

Listing 10.7 BookPriceServiceIF.java.

Create the Service Implementation Class of the Interface

It provides an implementation for all the methods declared in the remote
interface. The code in Listing 10.8 implements the methods in a service’s
remote interface (BookPriceServiceImpl.java).

package jws.ch10.jaxrpc.bookprice;

public class BookPriceServiceImpl implements BookPriceServiceIF {

float bookprice = 0;

// Implementation of getBookPrice() method

// creates a fictitious price !

public float getBookPrice(String bookName) {

for(int i = 0; i < bookName.length(); i++) {

bookprice = bookprice + (int) bookName.charAt(i);

}

bookprice = bookprice/3;

return bookprice;

}

}

Listing 10.8 BookPriceServiceImpl.java.

Building RPC Web Services with JAX-RPC 477

Configure the Service

To generate the client-side and server-side artifacts (stubs and ties), you
must create a configuration file that provides information on the service
name, target namespaces of the service, required package and class names,
and so forth.

Listing 10.9 is a code listing of the configuration file (BookPrice-
Service.xml).

<?xml version=”1.0” encoding=”UTF-8”?>

<configuration xmlns=”http://java.sun.com/xml/ns/jax-rpc/ri/config”>

<service name=”BookPriceService”

targetNamespace=”http://jws.wiley.com/wsdl”

typeNamespace=”http://jws.wiley.com/types”

packageName=”jws.ch10.jaxrpc.bookprice”>

<interface name=”jws.ch10.jaxrpc.bookprice.BookPriceServiceIF”

servantName=”jws.ch10.jaxrpc.bookprice.BookPriceServiceImpl”/>

</service>

</configuration>

Listing 10.9 BookPriceService.xml.

Set Up the Environment and Compile the Source Code

Next you need to create a CLASSPATH environment that includes the
JWSDP 1.0 class libraries for JAX-RPC and its supporting packages. To
ensure this, make sure that the class libraries (*.jar) in %JWSDP_HOME%/
common/lib/ and %JWSDP_HOME%/common/endorsed/ are included.

Use javac and compile the source code of the remote interface
(BookPriceServiceIF.java, in this example) and the implementation
(BookPriceServiceImpl.java). You choose to use an Ant build script.
After successful compilation, ensure that the compiled classes are available
in the CLASSPATH. Figure 10.3 shows the compilation of the service defi-
nition classes.

Figure 10.3 Building the services classes using Ant.

478 Chapter 10

Generate Server-Side Artifacts (Ties) and WSDL

Using the xrpcc tool, generate the server-side artifacts and the WSDL doc-
ument associated with the service. In a JWSDP 1.0 environment, the xrpcc
tool requires -server and -keep as options for generating the server-side
tie classes and the WSDL document.

Listing 10.10 is a code listing of the Ant script specific to creating server-
side tie classes and the WSDL document associated with the service
(BookPriceService.xml).

<!-- ============== Create Server Ties & WSDL ============= -->

<target name=”server-ties”>

<property name=”xrpcc” value=”${JWSDP_HOME}/bin/xrpcc.bat”/>

<exec executable=”${xrpcc}”>

<arg line=”-classpath .” />

<arg line=”-keep” />

<arg line=”-server” />

<arg line=”-d .” />

<arg line=”BookPriceServiceConfig.xml” />

</exec>

</target>

Listing 10.10 Ant script for using ‘xrpcc’ for generating server ties and WSDL.

To run xrpcc from the command line on Windows, use the following
command:

xrpcc.bat -classpath %CLASSPATH% -keep -server

-d . BookPriceServiceConfig.xml

To run xrpcc from the command line on UNIX, use the following
command:

xrpcc.sh -classpath $CLASSPATH -keep -server

-d . BookPriceServiceConfig.xml

The xrpcc tool generates the following tie classes, including the source
files (not listed):

BookPriceServiceIF_GetBookPrice_RequestStruct.class

BookPriceServiceIF_GetBookPrice_ResponseStruct.class

BookPriceServiceIF_GetBookPrice_RequestStruct_SOAPSerializer.class

BookPriceServiceIF_GetBookPrice_ResponseStruct_SOAPSerializer.class

BookPriceService_SerializerRegistry.class

BookPriceServiceIF_Tie.class

Building RPC Web Services with JAX-RPC 479

In addition to the previous tie classes, the tool also generates the WSDL
document and the configuration properties file associated with the service
as follows:

BookPriceService.wsdl

BookPriceService_Config.properties

The property file will look like the following:

This file is generated by xrpcc.

port0.tie=jws.ch10.jaxrpc.bookprice.BookPriceServiceIF_Tie

port0.servant=jws.ch10.jaxrpc.bookprice.BookPriceServiceImpl

port0.name=BookPriceServiceIF

port0.wsdl.targetNamespace=http://jws.wiley.com/wsdl

port0.wsdl.serviceName=BookPriceService

port0.wsdl.portName=BookPriceServiceIFPort

portcount=1

In JWSDP1.0, in order to make the WSDL description accessible through
a browser, one manual modification is required for the BookPrice-
Service_Config.properties file to work. Although it is not recom-
mended to modify the configuration properties file, it is possible to do so.
Add the following line at the end of BookPriceService_Config.
properties:

wsdl.location=/WEB-INF/BookPriceService.wsdl

With this line enabled, the WSDL now can be referenced by pointing the
browser to http://localhost:8080/bookpriceservice/jaxrpc?WSDL.

Package and Deploy the Service

Because JWSDP 1.0 currently enables deployment of the JAX-RPC-based
service as a Web application (WAR), create a deployment descriptor
(web.xml) and insert BookPriceService_Config.properties as a
parameter value for the parameter name configuration.file.

Listing 10.11 is a code listing of the Web deployment descriptor
(web.xml) for deploying BookPriceService.

<?xml version=”1.0” encoding=”UTF-8”?>

<!DOCTYPE web-app

PUBLIC “-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN”

“http://java.sun.com/j2ee/dtds/web-app_2_3.dtd”>

Listing 10.11 Deployment descriptor (web.xml) for deploying BookPriceService.

480 Chapter 10

<web-app>

<display-name>BookPriceService</display-name>

<description>BookPriceService</description>

<servlet>

<servlet-name>JAXRPCEndpoint</servlet-name>

<display-name>JAXRPCEndpoint</display-name>

<description>Endpoint for Book Price Service</description>

<servlet-class>com.sun.xml.rpc.server.http.JAXRPCServlet

</servlet-class>

<init-param>

<param-name>configuration.file</param-name>

<param-value>/WEB-INF/BookPriceService_Config.properties

</param-value>

</init-param>

<load-on-startup>0</load-on-startup>

</servlet>

<servlet-mapping>

<servlet-name>JAXRPCEndpoint</servlet-name>

<url-pattern>/jaxrpc/*</url-pattern>

</servlet-mapping>

<session-config>

<session-timeout>60</session-timeout>

</session-config>

</web-app>

Listing 10.11 Deployment descriptor (web.xml) for deploying BookPriceService.
(continued)

At this point, we are all set to compile and package the Web application.
Create a Web application (WAR) file containing the classes including the
deployment descriptors web.xml and configuration property file Book-
PriceService_Config.properties.

Listing 10.12 is a sample code listing of an Ant script, which packages
and deploys bookpriceservice.war in a JWSDP 1.0 environment (that
is, a Tomcat /webapps directory).

<!-- ===================== Package =================== -->

<target name=”package”>

<delete dir=”./WEB-INF” />

<copy todir=”./WEB-INF”>

<fileset dir=”.”>

<include name=”*.xml”/>

<include name=”*.wsdl”/>

<include name=”*.properties”/>

Listing 10.12 Ant script for packaging BookPriceService. (continues)

Building RPC Web Services with JAX-RPC 481

</fileset>

</copy>

<copy todir=”./WEB-INF/classes”>

<fileset dir=”.”>

<include name=”**/*.class”/>

</fileset>

</copy>

<jar jarfile=”${JAXRPC_WORK_HOME}/bookpriceservice.war”>

<fileset dir=”.” includes=”WEB-INF/**” />

</jar>

<copy todir=”${JWSDP_HOME}/webapps”>

<fileset dir=”${JAXRPC_WORK_HOME}”>

<include name=”bookpriceservice.war”/>

</fileset>

</copy>

</target>

Listing 10.12 Ant script for packaging BookPriceService. (continued)

The successful running of the previous Ant script copies the book-
priceservice.war to the JWSDP1.0/Tomcat environment /Webapps
directory and then restarts the Tomcat server. Figure 10.4 shows the suc-
cessful packaging and deployment of BookPriceService in the Tomcat
Web container.

Test the Service Deployment and WSDL

To test the successful packaging and deployment of the service, run the fol-
lowing URL using a Web browser:

http://127.0.0.1:8080/bookpriceservice/jaxrpc/

If everything works successfully, the browser will display the page
shown in Figure 10.5.

Figure 10.4 Packaging and deployment of BookPriceService.

482 Chapter 10

Figure 10.5 Browser displaying the installation of BookPriceService.

And, to display the WSDL document, run the following URL using a
Web browser:

http://127.0.0.1:8080/bookpriceservice/jaxrpc?WSDL

If the WSDL generation is successful, the browser will display the page
shown in Figure 10.6.

Generating Client-Side Artifacts (Stubs)

Using the xrpcc tool, generate the client-side stubs of the service. In a
JWSDP 1.0 environment, the xrpcc tool requires a -client option for
generating the client-side stub classes. Ensure that the generated classes
are copied to the directory client-stubs, which helps package the client
stubs separately.

Figure 10.6 Browser showing the WSDL of BookPriceService.

Building RPC Web Services with JAX-RPC 483

The following is a code listing of the Ant script specific to creating client-
side stub classes:

<!-- ==================== Create Client Stubs ============= -->

<target name=”client-stubs”>

<property name=”xrpcc” value=”${JWSDP_HOME}/bin/xrpcc.bat”/>

<exec executable=”${xrpcc}”>

<arg line=”-classpath .” />

<arg line=”-client” />

<arg line=”-d ./client-stubs” />

<arg line=”BookPriceServiceConfig.xml” />

</exec>

</target>

This is the tool that generates the following stub classes in the client-
stubs directory:

BookPriceService.class

BookPriceService_Impl.class

BookPriceService_SerializerRegistry.class

BookPriceServiceIF_GetBookPrice_RequestStruct.class

BookPriceServiceIF_GetBookPrice_ResponseStruct.class

BookPriceServiceIF_GetBookPrice_RequestStruct_SOAPSerializer.class

BookPriceServiceIF_GetBookPrice_ResponseStruct_SOAPSerializer.class

BookPriceServiceIF_Stub.class

Now, navigate to the client-stubs directory and, using the jar utility, cre-
ate the client-stubs.jar file, including all the stub classes. Addition-
ally, include the remote interface of the service BookPriceServiceIF.
class. Ensure that the client-stubs.jar file is in the CLASSPATH for
developing service clients.

Developing JAX-RPC Clients (BookPriceServiceClient)
As we discussed earlier, JAX-RPC 1.0 enables a JAX-RPC-based client to be
implemented using three different client invocation models. To illustrate
our BookPriceService client example, we will implement all three
models of client implementation and walk through them in the following
sections.

Stub-Based Client

In this client model, we will implement a standalone Java client that uses
the stub classes (client-stubs.jar), which act as a proxy for invoking

484 Chapter 10

remote methods. The client uses the command line argument service end-
point, which refers to the target service endpoint.

Listing 10.13 is a code listing of the stub-based service client
(BookPriceServiceClient.java).

package jws.ch10.jaxrpc.bookprice.stubclient;

// Import the Stub Interface

import javax.xml.rpc.Stub;

import jws.ch10.jaxrpc.bookprice.BookPriceServiceIF;

public class BookPriceServiceClient {

// Main method

public static void main(String[] args) {

try {

if(args.length==0) {

System.out.println(“Usage:

java jws.ch10.bookprice.stubclient.BookPriceServiceClient

SERVICE_ENDPOINT”);

return;

}

// Obtain the Instance of the Stub Interface

BookPriceServiceIF_Stub stub = (BookPriceServiceIF_Stub)

(new BookPriceService_Impl().getBookPriceServiceIFPort());

// Configure the stub setting required properties

// Setting the target service endpoint

stub._setProperty(

javax.xml.rpc.Stub.ENDPOINT_ADDRESS_PROPERTY,

args[0]);

// Execute the remote method

System.out.println (“\nThe retail book price in Japanese yen:”

+ stub.getBookPrice(“JAX-RPC in 24 hours”));

} catch (Exception ex) {

ex.printStackTrace();

}

}

}

Listing 10.13 BookPriceServiceClient.java.

Building RPC Web Services with JAX-RPC 485

TEAMFL
Y

Team-Fly®

Figure 10.7 Output showing stub-based client invocation on BookPriceService.

Ensure that the client-stubs.jar and JAX-RPC API libraries are
available in the CLASSPATH and that the JWSDP 1.0/Tomcat server is up
and running. Then, compile the source code using javac and execute the
client providing the service endpoint as the argument.

If everything works successfully, we see output like that shown in
Figure 10.7.

Dynamic Proxy-Based Client

In the dynamic proxy client model, we will implement a standalone Java
client that invokes a target service endpoint dynamically at runtime with-
out using the local stub class. The getPort method on the javax.xml.
rpc.Service interface enables a dynamic proxy to be created.

Listing 10.14 is a code listing of the dynamic proxy-based service client
(BookPriceServiceProxyClient.java).

package jws.ch10.jaxrpc.bookprice.proxyclient;

// Import Service & ServiceFactory

import javax.xml.rpc.Service;

import javax.xml.rpc.ServiceFactory;

import jws.ch10.jaxrpc.bookprice.*;

import javax.xml.namespace.QName;

import java.net.URL;

public class BookPriceServiceProxyClient {

// Main method

public static void main(String[] args) {

try {

Listing 10.14 BookPriceServiceProxyClient.java.

486 Chapter 10

// WSDL location of the BookPriceService

String wsdlURL

= “http://127.0.0.1:8080/bookpriceservice/jaxrpc?WSDL”;

// WSDL namespace URI

String nameSpaceURI = “http://jws.wiley.com/wsdl”;

// Service Name

String serviceName = “BookPriceService”;

// Service port Name

String portName = “BookPriceServiceIFPort”;

URL serviceWSDL = new URL(wsdlURL);

// Obtain an Instance of Service factory

ServiceFactory serviceFactory = ServiceFactory.newInstance();

// Create a service from Instance using WSDL

Service bookPriceService =

serviceFactory.createService(serviceWSDL,

new QName(nameSpaceURI, serviceName));

// Get the proxy object

BookPriceServiceIF bpProxy =

(BookPriceServiceIF) bookPriceService.getPort

(new QName(nameSpaceURI,portName), BookPriceServiceIF.class);

// Invoke the remote methods

System.out.println(“\nThe retail book price

in Japanese Yen :”

+ bpProxy.getBookPrice(“JAX-RPC in 24 hours”));

} catch (Exception ex) {

ex.printStackTrace();

}

}

}

Listing 10.14 BookPriceServiceProxyClient.java. (continued)

Ensure that the JAX-RPC API libraries are available in the CLASSPATH
and that the JWSDP 1.0/Tomcat server is up and running and then compile
the source code using javac.

If everything works successfully, you should see output like that shown
in Figure 10.8.

Building RPC Web Services with JAX-RPC 487

Figure 10.8 Output showing a dynamic proxy-based invocation on BookPriceService.

Dynamic Invocation Interface (DII) Client

In the DII client model, the client discovers the target service dynamically
at runtime and then invokes its methods. Listing 10.15 is a code listing of a
DII client (BookPriceServiceDIIClient.java).

package jws.ch10.jaxrpc.bookprice.diiclient;

// Imports

import javax.xml.rpc.Call;

import javax.xml.rpc.Service;

import javax.xml.rpc.ServiceFactory;

import javax.xml.rpc.JAXRPCException;

import javax.xml.rpc.ParameterMode;

import javax.xml.namespace.QName;

import java.net.URL;

public class BookPriceServiceDIIClient {

// Main method

public static void main(String[] args) {

// Service Name

String qService = “BookPriceService”;

// Port Name

String qPort = “BookPriceServiceIF”;

// Name space URI

String BODY_NAMESPACE_VALUE = “http://jws.wiley.com/wsdl”;

// Encoding style

Listing 10.15 BookPriceServiceDIIClient.java.

488 Chapter 10

String ENCODING_STYLE_PROPERTY =

“javax.xml.rpc.encodingstyle.namespace.uri”;

// XML Schema

String NS_XSD = “http://www.w3.org/2001/XMLSchema”;

// SOAP encoding URI

String URI_ENCODING = “http://schemas.xmlsoap.org/soap/encoding/”;

try {

String target_endpoint =

“http://127.0.0.1:8080/bookpriceservice/jaxrpc/BookPriceServiceIF”;

// Obtain an Instance of Service factory

ServiceFactory sFactory =

ServiceFactory.newInstance();

// Create a Service

Service service =

sFactory.createService(new QName(qService));

// Define a port

QName port = new QName(qPort);

// Create a Call object using the service

Call call = service.createCall(port);

// Set the target service endpoint

call.setTargetEndpointAddress(target_endpoint);

// Set properties - SOAP URI, Encoding etc.

call.setProperty(Call.SOAPACTION_USE_PROPERTY,

new Boolean(true));

call.setProperty(Call.SOAPACTION_URI_PROPERTY, “”);

call.setProperty(ENCODING_STYLE_PROPERTY, URI_ENCODING);

// Set Parameter In type as String

QName QNAME_TYPE_STRING = new QName(NS_XSD, “string”);

// Set Return value type as String

QName QNAME_TYPE_FLOAT = new QName(NS_XSD, “float”);

call.setReturnType(QNAME_TYPE_FLOAT);

Listing 10.15 BookPriceServiceDIIClient.java. (continues)

Building RPC Web Services with JAX-RPC 489

// Set operations

call.setOperationName(new QName(BODY_NAMESPACE_VALUE,

“getBookPrice”));

// Set Parameters

call.addParameter(“String_1”, QNAME_TYPE_STRING,

ParameterMode.IN);

String[] BookName = {“JAX-RPC in 24 hours”};

// Invoke and obtain response

Object respObj = (Object) call.invoke(BookName);

System.out.println(“\nThe retail book price

in Japanese Yen:” + respObj.toString());

} catch (Exception ex) {

ex.printStackTrace();

}

}

}

Listing 10.15 BookPriceServiceDIIClient.java. (continued)

Ensure that the JAX-RPC API libraries are available in the CLASSPATH
and that the JWSDP 1.0/Tomcat environment is up and running and then
compile the source code using javac.

If everything works successfully, you should see output like that shown
in Figure 10.9.

Figure 10.9 Output showing a DII-based invocation on BookPriceService.

490 Chapter 10

JAX-RPC in J2EE 1.4

The upcoming release of J2EE 1.4 platform specifications focuses on enabling
J2EE components to participate in Web services. As a key requirement, it
mandates the implementation of JAX-RPC 1.0 and EJB 2.1 specifications,
which address the role of JAX-RPC in J2EE application components includ-
ing EJBs. This means that all J2EE-compliant application servers will
implement JAX-RPC, which allows exposing J2EE components as RPC-
based Web services.

In EJB 2.1 specifications, it mandates the Stateless session EJBs to be
exposed as Web services using a Web Services Endpoint Interface, which fol-
lows the same rules as a JAX-RPC service interface. This means the methods
defined in the Web Services Endpoint Interface must be implemented in the
bean implementation class. The EJB 2.1 deployment descriptor also intro-
duces a new <service-endpoint> element, which contains the class
name of the Web services endpoint interface. In the case of application
exceptions, it is the responsibility of the container to map the exceptions to
SOAP faults as per SOAP 1.1 specifications. At the time of this writing, the
EJB 2.1 public draft specifies Web services endpoint interface for Stateless
Session EJBs only.

The introduction of JAX-RPC in J2EE environments enables J2EE com-
ponents accessed as Web services using heterogeneous clients including
both Java and non-Java applications. It also takes advantage of J2EE con-
tainer services like transactions, application security, and so on.

JAX-RPC Interoperability

A JAX-RPC Service provider can interoperate with any SOAP 1.1/WSDL
1.1-compliant service client and, similarly, a JAX-RPC Service client can
interoperate with any SOAP 1.1/WSDL 1.1-compliant service provider.

To ensure JAX-RPC interoperability with other SOAP implementation
providers, it is quite important to verify their compliance with specifica-
tions such as SOAP 1.1, WSDL 1.1, HTTP 1.1 transport, and XML Schema
1.0. To find out more information on JAX-RPC interoperability with other
SOAP implementations, refer to Sun’s SOAP Interoperability testing Web
site at http://soapinterop.java.sun.com. (For more information on SOAP
and WSDL interoperability and developing an interoperability scenario,
refer to Chapter 6, “Creating .NET Interoperability.”)

Building RPC Web Services with JAX-RPC 491

Summary

In this chapter, we have discussed how to develop JAX-RPC-based services
and service clients for enabling Java Web services. We noted that JAX-RPC
provides a RPC-based communication model between applications sup-
porting industry standard messaging protocols. In general, we covered the
role of JAX-RPC in Web services, JAX-RPC APIs and its programming
model, JAX-RPC-supported mappings for Java and XML/WSDL, and the
development of the JAX-RPC-based Web services applications.

In the next chapter, we will discuss how to describe, publish, and dis-
cover Web services using JAXR.

492 Chapter 10

493

As we discussed in Chapter 5, “Description and Discovery of Web Ser-
vices,” registering and discovering Web services from shared registries is an
important aspect of the Web services paradigm. These registries should be
able to understand XML-based protocols such as SOAP. These registries
should ideally be capable of maintaining rich metadata information about
registered Web services. This chapter discusses the Java API for XML Reg-
istries (JAXR) 1.0, an API for communicating with such XML registries.

The following are the key topics discussed in this chapter:

■■ Introduction to JAXR
■■ JAXR architecture

■■ JAXR architectural components
■■ JAXR capabilities and capability profiles
■■ JAXR programming model
■■ JAXR information model
■■ Classification of registry objects
■■ Association of registry objects

Java API for XML Registries

C H A P T E R

11

■■ JAXR registry services API
■■ Connection management API
■■ Life cycle management API
■■ Query management API

■■ Understanding JAXR by examples
■■ JAXR support in JWSDP 1.0
■■ Publishing using JAXR
■■ Querying using JAXR
■■ Deleting information using JAXR

Introduction to JAXR

JAXR is a standard Java API for use in registering/publishing and
discovering/querying Web services from XML-based registries such as
UDDI and ebXML Registry/Repository. JAXR is an integral part of the
J2EE 1.4 platform, which is due to be released in early 2003.

JAXR does not define any new registry standard, rather it defines a Java
API for performing registry operations over a diverse set of registries.
JAXR also performs a unification of diverse information models of various
registries, so that regardless of the registry in use, the applications can use
the same code for managing registry information. In the next section, we will
examine the architecture of JAXR as well as its architectural components.

Visit the following site to download the final JAXR draft specification:
http://java.sun.com/xml/downloads/jaxr.html

JAXR Architecture

JAXR Architectural Components
JAXR architecture involves three main components: registry provider,
JAXR provider, and JAXR client. Each of these components are discussed
in the paragraphs that follow.

Registry Provider

A registry provider actually implements the registry standard such as
UDDI, ebXML registry/repository, or OASIS registry. A registry provider
may or may not provide implementation for JAXR.

494 Chapter 11

JAXR Provider

JAXR provider implements the JAXR specification. A JAXR application/
JAXR client would access the registry through the JAXR provider. There are
three categories of JAXR providers: JAXR pluggable providers, registry-
specific providers, and JAXR bridge providers. Each of these is described in
the paragraphs that follow.

JAXR Pluggable Provider

The JAXR pluggable provider is implemented so that it can work with any
registry. Pluggable providers provide a single abstraction for multiple
registry-specific JAXR providers and thereby save JAXR applications from
having to deal with multiple registry-specific JAXR providers.

Registry-Specific Provider

Registry-specific provders provide JAXR support for a specific registry.
Typically, it plugs into the JAXR pluggable provider and is used by the
JAXR pluggable provider in a delegation pattern. Note that the JAXR spec-
ification does not define a contract between the pluggable provider and the
registry-specific provider. The next version of the JAXR specification will
contain a Services Provider Interface (SPI) to provide such a contract between
the two.

JAXR Bridge Provider

JAXR bridge providers are registry-specific. This kind of provider is strictly
based on the registry specification such as a UDDI or ebXML registry/
repository; this is so that the provider can be used to communicate with tar-
get registries based on these specifications, regardless of who the registry
vendor is. That is, a JAXR bridge provider also is a JAXR registry-specific
provider — however, the reverse is not always true. A registry-specific
provider may deviate slightly from the underlying registry’s specification.

JAXR Application (or JAXR Client)

A JAXR application is a Java program that uses the JAXR API to access the
services provided by the registry through a JAXR provider. A JAXR appli-
cation can be a standalone Java application or an enterprise component
hosted in a managed environment, such as an EJB or servlet container. Typ-
ically, a JAXR application and a JAXR provider would be located in the
same JVM.

Figure 11.1 shows an architecture diagram of JAXR.

Java API for XML Registries 495

TEAMFL
Y

Team-Fly®

Figure 11.1 JAXR architecture.

In Figure 11.1, you can see the following: RS represents the Registry-
Service interface, which is the main interface that must be implemented
by all the JAXR providers. A JAXR application connects to this interface
via the Connection object, through which it eventually connects to the
JAXR capability interfaces. The Connection interface is discussed in the
Connection Management API section later in this chapter.

C1, C2, through Cn represent JAXR interfaces implemented by the JAXR
provider. Each of these interfaces is responsible for providing a specific
type of registry functionality, such as querying registry data, adding/
modifying/deleting registry data, and so on. In JAXR terminology, these
interfaces are referred to as capability interfaces. Capabilities are discussed
in detail in the next section.

JAXR Capabilities and Capability Profiles
As we mentioned earlier in the chapter, JAXR provides a single, unified
API for accessing different registries. Registries vary significantly in their
capabilities and the underlying information model.

Typically, if an API is designed to support a diverse set of functionalities,
it tends to provide support for only the most common functionalities. A

JAXR Client

JAXR Pluggable Provider

ebXML
Provider

UDDI
Provider

Other
Provider

???

Capability
Interfaces

Registry
Specific JAXR
Provider

UDDI/SOAPebXML/SOAP

C1 C2 • • •

RS

Cn

ebXML UDDI Other Diverse
Registries

496 Chapter 11

classic example of this observation would be JDBC (Java Database Connec-
tivity). If you look at JDBC, it provides support for only the most common
features found in popular databases. The way JDBC is designed makes it
incapable of including any features that are not commonly found in all the
databases. Due to its architecture, if JDBC did include support for func-
tionality that was specific to a particular database, the rest of the database
vendors would have a hard time implementing a JDBC provider because
there would be no way that the vendor could ignore the capability, which
is required by the JDBC specification but is unsupported by their database.
This architecture of the JDBC API does not render it unacceptable because
the degree of variation of functionality provided by different databases is
comparatively less, and hence, the need for a more flexible architecture is
less. However, this is not the case for registries.

The degree of variation of the functionalities that are provided by differ-
ent registries is quite high; sometimes from the protocol they use to the
information model they support. Thus, designing a unified API such as
JAXR using a similar approach as JDBC (that is, the aforementioned least
common denominator approach) would render JAXR almost useless for
one or the other type of registry. One of the main objectives of JAXR is to
provide support for diverse registries through an API that is broad in scope
and capable rather than a least common denominator API. To be able to
offer high functionality while not bloating the API unnecessarily, JAXR
introduced the concept of capabilities and their profiles, both of which are
discussed in the following sections.

JAXR Capabilities

A capability is a group of related features, for example, features related to
finding information in the registry. Each capability is represented by a Java
interface in JAXR. For example, BusinessLifeCycleManager and
LifeCycleManager are two JAXR interfaces that represent the same kind
of capability (that is, life cycle management) but at different functional
levels. Similarly, the BusinessQueryManager and Declarative-
QueryManager JAXR interfaces include capabilities pertaining to query
management, again at different levels of functionality.

JAXR Capability Profiles

A JAXR capability profile is a group of capability interfaces at the same level.
JAXR currently defines two capability profiles for two different functional
levels: basic and advanced. They are as follows:

Java API for XML Registries 497

Level 0 Capability Profile

Interfaces that belong to the Level 0 Capability Profile provide basic
support of life-cycle management and querying capabilities. Interfaces
belonging to the Level 0 Capability Profile also are known as the Business
API. Capability interfaces belonging to this profile include:

■■ BusinessLifeCycleManager
■■ BusinessQueryManager

Level 1 Capability Profile

Interfaces that belong to the Level 1 Capability Profile provide advanced
support of life-cycle management and querying capabilities. Support for
the Level 1 Capability Profile also implies support for Level 0 capabilities.
Interfaces belonging to the Level 1 Capability Profile also are known as
the Generic API. Capability interfaces belonging to this profile include the
following:

■■ LifeCycleManager
■■ DeclarativeQueryManager

JAXR providers supporting access to registries that do not provide
advanced capabilities required by a Level 1 Profile implementation can
choose to not implement this more advanced profile. For example, a JAXR
provider for UDDI registry does not require implementation of a Level 1
Capability Profile because UDDI registries do not support the advanced
functionalities of the Level 1 registries. However, JAXR providers for
ebXML registry/repository must be Level 1 compliant.

A JAXR application can discover a given JAXR provider’s capability level
by using the methods on the CapabilityProfile interface.

The JAXR Programming Model
JAXR API is divided into the following two main packages:

javax.xml.registry. This package defines the interfaces responsible for
providing usual registry services, for example, connection manage-
ment, life-cycle management, and querying.

javax.xml.registry.infomodel. This package provides interfaces repre-
senting the information model of a JAXR-enabled registry. The JAXR
information model is discussed in the next section.

498 Chapter 11

JAXR Information Model

The term information model refers to the types of information that are sup-
ported by a particular directory or registry. The information model is consid-
ered to be an important feature for any registry; the richer the information
model of a registry is, the more usable the registry becomes. Different reg-
istries have different information models. In fact, there is no standard
information model in place for XML-based registries. JAXR is the first stan-
dard that attempts to provide a unified view of the information model for
XML Registries.

The JAXR information model is based on the ebXML registry’s informa-
tion model as defined by the ebXML registry information model (RIM)
specification. It has been further extended, in order to support UDDI.
EbXML RIM presents a comprehensive model for structuring information
compared to the UDDI Data Structure (UDDI-DS), which is why JAXR pro-
vides inherent support for ebXML RIM right from the beginning.

The JAXR information model’s related interfaces are defined in a separate
package called javax.xml.registry.infomodel. These interfaces present a Java
binding to the unified information model from two dominant registry spec-
ifications: UDDI and ebXML registry. An important point to remember is
that the JAXR information model presents a view of how information may
be structured in a JAXR-enabled registry and does not represent in any way
the structural model of information in the underlying repository.

Classes and Interfaces
The following list discusses some of the important and frequently used
classes and interfaces in the JAXR information model:

RegistryObject. This is the base class that is extended by most of
the objects in the JAXR information model. It provides a minimal set
of metadata for these registry objects in terms of associations that
the objects may have, classifications that classify these objects, their
description, audit trail, external identifiers, external links (URLs, for
instance), and so on. Classifications, external identifiers, and associa-
tions are discussed later in this chapter.

RegistryEntry. The JAXR information model objects that require
additional coarse-grained metadata, such as version information,
would extend this interface. This interface is the base interface for the

Java API for XML Registries 499

interfaces in the model that require additional metadata beyond what
is provided by the relatively lighter-weight and more finer-grained
RegistryObject interface.

Organization. The type Organization extends Registry-
Object and is intended to represent information pertaining
to any organization in the JAXR-enabled registry. Typically, an
Organization instance can have different types of relation-
ships with other Organization instances, such as a parent-child
relationship, for example. An Organization can have one or more
Services.

Service. The Service type represents information pertaining to the
Web services that are published by an organization in a JAXR-
enabled registry. Corresponding to each Service, zero or more
ServiceBindings can be present in a registry. This type also
extends RegistryObject.

ServiceBinding. A ServiceBinding instance extends
RegistryObject. This type specifies the technical information
related to the Services published by an organization. Typically,
this information refers to access mechanisms such as a URI; they
are provided in order to specify an interface for accessing the Web
service.

SpecificationLink. A ServiceBinding can have a Specifi-
cationLink establishing a link to one of its technical specifications.
This technical specification can consist of information such as how to
invoke a SOAP RPC Web service, how the service would behave
under different contexts, and so on.

ClassificationScheme. This type of JAXR information model
can be used to specify the taxonomy that has been used for classify-
ing a particular RegistryObject. Some of the common examples
of classification schemes include the Dewey Decimal System used in
libraries to categorize books. Another common example would be the
North American Industry Classification System, or NAICS, used to
categorize businesses based on the services they offer, the vertical
they belong to, and so on.

The classification functionality of JAXR is discussed in more detail
in the section titled Classification of Registry Objects later in this chap-
ter. For now, just remember that JAXR enables the classification of
RegistryObjects through homegrown classification schemes.

500 Chapter 11

Classification. Classification instances are used to classify a
RegistryObject instance using ClassificationScheme. Classi-
fications are discussed in more detail in a later section.

Concept. A Concept instance can be used to represent anything vir-
tually. Some of the common uses of Concept objects are as follows:

1. They can be used to define hierarchical tree structure and
detailed elements of a classification scheme. The root of a classifi-
cation tree structure is an instance of ClassificationScheme,
whereas the rest of the descendent nodes of the classification tree
are instances of Concepts.

2. They can be used to serve as a proxy for content that is externally
stored to a Level 0 registry by providing a unique ID for the
external content, akin to the UDDI tModels when they are used
for the purposes of providing a technical fingerprint for content
external to the UDDI registry, such as a WSDL document.

Association. This type is used to define associations between
different objects in the JAXR information model. Associations are
discussed later in this chapter.

ExternalIdentifier. ExternalIdentifier instances are used
to provide identification information to a RegistryObject apart
from the 128-bit UUID Key ID. This identification information may
be based on some well-known identification scheme such as a social
security number. In order to represent the identification scheme, the
JAXR information model reuses the ClassificationScheme class.

ExternalLink. Instances of this type provide a URI link to the con-
tent that is managed outside the registry. Unlike content managed in
a repository, such external content may change or be deleted at any
time without the knowledge of the registry. A RegistryObject
may be associated with one or more ExternalLinks. The potential
use of the ExternalLink capability may be in a GUI tool that dis-
plays the ExternalLinks defined for a RegistryObject. The
user may click on such links and navigate to an external Web page in
order to get further information.

Slot. Slot instances provide the capability of adding arbitrary attrib-
utes to the RegistryObject instances at runtime. This ability to
add attributes dynamically enables the extensibility of the informa-
tion model.

Java API for XML Registries 501

ExtensibleObject. The ExtensibleObject interface consists
of methods that enable the addition, deletion, and lookup for Slot
instances. Thus, the ExtensibleObject interface provides a
dynamic extensibility capability to various objects in a JAXR infor-
mation model. Several interfaces in the JAXR information model are
extended from ExtensibleObject including Organization,
RegistryObject, Service, ServiceBinding, Classification,
ClassificationScheme, Association, and so on.

ExtrinsicObject. This type is used to provide metadata about
the repository item (for example, a WSDL document or an XML
Schema document), about which a registry has no knowledge.
The ExtrinsicObject provides access to a repository item in
a JAXR-enabled registry. An instance of this type is required for
each repository item.

AuditableEvent. An AuditableEvent instance is a Registry-
Object used to represent audit trail information for a particular
RegistryObject.

User. Instances of this type are RegistryObjects used to provide
information about registered users within a registry. Each User is
affiliated with an Organization. User objects are used in the
AuditTrail for a RegistryObject.

PostalAddress. PostalAddress instances represent a postal
address for a User and an Organization.

RegistryPackage. This is used to logically group the related
RegistryObject instances.

Figure 11.2 shows the inheritance relationships between different objects
in the JAXR information model.

Classification of Registry Objects
Classification denotes the categorization of entities based on a well-
defined scheme known as a classification scheme or taxonomy. Classification
enables a rapid discovery of registry objects. Thus, the ability to be able to
classify objects of a registry is considered to be one of the most significant
features. JAXR supports the classification of objects registered with a
JAXR-enabled registry in order to support such rapid discovery of objects.

The Classification, ClassificationScheme, and Concept
interfaces of the JAXR information model are used to provide classification
support in JAXR.

502 Chapter 11

Figure 11.2 The JAXR information model.

The Classification interface is used to classify RegistryObject
instances. A RegistryObject may be classified along multiple dimen-
sions by adding zero or more Classification instances to the
RegistryObject. The RegistryObject interface provides overloaded
addClassification() methods, in order to enable a JAXR application
to add Classification instances to the RegistryObject, and thus to
classify that particular RegistryObject.

The ClassificationScheme interface is used to represent tax-
onomies or schemes that can be used to provide taxonomical data for cate-
gorizing RegistryObject instances. A Classification instance uses
a ClassificationScheme instance to identify the taxonomy used to
classify its RegistryObject along that particular dimension. For exam-
ple, a Geography ClassificationScheme can provide a taxonomy sys-
tem that defines a geography structure with continents, countries within
continents, states within countries, and probably even cities and towns
within states.

Interface ExtensibleObject
Interface Versionable Interface Service

Interface RegistryObject
Interface Organization

Interface Classification Interface ExternalLink

Interface ServiceBinding

Interface Concept Interface ExternalIdentifier

Interface Association Interface user

Interface AudiatableEvent Interface SpecificationLink

Interface RegistryEntry

Interface RegistryPackage Interface ExtrinsicObject

Interface ClassificationScheme

Java API for XML Registries 503

Figure 11.3 shows associations between RegistryObject, Classifi-
cation, and ClassificationScheme. As you can see in the figure,
RegistryObject may be associated with zero or more Classifica-
tion instances based on the number of dimensions along which it has
been classified. In any case, a Classification instance is associated
with exactly one ClassificationScheme instance in order to identify
the taxonomy used to classify RegistryObject.

Types of Taxonomies

Taxonomy is defined in terms of a structure consisting of elements, known
as taxonomy elements, and their relationship with each other. As an exam-
ple, consider an illustrative geography taxonomy consisting of a country
taxonomy element, which in turn would have a containment relationship
with the continent taxonomy element. Thus, while a Classification
instance uses a ClassificationScheme instance to identify the taxon-
omy for classification, it also needs some way of identifying a specific tax-
onomy element used for classifying RegistryObject.

JAXR supports taxonomies in two ways based on the location of taxon-
omy elements and their structural relationship-related information: inter-
nally and externally.

Figure 11.3 Classifying a registry object.

Interface RegistryObject
0..*

1

Interface Classification

Interface ClassificationScheme

504 Chapter 11

Internal Taxonomy

The information about taxonomy elements and their structural relation-
ships is available internally within a JAXR provider. This type of taxonomy
obviously provides more functionality (and thus value) to a JAXR applica-
tion because a JAXR provider can now validate whether references to tax-
onomy elements in a classification are meaningful and correct.

However, the internal structure maintained within the JAXR provider
needs to be updated whenever the taxonomy evolves. Thus, this added
maintenance could be considered a drawback of the internal taxonomies.

JAXR makes use of the concept interface for representing taxonomy
elements and their structural relationship with each other in order to describe
an internal taxonomy. As mentioned earlier, concept instances can be used to
define tree structures where the root of the tree is a Classification-
Scheme instance and each node in the tree is a concept instance.

External Taxonomy

Information about taxonomy elements and their structural relationships is
available externally to the JAXR provider. JAXR applications can use exter-
nal taxonomies without having to import the complete taxonomy struc-
ture. Also, because the structure resides externally to the JAXR provider,
there is no need to update the structure whenever taxonomy evolves, thus
making taxonomy more flexible to changes.

However, in this case there is no means for a JAXR provider to validate
the references to taxonomy elements in a classification.

Types of Classification

In any case, the classification instance would always use Classification-
Scheme to identify the taxonomy, internal or external. Now, based on the
kind of taxonomy used by a classification, a classification can be categorized
as one of the following: interal or external.

Internal Classification

If a Classification instance is used to classify a RegistryObject
using an internal taxonomy, the classification is referred to as internal clas-
sification. In order to use an internal taxonomy, the JAXR application uses
the setConcept() method on a Classification instance to refer to
the Concept instance representing the taxonomical element. Another

Java API for XML Registries 505

TEAMFL
Y

Team-Fly®

point to note is that a JAXR application does not need to call setClassi-
ficationScheme() on a Classification instance when using inter-
nal taxonomies because the classifying Concept already knows its root
ClassificationScheme.

Figure 11.4 shows an example of internal classification, in which a
Concept instance is used to represent the taxonomy element. Here, an
organization named ACME Computer Services is classified as a Custom
Computer Programming Services provider, using the NAICS standard taxon-
omy made available as an internal taxonomy.

External Classification

If a Classification instance is used to classify a RegistryObject
using an external taxonomy, the classification is referred to as external clas-
sification. A JAXR application would call the setClassification-
Scheme() method on the Classification instance to specify an
external taxonomy. Also, in order to refer to the taxonomy element, the
application would call the setValue()method on the Classification
instance to define a unique value that represents the taxonomy element
within the external taxonomy.

Figure 11.5 shows an example of an external classification, in which the
same ACME Computer Services organization is classified using the NAICS
standard taxonomy as a custom computer programming services provider.
However, in this case, the NAICS standard taxonomy is not available
internally to the JAXR provider and so a Concept instance is not used to
identify the taxonomy element. Rather, a name/value pair is used to refer
to the externally located taxonomy element, where providing a name is
optional but providing a value to the taxonomy element is mandatory.

Figure 11.4 An example of internal classification.

objOrganization:Organization

[Id="urn:uuid:1", name="ACME Computer Services"]

objConcept:Concept

[Id="urn:uuid:2", name="Custom Computer
Programming Services", value="541511"]

classifiedObject concept

objClassificationScheme:ClassificationScheme

[Id="urn:ntis-gov:naics:1997", name="NAICS"]

objInternalClassification:Classification

[classifiedObject="urn:uuid:1", concept="urn:uuid:2"]

classificationScheme

506 Chapter 11

Figure 11.5 An example of internal classification.

Multidimensional Classification

A RegistryObject can be classified along multiple dimensions, which
means that a RegistryObject may be classified by multiple taxonomies
or classification schemes. Figure 11.6 depicts an example wherein the
ACME Computer Services organization is classified by two internal tax-
onomies, Industry and Geography. Please note that for brevity, the figure
does not show the entire taxonomical structure.

Figure 11.6 An example of a multi-dimensional classification.

Industry:ClassificationScheme

Manufacturing:Concept

Professional Scientific and Technical Services:Concept

Computer Systems Design and Related:Concept

Retail:Concept

classifiedByclassifiedBy

Custom Computer Programming Services:Concept

ACME Computer Services:Organization

United States:Concept

North America:Concept

Geography:ClassificationScheme

Europe:Concept

objInternalClassification:Classification

[classificationScheme="urn:ntis-gov:naics:1997", name="Custom Computer Programming Services", value="541511",
classifiedObject="urn:uuid:1", concept=null]

objOrganization:Organization

[Id="urn:uuid:1", name="ACME Computer Services"]

objClassificationScheme:ClassificationScheme

[Id="urn:ntis-gov:naics:1997", name="NAICS"]

classifiedObject classificationScheme

Java API for XML Registries 507

Association of Registry Objects
JAXR supports the association between registry objects. A Registry-
Object may be associated with zero or more RegistryObject instances.
The JAXR information model defines an Association interface, which
can be used to associate any two given registry objects. An Association
instance represents an association between a source RegistryObject
and a target RegistryObject, referred to as sourceObject and targetObject,
respectively.

Figure 11.7 shows an example where two classification schemes are asso-
ciated with each other. In this example, the newer version of the NAICS
classification scheme (NAICS2001) is associated with the older version of
the NAICS classification scheme (NAICS1997) so that the newer version
supersedes the older version.

In the figure, you can see that the newer version of the NAICS classifica-
tion scheme is the sourceObject and the older version is the targetObject,
because the type of association implies that the sourceObject Supersedes
the targetObject. Thus, the newer version of the classification scheme has
to be the sourceObject in order to supersede the older version of the classi-
fication scheme in the registry. So, as can be seen from the figure, it is
important which object plays the sourceObject and the targetObject
because these objects determine the semantics of an association.

Types of Associations

Each Association instance has an associationType attribute that
identifies the type of that association. In Figure 11.7 you can see one such
type: Supersedes. JAXR has defined an enumeration of such association
types, AssociationType, in the form of a ClassificationScheme.
This enumeration has been defined to include all the well-known forms of
associations between two objects. The types defined include the following:

RelatedTo HasMember HasChild HasParent ExternallyLinks

Contains EquivalentTo Extends Implements InstanceOf

Supersedes Uses Replaces ResponsibleFor SubmitterOf

So, for example, if the associationType attribute of the Associa-
tion instance, associating the User sourceObject and Organization
targetObject, is equal to the value SubmitterOf, this clearly indicates that
the user is the submitter of that particular organization’s information to
this registry.

508 Chapter 11

Figure 11.7 An example of a RegistryObject association.

Association Use Cases

Based on the ownership of the objects between whom the association has
been created, two common use cases have been identified by JAXR: intra-
mural associations and extramural associations. The following describe
each of these cases.

Intramural Associations

Intramural associations are defined when a user creates an association
between two registry objects that were created by the same user. Such an
association does not need to be confirmed by anybody else because the
party that creates the association is the same party that owns the registry
objects being associated. Thus, intramural association is implicitly consid-
ered to be confirmed by the registry.

Extramural Associations

Extramural associations are a bit more sophisticated than intramural asso-
ciations; users owning either or both objects being associated are different
than the user that created the association.

Extramural association needs to be confirmed explicitly by the parties
that own the associating registry objects. Respective parties can use the
confirmAssociation() method on the BusinessLifeCycleManager
interface in their JAXR applications to confirm the association in question.
Consequently, an association can be unconfirmed by an owner of any of the
associating registry objects by using the unconfirmAssociation()
method on BusinessLifeCycleManager. An unconfirmed association
would not be visible to the third-party registry users.

Now, let’s take a look at the JAXR programming APIs responsible for
managing the connections to the JAXR providers, managing life cycles of
registry objects, and querying the registry.

sourceObject targetObject

NAICS2001-1997-Association:Association

[associationType=Supersedes]

NAICS1997:ClassificationSchemeNAICS2001:ClassificationScheme

Java API for XML Registries 509

JAXR Registry Services API

As mentioned earlier in the chapter, the interfaces pertaining to JAXR
registry services are defined in a separate package called javax.xml.
registry. Programming interfaces can thus be categorized based on the
registry services provided as follows:

■■ Connection Management API
■■ Life-Cycle Management API
■■ Query Management API

The following sections explain the APIs involved with managing con-
nections to a JAXR provider.

Connection Management API
JAXR connection management activity can be further broken down into
finer grained sub-activities. Each of these sub-activities is discussed in the
following sections in the order of the sequence in which they should occur.

Looking Up a ConnectionFactory

A JAXR ConnectionFactory object needs to be configured in a provider-
specific way before successfully creating connections with a JAXR provider.
There are two ways of obtaining a ConnectionFactory object, as follows:

■■ A JAXR application can get hold of the ConnectionFactory
instance by performing a lookup on the JNDI directory. The
registration of a ConnectionFactory instance with the JNDI
naming service is JAXR provider-specific.

■■ Another way for a JAXR application to obtain the Connection-
Factory instance is by using the newInstance() static method
on the ConnectionFactory abstract class. The JAXR application
may indicate which factory class to instantiate when calling the
newInstance() method by defining the system property
javax.xml.registry.ConnectionFactoryClass.

510 Chapter 11

The following code shows how to obtain a ConnectionFactory object
through a newInstance() method.

// Add System property to define which provider-specific

// ConnectionFactoryClass to use.

System.setProperty (“javax.xml.registry.ConnectionFactoryClass”,

“com.sun.xml.registry.uddi.ConnectionFactoryImpl”);

// Create ConnectionFactory using the class specified in

// the System property and static newInstance method

ConnectionFactory objConnectionFactory =

ConnectionFactory.newInstance();

Setting Connection Properties on ConnectionFactory

After a ConnectionFactory instance is available to a JAXR application,
that instance then can configure the ConnectionFactory instance with a
Properties object by calling the setProperties() method on Con-
nectionFactory. The properties specified may be either standard or
non-standard provider-specific properties. Standard properties are defined
by the JAXR specification.

Some of the more important standard connection properties are listed in
Table 11.1.

The following code shows how to set the queryManagerURL and
lifeCycleManagerURL configuration properties on the Connection-
Factory object.

// Setting the Connection configuration properties

Properties objProperties = new Properties();

objProperties.put (“javax.xml.registry.queryManagerURL”,

“http://java.sun.com/uddi/inquiry”);

objProperties.put (“javax.xml.registry.lifecycleManagerURL”,

“http://java.sun.com/uddi/publish”);

Java API for XML Registries 511

Table 11.1 Standard Connection Properties

PROPERTY DATA TYPE DESCRIPTION

javax.xml.registry. String URL to the query manager service
queryManagerURL hosted by the target registry

provider.

A query manager service is
responsible for handling all
of the query requests.

javax.xml.registry. String URL to the life-cycle manager
lifeCycleManagerURL service hosted by the target

registry provider. If this is not
explicitly specified, it defaults
to the queryManagerURL.

