

Release Team [oR] 2001
[x] java

 - 2 -

Data Structures & Algorithms in Java
by Robert Lafore ISBN: 1571690956

Sams © 1998, 617 pages

Beautifully written and illustrated, this book introduces you to
manipulating data in practical ways using Java examples.

Table of Contents
Back Cover

Synopsis by Rebecca Rohan

Once you've learned to program, you run into real-world problems that require
more than a programming language alone to solve. Data Structures and
Algorithms in Java is a gentle immersion into the most practical ways to make
data do what you want it to do. Lafore's relaxed mastery of the techniques
comes through as though he's chatting with the reader over lunch, gesturing
toward appealing graphics. The book starts at the very beginning with data
structures and algorithms, but assumes the reader understands a language
such as Java or C++. Examples are given in Java to keep them free of explicit
pointers.

 - 3 -

Table of Contents

 Data Structures and Algorithms in Java - 4
 Introduction - 7
 Part I
 Chapter 1 - Overview - 11
 Chapter 2 - Arrays - 29
 Chapter 3 - Simple Sorting - 63
 Part II
 Chapter 4 - Stacks and Queues - 80
 Chapter 5 - Linked Lists - 142
 Chapter 6 - Recursion - 200
 Part III
 Chapter 7 - Advanced Sorting - 243
 Chapter 8 - Binary Trees - 280
 Chapter 9 - Red-Black Trees - 311
 Part IV
 Chapter 10 - 2-3-4 Trees and External Storage - 335
 Chapter 11 - Hash Tables - 372
 Chapter 12 - Heaps - 416
 Part V
 Chapter 13 - Graphs - 438
 Chapter 14 - Weighted Graphs - 476
 Chapter 15 - When to Use What - 510
 Part VI Appendixes
 Appendix A - How to Run the Workshop Applets and Example Programs - 521
 Appendix B - Further Reading - 524

Back Cover
• Data Structures and Algorithms in Java, by Robert Lafore (The Waite

Group, 1998) "A beautifully written and illustrated introduction to
manipulating data in practical ways, using Java examples."

• Designed to be the most easily understood book ever written on data
structures and algorithms

• Data Structures and Algorithms is taught with "Workshop Applets+ -
animated Java programs that introduce complex topics in an
intuitively obvious way

• The text is clear, straightforward, non-academic, and supported by
numerous figures

• Simple programming examples are written in Java, which is easier to
understand than C++

About the Author

Robert Lafore has degrees in Electrical Engineering and Mathematics, has
worked as a systems analyst for the Lawrence Berkeley Laboratory, founded
his own software company, and is a best-selling writer in the field of computer
programming. Some of his current titles are C++ Interactive Course, Object-

 - 4 -

Oriented Programming in C++, and C Programming Using Turbo C++. Earlier
best-selling titles include Assembly Language Primer for the IBM PC and XT
and (back at the beginning of the computer revolution) Soul of CP/M.

Data Structures and Algorithms in Java

 Mitchell Waite

 PUBLISHER: Mitchell Waite

 ASSOCIATE PUBLISHER: Charles Drucker

 EXECUTIVE EDITOR: Susan Walton

 ACQUISITIONS EDITOR: Susan Walton

 PROJECT DEVELOPMENT EDITOR: Kurt Stephan

 CONTENT EDITOR: Harry Henderson

 TECHNICAL EDITOR: Richard S. Wright, Jr.

 CONTENT/TECHNICAL REVIEW: Jaime Niño, PhD, University of New Orleans

 COPY EDITORS: Jim Bowie, Tonya Simpson

 MANAGING EDITOR: Jodi Jensen

 INDEXING MANAGER: Johnna L. VanHoose

 EDITORIAL ASSISTANTS: Carmela Carvajal, Rhonda Tinch-Mize

 SOFTWARE SPECIALIST: Dan Scherf

 DIRECTOR OF BRAND MANAGEMENT: Alan Bower

 PRODUCTION MANAGER: Cecile Kaufman

 PRODUCTION TEAM SUPERVISOR: Brad Chinn

 COVER DESIGNER: Sandra Schroeder

 BOOK DESIGNER: Jean Bisesi

 - 5 -

 PRODUCTION: Mike Henry, Linda Knose, Tim Osborn, Staci Somers, Mark Walchle

 © 1998 by The Waite Group, Inc.®

 Published by Waite Group Press™

 200 Tamal Plaza, Corte Madera, CA 94925

 Waite Group Press™ is a division of Macmillan Computer Publishing.

All rights reserved. No part of this manual shall be reproduced, stored in a retrieval
system, or transmitted by any means, electronic, mechanical, photocopying, desktop
publishing, recording, or otherwise, without permission from the publisher. No patent
liability is assumed with respect to the use of the information contained herein. While
every precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions. Neither is any liability assumed for
damages resulting from the use of the information contained herein.

All terms mentioned in this book that are known to be registered trademarks, trademarks,
or service marks are listed below. In addition, terms suspected of being trademarks,
registered trademarks, or service marks have been appropriately capitalized. Waite
Group Press cannot attest to the accuracy of this information. Use of a term in this book
should not be regarded as affecting the validity of any registered trademark, trademark,
or service mark.

 The Waite Group is a registered trademark of The Waite Group, Inc.

Waite Group Press and The Waite Group logo are trademarks of The Waite Group, Inc.
Sun's Java Workshop, and JDK is copyrighted (1998) by Sun Microsystems, Inc. Sun,
Sun Microsystems, the Sun logo, Java, Java Workshop, JDK, the Java logo, and Duke
are trademarks or registered trademarks of Sun Microsystems, Inc., in the United States
and other countries. Netscape Navigator is a trademark of Netscape Communications
Corporation. All Microsoft products mentioned are trademarks or registered trademarks of
Microsoft Corporation.

 All other product names are trademarks, registered trademarks, or service marks of their

respective owners.

 Printed in the United States of America

 98 99 00 10 9 8 7 6 5 4 3 2 1

 Library of Congress Cataloging-in-Publication Data

 International Standard Book Number: 1-57169-095-6

 Dedication

 This book is dedicated to my readers, who have rewarded me over the years not only by

buying my books, but with helpful suggestions and kind words. Thanks to you all.

 About the Author

Robert Lafore has degrees in Electrical Engineering and Mathematics, has worked as a
systems analyst for the Lawrence Berkeley Laboratory, founded his own software
company, and is a best-selling writer in the field of computer programming. Some of his

 - 6 -

current titles are C++ Interactive Course, Object-Oriented Programming in C++, and C
Programming Using Turbo C++. Earlier best-selling titles include Assembly Language
Primer for the IBM PC and XT and (back at the beginning of the computer revolution)
Soul of CP/M.

 Acknowledgments

My gratitude for the following people (and many others) cannot be fully expressed in this
short acknowledgment. As always, Mitch Waite had the Java thing figured out before
anyone else. He also let me bounce the applets off him until they did the job and
extracted the overall form of the project from a miasma of speculation. My editor, Kurt
Stephan, found great reviewers, made sure everyone was on the same page, kept the
ball rolling, and gently but firmly ensured that I did what I was supposed to do. Harry
Henderson provided a skilled appraisal of the first draft, along with many valuable
suggestions. Richard S. Wright, Jr., as technical editor, corrected numerous problems
with his keen eye for detail. Jaime Niño, Ph.D., of the University of New Orleans,
attempted to save me from myself and occasionally succeeded, but should bear no
responsibility for my approach or coding details. Susan Walton has been a staunch and
much-appreciated supporter in helping to convey the essence of the project to the
nontechnical. Carmela Carvajal was invaluable in extending our contacts with the
academic world. Dan Scherf not only put the CD-ROM together, but was tireless in
keeping me up-to-date on rapidly evolving software changes. Finally, Cecile Kaufman
ably shepherded the book through its transition from the editing to the production
process.

 Acclaim for Robert Lafore's

"Robert has truly broken new ground with this book. Nowhere else have I seen these
topics covered in such a clear and easy-to-understand, yet complete, manner. This book
is sure to be an indispensable resource and reference to any programmer seeking to
advance his or her skills and value beyond the mundane world of data entry screens and
Windows dialog boxes.

I am especially impressed with the Workshop applets. Some 70 percent of your brain is
designed for processing visual data. By interactively 'showing' how these algorithms
work, he has really managed to find a way that almost anyone can use to approach this
subject. He has raised the bar on this type of book forever."

 —Richard S. Wright, Jr.

 Author, OpenGL SuperBible

"Robert Lafore's explanations are always clear, accessible, and practical. His Java
program examples reinforce learning with a visual demonstration of each concept. You
will be able to understand and use every technique right away."