A life-cycle manager service is
responsible for handling all life-
cycle management-related
requests.

javax.xml.registry. String Specifies the authentication
security. method to be used by the JAXR
authenticationMethod provider when authenticating with

the registry provider.

javax.xml.registry. Integer Specifies the maximum number
uddi.maxRows of rows to be returned for find

operations. The property is specific
to UDDI only.

javax.xml.registry. String Identifies the ID of the default
postalAddressScheme ClassificationScheme used to

structure the postal address
information.

The reason for the JAXR
specification to use a
ClassificationScheme for a postal
address is because in different
geographies, the postal addresses
are structured in different ways.
Hence, using ClassificationScheme
in this case offers more flexibility
of representing address
information.

512 Chapter 11

Creating a JAXR Connection

After configuring connection properties, the JAXR application can create a
Connection to the JAXR provider and thus to the registry provider. An
application can use a createConnection() method on the Connec-
tionFactory object to achieve this. This method checks whether all the
required connection properties, for instance javax.xml.registry.
queryManagerURL, are defined properly or not. If a discrepancy is found,
then the method will throw a javax.xml.registry.InvalidRequest-
Exception.

JAXR supports the following two types of connections:

Synchronous connections. The JAXR provider must process each
request method call completely in a synchronous manner before
returning a non-null JAXRResponse containing the response to that
request. In this case, the JAXR application thread is blocked until the
JAXR provider has processed the request.

Asynchronous connections. For each incoming asynchronous
request, the JAXR provider allocates a globally unique request
ID. After the unique request ID is allocated, the provider returns
a non-null JAXRResponse immediately to the JAXR application.
The returned JAXRResponse does not contain the actual response
value. Internally, the provider maintains a mapping between the
request ID and its corresponding JAXRResponse instance so that as
soon as the reply arrives from the underlying registry provider at some
time in the future, the JAXR provider can find the corresponding
JAXRResponse instance and deliver the reply to the instance. This is
when the actual response value is available to the JAXR application.

The application should never attempt to read the value directly from
the returned JAXRResponse instance without first checking whether
the value is available to be read, because attempting to read an
unavailable response value can cause the JAXR application thread to
block. The application can determine the availability of a response
value by using getStatus() method on a JAXRResponse instance.
The method then returns STATUS_UNAVAILABLE if the value is not
yet available. Also, the isAvailable() method of JAXRResponse
can be used to see whether the response value is available or not.

Java API for XML Registries 513

JAXR applications can use the setSynchronous() method on a Con-
nection instance to dynamically alter its synchronous or asynchronous
connection preference.

The following code shows the creating of a JAXR connection and then
the setting of the communication preference to synchronous:

Connection objConnection =

objConnectionFactory.createConnection();

objConnection.setSynchronous(true);

Security Credentials Specification

JAXR applications can use the setCredentials() method to dynami-
cally alter the security credentials on a Connection instance. This method
provides a way for the JAXR application to specify its identity-related
information to the JAXR provider, which in turn submits this information
to a registry provider, which then authenticates the JAXR application.

Typically, security credentials need to be provided to the JAXR provider
only when performing privileged operations on the registry, such as
adding, deleting, and modifying information. Security credentials are not
required by the JAXR provider for non-privileged operations, such as the
querying of information in the registry.

Using a Connection to Access the Registry

After creating Connection through ConnectionFactory, the JAXR
application can use various capability-specific interfaces. However, in
order to get access to these interfaces, the application must first obtain the
RegistryService instance by calling the getRegistryService()
method on the Connection instance. After this, the JAXR application can
use the RegistryService interface to:

■■ Access the life-cycle management functionality of the JAXR provider
to create, update, and delete objects in the target registry provider,
through the following methods:

getBusinessLifeCycleManager(). Enables the life-cycle
management capabilities of a Business API to be accessed

getLifeCycleManager(). Enables the life-cycle management
capabilities of a Generic API to be accesssed

514 Chapter 11

■■ Access the query management functionality of the JAXR provider to
find and retrieve objects from the target registry provider, through
the following methods:

getBusinessQueryManager(). Enables the querying capabili-
ties of a Business API to be accessed

getDeclarativeQueryManager(). Enables the querying capa-
bilities of a Generic API to be accessed

Listing 11.1 shows how to access the RegistryService object and
eventually, the capability-specific interfaces.

// Get access to the RegistryService object

RegistryService objRegistryService =

objConnection.getRegistryService();

// Now get the query management and life cycle management

// capability interfaces of the Business and Generic API.

BusinessQueryManager objBusinessQueryManager =

objRegistryService.getBusinessQueryManager();

BusinessLifeCycleManager objBusinessLifeCycleManager =

objRegistryService.getBusinessLifeCycleManager();

DeclarativeQueryManager objDeclarativeQueryManager =

objRegistryService.getDeclarativeQueryManager();

LifeCycleManager objLifeCycleManager =

objRegistryService.getLifeCycleManager();

Listing 11.1 Accessing the RegistryService object.

Closing a JAXR Connection

A JAXR application can close the connection to a JAXR provider by calling
the close() method on the Connection object, as shown in the follow-
ing code:

objConnection.close();

Java API for XML Registries 515

TEAMFL
Y

Team-Fly®

Accessing Multiple Registries

JAXR enables multiple registries to be accessed through a federated or
nonfederated approach.

Federated Approach

The federated approach is where the JAXR application can create an
instance of FederatedConnection, a sub-interface of Connection. The
FederatedConnection interface defines a single logical connection to
multiple registry providers. This type of connection then can be used to
perform distributed or federated queries against target registry providers
while making them look as if they were a single logical registry provider.
Federated queries are discussed in a later section. It is important to note
that it is optional for a JAXR provider to support federated connections in
JAXR 1.0.

In order to create a federated connection, JAXR applications can use the
createFederatedConnection() method on a ConnectionFactory
instance. This method takes a Collection of Connection instances to
the individual registry providers as an argument. This Collection can
consist of FederatedConnection instance(s) as well.

Nonfederated Approach

JAXR applications can hold multiple connections to multiple registry
providers concurrently. However, these connections are non-federated,
meaning that each connection uses a single JAXR provider to access a sin-
gle registry provider.

In the next section, we will take a look at the APIs involved in the life-
cycle management of registry objects.

Life-Cycle Management API
As mentioned earlier, the JAXR Life-Cycle Management API consists of the
following two interfaces:

LifeCycleManager. This interface provides complete support
for handling the life cycle of all the objects in the JAXR information
model. This interface belongs to the Generic API.

BusinessLifeCycleManager. This interface provides support
for handling the life cycle of only the key objects in the JAXR infor-
mation model. This interface belongs to the Business API.

Some life-cycle management operations may be privileged and thus
require authentication and authorization.

516 Chapter 11

The following sections look at the life-cycle management capabilities
provided by each of the previous two interfaces.

Interface LifeCycleManager

This interface supports four life-cycle operations as follows:

■■ Creating registry objects
■■ Modifying registry objects
■■ Deleting registry objects
■■ Deprecating/un-deprecating registry objects

We will look at each of the four life-cycle operations in the following
sections.

Creating Registry Objects

Creating registry objects using the LifeCycleManager interface can be
achieved in two steps:

1. First create the specification of the information model object that
needs to be created in the registry, using one of the factory create
methods of the LifeCycleManager interface.

These factory methods follow the naming pattern create<
Interface>(), where <Interface> represents the name
of the interface in JAXR information model package javax.
xml.registry.infomodel.

Examples of such factory methods include createOrganization(),
createAssociation(), createClassification(),
createClassificationScheme(), createConcept(),
createEmailAddress(), createUser(), create External-
Identifier(), and so on.

There also is a generic factory method called createObject()
available, which enables clients to create any type of information
model object.

2. After the specification of the information model object has been cre-
ated in memory, it then can be saved to the actual registry by using
the saveObjects() method.

This method takes java.util.Collection as an argument. The
Collection consists of heterogeneous instances of RegistryObject
created using the factory create methods.

The method signature of saveObjects() is as follows:

Java API for XML Registries 517

public BulkResponse saveObjects(java.util.Collection objects) throws

JAXRException

The BulkResponse interface is returned by many methods in the
JAXR API in cases where the response needs to include a Collection of
objects. The BulkResponse instance returned from the saveObjects()
method contains a Collection of keys that are accessed via the
getCollection() method on BulkResponse. These are the Key
instances identifying those objects that were saved successfully to the
registry.

The BulkResponse also may contain a Collection of Save-
Exception instances in case of partial success, where only a subset of
objects was saved successfully. SaveException provides information on
each error that prevented some objects in the Collection parameter from
being saved successfully. The reason SaveException instances are
returned as a Collection as part of BulkResponse rather than being
thrown as an exception is so that the BulkResponse can be returned to
the JAXR application, despite the exception.

The status information on whether the saveObjects() operation
was completely successful or otherwise can be obtained by using a
getStatus() method on the BulkResponse instance. getStatus()
would return JAXRResponse.STATUS_WARNING, in case of partial
success.

The semantics of the BulkResponse object remains quite the same for
other methods in the API.

Modifying Registry Objects

The LifeCycleManager interface does not provide a separate method
for modifying the registry objects. In order to modify an existing registry
object, the saveObjects() method can be used. The JAXR application
first should create the specification of the information model object with
the modified attributes and then it should call the saveObjects()
method. The registry provider then would determine whether the given
object already exists in the registry. If it does exist in the registry, its state
would be replaced in the registry.

Deleting Registry Objects

The LifeCycleManager interface provides a deleteObjects()
method for deleting objects that exist in the registry. The method signature
of deleteObjects() is as follows:

518 Chapter 11

public BulkResponse deleteObjects (java.util.Collection keys)

throws JAXRException

The Key instances of the registry objects to be deleted are specified
within the Collection argument to this method. An attempt to remove a
registry object that has valid references to other registry objects would
result in an InvalidRequestException, returned within a Bulk-
Response. However, this is the case only when a registry provider
supports such integrity constraints on the registry.

Deprecating/Un-Deprecating Registry Objects

An object that is not required anymore can be deprecated. Deprecating a
registry object marks it as obsolete and likely to be deleted sometime in the
future. JAXR applications can use the deprecateObjects() method to
deprecate the existing registry objects. The method signature for depre-
cateObjects() is as follows:

public BulkResponse deprecateObjects (java.util.Collection keys)

throws JAXRException

The Key instances of the registry objects to deprecate are specified
within the Collection argument to this method. A JAXR provider would
not enable deprecated registry objects to participate in associations and
classifications; however, existing references to deprecated objects would
continue to function properly.

A deprecated registry object may be un-deprecated using the unDepre-
cateObjects() method of the LifeCycleManager interface. The
method signature for unDeprecateObjects() is as follows:

public BulkResponse unDeprecateObjects (java.util.Collection keys)

throws JAXRException

Again, the Key instances of the registry objects to un-deprecate are spec-
ified within the Collection argument to this method.

Interface BusinessLifeCycleManager

The BusinessLifeCycleManager life-cycle management interface pro-
vides a high-level business-level API to add, modify, and delete the key
objects in the JAXR information model. These key information model
objects are as follows:

Java API for XML Registries 519

■■ Organization

■■ Service

■■ ServiceBinding

■■ Concept

■■ Association

■■ ClassificationScheme

The methods available in the BusinessLifeCycleManager interface
are as shown in Table 11.2.

Table 11.2 BusinessLifeCycleManager Methods

METHOD DESCRIPTION

void confirmAssociation Confirms this Association by the
(Association assoc) respective User that owns either of

the source/target objects.

BulkResponse deleteAssociations Deletes the Association objects
(java.util.Collection corresponding to the specified
associationKeys) Key instances from the registry.

BulkResponse Deletes the
deleteClassificationSchemes ClassificationScheme objects
(java.util.Collection schemeKeys) corresponding to the specified

Key instances from the registry.

BulkResponse deleteConcepts Deletes the Concept objects
(java.util.Collection conceptKeys) corresponding to the specified

Key instances from the registry.

BulkResponse deleteOrganizations Deletes the Organization
(java.util.Collection objects corresponding to the
organizationKeys) specified Key instances from

the registry.

BulkResponse Deletes the ServiceBinding
deleteServiceBindings objects corresponding to the
(java.util.Collection specified Key instances from
bindingKeys) the registry.

BulkResponse deleteServices Deletes the Service objects
(java.util.Collection corresponding to the specified
serviceKeys) Key instances from the registry.

520 Chapter 11

Table 11.2 (Continued)

METHOD DESCRIPTION

BulkResponse saveAssociations Adds/modifies the specified
(java.util.Collection Association instances.
associations, boolean replace)

If the replace flag is set to true, the
specified Association objects
replace any existing associations
of that User.

When the replace flag is set to
false, the specified Association
instances are saved to the registry,
while any existing associations not
being updated by this call are
preserved.

BulkResponse Adds/modifies the specified
saveClassificationSchemes ClassificationScheme
(java.util.Collection schemes) instances to the registry.

BulkResponse saveConcepts Adds/modifies the specified
(java.util.Collection concepts) Concept instances to the registry.

BulkResponse saveOrganizations Adds/modifies the specified
(java.util.Collection Organization instances to
organizations) the registry.

BulkResponse saveServiceBindings Adds/modifies the specified
(java.util.Collection bindings) ServiceBinding instances

to the registry.

BulkResponse saveServices Adds/modifies the specified
(java.util.Collection services) Service instances to the registry.

void unConfirmAssociation Undoes the previous confirmation
(Association assoc) of this association by the user

associated with this JAXR application.

A Note on Life-Cycle Management and Federated Connections

Life-cycle management operations are not supported over federated con-
nections. If a JAXR application tries to get hold of any of the life-cycle
management capability interfaces from RegistryService over a feder-
ated connection, the JAXR provider throws an UnsupportedCapability-
Exception.

Java API for XML Registries 521

The next section discusses the various querying capabilities supported
by JAXR.

Query Management API
The JAXR Query Management API consists of the following two interfaces:

BusinessQueryManager. This interface provides the capability to
query the key objects in the JAXR information model. This interface
belongs to the Business API.

DeclarativeQueryManager. This interface provides support for
querying any object in the JAXR information model on an ad-hoc
basis. This interface belongs to the Generic API.

Any non-privileged registry user can query the capabilities of JAXR.
The following sections discuss each of these capability interfaces in
more detail.

Interface BusinessQueryManager
This high-level querying interface provides methods for querying the fol-
lowing key objects in the JAXR information model:

■■ Organization

■■ Service

■■ ServiceBinding

■■ Concept

■■ Association

■■ ClassificationScheme

■■ RegistryPackage

Table 11.3 shows the list of all the methods provided by the
BusinessQueryManager interface and their descriptions. Note that the
arguments to these methods are discussed following the table.

Table 11.3 BusinessQueryManager Methods

METHOD DESCRIPTION

BulkResponse findAssociations Finds instances of
(java.util.Collection findQualifiers, Association that
java.lang.String sourceObjectId, match all of the criteria
java.lang.String targetObjectId, specified by the
java.lang.Collection associationTypes) parameters of this call.

522 Chapter 11

Table 11.3 BusinessQueryManager Methods (continued)

METHOD DESCRIPTION

BulkResponse findCallerAssociations Finds all of the
(java.util.Collection findQualifiers, Association instances
java.lang.Boolean confirmedByCaller, owned by the user
java.lang.Boolean confirmedByOtherParty, corresponding to the
java.util.Collection associationTypes) calling JAXR application

that match all of the
criteria specified by the
call parameters.

ClassificationScheme Finds a
findClassificationSchemeByName ClassificationScheme
(java.util.Collection findQualifiers, instance by name, based
java.lang.String namePattern) on the specified name

pattern and find qualifiers.

BulkResponse findClassificationSchemes Finds all the instances of
(java.util.Collection findQualifiers, ClassificationScheme
java.util.Collection namePatterns, that match the criteria
java.util.Collection classifications, specified by the call
java.util.Collection externalLinks) parameters.

Concept findConceptByPath Finds the Concept
(java.lang.String path) instance based on the

path specified. If the
specified path matches
more than one of the
Concept instances, then
the one that is most
general (or higher in the
Concept hierarchy) is
returned.

The path, in this case,
is the absolute
path leading from
ClassificationScheme
to that Concept. For
example, the path
/Geography-id/
NorthAmerica/United
States represents the
Concept with the value
of UnitedStates
with a parent Concept
of the value of
NorthAmerica under a
ClassificationScheme
with ID Geography-id.

(continues)

Java API for XML Registries 523

Table 11.3 BusinessQueryManager Methods (continued)

METHOD DESCRIPTION

BulkResponse findConcepts Finds all the Concept
(java.util.Collection findQualifiers, instances that match all
java.util.Collection namePatterns, of the criteria specified by
java.util.Collection classifications, the call parameters.
java.util.Collection externalIdentifiers,
java.util.Collection externalLinks)

BulkResponse findOrganizations Finds all the
(java.util.Collection findQualifiers, Organization
java.util.Collection namePatterns, instances that match all
java.util.Collection classifications, of the criteria specified by
java.util.Collection specifications, the call parameters.
java.util.Collection externalIdentifiers,
java.util.Collection externalLinks)

BulkResponse findRegistryPackages Finds all the
(java.util.Collection findQualifiers, RegistryPackage
java.util.Collection namePatterns, instances that match all
java.util.Collection classifications, of the criteria specified by
java.util.Collection externalLinks) the call parameters.

BulkReponse findServiceBindings Finds all the
(Key ServiceKey, java.util.Collection ServiceBinding
findQualifiers, java.util.Collection instances that match all
classifications, java.util.Collection of the criteria specified by
specifications) the call parameters.

BulkResponse findServices (Key orgKey, Finds all the Service
java.util.Collection findQualifiers, instances that match all
java.util.Collection namePatterns, of the criteria specified by
java.util.Collection classifications, the call parameters.
java.util.Collection specifications)

The common arguments that most of the methods previously discussed
take are as follows:

■■ namePatterns

■■ findQualifiers

■■ classifications

■■ specifications

■■ externalIdentifiers

■■ externalLinks

These arguments are discussed in detail in the following sections.

524 Chapter 11

namePatterns

This argument defines the Collection consisting of pattern strings. Each
pattern string is a partial or full name pattern with wildcard searching as
specified in the SQL-92 LIKE specification. By default, this is a logical OR
operation of the name patterns specified in the Collection.

The following code is a partial listing of code that shows how to search for
all of the Organization instances whose name begins with the letter A.

// Specify the name pattern

Collection colNamePatterns = new ArrayList();

colNamePatterns.add (“A%”);

// Execute the query

BulkResponse objBulkResponse =

objBusinessQueryManager.findOrganizations (null,

colNamePatterns, null, null, null, null);

// Get hold of the Collection of Organization instances

// returned as search result

Collection colOrganizations = objBulkResponse.getCollection();

findQualifiers

This argument defines the Collection of find qualifiers as defined by the
FindQualifier interface. These find qualifiers affect the find operation
behavior in terms of string matching, sorting, and so on. Some of the com-
monly used find qualifiers defined in the FindQualifier interface are
described in Table 11.4.

Table 11.4 Commonly Used Find Qualifiers

QUALIFIER DESCRIPTION

FindQualifier.CASE_SENSITIVE_MATCH Marks the find operation to be
case sensitive.

FindQualifier.SORT_BY_DATE_ASC Specifies that the result of the
find operation should be sorted
date-wise in an ascending order.

FindQualifier.SORT_BY_NAME_ASC Specifies that the result of the
find operation should be sorted
name-wise in an ascending
order.

(continues)

Java API for XML Registries 525

TEAMFL
Y

Team-Fly®

Table 11.4 Commonly Used Find Qualifiers (Continued)

QUALIFIER DESCRIPTION

FindQualifier.SORT_BY_DATE_DESC Specifies that the result of the
find operation should be sorted
date-wise in a descending order.

FindQualifier.SORT_BY_NAME_DESC Specifies that the result of the
find operation should be sorted
name-wise in a descending
order.

The following code is a partial listing of the code that shows how to
search for all of the Organization instances whose names begin with the
letter A in a case-sensitive manner. The code also specifies that the result of
the find operation be sorted by name in ascending order.

// Specify the name pattern

...

// Now specify the find qualifiers for this search

// operation

Collection colFindQualifiers = new ArrayList();

colFindQualifiers.add (FindQualifier.CASE_SENSITIVE_MATCH);

colFindQualifiers.add (FindQualifier.SORT_BY_NAME_ASC);

// Execute the query

BulkResponse objBulkResponse =

objBusinessQueryManager.findOrganizations (colFindQualifiers,

colNamePatterns, null, null, null, null);

// Get hold of the Collection of Organization

// instances returned as search result

classifications

This argument is a Collection of Classification instances that clas-
sify the registry objects to look for. This is analogous to categoryBag in
UDDI. By default, this is a logical AND operation of the classifications
specified in the Collection, which means that it requires a match on ALL

526 Chapter 11

of the Classification instances specified in order to qualify as a match
to the given criteria.

The following is a partial listing of the code that depicts how to search
for all of the Organization instances with names that begin with the
letter A and are classified by the standard NAICS taxonomy as a Custom
Computer Programming Services provider; in a case-sensitive manner. The
code also specifies that the result of the find operation be sorted by name in
ascending order.

// Specify the name pattern

...

// Specify the find qualifiers for this search

// operation

...

// Specify the classification instances that would be

// used as a criteria to the given find operation

// First get hold of the required ClassificationScheme

ClassificationScheme objNAICSClassificationScheme =

objBusinessQueryManager.findClassificationSchemeByName (null,

“ntis-gov:naics”);

// Now create the classification instance that would

// provide the specification of the classification to

// the find operation

Classification objClassification = (Classification)

objBusinessLifeCycleManager.createClassification

(objNAICSClassificationScheme, “Custom Computer Programming

Services”, “541511”);

// Create the Collection to pass as an argument to

// the find operation

Collection colClassifications = new ArrayList();

colClassifications.add (objClassification);

// Finally execute the query

BulkResponse objBulkResponse =

objBusinessQueryManager.findOrganizations (colFindQualifiers,

colNamePatterns, colClassifications, null, null, null);

// Get hold of the Collection of Organization

// instances returned as search result

Java API for XML Registries 527

specifications

This argument is a Collection of RegistryObject instances that
present a technical specification analogous to tModelBag in UDDI.
This also is a logical AND operation of all the specifications passed in the
Collection argument, by default.

The following is a partial listing of the code that shows how to search for
all of the Organization objects in the registry that have published ser-
vices whose technical specifications are defined in a WSDL document.

Note that this example uses the uddi-org:types taxonomy as defined
by the UDDI specification (this taxonomy was explained in Chapter 5,
“Description and Discovery of Web Services”). The example begins with
finding this externally available taxonomy and then constructing the
Classification specification based on this taxonomy. This Classifi-
cation specifies the taxonomy element as wsdlSpec; thus, searching for
Concept instances classified by the previous Classification instance
would lead toward retrieving all of the Concept instances in the registry
that link to the WSDL document managed externally. Eventually, the
example searches for the Organization corresponding to these WSDL
Concept instances.

// Find the Concept instances representing the taxonomy

// element (WSDL document) of the uddi-org:types

// classification scheme

// First get hold of the required ClassificationScheme

ClassificationScheme objUDDIOrgTypesClassificationScheme =

objBusinessQueryManager.findClassificationSchemeByName (null,

“uddi-org:types”);

// Now create the Classification instance specifying

// the taxonomy element through a name/value pair,

// since the taxonomy is available externally. This

// classification would serve as the search criteria in

// the findConcepts() operation

Classification objWSDLSpecClassification = (Classification)

objBusinessLifeCycleManager.

createClassification (objUDDIOrgTypesClassificationScheme,

“wsdlSpec”, “wsdlSpec”);

// Create the Collection to pass as an argument to

// the find operation

Collection colClassifications = new ArrayList();

528 Chapter 11

colClassifications.add (objWSDLSpecClassification);

// Finally execute the findConcepts() query to get hold

// of all the Concepts that are classified as WSDL

// technical specification documents

BulkResponse objBulkResponse =

objBusinessQueryManager.findConcepts (null, null,

colClassifications, null, null, null);

// Get hold of the Collection of Concept

// instances returned as search result

Collection colSpecificationConcepts =

objBulkResponse.getCollection();

// Iterate through the Collection of Concept instances

// and eventually get hold of Organizations

// corresponding to each of these Concept instances.

// These are the organizations that have published

// their technical specifications as WSDL documents.

// Note that the validation code has been omitted for

// brevity.

Iterator objIterator = colSpecificationConcepts.iterator();

while (objIterator.hasNext())

{

Concept objWSDLConcept = (Concept)

objIterator.next();

String sWSDLConceptName =

objWSDLConcept.getName().getValue();

Collection colExternalLinks =

objWSDLConcept.getExternalLinks();

Collection colSpecificationConcepts1 = new ArrayList();

colSpecificationConcepts1.add (objWSDLConcept);

objBulkResponse = objBusinessQueryManager.findOrganizations

(null, null, null, colSpecificationConcepts1, null, null);

Collection colWSDLSpecOrganizations =

objBulkResponse.getCollection();

// Now traverse through this Collection of

// Organization instances

Iterator objOrganizationIterator =

Java API for XML Registries 529

colWSDLSpecOrganizations.iterator();

while (objOrganizationIterator.hasNext())

{

Organization objOrganization = (Organization)

objOrganizationIterator.next();

// Retrieve and display information about the

// this Organization. This code has been

// omitted for brevity.

...

}

}

externalIdentifiers

This argument is a Collection of ExternalIdentifier instances that
provide an external identifier for the registry object using an external iden-
tification scheme such as DUNS, for instance. This argument is analogous
to the identifierBag in UDDI. By default, this is a logical AND opera-
tion of all the external identifiers passed in the Collection argument.

externalLinks

This argument is a Collection of ExternalLink instances that pro-
vides an external link that links the registry object to content managed out-
side the registry. This argument is analogous to overviewDoc in UDDI.
This is a logical AND operation and requires a match on all specified
ExternalLink instances in order to qualify as a match for this criteria.

Interface DeclarativeQueryManager

This interface provides a flexible API for querying all of the objects in the
JAXR information model. This interface provides the capability of per-
forming ad-hoc queries using declarative language syntax. Presently, the
declarative syntaxes supported include SQL-92 and OASIS ebXML registry
Filter Queries. Support of the SQL queries is optional for some of the reg-
istries (including ebXML registry), which means that if the target registry
does not support SQL queries, then method calls on Declarative-
QueryManager would throw UnsupportedCapabilityException.
The DeclarativeQueryManager interface provides the following

two methods for performing query operations.

530 Chapter 11

Query createQuery (int queryType, java.lang.String queryString)

A JAXR application should use this method to create a query object based
on the given queryType value. The value of queryType can be one of the
following:

QUERY_TYPE_SQL In the case of SQL-92 queries.

QUERY_TYPE_XQUERY In the case where XQuery language
syntax is used. The current JAXR version does not support XQuery
syntax. However, this queryType value is kept for the future use.

QUERY_TYPE_EBXML_FILTER_QUERY In the case of ebXML
Filter queries.

The queryString argument takes the query in the syntax correspond-
ing to the type of query language specified by the queryType argument.
A JAXR provider can optionally perform a client-side validation of the query
string provided through this argument and can throw InvalidRequest-
Exception when an invalid query is specified. In cases where the JAXR
provider does not support client-side syntax validation, if the query string
specified is invalid, the registry provider would detect the error and would
return a RegistryException within the BulkResponse.

This method returns an instance of the Query interface, which encapsu-
lates the declarative queries. This interface exposes the following two
methods:

int getType() This method returns the type of the query that this
Query instance represents.

java.lang.String toString() This method returns the string
representation of the encapsulated query.

After the JAXR application has a Query instance, it would execute the
query by calling the executeQuery() method.

executeQuery (Query query)

This method executes the declarative query encapsulated by the Query
interface. This method returns a BulkResponse consisting of a homoge-
neous Collection of objects. The type of the objects is defined by the FROM
clause in case of an SQL-92 query. For example, “SELECT FROM Service
WHERE ...”, would return a Collection of Service instances.

Listing 11.2 shows how to use DeclarativeQueryManager for per-
forming an SQL-92 syntax-based ad-hoc query. Upon execution, this query
would return all of the Organization objects with names beginning with
the letters ‘ACM’.

Java API for XML Registries 531

// Construct the Query instance that would encapsulate the SQL-

// 92 query

String sQueryString = “SELECT FROM Organization WHERE name LIKE

\’ACM%\’”;

Query objQuery = objDeclarativeQueryManager.createQuery

(Query.QUERY_TYPE_SQL, sQueryString);

// Now execute the query

BulkResponse objQueryResponse =

objDeclarativeQueryManager.executeQuery (objQuery);

Collection colQueryResults = objQueryResponse.getCollection();

// Now traverse through this homogeneous Collection of

// Organization instances

Listing 11.2 Querying using DelcarativeQueryManager.

In the next section, we will show you how to develop and deploy JAXR
applications using JWSDP 1.0.

JAXR Support in JWSDP 1.0

JWSDP 1.0 provides the Reference Implementation (RI) of the JAXR 1.0
specification. There are two main components of JAXR RI: the registry
server and the registry browser. See the following sections for details on
both of these components.

Registry Server
The JWSDP Registry Server implements a private version 2.0 UDDI reg-
istry. The RegistryServlet component hosted by the Tomcat Servlet
container, also a part of JWSDP, services all of the registry requests. The
repository for the JWSDP registry server is a data store based on the native
XML database Xindice, which is a part of the Apache XML project.

532 Chapter 11

The registry server includes a tool named Indri that enables you to
inspect this database directly. More information on using the Indri tool can
be found online in the Java Web services tutorial version 1.0, available at
the following URL: http://java.sun.com/webservices/docs/1.0/tutorial
/doc/RegistryServer5.html#64401

Note: This tutorial is a comprehensive resource on various Java APIs for
Web services as well as JWSDP. It is bundled along with several examples
that provide a good understanding on Java XML technologies. You can
download the entire tutorial by visiting the following URL: http://
java.sun.com/webservices/downloads/webservicestutorial.html.

Starting the Registry Server

Starting the registry server requires two steps, as listed in the following
text. Note that these steps assume that JWSDP 1.0 has been installed and
configured properly; for more information on JWSDP configuration, please
refer to the online documentation available at the JWSDP download page
at the following URL: http://java.sun.com/webservices/downloads/
webservicespack.html.

1. Start the Tomcat server process by typing the startup command at
the command prompt (assuming JWSDP_HOME/bin is set in the
system path).

2. Start the Xindice database server process by typing the xindice-
start command at the command prompt (assuming JWSDP_HOME
/bin is already set properly in the system path).

Java API for XML Registries 533

FEDERATED QUERIES

A JAXR application can issue a federated query against multiple registry
providers in a manner similar to the non-federated query approach, that is, by
calling methods on BusinessQueryManager and DeclarativeQueryManager
interfaces. The only difference in this case is that the RegistryService
instance, through which these query management interfaces are obtained,
should be accessed from a FederatedConnection instance rather than the
regular primitive Connection instance.

Shutting Down the Registry Server

To shut down the Tomcat server process, type the shutdown command at
the command prompt.

Similarly, in order to shut down the Xindice database server process,
type the xindice-stop command at the command prompt.

Registry Browser
The second component of the JAXR RI is called the registry browser (it also
is sometimes referred to as the JAXR browser). This browser is a GUI tool
that performs various registry operations, such as adding, modifying,
browsing, and deleting registry data. This tool provides an interface for
selecting any registry that we wish to use (and not just the private UDDI
registry browser of JWSDP).

Type the jaxr-browser command at the command prompt to bring up
the Registry Browser. Figure 11.8 shows the registry browser tool.

In order to select the registry, you must select the corresponding appro-
priate queryManagerURL or lifeCycleManagerURL from the registry
location dropdown box. For example, you could select http://www-
3.ibm.com/services/uddi/v2beta/inquiryapi as the registry location in
order to use the UDDI public registry hosted by IBM.

Figure 11.8 The registry browser tool.

534 Chapter 11

In order to use the JWSDP registry server, you could select http://
localhost:8080/registry-server/RegistryServerServlet as the registry loca-
tion. Upon selection, the tool would try to connect to the actual registry.
After the tool has successfully connected to the registry, we can start work-
ing with the registry.

The registry browser also provides an interface for submitting informa-
tion on new organizations and their services and service bindings. When
submitting an organization and its services and service bindings, we also
can classify them using standard and non-standard taxonomies.

Figure 11.9 shows the registry browser tool window that lists the
expanded tree of standard industry taxonomy, NAICS. As can be seen in
this figure, we are trying to classify the fictional Imaginary Corp. as a water,
sewer, and pipeline construction company.

More information on the registry browser tool can be obtained from the
online Java Web services tutorial at the following URL: http://java.sun.com
/webservices/downloads/webservicespack.html

Figure 11.9 Classification using the registry browser.

Java API for XML Registries 535

TEAMFL
Y

Team-Fly®

Understanding JAXR by Examples

This section focuses on providing three JAXR application examples, each
focusing on one of the common registry services provided by a JAXR-
enabled registry. The source code of these examples is present in the fol-
lowing files:

Publish.java. Demonstrates the publishing of an Organization
and its Service to a private UDDI registry using a Level 0 Business
API.

Query.java. Demonstrates the querying for Organization objects
based on the criteria specified using a Level 0 Business API.

Delete.java. Demonstrates the removing of an Organization
and thus its published Service from the registry using a Level 0
Business API.

We will deploy these JAXR applications on the Java Web Services Devel-
oper Pack (JWSDP) 1.0 platform. These examples use the JWSDP registry
server to test the JAXR applications.

All three of these examples along with their source code and readme.txt,
consisting of setup instructions, can be downloaded from this book’s com-
panion Web site at www.wiley.com/compbooks/nagappan.

Note: The reason we chose a private registry rather than a public registry
for our examples is due to the successful adoption of registries in private
environments compared to public environments.

Publishing Using JAXR
We will begin our examples with Publish.java, the JAXR application
aimed toward publishing information about an organization. Publish.
java shows us how to publish an organization named ACME Computer
Services and its services, and it also demonstrates the classification of
ACME Computer Services based on two taxonomies: the standard indus-
try taxonomy NAICS and the standard geography taxonomy ISO-CH 3166.
In the following sections, we examine the source code of Publish.java,
its compilation, and then execution.

536 Chapter 11

Programming Steps for Publishing

The entire publishing logic is provided by a doPublish() method of the
jws.ch11.Publish class, and hence, its implementation is of most inter-
est to us. The following steps outline the inner workings of doPublish().

1. Construct the Properties object and populate it with connection-
oriented properties.

2. Obtain the ConnectionFactory object by calling a
newInstance() method on the ConnectionFactory class,
eventually creating the Connection object.

3. Obtain the RegistryService instance from the Connection
object in order to get access to the capability interface Business-
LifeCycleManager.

4. Set the appropriate security credentials, testuser/testuser as UID/
Password in this case, on the Connection object. The reason for
specifying credentials is because publishing is a privileged registry
operation. Thus, the JAXR provider needs to supply proper creden-
tials to the registry provider so that the latter can authenticate the
user associated with the JAXR application.

5. Now, instantiate the information model objects corresponding to
typical organizational information, such as the contact person in the
organization and his/her email addresses and telephone numbers,
the service that organization publishes to the registry and its service
binding, and finally the organization’s classification information.

6. Now, call the saveOrganizations() method on Business-
LifeCycleManager to save Organization information to the
registry.

7. Finally, examine the BulkResponse object returned from
saveOrganizations() and check whether the save operation
was successful.

Publish.java Source Code

Listing 11.3 contains the complete code listing of Publish.java.

Java API for XML Registries 537

package jws.ch11;

import javax.xml.registry.*;

import javax.xml.registry.infomodel.*;

import java.io.*;

import java.net.*;

import java.security.*;

import java.net.*;

import java.util.*;

public class Publish

{

// References to Registry Server URLs for publishing and

// querying information, respectively

String sRegistryURLForPublishing;

String sRegistryURLForQuerying;

public static void main(String[] args)

{

try

{

String p_sRegistryURLForPublishing =

“http://localhost:8080/registry-server/

RegistryServerServlet”;

String p_sRegistryURLForQuerying =

“http://localhost:8080/registry-server/

RegistryServerServlet”;

Publish objPublish = new Publish

(p_sRegistryURLForPublishing,

p_sRegistryURLForQuerying);

objPublish.doPublish();

}

catch(JAXRException e)

{

System.err.println(“JAXRException occurred.

Exception Message: “ + e.getMessage());

}

Listing 11.3 Publish.java.

538 Chapter 11

}

public Publish(String p_sRegistryURLForPublishing,

String p_sRegistryURLForQuerying)

{

// References to local Registry Server

sRegistryURLForPublishing =

p_sRegistryURLForPublishing;

sRegistryURLForQuerying = p_sRegistryURLForQuerying;

}

public void doPublish() throws JAXRException

{

Connection objConnection = null;

try

{

// Set the appropriate connection properties

Properties objProperties = new Properties();

objProperties.setProperty(

“javax.xml.registry.queryManagerURL”,

sRegistryURLForQuerying);

objProperties.setProperty(

“javax.xml.registry.lifeCycleManagerURL”,

sRegistryURLForPublishing);

objProperties.setProperty(

“javax.xml.registry.factoryClass”,

“com.sun.xml.registry.uddi.ConnectionFactoryImpl”);

// Now construct the ConnectionFactory object

// and initiate the connection to the JAXR

// registry provider

ConnectionFactory objConnectionFactory =

ConnectionFactory.newInstance();

objConnectionFactory.setProperties(objProperties);

Listing 11.3 Publish.java. (continues)

Java API for XML Registries 539

objConnection =

objConnectionFactory.createConnection();

// Construct the JAXR RegistryService object

// and eventually get hold of

// BusinessLifeCycleManager object

RegistryService objRegistryService =

objConnection.getRegistryService();

BusinessLifeCycleManager

objBusinessLifeCycleManager =

objRegistryService.getBusinessLifeCycleManager();

// Initializing username and password to the

// defaults for the local Registry Server

// i.e. testuser and testuser respectively

String sPassword = “testuser”;

String sUserName = “testuser”;

// Supply the connection with appropriate

// security credentials in the form of JAAS

// PasswordAuthentication type

PasswordAuthentication objPasswordAuthentication

= new PasswordAuthentication(sUserName,

sPassword.toCharArray());

Set setCredentials = new HashSet();

setCredentials.add(objPasswordAuthentication);

objConnection.setCredentials(setCredentials);

// Now it is time to intialize appropriate

// types corresponding to the information that

// we want to publish to JAXR-enabled registry

// (in this case our local Registry Server)

// Information regarding primary contact person

// for this organization

PersonName objPersonName = (PersonName)

objBusinessLifeCycleManager.createObject

Listing 11.3 Publish.java.

540 Chapter 11

(LifeCycleManager.PERSON_NAME);

objPersonName.setFullName(“John Smith”);

// Email address(es) of this primary contact

EmailAddress objEmailAddress1 =

objBusinessLifeCycleManager.createEmailAddress

(“john.smith@acmecompserv.com”);

objEmailAddress1.setType(“Office”);

EmailAddress objEmailAddress2 =

objBusinessLifeCycleManager.createEmailAddress

(“jsmith99@yahoo.com”);

objEmailAddress1.setType(“Personal”);

Collection colEmailAddresses = new ArrayList();

colEmailAddresses.add(objEmailAddress1);

colEmailAddresses.add(objEmailAddress2);

// Telephone number(s) of this primary contact

TelephoneNumber objTelephoneNumberLine1 =

(TelephoneNumber)

objBusinessLifeCycleManager.createObject

(LifeCycleManager.TELEPHONE_NUMBER);

objTelephoneNumberLine1.setNumber

(“800-123-4567”);

objTelephoneNumberLine1.setType(“Toll-Free”);

TelephoneNumber objTelephoneNumberLine2 =

(TelephoneNumber)

objBusinessLifeCycleManager.createObject

(LifeCycleManager.TELEPHONE_NUMBER);

objTelephoneNumberLine2.setNumber

(“800-234-5678”);

objTelephoneNumberLine2.setType(“Toll-Free”);

Listing 11.3 Publish.java. (continues)

Java API for XML Registries 541

Collection colTelephoneNumbers = new ArrayList();

colTelephoneNumbers.add

(objTelephoneNumberLine1);

colTelephoneNumbers.add

(objTelephoneNumberLine2);

// The User type would refer to this primary

// contact

User objUser =

(User)objBusinessLifeCycleManager.createObject

(LifeCycleManager.USER);

objUser.setPersonName(objPersonName);

objUser.setEmailAddresses(colEmailAddresses);

objUser.setTelephoneNumbers

(colTelephoneNumbers);

// Service(s) published by the organization to

// the registry

Service objService = (Service)

objBusinessLifeCycleManager.createObject

(LifeCycleManager.SERVICE);

objService.setName(objBusinessLifeCycleManager.

createInternationalString(“Billing Services”));

objService.setDescription

(objBusinessLifeCycleManager.

createInternationalString(“A set of Billing

Management Services for our customers”));

// Create ClassificationSchema and

// Classification instances for NAICS taxonomy

ClassificationScheme

objIndustryClassificationScheme =

(ClassificationScheme)

objBusinessLifeCycleManager.createObject

(LifeCycleManager.CLASSIFICATION_SCHEME);

javax.xml.registry.infomodel.Key objNAICSKey =

Listing 11.3 Publish.java.

542 Chapter 11

(javax.xml.registry.infomodel.Key)

objBusinessLifeCycleManager.createKey

(“uuid:C0B9FE13-179F-413D-8A5B-5004DB8E5BB2”);

objIndustryClassificationScheme.setKey

(objNAICSKey);

objIndustryClassificationScheme.setName

(objBusinessLifeCycleManager.

createInternationalString

(“ntis-gov:naics:1997”));

Classification objIndustryClassification =

(Classification) objBusinessLifeCycleManager.

createClassification

(objIndustryClassificationScheme, “Custom

Computer Programming Services”, “541511”);

// Create ClassificationSchema and

// Classification instances for ISO-

// Ch:3166:1999 (Geography based) taxonomy

ClassificationScheme

objGeographyClassificationScheme =

(ClassificationScheme)

objBusinessLifeCycleManager.createObject

(LifeCycleManager.CLASSIFICATION_SCHEME);

javax.xml.registry.infomodel.Key objISOCHKey=

(javax.xml.registry.infomodel.Key)

objBusinessLifeCycleManager.createKey

(“uuid:4e49a8d6-d5a2-4fc2-93a0-0411d8d19e88”);

objGeographyClassificationScheme.setKey

(objISOCHKey);

objGeographyClassificationScheme.setName

(objBusinessLifeCycleManager.

createInternationalString(“iso-ch:3166:1999”));

Classification objGeographyClassification =

(Classification) objBusinessLifeCycleManager.

createClassification

(objGeographyClassificationScheme, “United

States”, “US”);

// Create Organization object and

Listing 11.3 Publish.java. (continues)

Java API for XML Registries 543

// populate it with the above pieces of

// information

Organization objOrganization = (Organization)

objBusinessLifeCycleManager.createObject

(LifeCycleManager.ORGANIZATION);

objOrganization.setName(

objBusinessLifeCycleManager.

createInternationalString(“ACME Computer

Services”));

objOrganization.setDescription(

objBusinessLifeCycleManager.

createInternationalString(“Provides professional

services in the areas of Computer Software”));

objOrganization.setPrimaryContact(objUser);

objOrganization.addService(objService);

objOrganization.addClassification(

objIndustryClassification);

objOrganization.addClassification(

objGeographyClassification);

Collection colOrganizations = new ArrayList();

colOrganizations.add(objOrganization);

// Now submit the information to the JAXR

// provider, which in turn submits the

// information to the actual registry

BulkResponse objBulkResponse =

objBusinessLifeCycleManager.

saveOrganizations(colOrganizations);

// Check to ensure everything is alright

if (objBulkResponse.getStatus() ==

JAXRResponse.STATUS_SUCCESS)

{

System.out.println(“Organization and related

services were published successfully.\n”);

// Get hold of the 128-bit UUID of the

// newly created Organization in the

Listing 11.3 Publish.java.

544 Chapter 11

// registry

Collection colKeys = objBulkResponse

.getCollection();

Iterator objKeyIterator =

colKeys.iterator();

javax.xml.registry.infomodel.Key

objOrganizationKey = null;

if (objKeyIterator.hasNext())

{

objOrganizationKey =

(javax.xml.registry.infomodel.Key)

objKeyIterator.next();

String sOrganizationID =

objOrganizationKey.getId();

System.out.println(“Key

corresponding to the newly created

Organization is: \n” +

sOrganizationID);

System.out.println(“\nSave this key

for later use.”);

}

}

else

{

System.err.println(“Problem(s) encountered

during the JAXR save operation. Detailed

Error Message(s) shown as under :\n”);

Collection colExceptions =

objBulkResponse.getExceptions();

Iterator objIterator =

colExceptions.iterator();

while (objIterator.hasNext())

{

Exception objException = (Exception)

objIterator.next();

System.err.println(objException.

toString());

}

Listing 11.3 Publish.java. (continues)

Java API for XML Registries 545

TEAMFL
Y

Team-Fly®

}

}

catch (JAXRException e)

{

System.err.println(“JAXRException occurred.

Exception Message: “ + e.getMessage());

e.printStackTrace();

}

finally

{

if (objConnection != null)

{

try

{

objConnection.close();

}

catch(JAXRException e)

{

System.err.println(“Exception

occured while closing the

connection. Exception Message: “ +

e.getMessage());

e.printStackTrace();

}

}

}

}

}

Listing 11.3 Publish.java. (continued)

Compiling Publish.java

You should use the ant tool for compiling and executing Publish.java
as well as Query.java and Delete.java. The compilation and execu-
tion of the ant scripts for all three of these Java files are available in a
build.xml file in the same directory as these Java files.

Listing 11.4 shows the partial listing of the ant script for compiling
Publish.java.

546 Chapter 11

<project name=”Java Web Services Book - Ch. 11 Demos”

default=”build” basedir=”.”>

<target name=”init”>

<tstamp/>

</target>

<property name=”build.home” value=”build” />

<path id=”classpath”>

<fileset dir=”${jwsdp.home}/common/lib”>

<include name=”*.jar” />

</fileset>

<fileset dir=”${jwsdp.home}/common/endorsed”>

<include name=”*.jar” />

</fileset>

</path>

<target name=”prepare” depends=”init” description=”Create

build directory.”>

<mkdir dir=”${build.home}” />

</target>

<target name=”compile-publish” depends=”prepare”

description=”Compiles Publish.java file.”>

<javac srcdir=”.” destdir=”${build.home}”>

<include name=”Publish.java” />

<classpath refid=”classpath”/>

</javac>

</target>

...

</project>

Listing 11.4 ANT script for compiling Publish.java.

As can be seen from Listing 11.4, the compilation script ensures that
the library JAR files in JWSDP_HOME/common/lib and JWSDP_HOME
/common/endorsed are available in the CLASSPATH.

Java API for XML Registries 547

Figure 11.10 Compiling Publish.java.

In order to compile Publish.java, run the Ant tool from the com-
mand line as shown:

> ant compile-publish

Figure 11.10 shows the compilation output of Publish.java.

Executing Publish.java

The Ant script responsible for executing Publish.java is shown as
follows:

<project ...>

...

<target name=”run-publish” depends=”compile-publish”

description=”Runs Publish.java.”>

<java classname=”jws.ch11.Publish” fork=”yes”>

<classpath refid=”classpath”/>

<classpath path=”${build.home}”/>

</java>

</target>

...

</project>

In order to execute Publish.java, run the Ant tool from the command
line as shown:

> ant run-publish

Figure 11.11 displays the execution output of Publish.java.

548 Chapter 11

Figure 11.11 Executing Publish.java.

You can verify the details of this newly created organization with the
help of the registry browser. For example, Figure 11.12 shows the details of
ACME Computer Services from the registry browser tool.

Querying Using JAXR
Query.java shows us how to search organizations based on the naming
patterns provided by the user. In the following sections, we examine the
source code of Query.java, its compilation, and then its execution.

Figure 11.12 Verifying using registry browser.

Java API for XML Registries 549

Programming Steps for Querying

The querying logic for Query.java is provided by the doQuery()
method of the jws.ch11.Query class, and hence, its implementation is of
most interest to us. Following are the steps outlining the inner workings of
doQuery():

1. Construct the Properties object and populate it with connection-
oriented properties.

2. Get hold of the ConnectionFactory object by calling a
newInstance() method on the ConnectionFactory class and
eventually create the Connection object.

3. Obtain the RegistryService instance from the Connection object
in order to get access to the capability interface BusinessQuery-
Manager.

4. Initiate the search operation by calling a findOrganizations()
method and supplying it with the naming pattern. The end user
provided this naming pattern as the command line input.

5. Finally, traverse through the collection of Organization instances
received within the BulkResponse object returned from findOrga-
nizations() and display the various details of each organization,
such as its name, contact person-related information, and name and
description of the services it provides.

Query.java Source Code

Listing 11.5 shows the partial code listing of the doQuery() method. Note
that we have omitted the code sections that were redundant to Publish
.java from this listing.

public void doQuery() throws JAXRException

{

Connection objConnection = null;

try

{

// Set the appropriate connection properties

...

// Now construct the ConnectionFactory object and

// initiate the connection to the JAXR registry

Listing 11.5 Query.java.

550 Chapter 11

// provider

...

// Construct the JAXR RegistryService object and

// eventually get hold of BusinessQueryManager object

...

// Specify the name pattern

Collection colNamePatterns = new ArrayList();

colNamePatterns.add(“%” + sQueryString + “%”);

// Now search all the organizations whose name

// matches with the name pattern

BulkResponse objBulkResponse =

objBusinessQueryManager.findOrganizations(null,

colNamePatterns, null, null, null, null);

Collection colOrganizations =

objBulkResponse.getCollection();

// Traverse through all the organizations that were

// found and returned in the BulkResponse object

Iterator objOrganizationsIterator =

colOrganizations.iterator();

if (!(objOrganizationsIterator.hasNext()))

{

System.out.println(“No organizations were found

matching the specified query string.”);

}

else

{

while (objOrganizationsIterator.hasNext())

{

Organization objOrganization =

(Organization)

objOrganizationsIterator.next();

// Display main Organization-related

// information

Listing 11.5 Query.java. (continues)

Java API for XML Registries 551

System.out.println(“\nORGANIZATION

INFORMATION\n”);

System.out.println(“Name: “ +

objOrganization.getName().getValue());

System.out.println(“Description: “ +

objOrganization.getDescription().

getValue());

System.out.println(“Key ID: “ +

objOrganization.getKey().getId());

// Now get hold of Primary Contact for

// this Organization and display

// information pertaining to him

User objPrimaryContact =

objOrganization.getPrimaryContact();

if (objPrimaryContact != null)

{

PersonName objPersonName =

objPrimaryContact.getPersonName();

System.out.println(“Primary Contact

Information:”);

System.out.println(“\tName: “ +

objPersonName.getFullName());

Collection colTelephoneNumbers =

objPrimaryContact.

getTelephoneNumbers(null);

Iterator objTelephoneNumbersIterator

= colTelephoneNumbers.iterator();

while (objTelephoneNumbersIterator.

hasNext())

{

TelephoneNumber

objTelephoneNumber =

(TelephoneNumber)

objTelephoneNumbersIterator.

Listing 11.5 Query.java.

552 Chapter 11

next();

System.out.println(“\tPhone

Number: “ + objTelephoneNumber.

getNumber());

}

Collection colEmailAddresses =

objPrimaryContact.

getEmailAddresses();

Iterator objEmailAddressesIterator =

colEmailAddresses.iterator();

while (objEmailAddressesIterator.

hasNext())

{

EmailAddress objEmailAddress =

(EmailAddress)

objEmailAddressesIterator.next();

System.out.println(“\tEmail

Address: “ +

objEmailAddress.getAddress());

}

}

// Now display Service and ServiceBinding

// information pertaining to this

// Organization

Collection colServices =

objOrganization.getServices();

Iterator objServicesIterator =

colServices.iterator();

while (objServicesIterator.hasNext())

{

Service objService = (Service)

objServicesIterator.next();

System.out.println(“Service(s)

Information:”);

System.out.println(“\tName: “ +

objService.getName().getValue());

Listing 11.5 Query.java. (continues)

Java API for XML Registries 553

System.out.println(“\tDescription: “

+ objService.getDescription().getValue());

Collection colServiceBindings =

objService.getServiceBindings();

Iterator objServiceBindingsIterator =

colServiceBindings.iterator();

while

(objServiceBindingsIterator.hasNext())

{

ServiceBinding objServiceBinding

= (ServiceBinding)

objServiceBindingsIterator.

next();

System.out.println(“

ServiceBinding

Information for this

Service:”);

System.out.println(“\t\t

Description: “ + objServiceBinding.

getDescription().getValue());

System.out.println(“\t\tAccess URI: “

+ objServiceBinding.getAccessURI());

}

}

}

}

}

catch (Exception e)

{

...

}

finally

{

...

}

}

Listing 11.5 Query.java. (continued)

Compiling Query.java

The following is the Ant script responsible for compiling Query.java:

554 Chapter 11

<project ...>

...

<target name=”compile-query” depends=”prepare”

description=”Compiles Query.java file.”>

<javac srcdir=”.” destdir=”${build.home}”>

<include name=”Query.java” />

<classpath refid=”classpath”/>

</javac>

</target>

...

</project>

Again, note that the compilation and execution scripts for all these exam-
ples are available in the build.xml file.

Now, in order to compile Query.java, run the Ant tool from the com-
mand line as shown:

> ant compile-query

Executing Query.java

The following is the Ant script responsible for executing Query.java:

<project ...>

...

<target name=”run-query” depends=”compile-query”

description=”Runs

Query.java. Argument: -DQueryString <QueryStringValue>”>

<java classname=”jws.ch11.Query” fork=”yes”>

<arg line=”${QueryString}”/>

<classpath refid=”classpath” />

<classpath path=”${build.home}”/>

</java>

</target>

...

</project>

In order to find the organizations with names that match the naming pat-
tern ‘ACM’, execute Query.java using the Ant tool from the command
line as shown:

> ant run-query -DQueryString ACM

Figure 11.13 shows the execution output of Query.java.

Java API for XML Registries 555

TEAMFL
Y

Team-Fly®

Figure 11.13 Executing Query.java.

Deleting Information Using JAXR
Delete.java shows us how to delete an Organization from a registry
based on its key ID. A key ID in JAXR RI is a 128-bit UUID. There are
numerous ways in which you can obtain a key ID for an Organization
that you want to delete, one of which is by viewing its details in the registry
browser. In the following sections, we will examine the source code of
Delete.java, its compilation, and execution.

Programming Steps for Deleting

The deletion logic is provided by a doDelete() method of the jws
.ch11.Delete class, and hence, its implementation is of most interest to
us. The following steps outline the inner workings of doDelete():

1. Construct the Properties object and populate it with connection-
oriented properties.

2. Get hold of the ConnectionFactory object by calling a newIn-
stance() method on the ConnectionFactory class and eventu-
ally create the Connection object.

556 Chapter 11

3. Obtain the RegistryService instance from the Connection object
in order to get access to the capability interface BusinessLife-
CycleManager.

4. We would need to set the appropriate security credentials
(testuser/testuser) on the Connection object, because the deletion
of information from a registry is a privileged operation.

5. Now, call the deleteOrganizations() method, supplying it
with the key of the organization to delete. The end user provides
this 128-bit UUID, corresponding to the organization to delete, at the
command line.

6. Finally, check the status of the delete operation by calling
getStatus() on the returned BulkResponse object.

Delete.java Source Code

Listing 11.6 is the partial code listing of the doDelete() method. Again,
note that we have omitted the code sections that are redundant to Pub-
lish.java from this listing.

public void doDelete() throws JAXRException

{

Connection objConnection = null;

try

{

// Set the appropriate connection properties

...

// Now construct the ConnectionFactory object and

// initiate the connection to the JAXR registry

// provider

...

// Construct the JAXR RegistryService object and

// eventually get hold of BusinessLifeCycleManager

// object

...

// Initializing username and password to the defaults

Listing 11.6 Delete.java. (continues)

Java API for XML Registries 557

// for the local registry Server

...

// Supply the connection with appropriate security

// credentials in the form of JAAS PasswordAuthentication

// type.

...

// Now get hold of the Key based on the string

// representation of the UUID of Organization to

// delete

javax.xml.registry.infomodel.Key objOrganizationKey =

objBusinessLifeCycleManager.createKey

(sOrganizationKey);

// Create a collection and add the Key (s)of

// Organization(s) that need to be deleted from the

// registry

Collection colOrganizationKeys = new ArrayList();

colOrganizationKeys.add (objOrganizationKey);

// Now ask the JAXR provider to delete the

// Organization corresponding to the specified key

BulkResponse objBulkResponse =

objBusinessLifeCycleManager.deleteOrganizations

(colOrganizationKeys);

// Check to see if the delete operation went okay

if (objBulkResponse.getStatus() ==

JAXRResponse.STATUS_SUCCESS)

{

System.out.println(“Organization and related

services were deleted successfully.”);

}

else

{

System.err.println(“Problem(s) encountered

during the JAXR delete operation. Detailed

Error Message(s) shown as under :\n”);

Collection colExceptions =

Listing 11.6 Delete.java.

558 Chapter 11

objBulkResponse.getExceptions();

Iterator objIterator =

colExceptions.iterator();

while (objIterator.hasNext())

{

Exception objException = (Exception)

objIterator.next();

System.err.println(objException.toString());

}

}

}

catch (JAXRException e)

{

...

}

finally

{

...

}

}

Listing 11.6 Delete.java. (continued)

Compiling Delete.java

The following is the Ant script responsible for compiling Delete.java:

<project ...>

...

<target name=”compile-delete” depends=”prepare”

description=”Compiles Delete.java file.”>

<javac srcdir=”.” destdir=”${build.home}”>

<include name=”Delete.java” />

<classpath refid=”classpath”/>

</javac>

</target>

...

</project>

To compile Delete.java, run the Ant tool from command line as
shown:

> ant compile-delete

Java API for XML Registries 559

Executing Delete.java

The Ant script responsible for executing Delete.java is shown as follows:

<project ...>

...

<target name=”run-delete” depends=”compile-delete”

description=”Runs Delete.java. Argument: -DKey

<KeyValue>”>

<java classname=”jws.ch11.Delete” fork=”yes”>

<arg line=”${Key}”/>

<classpath refid=”classpath” />

<classpath path=”${build.home}”/>

</java>

</target>

...

</project>

In order to delete the ACME Computer Services organization, execute
Delete.java, supplying it with the key ID of ACME Computer Services.
Use the Ant tool to achieve this as shown:

> ant run-delete -DKey eeea9967-fdee-ea99-3171-a6b2b8957092

Figure 11.14 shows the execution output of Delete.java.
Deletion of ACME Computer Services can be verified either by executing

Query.java or by searching for this organization by using the registry
browser tool.

Figure 11.14 Executing Delete.java.

560 Chapter 11

Summary

In this chapter, we examined the details of JAXR, a Java specification meant
for working with XML registry services. Specifically, we looked at the
architectural components, the JAXR information model, the registry ser-
vices API, and specific examples of JAXR in action.

In the next chapter, we will see how the Java Web Services Developer
Pack works, using a case study.

Java API for XML Registries 561

563

This chapter focuses on implementing a complete Web services solution
using the Java Web Services Developer Pack (JWSDP) 1.0. It puts together
all the JWSDP-based APIs covered in this book to demonstrate a Web ser-
vices example. To accomplish the demonstration process, we will use a fic-
tional company named ACME Corporation, a wholesaler providing Web
services, as an example. This chapter covers the following key topics:

■■ An overview of the ACME application

■■ The architectural model of the ACME Web service in terms of the
service provider, service broker, and service requestor

■■ Step-by-step instructions on how to implement the code using vari-
ous APIs from JWSDP

■■ The deployment steps for each environment

■■ How to run the Web services and client application

Case Study Overview

The ACME Corporation caters various services to its computer retail
clients for the ordering of wholesale computer parts. Among the services
offered is the catalog and ordering service. The purpose of these services is

Using the Java Web Services
Developer Pack: Case Study

C H A P T E R

12

to automate and facilitate the ordering of products over the Internet for
computer retailers. These services will be available to clients all over the
world. Through this process, the ACME Corporation will reach out to a
much bigger market of computer retailers.

The Roles of Service Provider, Requestor, and Registry
The catalog service will be able to deliver product information to its Web
customers by displaying a catalog of available products. The buyers of the
product will be able to select the items and quantity from the catalog and
submit the orders through the ordering service. The ordering service will
parse the incoming order and insert it into the database. It then will notify
the respective warehouse with the order information. The company has
two different warehouses, depending on the type of product: one ware-
house for software orders and the other for hardware orders. At each ware-
house, the employee responsible for picking the products will retrieve the
order information from the computer and start the order picking process.
Once prepared, the order is shipped to the buyer using the address pro-
vided during ordering.

These Web services from ACME Corporation are targeted toward online
retailers. The Web sites hosted by these retailers will offer two functions to
their end users: product catalog browsing and product ordering. In order
to provide these functionalities, the retailer Web sites will make use of the
catalog and ordering Web services. The retailers thus consume the order
and catalog Web services, and hence, play the role of service requestor,
whereas ACME Corporation plays the role of service provider. For the
course of this case study, consider a fictional retailer of computers named
Computer Buy.

Figure 12.1 shows the high-level view of the interaction that takes place
between the important components and entities involved in this case
study.

In order to put things into perspective, we must understand the roles
played by these components and entities in this case study.

Important Components and Entities
The entities that play an important role in the ACME Web services scenario
are shown in Figure 12.1. The following sections will describe each of these
entities and the roles they play in this scenario.

564 Chapter 12

Figure 12.1 An ACME business model.

The buyer is an entity corresponding to the employee(s) of Computer Buy,
who make the decision of buying computer parts from the Web services
provided by the ACME Corporation and effectively place the purchase
order using the Computer Buy Web site.

Computer Buy Web Site

The Computer Buy Web site is a Web application offering computer soft-
ware and hardware products through its Web site. The idea behind the
Web site is to aggregate the various products offered by the computer man-
ufacturers doing business with ACME Corporation. The Computer Buy
Web site dynamically interacts with the ACME Corporation’s Web services
providing product information and ordering capabilities.

The Web components will be hosted inside the Apache Tomcat servlet con-
tainer. Refer to Chapter 7, “Introduction to the Java Web Services Developer

Computer
Buy

Website
Internet

Computer
Buy

Employee

Partner

ACME SW
Warehouse

Internet

Catalog
Service

ACME Corporation
Web Services

Ordering
Service

ACME HW
Warehouse

Partner

Database

Using the Java Web Services Developer Pack: Case Study 565

TEAMFL
Y

Team-Fly®

Pack (JWSDP),” for a brief description of the Tomcat container. For catalog
information, the server will locate the catalog service and get the necessary
data. The returned data then is processed and displayed to the user.

If the request consists of ordering products, the controller will construct
a message and call a service endpoint by passing this message. The service
then will update the database and return another message indicating the
status of the service operation.

ACME Web Services

ACME Web services are loosely coupled business components that can be
accessed by Internet and intranet clients. ACME Corporation publishes the
descriptions about the interfaces of these services to a UDDI registry such
that it can be discovered by Computer Buy or any other service requestor
at a later point in time. (For more information about UDDI registries, refer
to Chapter 5, “Description and Discovery of Web Services.”) These services
are implemented using Java APIs for XML and are deployed on a JWSDP.
A JWSDP consists of the reference implementations of Java APIs for XML
and a runtime environment for running the Web services. For more infor-
mation on the JWSDP, refer to Chapter 7. These Web services support
SOAP 1.1 as their communication protocol, and hence, they can be
accessed by both Java and non-Java clients. For more details about SOAP,
refer to Chapter 4, “Developing Web Services Using SOAP.”

ACME Database

The buyer and product information are stored inside a PointBase database.
Figure 12.2 shows how the service provider is set up.

ACME Warehouses

ACME warehouses are virtual locations that supply either the hardware or
software products to the retailers. In this case study, the ordering Web ser-
vice keys the ordered products into a database. The manufacturers then
query the ordered products and group them by product type. Each ware-
house prepares a separate order that then is merged at the shipping area of
the ACME Corporation.

ACME Partners

ACME partners are computer and software manufacturers that publish
their products in the ACME database for sale. These are third parties that

566 Chapter 12

use services (out of the scope of this case study) to enter their product
information in the ACME database.

Case Study Architecture

This case study addresses three operational environments that form the
basis of any Web services model: the Web services, service registry, and
Web service client.

Figure 12.2 demonstrates the architecture used for this case study. The
client of the application will be the Computer Buy employee, shown on the
far left. The employee will access the Web application hosted by Computer
Buy and request catalog and order information. This information will be
provided by a Web service hosted by ACME Corporation. Computer Buy’s

Figure 12.2 ACME Web services architecture.

Computer
Buy employee
(http client)

Service Broker
ip=10.3.5.94

jaxr

http

Service Requestor
ip=10.3.41.125

JS
TL

 P
re

se
nt

at
io

n

D
is

co
ve

r

Service Provider
ip=10.5.2.102

UDDI
Service
Registry

HW
Warehouse
Database

SW
Warehouse
Database

RDBMS
Database

jaxrpc

Controller
Servlet

computerBuy.com

jaxm jaxm

Publish

Catalog
Service

Ordering
Service

JAXR

SOAP Msg
(HTTP)

SOAP Msg
(HTTP)

jdbcjaxrpc

Using the Java Web Services Developer Pack: Case Study 567

Web application is considered to be the service requestor in this particular
scenatio. The Web services provided by the ACME Corporation are prod-
uct catalog and order services. These services receive requests and return
information to the service requestor or store information in the RDBMS
database (shown on the far right). The third player in this figure is the ser-
vice broker or the service registry. The registry is used for publishing and
discovering the Web services. The provider of the Web service publishes
information about the service in a registry. The service registry uses this
information to find out the location of the service endpoint and the type of
methods that are exposed by the endpoint. Next, let’s look at the design of
all of these components, starting with the service provider, service broker,
and then service requestor.

Design of Components

The following paragraphs examine the design of these components, start-
ing with service provider, continuing with service broker, and finally ser-
vice requestor.

Provider Environment
The service provider consists of two distinct service implementations. The
first service is the catalog viewing service, which uses JAX-RPC as its
means to communicate with its clients. The second is the ordering service,
which uses a point-to-point JAXM request-response communication
model implemented using JAXM and SAAJ.

ACME Catalog Service

The catalog service is implemented using JAX-RPC APIs and a runtime
environment from the JWSDP. It consists of a JAX-RPC service interface
and service implementation class. (For more information about JAX-RPC,
refer to Chapter 10, “Building RPC Web Services with JAX-RPC.”) The
client (service requestor) will use remote procedure calls to invoke a
method on the remote service. In order to achieve this, the user will use an
XML-based messaging protocol (such as SOAP) to send the request mes-
sage to the service endpoint. The JAX-RPC runtime environment, shown in
Figure 12.3, handles the marshalling and unmarshalling of the request and
response messages. SOAP specification defines a set of semantics for rep-
resenting the RPC calls and responses.

568 Chapter 12

Figure 12.3 ACME catalog communication using JAX-RPC.

The JAX-RPC service design is independent of the type of client that will
be accessing the application. The service will expose one service that will
extract the catalog information from the database by using a Data Access
Object (DAO). The sequence diagram in Figure 12.4 shows what happens
when a RPC request is sent from a JAX-RPC client to a service endpoint.
The steps in that sequence are as follows:

Figure 12.4 Sequence of getting a product catalog.

CatalogIF

getProductCatalog
getProducts

getProducts

build XMLreturn XML String

return result
return result

JAX-RPC Client Database

AcmeDAO

Acme Corp.
Controller

Servlet

SOAP
over
HTTP

Stubs

JAX-RPC
runtime

environment

Acme Catalog
Web Service

Ties

JAX-RPC
runtime

environment

Using the Java Web Services Developer Pack: Case Study 569

1. The service requestor sends a getProductCatalog() RPC request
to the JAX-RPC service endpoint (CatalogIF).

2. The service requestor’s JAX-RPC runtime environment marshals the
request into a SOAP message with RPC semantics and sends it to the
remote service.

3. The message arrives at the service provider’s side, and is unmar-
shaled by the provider’s JAX-RPC runtime environment that exe-
cutes the getProductCatalog() method with the parameters
provided in the request. In this case, no parameters were provided.

4. The service provider calls the ACMEDAOHelper class to extract the
product information from the database.

5. The service provider creates an XML file representing the catalog
and returns it to the remote client.

6. The service requestor receives the XML catalog and displays it to the
user.

ACME Ordering Service

The ordering service is implemented using JAXM and SAAJ APIs. The
Computer Buy retailer and ACME Corporation services use point-to-point
request-response messaging, and therefore, a messaging provider is not
needed in this case. The client order will be submitted to a helper class that
will establish a SOAPConnection with the ACME ordering service. A
SOAPMessage will be constructed by the requestor based on the order
information, and it will be submitted and sent to the ordering service. The
service will decompose the SOAPMessage and insert the content into the
database with the help of an AcmeDAOHelper class. Once the database
transaction completes, a status message will be returned to the requestor
indicating whether the transaction was successful or not.

JWSDP 1.0 includes JAXM and SAAJ APIs that are leveraged in this sce-
nario. The JAXM API requires that a JAXM provider be used. Because the
client will connect to the service using a SOAPConnection, we will use
only the SAAJ part of the API to send SAOP messages (see Figure 12.5).
Although this approach is simple, it is not considered reliable. In order to
achieve reliability and guaranteed message delivery, it is recommended
that a JAXM provider is used. For more information about JAXM and
SAAJ, refer to Chapter 9, “XML Messaging Using JAXM and SAAJ.”

Figure 12.6 shows what happens when a SOAP message is sent from a
client to the service endpoint. The sequence of steps is as follows:

570 Chapter 12

Figure 12.5 ACME order service communication using JAXM.

Figure 12.6 Sequence of ordering products.

JAXM Service

send SOAP msg

insert
insert order

display status

return status

JAXM Application Database

AcmeDAO

decompose SOAP
message

Computer Buy

SOAPMessage

SOAP
Messaging
Application

SOAP Provider

HTTP

ACME Corporation

JAXM
Service

Endpoint

JAXM Provider

HTTP

Using the Java Web Services Developer Pack: Case Study 571

1. The service requestor establishes a connection with the provider.

2. The service requestor builds a SOAP message based on the input
provided by the order form.

3. The service requestor sends the SOAP message to the service
provider.

4. The service provider decomposes the SOAP message and calls the
AcmeDAO to insert the order information into the database.

5. The service provider creates a new SOAP message with the status
information about the transaction.

6. The service provider returns the status SOAP message to the JAXM
client.

7. The service requestor receives the message and displays it to the user.

Designing the Publishing and Discovery Classes
The following paragraphs examine how the publishing and discovery
classes are designed.

JAXR-Based Publish and Discovery Mechanisms

To demonstrate the publishing and discovery of our catalog service, we
will use a JAXR API to fetch and store information in the service registry.

The service broker in our case study will use the JWSDP registry server
as its private UDDI service registry. The UDDI registry is used for publish-
ing the catalog service by the ACME Corporation (service providers) and
for the discovery of the service by the Computer Buy retailer (service
requestors).

Registry Parameters for Catalog Service

In the case study, we publish the catalog service with the properties used
by the JAXPublish class. These properties are shown in Listing 12.1.

endpoint=http://acmeservices.org:8080/acme-services/jaxrpc/CatalogIF

query.url=http://acmeservices.org:8080/registry-

server/RegistryServerServlet

publish.url=http://acmeservices.org:8080/registry-

server/RegistryServerServlet

registry.username=testuser

Listing 12.1 CatalogRegistry.properties used for JAXR publishing.

572 Chapter 12

registry.password=testuser

org.name=JAXRPCAcmeProductCatalog

org.description=Acme Catalog Service

person.name=Jane Doe

phone.number=(800) 234-4567

email.address=jane.doe@acmeservices.com

classification.scheme=ntis-gov:naics

classification.name=Computer and Computer Peripheral Equipment and

Software Merchant Wholesalers

classification.value=42343

service.name=JAXRPCAcmeProductCatalog

service.description=Product Catalog offered by the service

service.binding=JAXRPCAcmeProductCatalog Service binding

key.file=orgkey.txt

Listing 12.1 CatalogRegistry.properties used for JAXR publishing.

The service is stored using a NAICS common classification scheme
called Computer and Computer Peripheral Equipment.

Publishing the ACME Catalog Service

The service provider will call an OrgPublish utility class that uses
JAXRPublish. The JAXRPublish class relies on the JAXR API for estab-
lishing a connection with the registry and for using RegistryService,
BusinessLifeCycleManager, and BusinessQueryManager for pub-
lishing new services. The configuration parameters used by OrgPublish
will be retrieved from the CatalogRegistry.properties file. This
process will be done outside of the service implementation code. In other
words, it will have to be executed by the service deployer, once the service
has been successfully deployed in the Tomcat Web container. Figure 12.7 is
a class diagram that shows the relation between the OrgPublish and the
JAXRPublish classes.

Discovering the ACME Catalog Service

The discovery of the service will be handled differently than publishing, in
the sense that it will be used by a Web service client application (comput-
erBuy.com). The catalog service requestor has implemented a helper class
that will aid in the discovery of the service. First, it establishes a connection
with the registry, then it executes a query that will perform a search based

Using the Java Web Services Developer Pack: Case Study 573

Figure 12.7 Publishing classes.

on a given criteria. The current implementation searches the registry by
NAICS common classification schemes. There are various other search
possibilities, but we will only list one in this case study.

The service requestor will use JAXLookupHelper (see Figure 12.8) in
the CatalogHelper class to locate the location (URL) of the service end-
point. This search is implemented in a query class called JAXRQueryBy-
NaicsClassification. Other query classes can be plugged into the
helper to provide different search criteria such as by WSDL, by service
name, and so forth.

Figure 12.8 Discovery classes using JAXR.

JAXRLookupHelper

JAXRQueryByNaicsClassification

OrgPublish

JAXRPublish

574 Chapter 12

Designing the Service Requestor Environment
(computerBuy.com)
The Computer Buy Web site will act as the service delivery layer, provid-
ing content to the retailers and aggregation of services offered by the
ACME Corporation. The Computer Buy Web site will be composed of var-
ious Java Server Pages (JSPs) for content presentation and some Java
classes that will provide the functionality to dynamically contact ACME
Corporation services to get product catalog information or provide order
information.

Content Presentation Using Java Server Pages and JSTL

The presentation part of the computerBuy.com Web application will be
done using JSPs and Java Server Pages Standard Tag Libraries (JSTLs).
JSTL tags will aid in the conditional processing and parsing of XML data
returned from the Web service.

Service Requestor Clients for Catalog and Ordering Service

The service that will be responsible for handling the communication with
the Web services is called the service requestor. The service requestor is
made up of Web components that reside on the same Web server as the
Computer Buy Web site. The requestor consists of a servlet that intercepts
all of the incoming HTTP requests from the Computer Buy employees and
uses the appropriate Helper classes to invoke the correct Web service. The
helpers are implemented as regular Java classes. The catalog service will
use a JAX-RPC implementation to make a call to a remote object to retrieve
the product information. The ordering service will be implemented as a
JAXM messaging service that retrieves the order provided by the employ-
ees on the Computer Buy site. Figure 12.9 shows a class diagram of the two
service helper classes and the front controller class that is used as the entry
point for all of the HTTP requests.

Designing a JAX-RPC DII Client for Catalog Service

When a request to view a product catalog occurs, the service requestor uses
helper classes to fetch the service endpoint from the service registry. Figure
12.10 is a class diagram with a description of what role these classes play in
getting a list of catalog products from the service provider.

Using the Java Web Services Developer Pack: Case Study 575

TEAMFL
Y

Team-Fly®

Figure 12.9 Service requestor helper classes.

The following helper classes are used by the requestor when calling the
catalog service:

jws.ch12.helper.CatalogHelper This helper class encapsulates
the registry lookup process and the JAX-RPC call to the catalog
service.

jws.ch12.jaxr.JAXRLookupHelper This helper class uses JAXR
API for the discovery of the services. It calls a query class that makes
a JAXRConnection to the UDDI registry and queries the registry
based on criteria set by the requestor.

jws.ch12.jaxr.JAXRQueryByNAICSClassification This
JAXR query class is used to search organizations based on a common
classification scheme. For more detail on classification schemes, refer
to Chapter 11, “Java API for XML Registries.”

ControllerServlet

OrderHelper

JAXRLookupHelper RPCCatalogServiceHelper

CatalogHelper

576 Chapter 12

Figure 12.10 Catalog service helper classes.

jws.ch12.helper.RPCCatalogServiceHelper.java This
helper class uses the endpoint provided by the JAXRLookupHelper
and uses it to establish a connection to the catalog service. It uses the
JAX-RPC API to send an RPC SOAP message to the service endpoint,
which requests a catalog as an XML string.

There are a few factors that one may consider when designing a JAX-
RPC client:

■■ Is this Web service going to be exposed in a UDDI?

■■ Will the client application discover the service in a registry?

■■ Will the client application know of the services offered by the
provider?

■■ Will the client and service coexist as part of the same network?

■■ Will the service change the implementation or signature of its meth-
ods frequently?

ControllerServlet

JAXRLookupHelper RPCCatalogServiceHelper

CatalogHelper

Using the Java Web Services Developer Pack: Case Study 577

When these factors are taken into consideration, the client implementa-
tion may be easier to design. The various possibilities of JAX-RPC clients
include the following:

■■ Static stub implementation

■■ Dynamic proxy

■■ Dynamic Invocation Interface (DII)

In this case study, the client of the service will use a Dynamic Invocation
Interface (DII) technique as opposed to a more traditional way of using a
static stub/skeleton. Because we want to discover and execute the service
at runtime, DII is a good alternative. Otherwise, service stubs and ties
would have to be created and deployed on every client machine so that the
client could execute the service by using its local stub. DII enables us to use
other APIs (such as JAXR) to discover the catalog service endpoint in the
UDDI service registry and to execute the service dynamically at runtime.
Note that the DII implementation only applies to client helper classes, so
the service provider has no knowledge of what kind of client (static or
dynamic) is calling it.

Figure 12.11 is a sequence diagram that steps through a series of classes
that get called when a user selects to view a catalog.

The sequence diagram shows the steps involved in getting a product
catalog:

1. From the main JSP, the buyer (a Computer Buy employee) selects the
get Product Catalog function, which submits a request that
gets intercepted by the ControllerServlet.

2. The ControllerServlet examines the parameters sent and
instantiates the CatalogHelper class.

3. The CatalogHelper class uses the JAXRLookupHelper class to
discover and call the catalog service endpoint.

4. The catalog service uses the AcmeDAO to make a selection of all
products from the database and returns the result back to the
service.

5. The result is converted into an XML structure and is returned to the
client as an XML string.

6. This XML string then is parsed and displayed to the buyer.

578 Chapter 12

Figure 12.11 View catalog sequence diagram.

JAXM Client for Ordering Service

The ordering service is called using the OrderHelper class. The Order-
Helper class is instantiated in ControllerServlet, provides the logic
for creating a SOAPConnection, then creates and sends a SOAPMessage
with the order information. In this case study, we are using the SAAJ API
instead of JAXM API, because we do not need an intermediary messaging
provider. This could be just as easily implemented using a provider, but for
this case study we will use a single SOAPConnection. Figure 12.12 shows
a class diagram of the Computer Buy application (service requestor).

jws.ch12.helper.OrderHelper This helper class is used for sub-
mitting orders to the ordering service. It uses a JAXM request-
response model for sending SOAP messages using SOAP Attachment
API for Java (SAAJ). More information on JAXM and SAAJ can be
found in Chapter 9.

jws.ch12.model.CustomerDetails This class acts as a transport
object that is used for holding customer information, such as a name
and an address.

main.jsp

View
getcatalog

return

Buyer

return String

getcatalog

catalog.jsp FrontController

findCatalogService

getCatalog

CatalogHelper

getCatalog

makeConnection

JAXRPCServletJAXRLookupHelper

getProductCatalog

CatalogIF AcmeDAOJAXRQueryByNaics

executeQuery

parse XML return String
return String

return Product

build XML

Uses JSTL custom
XML tags for
parsing of catalog.

Makes a JDBC
call to the
Pointless database.

Using the Java Web Services Developer Pack: Case Study 579

Figure 12.12 Order service helper class.

jws.ch12.model.OrderItem This class is a place holder for an
item that has a product ID and quantity ordered. The list of ordered
items is stored in an array of OrderItem.

jws.ch12.model.PurchaseOrderDetails This class encapsulates
the customer details and order items into one single transfer object that
is passed to the OrderHelper class, converted into XML, and sent
over to the Web service as a SOAP message. Figure 12.13 is a sequence
diagram that shows the different steps executed when placing an order.

Figure 12.13 shows the steps involved in getting a product catalog:

1. The first step is used to get the product list so that the user can place
an order.

2. From the main JSP, the buyer (a Computer Buy employee) selects
the products and quantity, and then submits the request that gets
intercepted by the ControlletServlet.

ControllerServlet

OrderHelper

0..* OrderItem

PurchaseOrderDetails CustomerDetails

580 Chapter 12

Figure 12.13 Order service sequence diagram.

m
ai

n
.js

p

1.
O

rd
er

ge
tC

at
al

og

B
uy

er
D

at
ab

as
e

ge
tC

at
al

og

o
rd

er
.js

p
o

rd
er

in
fo

.js
p

Fr
o

n
tC

o
n

tr
o

lle
r

fin
dC

at
al

og
Se

rv
ic

e

ge
tC

at
al

og

C
at

al
o

g
H

el
p

er
O

rd
er

H
el

p
er

JA
X

R
PC

Se
rv

le
t

C
at

al
o

g
IF

A
cm

eD
A

O
JA

X
R

Lo
o

ku
p

H
el

p
er

JA
X

R
Q

ue
ry

B
yN

ai
cs

R
ec

ei
vi

n
g

Se
rv

le
t

cr
ea

te
 S

O
A

PM
es

sa
ge

de
co

m
p

os
e

SO
A

PM
es

sa
ge

cr
ea

te
 S

O
A

PM
es

sa
ge

re
tu

rn
 S

O
A

PM
es

sa
ge

 s
ta

tu
s

bu
ild

 X
M

L

p
op

ul
at

e
FO

RMre
tu

rn
p

ar
se

 X
M

L
re

tu
rn

 S
tr

in
g

Su
bm

itO
rd

er

JD
BC

 In
se

rt

p
la

ce
O

rd
er

se
nd

 S
O

A
PM

es
sa

ge

ge
tC

at
al

og

m
ak

eC
on

ne
ct

io
n

ex
ec

ut
eQ

ue
ry

ge
tP

ro
du

ct
C

at
al

og

JD
BC

 q
ue

ry

re
tu

rn
 R

es
ul

ts

re
tu

rn
 P

ro
du

ct

re
tu

rn
 S

tr
in

g
re

tu
rn

 S
tr

in
g

Using the Java Web Services Developer Pack: Case Study 581

3. The ControllerServlet examines the parameters sent and
instantiates the OrderHelper class. The service endpoint that it
needs to contact is stored in a configuration file
(jaxmendpoint.properties) on the Computer Buy server.

4. The OrderHelper class uses the purchase order details that are
gathered from the user request and sent to the service as a SOAP
message.

5. The service decomposes the SOAP message and inserts the order
into the database.

6. The service returns a SOAP reply to the buyer.

Now that we have discussed the various pieces to this puzzle, let’s delve
a little deeper and examine how to implement the services and clients.

Implementation

The implementation of this case study consists of three parts:

1. Developing the service provider as the implementation of JAX-RPC
and JAXM service endpoints for the catalog and ordering services

2. Creating the service broker, where the services are published

3. Implementing the Computer Buy Web site (service requestor) to
enable retailers to view product catalogs and orders online

Each of these parts is discussed in the following sections.

Developing the Service Environment
First, we will look at the catalog service. The implementation of the service
uses JAX-RPC APIs to create a service that receives RPC requests from
clients using SOAP-encoded messages. The JAX-RPC runtime environ-
ment handles the creation of the SOAP message on the client side and the
decomposition of the message on the server side.

ACME Catalog Service

The product catalog implementation requires the implementation of one
remote interface (CatalogIF) and one implementation (CatalogImpl)
class that implement the business logic defined in the remote interface.

582 Chapter 12

Creating the Service Definition Interface

The service requires an implementation of a remote interface defining
methods that can be called by remote clients. The interface must extend a
java.rmi.Remote interface and each method must throw a java.rmi
.RemoteException. The following is an example of our CatalogIF
interface:

import java.rmi.Remote;

import java.rmi.RemoteException;

public interface CatalogIF extends Remote {

public String getProductCatalog() throws RemoteException;

}

The following criteria must be satisfied when implementing a service
interface:

■■ The service interface must extend from java.rmi.Remote.

■■ All methods must throw a java.rmi.RemoteException.

■■ No method can be declared static or private.

■■ Method parameters and return types must be supported by JAX-RPC
types. In our case, we will be using primitive and standard Java
data types.

Creating the Service Implementation Class

The CatalogImpl class is the implementation of the service class that
implements the CatalogIF interface. In other words, the service imple-
mentation class has an implementation method for all business methods
defined in the interface. Because we only have one method, getProduct-
Catalog(), we will provide only one implementation of this method,
which is as follows:

public class CatalogImpl implements CatalogIF {

public String getProductCatalog() {

try {

System.out.println(“Provider : Catalog Service called”);

AcmeDAOHelper helper = new AcmeDAOHelper();

Product [] products = helper.getProductCatalog();

StringBuffer xmlStr =

new StringBuffer(“<?xml version=\”1.0\”?>”);

Product product = null;

xmlStr.append(“<Catalog>”);

Using the Java Web Services Developer Pack: Case Study 583

for (int i=0; i < products.length; i++) {

product = products[i];

xmlStr.append(“\n<Product>”);

xmlStr.append(“\n<Number>”);

xmlStr.append(product.getId());

xmlStr.append(“</Number>”);

xmlStr.append(“\n<Name>”);

xmlStr.append(product.getName());

xmlStr.append(“</Name>”);

xmlStr.append(“\n<Description>”);

xmlStr.append(product.getDesc());

xmlStr.append(“</Description>”);

xmlStr.append(“\n<Price>”);

xmlStr.append(product.getPrice());

xmlStr.append(“</Price>”);

xmlStr.append(“\n<Currency>”);

xmlStr.append(product.getCurrency());

xmlStr.append(“</Currency>”);

xmlStr.append(“\n<Type>”);

xmlStr.append(product.getType());

xmlStr.append(“</Type>”);

xmlStr.append(“\n</Product>”);

}

xmlStr.append(“</Catalog>”);

return xmlStr.toString();

} catch (AcmeDAOException ade) {

System.out.println(“AcmeDAOException occurred :

“+ade.getMessage());

} catch (Exception e) {

System.out.println(“Exception occurred : “+e.getMessage());

}

return null;

}

Figure 12.14 is a class diagram for the service implementation and ser-
vice interface.

The getProductCatalog() method uses a Data Access Object (DAO)
to implement all of the database-related work through JDBC calls. The
DAO selects products from the products table and returns an array of
products to the service. The service then iterates over the array of products
and creates an XML file, which then is returned as a string to the remote
client (service requestor).

584 Chapter 12

Figure 12.14 Catalog service class diagram.

Before deploying this service, we must specify the JAXRPC endpoint
information in the web.xml deployment descriptor. The following is a
snippet of code that includes everything you need to put in the web.xml for
the service to work correctly:

<servlet>

<servlet-name>JAXRPCEndpoint</servlet-name>

<display-name>JAXRPCEndpoint</display-name>

<description>Endpoint for Catalog Web Service</description>

<servlet-class>

com.sun.xml.rpc.server.http.JAXRPCServlet

</servlet-class>

<init-param>

<param-name>configuration.file</param-name>

<param-value>

/WEB-INF/AcmeProductCatalog_Config.properties

</param-value>

</init-param>

<load-on-startup>0</load-on-startup>

</servlet>

<servlet-mapping>

<servlet-name>JAXRPCEndpoint</servlet-name>

<url-pattern>/jaxrpc/*</url-pattern>

</servlet-mapping>

When the client invokes the JAXRPC service endpoint (http://
acmeservices.org:8080/acme-services/jaxrpc/CatalogIF),
the JAXRPCEndpoint servlet intercepts the request and executes the cor-
rect service by looking at the information retrieved from the configuration
file (/WEB-INF/AcmeProductCatalog_Config.properties). The
configuration file is generated at compile time (xrpcc) and resides in the
WEB-INF directory of the Web application. The following is a sample con-
figuration file:

CatalogImpl java.rmi.Remote
interface
CatalogIF

+getProductCatalog():String

Using the Java Web Services Developer Pack: Case Study 585

TEAMFL
Y

Team-Fly®

This file is generated by xrpcc.

port0.tie=jws.ch12.jaxrpc.CatalogIF_Tie

port0.servant=jws.ch12.jaxrpc.CatalogImpl

port0.name=CatalogIF

port0.wsdl.targetNamespace=http://acmeservices.org/wsdl

port0.wsdl.serviceName=AcmeProductCatalog

port0.wsdl.portName=CatalogIFPort

portcount=1

Now, let’s proceed to the next service implementation using JAXM and
SAAJ APIs.

ACME Ordering Service

The product ordering service uses a JAXM request-response communica-
tion model by implementing the service using JAXM and SAAJ APIs. The
API enables the two communicating parties to exchange SOAP messages by
opening a SOAPConnection and sending a SOAPMessage by calling the
call method on the SOAPConnection. The call returns a SOAPMessage
that is used to provide feedback information about the database transaction
that was issued from the ordering service.

The ordering service is invoked when the user submits an order from
the Web site. The ControllerServlet intercepts the request and instan-
tiates an OrderHelper with the endpoint URL. The endpoint URL then is
fetched from the WEB-INF/jaxmendpoint.properties file of the Web
site. Because the client uses an ultimate recipient, we will not publish and
discover this service in the registry server.

The ControllerServlet forwards all of the parameters entered in the
form to the OrderHelper class by calling its placeOrder() method. A
string is returned from the method indicating the status of the transaction:

OrderHelper helper = new OrderHelper(endpoint);

String status = helper.placeOrder(poDetails);

The OrderHelper requires an endpoint string as a parameter to the
constructor. The endpoint specifies the URL where the JAXM service end-
point resides. The OrderHelper acts as the sending client of the SOAP
message.

586 Chapter 12

The OrderHelper class creates a SOAPConnection:

SOAPConnectionFactory scf =

SOAPConnectionFactory.newInstance();

SOAPConnection con = scf.createConnection();

URLEndpoint urlEndpoint = new URLEndpoint(anEndPoint);

When the placeOrder() method is called, the helper takes a
PurchaseOrderDetails class as a parameter and creates a SOAP
message from the information provided. The following is a snippet of code
that creates the SOAP message. A detailed explanation is available in
Chapter 9.

MessageFactory mf = MessageFactory.newInstance();

SOAPMessage msg = mf.createMessage();

SOAPPart sp = msg.getSOAPPart();

SOAPEnvelope envelope = sp.getEnvelope();

SOAPBody body = envelope.getBody();

Name bodyName = envelope.createName(“PurchaseOrder”, “PO”,

“http://acmeservices.org”);

SOAPBodyElement purchaseOrder =

body.addBodyElement(bodyName);

javax.xml.soap.Name childName = envelope.createName(“Info”);

SOAPElement info = purchaseOrder.addChildElement(childName);

childName = envelope.createName(“Date”);

SOAPElement pDate = info.addChildElement(childName);

pDate.addTextNode(poDetails.getPurchaseDate());

childName = envelope.createName(“PaymentType”);

SOAPElement pType = info.addChildElement(childName);

pType.addTextNode(poDetails.getPaymentType());

Figure 12.15 shows the steps involved in sending a JAXM SOAP
message. The ControllerServlet and OrderHelper are components
that are part of the service requestor (Computer Buy retailer), and
JAXMOrderReceivingServlet is the JAXM service endpoint that
receives JAXM messages sent from the retailers. AcmeDAOHelper is a class
that encapsulates the JDBC code that is used for the database operations.
The JAXMOrderReceivingServlet uses the DAO to update the order
information in the database.

Using the Java Web Services Developer Pack: Case Study 587

Figure 12.15 OrderHelper and a JAXM-receiving servlet.

<?xml version=”1.0” encoding=”UTF-8”?>

<soap-env:Envelope

xmlns:soap-env=”http://schemas.xmlsoap.org/soap/envelope/”>

<soap-env:Header/>

<soap-env:Body>

<PO:PurchaseOrder xmlns:PO=”http://acmeservices.org”>

<Info>

<Date>06/17/2002</Date>

<PaymentType>Visa</PaymentType>

<PaymentCardNumber>1234567890123456</PaymentCardNumber>

</Info>

<CustomerDetails>

<Name>Robert Skoczylas</Name>

<Street>1st Ave</Street>

<City>Montreal</City>

<State>QC</State>

<Zip>H9H 5B3</Zip>

<Country>Canada</Country>

<BusinessPhone>514-222-3454</BusinessPhone>

OrderHelper

new
SOAPConnection

send SOAPMessage

Insert Order data

Create SOAPMessage

return status

ControllerServlet

ReceivingServlet AcmeDAOHelper

decompose message

588 Chapter 12

<MobilePhone>514-223-5554</MobilePhone>

<Email>rob@yahoo.com</Email>

</CustomerDetails>

<OrderItems>

<LineItem>

<ProductNumber>3000</ProductNumber>

<Quantity>100</Quantity>

</LineItem>

</OrderItems>

</PO:PurchaseOrder>

</soap-env:Body>

</soap-env:Envelope>

At the service end, the recipient is implemented as a servlet
called jws.ch12.jaxm.receiver.JAXMOrderReceivingServlet.
The servlet extends a JAXMServlet and implements ReqRespListener
(see Figure 12.16). The RegRespListener requires the implementation of
an onMessage() method, so that when the service is invoked this method
is called.

The receiving servlet takes the incoming SOAPMessage, decomposes it,
and inserts the data in the database using the AcmeDAOHelper class.
When the DAO completes the transaction, the JAXMOrderReceiv-
ingServlet builds a new SOAPMessage, adds a status message, and
returns it to the client. The following is a snippet of code showing the cre-
ation of a status SOAPMessage. The status then is displayed to the user in
the confirmation page.

Figure 12.16 ReceivingServlet class diagram.

JAXMServlet

interface
ReqRespListenerJAXMOrderReceivingServlet

Using the Java Web Services Developer Pack: Case Study 589

SOAPMessage msg = fac.createMessage();

SOAPEnvelope envelope = msg.getSOAPPart().getEnvelope();

envelope.getBody()

.addChildElement(envelope.createName(“Status”))

.addTextNode(statusMsg);

msg.saveChanges();

return msg;

Now that all of the classes are implemented, we must configure the
web.xml deployment descriptor to specify the JAXM service endpoint.
The following is a snippet of web.xml that defines the JAXMOrder-
ReceivingServlet endpoint:

<servlet>

<servlet-name>JAXMOrderServiceEndpoint</servlet-name>

<servlet-class>

jws.ch12.jaxm.receiver.ReceivingServlet

</servlet-class>

<load-on-startup>3</load-on-startup>

</servlet>

<servlet-mapping>

<servlet-name>JAXMOrderServiceEndpoint</servlet-name>

<url-pattern>/receiver</url-pattern>

</servlet-mapping>

When calling the JAXM service endpoint from the OrderHelper, we use
the following URL found in the WEB-INF/jaxmendpoint.properties:

to=http://acmeservices.org:8080/acme-services/receiver

Publishing the ACME Catalog Service

The publishing of a service is performed by the service provider. Once a
service is successfully deployed, it must be published for other clients to
discover and use it. The catalog service provider publishes the information
about itself into the registry. In this case study, this step is implemented as
a standalone class that reads the CatalogRegistry.properties file
and uses the information from that property file to publish to the registry.

Steps Involved in Publishing a Service

The main class used for populating the registry is called JAXRPublish.
The steps that are involved in publishing a service are as follows:

590 Chapter 12

1. Connect to the registry provider.
ConnectionFactory factory = ConnectionFactory.newInstance();

factory.setProperties(props);

connection = factory.createConnection();

2. Obtain authorization for registry updates and provide the
information.
PasswordAuthentication passwdAuth =

new PasswordAuthentication(username,

password.toCharArray());

Set creds = new HashSet();

creds.add(passwdAuth);

connection.setCredentials(creds);

3. Register the service. Once all of the attributes have been set, it is time
to register the service using BusinessLifeCycleManager.
BulkResponse response = blcm.saveOrganizations(orgs);

Collection exceptions = response.getExceptions();

The following information was provided to the JAXPublish class:

Business Name: JAXRPCAcmeProductCatalog

Contact Information: Person name: Jane Doe

Phone number: (800) 234-4567

Email: jane.doe@acmeservices.com

Classification Scheme NAICS (Computer and Computer
(Classification, Code): Peripheral Equipment and Software

Merchant Wholesalers, 42343)

Service Description: Product Catalog offered by the
service

Service Access Point JAXRPCAcmeProductCatalog Service
(endpoint): binding (http://acmeservices.org:8080

/acme-services/jaxrpc/CatalogIF)

JAXRPublisher is called by the OrgPublisher class that essentially
calls JAXPublisher with the correct parameters. These parameters are
retrieved from the CatalogRegistry.properties file. After running
the OrgPublisher, we should see the output shown in Figure 12.17.

Using the Java Web Services Developer Pack: Case Study 591

Figure 12.17 OrgPublisher output.

The output displays the result of the publishing and writes a unique
organization key to the orgkey.txt file. Now that the service is
published in the registry, the missing step is to implement the service client
or service requestor.

Browsing the Service Registry

The service broker uses the JWSDP registry server and provides support
for the UDDI version 2.0 registry specification. The registry server pro-
vides the capabilities to search our private registry for particular organiza-
tions and provides the functionality for publishing an organization or
service into the registry. This implementation of the registry serves a great
purpose for accessing the information with the JAXR API. The current
release of the registry provides the following:

■■ An XML database (Xindice) from the Apache XML project. It serves
the purpose of a repository for data stored in the registry.

■■ Indri, a graphical user interface (GUI) that enables you to manage
the database data.

In the previous section, we published the catalog service in the registry.
Let’s now open the registry browser provided in the JWSDP and view the
content that was published. The browser requires that we specify the
registry location. This is the URI that points to the registry server.
In our case, we will be using the JWSDP implementation that
is installed under http://localhost:8080/registry-server
/RegistryServerServlet. The search will be performed by name and
will contain the string “Catalog”.

Figure 12.18 shows the result of our query.

592 Chapter 12

Figure 12.18 Registry browser search results.

The query returned a JAXRPCAcmeProductCatalog organization that
was previously published. In the detailed windows, we can view the
registry object, the services, and service bindings.

The next step is to implement the Computer Buy Web site (service
requestor), which will look up the catalog service in the registry server and
insert the order information in the database.