 —Harry Henderson

 Author, The Internet and the Information Superhighway and Internet How-To

 "I found the tone of the presentation inviting and the use of applets for this topic a major

plus."

 —Jaime Niño, PhD

 Associate Professor, Computer Science Department,

 University of New Orleans

 - 7 -

 Introduction

 This introduction tells you briefly

 • What this book is about

 • Why it's different

 • Who might want to read it

 • What you need to know before you read it

 • The software and equipment you need to use it

 • How this book is organized

 What This Book Is About

This book is about data structures and algorithms as used in computer programming.
Data structures are ways in which data is arranged in your computer's memory (or stored
on disk). Algorithms are the procedures a software program uses to manipulate the data
in these structures.

Almost every computer program, even a simple one, uses data structures and algorithms.
For example, consider a program that prints address labels. The program might use an
array containing the addresses to be printed, and a simple for loop to step through the
array, printing each address.

The array in this example is a data structure, and the for loop, used for sequential
access to the array, executes a simple algorithm. For uncomplicated programs with small
amounts of data, such a simple approach might be all you need. However, for programs
that handle even moderately large amounts of data, or that solve problems that are
slightly out of the ordinary, more sophisticated techniques are necessary. Simply knowing
the syntax of a computer language such as Java or C++ isn't enough.

This book is about what you need to know after you've learned a programming language.
The material we cover here is typically taught in colleges and universities as a second-year
course in computer science, after a student has mastered the fundamentals of
programming.

What's Different About This Book

 There are dozens of books on data structures and algorithms. What's different about this

one? Three things:

 • Our primary goal in writing this book is to make the topics we cover easy to

understand.

•

Demonstration programs called Workshop applets bring to life the topics we cover,
showing you step by step, with "moving pictures," how data structures and algorithms
work.

 • The example code is written in Java, which is easier to understand than C, C++, or

Pascal, the languages traditionally used to demonstrate computer science topics.

 Let's look at these features in more detail.

 - 8 -

 Easy to Understand

Typical computer science textbooks are full of theory, mathematical formulas, and
abstruse examples of computer code. This book, on the other hand, concentrates on
simple explanations of techniques that can be applied to real-world problems. We avoid
complex proofs and heavy math. There are lots of figures to augment the text.

Many books on data structures and algorithms include considerable material on sofware
engineering. Software engineering is a body of study concerned with designing and
implementing large and complex software projects.

However, it's our belief that data structures and algorithms are complicated enough
without involving this additional discipline, so we have deliberately de-emphasized
software engineering in this book. (We'll discuss the relationship of data structures and
algorithms to software engineering in Chapter 1," Overview.")

Of course we do use an object-oriented approach, and we discuss various aspects of
object-oriented design as we go along, including a mini-tutorial on OOP in Chapter 1. Our
primary emphasis, however, is on the data structures and algorithms themselves.

 Workshop Applets

The CD-ROM that accompanies this book includes demonstration programs, in the form
of Java applets, that cover the topics we discuss. These applets, which we call Workshop
applets, will run on many computer systems, appletviewers, and Web browsers. (See the
readme file on the CD-ROM for more details on compatibility.) The Workshop applets
create graphic images that show you in "slow motion" how an algorithm works.

For example, in one Workshop applet, each time you push a button, a bar chart shows
you one step in the process of sorting the bars into ascending order. The values of
variables used in the sorting algorithm are also shown, so you can see exactly how the
computer code works when executing the algorithm. Text displayed in the picture
explains what's happening.

Another applet models a binary tree. Arrows move up and down the tree, so you can
follow the steps involved in inserting or deleting a node from the tree. There are more
than 20 Workshop applets—at least one for every major topic in the book.

These Workshop applets make it far more obvious what a data structure really looks like,
or what an algorithm is supposed to do, than a text description ever could. Of course, we
provide a text description as well. The combination of Workshop applets, clear text, and
illustrations should make things easy.

These Workshop applets are standalone graphics-based programs. You can use them as
a learning tool that augments the material in the book. (Note that they're not the same as
the example code found in the text of the book, which we'll discuss next.)

 Java Example Code

The Java language is easier to understand (and write) than languages such as C and
C++. The biggest reason for this is that Java doesn't use pointers. Although it surprises
some people, pointers aren't necessary for the creation of complex data structures and
algorithms. In fact, eliminating pointers makes such code not only easier to write and to
understand, but more secure and less prone to errors as well.