Developing the Service Requestor Environment
The Computer Buy Web site components are considered to be the service
clients. These components that form the Web site were designed based on
design patterns. The intercepting component is a servlet that will act as the
ControllerServlet. The controller servlet will use one or several
helper classes for specific tasks. These helper classes implement different
logic, depending upon the type of work that is required (for example,
OrderHelper for ordering and CatalogHelper for getting catalog
information).

The Web application consists of a ControllerServlet and some
helper classes that make interacting with ACME Web services easy. The
helper classes encapsulate the plumbing required, such as establishing

Using the Java Web Services Developer Pack: Case Study 593

connections with the services. Figure 12.19 shows the helper classes in rela-
tion to the ControllerServlet. The ControllerServlet determines
the type of request and instantiates the appropriate helper class.

The following sections describe the responsibility of each class.

Dispatching of Requests with ControllerServlet

ControllerServlet is an implementation of HttpServlet. The con-
troller is the main servlet of the Computer Buy site, providing dispatching
facilities based on the request submitted by the user. The servlet uses two
helper classes to locate the demanded services and forward requests
to them.

Figure 12.19 Computer Buy Web site class diagram.

ControllerServlet

OrderHelper

JAXRLookupHelper RPCCatalogServiceHelper

CatalogHelper

594 Chapter 12

In order to dispatch a request, the ControllerServlet expects a
sevice_type and forward parameters in the incoming HttpServlet
Request. The service_type parameter serves to determine whether the
service being called is an order or catalog service. The forward parameter
indicates whether the response should be forwarded to the catalog or
order service. This means that when a user requests to see a catalog, the
service_type=ProductCatalog and forward=catalog are a result.
On the other hand, if the user wants to order, then we still need to call the
catalog but will forward to order.

The following is a snippet of code that forwards requests to different
helper classes and JSPs, depending upon their requested service type and
forward page:

if (serviceType != null && serviceType.equals(“ProductCatalog”)) {

CatalogHelper catalogHelper = new CatalogHelper();

String catalog = catalogHelper.getCatalog();

request.setAttribute(“xml”,catalog);

RequestDispatcher dispatcher =

request.getRequestDispatcher(fwdPage);

dispatcher.forward(request,response);

}

Notice that the catalog service helper returns an XML string representing
the product catalog. The string then is saved in an HTTP session attribute.
The catalog XML string then is extracted from the session and parsed by
the XML custom tag library that’s included in the JWSDP 1.0 release under
the JSTL 1.0 package. See Chapter 7 for a brief description of the JSTL tag
libraries.

The following sections cover the helper classes used by the Controller
servlet. The helpers encapsulate the plumbing required to discover and
make calls to the remote Web services.

Catalog Service Requestor

A Catalog helper class uses JAXRLookupHelper to fetch services from the
registry and uses JAXRPCCatalogHelper to make JAX-RPC DII calls to
the catalog service endpoint.

Using the Java Web Services Developer Pack: Case Study 595

TEAMFL
Y

Team-Fly®

Example Call to JAXRLookupHelper

The following is a call to JAXRLookupHelper to find services that qualify
in the “42343” classification scheme:

JAXRLookupHelper helper = new JAXRLookupHelper();

ArrayList services = helper.findCatalogServices(“42343”,”Computer and “+

“Computer Peripheral Equipment and Software Merchant “+

“Wholesalers”);

The lookup helper returns an array of services found in the registry with
NAICS number = 42343. We then can look at the first service from the array
and make a JAX-RPC call to the service. If no services were found, the
service uses a local instance:

Iterator it = services.iterator();

String endpoint = null;

if (it.hasNext()) {

endpoint = (String)it.next();

System.out.println(“Service : “+endpoint);

} else {

System.out.println(“No service found in the registry, using

default”);

endpoint = “http://localhost:8080/acme-services/jaxrpc/CatalogIF”;

}

Now that we have an endpoint string, we pass it to the RPCCatalog
ServiceHelper class. RPCCatalogServiceHelper calls the service
with a getCatalog() method request. The response consists of an XML
string representing the catalog:

RPCCatalogServiceHelper csh = new

RPCCatalogServiceHelper(endpoint,””,””);

return csh.getProductCatalog();

The catalog string then is stored as a request attribute and forwarded to
the catalog JSP. The catalog JSP extracts the XML string and displays it to
the user.

Dynamic Invocation Interface (DII) Helper

The JAX-RPC DII client implementation was chosen to demonstrate a more
dynamic model, where the service is discovered in the UDDI registry at
runtime and the client can call a remote procedure without knowing the
name of the service or procedure ahead of time. Therefore, the service does
not use static stubs to make remote calls, but rather it uses Service and
Call interfaces to dynamically call the remote service.

596 Chapter 12

Now, let’s look at how this client implements the getProductCatalog()
method.

The RPCCatalogServiceHelper class uses the following interfaces
and classes for dynamic invocation:

Call Supports the dynamic invocation of a remote operation on a
service port

Service Is a factory for call objects, dynamic proxies, and stubs; only
the generated services are factories for stubs

Qname Is a qualified name based on the namespaces in an XML
specification

1. Obtain an instance of ServiceFactory.
ServiceFactory factory =

ServiceFactory.newInstance();

Service service =

factory.createService(new QName(qnameService));

2. Create a Call object, and set an endpoint and other properties. The
endpoint is retrieved from the JAXRLookupHelper class.
call.setTargetEndpointAddress(endpoint);

call.setProperty(Call.SOAPACTION_USE_PROPERTY,

new Boolean(true));

call.setProperty(Call.SOAPACTION_URI_PROPERTY, “”);

call.setProperty(ENCODING_STYLE_PROPERTY, URI_ENCODING);

3. Set return type, in our case it will be a String:
QName QNAME_TYPE_STRING = new QName(NS_XSD, “string”);

//the return type will be an XML string

call.setReturnType(QNAME_TYPE_STRING);

4. Set a method name to be called on the remote object.
call.setOperationName(new QName(BODY_NAMESPACE_VALUE,

“getProductCatalog”));

5. Call the service. getProductCatalog() does not take any para-
meters, resulting in a null value in the invoke method. The return
type is a string; and explicit cast is needed because the invoke
method returns an object type:
result = (String)call.invoke(null);

Using the Java Web Services Developer Pack: Case Study 597

Ordering a Service Requestor

The OrderHelper class is used for sending SOAP messages to a
JAXM service endpoint. It takes a purchase order transfer object and con-
verts it into a SOAP message. This SOAP message then is sent over a
SOAPConnection to the receiving servlet.

How a SOAP Message Is Sent

The helper class takes a string representing the JAXM endpoint. It then
creates a URLEndpoint object by passing the endpoint string:

urlEndpoint = new URLEndpoint(anEndPoint);

It creates a SOAPConnection in the constructor and uses this connec-
tion for sending SOAP messages:

SOAPConnectionFactory scf =

SOAPConnectionFactory.newInstance();

con = scf.createConnection();

The helper class provides a method called placeOrder() that takes in
a PurchaseOrderDetails transfer object. The transfer object is a stan-
dard JavaBean object, with accessor methods holding the values entered in
the order form. The purchase order object then is used to create the
SOAPMessage. The following is a snippet of code that demonstrates
the creation of the message:

Name bodyName = envelope.createName(“PurchaseOrder”,

“PO”,

“http://acmeservices.org”);

SOAPBodyElement purchaseOrder =

body.addBodyElement(bodyName);

javax.xml.soap.Name childName = envelope.createName(“Info”);

SOAPElement info = purchaseOrder.addChildElement(childName);

childName = envelope.createName(“Date”);

SOAPElement pDate = info.addChildElement(childName);

pDate.addTextNode(poDetails.getPurchaseDate());

childName = envelope.createName(“PaymentType”);

SOAPElement pType = info.addChildElement(childName);

pType.addTextNode(poDetails.getPaymentType());

childName = envelope.createName(“PaymentCardNumber”);

SOAPElement pNum = info.addChildElement(childName);

pNum.addTextNode(poDetails.getPaymentNumber());

598 Chapter 12

The helper sends the SOAPMessage by using the SOAPConnection
previously created:

SOAPMessage reply = con.call(msg, urlEndpoint);

con.close();

The call method of the SOAPConnection takes in the SOAPMessage
and the endpoint of the JAXM service. It returns a SOAPMessage that
indicates the status of the transaction. The status string is extracted
from the SOAPMessage and is returned to the ControllerServlet.
ControllerServlet stores the status as a request attribute and for-
wards it to a confirmation JSP, which displays this status message to the
buyer.

Using a JSP Standard Tag Library (JSTL) for Presentation

In order to run the sample, we must include jstl.jar and
standard.jar in /WEB-INF/lib of the Computer Buy retail Web appli-
cation. The JAR files can be found under the <JWSDP_HOME>/tools
/jstl and <JWSDP_HOME>/tools/jstl/standard directories. In
addition, tld files must be added to the /WEB-INF directory. The case
study does not use these tags extensively but rather includes a simple
example demonstrating XML parsing. For more information, refer to the
JSTL documentation included with JWSDP 1.0 at http://java.sun.com
/webservices/docs/1.0/tutorial/doc/JSTL.html.

The web.xml sets the following taglib alias:

<taglib>

<taglib-uri>http://java.sun.com/jstl/xml</taglib-uri>

<taglib-location>/WEB-INF/x.tld</taglib-location>

</taglib>

The order and catalog JSPs then use the following syntax to parse the
XML. Looking back a few sections, we called the getProductCatalog()
method on the catalog helper class from within ControllerServlet.
The helper returned an XML string that we have saved in the HTTP session
attribute using key=”xml”. The XML string is parsed in the following
snippet by using the tag lib call to the XML taglib’s parse() method:

<%@ taglib prefix=”x” uri=”http://java.sun.com/jstl/xml” %>

<x:parse xml=”${xml}” var=”cataloglist” scope=”application” />

Once parsed, the result is saved in the scoped attribute specified by the
var parameter. Now that we have the string parsed, let’s use the Xpath

Using the Java Web Services Developer Pack: Case Study 599

local expression language to traverse the result. We use the out tag to eval-
uate and display the node value to the JspWriter object:

<x:forEach select=”$cataloglist//Product”>

<TR>

<TD>

<x:out select=”./Number”/>

</TD>

</x:forEach>

Discovering the ACME Catalog Service Using JAXR

The discovery of the Web services is performed within the catalog service
helper. This helper uses a JAXRLookup class in order to call the UDDI reg-
istry and to perform a query that will return an array of services that match
the search criteria. There are various ways to search the directory: by name,
by NAICS classification, and so on. In this case study, we will search by
NAICS classification.

The following steps are performed when a lookup of a service takes
place:

1. Connect to the UDDI registry provider. Using the JAXRQuery
ByNAICSClassification utility class, we will establish a connec-
tion with the registry:
ConnectionFactory factory =

ConnectionFactory.newInstance();

factory.setProperties(props);

connection = factory.createConnection();

System.out.println(“Created connection to registry”);

2. Search the registry using a query utility class. The search requirements
are NAICS name and value. Because ACME deals with computer
wholesale, we will use the following parameters for the search criteria:

naicsName=Computer and Computer Peripheral Equipment and

\ Software

Merchant Wholesalers

NaicsValue=42343

3. The query class first will get the necessary managers to perform the
query:
RegistryService rs = connectio——-n.getRegistryService();

BusinessQueryManager bqm = rs.get90

BusinessQueryManager();

BusinessLifeCycleManager blcm =

rs.getBusinessLifeCycleManager();

600 Chapter 12

4. Then, it will set the classification scheme to NAICS, indicating that
this is the technique used in our query:
ClassificationScheme cScheme =

bqm.findClassificationSchemeByName(null,”ntis-gov:naics”);

5. Finally, the BusinessQueryManager is used to find organizations
based on the search criteria:
Classification classification = (Classification)

blcm.createClassification(cScheme,

naicsName,

naicsValue);

Collection classifications = new ArrayList();

classifications.add(classification);

BulkResponse response = bqm.findOrganizations(null,

null,

classifications,

null,

null,

null);

orgs = response.getCollection();

6. The result is a collection of Organization objects that the helper
class will have to go through in order to find the service endpoint.
The helper class iterates through the collection and retrieves the end-
point values for each organization and stores it in an ArrayList:
Iterator orgIter = orgs.iterator();

// Display organization information

try {

while (orgIter.hasNext()) {

Organization org = (Organization) orgIter.next();

System.out.println(“Org name: “ +

jQuery.getName(org));

System.out.println(“Org description: “+

jQuery.getDescription(org));

System.out.println(“Org key id: “ +

jQuery.getKey(org));

// Display service and binding information

Collection services = org.getServices();

Iterator svcIter = services.iterator();

while (svcIter.hasNext()) {

Service svc = (Service) svcIter.next();

System.out.println(“ Service name: “ +

jQuery.getName(svc));

System.out.println(“ Service description: “ +

jQuery.getDescription(svc));

Using the Java Web Services Developer Pack: Case Study 601

Collection serviceBindings =

svc.getServiceBindings();

Iterator sbIter = serviceBindings.iterator();

while (sbIter.hasNext()) {

ServiceBinding sb =

(ServiceBinding) sbIter.next();

String endpoint = sb.getAccessURI();

System.out.println(“ Binding Description: “ +

jQuery.getDescription(sb));

System.out.println(“ Access URI: “ + endpoint);

serviceList.add(endpoint);

}

}

}

7. The ArrayList containing the endpoint strings is returned and
used to call the DII client class.

Now that we have all the pieces implemented, we can start setting up the
JWSDP 1.0 environment and start deploying the service requestor and
service provider code. Now, let’s first look at what is required in terms of
the runtime environment and settings.

Setting Up the JWSDP Environment

The following section covers the different settings that are needed to run
the service provider (ACME Corporation), service requestor (Computer
Buy retailer), and service broker (JWSDP service registry).

Service Provider Runtime Infrastructure
(acmeprovider.com)
The following paragraphs show how the service provider runtime is
configured, built and deployed, and verified.

JWSDP 1.0 Configuration Requirements

An instance of a Tomcat Web container must be installed for hosting Java
Web services components offered by the ACME Corporation.

Database Configuration

The database used for this case study is Pointbase v4.2.

602 Chapter 12

Pointbase Database

The details of how to set up the PointBase database (v4.2) and run the SQL
scripts are covered in the JWSDP tutorial. (For more information, refer to
the Java Sun Web site at http://java.sun.com/webservices.)

In this case study, we provide the scripts that will facilitate the setup process.
The files are included in the source code, which is available for downloading
from the Web site at www.wiley.com/compbooks/nagappan under Chap-
ter 12, “Using the Java Web Services Developer Pack: Case Study.”

■■ Db_create.sql is a database script that creates new tables and
inserts necessary data for the application to run.

■■ Build.xml is an Ant build script that will run the
db_create.sql script using Pointbase tool classes.

How to Set Up the Database

The following is a summary of steps required for setting up the database
(Windows):

■■ Install the PointBase 4.2 database server.

■■ Run the PointBase server by executing
$PB_HOME/bin/start_server.exe.

■■ Move pbserver42.jar and pbtools42.jar to
JWSDP_HOME/common/lib.

■■ Run $JWSDP_HOME/bin/ant.bat from the directory where the
build.xml file is placed.

The output of the run should be similar to the one shown in Figure 12.20.
The previous steps will install the necessary JAR files in the JWSDP envi-

ronment as well as create database tables and populate some of the tables
with necessary data. The services also require that java.sql.Data-
Source is registered so that the clients can look the DataSource up using
JNDI API. To register the DataSource, open the Admin tool
(http://youhost:8080/amin) and configure the data source with the fol-
lowing parameters:

■■ JNDI name: jdbc/AcmeDB

■■ Driver URI : jdbc:pointbase:server://localhost/sample

■■ Driver class: com.pointbase.jdbc.jdbcUniversalDriver

■■ Username: public

■■ Password: public

Using the Java Web Services Developer Pack: Case Study 603

Figure 12.20 The db_setup.sql result screen.

For a detailed explanation, refer to the Tomcat Admin tool at the Java
Sun Web site: http://java.sun.com/webservices/docs/1.0/tutorial/doc
/Admintool5.html#64662.

Once configured and saved, the server.xml file should contain a
context entry similar to the following:

<Resource name=”jdbc/AcmeDB” scope=”Shareable”

type=”javax.sql.DataSource” auth=”Container”/>

<ResourceParams name=”jdbc/AcmeDB”>

<parameter>

<name>user</name>

<value>public</value>

</parameter>

<parameter>

<name>driverName</name>

<value>jdbc:pointbase:server://localhost/sample</value>

</parameter>

<parameter>

<name>password</name>

<value>public</value>

</parameter>

<parameter>

<name>driverClassName</name>

<value>com.pointbase.jdbc.jdbcUniversalDriver</value>

</parameter>

</ResourceParams>

604 Chapter 12

The data access object of the service provider uses JNDI to look up the
registered DataSource. The following shows a snippet from the DAO
DataSource lookup:

InitialContext ic = new InitialContext();

DataSource ds = (DataSource) ic.lookup(“java:comp/env/jdbc/AcmeDB”);

Starting the Environment

The following are servers needed for this case study. The order is not
important, but for this example to work, we will need all three pieces up
and working. We will start with the following servers all running in a
Windows environment:

■■ Tomcat Web container: $JWSDP_HOME/bin/startup

■■ PointBase database server:
$PB_HOME/tools/server/start_server.exe

Building and Deploying the Service Provider Components

In order to build the service provider, we must go to the AcmeProvider
directory and execute an Ant build command. The following steps are
required for the build to be executed successfully:

1. Open a DOS prompt.

2. Go to the AcmeProvider directory.

3. Start Apache Tomcat.

4. Execute <JWSDP_HOME>/bin/ant.bat install.

The output shown in Figure 12.21 should appear in the console window.
The build command compiles the Java source and runs the xrpcc

compiler that generates stubs, ties, and configuration files used by the JAX-
RPC implementation. The following are two different ways to generate the
stubs and ties:

■■ Starting with RMI interface and implementation class

■■ Starting with a WSDL file

In this use case, we will use the first option because we have defined our
CatalogIF service interface and CatalogImpl service implementation
class.

Using the Java Web Services Developer Pack: Case Study 605

TEAMFL
Y

Team-Fly®

Figure 12.21 The AcmeProvider build output.

The configuration XML file used by the xrpcc compiler is used for gener-
ating the correct stubs and ties for the service. It contains the names of
classes and interfaces used by the service. In addition, the information
from conf.xml is used to create the AcmeProductCatalog_Config
.properties used by the JAXRPCEndpointServlet.

The following is a sample config.xml file, which is included in the
source code of this use case:

<?xml version=”1.0” encoding=”UTF-8”?>

<configuration xmlns=”http://java.sun.com/xml/ns/jax-rpc/ri/config”>

<service name=”AcmeProductCatalog”

targetNamespace=”http://acmeservices.org/wsdl”

typeNamespace=”http://acmeservices.org/types”

packageName=”jws.ch12.jaxrpc”>

<interface name=”jws.ch12.jaxrpc.CatalogIF”

servantName=”jws.ch12.jaxrpc.CatalogImpl”/>

</service>

</configuration>

606 Chapter 12

After running xrpcc, the following AcmeProductCatalog_Config
.properties configuration file is generated and placed in the WEB-INF
directory:

This file is generated by xrpcc.

port0.tie=jws.ch12.jaxrpc.CatalogIF_Tie

port0.servant=jws.ch12.jaxrpc.CatalogImpl

port0.name=CatalogIF

port0.wsdl.targetNamespace=http://acmeservices.org/wsdl

port0.wsdl.serviceName=AcmeProductCatalog

port0.wsdl.portName=CatalogIFPort

portcount=1

The xrpcc tool also generates the following WSDL. In order to generate
this file, the xrpcc command should have the -keep attribute:

<?xml version=”1.0” encoding=”UTF-8”?>

<definitions name=”AcmeProductCatalog”

targetNamespace=”http://acmeservices.org/wsdl”

xmlns:tns=”http://acmeservices.org/wsdl”

xmlns=”http://schemas.xmlsoap.org/wsdl/”

xmlns:xsd=”http://www.w3.org/2001/XMLSchema”

xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”>

<types/>

<message name=”CatalogIF_getProductCatalog”/>

<message name=”CatalogIF_getProductCatalogResponse”>

<part name=”result” type=”xsd:string”/></message>

<portType name=”CatalogIF”>

<operation name=”getProductCatalog” parameterOrder=””>

<input message=”tns:CatalogIF_getProductCatalog”/>

<output message=”tns:CatalogIF_getProductCatalogResponse”/>

</operation>

</portType>

<binding name=”CatalogIFBinding” type=”tns:CatalogIF”>

<operation name=”getProductCatalog”>

<input>

<soap:body

encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”

use=”encoded”

namespace=”http://acmeservices.org/wsdl”/>

</input>

<output>

<soap:body

encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”

use=”encoded”

namespace=”http://acmeservices.org/wsdl”/>

</output>

<soap:operation soapAction=””/>

Using the Java Web Services Developer Pack: Case Study 607

</operation>

<soap:binding transport=”http://schemas.xmlsoap.org/soap/http”

style=”rpc”/>

</binding>

<service name=”AcmeProductCatalog”>

<port name=”CatalogIFPort” binding=”tns:CatalogIFBinding”>

<soap:address location=”REPLACE_WITH_ACTUAL_URL”/>

</port>

</service>

</definitions>

The WSDL file is installed with the service and resides in the WEB-INF
directory of the service. To make the WSDL description accessible through a
browser, one manual modification must occur to the AcmeProductCatalog
_Config.properties file for this to work. Although it is not recom-
mended to modify the config file, it is possible to do so. Add the following
line at the end of AcmeProductCatalog_Config.properties:

wsdl.location=/WEB-INF/AcmeProductCatalog.wsdl

The WSDL can now be referenced by pointing the browser to http://
yourhost:8080/acme-service/jaxrpc?WSDL.

Figure 12.22 is a result of this query.

Figure 12.22 WSDL description of the catalog service.

608 Chapter 12

Figure 12.23 Catalog service endpoint test.

To test that the JAX-RPC endpoint is successfully installed and running, go
to the following URL: http://<yourhost>:8080/acme-services/jaxrpc. If the
service is correctly working, the output should be as displayed in Figure 12.23.

Verifying the Deployment

The build scripts provide the Web application manager tasks that can be
called to install, remove, reload, or list Web applications. In order to verify
the installed services, run the following command from the AcmeProvider
directory:

<JWSDP_HOME>/bin/ant.bat list

Figure 12.24 is an output from this command showing that the
/acme-services and /acme applications are running.

Service Registry Infrastructure
The JWSDP registry server will be used for this case study to demonstrate
the publishing and discovery capabilities of our ACME clients and ser-
vices. The registry will host information about a particular service, and
clients of the service will be able to look it up by using a JAXR API. There
are no specific configuration requirements to get the registry running. We
will not use any graphical registry browsers to browse the registry; instead,
we will use command line tools and APIs to access the registry.

Using the Java Web Services Developer Pack: Case Study 609

Figure 12.24 Tomcat Web application list.

To start the registry environment, ensure that the Tomcat Web application
server is started and running. In order to start the registry environment, the
following database has to be started:

Xindice database used by the JWSDP registry server: $JWSDP_HOME/bin
/xindice-start

Service Requestor Runtime Infrastructure
(computerBuy.com)
The following paragraphs show how the service requestor runtime is
configured, started, and built and deployed.

JWSDP 1.0 Configuration Requirements

A Tomcat Web container environment is needed for hosting Computer
Buy’s Web site. The Web site will have a servlet component that will han-
dle the delegation to various helper classes used to call ACME Corpora-
tion’s services.

610 Chapter 12

Starting the Environment

The Computer Buy retailer only requires that the Web application server
hosting the components be started. The following is an example of how to
start the Tomcat server on Windows:

■■ Tomcat Web container: $JWSDP_HOME/bin/startup

Building and Deploying the Service Requestor Components

The process of building the requestor is not much different from the service
provider, except that fewer tasks are called. In order to build the service
requestor, we must go to the AcmeRequestor directory and execute the
ANT build command. The following steps are required for the build to be
executed successfully:

1. Open a DOS prompt.

2. Go to the AcmeRequestor directory.

3. Start the Apache Tomcat.

4. Execute the <JWSDP_HOME>/bin/ant.bat install.

The output shown Figure 12.25 should appear in the console window.

Figure 12.25 AcmeRequestor build output.

Using the Java Web Services Developer Pack: Case Study 611

The requestor code is now successfully installed under <JWSDP_HOME>
/webapps/acme. To access the ACME Web site, open your browser and
enter the following URL: http://<yourhost>:8080/acme/main.jsp.

Executing a Scenario

The Computer Buy Web site (computerBuy.com) provides a portal to the
various services offered by the ACME Corporation. In order to access the
portal, open a favorite Web browser and enter the following URL:
http://<yourhost>: 8080/acme/main.jsp.

The page shown in Figure 12.26 should be displayed.
At this stage, the user can call the product catalog Web service or the

product ordering Web service. If the user selects to view the product cata-
log, a JAXRPC message will be sent to the JAXRPC service endpoint. The
service will execute the getProductCatalog() method and return an
XML string containing catalog information. The catalog then is parsed by
the XML taglib and displayed to the end user.

Figure 12.27 shows a sample product catalog retrieved from the Web
service.

Figure 12.26 ACME Web portal main page.

612 Chapter 12

Figure 12.27 The ACME product catalog.

The next option enables the user to order some products from the Web
site. By selecting the order option, the catalog service is called once again to
retrieve the latest catalog information, and then the user is presented with
a form that contains the catalog with some more user-specific information
entries. The user must fill in the information and submit the form. The
form then is converted into a SOAP message and sent over to the JAXM
service endpoint. The JAXM service uses SAAJ API to decompose the
SOAP message and enters the information provided by the user into the
database. The service provider then constructs a new SOAP message, indi-
cating the status of the service transaction.

Figure 12.28 shows a form where the user (buyer) must provide some
information.

Using the Java Web Services Developer Pack: Case Study 613

Figure 12.28 Order service user information form.

Right beneath the user information form is the catalog with a quantity
column. Figure 12.29 shows a sample form from the ordering page. Here,
the Computer Buy employee can specify the amount of product he or she
would like to purchase.

This concludes this case study with the JWSDP. This case study has pro-
vided many examples but has not taken features, such a JAXM messaging
with a provider, Web services security, and Web services using J2EE, into
consideration. The majority of these implementations would require addi-
tional APIs and containers that are not provided by the package but that
could be achieved with minimum efforts.

614 Chapter 12

Figure 12.29 Order service product catalog form.

Summary

This chapter provided us with a case study that brought all of the APIs
together in creating a Web service example using the Java Web Services
Developer Pack 1.0. This chapter demonstrated how we can implement,
deploy, and test a small Web services application by using Java XML APIs.
It covered JAXP XML processing, JAX-RPC method invocation, JAXM and
SAAJ messagingJSTL, and JAXR publishing and discovery.

The following chapter focuses on Web services security and provides a
detailed background on what is required to develop a secure Web services
application.

Using the Java Web Services Developer Pack: Case Study 615

TEAMFL
Y

Team-Fly®

PA R T

Four

Security in Web Services

619

With the explosion of the Web services technologies and its widespread
evangelism, the traditional methods of securing your applications are not
relevant anymore. Applying the same old mechanisms for establishing
trust among Web services or between a Web service and its consumer is no
longer appropriate. New challenges have arisen from the very paradigm of
Web services, which remain unaddressed by the traditional security meth-
ods. Thus, the promoters of Web services needed to figure out some way of
securing Web services that can be potentially accessed by a complete
stranger over the network. Without the proper security infrastructure in
place, the adoption of Web services would not have been possible. This
realization gave birth to a plethora of technologies and standards that can
be used to secure a Web service.

This chapter provides detailed information on such technologies. Also,
this chapter provides in-depth information on how to apply these tech-
nologies in order to secure Web services. This chapter is divided into the
following sections:

■■ Challenges of securing Web services
■■ Technologies behind securing Web services
■■ Rapid-fire cryptography

Web Services Security

C H A P T E R

13

■■ XML encryption
■■ XML signatures
■■ XML Key Management Specification (XKMS)
■■ Security Assertions Markup Language (SAML)
■■ XML Access Control Markup Language (XACML)

Challenges of Securing Web Services

The industry has been talking about Web services for almost three years
now. The main benefit of Web services architecture is the ability to deliver
integrated, interoperable solutions. Ensuring integrity, confidentiality, and
security of a Web service by applying a well-defined security model is
important for both the Web services providers and their consumers.

Defining a comprehensive security model for Web services requires the
integration of currently available security processes and technologies with
the evolving security technologies. It demands the unification of techno-
logical concepts relevant to Web services, such as messaging, with process-
based concepts, such as policies, trust, and so forth. This unification of
technologies and concepts should take place in such a way that it supports
the abstraction of functional requirements of application security from the
specific implementation mechanisms. For example, a patient viewing his
medical records should not be impacted by whether he is using a cell
phone or a desktop to do so, as long as the device on which he is viewing
his records is able to properly convey security information, such as iden-
tity, trust, and so on, to the Web service.

Also, the goal of a Web services security model should be to make it as
easy as possible for implementers of Web services to build interoperable
security systems based on heterogeneous solutions. For example, the Web
services security model should enable the provisioning of authentication
services based on any architecture, such as PKI or Kerberos. The idea is to
come up with technologies that can leverage upon existing security archi-
tectures as well as make them interoperate with one another.

On the other hand, every customer and Web service has its own security
requirements based upon their business needs and operational environ-
ment. For example, interactions of services and service consumers that take
place within an enterprise may focus more on the ease of use, whereas ser-
vices that are exposed to consumers from outside the enterprise will focus
more on the handling of denial-of-service attacks elegantly.

620 Chapter 13

Because the requirements for security architectures is a product of per-
mutations and combinations of various factors, it is all the more sensible to
define an approach towards securing Web services where the services can
be secured via a set of flexible, interoperable security alternatives, which
can be configured, thus enabling a variety of security solutions.

To address these challenges, several initiatives in the area of Web ser-
vices security are currently underway. Although complete coverage of all
the information on security is beyond the scope of this book, this chapter
attempts to cover as many of the initiatives as possible, especially the key
ones. Keep in mind, though, that there is always more to learn and know!

Technologies behind Securing Web Services
Much work is currently underway on a number of technologies to secure
an XML-based Web service. All of these technologies are represented by
their respective specifications being developed at several standards bodies,
almost in parallel. However, all of these standards efforts are focusing on
coming up with a set of specifications that can deliver a complete solution
in terms of securing the Web service.

In this chapter, we focus on the following five most prominent technolo-
gies in areas of XML security:

■■ XML Encryption
■■ XML Signature (XML DSIG)
■■ Security Assertions Markup Language (SAML, pronounced “sam-el”)
■■ XML Access Control Markup Language (XACML)
■■ XML Key Management Services (XKMS)

Also, while discussing each of these technologies, we will walk through
examples that should give us a good idea on how to use these technologies
together in order to secure a real-world Web service.

Before these XML security standards are examined in detail, we need to
familiarize ourselves with the important concepts of cryptography that
form the foundation of most of these XML security technologies, such as
XML Encryption, XML Signature, and XKMS. If you are already well
versed with cryptography, you can skip this section.

Rapid-Fire Cryptography
Encryption and digital signatures are a part of a bigger science of cryptogra-
phy. Cryptography is the art of secret writing, the enciphering and

Web Services Security 621

deciphering of messages in secret code or cipher, as many would put it.
Usually developers are seen less aware of cryptography. The most com-
mon mistake thus made by developers is failing to identify and apply
cryptographic techniques to scenarios where they are most required. Cryp-
tography is a huge area, and complete coverage of this topic is beyond the
scope of this book; nevertheless, we will examine the basics of cryptogra-
phy in this section. For those who are interested in further reading on the
subject, we recommend Bruce Schneier’s book on Applied Cryptography
(John Wiley & Sons, 1996; see www.counterpane.com/applied.html). This
is one of the best books ever written on cryptography.

Four Goals of Cryptography

So why do we need cryptography in software? The answer is to achieve
four goals: confidentiality, authentication, integrity, and non-repudiation.
The following sections discuss each of these goals.

Confidentiality

Confidentiality deals with ensuring that only authorized parties are able to
understand the data. Unauthorized parties may know that the data exists,
but they should not be able to understand what the data is. Thus, when the
data is transmitted on the wire, unauthorized parties can view the data by
sniffing in between, but our data would still remain confidential as long as
the sniffers are unable to understand it.

Confidentiality is made possible through encryption. Encryption is the
process of converting a particular message into scrambled text, also known
as ciphertext, by applying some cryptographic algorithm and secret infor-
mation. Cryptographic algorithms are known as ciphers, and the pre-
encrypted form of the message is known as plaintext. Only people with
secret information with which the ciphertext was generated then would be
able to unscramble or decrypt the message.

Authentication

Authentication ensures the identity of the party in a given security domain.
Usually, this involves having some sort of password or key through which
the user would prove his or her identity in a particular security domain.
Authentication is extremely important for services to be able to tell to
whom all they are providing their services. Likewise, it is very important
for consumers of services, so that they know exactly with whom they are
interacting. Authentication forms the basis for authorization that deals
with managing access to protected resources by an authenticated user
based on his or her policies.

622 Chapter 13

Many approaches toward authentication are currently in use. Some of the
widely used ones are based on either keys, digital certificates, or passwords.

Integrity

Integrity is about protecting sensitive information from unauthorized
modifications. In the case of a message being transmitted on the wire,
integrity ensures that the message received by the recipient was the same
message that was sent originally by the sender, that the message has not
been tampered with since it was sent.

Different hashing algorithms are used to generate a sort of a checksum to
guarantee integrity.

Non-repudiation

Repudiation is to refuse to accept something. Non-repudiation is a tech-
nique in which one party ensures that another party cannot repudiate, or
cannot refuse to accept, a certain act. Non-repudiation forms the basis of
electronic commerce. For example, a supplier of raw materials would want
to ensure that the customer does not repudiate later its placing of an order
for materials!

Digital signatures can be used to provide non-repudiation in computer
security systems.

Cryptography Algorithms

Several algorithms can be used to encrypt information. Remember the
secret information we mentioned earlier that is used to encrypt and decrypt
data? That secret information is known as a key in cryptography terms.
Keys form the basis of many cryptography algorithms. These key-based
cryptography algorithms work on the assumption that the security of a
crypto- system is resting entirely on the secrecy of a key and not on the
secrecy of a algorithm.

Also, the strength of a key against a brute force attack (an attack in which
every possible key combination is tried in sequence to decrypt a ciphertext)
makes for an important feature of a key. The length of the key indicates the
strength of a key. The longer the key length, the more impractical it
becomes to successfully carry out a brute force attack because of the sheer
number of combinations that are required to get hold of the right key to
decrypt the data. However, the strength of the key provides for stronger
encryption, given the assumption that the key’s secrecy has not been com-
promised. Remember that the key’s strength becomes weaker as comput-
ing power increases, and the key’s length has to keep extending in order to
provide the same level of security.

Web Services Security 623

Now, let’s take a look at different cryptography algorithms that are used
widely.

One-Way Hash Function Algorithms

A one-way hash function computes a fixed-length hash (message digest)
for a given message. Hashing is the process of jumbling data, so that the
hashed version of the data can be used during transmission/storage
processes instead of the clear-text version. The reason it is called one-way
is because, given the hash, it is computationally infeasible to find the actual
message. Also, one of the characteristics of a one-way hash function is that
a slight change in the message would change the resultant hash, thus pro-
viding a mechanism akin to checksums in cryptography.

One-way hash algorithms are used widely for hashing passwords and
storing their hash rather than storing the passwords in clear text. This way,
even if an intruder breaks into the system, he would not get much out of
hashed passwords. Finally, at the time of user authentication, the password
entered by the user in clear text is hashed and the hash is sent across the
network rather than sending the clear text password. So now the receiving
end would compare the received hash with the pre-stored hash and see if
both these hashes match. If they do, then it is concluded that the user
entered a valid password, and hence, should be authenticated. Also, one-
way hash functions are used in digital signatures, as we will see later in the
chapter.

There are three widely used one-way hash function algorithms: MD4,
MD5, and SHA, where MD stands for Message Digest and SHA stands for
Secure Hashing Algorithm. MD4 and MD5 produce a 128-bit hash, whereas
SHA produces a 160-bit hash.

Symmetric Algorithms (Symmetric Ciphers)

Symmetric ciphers are the simpler of the two classes of key-based cryptog-
raphy algorithms (the other class is asymmetric ciphers, which we will
discuss later). In symmetric ciphers, the same key is used to encrypt and
decrypt the message.

Consider this example of Alice and Bob as shown in Figure 13.1, wherein
Alice encrypts her message using a key and then sends the message to Bob.
Bob would use the same key to decrypt the message. However, in order for
Bob to decrypt the message, Alice has to somehow communicate the key to
Bob such that the key remains private to them and that nobody else can get
their hands on the key. This is the reason why keys used in symmetric
ciphers also are known as secret keys.

624 Chapter 13

Figure 13.1 Symmetric cryptography.

The most widely deployed algorithm for symmetric encryption until
now has been the Data Encryption Standard (DES). DES uses keys that are
just 64 bits long. (In reality, only 56 bits are available for storing the actual
key bits, because the rest of the eight bits are reserved for parity checks.)
The key length that DES encryption supports is an issue, especially taking
into consideration the powerful computer resources that are available
today if someone intends to break the keys by employing a brute force
attack. This shortcoming of DES was identified in 1997 when the efforts to
formulate the Advanced Encryption Standard (AES) began. AES (see the
National Institute of Standards and Technology [NIST] Web site at
http://csrc/nist.gov/encryption/aes) supports three key lengths: 128-bit,
192-bit, and 256-bit. These key lengths have made encryption much more
stronger, at least for now.

AES was officially declared a NIST standard in 2001, and hence, is not
yet widely adopted. However, until then Triple-DES (3DES) standard
serves as an enhanced replacement over DES. Triple-DES uses three 64-bit
keys, thus bringing the overall key length to 192 bits. A user provides the
entire 192-bit key rather than providing each of the three keys separately to
a 3DES algorithm implementation. During the actual encryption of data,
the implementation would break the user-given 192-bit key into three sub-
keys, padding the keys if necessary so that they are 64 bits long. The pro-
cedure for encryption is exactly the same as in DES, with the only difference
being that encryption is repeated three times (hence the name Triple-DES).
The data first is encrypted with the first key, then decrypted with the sec-
ond key, and then finally encrypted again with the third key. Triple-DES
obviously is three times slower than standard DES, but it is much more
secure than DES.

Message from
Alice to Bob

(1)
Alice creates
message

(2)
Alice encrypts
message using
secret key

(4)
Bob receives
encrypted message
from Alice

(3)
Alice sends encrypted
message to Bob

(5)
Bob decrypts
message
using secret
key

Message from
Alice to Bob

Encrypted
Message

Alice communicates private key to Bob

Encrypted
Message

Encrypted message
in transit

Web Services Security 625

TEAMFL
Y

Team-Fly®

Symmetric encryption is quite simple. As is evident from the example
illustrated in Figure 13.1, as long as Alice can distribute a key such that the
secrecy of the key is maintained, encryption and decryption remain fairly
easy. Also, time has shown that symmetric ciphers are faster when it comes
to the encryption and decryption of large chunks of data. However, the
very simplicity of symmetric ciphers also gives rise to two very common
problems:

■■ How would Alice communicate with large sets of people securely?
If Alice has to communicate securely with each of them on an indi-
vidual basis, she needs to have a corresponding key for each of these
parties. This is because no third party can misuse their secret key by
tapping into the communication carried between Alice and another
of the remaining parties. This leads her to a very difficult manage-
ment scenario when the number of people communicating securely
with her increases.

■■ Another common problem in symmetric ciphers is the distribution
of secret keys. How can Alice and the parties with whom she is
communicating exchange secret keys so that their security is not
compromised?

These issues are addressed by asymmetric ciphers.

Asymmetric Algorithms (Asymmetric Ciphers)

Asymmetric encryption is different from symmetric encryption in that it
uses a pair of keys, instead of a single key, for encryption and decryption.
One of the keys in this pair is kept private, known as the private key, and the
other one is distributed publicly, known as a public key. The way asymmet-
ric encryption works is that one of the keys in the Private/Public key pair
can only decrypt the information encrypted by the other key in the key pair.

Consider again our Alice and Bob example in a new scenario as shown
in Figure 13.2. In this example, Alice uses an asymmetric cipher to encrypt
the information that she sends to Bob. First, Alice creates a message that
she encrypts using Bob’s public key. Then, when Bob receives the
encrypted message, he uses his secret/private key to decrypt it. As long as
Bob’s private key has not been compromised, both Bob and Alice can be
assured that the message has been communicated securely.

626 Chapter 13

Figure 13.2 Asymmetric cryptography.

This approach towards encryption is definitely more secure and man-
ageable when compared to symmetric ciphers. In asymmetric encryption,
Bob does not care whether his public key is available to people whom he
does not even know. No one would be able to decrypt the information meant
for him (Bob) because they do not have his private key. Similarly, Alice is
not worried about somebody else sending her message(s) in the name of
Bob, because the moment she is not able to decrypt the message sent by
Bob’s imposter, she realizes that the person at the other end is not Bob.

Also, for Bob it is much more manageable to carry out secured commu-
nication with as many parties as he wants because he does not have to gen-
erate separate keys for each of those parties. He simply must give out his
public key to everyone interested in encrypting and decrypting the mes-
sages sent to/by him. Bob then would use his private key (which is only
available to him, unless his private key has been compromised) to
encrypt/decrypt the messages at his end. Again, Bob can distribute his
public key in anyway he wants, without worrying about the key falling
into the wrong hands.

Although, asymmetric ciphers provide a more secured encryption
approach, its very complexity results in slow encryption, especially of
large data, in practice. Thus, both symmetric and asymmetric encryptions
have their own cons: Symmetric encryption is fast especially when
encrypting large chunks of data, but then it uses the same key for encrypt-
ing and decrypting data. Asymmetric encryption is slow but is much more
secure because it uses different keys for encrypting and decrypting data.

Message from
Alice to Bob

(1)
Alice creates
message

(2)
Alice encrypts
message using
Bob's public key

(4)
Bob receives
encrypted message
from Alice

(3)
Alice sends encrypted
message to Bob

(5)
Bob decrypts
message
using private
key

Message from
Alice to Bob

Encrypted
Message

Bob's Public Key Bob's Private Key

Encrypted
Message

Encrypted message
in transit

Web Services Security 627

Therefore, although using symmetric or asymmetric encryptions alone
may sound like a bad idea because of their respective limitations, a hybrid
approach actually works much better. According to this hybrid approach,
the message first is encrypted using a single-use secret key that has been
randomly generated specifically for that particular message. This message-
specific key then is encrypted using the recipient’s public key, and both the
encrypted message and encrypted secret key then are sent to the recipient,
who on receipt would use his private key to decrypt the message-specific
secret key, thus giving him access to his message. Because the actual mes-
sage is encrypted using a symmetric cipher, it is much faster. In addition,
because the message-specific key is a relatively smaller group of data to
encrypt, asymmetric cipher speed limitations are avoided along with the
manageability of asymmetric encryption. The Secure Socket Layer (SSL)
protocol uses this hybrid approach for encrypting entire sessions between
communicating parties, with the only difference being that a single-use
secret key (that gets randomly generated) is used for the duration of the
entire session instead of for a specific message.

One of the widely used asymmetric algorithms is RSA (Rivest-Shamir-
Adelman). Other famously known asymmetric algorithms are Blowfish,
Diffie-Helman, and ElGamal (a derivative of Diffie-Helman). Asymmetric
ciphers have their applications largely in encryption as well as digital
signatures, as we will see in the sections titled XML Encryption and XML
Signatures.

This class of asymmetric ciphers is often referred to as public key
cryptography. An implementation of public key cryptography along with
support for the most-needed management functionalities, such as manag-
ing keys, making public keys of users available to others, identity manage-
ment of users, managing digital certificates (discussed later) of users, and
so forth, is known as Public Key Infrastructure (PKI).

Digital Signatures

A user can use a public/private key to sign a message. A digital signature
is akin to its physical counterpart, the handwritten signature, in that the
sender digitally signs a message so that the recipient can verify that the
message really came from the sender. Digital signatures also provide for an
integrity check. That is, they ensure that the message has not been tam-
pered with after it was signed.

628 Chapter 13

The process of digitally signing a message involves creating a hash for
the message and encrypting this hash using the sender’s private key.
Finally, the message is sent with the encrypted hash. On receiving the mes-
sage and the encrypted hash, the recipient would decrypt the hash using
the sender’s public key. This confirms that the message arrived from the
sender and no one else (non-repudiation). Also, by re-computing the hash
of the arrived message and then comparing it with the decrypted hash, the
recipient can verify that the message has not been changed since it was
signed (an integrity check).

Figure 13.3 depicts a scenario where Alice sends her digital signature
along with the message that she sends to Bob.

As can be seen from Figure 13.3, a digital signature does not involve
encrypting the actual message. The actual message is sent as is along with
the encrypted hash that serves as the digital signature. Thus, in order to
protect the message from eavesdroppers while in transit, anyone can either
encrypt the message and then digitally sign it or they can digitally sign the
message first and then encrypt it. Either method should be usable. The
result is an encrypted message with an encrypted hash that only the
intended recipient is able to read. This scenario thus yields confidentiality,
non-repudiation, as well as integrity in communication.

Two popular algorithms for digital signatures are RSA and Digital Sig-
nature Algorithm (DSA). Support for both of these algorithms is provided
in XML Encryption as well as XML Signature specifications.

Figure 13.3 Digital signature example.

Alice's
private

key

Original HashEncrypted
Hash

Encrypted
Hash

Message
from Alice

to Bob

Message
from Alice

to Bob

Encrypted message
in transit

New Hash

Alice's
public

key

Message from
Alice to Bob

(2)
Alice creates
an encrypted
hash and
appends it to
the message

(1)
Alice creates
message

(3)
Alice sends digitally
signed message to
Bob

(4)
Bob receives
digitally
signed
message
from Alice

(5)
Bob decrypts
hash and
checks it
against a new
hash of the
received
message

Web Services Security 629

Digital Certificates

So far we have discussed keys and their role in cryptography. However, a
key by itself does not contain any binding information, such as to whom
the key belongs to, who issued the key, and the period over which it is
valid. Without this supporting information, there is no way that one can
link a particular key with its actual owner. Digital certificates provide an
exact means to describe this supporting information that binds a user with
a specific public key. Putting this into context in our Alice and Bob exam-
ple, if Alice wanted to get Bob’s public key to send him an encrypted mes-
sage, she would first get hold of Bob’s digital certificate that confirms Bob’s
identity and contains his public key.

Now this raises another issue: How can Alice be sure that she has
retrieved Bob’s genuine certificate and not that of his imposter? This is
when Certificate Authority (CA) comes into picture. The CA acts as a
trusted third party for the certificates. A CA is supposed to verify the iden-
tity of an individual or business, before it issues a digital certificate. A CA
manages the process of certificate creation, issuance, and revocation. At the
time of certificate creation, a CA signs the digital certificate with its own
private key. So now when Alice receives Bob’s digital signature that has
been digitally signed by a CA’s private key, she takes for granted that the
identity of Bob has been verified by that CA and that she is interacting with
the genuine Bob and not some imposter.

A few big names in the CA business are Verisign, Thawte, Entrust, and
Valicert. Also, the current industry standard for digital certificates is X.509
from CCITT (stands for Commite’ Consultatif International de Telecom-
munications et Telegraphy in French).

XKMS, as we will see later (see XML Key Management Specification
[XKMS]), deals entirely with the real-time management of certificates and
keys.

XML Encryption

The XML Encryption standard is currently been developed at the W3C.
W3C officially undertook the XML Encryption activity in late January 2001.
At present, XML Encryption is a Candidate Recommendation—that is, it
has yet to become a W3C standard. (A specification becomes an official
W3C standard once it attains the W3C recommendation status.)

XML Encryption forms the basis of Web services security. This technol-
ogy is aimed at defining the process of encrypting and decrypting digital

630 Chapter 13

content. XML Encryption is so called because it uses XML syntax for repre-
senting the content that has been encrypted as well as for representing the
information that enables the recipient of the encrypted content to decrypt
it. XML Encryption does not talk about other security issues such as
authentication, authorization, integrity, or trust, although it may form the
basis for them. The standard is completely centered on providing confi-
dentiality to the information that has been encrypted.

What XML Encryption Is
The need for an XML Encryption standard was conceived quite some time
after the XML Signature Working Group was formed. XML Signature was
entirely focused on expressing digital signatures in XML, and hence, pre-
cluded any work on Encryption. People soon realized that XML was
becoming the language of the Web and that the industry would need
mechanisms for not only digitally signing XML entities but also for
encrypting them. This realization eventually led to the formation of the
W3C XML Encryption Working Group.

Secure Sockets Layer (SSL), developed by Netscape Communications,
and Transport Layer Security (TLS), from Internet Engineering Task Force
(IETF), are the two protocols that are used typically for transmitting
encrypted data apart from providing authentication using digital certifi-
cates over TCP/IP. Now XML Encryption is not a replacement to SSL/TLS.
Rather, it is focused on providing a feature set that is not provided by
SSL/TLS presently. XML Encryption enables the encryption of data at dif-
ferent granularity levels. This means that one can select to encrypt parts of
data using XML Encryption. For example, within a particular XML docu-
ment, one can select to encrypt only a specific XML document element
while leaving the rest of the document as it is. This is unlike SSL/TLS,
wherein entire groups of data have to be encrypted in order to transport
the data through an SSL/TLS channel. This leads us to encrypt even the
information that is not security sensitive. Encryption, as it stands, is com-
paratively an expensive operation and thus should be used judiciously.