Java is a modern object-oriented language, which means we can use an object-oriented
approach for the programming examples. This is important, because object-oriented
programming (OOP) offers compelling advantages over the old-fashioned procedural

 - 9 -

approach, and is quickly supplanting it for serious program development. Don't be alarmed
if you aren't familiar with OOP. It's not that hard to understand, especially in a pointer-free
environment such as Java. We'll explain the basics of OOP in Chapter 1.

 Who This Book Is For

This book can be used as a text in a data structures and algorithms course, typically taught
in the second year of a computer science curriculum. However, it is also designed for
professional programmers and for anyone else who needs to take the next step up from
merely knowing a programming language. Because it's easy to understand, it is also
appropriate as a supplemental text to a more formal course.

 Who This Book Is For

This book can be used as a text in a data structures and algorithms course, typically taught
in the second year of a computer science curriculum. However, it is also designed for
professional programmers and for anyone else who needs to take the next step up from
merely knowing a programming language. Because it's easy to understand, it is also
appropriate as a supplemental text to a more formal course.

 The Software You Need to Use this Book

 All the software you need to use this book is included on the accompanying CD-ROM.

To run the Workshop applets you need a Web browser or an appletviewer utility such as
the one in the Sun Microsystems Java Development Kit (JDK). Both a browser and the
JDK are included on the CD-ROM. To compile and run the example programs you'll need
the JDK. Microsoft Windows and various other platforms are supported. See the readme
file on the included CD-ROM for details on supported platforms and equipment
requirements.

 How This Book Is Organized

This section is intended for teachers and others who want a quick overview of the
contents of the book. It assumes you're already familiar with the topics and terms
involved in a study of data structures and algorithms. (If you can't wait to get started with
the Workshop applets, read Appendix A, "How to Run the Workshop Applets and
Example Programs," and the readme file on the CD-ROM first.)

 The first two chapters are intended to ease the reader into data structures and algorithms

as painlessly as possible.

Chapter 1, "Overview," presents an overview of the topics to be discussed and introduces
a small number of terms that will be needed later on. For readers unfamiliar with object-
oriented programming, it summarizes those aspects of this discipline that will be needed
in the balance of the book, and for programmers who know C++ but not Java, the key
differences between these languages are reviewed.

Chapter 2, "Arrays," focuses on arrays. However, there are two subtopics: the use of
classes to encapsulate data storage structures and the class interface. Searching,
insertion, and deletion in arrays and ordered arrays are covered. Linear searching and
binary searching are explained. Workshop applets demonstrate these algorithms with
unordered and ordered arrays.

In Chapter 3, "Simple Sorting," we introduce three simple (but slow) sorting techniques:
the bubble sort, selection sort, and insertion sort. Each is demonstrated by a Workshop
applet.

 - 10 -

Chapter 4, "Stacks and Queues," covers three data structures that can be thought of as
Abstract Data Types (ADTs): the stack, queue, and priority queue. These structures
reappear later in the book, embedded in various algorithms. Each is demonstrated by a
Workshop applet. The concept of ADTs is discussed.

Chapter 5, "Linked Lists," introduces linked lists, including doubly linked lists and double-
ended lists. The use of references as "painless pointers" in Java is explained. A
Workshop applet shows how insertion, searching, and deletion are carried out.

In Chapter 6, "Recursion," we explore recursion, one of the few chapter topics that is not
a data structure. Many examples of recursion are given, including the Towers of Hanoi
puzzle and the mergesort, which are demonstrated by Workshop applets.

Chapter 7, "Advanced Sorting," delves into some advanced sorting techniques: Shellsort
and quicksort. Workshop applets demonstrate Shellsort, partitioning (the basis of
quicksort), and two flavors of quicksort.

In Chapter 8, "Binary Trees," we begin our exploration of trees. This chapter covers the
simplest popular tree structure: unbalanced binary search trees. A Workshop applet
demonstrates insertion, deletion, and traversal of such trees.

Chapter 9, "Red-Black Trees," explains red-black trees, one of the most efficient
balanced trees. The Workshop applet demonstrates the rotations and color switches
necessary to balance the tree.

In Chapter 10, "2-3-4 Trees and External Storage," we cover 2-3-4 trees as an example
of multiway trees. A Workshop applet shows how they work. We also discuss the
relationship of 2-3-4 trees to B-trees, which are useful in storing external (disk) files.

Chapter 11, "Hash Tables," moves into a new field, hash tables. Workshop applets
demonstrate several approaches: linear and quadratic probing, double hashing, and
separate chaining. The hash-table approach to organizing external files is discussed.

 In Chapter 12, "Heaps," we discuss the heap, a specialized tree used as an efficient

implementation of a priority queue.

Chapters 13, "Graphs," and 14, "Weighted Graphs," deal with graphs, the first with
unweighted graphs and simple searching algorithms, and the second with weighted
graphs and more complex algorithms involving the minimum spanning trees and shortest
paths.

In Chapter 15, "When to Use What," we summarize the various data structures described
in earlier chapters, with special attention to which structure is appropriate in a given
situation.

Appendix A, "How to Run the Workshop Applets and Example Programs," tells how to
use the Java Development Kit (the JDK) from Sun Microsystems, which can be used to
run the Workshop applets and the example programs. The readme file on the included
CD-ROM has additional information on these topics.

 Appendix B, "Further Reading," describes some books appropriate for further reading on

data structures and other related topics.

 Enjoy Yourself!

We hope we've made the learning process as painless as possible. Ideally, it should even
be fun. Let us know if you think we've succeeded in reaching this ideal, or if not, where you
think improvements might be made.

 - 11 -

 Part I

 Chapter List

 Chapter

1: Overview

 Chapter

2: Arrays

 Chapter

3: Simple Sorting

 Chapter 1: Overview

 Overview

 As you start this book, you may have some questions:

 • What are data structures and algorithms?

 • What good will it do me to know about them?

 • Why can't I just use arrays and for loops to handle my data?

 • When does it make sense to apply what I learn here?

 This chapter attempts to answer these questions. We'll also introduce some terms you'll

need to know, and generally set the stage for the more detailed chapters to follow.

Next, for those of you who haven't yet been exposed to an object-oriented language, we'll
briefly explain enough about OOP to get you started. Finally, for C++ programmers who
don't know Java, we'll point out some of the differences between these languages.

 Chapter 1: Overview

 Overview

 As you start this book, you may have some questions:

 • What are data structures and algorithms?

 • What good will it do me to know about them?

 • Why can't I just use arrays and for loops to handle my data?

 • When does it make sense to apply what I learn here?

 This chapter attempts to answer these questions. We'll also introduce some terms you'll

need to know, and generally set the stage for the more detailed chapters to follow.

 - 12 -

Next, for those of you who haven't yet been exposed to an object-oriented language, we'll
briefly explain enough about OOP to get you started. Finally, for C++ programmers who
don't know Java, we'll point out some of the differences between these languages.

Overview of Data Structures

Another way to look at data structures is to focus on their strengths and weaknesses. In
this section we'll provide an overview, in the form of a table, of the major data storage
structures we'll be discussing in this book. This is a bird's-eye view of a landscape that
we'll be covering later at ground level, so don't be alarmed if it looks a bit mysterious.
Table 1.1 shows the advantages and disadvantages of the various data structures
described in this book.

 Table 1.1: Characteristics of Data Structures

 Data Structure

Advantages

Disadvantages

 Array

Quick insertion, very fast
access if index known

Slow search, slow deletion, fixed
size.

 Ordered array

Quicker search than
unsorted array.

Slow insertion and deletion, fixed
size.

 Stack

Provides last-in, first-out
access.

Slow access to other items.

 Queue

Provides first-in, first-out
access.

Slow access to other items.

 Linked list

Quick insertion, quick
deletion.

Slow search.

 Binary tree

Quick search, insertion,
deletion (if tree remains
balanced).

Deletion algorithm is complex.

 Red-black tree

Quick search, insertion,
deletion. Tree always
balanced.

Complex.

 2-3-4 tree

Quick search, insertion,
deletion. Tree always
balanced. Similar trees
good for disk storage.

Complex.

 Hash table

Very fast access if key
known. Fast insertion.

Slow deletion, access slow if key
not known, inefficient memory
usage.

 Heap

Fast insertion, deletion,

Slow access to other items.access
to largest item.

 Graph

Models real-world
situations.

Some algorithms are slow and
complex.