Another added value that XML Encryption provides is that it enables the
establishment of secure sessions with more than one party. Also, XML
Encryption can be used to encrypt both XML as well as non-XML data just
like general encryption done using, say, SSL/TLS.

To understand XML Encryption better, let’s take a look at the following
use case. Consider a transaction that involves three parties: the buyer, the
vendor, and the bank. The buyer, Bob, makes a purchase of certain goods at
the vendor, Sue Company’s Web site, and agrees to pay Sue Company

Web Services Security 631

Figure 13.4 Bob encrypts his American Bank account number.

$5,000 in return. In order to make the purchase, Bob supplies all the rele-
vant information to Sue Company. This information also consists of Bob’s
American Bank account number, which is obviously a sensitive piece of
information. As a result, before Bob puts this information on the wire, he
needs to ensure that he has encrypted it. Now based on what Bob wants to
encrypt, he can either use SSL/TLS or XML Encryption. For example, if
Bob wants to encrypt the entire information, he can very well use SSL/TLS.
However, if he just wants to keep the account number confidential, then he
would want to use XML Encryption to encrypt just that particular piece of
information. This use case scenario is illustrated in Figure 13.4.

Once Sue Company had received the purchase order from Bob, it would
need to debit the amount for that particular sale from Bob’s American Bank
account. As a result, Sue Company would need to inform the American
Bank to do so. Now, when Sue Company passes this particular information
to American Bank, it definitely needs to encrypt the bank account number
to keep it confidential from unintended recipients, such that only the
American Bank can decrypt it. However, Sue Company also may want to
encrypt the information about the specific purchase (that is, that Bob pur-
chased 100 covers), such that American Bank cannot decrypt it. The reason
that the Sue Company might want to do this is because of privacy con-
cerns: American Bank does not need to know what specific purchase Bob
made. And that is where XML Encryption can play its role. Using XML
Encryption technology, the Sue Company can encrypt different pieces of
data with different keys so that the recipient can decrypt and thus read
only the piece of data that it is supposed to. This scenario is illustrated in
Figure 13.5.

Figure 13.5 Sue Company encrypts purchase information, not to be decrypted by
American Bank.

Bob purchased <EncryptedData> from us and
agrees to pay $5000 in turn using his American
Bank account <EncryptedData>

American
BankSue Co.

"I (Bob) agree to pay Sue Co. $5000 for
100 covers through <EncryptedData>"

Sue Co.

632 Chapter 13

We will discuss the specifics of XML Encryption in the next section, but
before that, let’s see what implementations of XML Encryption are avail-
able out there.

Implementations of XML Encryption
At the time of this book’s writing, the following implementations of XML
Encryption are available:

XML Security Suite from IBM (www.alphaworks.ibm.com/tech/
xmlsecuritysuite). This toolkit consists of implementations for
XML Signature, XML Encryption, and XML Access Control Language
(now part of the XACML effort).

XML Security Library, Aleksey Sanin (MIT License) (www.aleksey.
com/xmlsec/). This is a C library, and hence, practically of no use to
Java developers. However, some old C gurus can definitely find this
useful. The library has implemented XML Encryption Candidate Rec-
ommendation, XML Signature Recommendation, Canonical XML
v1.0 W3C Recommendation, and Exclusive XML Canonicalization
standards.

Trust Services Integration Kit (TSIK) from Verisign (www.
xmltrustcenter.org/developer/verisign/tsik/index.htm). This
toolkit provides extensive support for the XKMS standard. However,
the support for XML Encryption as well as XML Signatures is quite
limited, as of this writing.

Phaos XML (www.phaos.com/e_security/prod_xml.html). This
toolkit provides a fairly complete implementation for XML Signature
and XML Encryption.

XML Encryption, by Example
With this introduction on XML Encryption, let’s take a look at exactly how
we could encrypt and decrypt data (XML or non-XML) using the XML
Encryption implementation that comes as part of XML Security Suite from
IBM. Before we go ahead, please note that at the time of this book’s writing,
XML Security Suite’s implementation of XML Encryption is based on Can-
didate Recommendation, and hence, if any changes get introduced to the
final XML Encryption Recommendation, the implementation would
change. Also, the XML Security Suite implementation is not based on stan-
dard interfaces for XML Encryption. Java Specification Request (JSR) 106 is

Web Services Security 633

supposed to provide a standard Java API for XML Encryption. Follow up
on this JSR at www.jcp.org/jsr/detail/106.jsp.

NOTE You would need to configure XML Security Suite as well as all the
software components on which it depends before trying this example on your
local system. Further information on configuring XML Security Suite is available
as part of the documentation that comes along with its download. XML Security
Suite uses Java Cryptography Extension (JCE) as the underlying cryptography
framework. Thus, a fair understanding of JCE is required. For beginners, we
suggest reading the article written by Raghavan N. Srinivas, a fellow Evangelist
at Sun, http://developer.java.sun.com/developer/technical/Articles/Security/
optionalpackages/, to get information on JCE and other Java security packages.

The example we are going to use here deals with encrypting an XML
document that is exchanged between two businesses. These two busi-
nesses, American Bank and Canadian Bank, collaborate with each other for
transferring funds from an account in American Bank to another account in
Canadian Bank. American Bank and Canadian Bank achieve a funds trans-
fer with the help of a clearing house, say, ACME Clearing House (ACH,
something akin to Automated Clearing House), that coordinates the
process of transfer between these two banks. We will not go into details of
the funds transfer, however, in order to keep things simple. Figure 13.6
gives a high-level view of the funds transfer process.

Figure 13.6 High-level view of the funds transfer process.

Sends the request for Funds
Transfer from one of its accounts
to a different bank account

Sends acknowledgement back to
American Bank

Sends the request to Canadian Bank

Acts on the request and
acknowledges it back to ACH

American
Bank

ACME Clearing
House (ACH)

Canadian
Bank

634 Chapter 13

For accomplishing transfer of funds, we assume that American Bank and
Canadian Bank as well as the ACH are hosting Web services and related
components at their ends. The following list shows how these Web services
would interact with one another as well as with other components of their
respective subsystems.

Figure 13.7 depicts an interesting architecture, where we have multiple
Web services interacting with one another asynchronously using JAXM.
Also within the enterprise, we have Web services interacting with Message
Driven Beans (MDBs) by submitting messages to a JMS Destination, say,
a queue. The following steps describe the interactions among these Web
services:

1. FT_RequestReceiver_WS is a JAXM Web service hosted by ACH,
which upon receiving a SOAP message about transferring funds
from FT_SubmitRequest_ACH_WS Web service hosted by American
Bank sends a message to an internal JMS queue.

2. FT_ProcessRequest_MDB is an MDB that picks up the message from
this internal queue. It converts the JMS message to an appropriate
SOAP request and submits it to FT_RequestReceiver_ACH_WS JAXM
Web service hosted by Canadian Bank.

3. On receiving the SOAP request, FT_RequestReceiver_ACH_WS posts
a JMS message to a queue. This JMS message is received and
processed by the fulfillment MDB, FT_Fullfillment_ACH_MDB.

4. Once the funds transfer request has been fulfilled, this MDB would
send a SOAP message using JAXM APIs to the FT_Notification_WS
Web service hosted by ACH, which in turn would send a SOAP
message to FT_RequestStatusReceiver_ACH_WS, hosted by American
Bank. This SOAP message notifies American Bank that the
requested funds transfer has taken place.

Figure 13.7 Web Services involved in the funds transfer process.

ACH

FT_RequestStatusReceiver_ACH_WS

Canadian
Bank

FT_RequestReceiver_ACH_WS

FT_RequestReceiver_WS

FT_SubmitRequest_ACH_WS

FT_ProcessRequest_MDB

FT_Fulfillment_ACH_MDB

JAXM

JAXM

JMS

JMS
JAXM

JAXM

FT_Notification_WS

American
Bank

Web Services Security 635

TEAMFL
Y

Team-Fly®

Throughout this book, we will follow up with this example, wherever it
makes sense. For now, however, we will limit our scope to just encrypting
the XML document that is sent as an attachment to the SOAP request made
by Web service FT_SubmitRequest_ACH_WS, which is hosted by American
Bank. This SOAP request is received by FT_RequestReceiver_WS Web ser-
vice, which is hosted by ACH. The XML document attached to this SOAP
request, named transfer_details.xml, consists of information about
the source and target bank accounts along with other transfer-related
details. Listing 13.1 is a simple version of transfer_details.xml.

<?xml version=”1.0” encoding=”UTF-8” ?>

<Transfer_Details>

<Accounts>

<Source>

<Holder_Name>

John Smith

</Holder_Name>

<Number>

1234352 56783341 90234532

</Number>

</Source>

<Target>

<Holder_Name>

Mary Smith

</Holder_Name>

<Number>

5332234 32345532 55532158

</Number>

</Target>

</Accounts>

<Transfer_Amount Currency=”USD”>

3000

</Transfer_Amount>

</Transfer_Details>

Listing 13.1 Transfer_details.xml.

636 Chapter 13

So now, before putting this XML document on the wire as a payload to a
SOAP request message, American Bank needs to encrypt the information
pertaining specifically to the source and target bank accounts, represented
by the <Accounts> element and its subelements. However, before Amer-
ican Bank uses XML Encryption to do so, it needs to ensure that ACH
DOES understand the messages that are encrypted using the XML Encryp-
tion syntax and that ACH is able to successfully process the received the
XML document consisting of encrypted data, so that the encrypted data
can be decrypted and read successfully.

Taking the given scenario one step further, assume that both American
Bank and ACH use a utility class, say EncryptDecrypt, to respectively
encrypt and decrypt the <Accounts> element in transfer_details.
xml. Thus, both Web services, FT_SubmitRequest_ACH_WS hosted by
American Bank and FT_RequestReceiver_WS hosted by ACH, use
EncryptDecrypt for performing encryption and decryption functions.
Hence now, our interest lies specifically in knowing how Encrypt-
Decrypt has been implemented. Because we already know how to imple-
ment JAXM Web services by now, to keep this example simple we will not
go into the details of how FT_SubmitRequest_ACH_WS and FT_Request-
Receiver_WS Web services have been implemented. Rather we will demon-
strate the encryption and decryption of the <Accounts> element with the
help of a Java main class, say EncryptionTest.java. This Java main
class in turn uses the EncryptDecrypt utility class to perform the actual
encryption and decryption. Figure 13.8 shows a UML class diagram depict-
ing the association between the EncryptionTest and EncryptDecrypt
classes.

Figure 13.8 EncryptionTest and EncryptDecrypt class diagram.

EncryptionTest

Uses+ main()
– printUsage()

EncryptDecrypt

+ doEncrypt()
+ doDecrypt()
– getDocument()
– getKeyInfoResolver()
...

Web Services Security 637

Now, EncryptionTest takes a couple of arguments as input:

<option> This argument requires the mode in which we want to use
EncryptionTest—that is, encrypt or decrypt.

<keyinfo> This argument takes the name of the XML document
consisting of information on the key, such as key alias, name of the
keystore storing the key(s), password for the keystore, type of key-
store (JKS or JCEKS), and private key password. Key(s) specified in
a keyinfo XML document would be used to encrypt and decrypt
the data. The structure of this XML document is totally specific
to IBM XML Security Suite. In our case, this argument would
be American_Bank_keyinfo.xml while encrypting and
ACH_keyinfo.xml while decrypting. American_Bank_keyinfo.
xml is shown in Listing 13.2. It specifies the information of the RSA
public key of ACH that American Bank would use to encrypt the
<Accounts> element.

<?xml version=”1.0” encoding=”UTF-8”?>

<keyinfo>

<keystore>

<name>American_Bank_keystore</name>

<type>jceks</type>

<password>keystorepwd</password>

</keystore>

<keys>

<key>

<alias>ACH</alias>

<password/>

</key>

</keys>

</keyinfo>

Listing 13.2 American_Bank_keyinfo.xml.

Note that here we would not be specifying the key password because
American Bank uses the public key of ACH to encrypt the data and
not the private key, and hence, no password is required. Whereas
ACH’s ACH_keyinfo.xml would be used to get information about
the keys that ACH uses to decrypt and to carry key password infor-
mation. This is because ACH uses a private key to decrypt the data,
and hence, the password is required.

638 Chapter 13

<source> This argument takes the name of the XML document con-
sisting of the element to be encrypted, that is, transfer_details.
xml in our case.

<Xpath> This argument takes the XPath expression of the element
in the <Source> XML document that we want to encrypt. For
example, because we want to encrypt the <Accounts> element
in target_details.xml, we will give the following XPath
expression: //*[name()=’Accounts’].

<Template> This argument will take the name of the XML document
that carries the template for encrypting the data. It will consist of all
sorts of information pertaining to encryption, such as the information
of the key used for encryption, algorithms used for encrypting data,
and so forth. Also, note that using templates for supplying encryption-
related information is specific to XML Security Suite only.

Taking a good look at this template document should give us several
ideas about XML encryption syntax. For our example, we will pass the
encryption template that is present in the encryption_template.xml
document. Listing 13.3 shows how our encryption template looks.

<?xml version=”1.0” encoding=”UTF-8”?>

<EncryptedData Id=”ed1” Type=”http://www.w3.org/2001/04/xmlenc#Element”

xmlns=”http://www.w3.org/2001/04/xmlenc#”>

<EncryptionMethod

Algorithm=”http://www.w3.org/2001/04/xmlenc#tripledes-cbc”/>

<ds:KeyInfo xmlns=”http://www.w3.org/2000/09/xmldsig#”>

<EncryptedKey xmlns=”http://www.w3.org/2001/04/xmlenc#”>

<EncryptionMethod Algorithm=

“http://www.w3.org/2001/04/xmlenc#rsa-1_5”/>

<ds:KeyInfo

xmlns=”http://www.w3.org/2000/09/xmldsig#”>

<KeyName>ACH</KeyName>

</KeyInfo>

<CipherData>

<CipherValue/> </CipherData>

</EncryptedKey> </KeyInfo> <CipherData>

<CipherValue/> </CipherData></EncryptedData>

Listing 13.3 Encryption_template.xml.

Web Services Security 639

So now let us take a look at what these elements represent:

<EncryptedData> This element is the core element in the XML
Encryption syntax. It becomes the document root of the XML
document carrying the encryption information.

<EncryptionMethod> This element specifies the algorithm that is
used for encrypting the data. This is an optional element. However,
when not present, the recipient of an XML encryption document
should know the algorithm that was used in advance, to successfully
decrypt the encrypted data. In our template, we specify that we will
be using a 3DES algorithm for encrypting data.

<ds:KeyInfo> As can be seen from the corresponding namespace,
this element belongs to the XML Signature namespace. XML Encryp-
tion specification leverages on an XML Signature standard for repre-
senting key-related information. The reason is because this work was
already done in XML Signature by the time XML Encryption effort
began.

<ds:KeyInfo> This element enables recipients to obtain the key
needed to decrypt data or to perform any other kind of cryptographic
function, such as validating a digital signature, for example. In short,
the rest of the XML security specifications use this XML “type” to
leverage key identification and exchange semantics. However, the
<ds:KeyInfo> element does not represent any information that can
help the recipient establish trust in this key or that gives hints to the
recipient about the validity of the binding information for the key.
For these facilities, Web services will have to rely upon technology
such as XKMS.

This element can contain names (aliases in JCE terms) of keys, key
values, certificates, and related data. This element is optional in the
XML Encryption syntax. This means that an XML Encryption docu-
ment may not carry a <ds:KeyInfo> element, in which case, the
recipient should have some other means of getting hold of key to the
decrypt (/encrypt). The recipient may use XKMS to get key informa-
tion, or both of the parties can manually exchange keys for encryp-
tion and decryption or use some key exchange protocol.

<EncryptedKey> This is an extension to the <ds:KeyInfo>
element. This element is used to transport encrypted keys from the
sender to the recipient(s). In our case, the <EncryptedKey> element
represents the encrypted 3DES key. It also specifies the algorithm
using the 3DES key that was encrypted as RSA 1.5. This means that

640 Chapter 13

an RSA key was used to encrypt this key. The child <ds:KeyInfo>
element further specifies the name of the RSA key that was used to
encrypt the 3DES key. Thus, the recipient should have the RSA key
in advance to decrypt this encrypted key. Also, the <CipherData>
element represents the encrypted data as a sequence of base64-
encoded octets.

<CipherData>. This is a mandatory element, which provides
encrypted data. It either contains the encrypted octet sequence as
base64-encoded text of the <CipherValue> element, or it provides
a reference to an external location where an encrypted octet sequence
may be present. It references this external location via a <Cipher-
Reference> element.

These were all the parameters that we needed to specify for running
EncryptionTest, Java’s main application for encrypting and decrypt-
ing. Now, we will begin with examining the process for encrypting the
<Accounts> element, and then we will proceed with decryption.

Encrypting <Accounts> XML Element
The following outlines the steps carried out for executing Encryption-
Test so as to encrypt the <Accounts> element.

Generating a Key Pair

We will need to create a public key that American Bank will use to encrypt
the data that eventually gets sent to ACH’s Web service. As is specified in
encryption_template.xml, an RSA key pair is required for both
encryption and decryption. We will use Sun’s Keytool utility to create this
RSA key pair. Keytool is a key and certificate management utility that ships
with the J2SE platform. For more information on this utility, refer to
http://java.sun.com/j2se/1.3/docs/tooldocs/solaris/keytool.html. The
following command is executed to create a public key that would be used
by American Bank to encrypt the data it sends to ACH. Note that the pri-
vate key corresponding to this public key must be available with ACH in
order to decrypt data.

keytool -genkey -alias ACH -keyalg RSA -dname “CN=ACH_Emp, O=ACH, C=US”

-keypass keypwd -keystore American_Bank_keystore -storepass keystorepwd

This command creates an RSA (as specified by the -keyalg argument)
public key pair with alias ACH. This is the alias that we specified in the
<ds:KeyName> element in our encryption_template.xml. Keytool

Web Services Security 641

also will create a certificate containing the newly generated public key
with the domain name as specified by -dname argument. Also, the com-
mand specifies a password for the private key of this key pair. The pass-
word we gave it is keypwd. Finally, we specify the name of the keystore as
American_Bank_keystore, wherein the RSA key pair, as well as the
certificate, would reside. Note that we also can use IBM’s KeyGenerator
utility that comes along with XML Security Suite to achieve the same
results. Upon execution of the previous Keytool command, we should be
able to see a newly created keystore file named American_Bank_key-
store in the current directory.

Execute EncryptionTest with the -encrypt Option

The following shows what our command line would look like when run-
ning EncryptionTest, assuming that all the required JARS are available
in the CLASSPATH.

> java jws.ch13.EncryptionTest -encrypt American_Bank_keyinfo.xml

transfer_details.xml “//*[name()=’Accounts’]” encryption_template.xml

Upon successful execution of EncryptionTest, we should be able to
see an encrypted transfer_details.xml on the standard output. Fig-
ure 13.9 shows the screenshot of a standard output.

As we can see from the output in Figure 13.9, the <Transfer_Details>
element has not been encrypted and thus appears in clear text. Also, the
<Transfer_Amount> element has not been encrypted and thus also can
be seen in clear text. Only the <Accounts> element has been encrypted.

Figure 13.9 EncryptionTest -encrypt output.

642 Chapter 13

The encrypted output would get stored in a file on your system with the
name transfer_details_encrypted.xml. The FT_SubmitRequest_
ACH_WS Web service of American Bank would send this transfer_
details_encrypted.xml as a SOAP attachment to the request it sends
to the FT_RequestReceiver_WS JAXM service of ACH. Once ACH receives
the SOAP request and strips out the attachment transfer_details_
encrypted.xml, it will have to decrypt the <Accounts> element. To
demonstrate this functionality, we will again use the EncryptionTest
Java main application with the -decrypt option.

Decrypting the <Accounts> XML Element
The following steps are carried out for executing EncryptionTest so as
to decrypt the <Accounts> element.

Generating a Key Pair

We will create the RSA key pair whose private key will be used by ACH for
decrypting the document. Again, we will use the Keytool utility to gen-
erate an RSA key pair with alias ACH. This time we will store the key pair
and the corresponding certificate in a file named ACH_keystore in the
local directory. The command line arguments that we pass to Keytool as
follows:

> keytool -genkey -alias ACH -keyalg RSA -dname “CN=ACH_Emp, O=ACH,

C=US” -keypass keypwd -keystore ACH_keystore -storepass keystorepwd

Execute EncryptionTest with the -decrypt Option

Now, we are all set for decryption. The following are the command line
arguments that we will pass to EncryptionTest in order to decrypt
transfer_details_encrypted.xml:

> java jws.ch13.EncryptionTest -decrypt ACH_keyinfo.xml

transfer_details_encrypted.xml “//*[namespace-

uri()=’http://www.w3.org/2001/04/xmlenc#’ and local-

name()=’EncryptedData’]”

Note that this time we supply ACH_keyinfo.xml as the key informa-
tion file. Also, the XPath expression now points to <EncryptedData>
element(s) in the source-encrypted document, whose name is passed as
one of the arguments (transfer_details_encrypted.xml). Output
of this execution will be the decrypted <Accounts> element as shown in
Figure 13.10.

Web Services Security 643

Figure 13.10 EncryptionTest -decrypt output.

This is how we use EncryptionTest and the EncryptDecrypt util-
ity. The next section examines the code of both of these Java classes, present
in EncryptionTest.java.

Programming Steps for Encryption and Decryption
The following shows the required imports in EncryptionTest.java:

package jws.ch13;

/* Standard Java imports

*/

import java.io.*;

import java.security.*;

import java.security.cert.*;

import java.util.*;

/* JCE, JAXP imports

*/

import javax.crypto.*;

import javax.xml.parsers.*;

import javax.xml.transform.*;

/* IBM XML Security Suite - XML Encryption imports

*/

644 Chapter 13

import com.ibm.xml.enc.*;

import com.ibm.xml.enc.type.*;

import com.ibm.xml.enc.util.*;

import com.ibm.dom.util.DOMUtil;

/* Apache Xerces, Xalan, XPath, DOM and SAX imports

*/

import org.apache.xerces.parsers.*;

import org.apache.xml.serialize.*;

import org.apache.xpath.*;

import org.w3c.dom.*;

import org.xml.sax.*;

Now, EncryptionTest.java is the Java main class. This class parses
the command line arguments and appropriately calls the doEncrypt() or
doDecrypt() methods on the EncryptDecrypt utility class from
main() as shown:

public class EncryptionTest

{

public static void main(String[] args) throws Exception

{

//Check to see if the program is supposed to do encryption

if (sMode.equals(“-encrypt”) && args.length == 5)

{

EncryptDecrypt objEncryptDecrypt =

new EncryptDecrypt();

objEncryptDecrypt.doEncrypt(args[1], args[2],

args[3], args[4], true);

}

else if (sMode.equals(“-decrypt”) && args.length == 4)

{

EncryptDecrypt objEncryptDecrypt =

new EncryptDecrypt();

objEncryptDecrypt.doDecrypt(args[1], args[2],

args[3], true);

}

else

{

printUsage();

}

}

}

The real fun is in understanding how the EncryptDecrypt class works.
More importantly, how do the doEncrypt() and doDecrypt() methods
work? Let’s begin by understanding the doEncrypt() method first.

Web Services Security 645

TEAMFL
Y

Team-Fly®

The first API call in doEncrypt() is for creating the Encryption-
Context object. EncryptionContext is the core API in XML Security
Suite’s implementation, and it maintains the context object for encryption.
This context object manages information about encryption, such as the
encryption algorithm used, the encryption key used, the data that needs to
be encrypted, and the encryption template that is in use. Once we get the
encryption context, we create an algorithm factory instance and set it on
the encryption context. This factory object will be used by the context when
the actual encryption takes place for creating instances of algorithm
objects. These calls are as shown in the following code:

public void doEncrypt (String sKeyInformationXMLDocumentName, String

sSourceXMLDocumentName, String sXPathExpressionForNodeToEncrypt,

String sTemplateXMLDocumentName) throws Exception

{

EncryptionContext objEncryptionContext =

new EncryptionContext();

AlgorithmFactoryExtn objAlgorithmFactoryExtn =

new AlgorithmFactoryExtn();

objEncryptionContext.setAlgorithmFactory

(objAlgorithmFactoryExtn);

Once we set the factory object, we will have to create the Keyinfo and
KeyInfoResolver objects. Keyinfo is the Java type representation of the
*_keyinfo.xml document that we pass as a command line argument to
EncryptionTest.java. This *_keyinfo.xml document consists of
information such as the keystore name where the key is stored, the
password for the private key, the key alias, and the type of JCE keystore
(JKS or JCEKS). The Keyinfo object then is used to initialize the
KeyInfoResolver object.

In order to initialize the KeyInfoResolver object, we make use of
getKeyInfoResolver(), which is a user-defined method. This method
helps to initialize the KeyInfoResolver object. As the name suggests, the
KeyInfoResolver object resolves keys from information that is made
available through *_keyinfo.xml. It also ensures that the type of keys
match with the type of the encryption algorithm. For example, it checks
whether an RSA key pair is available if the specified encryption algorithm
is RSA 1.5. Once the KeyInfoResolver object has been initialized, we set
it on the EncryptionContext. The code for this API call is as follows:

Keyinfo objKeyinfo = getKeyinfo(sKeyInformationXMLDocumentName);

KeyInfoResolver objKeyInfoResolver = getKeyInfoResolver

646 Chapter 13

(objKeyinfo, objAlgorithmFactoryExtn);

objKeyInfoResolver.setOperationMode

(KeyInfoResolver.ENCRYPT_MODE);

objEncryptionContext.setKeyInfoResolver(objKeyInfoResolver);

Now we will get hold of the data that we have to encrypt. As one of the
arguments to EncryptionTest, the name of the source XML document is
already available. What we will now do is to de-serialize this XML docu-
ment to a DOM tree—that is, we want to undergo DOM parsing. To do this,
we will use a user-defined method called getDocument() that would
basically parse the source XML document into a DOM tree. Once that is
done, we will select all of the nodes that match the XPath expression given
as an argument to EncryptionTest. In our case, this XPath expression
will refer to the <Accounts> element and its sub-elements:

Document objDocument = getDocument(sSourceXMLDocumentName);

NodeList objNodeList = XPathAPI.selectNodeList

(objDocument, sXPathExpressesionForNodeToEncrypt);

We also have to get the document element of the encryption template XML
document (encryption_template.xml) that we passed as an argument:

Element objTemplateDocumentElement =

getDocument(sTemplateXMLDocumentName).getDocumentElement();

Next, we traverse through all of the nodes in the NodeList object and
encrypt each of them one by one, as shown in the following code:

for (int i = 0, l = objNodeList.getLength(); i < l; i++)

{

Node objNode = objNodeList.item(i);

if (objNode.getNodeType() == Node.ELEMENT_NODE)

{

objEncryptionContext.setData((Element)objNode);

objEncryptionContext.setEncryptedType((Element)

objTemplateDocumentElement.cloneNode

(true), null, null, null);

objEncryptionContext.encrypt();

objEncryptionContext.replace();

}

}

Web Services Security 647

setData() is called on EncryptionContext to set the data for
encryption. All the information pertaining to the algorithm and the key is
made available from the template by calling setEncryptedType() with
a method argument as the document element of the encryption template
XML document. Then, we finally encrypt the document by calling
encrypt(), and we replace the original element in the DOM tree with the
encrypted one by calling replace().

Now, we have to serialize this DOM tree consisting of encrypted nodes
back to XML and store it into a file on the local disk—say, transfer_
details_encrypted.xml. We achieve this by calling a user-defined
method named writeDocumentToFile(). This method uses Xalan’s
XMLSerializer API to serialize a DOM tree to XML:

writeDocumentToFile(objDocument, sEncryptedXMLDocumentName);

In addition, we also display the serialized, encrypted document to
standard output. For this, we will call a user-defined method named
writeDocumentToStandardOutput():

writeDocumentToStandardOutput(objDocument);

This is all that is required to encrypt an <Accounts> element in
a transfer_details.xml document. To take a look at encrypted
transfer_details.xml, open transfer_details_encrypted.xml
in your local directory.

Now, let’s see how we can decrypt transfer_details_encrypted.
xml. Again, in order to decrypt, EncryptionTest must call the
doDecrypt() method on the EncryptDecrypt utility class, passing
it over all of the arguments it received from the command line. Our
doDecrypt() method is shown in the following code. The first thing we
do in doDecrypt() is to get hold of the DecryptionContext object.
This core object maintains the information necessary for making decryp-
tion possible:

public void doDecrypt (String sKeyInformationXMLDocumentName, String

sEncryptedXMLDocumentName, String sXPathExpressionForNodeToDecrypt)

throws Exception

{

DecryptionContext objDecryptionContext =

new DecryptionContext();

648 Chapter 13

Next, we create an instance of AlgorithmFactory and set it on the
decryption context. Then, we resolve the key information specified by
ACH_keyinfo.xml to the actual keys by creating a KeyInfoResolver
object and setting it on the DecryptionContext, as shown in the follow-
ing code.

AlgorithmFactoryExtn objAlgorithmFactoryExtn =

new AlgorithmFactoryExtn();

objDecryptionContext.setAlgorithmFactory (objAlgorithmFactoryExtn);

Keyinfo objKeyinfo = getKeyinfo (sKeyInformationXMLDocumentName);

KeyInfoResolver objKeyInfoResolver = getKeyInfoResolver

(objKeyinfo, objAlgorithmFactoryExtn);

objKeyInfoResolver.setOperationMode (KeyInfoResolver.DECRYPT_MODE);

objDecryptionContext.setKeyInfoResolver (objKeyInfoResolver);

Now, we de-serialize the encrypted transfer_details_encrypted.
xml document to the DOM tree, and we finally select all of the nodes into
a NodeList object by giving the appropriate XPath expression:

Document objDocument = getDocument (sEncryptedXMLDocumentName);

NodeList objNodeList = XPathAPI.selectNodeList

(objDocument, sXPathExpressesionForNodeToDecrypt);

Now we will traverse through the selected NodeList and decrypt all
the encrypted elements one by one:

for (int i = 0, l = objNodeList.getLength(); i < l; i++)

{

Node objNode = objNodeList.item(i);

if (objNode.getNodeType() == Node.ELEMENT_NODE)

{

Element objElementToDecrypt = (Element)objNode;

if (EncryptedData.isOfType(objElementToDecrypt))

{

objDecryptionContext.setEncryptedType

Web Services Security 649

(objElementToDecrypt, null, null, null);

objDecryptionContext.decrypt();

objDecryptionContext.replace();

}

}

}

Once we decrypt all the elements, we then would display the decrypted
transfer_details.xml document on the standard output:

writeDocumentToStandardOutput(objDocument);

With this, we are finished writing our encryption and decryption code.
This example, along with the source code and readme.txt consisting of

setup instructions, can be downloaded from Wiley’s Web site at www.
wiley.com/compbooks/nagappan.

By now, we should understand the basics of XML Encryption. We still
need to cover a few things with respect to XML Encryption, such as canon-
icalization. However, this feature applies to XML Signatures as well, so we
will talk about it in the next section.

XML Signatures

The XML Signature specification, in its very simplest form, provides a
mechanism for applying digital signatures to XML documents and other
Internet resources and encoding those signatures as XML. The goal behind
using XML in digital signatures is to provide strong integrity for message
authentication, signer authentication, and non-repudiation services for
data of any type, no matter if this data is located within the XML document
that bears the digital signature or elsewhere.

The XML Signature specification has been finalized and was developed
at W3C. More information on XML Signature and its related specifications
can be found at www.w3.org/Signature.

Now, let’s begin by looking at the different types of XML Signatures.

Types of XML Signatures
There are three types of signatures supported by the XML Signature speci-
fication: enveloped signatures, enveloping signatures, and detached signa-
tures. Each of these types will be discussed in the following sections.

650 Chapter 13

Enveloped Signatures

With enveloped signatures, the signature is over the XML content that con-
tains the signature as an element. The root XML document element pro-
vides the content. Obviously, enveloped signatures must take care not to
include their own value in the calculation of the signature value. Listing
13.4 shows an example of an enveloped signature.

<doc Id=”doc0”>

<elem/>

<Signature>

...

<Reference URI=”doc0”/>

...

</Signature>

</doc>

Listing 13.4 An enveloped signature structure.

Enveloping Signatures

With enveloping signatures, the signature is over the content found within
an <Object> element of the signature itself. The <Object> or its content
is identified via a <Reference> element through a URI or a transform, in
the signature. Listing 13.5 is an example of an enveloping signature.

<Signature>

...

<Reference URI = “#ID0”/>

...

<Object Id=”ID0”>

<doc/>

<elem/>

</doc>

</Object>

</Signature>

Listing 13.5 An enveloping signature structure.

Web Services Security 651

Detached Signatures

With detached signatures, the signature is over the content external to the
<Signature> element, and this external content is identified via a URI or
transform. Consequently, the signature is “detached” from the content it
signs. This definition typically applies to separate data objects, but it also
includes the instance where the Signature and data object reside within
the same XML document but are sibling elements. Listing 13.6 is an exam-
ple of a detached signature.

<doc>

<Signature>

...

<Reference URI=

“http://www.ach.com/fundstransfer/fundstransferproc.html”/>

...

</Signature>

<elem/>

</doc>

Listing 13.6 A detached signature structure.

XML Signature Syntax
Now, let’s take a look at some of the common elements that comprise the
XML Signature syntax in this section.

<Signature> Element

The <Signature> element is a parent element of XML Signature. It
identifies a complete XML Signature within a given context. It contains
the sequence of child elements: <SignedInfo>, <SignatureValue>,
<KeyInfo>, and <Object>. Also, an optional Id attribute can be applied
to the <Signature> element as an identifier. This is useful in the case of
multiple <Signature> instances within a single context.

<SignedInfo> Element

The <SignedInfo> element is the next element in the sequence and is a
complex element of an XML Signature. It encompasses all of the information
that is actually signed. The contents of this element include a sequence of ele-
ments: <CanonicalizationMethod> (see the following Canonicalization
section), <SignatureMethod>, and one or more <Reference> elements.

652 Chapter 13

The <CanonicalizationMethod> and <SignatureMethod> elements
describe the type of canonicalization algorithm used in the generation of a
<SignatureValue>. <Reference> element that defines the actual data
that we are signing. They define a data stream that would eventually be
hashed and transformed. The actual data stream is referenced by a URI.

<KeyInfo> Element

<KeyInfo> is an optional element. However, it is a very powerful feature
of XML Signature that is utilized by the rest of the XML security-related
specifications. This element enables the integration of trust semantics
within an application that utilizes XML Signatures. The <KeyInfo> ele-
ment consists of information used to verify XML signatures. This informa-
tion can be explicit, such as a raw public key or an X.509 certificate, or the
information can be indirect, specifying some remote public key informa-
tion source via a <RetrievalMethod> element. A <KeyInfo> element
enables a recipient to verify the signature without having to hunt for the
verification key.

An application receiving a <KeyInfo> element must decide whether to
trust the information presented by this element or not. This decision-
making must done by the application and is out of the scope of an XML
Signature specification. One way to manage trust in the application that
relies on XML Signatures is to delegate it to a trust engine that takes as an
input a <KeyInfo> element, which makes a trust decision based on that
and informs the requestor about that trust decision. Such a trust engine can
very well be implemented using XKMS, as we will see when we talk about
it in a later section.

Figure 13.11 shows how an XML document, containing a <Signature>
element, is given as an input to a parser to get hold of the <KeyInfo> ele-
ment. This element contains an X.509 certificate that is subsequently
passed to a trust engine that conveys the trust decision to the signature val-
idation component of an XML Signature implementation.

Figure 13.11 An XML signature validation.

<Signature>
...
<KeyInfo>
...
<KeyInfo>
...

</Signature>

<KeyInfo>
<X509Data>
...
</X509Data>

</KeyInfo>

<Signature>
...
</Signature>

Certificate
Store

Trust Decision

Trust
Engine

Signature
Validation

XML
Parser

Web Services Security 653

The <KeyInfo> element can consist of a child element named <Key-
Value>. The <KeyValue> element is designed to hold a raw RSA or DSA
public key with child elements <RSAKeyValue> and <DSAKeyValue>,
respectively. Public keys inside the <KeyValue> element are represented
in base64 encoding rather than by using the already defined standard pub-
lic key format encoded in the Basic Encoding Rules (BER). The reason for
the XML Signature specification writers to not leverage upon the already
defined X.509 public key format is because in order to decode the standard
X.509 public key format, a rather heavyweight Abstract Syntax Notation
One (ASN.1) parser must be used. However, this is not the case with an
XML markup because any XML parser can be used to successfully parse
the <KeyValue> element even without an implementation of the XML
Signature available on that system.

Table 13.1 shows the <KeyInfo> child elements.

Table 13.1 <KeyInfo> Child Elements

ELEMENT NAME DESCRIPTION

<KeyName> A simple text-identifier for a key name

<KeyValue> Either an RSA or DSA public key

<RetrievalMethod> Enables remote referencing of the key information

<X509Data> X.509 certificates, names, or other related data

<PGPData> PGP-related keys and identifiers

<SPKIData> SPKI keys, certificates, or other SPKI-related data

<MgmtData> Key agreement parameters, such as Diffie-Helman
parameters

654 Chapter 13

ASN.1 AND BER/DER

ASN.1 is OSI’s notation for specifying abstract types and values. ASN.1 does
not specify how these objects are encoded into bits. This is specified by a set
of encoding rules. Two are in common use: the Basic Encoding Rules (BER)
and the Distinguished Encoding Rules (DER). BER specifies more than one
way to encode some values, while using DER results in a unique encoding for
each ASN.1 value. The X.509 certificate specification is specified with ASN.1.
Kerberos 5 uses ASN.1 and DER to encode its protocol messages.

<Object> Element

<Object> is an optional element. When present, it can contain data of any
type. The <Object> element can carry optional MimeType, ID, or Encod-
ing attributes. The following describes the use of each of these attributes:

Encoding. This attribute provides a URI that identifies the method by
which the object is encoded.

MimeType. This attribute describes data within the <Object>
element. For example, if the <Object> element contains a base64-
encoded JPG, the Encoding may be specified as ‘base64’ and the
MimeType as ‘image/jpg’.

ID. This attribute is commonly referenced from a <Reference>
element in <SignedInfo>. This element is typically used for
enveloping signatures where the object being signed is to be
included in the <Signature> element.

Canonicalization
The XML 1.0 recommendation defines the syntax of a class of objects called
XML documents. However, it is possible for two “logically” equivalent XML
documents to physically differ. Consider the following two different XML
elements:

<Patient weight=”120” height=”5.5”/>

<Patient height=”5.5” weight=”120”/>

If we do a byte-by-byte string comparison on these two elements, they
are different. But from an XML processing perspective, they are equivalent.
Two equivalent XML documents may differ on issues such as physical
structure, attribute ordering, character encoding, or insignificant placing of
white spaces.

However, proving the equivalence of XML documents is extremely
important especially in domains such as digital signatures, checksums,
version control, and conformance testing. Also, as is obvious from the pre-
vious discussion, equivalence testing cannot be done on a byte-by-byte
basis without taking into consideration the physical structure of an XML
document and not the syntactic equivalence.

To solve this problem, W3C started work on the Canonical XML specifi-
cation in 1999. It is currently a W3C Recommendation. The Canonical XML
specification defines an XML Canonicalization algorithm for taking an

Web Services Security 655

TEAMFL
Y

Team-Fly®

XML document and generating a so-called canonical form of it that can be
correctly compared, byte-by-byte, to canonical forms of other documents.
The canonical forms of any two logically equivalent XML documents will
always be byte-by-byte identical. If a comparison of the canonical forms
of two documents shows that they are not byte-by-byte identical, it indi-
cates that the information content of the two documents is not logically
equivalent.

XML Digital Signatures supports two canonicalization algorithms:
Canonical XML (omits comments) and Canonical XML with Comments.
Again, canonicalization algorithms can be specified through the
<CanonicalizationMethod> child element of the <SignedInfo>
element.

Implementations of XML Signature
At the time of this book’s writing, the implementations of XML Signature,
shown in Table 13.2, are available.

Table 13.2 Implementations of XML Signature

IBM’s XML Security Suite www.alphaworks.ibm.com/tech/xmlsecuritysuite

IAIK XML Signature Library http://jcewww.iaik.tu-graz.ac.at/products/ixsil/
index.php

HP Web Services Platform 2.0 www.hpmiddleware.com/SalSAPI.dll/
SaServletEngine.class/products/hp_web_services

/default.jsp

Infomosaic SecureXML www.infomosaic.net/
Digital Signature

NEC Solutions’ XML Digital www.sw.nec.co/jp/soft/xml_s/appform_e.html
Signature Software Library

Phaos XML www.phaos.com/e_security/dl_xml.html

RSA BSAFE Cert-J www.rasecurity.com/products/bsafe/certj.html

Verisign’s XML Signature SDK www.xmltrustcenter.org/xmlsig/developer/
(Part of Verisign’s Trust verisign.index.htm
Services Integration Kit)

656 Chapter 13

For the example on XML Signature that follows, we will use IBM’s XML
Security Suite library.

XML Signature: An Example
So now that we know about what XML Signature is and its syntax, let’s see
how to sign a document and then verify the signature on this document.
For demonstrating this, we will refer to the Funds Transfer example again.

In this example, Web service FT_SubmitRequest_ACH_WS, hosted by
American Bank, submits the request for transferring funds to ACH, hosted
by FT_RequestReceiver_WS. As part of this SOAP interaction, FT_Submit-
Request_ACH_WS sends transfer_details.xml as a payload to the
SOAP request. As we know, transfer_details.xml consists of all the
details pertaining to a funds transfer. Thus, it is obvious on the part of ACH
to be able to authenticate the identity of American Bank by demanding a
signed transfer_details.xml document from American Bank. Also,
ACH can use this signed information for confronting any potential repudi-
ation claims made by American Bank in the future.

American Bank, therefore, signs transfer_details.xml with its pri-
vate key and sends the signed XML document to FT_RequestReceiver_WS of
ACH. Upon receiving this SOAP message, FT_RequestReceiver_WS extracts
the signed transfer_details.xml payload and verifies the XML digi-
tal signature, thus reaching the conclusion that a funds transfer request is
really being made by American Bank.

Again, our main focus is to understand the core logic for signature
generation and validation, and hence, for the scope of this example we
will not bother implementing the actual FT_SubmitRequest_ACH_WS and
FT_RequestReceiver_WS services. Our example demonstrates signing
transfer_details.xml and verifying the signed contents of transfer_
details.xml, with the help of a Java main class SignatureTest,
which in turn uses a GenerateValidateSignature utility class that
implements the actual signature functionality. In a real-life scenario,
both FT_SubmitRequest_ACH_WS and FT_RequestReceiver_WS Web
services would use the GenerateValidateSignature utility class, for
performing these signature functions. Figure 13.12 shows the UML class
diagram depicting an association between the SignatureTest and
GenerateValidateSignature classes.

Web Services Security 657

Figure 13.12 SignatureTest and GenerateValidateSignature class diagram.

Now, SignatureTest takes a couple of arguments as input:

<option> This argument requires the mode in which we want to use
SignatureTest: generate or validate.

<your-key-alias> This argument takes the alias of the public key
that we (and assumingly American Bank) would use for signing the
transfer_details.xml. We will generate a key pair with the alias
American_Bank, using the Keytool utility previously discussed.
The following is the command we need to use in order to achieve
this:
> keytool -genkey -dname “CN=American_Bank_Emp, O=American Bank, C=US”

-alias American_Bank -storepass keystorepwd -keypass keypwd

<storepassword> This takes a keystore password as an argument.
In this case, it would be keystorepwd.

<keypassword> This argument takes a private key password, which
we use to sign the transfer_details.xml. In this case, it would
be keypwd.

<source-xml-document URL> This argument takes the URL of the
XML document that we want to sign. For this example, we specify
the URL of transfer_details.xml, which is locally stored.

Now, let’s see how to sign transfer_details.xml and validate the
signed transfer_details.xml document in the following sections.

SignatureTest

Uses+ main()
– printUsage()

GenerateValidateSignature

+ generateSignature()
+ validateSignature()

658 Chapter 13

Figure 13.13 The SignatureTest -generate screenshot.

Signing transfer_details.xml

In order to sign transfer_details.xml, the following is the command
line usage of SignatureTest, assuming that all of the required JAR files
are available in the CLASSPATH:

> java jws.ch13.SignatureTest -generate American_Bank keystorepwd keypwd

file:///d:/book_demos/ch13/signature/transfer_details.xml >

transfer_details_signed.xml

As is clear from the previous command, the output of this execution is
redirected to transfer_details_signed.xml, which now consists of
the <Signature> document element containing the detached digital sig-
nature for transfer_details.xml.

Upon successful execution of SignatureTest, we should be able to see
a message on standard output as shown in the screenshot in Figure 13.13.

The actual signature XML document is stored in transfer_details_
signed.xml, which is shown in Listing 13.7.

<Signature xmlns=”http://www.w3.org/2000/09/xmldsig#”>

<SignedInfo>

<CanonicalizationMethod Algorithm=

“http://www.w3.org/TR/2001/REC-xml-c14n-20010315”>

</CanonicalizationMethod>

Listing 13.7 Transfer_details_signed.xml. (continues)

Web Services Security 659

<SignatureMethod Algorithm=

“http://www.w3.org/2000/09/xmldsig#dsa-sha1”>

</SignatureMethod>

<Reference URI = “file:///

d:/book_demos/ch13/signature/transfer_details.xml”>

<DigestMethod Algorithm =

“http://www.w3.org/2000/09/xmldsig#sha1”>

</DigestMethod>

<DigestValue>

zYL4sRVOsp6sZNcEx9EMF84nXYQ=

</DigestValue>

</Reference>

</SignedInfo>

<SignatureValue>

Mm4lZx25UPj2bvq4cbnf7gyt368F5sbz9gVZmypZBKMHlt0+4Irykg==

</SignatureValue>

<KeyInfo>

<KeyValue>

<DSAKeyValue>

...

</DSAKeyValue>

</KeyValue>

<X509Data>

<X509IssuerSerial>

<X509IssuerName>

CN=American_Bank_Emp,O=American Bank,C=US

</X509IssuerName>

<X509SerialNumber>

1021226821

</X509SerialNumber>

</X509IssuerSerial>

<X509SubjectName>

CN=American_Bank_Emp,O=American Bank,C=US

</X509SubjectName>

<X509Certificate>

...

</X509Certificate>

</X509Data>

</KeyInfo>

</Signature>

Listing 13.7 Transfer_details_signed.xml. (continued)

660 Chapter 13

Listing 13.7 is an example of a detached signature that references the
actual data through a URI. The listing shows the following elements:

<CanonicalizationMethod> This element specifies the canonical
XML algorithm used to get the canonical form of the
transfer_details.xml document.

<SignatureMethod> This element specifies the algorithm that is
used when the hash of the data was calculated. This hash then gets
encrypted using the key that we specify.

<KeyInfo> This element contains all of the trust related information
of the DSA key that was used to sign the document.

Validating the Signed transfer_details.xml

For verifying the detached <Signature> element containing the signing
information of transfer_details.xml placed in transfer_details_
signed.xml, the following command line must be given:

> java jws.ch13.SignatureTest -validate < transfer_details_signed.xml

As can be seen from the standard output, the <Signature> in trans-
fer_details_signed.xml is validated in two ways. First is the valida-
tion of the actual <SignedInfo> element to see if it has been tampered
since its creation, and second is checking of the actual data by de-
referencing the reference to see if the data has changed since it was signed.

And, the output to this validation operation is shown in Figure 13.14.
This is how we use SignatureTest and thus, the Generate-

ValidateSignature utility class. The next section examines the code of
both of these Java classes, present in SignatureTest.java.

Figure 13.14 SignatureTest -validate.

Web Services Security 661

Programming Steps for Generating
and Validating XML Signature

The following shows the required imports in SignatureTest.java:

package jws.ch13;

/* Standard Java imports

*/

import java.io.*;

import java.net.URL;

import java.security.*;

import java.security.cert.*;

/* IBM XML Security Suite related imports

*/

import com.ibm.xml.dsig.*;

import com.ibm.xml.dsig.util.*;

import com.ibm.dom.util.*;

/* JAXP, DOM, SAX related imports

*/

import javax.xml.parsers.*;

import org.w3c.dom.*;

import org.xml.sax.*;

Now, the SignatureTest.java main class parses the command
line arguments and appropriately calls the generateSignature() or
validateSignature() methods on the GenerateValidate-
Signature utility class as shown in the following code:

public class SignatureTest

{

public static void main(String[] args) throws Exception

{

if (args[0].equals(“-generate”) && args.length == 5)

{

String sAlias = args[1];

char [] caStorePassword = args[2].toCharArray();

char [] caKeyPassword = args[3].toCharArray();

String sSourceURL = args[4];

GenerateValidateSignature

objGenerateValidateSignature =

new GenerateValidateSignature();

objGenerateValidateSignature.generateSignature

662 Chapter 13

(sAlias, caStorePassword, caKeyPassword,

sSourceURL);

}

else if (args[0].equals (“-validate”)

&& args.length == 1)

{

GenerateValidateSignature

objGenerateValidateSignature =

new GenerateValidateSignature();

objGenerateValidateSignature.validateSignature();

}

else

{

printUsage();

}

}

}

The core signature functionality is performed by the generateSigna-
ture() and validateSignature() methods on the Generate-
ValidateSignature class. Let’s begin with the signature generation
functionality by understanding the generateSignature() method
first.
generateSignature() starts with creating a new DOM tree instance.