 - 13 -

 (The data structures shown in this table, except the arrays, can be thought of as Abstract

Data Types, or ADTs. We'll describe what this means in Chapter 5, "Linked Lists.")

Overview of Algorithms

 Many of the algorithms we'll discuss apply directly to specific data structures. For most

data structures, you need to know how to

 • Insert a new data item.

 • Search for a specified item.

 • Delete a specified item.

 You may also need to know how to iterate through all the items in a data structure,

visiting each one in turn so as to display it or perform some other action on it.

One important algorithm category is sorting. There are many ways to sort data, and we
devote Chapter 3, "Simple Sorting," and Chapter 7, "Advanced Sorting," to these
algorithms.

 The concept of recursion is important in designing certain algorithms. Recursion involves a

method (a function) calling itself. We'll look at recursion in Chapter 6, "Recursion."

 Definitions

 Let's look at a few of the terms that we'll be using throughout this book.

 Database

We'll use the term database to refer to all the data that will be dealt with in a particular
situation. We'll assume that each item in a database has a similar format. As an example,
if you create an address book using the Cardfile program, all the cards you've created
constitute a database. The term file is sometimes used in this sense, but because our
database is often stored in the computer's memory rather than on a disk, this term can be
misleading.

The term database can also refer to a large program consisting of many data structures
and algorithms, which relate to each other in complex ways. However, we'll restrict our
use of the term to the more modest definition.

 Record

Records are the units into which a database is divided. They provide a format for storing
information. In the Cardfile program, each card represents a record. A record includes all
the information about some entity, in a situation in which there are many such entities. A
record might correspond to a person in a personnel file, a car part in an auto supply
inventory, or a recipe in a cookbook file.

 Field

 A record is usually divided into several fields. A field holds a particular kind of data. In the

Cardfile program there are really only two fields: the index line (above the double line)

 - 14 -

and the rest of the data (below the line), which both hold text. Generally, each field holds
a particular kind of data. Figure 1.1 shows the index line field as holding a person's
name.

 More sophisticated database programs use records with more fields than Cardfile has.

Figure 1.2 shows such a record, where each line represents a distinct field.

In a Java program, records are usually represented by objects of an appropriate class. (In
C, records would probably be represented by structures.) Individual variables within an
object represent data fields. Fields within a class object are called fields in Java (but
members in C and C++).

 Key

To search for a record within a database you need to designate one of the record's fields
as a key. You'll search for the record with a specific key. For example, in the Cardfile
program you might search in the index-line field for the key "Brown." When you find the
record with this key, you'll be able to access all its fields, not just the key. We might say
that the key unlocks the entire record.

In Cardfile you can also search for individual words or phrases in the rest of the data on
the card, but this is actually all one field. The program searches through the text in the
entire field even if all you're looking for is the phone number. This kind of text search isn't
very efficient, but it's flexible because the user doesn't need to decide how to divide the
card into fields.

 Figure 1.2: A record with multiple fields

In a more full-featured database program, you can usually designate any field as the key.
In Figure 1.2, for example, you could search by zip code and the program would find all
employees who live in that zip code.

 Search Key

The key value you're looking for in a search is called the search key. The search key is
compared with the key field of each record in turn. If there's a match, the record can be
returned or displayed. If there's no match, the user can be informed of this fact.

 Object-Oriented Programming

This section is for those of you who haven't been exposed to object-oriented
programming. However, caveat emptor. We cannot, in a few pages, do justice to all the
innovative new ideas associated with OOP. Our goal is merely to make it possible for you

 - 15 -

to understand the example programs in the text. What we say here won't transform you
into an object-oriented Java programmer, but it should make it possible for you to follow
the example programs.

If after reading this section and examining some of the sample code in the following
chapters you still find the whole OOP business as alien as quantum physics, then you
may need a more thorough exposure to OOP. See the reading list in Appendix B,
"Further Reading," for suggestions.

 Problems with Procedural Languages

 OOP was invented because procedural languages, such as C, Pascal, and BASIC, were

found to be inadequate for large and complex programs. Why was this?

The problems have to do with the overall organization of the program. Procedural
programs are organized by dividing the code into functions (called procedures or
subroutines in some languages). Groups of functions could form larger units called
modules or files.

 Crude Organizational Units

One difficulty with this kind of function-based organization was that it focused on
functions at the expense of data. There weren't many options when it came to data. To
simplify slightly, data could be local to a particular function or it could be global—
accessible to all functions. There was no way (at least not a flexible way) to specify that
some functions could access a variable and others couldn't.

This caused problems when several functions needed to access the same data. To be
available to more than one function, such variables had to be global, but global data
could be accessed inadvertently by any function in the program. This lead to frequent
programming errors. What was needed was a way to fine-tune data accessibility, allowing
variables to be available to functions with a need to access it, but hiding it from others.

 Poor Modeling of the Real World

It is also hard to conceptualize a real-world problem using procedural languages.
Functions carry out a task, while data stores information, but most real-world objects do
both these things. The thermostat on your furnace, for example, carries out tasks (turning
the furnace on and off) but also stores information (the actual current temperature and
the desired temperature).

If you wrote a thermostat control program, you might end up with two functions,
furnace_on() and furnace_off(), but also two global variables, currentTemp
(supplied by a thermometer) and desiredTemp (set by the user). However, these
functions and variables wouldn't form any sort of programming unit; there would be no
unit in the program you could call thermostat. The only such unit would be in the
programmer's mind.

For large programs, which might contain hundreds of entities like thermostats, this
procedural approach made things chaotic, error-prone, and sometimes impossible to
implement at all.

 Objects in a Nutshell

 The idea of objects arose in the programming community as a solution to the problems

with procedural languages.

 Objects

 - 16 -

Here's the amazing breakthrough that is the key to OOP: An object contains both
functions and variables. A thermostat object, for example, would contain not only
furnace_on() and furnace_off() functions, but also currentTemp and
desiredTemp. Incidentally, before going further we should note that in Java, functions
are called methods and variables are called fields.

This new entity, the object, solves several problems simultaneously. Not only does a
programming object correspond more accurately to objects in the real world, it also
solves the problem engendered by global data in the procedural model. The
furnace_on() and furnace_off() methods can access currentTemp and
desiredTemp. These variables are hidden from methods that are not part of
thermostat, however, so they are less likely to be accidentally changed by a rogue
method.

 Classes

You might think that the idea of an object would be enough for one programming
revolution, but there's more. Early on, it was realized that you might want to make several
objects of the same type. Maybe you're writing a furnace control program for an entire
apartment house, for example, and you need several dozen thermostat objects in your
program. It seems a shame to go to the trouble of specifying each one separately. Thus,
the idea of classes was born.

 A class is a specification—a blueprint—for one or more objects. Here's how a
thermostat class, for example, might look in Java:

 class thermostat
 {
 private float currentTemp();
 private float desiredTemp();

 public void furnace_on()
 {
 // method body goes here
 }

 public void furnace_off()
 {
 // method body goes here
 }
 } // end class thermostat

The Java keyword class introduces the class specification, followed by the name you
want to give the class; here it's thermostat. Enclosed in curly brackets are the fields
and methods (variables and functions) that make up the class. We've left out the body of
the methods; normally there would be many lines of program code for each one.

C programmers will recognize this syntax as similar to a structure, while C++
programmers will notice that it's very much like a class in C++, except that there's no
semicolon at the end. (Why did we need the semicolon in C++ anyway?)

 Creating Objects

Specifying a class doesn't create any objects of that class. (In the same way specifying a
structure in C doesn't create any variables.) To actually create objects in Java you must
use the keyword new. At the same time an object is created, you need to store a

 - 17 -

reference to it in a variable of suitable type; that is, the same type as the class.

What's a reference? We'll discuss references in more detail later. In the meantime, think
of it as a name for an object. (It's actually the object's address, but you don't need to
know that.)

 Here's how we would create two references to type thermostat, create two new
thermostat objects, and store references to them in these variables:

 thermostat therm1, therm2; // create two references

 therm1 = new thermostat(); // create two objects and

 therm2 = new thermostat(); // store references to them

 Incidentally, creating an object is also called instantiating it, and an object is often

referred to as an instance of a class.

 Accessing Object Methods

 Once you've specified a class and created some objects of that class, other parts of your

program need to interact with these objects. How do they do that?

Typically, other parts of the program interact with an object's methods (functions), not
with its data (fields). For example, to tell the therm2 object to turn on the furnace, we
would say

 therm2.furnace_on();

 The dot operator (.) associates an object with one of its methods (or occasionally with

one of its fields).