This DOM tree instance then is passed to the constructor of the
TemplateGenerator class. The TemplateGenerator object uses a
template of an XML signature in order to create the actual signature docu-
ment. Constructor also takes the appropriate signing and XML canonical-
ization algorithms as arguments. This is shown in the following:

public void generateSignature

(

String sAlias, char [] caStorePassword, char [] caKeyPassword,

String sSourceURL

) throws XSignatureException, IOException, KeyStoreException,

SignatureStructureException, NoSuchAlgorithmException,

CertificateException, UnrecoverableKeyException,

ParserConfigurationException, SAXException

{

Document objDocument =

DOMParserNS.createBuilder().newDocument();

TemplateGenerator objTemplateGenerator = new TemplateGenerator

(objDocument, XSignature.SHA1, Canonicalizer.W3C2,

SignatureMethod.DSA);

Web Services Security 663

Then, a reference to the actual data (that is, to the transfer_details.
xml document stored locally) is created using the TemplateGenerator
object. Eventually, this reference is added to the TemplateGenerator
object as shown in the following code:

Reference objReference = objTemplateGenerator.createReference

(sSourceURL);

objTemplateGenerator.addReference(objReference);

Now, we get hold of the keystore file from the default keystore location
(that is, a *.keystore file stored under the user’s home directory) and
load the keystore file in the memory. Subsequently, we also get hold of the
private key with which we use to sign the XML document:

String sKeyStorePath = System.getProperty(“user.home”) +

File.separator + “.keystore”;

KeyStore objKeyStore = KeyStore.getInstance(“JKS”);

objKeyStore.load (new FileInputStream(sKeyStorePath),

caStorePassword);

Key objPrivateKey = objKeyStore.getKey(sAlias, caKeyPassword);

if (objPrivateKey == null)

{

System.err.println(“Could not get hold of the private key for

alias: “ + sAlias);

System.exit(1);

}

In addition, we also get hold of the X.509 certificate from the default
keystore, which we use to sign the transfer_details.xml document,
as the following code shows:

X509Certificate objX509Certificate =

(X509Certificate)objKeyStore.getCertificate(sAlias);

KeyInfo.X509Data objX509Data = new KeyInfo.X509Data();

objX509Data.setCertificate(objX509Certificate);

objX509Data.setParameters(objX509Certificate, true, true, true);

KeyInfo.X509Data[] objX509DataArray = new KeyInfo.X509Data[]

{ objX509Data };

664 Chapter 13

A KeyInfo object also is created. This KeyInfo object represents the
<KeyInfo> element in the actual signature document. It carries the pub-
lic key and the X.509 certificate of the signer:

KeyInfo objKeyInfo = new KeyInfo();

objKeyInfo.setX509Data(objX509DataArray);

objKeyInfo.setKeyValue(objX509Certificate.getPublicKey());

We now get hold of the SignatureElement, representing
<Signature>, and set it to KeyInfo object:

Element objSignatureElement =

objTemplateGenerator.getSignatureElement();

objKeyInfo.insertTo(objSignatureElement);

By now, we have already set a reference to data that we need to sign,
which is specified by the keys to use for signing and the certificate infor-
mation of the signer. Next, we will perform the actual signing operation.
However, to do so we will need to create the SignatureContext object
first:

SignatureContext objSignatureContext = new SignatureContext();

objSignatureContext.sign(objSignatureElement, objPrivateKey);

System.err.println(“\nSuccessfully signed the document!”);

After the signing is performed, we finally will add the Signature-
Element instance (representing <Signature>) to the newly created
DOM tree. After appending the <Signature> element to the DOM tree,
also serialize the DOM tree to the standard output as XML. We will use
XPath’s XPathCanonicalizer API to achieve this serialization:

objDocument.appendChild(objSignatureElement);

Writer objWriter = new OutputStreamWriter(System.out, “UTF-8”);

XPathCanonicalizer.serializeAll(objDocument, true, objWriter);

objWriter.flush();

This is all that is required to sign transfer_details.xml. The newly
generated detached signature of transfer_details.xml is stored in
transfer_details_signed.xml in your local directory.

Web Services Security 665

TEAMFL
Y

Team-Fly®

Now, let’s see how to validate the detached signature present in
transfer_details_signed.xml. In order to validate, SignatureTest
will call the validateSignature()method on the GenerateValidate-
Signature utility class. Our validateSignature() method is shown
in the following code. The first thing we do in this method is to get hold of
the SignatureContext object. This core object maintains the informa-
tion necessary for validating signatures:

public void validateSignature() throws IOException, SAXException,

ParserConfigurationException, XSignatureException

{

SignatureContext objSignatureContext = new SignatureContext();

Now, we read the signature XML document from the standard input. In
addition, we parse this signature document and create the DOM tree, as
the following code shows:

InputStream objInputStream = System.in;

InputSource objInputSource = new InputSource (objInputStream);

Document objDocument = DOMParserNS.createBuilder().parse

(objInputSource);

Now, we get hold of the <Signature> from the DOM tree. Eventually,
we also get the <KeyInfo> element:

NodeList objNodeList = objDocument.getElementsByTagNameNS

(XSignature.XMLDSIG_NAMESPACE, “Signature”);

if (objNodeList.getLength() == 0)

{

System.err.println(“\nERROR: Invalid Signature document

specified. The given document has no <Signature> element.”);

System.exit(1);

}

Element objSignatureElement = (Element)objNodeList.item(0);

Element objKeyInfoElement = KeyInfo.searchForKeyInfo

(objSignatureElement);

Now, we retrieve the public key using the signature to be validated:

Key objPublicKey = null;

KeyInfo objKeyInfo = new KeyInfo (objKeyInfoElement);

666 Chapter 13

Key objKeyFromKeyValue = objKeyInfo.getKeyValue();

if (objKeyFromKeyValue != null)

{

objPublicKey = objKeyFromKeyValue;

}

And finally, we verify the digital signature:

Validity objValidity = objSignatureContext.verify

(objSignatureElement, objPublicKey);

Then, we check the status of the signature verification and print the
appropriate messages to the standard output:

if (objValidity.getSignedInfoValidity())

{

System.err.println(“Validity Check of SignedInfo element: OK”);

}

else

{

System.err.println(“Validity check of SignedInfo element: FAILED”);

}

if (objValidity.getReferenceValidity(0))

{

System.err.println(“Validity check of Reference element with URI “

+

objValidity.getReferenceURI(0) + “: OK”);

}

else

{

System.err.println(“Validity check of Reference element with URI “

+

objValidity.getReferenceURI(0) + “: FAILED”);

}

if (objValidity.getCoreValidity())

{

System.err.println(“Overall validity check status: OK”);

}

else

{

System.err.println(“Overall validity check status: FAILED”);

}

The getSignedInfoValidity() method checks for the validity of
the <SignedInfo> element; getReferenceValidity() checks the

Web Services Security 667

validity of data referenced in order to see if the data has changed since it
was signed. The getCoreValidity() validity check method returns
true if both getSignedInfoValidity() and getReferenceValid-
ity() return true.

This entire example, along with the complete source code and readme.
txt consisting of setup instructions, can be downloaded from Wiley’s Web
site at www.wiley.com/compbooks/nagappan.

We just discussed how digitally signing helps to provide strong signer
authentication, and thus, non-repudiation in Web services. What now is
important to know is how can trust be established in the key that is used in
cryptographic functions, such as encryption or signing. This is the area on
which XKMS, which is discussed in the next section, is focused.

XML Key Management Specification (XKMS)

XML Key Management Specification is the next step in the evolution of the
Public Key Infrastructure (PKI). PKI has long been used to mitigate the
risks of automated electronic business environments. However, PKI has
proven to be quite difficult to implement effectively. Interoperability is
another problem that has almost always existed in the PKI world. How-
ever, these problems are small enough to stop us from using PKI when we
take into consideration the huge promise of PKI, that is, the establishment
of trust in the electronic world, which is key to the success of e-commerce
and Web services. XKMS is positioned exactly to solve these issues of PKI,
making it even more easy to deploy and ubiquitous. XKMS combines the
interoperability of XML with the security of PKI to provide an easy method
of securing PKI-based applications. XKMS presents a model wherein
applications using PKI do not have to deploy the infrastructure locally.
Rather, they can send XML requests to PKI components hosted by a trust
services provider, who would actually execute those PKI requests. These
requests may be for issuing a certificate or retrieving/creating a certificate,
key, or revocation of a certificate. Thus, XKMS provides a very good oppor-
tunity for moving the complexity of a PKI to trust processing centers, such
as Verisign, Entrust, and so forth. This means that applications and Web
services relying on XKMS do not have to deploy any PKI software on their
systems, rather they would issue XML requests to the Web services hosted
by trust services providers. In fact, Verisign happens to be one of the first
such trust services providers. They have hosted Web services that can ser-
vice XKMS requests. These XKMS Web services have been hosted at
http://xkms.verisign.com.

668 Chapter 13

Thus, XML-based Web services developers can take advantage of XKMS
to integrate authentication, digital signatures, and encryption that involves
complex procedures such as certificate processing, certificate revocation
status checking, and so forth, without having to deal with the hassles of
proprietary PKI softwares. With XKMS, developers can delegate all or part
of the processing of digital signatures and encrypted elements to an XKMS
trust services provider, thus shielding the application from the complexi-
ties of an underlying PKI. By doing this, the resultant XML client becomes
much simpler and lighter.

This is a very powerful concept, especially when thought of in the con-
text of devices. XKMS presents a possibility for a thin device, such as a
PDA, to register its certificate by consuming the Web services of a trust ser-
vices provider, with nothing more than support for a plain XML parser and
minimal footprint for XML Encryption and XML Signature implementa-
tions present on the device. No implementation of client-side PKI services
needs to be present in this scenario.

Figure 13.15 shows the overall picture of how people actually use XKMS.
In this figure, different Web services issue different XKMS requests to the
trust services providers, either for registering a key pair, for retrieving pub-
lic keys, or for validating them. The trust services provider would then, in
turn, talk to the underlying PKI implementation to actually perform these
PKI operations.

Figure 13.15 XKMS usage diagram.

Key Pair Holder

PKI Database

Private Key Public Key

Trust Services
Server

PKI
System

- Registration
- Revocation
- Recovery

Trust Services
Server

- Locate
- Validate

1. Registration Request

2. Registration

Confirm

Public Key User

3.
 Lo

ca
te

/v
ali

da
te

Re
qu

es
t

4.
 R

es
po

ns
e

Web Services Security 669

Verisign, Microsoft, and webMethods first initiated the XKMS 1.0 effort.
In early 2001, these companies submitted the XKMS 1.0 specification to
W3C as a note. W3C has based its XML Key Management Working Group
(WG) on this XKMS note. Currently, this WG is working on the next ver-
sion of XKMS: XKMS 2.0. Further information on the XML Key Manage-
ment WG and specifically XKMS 2.0 can be found at www.w3.org/
2001/XKMS/.

The XML Key Management WG also defines another specification called
the XML Key Management Specification - Bulk Operation (X-BULK).
Its first working draft can be found at www.w3.org/TR/xkms2-xbulk/.
X-BULK extends XKMS protocols to encompass the bulk registration oper-
ations necessary for interfacing with systems such as smart card manage-
ment systems. X-BULK specifies structures containing this bulk
registration information using XML Schema Definitions and WSDL. We
will take a look at X-BULK in the following text.

XKMS Components
The XML Key Management Specification relies upon the other two XML
security standards from W3C: XML Encryption and XML Signatures. Now,
XKMS has been designed to come up with mechanisms through which
Web services can leverage upon the PKI support provided by other Web
services. Also, the main objective of XKMS has always been to enable a
user using a public key to verify a digital signature, to encrypt data, or to
locate that public key as well as other information pertaining to the holder
of the corresponding private key. To meet these objectives, core XKMS
functionalities have been divided into two sub-specifications:

XML Key Information Service Specification (X-KISS). X-KISS
defines a protocol that Web services can use to delegate the process-
ing of key information associated with an XML signature, XML
encryption, or any other public key, to a trust services provider Web
service. Its functions mainly include locating a required public key
and describing the information that binds, such as a key to the owner
of its corresponding private key.

XML Key Registration Service Specification (X-KRSS). X-KRSS
defines a protocol that a Web service can use to register a key pair
supplying the proper information pertaining to the holder of that key
pair. That key pair then would be used in the subsequent requests
made using an X-KISS protocol.

670 Chapter 13

Both of these protocols utilize SOAP and WSDL. To find more informa-
tion on SOAP, please refer to Chapter 4, “Developing Web Services Using
SOAP,” and to find more information on WSDL, please refer to Chapter 5,
“Description and Discovery of Web Services.” These protocols are
designed so that they are compatible with all of the major PKI specifica-
tions, such as Pretty Good Privacy (PGP), Public Key Infrastructure X.509
(PKIX), and Simple Public Key Infrastructure (SPKI).

NOTE Any XKMS requests and responses can be enveloped within SOAP
requests/responses or they also can be sent as an attachment to the SOAP
requests. However, the key thing to note here is that there is no standard
defined currently that deals with what a SOAP envelope should look like when
it is carrying an X-BULK request. This problem introduces interoperability issues
among Web services that work with X-BULK or even XKMS, for that matter.

Also, the schemas for different XKMS (X-KISS, X-KRSS, and X-BULK)
requests and responses, which we saw in this section, are not the final ones.
Specification work is still in progress and currently a lot of things are being
added and modified. Thus, the schemas may change at a later phase. However,
such concepts pretty much will remain the same.

XKMS Implementations
Two implementations of XKMS are available for the Java platform as of this
writing:

■■ Verisign XKMS Toolkit (also a part of Verisign’s Trust Services
Integration Kit 1.0) (www.xmltrustcenter.org/xkms/index.htm)

■■ Entrust XKMS Toolkit (http://xkms.entrust.com/xkms/index.htm)

Note that there is no standard API for XKMS in a Java platform. Java
Specification Request (JSR) 104, titled XML Trust Service APIs, is working
toward creating standard APIs for XKMS. More information on this can be
found at www.jcp.org/jsr/detail/104.jsp.

Knowing this, let’s now go into the details on the specific components of
XML Key Management Specification, namely X-KISS, X-KRSS, and X-BULK.

XML Key Information Service Specification (X-KISS)
In the context of an XML signature, the <ds:KeyInfo> element enables the
service to verify a digital signature, and in the context of XML encryption,

Web Services Security 671

<ds:KeyInfo> specifies key information that was used to encrypt the
document. Thus, <ds:KeyInfo> forms the basis of both of these crypto-
graphic functions: signing and encryption.

By design, the XML signature and XML encryption specifications do not
mandate the use of a particular trust policy. This implies that the signer,
encryptor, or both are not required to include any key-related information
in the XML document. Thus, XML encryption or signature may or may not
include the <ds:KeyInfo> element. Even if it includes <ds:KeyInfo>, it
may specify either a PGP key or X.509 data or may simplify the key name
or a URL where the entire <ds:KeyInfo> information can be found. The
information provided by a signer or an encryptor therefore may be insuffi-
cient by itself to decide whether or not to place trust in the key and perform
a cryptographic operation, such as signing.

Let’s go a step further and imagine that the sender of an XML signature
or encryption document provides relevant key information encoded in the
form of an X.509 certificate. But even then, the client (who can be running
on a device) may not be able to parse the X.509 certificate. Consider the
usual case of encryption wherein the client is required to know the public
key of the recipient that it would be using to encrypt the information. In
this situation, it is almost logical for the client to have some means of dis-
covering information pertaining to keys from some external Web service
offered by a trusted Web service provider.

This is where X-KISS comes into play. X-KISS enables a client, a Web ser-
vice, to delegate part or all of the tasks required to process the Trust element,
<ds:KeyInfo>, to a Trust Service.

X-KISS Locate Service

X-KISS can be used to create trust services that can locate key information
by resolving the <ds:KeyInfo> element. A trust service may resolve the
<ds:KeyInfo> element using some locally available data (for example,
keys that are previously registered with this particular trust services
provider), or by resolving the <ds:RetrievalMethod> element (more
information can be found on this element in the XML Signature section), or
by acting as a gateway to an underlying PKI based on non-XML syntax.

Figure 13.16 illustrates a scenario wherein a trust service locates a key’d
information by acting as a gateway between an XML client and a non-XML
based server-side PKI system.

672 Chapter 13

Figure 13.16 XKMS locate service.

Now, let’s go back to our Funds Transfer example, where ACH’s
FT_RequestReceiver_WS receives a signed XML document from American
Bank. In this example, American Bank may not send the value of the RSA
public key whose corresponding private key is used to sign the transfer_
details.xml document. Rather, imagine that the <ds:KeyInfo>
element sent consists of only the <ds:KeyName> of the key used to sign the
document. Therefore, in order to retrieve the corresponding public key to
validate the signature, ACH’s FT_RequestReceiver_WS Web service would
have to send a query request to the trust services provider’s (for example,
Verisign) Locate Web service. ACH Web service sends the <ds:KeyInfo>
element to the Locate service requesting the <KeyName> and <KeyValue>
elements, which correspond to the public key of American Bank to be
returned.

Listing 13.8 is a sample XKMS request that ACH’s Web service would
send to retrieve the public key of American Bank.

<ds:KeyInfo>
<ds:KeyName>

<ds:KeyInfo>
<ds:KeyValue>

GET / HTTP/1.1.. .

HTTP/1.1 101 OK
X.509 Certificate

Client
Web Service

Trust
Service

PKI
System

Web Services Security 673

<Locate>

<Query>

<ds:KeyInfo>

<ds:KeyName>American Bank</ds:KeyName>

</ds:KeyInfo>

</Query>

<Respond>

<string>KeyName</string>

<string>KeyValue</string>

</Respond>

</Locate>

Listing 13.8 X-KISS locate key request.

The XKMS request in Listing 13.8 has the following elements:

<Locate> This element consists of the query for locating the key or
certificate.

<Query> This element consist of the <ds:KeyInfo> element, which
may consist of any information that can help the Locate service
get hold of the actual key (for example, a key name or the
<ds:RetrievalMethod> element).

<Respond> This element specifies the type of information that the
requestor is looking for from the Locate service. In our example, it
is name of the key and its value.

The response that is received for the query shown in Listing 13.8 is
shown in Listing 13.9.

<LocateResult>

<Result>Success</Result>

<Answer>

<ds:KeyInfo>

<ds:KeyName>

O=American Bank, CN=”American_Bank_Emp”

</ds:KeyName>

<ds:KeyValue>...</ds:KeyValue>

</ds:KeyInfo>

</Answer>

</LocateResult>

Listing 13.9 X-KISS locate key response.

674 Chapter 13

The XKMS response in Listing 13.9 has the following elements:

<LocateResult> This element consists of the response given by the
Locate service in response to the query.

<Result> This element consists of the status of the response in terms
of the original query. The status can be either success, failure, or
pending depending upon if the operation was queued or not for
future processing.

<Answer> This element carries the actual query response. In our
example, it consists of the name of the key and the corresponding
key value of the public key for American Bank. However, it also can
consist of either an X.509 certificate or a key name based on the infor-
mation asked for in the original request’s <Respond> element.

The following code shows most of the important API calls a client Web
service would make to interact with an X-KISS Locate service. These calls
are made using Verisign’s Trust Services Integration Toolkit (TSIK). For
simplicity reasons, the following is only a fraction of the code:

public void Locate (string[] args) throws Exception

{

String sKeyName = args[0];

String responses[] =

{XKMSLocate.KeyName, XKMSLocate.KeyValue};

XKMSLocate objLocate = new XKMSLocate

(sKeyName, responses);

XKMSLocateResponse objLocateResponse =

objLocate.sendRequest(transport);

System.out.println(“Response status: “ +

objLocateResponse.getStatus());

}

For the complete source code, please refer to the examples that come
along with Verisign’s TSIK.

An important thing to note here is that such a Locate service does not
report revocation status for a certificate or the trustworthiness of a key. A
client Web service (such as ACH’s FT_RequestReceiver_WS) is responsible
for verifying the trustworthiness of a key by receiving an assertion from the
trust services provider itself or a third party about the validity status of the
binding (holder <-> key) of the key in question. In order to get these bene-
fits, one must query the Validate service of an XKMS trust services provider.

Web Services Security 675

TEAMFL
Y

Team-Fly®

X-KISS Validate Service

An X-KISS Validate service provides everything that a Locate service can
provide. In addition, it also is capable of providing an assertion to the client
Web service about the validity of the binding status between the public key
and the rest of the data about the holder of that key. The way the Validate
trust service works is that the client Web service sends a prototype
containing all or some of the elements for which the status of binding
is required. Once the validity of this key binding has been determined,
the Trust service returns the status result to the client in the form of a
<KeyBinding> structure.

To understand this better, consider the Funds Transfer example again
where ACH’s FT_RequestReceiver_WS Web service calls the Locate Web ser-
vice in order to get hold of the public key of the signer of the transfer_
details.xml document, upon receiving transfer_details_
signed.xml and transfer_details.xml from American Bank. In this
example, FT_RequestReceiver_WS also wants to ensure that the key used for
signing transfer_details.xml has a valid binding—that is, it belongs
to American Bank and has not been revoked. Thus, FT_RequestReceiver_WS
sends a request to the X-KISS Validate service to assert the validity of this
key’s binding.

Listing 13.10 is what the XKMS request to such a Validity service would
look like.

<Validate>

<Query>

<ds:KeyInfo>

<ds:KeyName>...</ds:KeyName>

<ds:KeyValue>...</ds:KeyValue>

</ds:KeyInfo>

</Query>

</Validate>

Listing 13.10 X-KISS validate key request.

The response received would consist of the <KeyBinding> structure
that would carry the status of the validity of the binding, as well as the
interval through which the validity holds (<ValidityInterval>) (see
Listing 13.11).

676 Chapter 13

<ValidateResult>

<Result>Success</Result>

<Answer>

<KeyBinding>

<Status>Valid</Status>

<KeyID>

http://www.xmltrustcenter.org/assert/200

</KeyID>

<ds:KeyInfo>

<ds:KeyName>...</ds:KeyName>

<ds:KeyValue>...</ds:KeyValue>

</ds:KeyInfo>

<ValidityInterval>

<NotBefore>

2000-09-20T12:00:00

</NotBefore>

<NotAfter>

2000-10-20T12:00:00

</NotAfter>

</ValidityInterval>

</KeyBinding>

</Answer>

</ValidateResult>

Listing 13.11 X-KISS validate key response.

Knowing this information, let’s talk about key lifecycle services that are
made possible with X-KRSS.

XML Key Registration Service Specification (X-KRSS)
Existing certificate management protocols, such as those defined by PKIX,
support only a single part of the key life cycle (typically, certificate
issuance). In addition, they are too complex to deal with for the lightweight
Web services of today.

The goal of the X-KRSS specification is to respond to this need for a com-
plete and simpler key life cycle management protocol that focuses on
applications, such as Web services, to be their clients.

Web Services Security 677

X-KRSS supports the entire key life cycle in a single specification. X-
KRSS handles the following functions:

■■ Key registration
■■ Key revocation
■■ Key recovery

Let’s take a look at each of these operations.

X-KRSS Registration Service

Client Web services use a registration service implemented by an XKMS
trust services provider to register a key pair and the associated binding
information. The key pair also may be generated by the registration service
as well, if one is not supplied along with the registration request. At the
time of registration, the service may require the client Web service to provide
a key pair along with additional information pertaining to authentication.
Upon receipt of a registration request, the service verifies the authentica-
tion and Possession of Private (POP) key information provided (if any) by
the requestor and registers the key and associated binding information
with itself.

Let’s understand this in context of our funds transfer example. In our
example, both American Bank and ACH can use a X-KRSS registration ser-
vice to register their respective key pairs and bindings. The XKMS request
shown in Listing 13.12 considers a request for registration that is sent by
ACH, along with an RSA key pair for its Web site www.ach.com/fund-
stransfer. Assuming that ACH has previously received a pass code (say,
“ABCD”) from its trust services provider, a hash (SHA [password]) also is
sent along with this request for authentication purposes.

<Register>

<Prototype Id=”keybinding”>

<Status>Valid</Status>

<KeyID>http://www.ach.com/fundstransfer</KeyID>

<ds:KeyInfo>

<ds:KeyValue>

<ds:RSAKeyValue>

<ds:Modulus>...</ds:Modulus>

<ds:Exponent>...</ds:Exponent>

</ds:RSAKeyValue>

Listing 13.12 X-KRSS register key request.

678 Chapter 13

</ds:KeyValue>

<ds:KeyName>

http://www.ach.com/fundstransfer

</ds:KeyName>

</ds:KeyInfo>

</Prototype>

<AuthInfo>

<AuthUserInfo>

<ProofOfPossession>

<ds:Signature URI=”#keybinding” [RSA-Sign

(KeyBinding, Private)] />

</ProofOfPossession>

<KeyBindingAuth>

<ds:Signature URI=”#keybinding” [HMAC-

SHA1 (KeyBinding, Auth)] />

</KeyBindingAuth>

</AuthUserInfo>

</AuthInfo>

<Respond>

<string>KeyName<string>

<string>KeyValue</string>

<string>RetrievalMethod</string>

</Respond>

</Register>

Listing 13.12 X-KRSS register key request. (continued)

The XKMS request for registration in Listing 13.12 has the following
elements:

<Prototype> This element represents the prototype of the key and
binding information that ACH wants to register.

<AuthInfo> This element presents two things:

■■ Proof of Possession of Private (POP) key by providing the
<ds:Signature> element

■■ Authentication to the registration service in the form of a
<KeyBindingAuth> element

Listing 13.13 shows the response received.

Web Services Security 679

<RegisterResult>

<Result>

Success

</Result>

<Answer>

<Status>

Valid

</Status>

<KeyID>...</KeyID>

<ds:KeyInfo>

<ds:RetrievalMethod URI=

“http://www.PKeyDir.test/Certificates/12”

Type = http://www.w3.org/2000/09/xmldsig#X509Data”/>

<ds:KeyValue>

<ds:RSAKeyValue>...</ds:RSAKeyValue>

</ds:KeyValue>

<ds:KeyName>...</ds:KeyName>

</ds:KeyInfo>

</Answer>

</RegisterResult>

Listing 13.13 X-KRSS register key response.

An important thing to note in the response to the registration request is
that the service returns a <ds:RetrievalMethod> element that gives the
URI where it was stored the actual X.509 certificate data. Thus, subsequent
locate or validate requests for a key corresponding to www.ach.com/
fundstransfer ACH should point toward this particular URI.

X-KRSS Revocation Service

A registration service may permit client Web services to revoke previously
issued assertions about the validity of their keys. A revocation request is
created in the same manner as the initial registration request for the key,
except that the status of the prototype is now Invalid.

The sample X-KRSS revocation request is shown in Listing 13.14,
wherein ACH is trying to revoke the binding for the public key associated
with resource www.ach.com/fundstransfer. Note that ACH again will
have to authenticate itself to the trust services provider using the same

680 Chapter 13

password that it used before for registration. Also note that the sample
revocation request shown in Listing 13.14 has omitted a lot of the repeat
elements.

<Register>

<Prototype Id=”keybinding”>

<Status>Invalid</Status>

<KeyID>http://www.ach.com/fundstransfer/</KeyID>

<ds:KeyInfo>...</ds:KeyInfo>

</Prototype>

<AuthInfo>...</AuthInfo>

<Respond>

<string>KeyName<string>

<string>KeyValue</string>

</Respond>

</Register>

Listing 13.14 X-KRSS key revocation request.

The response to this revocation request is pretty much the same as that
to the registration request, with the only difference being that the status of
the binding registered is now changed to Invalid.

X-KRSS Key Recovery Service

A key recovery is required when the holder of the key pair loses the private
key. Following up with our example, if ACH somehow loses the private
key it registered earlier, it must contact the administrator of the trust ser-
vices provider about this loss. This communication between the client and
the administrator is out of the scope of XKMS. However, the assumption is
that during this communication, the administrator will provide ACH with
some sort of recovery operation authorization code. ACH then would
make the actual X-KRSS recovery request, wherein it would supply this
authorization code.

The X-KRSS recovery request is the same as that of the X-KRSS revoca-
tion request, with the only difference being that the <AuthInfo> element
now carries the hash of the authorization code. In addition, the response
received is exactly the same as the one in the case of key revocation. The
reason this is so is because whenever a key recovery operation is per-
formed, the policy of the trust service provider is to revoke the private key
and binding with the public key.

Web Services Security 681

Now, let’s see what X-BULK provides in addition to X-KRSS and X-KISS.

X-BULK

XKMS currently addresses key registration, information, and validation
services on a one-by-one basis. However, it also has been recognized that
the standard needs to address scenarios that require bulk operations, such
as the issuance of multiple certificates. This example is the kind of opera-
tion for which the X-BULK specification was created.

X-BULK defines top-level batch elements, such as <BulkRegister>,
<BulkResponse>, <BulkStatusRequest>, and <BulkStatus-
Response>, representing registration requests/responses and status
requests/responses. Each of these single batch request/response struc-
tures consists of independently referenceable requests/responses. Batches
are produced both from a requestor and responder. A responder will
process an entire batch, formulate a batch response, and then send that
response to the original requestor.

Listing 13.15 is an example of an X-BULK request made by a client Web
service for the bulk registration of certificates. Please note that some parts
of the request have been omitted for brevity reasons.

<BulkRegister xmlns=”http://www.w3.org/2002/03/xkms-xbulk”>

<SignedPart Id=”id-0”>

<BatchHeader>

<BatchID>batch-0</BatchID>

<BatchTime>...</BatchTime>

<NumberOfRequests>2</NumberOfRequests>

</BatchHeader>

<xkms:Respond>

<string xmlns=””>X509Cert</string>

</xkms:Respond>

<Requests number=”2”>

<Request>

<xkms:KeyID>

mailto:somebody@ach.com

</xkms:KeyID>

<dsig:KeyInfo>

<dsig:X509Data>

<dsig:X509SubjectName>

CN=FirstName LastName

</dsig:X509SubjectName>

Listing 13.15 X-BULK key registration request.

682 Chapter 13

</dsig:X509Data>

<dsig:KeyValue>

<dsig:RSAKeyValue>

...

</dsig:RSAKeyValue>

</dsig:KeyValue>

</dsig:KeyInfo>

<ClientInfo>

<EmployeeID

xmlns=”urn:ach”>

12345

</EmployeeID>

</ClientInfo>

</Request>

<Request>...</Request>

</Requests>

</SignedPart>

<dsig:Signature>...</dsig:Signature>

</BulkRegister>

Listing 13.15 X-BULK key registration request. (continued)

To understand the request shown in Listing 13.15, let’s focus on the fol-
lowing important elements:

<BulkRegister> This is the top element in a bulk request message
that carries information such as the batch ID, the type of response it
is expecting from X-BULK service, the actual sequence of the
requests, and the signature used to sign the given bulk request.

<BatchHeader> This consists of general batch-related information
such as the batch ID, batch creation date, number of requests
included in that given batch, and so on.

<Request> This is the element that carries the related information
pertaining to individual requests, such as the <KeyID> and
<ds:KeyInfo> elements, for those requests.

<ClientInfo> This specifies information about each request that
can be used by the trust services provider for its usual bookkeeping.
In our example, <ClientInfo> consists of the employee ID of the
holder of the keys in the ACH domain.

Web Services Security 683

<dsig:Signature> This provides information about the digital sig-
nature that was used to sign the X-BULK message.

Listing 13.16 is the X-BULK response received by the requesting Web
service.

<BulkRegisterResult

xmlns=”http://www.w3.org/2002/03/xkms-xbulk”>

<SignedPart Id=”id-0”>

<BatchHeader>

<BatchID>batch-0</BatchID>

...

<NumberOfRequests>2</NumberOfRequests>

</BatchHeader>

<RegisterResults number=”2”>

<xkms:RegisterResult>

<xkms:Result>

Success

</xkms:Result>

<xkms:Answer>

<xkms:Status>

Valid

</xkms:Status>

<xkms:KeyID>...</xkms:KeyID>

<dsig:KeyInfo>

...

</dsig:KeyInfo>

</xkms:Answer>

</xkms:RegisterResult>

<xkms:RegisterResult>

...

</xkms:RegisterResult>

</RegisterResults>

</SignedPart>

<dsig:Signature>...</dsig:Signature>

</BulkRegisterResult>

Listing 13.16 X-BULK key registration response.

684 Chapter 13

To understand the bulk response shown in Listing 13.16, let’s take a look
at some of the main elements:

<BulkRegisterResult> This is the top element in a bulk response
message that carries information such as the batch ID, the number
of results included, the actual sequence of the results pertaining to
registration requests, and the signature used to sign the given bulk
response.

<BatchID> This element acts as a co-relation identifier between the
bulk request and bulk response.

<RegisterResults> This element consists of individual
<xkms:RegisterResult> elements.

Security Assertions Markup Language (SAML)

The whole vision of Web services was conceived with the notion of inter-
operability between different applications running on disparate systems.
As the plumbing of the Web services was being figured out, a major devel-
opment also was taking place that supported the idea of making disparate
security systems interoperate with each other. Two main standards, Secu-
rity Services Markup Language (S2ML) and Authentication Markup Lan-
guage (AuthML), were committed toward making different security systems
talk to each other meaningfully—the latter was mainly focused on making
security systems exchange authentication-related information among
themselves. SAML was the result of merging these two parallel efforts into
a single technology. This merging took place when both of these specifica-
tions were submitted to the Organization for the Advancement of Struc-
tured Information Standards (OASIS) by respective organizations: S2ML
from Netegrity and AuthML from Securant Technologies. In order to refer
to the SAML specification page hosted by the OASIS Security Services
Technical Committee, visit the OASIS Web site at www.oasis-open.org/
committees/security/. As of this book’s writing, the SAML specification
set has already reached the committee specification level.

SAML is a technology resulting from the increased trend toward sharing
information among different organizations. Although the base technolo-
gies behind Web services facilitate this trend of inter-organization distrib-
uted computing, there had been no standard way of sharing information

Web Services Security 685

TEAMFL
Y

Team-Fly®

pertaining to the security domain of an organization with its partner busi-
nesses, customers, and the like. Even though this sharing of security-
related information such as the credentials of one domain’s users or policy
information of another domain’s users was made possible, it was highly
proprietary and required the security system at each end to tightly couple
one with the other. Thus, the cross-domain sharing of security information
was not easy and standard, which is exactly the problem that is addressed
by the SAML standard.

SAML allows the development of federated systems, enabling seamless
integration and the exchange of information among different security sys-
tems. This capability, in turn, enables a variety of solutions to be designed
that deal with specific uses ranging from Single Sign-On (SSO) to autho-
rization services to back-office transactions. SSO represents a user’s ability
to authenticate in one security domain and to use the protected resources
of another security domain without re-authenticating. Figure 13.17 depicts
a scenario wherein an authenticated employee of GoodsCompany.com is
capable of changing his benefits information using HR services provided
by an outsourced benefits services provider BenefitsProvider.com, without
having to re-authenticate himself again to BenefitsProvider.com’s security
domain.

The assumption in the scenario shown in Figure 13.17 is that Goods
Company.com and BenefitsProvider.com somehow exchanged informa-
tion related to the user’s authentication (whether the user was authenti-
cated or not), with each other, thus enabling the user to change his benefits
information.

Figure 13.17 A SAML Single Sign-On (SSO) scenario.

GoodsCompany.com
Authenticate

No
Re-authentication

Security information
exchanged

BenefitsProvider.com

686 Chapter 13

Figure 13.18 A SAML back-office transaction scenario.

Figure 13.18 provides another scenario wherein an authenticated
employee of GoodsCompany.com uses the company intranet for ordering
a research report hosted by another partner organization—say, ACME
Research. In this case, before enabling the employee to make the purchase
of a specific research report, ACMEResearch.com makes sure to check that
employee’s policies to see whether he is allowed to take a credit for that
given amount by his company. In addition, ACMEResearch.com’s Web ser-
vice also can pull out profile information on this employee, such as his
shipping address, from GoodsCompany.com’s databases. Nevertheless,
this back-office transaction scenario is made possible by SAML.

SAML provides an XML-based framework for exchanging security-
related information over networks, and thus over the Internet. One impor-
tant thing to understand is that SAML in no way defines new mechanisms
for authentication and/or authorization. It merely defines XML structures
in which to represent information pertaining to authentication and autho-
rization, so that these structures can be marshaled across the system
boundaries and can be understood by the recipient’s security systems.

SAML Implementations
At the time of this book’s writing, the following implementations of SAML
are available:

■■ Sun ONE Identity Server (part of the Sun ONE Platform for
Network Identity) (www.sun.com/software/sunone/tour/identity/)

Presents identity along with a request
for a particular study report

Check policies and
retrieves profile of
GoodsCompany.com
employee

ACMEResearch.com
Research Report Seller

Web Service

GoodsCompany.com
Intranet

Web Services Security 687

■■ Netegrity JSAML Toolkit (http://members.netegrity.com/access/
downloads.cfm)

■■ Baltimore SelectAccess 5.0 (www.baltimore.com/selectaccess/saml/)
■■ Systinet WASP Card (www.systinet.com/eap/wasp_card/

download/license.html)

This is a Web service that can be consumed by Web services intending to
provide SSO functionality based on SAML.

Apart from these implementations, quite a few organizations have
declared their ability to support SAML in their platforms:

■■ Entrust in their New Web Services Trust Framework
■■ Internet 2
■■ Verisign in their Trust Services Integration Kit (TSIK)
■■ Entegrity
■■ Securant

As can be seen from the previous list, SAML has gained a lot of industry
traction. In addition, Java Specification Request (JSR-155), titled “Web Ser-
vices Security Assertions,” is aiming toward providing a standard set of
APIs, exchange patterns, and implementation for exchanging assertions
between different Web services based upon SAML. These exchange pat-
terns define patterns for exchanging assertions using request/response,
synchronous and asynchronous patterns, and fire and forget mechanisms,
and they are based on JAX-RPC and JAXM APIs. To find out more infor-
mation on JSR 155, visit the Java Community Process Web site at www.
jcp.org/jsr/detail/155.jsp.

What SAML Defines

SAML specification consists of the following set of documents:

Assertions and protocol. This document defines the syntax and
semantics for XML-encoded SAML assertions, protocol requests,
and protocol responses.

Bindings and profiles. This document specification defines the
frameworks for embedding and transporting SAML assertion
requests and responses.

Security and privacy considerations. This document intends to pro-
vide information to implementers of SAML systems about possible
threats, and thus security risks, to which a SAML-based system is
subjected. Also, the document provides guidelines on mitigating

688 Chapter 13

those security risks. Hence, this document must be read by anyone
who will work with SAML on future projects.

Conformance program specification. This document defines a SAML
conformance system that is aimed toward achieving compatibility
and interoperability among all of the applications that implement
SAML.

Now, let’s look at the architecture of SAML.

SAML Architecture
SAML is an XML-based framework for exchanging security information.
This security information is exchanged in the form of an assertion or facts
about subjects. A subject is an entity that has an identity in some security
domain. A typical example of a subject is a person identified by his or her
email address in a particular Internet domain. So in this case, the email
address becomes the identity of this particular user in the given Internet
domain. However, the subject also can very well be some code, in which an
assertion may be required so that the code can be allowed to execute on a
system.

A SAML authority, also known as an issuing authority, issues the asser-
tions. Any given business can assume the role of an issuing authority as
long as it can issue assertions that can be relied upon by the consuming
party. Typically, the role of an issuing authority is played by one of the fol-
lowing parties:

■■ Third-party security service providers, such as Microsoft through its
Passport initiative, XNSORG through its Web Identity platform, or
DotGNU through its Virtual Identity Platform.

■■ Individual businesses “acting as” security services providers within
Federations. For example, businesses such as AOL, AMEX, VISA,
and American Airlines would issue assertions about security infor-
mation for their respective sets of users within the federations in
which they participate.

There are three types of core assertions defined by the SAML specification:
authentication assertion, authorization assertion, and attribute assertion.
Based on the type of the assertion issued, the issuing authority is known as
the authentication authority, authorization authority, or attribute authority.
Assertions also can be digitally signed using XML Signature as specified by
the SAML profile of XML Digital Signature, which is still a security services
committee working draft, as of this writing.

Web Services Security 689

Figure 13.19 depicts the architecture of a typical SAML system. In this
figure, a relying party, a party that consumes SAML assertions, sends a
request for some kind of SAML assertion to the issuing authority, which in
turn creates a SAML assertion and returns it back to the relying party in a
SAML response. This request/response protocol is bound to the actual
transport or application protocol, such as HTTP or SOAP, respectively.

All assertions, no matter what type, have some of the following elements
in common:

■■ Issuer and Issuance timestamp.
■■ Assertion ID.
■■ Subject, for which the assertion has been requested/issued. The sub-

ject’s information includes the name and security domain to which
the subject belongs. Optionally, subject information also can consist
of some sort of data that can be used for authenticating the subject.

■■ Advice element consisting of any additional information that the
issuing authority may wish to provide to the relying party in
regards to how the assertion was made. For example, the issuer
can use an advice element to present some evidence that backs the
decision of the assertion on the issuing authority’s part so that the
evidence can be used for citation purposes in the future. Also, an
advice element can be used to present the proof of assertion claims.
Another possible use of an advice element can be to specify distribu-
tion information for getting timely updates on an assertion. Advice
is an optional element.

Figure 13.19 SAML architecture.

Issuing
Authority

Relying
Party

SAML Assertion

SOAP

SAML Request

SAML Response

HTTP

690 Chapter 13

■■ Conditions element, also an optional element. However, if an asser-
tion consists of a conditions element, then its validity is dependent
upon the evaluation of the conditions provided. If any of the condi-
tions fail, the relying party must reject the assertion. Conditions can
include the following:
■■ Validity period within which the assertion would remain valid

and after which the assertion would expire.
■■ Audience restrictions information, which includes relying parties

to whom the issuer of this assertion is liable. By including this
condition, the issuer declares that it should not be held account-
able for the accuracy or trustworthiness of this assertion by par-
ties who do not belong to intended audiences.

■■ Target restrictions information, which includes targeting relying
parties for which the authority has issued this assertion. If the con-
suming party is not one of the target parties, then it must reject such
assertion and should not use it. Conditions can be user-defined as
well, apart from those defined in the SAML specification.

So what does each of these assertions look like? How are assertions
exchanged between an issuing authority and a relying party? These are
precisely the questions that next few sections will answer. Let’s begin with
authentication assertion. Note that in the rest of this section on SAML, we
will refer to the example scenario of GoodsCompany.com and Benefit-
sProvider.com as depicted in Figure 13.17.

Authentication Assertion
A relying party sends a request to an issuing authority to assert that a cer-
tain subject, ‘S’, was authenticated. Listing 13.17 shows how the request for
the authentication assertion would look.

<samlp:Request

MajorVersion=”1” MinorVersion=”0”

RequestID=”123.45.678.90.12345678”>

<samlp:AuthenticationQuery>

<saml:Subject>

<saml:NameIdentifier SecurityDomain =

“GoodsCompany.com” Name=”jsmith”/>

</saml:Subject>

</samlp:AuthenticationQuery>

</samlp:Request>

Listing 13.17 SAML request for authentication assertion.

Web Services Security 691

As we can see from Listing 13.17, the relying party requests that the
issuing authority issue an assertion for a subject whose name is “jsmith”
in security domain “GoodsCompany.com”. The relying party in this case
can be anyone with enough privileges to issue assertion requests. The
SAML response to this request is an assertion containing authentication
statements for the given subject as shown in Listing 13.18.

<samlp:Response

MajorVersion=”1” MinorVersion=”0”

RequestID=”128.14.234.20.90123456”

InResponseTo=”123.45.678.90.12345678”

StatusCode=”Success”>

<saml:Assertion

MajorVersion=”1” MinorVersion=”0”

AssertionID=”123.45.678.90.12345678”

Issuer=”GoodsCompany, Inc.”

IssueInstant=”2002-01-14T10:00:23Z”>

<saml:Conditions

NotBefore=”2002-01-14T10:00:30Z”

NotAfter=”2002-01-14T10:15:00Z”/>

<saml:AuthenticationStatement

AuthenticationMethod=”Password”

AuthenticationInstant=”2001-01-14T10:00:20Z”>

<saml:Subject>

<saml:NameIdentifier

SecurityDomain=”GoodsCompany.com”

Name=”jsmith” />

</saml:Subject>

</saml:AuthenticationStatement>

</saml:Assertion>

</samlp:Response>

Listing 13.18 SAML response consisting of an authentication assertion.

The returned assertion contains a <saml:Conditions> element defin-
ing the conditions that determine the validity of this assertion. In this
example, the <saml:Conditions> element states that this assertion is
valid only during a certain time period.

The <saml:AuthenticationStatement> element specifies the
authentication method in which the act of authentication was carried out.

692 Chapter 13

In our example, subject “jsmith” in the security domain “Goods
Company.com” was authenticated using password authentication. How-
ever, any authentication mechanism can be used with SAML. Again,
<saml:AuthenticationStatement> also specifies the time instant
during which the act of authentication was performed.

NOTE The actual act of authentication or authorization is out of the scope of
the SAML specification, which implies that SAML does not specify or mandate
the act of authentication or authorization. This means that issuers can make
assertions about acts of authentication or authorization that already have
occurred. Thus, there is a disconnect between the actual act of authentication
or authorization and the issuance of an assertion about it. Therefore, a
malicious authority may abuse its power and issue the relying parties a valid
but wrongful authentication or authorization assertion, and there is no way for
the relying party to know that the issuing authority lied to it about actually
authenticating or authorizing the subject. This brings up a significant point that
the SAML applications should not be consuming assertions from any and every
issuing authority. In fact, the SAML applications should rely upon assertions
issued by trusted authorities only and under well defined “Trust Agreements”
and “Security Breach” contracts.

Attribute Assertion
A SAML request for attribute assertion is sent by a relying party to an
issuing authority to assert the value of certain attributes, ‘A’, ‘B’, . . . for a
certain subject, ‘S’. Listing 13.19 shows an example of the request for an
attribute assertion.

<samlp:Request ...>

<samlp:AttributeQuery>

<saml:Subject>

<saml:NameIdentifier

SecurityDomain=”GoodsCompany.com”

Name=”jsmith”/>

</saml:Subject>

<saml:AttributeDesignator

AttributeName=”Employee_ID”

AttributeNamespace=”GoodsCompany.com”/>

</samlp:AttributeQuery>

</samlp:Request>

Listing 13.19 SAML request for an attribute assertion.

Web Services Security 693

As we can see from Listing 13.19, the relying party requests the issuing
authority to issue an assertion stating the value of the attribute
“Employee_ID” for a subject named “jsmith” in the security domain
“GoodsCompany.com”. The SAML response to this request is shown in
Listing 13.20.

<samlp:Response ...>

<saml:Assertion ...>

<saml:Conditions .../>

<saml:AttributeStatement>

<saml:Subject>

<saml:NameIdentifier

SecurityDomain=”GoodsCompany.com”

Name=”jsmith”/>

</saml:Subject>

<saml:Attribute

AttributeName=”Employee_ID”

AttributeNamespace=”GoodsCompany.com”>

<saml:AttributeValue>

123456

</saml:AttributeValue>

</saml:Attribute>

</saml:AttributeStatement>

</saml:Assertion>

</samlp:Response>

Listing 13.20 SAML response consisting of an attribute assertion.

The returned SAML response asserts that the value of the attribute
“Employee ID” for the subject “jsmith” in the security domain
“GoodsCompany.com” is “123456”.

Authorization (Decision) Assertion
A SAML request for an authorization assertion is sent by the relying party
to the issuing authority to assert whether the subject ‘S’ is allowed the
access of type ‘D’ to resource ‘R’, given certain evidence ‘E’ (if any).
Evidence is an assertion upon which an issuing party can rely upon while
making an authorization decision.

694 Chapter 13

An example of a SAML request for authorization assertion in the follow-
ing code requests the issuing authority to assert whether the subject
“jsmith” can be allowed access of type “Read” and “Change” (defined
in the “GoodsCompany.com” namespace) to resource “http://www.
BenefitsProvider.com/GoodsCompany/benefits”. This resource
represents the Benefits Management Web service hosted by GoodsCom-
pany.com’s outsourced benefits services provider: BenefitsProvider.com,
as shown in Listing 13.21.

<samlp:Request ...>

<samlp:AuthorizationDecisionQuery

Resource = “http://www.BenefitsProvider.com/

GoodsCompany/benefits”>

<saml:Subject>

<saml:NameIdentifier

SecurityDomain=”GoodsCompany.com”

Name=”jsmith”/>

</saml:Subject>

<saml:Actions Namespace=”GoodsCompany.com”>

<saml:Action>Read</saml:Action>

<saml:Action>Change</saml:Action>

</saml:Actions>

<saml:Evidence>

<saml:Assertion>

...Some assertion...

</saml:Assertion>

</saml:Evidence>

</samlp:AuthorizationQuery>

</samlp:Request>

Listing 13.21 SAML request for authorization decision assertion.

The SAML response to this request is an assertion containing an autho-
rization decision statement as shown in Listing 13.22.

<saml:Response ...>

<saml:Assertion ...>

<saml:Conditions .../>

Listing 13.22 SAML response consisting of an authorization decision assertion. (continues)

Web Services Security 695

TEAMFL
Y

Team-Fly®

<saml:AuthorizationDecisionStatement

Decision=”Permit”

Resource=”http://www.BenefitsProvider.com/

GoodsCompany/benefits”>

<saml:Subject>

<saml:NameIdentifier

SecurityDomain=”GoodsCompany.com”

Name=”jsmith”/>

</saml:Subject>

</saml:AuthorizationStatement>

</saml:Assertion>

</samlp:Response>

Listing 13.22 SAML response consisting of an authorization decision assertion. (continued)

The returned assertion contains a <saml:AuthorizationDecision-
Statement> saying that subject “rimap” is permitted the requested type
of access on the given resource.

NOTE Applications working with SAML can define their own specific
assertions. In fact, they can also define their own protocol for exchanging these
assertions. However, this extensibility comes at the cost of interoperability.
Hence, in such scenarios, one must ensure that all of the participating parties do
agree to the syntax and semantics of the user-defined assertions being
exchanged. Also, they must agree to a common protocol. More importantly, SAML
implementations of all parties must interoperate with each other.

SAML Bindings and Protocols
A SAML binding is a way to transport SAML request and response mes-
sages. A binding is achieved by mapping a SAML message exchange to a
particular communication or messaging protocol. For example, an HTTP
binding for SAML describes how SAML request and response message
exchanges are mapped into HTTP message exchanges. A SAML SOAP
binding describes how SAML request and response message exchanges are
mapped into SOAP message exchanges. So far, the SAML specification has
already defined the SOAP-over-HTTP binding. This binding specifies how
to carry a SAML request or response within a SOAP body element.

696 Chapter 13

A SAML profile is the way to embed and extract SAML assertions into a
framework or protocol. A profile describes how the SAML assertions are
embedded into or combined with other objects (for example, files of
various types or headers of communication protocol, such as HTTP) by
an originating party, and then are sent by the originating party to a desti-
nation, and subsequently processed at the destination. For example, a
SAML profile for SOAP defines how SAML assertions can be added to
SOAP messages and how SOAP headers are affected by SAML assertions.
Currently, the SAML Web browser profile for Single Sign-On (SSO) has
been defined.

SAML Web Browser SSO profiles support SSO scenarios in Web services
delivered through browsers. There are two SSO profiles defined for Web
browser-based Web services:

Browser/Artifact profile. This profile supports SSO scenarios where a
user accesses a secured resource on a destination site, and an artifact
(reference) is sent along with the request. The destination site uses
this artifact or reference to de-reference the actual assertion and to
finally get hold of this assertion. In fact, the SSO use case that we will
see in the following section uses this profile.

Browser/POST profile. This profile supports SSO scenarios where
assertions are exchanged as part of the HTML form that gets POST-
ed to destination site upon the submittal of a request to a resource on
the destination site.

Work also is currently in progress to define a SAML profile for XML
Signature.

Model of Producers and Consumers of SAML Assertions
Figure 13.20 provides a view of most of the elements in the SAML problem
space. The diagram does not describe message flow; instead, it only
describes the entities producing and consuming assertions. This model is
required for understanding the interactions of a SAML system with the rest
of the security domain.

To understand this model, let’s begin with the system entity. It is a part
of an application functionality that initiates some action that would ulti-
mately be rejected or permitted. An application user may request function-
ality that requires authentication. In this case, the system entity requests
the service from another entity, called the credentials collector, whose job is
to collect credentials from the application user.

Web Services Security 697

Figure 13.20 Producers and consumers model for SAML assertions.

After collecting credentials, the credentials collector requests the authen-
tication authority to issue an assertion containing an authentication state-
ment about the application user. Attribute Authority and Authorization
Decision Authority then can use this authentication assertion to further
issue an attribute assertion and authorization assertion, respectively.
Authorization authority also is known as Policy Decision Point (PDP)
because the decisions on authorizing the access to any resource of a given
system are made by this entity.

A PDP is requested to make an authorization decision typically by Policy
Enforcement Point (PEP). PEP does not define policies of its own; rather, it
acts on the authorization decisions made by PDP.

Knowing this, we will now proceed to an example that illustrates imple-
menting Single Sign-On using SAML.

Single Sign-On Using SAML
In this section, we will see how to implement a SSO use case using
SAML technology. The use case expands the SSO scenario depicted in Figure
13.21, wherein a GoodsCompany employee wishes to make changes to his
benefits information while browsing through GoodsCompany intranet portal
http://GoodsCompany.intranet. Hence, the employee selects a link on
http://GoodsCompany.intranet, which leads him to Benefits Management

Credentials
Collector

System
Entity

SAML

Authentication
Authority

Attribute
Authority

Policy Decision
Point (PDP)

Policy Enforcement
Point (PEP)

Authentication
Assertion

Attribute
Assertion

Application
Request

Authorization
Assertion

698 Chapter 13

Service, hosted by an outsourced HR benefits provider, BenefitsProvider.com,
at www.BenefitsProvider.com/GoodsCompany/benefits.

The focus of this example is to use the browser/artifact profile to achieve
SSO whenever an authenticated GoodsCompany employee changes the
domain from http://GoodsCompany.intranet to www.BenefitsProvider.com
/GoodsCompany/benefits.

Figure 13.21 shows the sequence of interactions that takes place
between the GoodsCompany.com employee, the GoodsCompany’s
intranet portal, and BenefitsProvider.com. Let’s examine each of these
interactions one-by-one.

1. In this first interaction, the employee authenticates himself to the
GoodsCompany’s security domain.

Figure 13.21 Interactions between an employee, the GoodsCompany intranet portal, and
BenefitsProvider.

1. Authenticates to
GoodsCompany domain

2. Chooses the Benefits link

3. Provides Auth. Reference

4. Requests access to Benefits
Mgmt. Service

3.1 Redirects to
BenefitsProviders.com's security
domain

4.1 Provides Auth. Reference

5. Requests SAML Auth. Assertion

6. Provides SAML Auth. Assertion

7. Provides access to Benefits
Mgmt. Service

Employee
(System Entity)

GoodsCompany
(Auth./Attribute Authority)

BenefitsProvider
(PEP/PDP)

Web Services Security 699

2. Next, the employee browses through GoodsCompany’s intranet
portal (that is, http://GoodsCompany.intranet) and selects a URL
that leads him to a service that assists employees with their personal
needs. The employee uses this service’s interface to select a link that
will eventually lead him to manage his HR benefits.

3. When the employee selects the benefits link, a service hosted by
GoodsCompany.com generates an authentication assertion for this
employee and creates a reference (artifact) to this assertion. This
service then stores the assertion and redirects the employee to the
BenefitsProvider.com domain. While redirecting, the service also
appends the assertion reference to the HTTP request.

4. Next, the employee sends an HTTP GET request to the Benefit-
sProvider.com domain. This request contains the assertion reference
created in Step 3.

5. BenefitsProvider.com receives the request from the GoodsCompany’s
employee. The request carries a reference to an authentication asser-
tion issued by GoodsCompany, Inc. Now, BenefitsProvider will want
to de-reference this assertion to get the actual authentication asser-
tion. To do so, it requests that a particular service, hosted by Good-
sCompany.com, returns the referenced SAML assertion.

6. The GoodsCompany.com domain then provides
BenefitsProvider.com with the requested authentication assertion.

7. BenefitsProvider.com then gets the assertion from GoodsCompany
stating that the given employee is authenticated. Based on this asser-
tion, BenefitsProvider.com makes a decision to permit access by this
employee to its Benefits Management Service, and therefore eventu-
ally redirects the employee to Benefits Management Service (that is,
www.BenefitsProvider.com/GoodsCompany/benefits).

These are all of the steps involved in this SSO scenario. Now, let’s see
how this entire scenario has been implemented. First, we must identify all
of the software components to be used to implement this scenario.

Figure 13.22 shows all the components to be used in this implementa-
tion. Later, we will take a look at the code of some of the very interesting
components in this design—that is, ForwardToBenefitsProvider,
BenefitsProviderEntry, and GoodsCompanyAssert. The rest of
the components are regular JSPs/Servlets, and hence, not of much interest
to us.

700 Chapter 13

Figure 13.22 Implementation components.

For this code sample, we will be using the SAML implementation that
comes as part of iPlanet Directory Server Access Management Product
(iDSAME) that, in turn, is now a part of the Sun ONE Platform for Network
Identity. For more information on this product, please read the section
titled SAML Implementations.

In addition, please note that the code shown herewith is merely a skele-
ton of the code used in implementing the presented use case. In other
words, a complete source code for this particular example is not available.

Implementing ForwardToBenefitsProvider

ForwardToBenefitsProvider is a servlet component whose main job
is to generate an assertion containing authentication statements about the
employee in question and to store this generated assertion to some disk
storage. The EmployeeAssistant (JSP/Servlet) component calls this
servlet whenever it needs to redirect the user to the Benefits Management
Service hosted by BenefitsProvider.com.

Listing 13.23 is the sample implementation of the doGet() method of
the ForwardToBenefitsProvider servlet.

Login (JSP) GoodsCompanyAssert
(JAXM Service)

BenefitsProviderEntry
(Servlet)

GoodsCompanyBenefits
JSP/Servlet

EmployeeAssistant
(JSP/Servlet)

ForwardToBenefitsProvider
(Servlet)

GoodsCompany.Com

BenefitsProviders.com

1

2
3

5

4

6

8

7

Web Services Security 701

public void doGet (...)

{

//Generate the assertion for this user

Assertion objAssertion = getAssertion(request.getRemoteUser());

//Writes the assertion to a store (a filesystem, say) and

//returns a reference (a random number) to this assertion.

AssertionArtifact objArtifact = createAssertionArtifact

(objAssertion, “GoodsCompany.Com”, “BenefitsProvider.Com”);

String sReference = objArtifact.getAssertionArtifact();

//Now time for redirecting the user to

//BenefitsProviderEntry servlet, with assertion reference

Response.sendRedirect

(“http://www.BenefitsProvider.com/BenefitsProviderEntry

?SAMLart = “ + sReference);

}

Listing 13.23 ForwardToBenefitsProvider component—doGet() method.

doGet() gets hold of an assertion for the employee through a user-
defined method getAssertion() (sample implementation follows).
doGet() then creates an assertion artifact (reference) and finally redirects
the user to the BenefitsProviderEntry servlet.
getAssertion() is an interesting method. It creates an assertion and

populates it with authentication and attribute statements. In addition, it
also puts in conditions and audience restrictions in the newly created
assertion. Listing 13.24 shows its implementation.

public Assertion getAssertion (...)

{

//Create SAML Conditions under which this assertion is valid

Conditions objConditions = new Conditions (StartDate, EndDate);

//Add Audience Restriction Condition, if any

objConditions.addAudienceRestrictionCondition (objAudience);

//Add Target Restricton Condition, if any

objConditions.addTargetRestrictionCondition (objTarget)

//Create the Subject relevant to this assertion

Listing 13.24 ForwardToBenefitsProvider component—getAssertion() method.

702 Chapter 13

NameIdentifier nameIdentifier =

new NameIdentifier(sSecurityDomain, sUserName);

//Now make an Authentication Statement

AuthenticationStatement objAuthStmt =

new AuthenticationStatement

(“Password”, new Date(), objSubject);

//Now build Attribute Assertion

Attribute attribute = new Attribute

(“Department”, “GoodsCompany.com”, DepartmentValue);

List attributeList = new HashList();

attributeList.add(attribute);

AttributeStatement objAttrStmt = new AttributeStatement

(attributeList, objSubject);

//Now build an Assertion containing above

//AssertionStatements

String sIssuer = “GoodsCompany, Inc.”;

Set objStmts = new HashSet();

objStmts.add(objAuthStmt);

objStmts.add(objAttrStmt);

Assertion objAssertion = new Assertion

(AssertionID,sIssuer, new Data(), objConditions, objStmts);

//Finally return the newly created Assertion

return objAssertion;

}

Listing 13.24 ForwardToBenefitsProvider component—getAssertion() method.
(continued)

Implementing BenefitsProviderEntry

BenefitsProviderEntry is a servlet component that gets called when-
ever a user from another domain tries to enter BenefitsProvider.com’s
security domain. This is the servlet that receives requests from the
employee when the employee is redirected from the GoodsCompany.
com’s domain. BenefitsProviderEntry extracts the assertion refer-
ence from the HTTP request parameters and then calls back the Goods
CompanyAssert Web service that is implemented as a JAXM service.
Thus, in order to communicate with GoodsCompanyAssert, Benefits
ProviderEntry uses JAXM SOAP APIs for making a SOAP RPC call.

Web Services Security 703

GoodsCompanyAssert returns the <Assertion> element within the
response SOAP message. BenefitsProviderEntry extracts the
<Assertion> element from the SOAP message and checks its validity
using a user-defined function, isAssertionValid(). Once the validity
of assertion is confirmed, the employee’s request is redirected to the actual
Benefits Management Service—that is, to www.BenefitsProvider.com
/GoodsCompany/benefits.

Listing 13.25 is a partial sample code for the BenefitsProvider
Entry servlet.

public void doGet(...)

{

//Extract the value of request parameter “SAMLart”

String sReference = request.getParameters(“SAMLart”);

//Now populate a SOAP message consisting of this reference

//and send it synchronously to GoodsCompanyAssert JAXM

//Service (GoodsCompany.com/partners/GoodsCompanyAssert)

//in order to get the actual assertion

...

SOAPMessage objAssertionSOAPMsg = objSOAPConnection.call

(objRequestSOAPMessage, objURLEndpoint);

//Now the returned AssertionSOAPMsg consist of Assertions.

//So get hold of the Assertion element from the SOAP

//message body and populate the SAML Assertion

...

Assertion objAssertion = new Assertion

(objSOAPAssertionListElement);

//Once we have Assertion, check for its validity

boolean bValid = isAssertionValid(sPartner,objAssertion);

//If everything is okay then redirect the user to Benefits

//(http://www.BenefitsProvider.com/GoodsCompany/benefits)

response.sendRedirect

(“http://www.BenefitsProvider.com/GoodsCompany/benefits”);

}

Listing 13.25 BenefitsProviderEntry component—doGet() method.

704 Chapter 13

A validity check of an assertion consists of checking that the assertion
has been issued by a valid party, the period through which the assertion
will remain valid, whether this assertion is supposed to be consumed by
parties including us, and so forth. These are the types of checks that the
isAssertionValid() method would perform and return the result
based on the evaluation of all the checks. Listing 13.26 shows the sample
code for this method.

public boolean isAssertionValid (String FromPartner,

Assertion objAssertion)

{

//Make sure that the assertion is coming from a valid

//partner

...

//Check the period through which assertion will remain

//valid

Conditions objConditions = objAssertion.getConditions();

boolean bValid = objConditions.checkDateValidity

(new Date());

//Now check whether we are one of the intended audiences

boolean bValid = objConditions.checkAudience (Audience);

//Finally return the result of validity check

return bValid;

}

Listing 13.26 BenefitsProviderEntry component—isAssertionValid() method.

Implementing GoodsCompanyAssert

The GoodsCompanyAssert component of this implementation is a JAXM
service that receives requests from various partners of GoodsCompany (in a
federation, for example) to assert various things about GoodsCompany per-
sonnel, of course with proper privileges. In our scenario, this service receives
SOAP requests consisting of assertion references. GoodsCompanyAssert
de-references these assertion references by retrieving the corresponding
assertions from the store and returning them back to the requestor within a
SOAP response message. The implementation of this service is shown in
Listing 13.27. For more information on implementing JAXM services, refer
back to Chapter 9, “XML Messaging Using JAXM and SAAJ.”

Web Services Security 705

TEAMFL
Y

Team-Fly®

public SOAPMessage onMessage (SOAPMessage objIncomingSOAPMsg)

{

//Extract the SOAP Body first and then extract the assertion

//reference from the incoming SOAP message’s body

SOAPElement objReference = extractElement

(objIncomingSOAPBody, “AssertionArtifact”);

//Now retrieve the Assertion corresponding to this reference

//from the assertion store (A filesystem, say)

...

//Now populate response SOAP message’s body with this

//assertion

objResponseSOAPBody.addBodyElement

(objResponseSOAPEnv.createName(“Assertion”, null, null));

...

//Now time to send the response SOAP message to the caller

return objResponseSOAPMsg;

}

Listing 13.27 GoodsCompanyAssert component—onMessage() method.

These components form most of the portion of implementing a SAML-
based SSO system that uses the browser/artifact profile. Knowing this, we
will conclude our discussion on SAML and move on to XACML, a comple-
mentary technology standard of SAML.

XML Access Control Markup Language (XACML)

XACML is a technology that enables access control policies to be expressed
in XML. XACML aims to provide XML documents with a sophisticated
access control model and fine-grained access control specification lan-
guage. With this specification, the access control policies regulate how an
XML document appears to the end user. In addition, the updates to the
document also can be governed by the policies. XACML should enable one
to specify and execute fine-grained and complex authorization policies.

Common ACLs use a three-tuple format like <Object, Subject, Action>.
XACML extends this to the <Object, Subject, Action, Condition>-oriented
policy in the context of a particular XML document. The notion of a subject
comprises the concepts of identity, group, and role. The granularity of an
object can be as fine as single elements within the document. Currently,

706 Chapter 13

there are four possible actions: read, write, create, and delete, however, the
language can be extended to more actions.

XACML is based on a Provisional Authorization model wherein we can
specify provisional actions (conditions) associated with primitive actions
such as read, write, create, and delete. Most of the access control systems
are based on the following model:

User A makes a request to access Resource R on a system in some context,
and the system either authorizes the request and grants access or denies it.

XACML goes one step further and tells the user not only that his request
was granted or denied but also that his request would be authorized pro-
vided he takes certain actions or that his request is denied but the system
must still take certain actions. A classic example of such a provisional
action is auditing. Encryption, signature verification, and XSLT transfor-
mations also are examples of some other provisional actions apart from the
basic read, write, create, and delete examples.

Let’s consider an example of a provisional authorization model. Such a
model would enable us to define fine-grained policies such as the following:

■■ Authorized access to a resource, for example, www.BenefitsProvider
.com/GoodsCompany/benefits, must be logged.

■■ A user should be authorized to change the previous resource only if
a valid digital signature is provided with each change request.

■■ If an unauthorized access is detected, the system administrator will
be alerted by a warning message.

To implement all of these policies in our system using existing access
control mechanisms, we would need to hard-code all of the policy control
logic in our application. However, in a provisional authorization system
such as the one defined by XACML, all of these policies can be processed
by the Policy Enforcement Point (PEP) and do not have to be written by
application developers. The XACML standard began as a submission of
the XML Access Control Language (XACL) to OASIS by IBM. XACML
activity began in April 2001 and there is still not much out there in terms of
a concrete specification, as of this writing. In order to keep track of ongoing
specification activity, visit the OASIS Web site at www.oasis-open.org
/committees/xacml/.

Architecture of an XML Access Control System
Figure 13.23 shows the architecture for an XML access control system.
Here, PEP manages the access to target resources represented in XML. The
target resource may be originally written for XML or it may be converted

Web Services Security 707

to an XML format from another data structure using XSLT transformations.
Policy Decision Point (PDP) receives an access request issued by PEP and
makes an access decision using information from Policy Information Point
(PIP), which provides information such as current time, and Policy Reposi-
tory Point (PRP), which manages a set of access control policies. Note that a
requestor could be a human user (using a browser) or another Web service.

SAML and XACML

SAML enables a PEP to make a request to a remote PDP asking for an autho-
rization assertion. Essentially the request says that given the following pol-
icy inputs, assert whether the access is or is not allowed. Presently, SAML
has no generalized way of specifying the policy inputs. A small fixed set of
policy inputs is allowed, but PDP’s authorization decision also could have
been based upon input from other policies (and not just the ones defined by
a SAML assertion request), which do not appear in either a SAML assertion
request or response. Even if PEP is not aware of the inputs that the PDP
requires to make an authorization decision, the PDP should specify in the
response all of the inputs it used to make the authorization decision. This
specification is not a policy language requirement. But, given that XACML
is general enough to specify policies based on all of the inputs and provi-
sional actions, XACML would be a natural fit for defining a syntax that
SAML can leverage for expressing current values of the inputs used by the
policies. This is where XACML can complement SAML.

Figure 13.23 XML Access Control System architecture.

PEP

PDP PIP

Requestor

Access Request
1

6

3

4

5

<Account>
<Holder>
<Name>
...

Requested XML
document

2

6

Access Control
Policy Store

708 Chapter 13

Sample XACML Policy

The XACML policy example in Listing 13.28 illustrates the connection
between XACML and SAML. This policy assumes that a SAML
AuthorizationDecisionQuery has been received by a SAML PDP,
requesting that an authorization assertion is issued to the GoodsCompany
employee so that he can read/modify his benefits information.
The policy here specifies a rule that the so-called employee of Goods-
Company, Inc. should be granted read/modify access to his benefits
information, that is, all the resources under www.BenefitsProvider.
com/GoodsCompany/, only if his identity information as specified
by Xlink addresssamlp:AuthorizationDecisionQuery/Subject/
NameIdentifier/Name is found in the online personnel database hosted
by GoodsCompanyat www.BenefitsProvider.com/GoodsCompany/
database/personnel/empdb.

<?xml version=”1.0”/>

<rule>

<target>

<subject>

samlp:AuthorizationDecisionQuery/Subject/NameIdentifier/Name

</subject>

<resource>

<patternMatch>

<attributeRef>

samlp:AuthorizationDecisionQuery/Resource

</attributeRef>

<attibuteValue>

http://www.BenefitsProvider.com/

GoodsCompany/*

</attibuteValue>

</patternMatch>

</resource>

<actions>

<saml:Actions>

<saml:Action>

read

<saml:Action>

<saml:Action>

change

<saml:Action>

Listing 13.28 XACML policy. (continues)

Web Services Security 709

</saml:Actions>

</actions>

</target>

<condition>

<equal>

<attributeRef>

samlp:AuthorizationDecisionQuery/Subject/

NameIdentifier/Name

</attributeRef>

<attributeRef>

http://www.GoodsCompany.com/database/personnel/empdb/

</attributeRef>

</equal>

</condition>

<effect>

Permit

</effect>

</rule>

Listing 13.28 XACML policy. (continued)

Conclusion

All of the security standards for Web services mentioned in this chapter
sound very promising. We do have standards in almost every area of secu-
rity handling trust, policies, interoperability between security systems,
fine-grained access control policies for XML documents, and so on. How-
ever, one of the issues with these XML security standards is that there is no
standard that currently ties these standards to Web services and especially
SOAP. We need a standard that specifies how to sign all or a part of a SOAP
message, how to pass credentials in a SOAP message, how to encrypt all or
part(s) of a SOAP message, and so on, so that the interoperability promise
of Web services is maintained.

710 Chapter 13

At the time of this book’s writing, WS-Security, a new OASIS specifica-
tion effort, is aimed toward providing a standard syntax for incorporating
XML Encryption, XML Signature, and XKMS Requests/Responses within
SOAP Signatures. You can find more information on WS-Security at
www.oasis-open.org/committees/wss/.

Summary

In this chapter, we have examined challenges that are posed by Web
services and have discussed all of the technologies and standards that are
available to meet those challenges. In addition, we also have taken a look
at some of the basic concepts of cryptography in this chapter. By now, we
have gained a good understanding on the positioning, application, and
usage of the following Web services security-related standards:

■■ XML Encryption

■■ XML Signature

■■ XML Key Management Specification

■■ Security Assertions Markup Language

■■ XML Access Control Markup Language

In the next chapter, we will take a look at Sun ONE, Sun Microsystems’
vision of Web services and more.

Web Services Security 711

PA R T

Five

Web Services Strategies
and Solutions

715

By the late 1990s, almost the entire industry felt the need for a single, coher-
ent architecture that was capable of providing an across-the-board solution
from operating platforms to application servers. This urgent need formed
the basis of the two important architectures that were introduced almost
simultaneously by rival companies Microsoft and Sun Microsystems.
These architectures, .NET and Sun Open Net Environment (Sun ONE),
from Microsoft and Sun Microsystems, respectively, provide an end-to-end
solution that an organization can adopt mainly in order to reduce the com-
plexity and cost of investments of IT projects. This chapter introduces and
provides key information about one of these visions—that is, Sun ONE.

In this chapter, we will examine the core of the Sun Open Net Environ-
ment in terms of the following:

■■ The vision behind Sun ONE
■■ Delivering Services on Demand
■■ Sun ONE Architecture

The Vision behind Sun ONE

The key mantra behind Sun ONE is Services on Demand. A Service on Demand
(SoD) is a service that can be delivered to the consumer, when the consumer

Introduction to Sun ONE

C H A P T E R

14

TEAMFL
Y

Team-Fly®

needs it, on any device in which the consumer needs it. Therefore, it is basi-
cally an anytime, anywhere, any device computing paradigm. The SoD vision
enables a business to leverage its enterprise information assets to perform its
business operations and to communicate with others—anywhere, anytime,
and on any device. Sun ONE uses the term Services on Demand to encom-
pass a service built using any of the following software methods:

Local applications. Defined as a monolithic application running on
PCs/workstations

Client/Server applications. Applications structured so that the pre-
sentation layer and business layer run on a heavy client, such as a
desktop with the required client runtime installed where the data is
stored in the backend in the database layer

Web applications. Applications that can service requests and send
responses over the Web protocols, mainly HTTP

Web services. Applications that use XML-based protocols, usually on
top of Web protocols

Web clients. Applications that are delivered over the Web to Java
technology-enabled devices, such as personal digital assistants
(PDAs), cellular phones, and personal computers

Sun ONE thus represents a vision that is more of an evolution of net-
work computing than a revolution. It presents a continuum to the previous
computing approaches. Table 14.1 presents a table describing different
waves of computing and their schematics, in an evolutionary manner.

We understand that the first three phases of computing have already
taken place. The fourth phase is what we are living in right now—the
phase of Web services. This is the phase in which services are delivered
over the Web protocols, mainly HTTP. The services in this phase are
described using XML-based languages, such as WSDL, and can be regis-
tered with service registries (for example, UDDI). Also, these services
can be consumed using request/response or messaging protocols based
on SOAP. We know, by now, how to write such simple Web services
using basic Web services protocols such as SOAP, WSDL, and UDDI.
Interestingly, Sun ONE takes that effort a step further by supporting a
framework that enables Web services to be created, which can be stateful
and complex so that they can be used for performing business func-
tions. These Web services also are termed as Business Web services in Sun
ONE. Such Web services are discussed in the next section titled Delivering
Services on Demand. Sun ONE also envisions another phase of Web ser-
vices, known as Federated Web services, which again are discussed in the
next section.

716 Chapter 14

Table 14.1 Evolution of Computing

COMPUTING METHOD PERIOD PROTOCOLS SCHEMATIC

Local applications Until late 1980s None

Client/server Late 1980s– None
1994/1995

Web applications 1995–1999/2000 HTTP

Web services (Simple, 2001–??? HTTP, XML
Business, Federated)

??? (Includes Web services, 2003/2004 XML, RDF,
peer services, Jini services) onward JXTA, Jini,

and so forth

No term has been coined yet for the fifth phase of computing shown in
Table 14.1. The idea here is to come up with a framework and underlying
infrastructure required for enabling true Services on Demand such that the
consumer should be able to use any device to consume a particular service,
using any transport mechanism, such as Web (HTTP), JXTA, or Jini.

JXTA technology, open sourced by Sun Microsystems, provides a stan-
dard framework for building peer-to-peer (P2P) services. JXTA defines a
set of open protocols that enables building P2P applications in any lan-
guage, including Java. Currently, the JXTA community has provided JXTA
runtime implemented for Java language. For more information on JXTA,
visit the JXTA community Web site at www.jxta.org.

Jini is a distributed computing technology, originally from Sun
Microsystems, that enables networked devices and software services to
interconnect with each other dynamically. These networked devices and
software services can form communities on an ad-hoc basis without any a
priori knowledge or configuration. This enables the creation of network
services (software or hardware) that are highly adaptive to change. Jini
technology enables the building of such adaptive networks that can be
evolved over time and space. For more information on Jini, visit the Jini
official Web site at wwws.sun.com/software/jini.

Introduction to Sun ONE 717

This phase is supposed to have begun and should gain full momentum
by mid-2003 or 2004.

Delivering Services on Demand (SoD)

Currently, the Sun ONE architecture can deliver Services on Demand over the
Web. Later on, Sun may include other mechanisms such as JXTA or Jini, say,
for delivering SoD using Sun ONE architecture. The Web-based mecha-
nisms for delivering SoD consist of the following:

■■ Web applications
■■ Web services
■■ Web clients

Web Applications
A Web application is a traditional way of delivering a service wherein the
markup generated by the service is sent back as part of the service response
to the consumer. Most of the time, the consumer simply uses a Web
browser as a client application that renders the markup received as part of
the service response. Eventually, the consumer uses this rendered markup
as a visual interface in order to interact with the service. Sun expects most
of the SoD prior to year-end 2002 to be delivered as Web applications. Sun
ONE architecture includes a variety of standards and products that can be
used for developing and deploying Web applications. We will discuss
these in the section titled Sun ONE Architecture.

Web Services
A Web service is a newly conceived method of delivering a SoD such that all
communication between the service and the consumer takes place through
XML-based RPC or XML-based messaging mechanisms. A Web service can
be described such that its interfaces and semantics are readable by other
applications. This gives a Web service the unique capability of being used
by other services as a component. Similarly, a Web service also can be regis-
tered to a public or private registry such that another application can locate
it and decide whether to use it or not, by studying its registration metadata.
Web service metadata also can convey information required for consuming
the Web service as part of a certain choreography or flow. A Web service
thus is a componentization of an application’s services.

Web services adoption, according to Sun and other industry experts, will
take place in three phases. These are simple Web services, business Web
services, and federated Web services, described in the following sections.

718 Chapter 14

Simple Web Services

A simple Web service is typically based upon the SOAP, UDDI, and WSDL
stack of protocols. It also is typically stateless with limited metadata
capabilities. Also, a simple Web service is less reliable, owing to the limita-
tions of the underlying SOAP protocol. The reason it is called simple is
because it cannot be used for delivering complex “business” type func-
tionality due to the limited availability of metadata and reliability. Most of
the Web services pilots we see today are of such a type. In fact, all the infor-
mation presented in this book pertains to creating such a type of simple
Web services.

Business Web Services

A business Web service has the ability to participate in horizontal business
functions such as Enterprise Application Integration (EAI) with internal
business applications as well as with business partners (B2B). Also, a
business Web service has the ability to provide vertical-oriented business
functions such as supply chain or customer relationship management.

Sun ONE architecture implements such a business Web service using
an electronic business Extensible Markup Language (ebXML) stack of tech-
nologies. The next section provides an introduction to ebXML architecture.

EbXML Technical Architecture

The ebXML standard was developed as a joint effort between OASIS and
UN CEFACT. OASIS is a non-profit consortium that drives the develop-
ment, convergence, and adoption of e-business standards in the areas of
security, Web services, XML conformance, business transactions, electronic
publishing, and interoperability. For more information on the OASIS char-
ter and activities, visit www.oasis-open.org. The UN CEFACT mission is to
contribute to the growth of global commerce by facilitating international
transactions through the simplification and harmonization of procedures
and information flows. More information on UN CEFACT can be obtained
from www.unece.org.

The first version of the ebXML specification stack was released in May
2001. In itself, ebXML is a huge area and has been developed by the very
same people involved in developing and adopting the Electronic Data
Interchange (EDI) standard almost 20 years ago. More information on
ebXML can be found at the ebXML Web site (see www.ebXML.org).

The ebXML standard represents a technical architecture consisting of
several pieces that when combined together would allow a Web service to
be created that could be used for business process driven integration with

Introduction to Sun ONE 719

trading partners and customers. The ebXML technology stack consists of
the following specifications:

■■ Messaging Service
■■ Business Process Specification Schema (BPSS)
■■ Registry/Repository
■■ Collaborative Protocol Profile (CPP)/Collaborative Protocol

Agreement (CPA)
■■ Core components

EbXML has been designed so that these specifications can be used
independent of each other. So, for example, a business environment can
implement ebXML Messaging Service only and choose not to implement
the rest of the stack. Figure 14.1 represents a scenario wherein two compa-
nies, Company A and Company B, are enabled for performing business-to-
business collaboration and integration using ebXML architecture.

Figure 14.1 ebXML-enabled business-to-business commerce.

Download Scenarios

and Profiles

Company B

Company A

XML

Query about

COMPANY A profile

Request
Business Details

ebXML compliant
system

Build Local
System

Implementation
DO

 B
USI

N
ES

S

TR
AN

SA
CT

IO
N

S4

2

6

Business
Scenarios

Business
Profiles

ebXML
Registry

Ag
re

e
on

 B
us

in
es

s

Ar
ra

ng
em

en
t

5

1

Register Implementation Details
Register COMPANY A Profile

3

720 Chapter 14

The following provides a brief explanation of the steps presented in
Figure 14.1:

1. A Company A that intends to ebXML-enable its business begins
with getting hold of its business processes and business documents
that it needs for conducting collaboration with its business partner.
There are two ways in which Company A can get these. One way is
where Company A creates its own homegrown business process and
business document models and registers them eventually to the
ebXML Registry/Repository, so that its prospective business partner
can share them. Another way is where Company A uses a vertical
standard business process and document models. So, for example, if
Company A happens to be in a high-tech manufacturing domain, it
can leverage upon the standard business processes, aligned for the
high-tech vertical, defined within the Rosettanet standards organiza-
tion. In this case, Company A would retrieve the business process
models from a public ebXML Registry/Repository hosted by, say,
Rosettanet.

These business processes are described using the ebXML Business
Process Specification Schema (BPSS) standard. Business documents
exchanged with partners and/or customers can be built using the
ebXML Core Components specification.

2. After determining the business processes and business documents
to use for business-to-business collaboration, Company A then
ebXML-enables its local systems. It configures the runtime so that
communication can be carried out securely and reliably with the
prospective business partners. Also, it configures its Business
Process Management Systems so that they understand ebXML BPSS
and act according to the business process defined therein.

3. After configuring its local system to support ebXML, Company A
then registers its profile information in the form of ebXML Collabo-
rative Protocol Profile (CPP), to an ebXML Registry/Repository
such that a partner can discover its CPP. A CPP typically consists of
technical metadata information about business systems of a particu-
lar organization. For example, the CPP of Company A specifies
information such as the level of security supported by its business
systems, the level of reliability supported by its business systems,
the messaging service supported by its business systems, and so on.
Also, CPP is capable of specifying functional metadata information
about a particular organization such as its supported business
processes (standard or non-standard), the business documents it

Introduction to Sun ONE 721

uses, a URI specifying the location or identifying these business
processes and document models, and so on.

Thus, ebXML CPP provides rich metadata, which is a must for con-
ducting serious business-to-business collaborations.

4. Eventually Company B, which then may be looking for a prospec-
tive business partner, discovers the CPP of Company A. Company B
then studies the CPP to gain an understanding of the technical and
functional aspects of Company A’s business systems.

5. Then at some point in time, Company B will somehow communicate
to Company A its interest in making it a business partner. Both
Company A and B then would work out details of this collaborative
partnership offline and finally negotiate a contract representing the
terms of doing business. In the ebXML world, this contract is mani-
fested as a Collaborative Protocol Agreement (CPA). A CPA typically
specifies the technical and functional nature of the collaboration. It
specifies the business process these collaborating organizations are
to adhere to, the level of reliability and security supported by the
information systems of the collaborating organizations, and so on.

Once a CPA is negotiated, it then is stored at some location such that
both Company A and B can access it.

6. Now, both these companies will tune their business information sys-
tems so that they can begin conducting electronic business with each
other in accordance with the technical and functional specification and
details defined in the CPA and BPSS. The runtime communication is
carried out using ebXML Messaging Service. ebXML Messaging Ser-
vice is designed to provide the necessary security and reliability fea-
tures required for performing real-world electronic business.

Mainstream adoption of such business Web services is expected to begin
sometime in 2003 or 2004. Several vendors have already started providing
complete or partial implementation of an ebXML technology stack. Sun
ONE will provide support for ebXML in its standard APIs as well as in its
products. JAX-R and JAX-M APIs provide support for ebXML Messaging
Service and ebXML Registry/Repository standards. This book does not
cover ebXML-related specifics when discussing the previously mentioned
APIs. Sun ONE products supporting ebXML will start emerging sometime
during 2003.

722 Chapter 14

Federated Web Services

Federated Web services will be based on the vision and technologies
formed within the Liberty Alliance. Sun and member companies from
technology as well as other industry sectors formed the Liberty Alliance to
formulate a network identity solution for the Internet that enables
advanced services such as single sign-on for consumers as well as business
users in an open, federated way. A federated network identity model will
enable every business or user to manage their own data, and to ensure that
the use of critical personal information is managed and distributed by the
appropriate parties chosen by the user or business, rather than a central
authority.

Liberty Alliance will roll out Liberty technology in phases. However, the
ultimate goal of this alliance is to enable federated commerce. The specifi-
cations for the first phase of Liberty technologies were released in July
2002. These specifications can be obtained from www.projectliberty.org/.

Web Clients
Web clients is another mechanism for delivering Services on Demand.
This mechanism enables the services to be downloaded as Java applica-
tions on the client’s devices, such as desktop computers, handheld
devices, set-top boxes, and so forth. Sun ONE architecture provides mul-
tiple technologies for achieving this. Java 2 Platform Mobile Edition
(J2ME) is one such technology that is used for writing applications that
will be eventually downloaded to resource-constrained devices such as
cellular phones or PDAs.

Another technology provided by Sun ONE for delivering Services on
Demand is Java Web Start. Java Web Start enables a full-featured Java
application to be launched from within a Web browser by clicking a Web
page link. Java Web Start caches all the application files necessary on the
local client machine and directs the subsequent requests to the cached copy
of the application. More information on Java Web Start can be found at
http://java.sun.com/products/javawebstart/.

Besides these, Sun ONE provides other Web clients APIs for deliver-
ing Services on Demand. Further information on Sun ONE Web client
models can be found at wwws.sun.com/software/sunone/docs/arch
/chapter10.pdf.

Introduction to Sun ONE 723

Sun ONE Architecture

Sun ONE Architecture basically factors a Service on Demand into separate
layers, each of which handles a specific aspect, such as identity manage-
ment, integration, or application services, of the service. We will begin with
examining these different layers of a Sun ONE SoD, and then we will see the
standards/technologies and products that can fit into these different layers.

Sun ONE Service Layers
Figure 14.2 shows the architecture of a Sun ONE SoD composed of differ-
ent layers, each handling or providing a specific functionality.

Figure 14.2 Sun ONE architecture: Service layers.

Service Creation, Assembly, and Deployment

Service
Delivery

Service
Integration

Service Container
Runtime environment

and core services

Messaging, Collaboration
and e-Commerce Services

Communications

Web Services

Identity and Policy

Identities, Roles, Security, Privacy, Management, Monitoring, QoS

Base Platform

Operating System, Hardware, Storage, Network

Primary source: Sun ONE Architecture Guide

- Aggregation
- Provisioning
- Content Delivery
- Content

Syndication
- Content

Transformation
- Personalization
- Caching
- Security
- Billing

Access to:
- Data
- Internal Applications
- Partner services

724 Chapter 14

The various layers of the architecture are as follows:

■■ The topmost layer in Figure 14.2 deals with creating and deploying
a SoD. This layer focuses on tools that can be used for building the
service.

■■ The bottom layer in Figure 14.2 talks about providing platform
services such as those provided by the operating system. Also, this
layer represents the extended services provided by operating
environments such as storage and networking. Identity and policy
services also can be a part of platform services in Sun ONE
architecture.

■■ The Service Delivery layer deals with the functionalities required for
provisioning the SoD. These functionalities include content caching,
content transformation, content aggregation, personalization, and so
forth. This layer also may manage other advanced service provision-
ing features such as content syndication, billing, single sign-on, and
so on.

■■ The Service Container layer provides the runtime services needed
by application services hosted by the container. Container provides
middleware services such as persistence, state management, transac-
tion management, and monitoring to the hosted application compo-
nents. These hosted application components may very well be part
of packaged application software, such as office communications
software, e-commerce software, CRM software, and so on. Web
services are hosted within such a service container in Sun ONE
architecture.

■■ The Service Integration layer of a Sun ONE SoD deals with access-
ing data applications within the organizational boundaries (EAI)
or application services hosted by business partners of an organiza-
tion (B2B).

Sun ONE Standards and Technologies
Knowing this, let’s now take a look at the standards and technologies that
form the basis of these different layers of a Sun ONE SoD. Figure 14.3
shows the Sun ONE service layers populated with relevant standards and
technologies in that space.

Introduction to Sun ONE 725

TEAMFL
Y

Team-Fly®

Figure 14.3 Sun ONE architecture: Standards and technologies.

As can be seen from Figure 14.3, the Sun ONE platform is significantly
based upon either ongoing or already developed standards:

■■ For service creation, assembly, and deployment, we will use the
NetBeans, WSDL, and UDDI standards mainly. For creating a busi-
ness SoD, we can use the CPP/CPA, ebXML BPSS, and ebXML Reg-
istry/Repository standards.

■■ The base platform in Sun ONE architecture can be based on standards
such as UNIX, NIS, IPv6, and IPv4. Also, the extended platform ser-
vices in the areas of storage can be based on standards such as SCSI
and Fiber Channel.

Service Creation, Assembly, and Deployment

Service
Delivery

Service
Integration

Service Container
Runtime environment

and core services

Messaging, Collaboration
and e-Commerce Services

IMAP, POP, S/MIME, SMS,
Java Mail, etc.

J2EE

NetBeans, UML, BPSS, WSDL, UDDI, CPP/A, ebXML Reg/Rep, etc.

Web Services

Identity and Policy

LDAP, Liberty, SAML, XML-DSIG, XKMS, XML Encrypt, Kerberos, ebXML Reg/
Rep, UDDI, PKCS, PKIK, WBEM, XACML, X.509, JCA/JCE, P3P, JAAS, etc.

Base Platform

UNIX, NFS, FTP, DHCP, TCP, IPv6, IPv4, IPSec, GSS-API, SCSI, Fiber Channel, etc.

Primary source: Sun ONE Architecture Guide

- J2ME
- RSS
- WML
- SyncML
- RDF
- cHTML/XHTML
- voiceXML
- WSRP
- WSIA
- JavaPortlet

Specification, etc.

- UDDI
- ebXML
- JMS
- J2EE Connector

Architecture
- JDBC
- SQL
- EDI

SOAP, UDDI, WSDL, JAX-RPC, JAXM,
JAXR, XML Schema, SAX/DOM, JAX-P,

ebXML Messaging Service, etc.

726 Chapter 14

■■ The Service Delivery layer again can be based on a plethora of
standards and technologies in content transformation, formatting,
and provisioning space mainly. Various standards such as XHTML,
VoiceXML, and cHTML represent the formatted content as markup.
Also, the J2ME technology platform can be used for provisioning
services as Java applications on resource-constrained hand-held
client devices.

■■ The Service Container layer is based on the industry standard J2EE
platform. Also, Sun ONE supports standards for packaged applica-
tion components such as Java Mail, S/MIME, POP, IMAP, and SMS
in the areas of messaging and collaboration. The Sun ONE service
container can support hosting Web services built upon the standard
SOAP/UDDI/WSDL standards. In addition, it also can support
hosting Web services built using ebXML technology specifications.

■■ Sun ONE architecture enables the integration with backend data,
internal applications, as well partner services by leveraging stan-
dards and technologies such as J2EE Connector Architecture, JMS,
JDBC, SQL, EDI, UDDI, ebXML Registry/Repository, and so on.

Now, let’s see which products can be used for providing infrastructure to
the Sun ONE SoD.

Sun ONE Product Stack: Integrated versus Integrate-able
Currently, Sun ONE is an architecture that is based upon industry standards
encompassing different areas of a SoD. As a result, although Sun ONE is the
branded vision and architecture from Sun Microsystems, a Sun ONE imple-
mentation can quite possibly be based upon products adhering to these stan-
dards, from companies other than Sun Microsystems. This scenario presents
what is known as an “Integrate-able” product stack wherein Sun ONE archi-
tecture is realized using infrastructure products from different companies.
For example, anyone can implement a Sun ONE SoD using Sun’s Sun ONE
Portal server along with BEA’s WebLogic Application Server.

An “Integrated” product stack to build and deploy SoD using all the Sun
ONE branded products also is provided by Sun Microsystems. Sun thus
presents alternatives for implementing Sun ONE architecture-based ser-
vices. Figure 14.4 shows the Sun ONE integrated product stack consisting
of the Sun ONE-branded products from Sun Microsystems.

Introduction to Sun ONE 727

Figure 14.4 Sun ONE architecture: Integrated product stack.

Now, Let’s briefly discuss the functionalities provided by some of the
major Sun ONE products shown in Figure 14.4.

Sun ONE Studio

Sun ONE Studio comes in two flavors: Sun ONE Studio 4 (formerly Forte
for Java) and Sun ONE Studio 7, Compiler Collection (formerly Forte Com-
piler Collection).

Sun ONE Studio 4 is an IDE for the Java language system. It is based on
the open source NetBeans Tools platform. NetBeans has a modular
design—it defines a framework that can be used to develop modules
focusing on a specific set of functionalities (UML modeling or performance
monitoring, for example), such that these modules can be plugged in on

Service Creation, Assembly, and Deployment

Service
Delivery

Service
Integration

Service Container
Runtime environment

and core services

Messaging, Collaboration
and e-Commerce Services

S1 BuyerXPert, S1 BillerXpert, S1
Messaging Server, S1 Calendar Server

Sun ONE Application Server

Sun ONE Studio

Web Services

Identity and Policy

Sun ONE Directory Server, Sun ONE Platform for Network Identity

Base Platform

Solaris Operating Environment, Sun Cluster, Sun StorEdge

Primary source: Sun ONE Architecture Guide

- Sun ONE Portal
Server

- Sun ONE Application
Framework

- Sun ONE Web Server

Sun ONE Integration
Platform

- S1 Message Queue
- S1 IS EAI Edition
- S1 IS B2B Edition

Sun ONE Web and Application Server

728 Chapter 14

any NetBeans-based IDE to use the specific functionality that it provides.
Also, because NetBeans is written using Java technology, this IDE is avail-
able on most of the platforms. Sun ONE Studio 4 is available in three edi-
tions: Enterprise Edition, Community Edition, and Mobile Edition.

Enterprise Edition. It provides an environment to develop J2EE 1.3
applications and deploy them to a wide range of application servers,
such as Sun ONE’s Application Server, BEA’s WebLogic Application
Server, or Oracle’s 9iAS. Also, Sun ONE Studio 4 provides built-in
support for creating and deploying Web services based on WSDL,
UDDI, and SOAP technologies. It also supports Web services creation
using the Java APIs for XML. In order to develop J2EE 1.2 platform
applications, Sun ONE Studio 3.0 also has been made available.

Community Edition. It provides an IDE for developing stand-alone
applications, Java applets, Java Bean components, and database
aware 2-tier Web applications using JavaServer Pages/Servlets/JDBC
technologies.

Mobile Edition. It enables the development of J2ME MIDlet applica-
tions. It provides a debugger for debugging the source code of the
MIDlets. Also, the support for mounting emulators as well as SDKs
from third parties has been made available.

Sun ONE Studio 7, Compiler Collection provides tools for the rapid
development of applications using the language systems of C, C++, and
Fortran. This IDE is targeted toward ISVs and corporate developers
involved heavily in maintaining and developing legacy applications.

Solaris Operating Environment

The newest version of Solaris Operating Environment is 9.0, which was
launched by Sun in the summer of 2002. Interestingly, this new version of
Solaris provides traditional OS functionality plus application and directory
management services, that is, Sun bundles the Sun ONE Application
Server and Sun ONE Directory Server along with Solaris 9.0. Apart from
this, Solaris 9 OE also carries enhancements in the areas of scalability, avail-
ability, manageability, and security. Also, the earlier versions of Solaris OE
are available.

Sun Cluster

Sun Cluster software is designed to deliver high availability application
services to a data center or an enterprise. It basically extends the Solaris
operating environment to enable the use of its core services, such as

Introduction to Sun ONE 729

devices, file systems, and networks in a seamless manner across a tightly
coupled cluster. Thus, it helps increase the service levels of software.

Sun ONE Portal Server

The Sun ONE Portal Server (formerly iPlanet Portal Server) is a platform
for deploying business-to-business, business-to-consumer, and business-
to-employee portals. It provides the services required to build portal sites,
including user and community management, personalization, content
aggregation, integration, security, and search functionalities. It also pro-
vides support for the access of services by wireless clients, secure remote
access, and knowledge management.

Sun ONE Web Server

The product is an environment for deploying Web applications. It supports
the JavaServer pages and Servlet technologies to generate personalized
and dynamic content. The Sun ONE Web Server is bundled with the Sun
ONE Directory Server to enable centralized server management and user
authentication.

Sun ONE Messaging Server

Formerly known as iPlanet Messaging Server, this product provides a solu-
tion for communication and messaging. For example, it enables the deploy-
ment of unified communication services, bringing together telephone
services with e-mail notification, faxing, paging, and other technologies.
This provides a single entry point to retrieve voice mails, e-mails, address
books, and calendar information.

Sun ONE Directory Server

The Sun ONE Directory Server (formerly iPlanet Directory Server) offers a
central repository for storing and managing identity profiles, access privi-
leges, and application and network resource information. Information
stored in the Sun ONE Directory Server can be used to provide services
such as authentication, authorization, access management, and single sign-
on to the users.

Sun ONE Identity Server

Formerly known as iPlanet Directory Server Access Management Edition,
the Sun ONE Identity Server is designed to help organizations manage

730 Chapter 14

secure access to Web-based resources. The product provides an identity
system that includes access management, identity administration,
and directory services. It supports the policy-driven administration of
identities.

Sun ONE Application Server

Sun ONE Application Server (formerly known as iPlanet Application
Server) provides a J2EE-based platform for the development, deployment,
and management of middleware application components. The product
provides a broad range of middleware services such as persistence, state
management, load balancing, transaction management, security, and so
forth, to the components hosted within.

Sun ONE Integration Server

Two editions of the Sun ONE Integration Server (formerly iPlanet Integra-
tion Server) are available: Sun ONE Integration Server EAI Edition and
Sun ONE Integration Server B2B edition. The former is focused on
providing data- and process-based integration of internal applications
using XML-based technologies such as SOAP, while the latter provides
a platform for integrating with customers and trading partners of an
organization.

Sun ONE Message Queue

This product (known formerly as iPlanet Message Queue) is message-
oriented middleware (MOM) software. It implements the JMS specification.

The integrated Sun ONE product stack from Sun is obviously quite
complete, covering almost all areas of software infrastructure and tools.
Further information on Sun ONE products can be obtained from wwws
.sun.com/software/sunone/.

Summary

In this chapter, we introduced Sun ONE, Sun’s vision of a standards-based
software, architecture, and platform for building Services on Demand
(SoD). The main components of Sun ONE have been examined: The vision
behind Sun ONE; delivering Services on Demand; Sun ONE architecture,
service layers, standards, and technologies; and the Sun ONE Integrated
Product Stack.

Introduction to Sun ONE 731

733

Chapter 1

Java Remote Method http://java.sun.com/products/jdk/rmi/
Invocation (RMI) home

Java RMI tutorial http://java.sun.com/docs/books/tutorial/rmi/

Java RMI over IIOP http://java.sun.com/products/rmi-iiop

Java 2 Platform, Enterprise http://java.sun.com/j2ee/
Edition (J2EE)

Java Web services home http://java.sun.com/webservices/

Microsoft DCOM home www.microsoft.com/com/tech/DCOM.asp

Object Management Group www.omg.org/
(OMG) homepage

Web services zone home www.ibm.com/developerworks/webservices/

Further Reading

Chapter 2

DSML homepage www.dsml.org

ebXML homepage www.ebxml.org

ebXML messaging www.ebxml.org/specs/index.htm
specifications

IBM WSFL page www.ibm.com/software/solutions/webservices
/pdf/WSFL.pdf

OASIS BTP activity home www.oasis-open.org/committees
/business-transactions/

OASIS UDDI activity home www.oasis-open.org/cover/uddi.html

Sun WSCI information page www.sun.com/software/xml

W3C SOAP activity home www.w3.org/TR/SOAP/

W3C WSDL activity home www.w3.org/TR/wsdl12

W3C XML activity home www.w3.org/XML

Chapter 3

Apache Axis information http://xml.apache.org/axis

BEA Weblogic information www.bea.com

J2EE design patterns http://java.sun.com/blueprints/patterns
/j2ee_patterns

Server-side.com www.theserverside.com/patterns/index.jsp
J2EE patterns

SJC J2EE patterns http://developer.java.sun.com/developer
/technicalArticles/J2EE/patterns/

Sun Java Web services http://java.sun.com/blueprints/webservices/
blueprints

Sun Java Web services http://java.sun.com/webservices/
pages

W3C Web services www.w3.org/2002/ws/
activity home

734 Further Reading

Chapter 4

Apache Axis project http://xml.apache.org/axis/

Apache SOAP project http://xml.apache.org/soap/

ebXML messaging service www.ebxml.org/specs/ebMS2.pdf
specifications

W3C SOAP 1.2 adjuncts www.w3.org/TR/soap12-part2/

W3C SOAP 1.2 messaging www.w3.org/TR/soap12-part1/
framework primer

W3C SOAP 1.2 primer www.w3.org/TR/soap12-part0/

W3C XML protocol www.w3.org/2000/xp/Group/
activity home

Chapter 5

UDDI community portal www.uddi.org

UDDI cover pages www.oasis-open.org/cover/uddi.html

UDDI, ebXML and
XML/EDI (paper) www.xml.org/feature_articles/2000

_1107_miller.shtml

UDDI and WS-inspection www-106.ibm.com/developerworks
(paper) /webservices/library/ws-wsiluddi.html

UDDI Web site (unofficial) www.uddicentral.com

WSDL, compilation of http://wsdl.soapware.org/
low-level issues

WSDL cover pages http://xml.coverpages.org/wsdl.html

WSDL, a paper on using www-106.ibm.com/developerworks
WSDL with SOAP /webservices/library/ws-soap/

WSDL tools, a compilation http://pocketsoap.com/wsdl/

WSDL W3C note www.w3.org/TR/wsdl

Yahoo group for discussion www.oasis-open.org/cover/uddi.html
on UDDI issues

Yahoo group for discussion http://groups.yahoo.com/group/wsdl/
on WSDL issues

Further Reading 735

TEAMFL
Y

Team-Fly®

Chapter 6

Microsoft SOAP www.mssoapinterop.org/
interoperability page

SOAP builders interoperability www.xmethods.com/ilab/
homepage

SOAP builders interoperability www.whitemesa.com/interop.htm
results page

Web service interoperability www.ws-i.org
organization home

Chapter 7

Document Object www.w3.org/DOM/
Model (DOM) home

Java API for XML-based http://java.sun.com/xml/jaxrpc/
RPC (JAX-RPC) home

Java API for XML Messaging http://java.sun.com/xml/jaxm/
(JAXM) home

Java API for XML Processing http://java.sun.com/xml/jaxp/
(JAXP) home

Java API for XML Registries http://java.sun.com/xml/jaxr/
(JAXR) home

Java Architecture for XML http://java.sun.com/xml/jaxb/
Binding (JAXB) home

Java technology and XML http://java.sun.com/xml/index.html

Java XML pack home http://java.sun.com/xml/downloads
/javaxmlpack.html

JWSDP home http://java.sun.com/webservices
/webservicespack.html

SAX home www.saxproject.org/

736 Further Reading

Chapter 8

Java API for XML Processing http://java.sun.com/xml/jaxp/
(JAXP) home

Java Architecture for XML http://java.sun.com/xml/jaxb/
Binding (JAXB) home

The CASTOR project home http://castor.exolab.org/

Crimson JAXP parser home http://xml.apache.org/crimson/index.html

Document Type Definition www.w3.org/TR/html4/sgml/dtd.html
(DTD) home

Extensible Stylesheet www.w3.org/Style/XSL/
Language (XSL) home

OASIS home www.oasis-open.org/

O’Reilly XML.com home www.xml.com

World Wide Web Consortium www.w3c.org
(W3C) home

W3C XML schema home www.w3.org/XML/Schema

Xalan Java transformer home http://xml.apache.org/xalan-j/index.html

Xerces2 Java parser home http://xml.apache.org/xerces2-j/index.html

XML Industry portal home www.xml.org

XML Path Language (XPATH) home www.w3.org/TR/xpath

XSLT specification home www.w3.org/TR/xslt

Chapter 9

JAXM home page http://java.sun.com/xml/jaxm/

JWSDP download information http:java.sun.com/webservices
/webservicespack.html

JWSDP tutorial http://java.sun.com/webservices/docs/1.0
/tutorial/index.html

SAAJ home page http://java.sun.com/xml/saaj/index.html

Sun JAXM/SAAJ tutorial http://java.sun.com/webservices/docs/1.0
/tutorial/doc/JAXM.html

Further Reading 737

Chapter 10

JAX-RPC home page http:java.sun.com/xml/jaxrpc/

JWSDP download information http://java.sun.com/webservices
/webservicespack.html

JWSDP tutorial http://java.sun.com/webservices/docs/1.0
/tutorial/index.html

Sun JAX-RPC tutorial http://java.sun.com/webservices/docs/1.0
/tutorial/doc/JAXRPC.html

Chapter 11

Yahoo group for discussion http://groups.yahoo.com/group
on JAXR issues /jaxr-discussion/

An article on JAXR at http://www.onjava.com/pub/a/onjava
onjava.com /2002/02/27/uddi.html

Articles on JAXR at http://www.javaworld.com/javaworld
Javaworld.com /jw-06-2002/jw-0614-jaxr.html

http://www.javaworld.com/javaworld
/jw-05-2002/jw-0517-webservices.html

An article on registration and http://developer.java.sun.com/developer
discovery of Web services to /technicalArticles/WebServices/jaxrws/
UDDI and ebXML registries
using JAXR

Java.sun.com chat with http://developer.java.sun.com/developer
JAXR spec. lead /community/chat/JavaLive/2002/jl0507.html

JAXR cover pages http://xml.coverpages.org/jaxr.html

Presentation on JAXR http://fr.sun.com/developpeurs/sdc
/webservices/pres/jaxr_v5.pdf

738 Further Reading

Chapter 12

Java Web services developer http://java.sun.com/webservices
pack home /webservicespack.html

Java Web services http://java.sun.com/webservices/docs/1.0
tutorial home /tutorial/index.html

Chapter 13

Liberty Alliance, official Web site www.projectlibert.org

Securing Web services, www.line56.com/articles/default
articles on issues .asp?ArticleID=3779

http://zdnet.com.com/2100-1107-867689.html

Sun Dot Com builder Web http://dcb.sun.com/practices/webservices/
services best practices

Web Services Security forum www.webservices.org/index.php/article
at Webservices.org /archive/5/

Web services security forum www.xwss.org/index.jsp
at XWSS

Web services security at www.theserverside.com/resources/article
Theserverside.com (paper) .jsp?l=Systinet-web-services-part-3

WS-security, paper introducing www-106.ibm.com/developerworks/library
/ws-secure/

Chapter 14

Sun ONE architecture guide http://wwws.sun.com/software/sunone/docs
/arch/index.html

Sun ONE official Web site http://wwws.sun.com/software/sunone/

Further Reading 739

741

Index

A
Abstract Syntax Notation One, 654
actor attribute, 127
addBusinessKey () method, 265
addHeader () method, 410
addName () method, 261
<add_publisherAssertions>

function, 227, 252
AdminClient utility, 158
Advanced Encryption Standard, 625
<Answer> element, 675
Ant utility, 62, 69, 77, 83, 89–92, 310
Apache

Tomcat server, 147–149, 165–166,
172–173, 309

Xalan, 166
Xerces, 148, 166, 342, 345
See also Ant utility; Axis

Applied Cryptography (Bruce
Schneier), 622

architectural models, 6–15
arrays, 119, 121–123, 473
<Assertion> element, 704
<assertionStatusReport> data

structure, 253
Association class, 501, 508–509

asymmetric algorithms, 626–628
asynchronous connections, 513–514
AttachmentPart object, 417, 422
attachments, SOAP, 109–110, 116–117
attribute assertion, SAML, 693–694
attributes, 320, 335–336
AuditableEvent instance, 502
authentication, 622–623
authentication assertion, SAML,

691–693
<AuthInfo> element, 679, 681
authorization, 143–144, 622
authorization assertion, SAML,

694–696
<authToken> data structure, 250
Axis (Apache)

downloading, 62, 147, 165
features, 62, 146–147
infrastructure and components,

150–154, 158–159
installing, 147–149
.NET client, building

infrastructure, 279–280
overview, 278–279
service provider, 282–284
service requestor, 284–289

remote administration, 152

742 Index

Axis (Apache) (continued)
service requester setup, 98–99
Tomcat server, 147–149
Web service creation, example

DAO classes, use of, 180–187
database creation, 167–173
infrastructure, building, 161–165
service provider, 165–173,

175–176, 191–194
service requestor, 173, 176–178,

194–196
testing services, 179–180, 196–198
XML Helper classes, use of,

187–191
Web services programming model,

155–160
WSDL tools, 215

B
B2B. See business-to-business (B2B)

communication
Basic Encoding Rules, 654
<BatchHeader> element, 683
<BatchID> element, 685
BEA, 15, 61. See also WebLogic
<beanMapping> tag, 152
BEEP (Blocks Extensible Exchange

Protocol), 137–138
binding, 302–304, 385, 395–396, 696.

See also Java Architecture for XML
Binding

<bindingDetail> data structure,
241, 245, 252

<binding> element, 205, 210
<bindingTemplate> data struc-

ture, 230–231, 241, 242, 244, 251
Blocks Extensible Exchange Protocol

(BEEP), 137–138
Body element, 112, 213, 228
browser, registry, 535–537
build.xml script, 69, 77–78, 83–84,

89–91
<BulkRegister> element, 682, 683

<BulkRegisterResult> element,
685

BulkResponse interface, 518–521,
682

<BulkStatusRequest> element,
682

<BulkStatusResponse> element,
682

<businessDetail> data structure,
244, 246, 251, 257

<businessEntity> data structure,
229–230, 237, 239, 244, 251, 257

<businessInfo> data structure,
235–237, 261

BusinessLifeCycleManager
interface, 516, 519–521

<businessList> data structure,
235–238, 261

BusinessQueryManager inter-
face, 523–531

<businessService> data struc-
ture, 230, 238, 241, 244, 247, 251

business-to-business (B2B) commu-
nication, 17, 19–21, 24–25, 30–32,
720

C
Call object, 469
canonicalization, XML, 655–656
<CanonicalizationMethod>

element, 652, 653, 661
capabilities, JAXR, 497
capability interfaces, 496
capability profiles, JAXR, 497–498
Cape Clear, 35
cascading style sheets, 364
CASTOR (Exolab), 384–385
categorization, 233–236
<categoryBag> data structure,

232, 233, 236, 248
Certificate Authority, 630
characters () method, 348
<CipherData> element, 641

Index 743

Classification interface, 501,
503–506, 527–528

ClassificationScheme inter-
face, 500, 503–508

clientgen utility, 62, 92
<ClientInfo> element, 683
client/server application, 6–10
close () method, 515
Collaborative Protocol Agreement,

722
comment, XML, 318
Common Language Runtime (CLR),

275, 276
Common Object Request Broker

Architecture (CORBA), 6–10
communication models, 14–15,

50–51, 57
complexType, 335, 336
Component Object Model

(COM), 13
Concept instances, 501, 505
conditional processing, 370
confidentiality, 622
confirmAssociation ()

method, 509
ConnectionFactory object,

510–511, 513–514, 516
Connection interface, 496
connection management API, 510–516
connection pool, creating, 65
Content-ID reference, 116–117
Content-Location reference, 116–117
ControllerServlet, 593–595
CORBA. See Common Object

Request Broker Architecture
CPP/CPA, ebXML, 30, 49
createConnection () method,

408, 513
createMessageFactory method,

415
createObject () method, 517
Crimson parser, 339, 342, 345
cryptography, 621–628

D
DAO classes, 70–78, 180–187,

280–283
database server, 6
database tables, 65–70
Data Encryption Standard, 625
DataHandler class, 475
data source, creating, 65
data structures, UDDI, 229–232
data types, 331, 333, 472–475
DCOM (Distributed Common

Object Model), 13–14
DeclarativeQueryManager

interface, 531–533
decryption, 643–650
DecryptionContext () object,

648–650
DefaultHandler class, 344,

346–347, 349
<definitions> element, 205, 208
<delete_binding> function, 228,

252
<delete_business> function,

227, 251, 265
deleteObjects () method, 518
<delete_publisherAsser-
tions> function, 227

<delete_service> function, 228,
252

<delete_tModel> function, 228,
252

deployment descriptor, 88–89,
445–447, 461–462, 480–481

deprecateObjects () method,
519

deserialization, 124, 152, 455, 472
destroy () method, 458
detached signatures, 652
<detail> element, 113, 250, 410
digital certificate, 630
digital signature, 33, 142–143,

628–629, 667

744 Index

Digital Signature Algorithm (DSA),
629

DII. See Dynamic Invocation
Interface

Directory Services Markup Language,
31–32

<discard_authToken> function,
228, 250

<dispositionReport> data
structure, 238, 250, 251, 252

Distinguished Encoding Rules, 654
Distributed Common Object Model

(DCOM), 13–14
distributed computing

advantages, 5–6
challenges in, 16–17
core technologies, 6–14
definition, 4–5
importance, 5–6
J2EE role in, 17–19
service-oriented architecture, 22, 41
XML role in, 19

DLL. See Dynamic Link Library
Document Builder, JAXP, 340
DocumentBuilderFactory class,

340, 342, 355–357
Document object, 357–359
Document Object Model (DOM),

300, 647, 648
Document Type Definition (DTD),

299, 325–329
doDecrypt () method, 648
doDelete () method, 265,

557–558
doEncrypt () method, 645–648
doGET () method, 702
doPublish () method, 538
doQuery () method, 551
doSearch () method, 261
doSubmit () method, 257
DSA (Digital Signature Algorithm),

629

<DSAKeyValue> element, 654
<ds:CanonicalizationMethod>

element, 143
<ds:KeyInfo> element, 640,

671–674
<ds:KeyName> element, 673
<ds:Reference> element, 143
<ds:RetrievalMethod> element,

672, 680
<ds:Signature> element, 679, 684
<ds:SignatureMethod> element,

143
DTD. See Document Type Definition
Dynamic Invocation Interface (DII),

469–471, 488–490, 578, 596
Dynamic Link Library (DLL),

277–278, 286–287

E
electronic business Extensible

Markup Language (ebXML)
Business Process Specification

Schema (BPSS), 721, 722
Collaborative Protocol Profile

(CPP), 721–722
components of, 30, 49
consumer servlet, 443–445
development of, 719
Messaging Service, 720, 722
producer servlet, 439–443
Registry/Repository, 46, 721, 722
technical architecture, 719–723
Web services implementation, 53
WUST technologies, 45

element, XML
attributes, 320, 335–336
collision, 323
complex, 332
declaration, 325
description, 319–320
explicit and implicit types, 333
local and global definitions, 334
multi-attribute, 327

Index 745

prefixes, use of, 323
XML Schema, 330–335
encodingStyle attribute, 111, 112,

213–214
EncryptDecrypt class, 637, 645,

648
<EncryptedData> element, 640
<EncryptedKey> element, 640–641
encryption, 140–142, 622, 641–643,

644–650
EncryptionContext object, 646
<EncryptionMethod> element,

640
EncryptionTest class, 637–641
endDocument () method, 347
endElement () method, 348
Entegrity, 688
entities, XML, 320–322, 327–328
Entrust, 630, 668, 671
enumeration data type, 118–119
enveloped signatures, 651
Envelope element, 108, 110–111
enveloping signatures, 651
ErrorListener interface, 375
executeQuery () method, 532
Exolab, 384–385
extensibility elements, 211
Extensible Markup Language.

See XML
ExtensibleObject interface, 502
Extensible Stylesheet Language.

See XSL
Extensible Stylesheet Language

Transformation. See XSLT
ExternalIdentifier instances,

501, 532
ExternalLink class, 501, 532
ExtrinsicObject class, 502

F
FactoryConfigurationError

message, 340, 345

FactoryConfiguration
Exception message, 348, 359

faultactor element, 113
faultcode element, 113
<fault> element, 112–115, 209, 210
faultstring element, 113
FederatedConnection interface,

516, 534
federated Web services, 723
<find_binding> function, 227,

241–243
<find_business> function, 227,

234, 261
FindBusiness object, 261
<findQualifiers> element, 236,

239, 241, 242, 248
FindQualifiers interface,

526–527
<find_relatedBusinesses>

function, 227, 238–240
<find_service> function, 227,

240–241
<find_tModel> function, 227,

243–244

G
generateSignature ()

method, 662–663
GenerateValidateSignature

class, 657, 661–663, 666
getAssertion () method, 702
<get_assertionStatusReport>

function, 253
get_authToken method, 228, 250,

257, 265
<get_bindingDetail> function,

227, 245
<get_businessDetailExt>

function, 227
<get_businessDetail> function,

227, 244, 245
getCatalog () method, 596

TEAMFL
Y

Team-Fly®

746 Index

getCoreValidity () method,
668

getDocument () method, 647
getFeature () method, 346
getKeyInfoResolver ()

method, 646
getPort method, 467, 486
getProductCatalog ()

method, 583–584, 597, 599, 612
<get_publisherAssertions>

function, 252
getReferenceValidity ()

method, 667–668
<get_registeredInfo> function,

253
getRegistryService ()

method, 514
<get_serviceDetail> function,

227, 245
getSignedInfoValidity ()

method, 667–668
getStatus () method, 513
<get_tModelDetail> function,

227, 245
getXMLReader () method, 349

H
HandlerBase class, 344, 346–347,

349
handlers, Axis, 150
hashing, 624, 629
Header attribute, 111
HTML tags, 314
HTTP (Hyper Text Transfer Proto-

col), 17, 131–134, 137, 290

I
IBM

e-Business, 37
Key Generator utility, 642
MQSeries, 15
Network Accessible Services Speci-

fication Language (NASSL), 202

products, 35
UDDI access point URLs, 228
Web Services Toolkit, 215, 254
WebSphere Application Server 4.5,

35
XML Security Suite, 656
<identifierBag> data structure,

231, 236
init () method, 458
<input> element, 209, 210
integrity, 623, 629
interface class, 70
intermediaries, SOAP, 125–128
interoperability

challenges, 290
importance of, 271
Java API for XML Messaging

(JAXM), 450
Java API for XML RPC (JAX-RPC),

491
means of ensuring, 272–273
SOAP proxies, 273
testing, 274, 292
W3C XML Schema Definitions

(XSD), defining, 273
of Web services, 26
Web Services Interoperability

Organization, 291–292
WSDL and, 273
invoke () method, 157
IOPSIS, 35
iPlanet products, 36, 701, 730, 731
isAssertionValid () method,

704, 705
isAvailable () method, 513
isNamespaceAware () method,

356–357
ISO 3166 categorization system, 234,

248
issuing authority, SAML, 689–695
isValidating () method, 357
isValid () method, 395

Index 747

J
J2EE architecture, 17–19
JABBER, 105
Java2WSDL utility, 153, 215–220
Java API for XML Messaging

(JAXM)
application architecture, 403–406
asynchronous messaging

deployment, 445–448
ebXML consumer servlet, 443–445
ebXML producer servlet, 439–443
testing, 448–449

communication using provider,
414–419

communication without a
provider, 420–424

deployment, 425–430
description, 58, 304–306, 722
interoperability, 450
in J2EE 1.4 platform, 450
java.xml.messaging, 407–408
java.xml.soap, 409–413
JAX-RPC compared, 454
message interaction patterns, 406
point-to-point messaging, 431,

434–438
role in Web services, 402–403

Java API for XML Processing (JAXP)
API model, 339
classes and interfaces, list of,

340–341
description, 58, 298, 337–338
DOM

description, 300, 353
document builder, 357–358
namespaces, 356–357
processing model, 354
sample source code, 360–364
tree, 359
validation, 357

implementations, 342
parser, 339

pluggable interface, 301–302,
338–339

reference implementation, 303
SAX

default handler, creating, 346–348
description, 299, 342–343
features, setting, 346
namespaces, setting, 345–346
processing model, 343
reading and writing XML, 349
sample source code, 350–353
SAX parser, 344–349
validation, setting, 346

threading, 383
uses for, 338
version, 314, 338
XSLT

description, 300–301, 373–377
sample code, 377–383

Java API for XML Registries (JAXR)
architecture components, 494–496
association of registry objects,

508–509
capabilities, 497
capability profiles, 497–498
classes and interfaces, 499
classification of registry objects,

502–507
deleting information, 557–561
description, 58, 308, 494, 722
information model, 499, 503
programming model, 498
publishing

compiling, 547–549
executing, 549–550
programming steps, 538
source code, 539–547

querying, 551–557
Registry Browser, 535–537
Registry Server, JWSDP, 533–535
registry services API

connection management API,
510–516

748 Index

Java API for XML Registries (JAXR)
(continued)
life cycle management API,

516–521
query management API, 522–533

Java API for XML Remote Procedure
Calls (JAX-RPC)

application architecture, 454–456
client

classes, 466
description, 455
Dynamic Invocation Interface

(DII), 469–471, 488–490
dynamic proxy-based, 467–469,

486–488
exception, 466
interfaces, 465
stub-based, 466–467, 484–486

description, 58, 306–308
example Web service, 307–308
interoperability, 491
in J2EE 1.4 platform, 491
JAXM compared, 454
mapping, 472–475
role in Web services, 452–453
service

configuring, 459, 463, 478
definition, 457–458, 476–477
description, 454–455
developing from Java classes,

457–462
developing from WSDL docu-

ment, 463–464
implementation, 458–459, 477
packaging and development,

460–462, 464, 480–482
testing, 482–483

stubs and ties, generation of, 460,
479–480, 483–484

Java Architecture for XML Binding
(JAXB)

data binding generation, 386–392
description, 58, 302–304, 383–385

marshalling XML, 392–394
sample code, 395–399
services provided, 303
unmarshalling Java, 394–395

Java Database Connectivity (JDBC),
59, 497

Java for WSDL (JWSDL), 202
Java Messaging Service (JMS), 15,

137, 305
Java RMI (Remote Method Invoca-

tion), 10–13
Java Server Pages (JSP), 59
Java Server Pages Standard Tag

Library (JSTL), 58, 309, 599–600
Java Web Services Developer Pack

(JWSDP)
Ant build tool, 311
Apache Tomcat container, 309
case study

architecture, 567–568
discovery of Web services,

600–602
execution, 612–615
overview, 563–567
publishing and discovery classes,

572–574
service provider, designing,

568–572
service provider, developing,

582–593
service provider, runtime infra-

structure, 602–609
service registry, browsing,

592–593
service registry infrastructure,

609–610
service requestor, designing,

575–582
service requestor, developing,

593–602
service requestor, runtime infra-

structure, 610–612
components, 58

Index 749

description, 36, 311–312
document-oriented APIs, 297–298
downloading, 311
Java XML Pack, 297
JAXB, 302–304
JAXM, 304–306
JAXP, 298–303
JAXR, 308
JAX-RPC, 306–308
JSTL, 309
procedure-oriented APIs, 298
registry server, 59, 310
UDDI implementation, 254

Java Web Start, 723
java.xml.messaging, 407–408
Java XML Pack, 297
java.xml.soap, 409–413
JAXB. See Java Architecture for XML

Binding
JAXM. See Java API for XML

Messaging
JAXP. See Java API for XML

Processing
JAXR. See Java API for XML

Registries
JAX-RPC. See Java API for XML

Remote Procedure Calls
JDBC (Java Database Connectivity),

59, 497
Jini, 717
JMS (Java Messaging Service), 15,

137, 305
JSP (Java Server Pages), 59
JSTL (Java Server Pages Standard

Tag Library), 58, 309, 599–600
JWSDL (Java for WSDL), 202
JWSDP. See Java Web Services

Developer Pack

K
key

in asymmetric algorithms, 626–628
definition, 623

key pair creation, 641–643
length, 623, 625
private, 626–628
public, 626–628
secret, 624, 626
in symmetric algorithms, 624–626
See also Cryptography
<KeyBindingAuth> element, 679
<KeyBinding> element, 676
<keyedReference> element, 239,

248
Key Generator utility (IBM), 642
<KeyInfo> element, 638, 646,

652–654, 661, 665–666
KeyInfoResolver object, 646, 649
<KeyName> element, 673
key recovery service, X-KRSS,

681–685
key registration request, X-BULK,

682–683
key registration response, X-BULK,

684
key revocation request, X-KRSS, 681
keystore file, 664
Keytool utility (Sun), 641–643
<KeyValue> element, 673

L
Liberty Alliance, 723
Life Cycle Management API,

516–521
LifeCycleManager interface, 516,

517–519
<Locate> element, 674
<LocateResult> element, 675
locate service, XKMS, 672–675

M
marshalling, 303, 392–394
maxOccurs attribute, 331–333
Message Driven Beans, 407, 635
<message> element, 205, 208

750 Index

MessageFactory object, 412, 415,
418, 421, 424

Message-Oriented Middleware
(MOM), 14–15

messaging-based communication
model, 51, 155, 157–158

Microsoft Corporation. See specific
applications

Microsoft Intermediate Language
(MSIL), 274–275

Microsoft Messaging Queue, 15
minOccurs attribute, 331–333, 336
misUnderstood attribute, 115
mustUnderstand attribute, 111,

113, 115–116

N
NAICS categorization system, 234,

248, 508
namespace, XML

default, 322, 323
description, 322–323
DOM and, 356–357
setting, 345–346
XML Schema declaration, 329
XSL, 367

naming conventions, XML, 316–317
.NET (Microsoft)

class library, 275–276
client development

compiling client application, 278,
288

compiling SOAP proxy as a DLL,
277–278, 286–287

environment setup, 282
executing client from Windows

environment, 278, 289
infrastructure, building, 279–281
proxy, generating, 277, 285
service provider, creating,

282–283
service provider, implementing,

283–284

service requestor, creating,
284–289

testing the client, 289
WSDL, obtaining, 277, 284

Common Language Runtime, 275
compilers, 275
description, 37, 274–275
Web site, 276

NetBeans, 728–729
Netegrity, 685, 688
newDocumentBuilder () static

method, 355
newInstance () method, 344,

355, 374–375, 510
newSAXParser () static method,

344
newTransformerFactory ()

method, 374–375
non-repudiation, 623, 629
North American Industry Classifica-

tion System (NAICS), 234, 248,
508

not () function, 370

O
<Object> element, 652, 655
Object Request Broker (ORB), 8, 9
one-way hash function algorithms,

624
OneWayListener interface,

407–408, 418
onMessage () method, 407–408,

418, 424
onMethod () method, 706
Oracle, 35–36
Organization for the Advancement

of Structured Information Stan-
dards (OASIS), 30, 32–34, 685, 707,
719

Organization instance, 500
<output> element, 209, 210

Index 751

P
parse () method, 349
ParserConfiguationException

message, 345, 348, 357, 359
Parser Configuration, JAXP, 340
parsing, 298
<part> element, 205, 208–209,

213–214
password, 624
Phaos XML, 633
placeOrder () method, 587, 598
PointBase database, 62, 65, 69, 78, 84,

166, 603
Point-to-Point message model, 15
Policy Decision Point (PDP), 698, 708
Policy Enforcement Point (PEP), 698,

707
Policy Information Point (PIP), 708
Policy Repository Point (PRP), 708
polymorphic accessor, 119
<port> element, 205
<portType> element, 205, 208, 209,

210
Possession of Private (POP) key, 678,

679
PostalAddress instances, 502
processing instruction, XML, 318
prolog, XML, 317
<Prototype> element, 679
ProviderConnectionFactory

object, 408, 414, 418
ProviderConnection object, 414,

417–418
proxy, 277, 285
Public Key Infrastructure, 32–33,

628, 668–670
<publisherAssertion>

data structure,
230, 251, 252, 253

Publish/Subscribe message
model, 15

Q
qname attribute, 115
<Query> element, 674
querying, using JAXR, 551–557
Query interface, 532
Query Management API
BusinessQueryManager inter-

face, 522–531
DeclarativeQueryManager

interface, 531–533

R
<Reference> element, 652, 653
<registeredInfo> data structure,

253
<RegisterResults> element, 685
registration service, X-KRSS,

678–680
registry browser, 535–537
RegistryEntry interface, 499–500
RegistryObject class, 499–505
RegistryPackage class, 502
Registry Server, JWSDP, 310,

533–535
RegistryService interface, 496,

514
<relatedBusinessesList> data

structure, 238, 240
<relatedBusinessInfo> data

structure, 238–239
remote interface, session bean, 85–86
remote procedure call (RPC)

communication model, RPC-based,
50–51, 155–158

Web services, RPC-based, 174–180
See also Java API for XML Remote

Procedure Calls
replace () method, 648
ReqRespListener interface, 408,

418, 423–424
<Request> element, 683
<Respond> element, 674
<Result> element, 675

752 Index

<RetrievalMethod> element, 653
revocation service, X-KRSS, 680–681
RMI-IIOP protocol, 12–13, 56
root, 317–318, 366
RSA (Rivest-Shamir-Adelman)

algorithm, 628, 629, 641–643
<RSAKeyValue> element, 654

S
SAML. See Security Assertions

Markup Language
<save_binding> function, 227,

252
<save_business> function, 227,

233, 251, 257
SaveBusiness object, 257
saveChanges () method, 417,

423
saveObjects () method, 517–518
<save_service> function, 227,

233, 251
<save_tModel> function, 227, 233,

252
SAX. See Simple Access for XML
SAXParser class, 340, 344, 348–349
SAXParserFactory class, 340, 344,

345
scalability, 6, 10, 14
Schneier, Bruce (Applied Cryptogra-

phy), 622
SearchBusiness function, 260
searching, information in a UDDI

registry, 260–264
Securant Technologies, 685, 688
Secure Socket Layer (SSL), 137, 628,

631, 632
security

authorization, 143–144
challenges of, 620–621
cryptography, 621–628
description, 140
digital certificates, 630
digital signatures, 142–143, 629–630

encryption, 140–142
goal of, 620
JAXR, 514
XACML, 706–710
XKMS, 668–675
XML Encryption, 630–638
XML Signature, 651–657
See also Security Assertions

Markup Language (SAML);
specific protocols and technologies

Security Assertions Markup Lan-
guage (SAML)

architecture, 689–691
attribute assertion, 693–694
authentication assertion, 691–693
authorization (decision) assertion,

694–696
back-office transaction scenario,

687
bindings and protocols, 696–697
description, 33–34, 685–687
documents, 688–689
implementation, 687–689
model of producers and consumers,

697–698
Single Sign-On, 686, 698–706
XACML and, 708

serialization, 124, 152, 455, 472
ServiceBinding instance, 500
Service class, 500
service container, 43, 52
Service Container layer, Sun ONE,

724, 725, 727
Service Delivery layer, Sun ONE,

724, 725, 727
service description, WSDL-based,

52, 55
<serviceDetail> data structure,

245, 251
<service> element, 205, 210
servicegen utility, 62, 91
Service Integration layer, Sun ONE,

724, 725

Index 753

ServiceLifeCycle interface, 458
<serviceList> data structure,

240, 241, 242
service-oriented architecture (SOA),

22
service provider development

application design, 63–64
class diagram, 64
client creation, 92–93
DAO classes, building, 70–78
database tables, creating, 65–70
development environment, setting

up, 65
generating Web services, 91–94
implementing J2EE components, 70
sequence diagram, 64
session bean, building, 85–91
steps, 62–63
testing service provider, 95–98
XML Helper classes, building,

79–84
service requester, 27, 98–101
session bean, 70, 85–91
SetConcept () method, 505
setCredentials () method,

514
setData () method, 648
setEncryptedType () method,

648
setErrorListener () method,

375
setFeature () method, 346
setNamespaceAware ()

method, 346
setProperties () method, 511
<set_publisherAssertions>

function, 227, 253
setURIResolver () method,

376
setValidating () method, 346
SignatureContext object, 665
<Signature> element, 652, 653,

655, 659, 665, 666

<SignatureMethod> element, 652,
653, 661

SignatureTest class, 657–662, 666
<SignatureValue> element, 143,

652
<SignedInfo> element, 143, 652,

655, 661, 667
Simple Access for XML (SAX)

default handler, creating, 346–348
description, 299, 342–343
features, setting, 346
namespaces, setting, 345–346
processing model, 343
reading and writing XML, 349
sample source code, 350–353
SAX parser, 344–349
validation, setting, 346

Simple Mail Transport Protocol
(SMTP), 134–136

Simple Object Access Protocol
(SOAP)

binding, WSDL, 212–214
communication models, 128–130
components, 46
description, 28, 103–104
emergence of, 105–106
encoding, 109, 118–124
interoperability and, 272–274
JAXM messaging, 305–306
JAX-RPC and, 307–308
limitations, 199
message anatomy

attachments, 109–110, 116–117
envelope, 109, 110–111
Fault element, 112–115
header, 111
mustUnderstand attribute,

115–116
request message, 107
response message, 108

message exchange model, 124–127
message exchange patterns,

138–140

754 Index

Simple Object Access Protocol
(continued)

proxies, 273, 277
security, 140–144
SOAP over BEEP, 137–138
SOAP over HTTP, 131–134, 137
SOAP over HTTP/SSL, 137
SOAP over JMS, 137
SOAP over SMTP, 134–136
specifications, 106
versions, 47, 104
in Web services architecture, 45,

46–47
Web services development using

Apache Axis
Axis infrastructure, 149–154,

161–165
Axis programming model,

154–160
example, 160
implementation of messaging-

based services, 180–198
implementation of RPC-based

services, 174–180
installing Axis, 147–149
service provider environment,

creating, 165–173
service requestor environment,

creating, 173
XML-based protocols, 104
XML message discontinuities, 290

Single Sign-On (SSO), 686, 698–706
Slot class, 501
SMTP (Simple Mail Transport Proto-

col), 134–136
SOA (service-oriented architecture),

22
SOAP. See Simple Object Access

Protocol
soapAction attribute, 150, 213, 290
<soap:address> element, 210, 214
SOAP Attachments API for Java, 306
<soap:binding> element, 212–213

<soap:body> element, 213–214
SOAPBodyElement object, 417, 422
SOAPBody object, 290, 409–410,

416–417, 421–422
SOAPConnectionFactory class,

421
SOAPConnection object, 411–412,

418–423, 431
SOAPElement object, 412
SOAP Encoding, 46
SOAPEnvelope object, 46, 108, 110,

410, 412, 416, 421
SOAPFaultElement object, 410
SOAPFault object, 290, 410
SOAPHeaderElement object, 416,

422
SOAPHeader object, 111, 409–410,

416, 421–422
SOAPMessage object, 411, 415,

417–418, 421, 423
SOAP Messaging, 128, 130
<soap:operation> element, 213
SOAPPart object, 409, 412, 416
SOAP RPC, 46, 128–130
SOAP Transport, 46
Solaris Operating Environment, 729
SpecificationLink class, 500
SSL (Secure Socket Layer), 137, 628,

631, 632
SSO (Single Sign-On), 686, 698–706
startDocument () method, 347
startElement () method, 348
Structure data type, 120–121
Sun

Cluster software, 729–730
Crimson parser, 339, 342
Keytool utility, 641–643
products, 36

Sun ONE (Open Net Environment)
architecture

product stack, 727–731
service layers, 724–725

Index 755

Solaris Operating Environment,
729

standards and technologies,
725–727

Sun Cluster, 729–730
Sun ONE Application Server, 36,

731
Sun ONE Directory Server, 730
Sun ONE Identity Server, 687,

730–731
Sun ONE Integration Server, 731
Sun ONE Message Queue, 15, 731
Sun ONE Messaging Server, 730
Sun ONE Portal Server, 730
Sun ONE Studio, 215, 728–729
Sun ONE Web Server, 730

description, 36, 37
ebXML, 719–723
Platform for Network Identity, 701
Services on Demand, 715–718,

724–725
vision behind, 715–717
Web applications, 718
Web clients, 723
Web services, 718–723

symmetric algorithms, 624–626
synchronous connections, 513–514
Systinet

products, 36
UDDI Registry, 224, 255–256
WASP, 36, 215–221, 254–255, 688

T
tag, HTML, 314
tag, XML, 309, 314–319, 335
targetNamespace attribute
tcpmon utility, 153–154, 179–180,

198
TemplateGenerator class,

663–664
templates, XSL, 368–369
TLS (Transport Layer Security), 631,

632

<tModel> data structure, 231,
233–235, 237, 243, 244

<tModelDetail> data structure,
245, 252

<tModelInstanceDetails> data
structure, 237

<tModelList> data structure, 243
Transformer, JAXP, 340
TransformerFactory class, 340,

342, 374
Transformer Factory Configuration

Error, JAXP, 340
transparency, 9
Transport Layer Security (TLS), 631,

632
Triple-DES standard, 625
trust service provider, 675
Trust Services Integration Kit

(Verisign), 633
trust services providers, 668–670,

678
two-tier architecture model, 6
<typeMapping> tag, 152
<types> element, 205, 208, 209

U
UDDIApiInquiry object, 261
UDDIApiPublishing object, 257,

265
UDDI Business Registry (UBR),

223–224
unDeprecateObjects ()

method, 519
Universal Description, Discovery,

and Integration (UDDI)
categorization, 233–236
data structures, 229–232
description, 29, 222–223
implementations, 254–255
inquiry API functions

find_xx functions, 235–244
get_xx functions, 244–248
search qualifiers, 248–249

TEAMFL
Y

Team-Fly®

756 Index

Universal Description, Discovery,
and Integration (UDDI) (continued)

limitations, 269
programming API, 226–229
publishing API functions, 249–253
publishing information to a UDDI

registry, 257–260
registering as Systinet UDDI

registry user, 255–256
registries

business uses of, 225
categorization in, 233–235
deleting information from,

264–268
description, 49
interfaces, 224, 225
private and public, 223
searching information in, 260–264
specifications, 225–226
UBR (UDDI Business Registry),

223
in Web services implementation,

52
in Web services architecture, 46, 49

unmarshalling, 303, 394–395
URIResolver interface, 376
URLEndpoint object, 423, 598
User objects, 502

V
ValidateException message, 395
validate () method, 395
validate service, X-KISS, 676–677
validateSignature ()

method, 662–663, 666
validation

Document Type Definition,
325–328

DOM and, 357
importance of, 324
JAXB services for, 303
parser configuration for, 346
SAX support for, 343

XML Schema, 328–336
<ValidityInterval> element,

676
Verisign, 630, 656, 668, 671, 675, 688
VersionMismatch attribute, 113

W
WASP (Systinet), 36, 215–221,

254–255, 688
WDDX (Web Distributed Data

Exchange), 105
WebLogic
clientgen utility, 62, 92
database table creation, 65–69
deployment descriptor, 88–89
description, 34–35, 61–62, 215, 254
home page generation, 95–96
servicegen utility, 62, 91
Workshop, 61

Web service deployment descriptor
(WSDD) file, 151–152, 158–159,
176

Web services
architecture

communication models, 50–51
core building blocks, 43–45
design requirements, 43
service-oriented architecture, 41
standards and technologies, 45–50
W3C working group on, 42

benefits, 38, 620
challenges in, 34
characteristics of, 25–26
definition, 22
description, 21–22
emergence of, 20
example scenario, 22–24
implementation steps, 52–53
life cycle, 203–204
motivation for, 24–25
operational model, 26–27
reasons for choosing over Web

applications, 26

Index 757

standards, 28–34, 45–50
strategies, vendor supplied, 37
vendors of software and tools,

34–36
Web Services Choreography Inter-

face (WSCI), 31
Web Services Description Language

(WSDL)
anatomy of definition document,

205, 208–210
Axis support, 152–153
bindings, 211–214
definition creation, 203
display on WebLogic home page,

97–98
example document, 47–48
future of, 221–222
independence of, 204
information contained in defini-

tion, 202–203
instance specific namespace, 208
interoperability and, 273
JAX-RPC service development,

463–464
limitations of, 222
mapping, 474–475
obtaining the WSDL of a Web

service, 277, 284
operation types, 209–212
service description, 52, 55
service requestor client creation,

158
tools, 214–221
versions, 49, 202, 221–222
weather information service sam-

ple code, 205–207
in Web services architecture, 46,

47–49, 203–204
Web Services Interoperability Orga-

nization (WS-I), 291–292
web-services.xml deployment

descriptor, 91

White Mesa, 292
WSCI (Web Services Choreography

Interface), 31
WSDD (Web service deployment

descriptor) file, 151–152, 158–159,
176

WSDL. See Web Services Description
Language

WSDL.exe utility, 277
WSDLJava2 utility, 153, 158

X
X.509 certificate, 653, 654, 664–665,

672
XACML. See XML Access Control

Markup Language
Xalan, 342, 648
X-BULK, 671, 682–684
X-KISS. See XML Key Information

Service Specification
XKMS. See XML Key Management

Specification
X-KRSS. See XML Key Registration

Service Specification
XLANG, 32
XML (Extensible Markup Language)

basics, 314–316
benefits, 19
description, 28
history, 314
HTML compared, 314
namespaces, 322–323
parsing to DOM tree, 647, 648
syntax, 316–322
uses of, 315
validation of documents

Document Type Definition (DTD),
325–328

importance of, 324
XML Schema, 328–336

XML Access Control Markup
Language (XACML), 33, 706–710

758 Index

XML Encryption
decrypting an element, 643–644
definition, 32, 631
description, 630–631
EncryptDecrypt class, 637, 645,

648
encrypting an element, 641–643
EncryptionTest class, 637–641,

642, 643
example of use, 631–632, 633–638
implementation of, 633
key pair generation, 641–642, 643
programming steps for encryption

and decryption, 644–650
SSL/TLS compared, 631, 632

XML Helper class, 70, 79–84,
187–191, 280–283

XML Key Information Service Speci-
fication (X-KISS), 33, 670–677

XML Key Management Specification
(XKMS)

components, 670
description, 32–33, 668–670
implementations, 671
SOAP envelope, 671
usage diagram, 669
W3C Working Group, 670
X-KISS, 670, 671–677
X-KRSS, 670, 677–685

XML Key Registration Service Speci-
fication (X-KRSS), 33, 670,
677–685

XML Metadata Interchange, 105
XMLReader class, 349
XML Schema

attributes, 335–336
definitions, 330–335
description, 328
DTD compared, 328–329

elements, 330–335
interoperability issues, 290
multiple schema, 330
namespace declaration, 329

XML Security Library (Aleksey
Sanin), 633

XML Security Suite (IBM), 633
XMLSerializer API (Xalan), 648
XML Signature

canonicalization, 655–656
description, 33
GenerateValidatesSignature

class, 657–658, 661–663, 666
implementations of, 656
programming steps for generating

and validating, 662–668
SignatureTest class, 657–662,

666
syntax, 652–654
types of signatures, 651–652
Working Group, 631

XPath, 365, 639, 665
xrpcc tool, 456, 459–460, 463–464,

479, 483
XSL (Extensible Stylesheet

Language)
description, 364–366
namespaces, 367
root element, 366
syntax, 368–371
XML declaration, 366

XSLT (Extensible Stylesheet
Language Transformation)

description, 300–301, 372–373
factory and transformer class,

374–376
processing model, 373–374
sample code, 377–383
transforming XML, 376–377

	Contents
	Foreword
	Introduction
	Technologies Covered in This Book
	Target Audience
	Organization of the Book
	Companion Web Site
	Support and Feedback

	Part 1 - Evolution and Emergence of Web Services
	Evolution of Distributed Computing
	What Is Distributed Computing?
	The Importance of Distributed Computing
	Client- Server Applications
	CORBA
	Java RMI
	Microsoft DCOM
	Message- Oriented Middleware
	Common Challenges in Distributed Computing
	The Role of J2EE and XML
	in Distributed Computing
	The Emergence of Web Services
	Summary

	Introduction to Web Services
	What Are Web Services?
	Motivation and Characteristics
	Why Use Web Services?
	Basic Operational Model of Web Services
	Core Web Services Standards
	Other Industry Standards Supporting Web Services
	Known Challenges in Web Services
	Web Services Software and Tools
	Web Services Strategies from Industry
	Leaders: An Overview
	Key Benefits of Web Services
	Summary

	Part 2 - Web Services Architecture and Technologies
	Building the Web Services Architecture
	Web Services Architecture
	and Its Core Building Blocks
	Tools of the Trade
	Web Services Communication Models
	Implementing Web Services
	Developing Web Services- Enabled Applications
	Summary

	Developing Web Services Using SOAP
	XML- Based Protocols and SOAP
	Anatomy of a SOAP Message
	SOAP Encoding
	SOAP Message Exchange Model
	SOAP Communication
	SOAP Messaging
	SOAP Bindings for Transport Protocols
	SOAP Security
	Building SOAP Web Services
	Developing SOAP Web Services Using Java
	Creating Web Services Using Axis: An Example
	Known Limitations of SOAP
	Summary

	Description and Discovery of Web Services
	Web Services Description Language (WSDL)
	Universal Description, Discovery,
	and Integration (UDDI)
	Summary

	Creating .NET Interoperability
	Means of Ensuring Interoperability
	Microsoft .NET Framework: An Overview
	Developing Microsoft .NET Client for Web Services
	Challenges in Creating Web Services
	Interoperability
	The WS- I Initiative and Its Goals
	Public Interoperability Testing Efforts
	Summary

	Part 3 - Exploring Java Web Services Developer Pack
	Introduction to the Java Web Services Developer Pack (JWSDP)
	Java Web Services Developer Pack
	Downloading the Web Services Pack
	Summary

	XML Processing and Data Binding with Java APIs
	Extensible Markup Language (XML) Basics
	Java API for XML Processing (JAXP)
	Java Architecture for XML Binding (JAXB)
	Summary

	XML Messaging Using JAXM and SAAJ
	The Role of JAXM in Web Services
	JAXM API Programming Model
	Basic Programming Steps for Using JAXM
	JAXM Deployment Model
	Developing JAXM- Based Web Services
	JAXM Interoperability
	JAXM in J2EE 1.4
	Summary

	Building RPC Web Services with JAX- RPC
	The Role of JAX- RPC in Web Services
	JAX- RPC APIs and Implementation Model
	JAX- RPC- Supported Java/ XML Mappings
	Developing JAX- RPC- Based Web Services
	JAX- RPC in J2EE 1.4
	JAX- RPC Interoperability
	Summary

	Java API for XML Registries
	Introduction to JAXR
	JAXR Architecture
	JAXR Information Model
	JAXR Registry Services API
	JAXR Support in JWSDP 1.0
	Understanding JAXR by Examples
	Summary

	Using the Java Web Services Developer Pack: Case Study
	Case Study Overview
	Case Study Architecture
	Design of Components
	Implementation
	Setting Up the JWSDP Environment
	Executing a Scenario
	Summary

	Part 4 - Security in Web Services
	Web Services Security
	Challenges of Securing Web Services
	XML Encryption
	XML Signatures
	XML Key Management Specification (XKMS)
	Security Assertions Markup Language (SAML)
	XML Access Control Markup Language (XACML)
	Conclusion
	Summary

	Part 5 - Web Services Strategies and Solutions
	Introduction to Sun ONE
	The Vision behind Sun ONE
	Delivering Services on Demand (SoD)
	Sun ONE Architecture
	Summary

	Further Reading
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14

	Index