 At this point we've covered (rather telegraphically) several of the most important features

of OOP. To summarize:

 • Objects contain both methods (functions) and fields (data).

 • A class is a specification for any number of objects.

 • To create an object, you use the keyword new in conjunction with the class name.

 • To invoke a method for a particular object you use the dot operator.

These concepts are deep and far-reaching. It's almost impossible to assimilate them the
first time you see them, so don't worry if you feel a bit confused. As you see more classes
and what they do, the mist should start to clear.

 A Runnable Object-Oriented Program

Let's look at an object-oriented program that runs and generates actual output. It features
a class called BankAccount that models a checking account at a bank. The program
creates an account with an opening balance, displays the balance, makes a deposit and
a withdrawal, and then displays the new balance. Here's the listing for bank.java:

 // bank.java

 - 18 -

 // demonstrates basic OOP syntax

 // to run this program: C>java BankApp

 import java.io.*; // for I/O

 //

 class BankAccount

 {
 private double balance; // account balance

 public BankAccount(double openingBalance) // constructor
 {
 balance = openingBalance;
 }

 public void deposit(double amount) // makes deposit
 {
 balance = balance + amount;
 }

 public void withdraw(double amount) // makes

withdrawal
 {
 balance = balance - amount;
 }

 public void display() // displays

balance
 {
 System.out.println("balance=" + balance);
 }
 } // end class BankAccount

 //
 class BankApp
 {
 public static void main(String[] args)
 {
 BankAccount ba1 = new BankAccount(100.00); // create acct

 System.out.print("Before transactions, ");
 ba1.display(); // display balance

 ba1.deposit(74.35); // make deposit
 ba1.withdraw(20.00); // make withdrawal

 System.out.print("After transactions, ");
 ba1.display(); // display balance
 } // end main()
 } // end class BankApp

 - 19 -

 Here's the output from this program:

 Before transactions, balance=100

 After transactions, balance=154.35

There are two classes in bank.java. The first one, BankAccount, contains the fields
and methods for our bank account. We'll examine it in detail in a moment. The second
class, BankApp, plays a special role.

 The BankApp Class

 To execute the program from a DOS box, you type java BankApp following the C:

prompt:

 C:java BankApp

This tells the java interpreter to look in the BankApp class for the method called
main(). Every Java application must have a main() method; execution of the program
starts at the beginning of main(), as you can see in the bank.java listing. (You don't
need to worry yet about the String[] args argument in main().)

 The main() method creates an object of class BankAccount, initialized to a value of

100.00, which is the opening balance, with this statement:

 BankAccount ba1 = new BankAccount(100.00); // create acct

 The System.out.print() method displays the string used as its argument, Before
transactions,, and the account displays its balance with the following statement:

 ba1.display();

 The program then makes a deposit to, and a withdrawal from, the account:

 ba1.deposit(74.35);
 ba1.withdraw(20.00);

 Finally, the program displays the new account balance and terminates.

 The BankAccount Class

The only data field in the BankAccount class is the amount of money in the account,
called balance. There are three methods. The deposit() method adds an amount to
the balance, withdrawal() subtracts an amount, and display() displays the
balance.

 Constructors

The BankAccount class also features a constructor. A constructor is a special method
that's called automatically whenever a new object is created. A constructor always has
exactly the same name as the class, so this one is called BankAccount(). This
constructor has one argument, which is used to set the opening balance when the
account is created.

 - 20 -

A constructor allows a new object to be initialized in a convenient way. Without the
constructor in this program, you would have needed an additional call to deposit() to
put the opening balance in the account.

 Public and Private

Notice the keywords public and private in the BankAccount class. These keywords
are access modifiers and determine what methods can access a method or field. The
balance field is preceded by private. A field or method that is private can only be
accessed by methods that are part of the same class. Thus, balance cannot be
accessed by statements in main(), because main() is not a method in BankAccount.

However, all the methods in BankAccount have the access modifier public, so they
can be accessed by methods in other classes. That's why statements in main() can call
deposit(), withdrawal(), and display().

Data fields in a class are typically made private and methods are made public. This
protects the data; it can't be accidentally modified by methods of other classes. Any
outside entity that needs to access data in a class must do so using a method of the
same class. Data is like a queen bee, kept hidden in the middle of the hive, fed and cared
for by worker-bee methods.

 Inheritance and Polymorphism

 We'll briefly mention two other key features of object-oriented programming: inheritance

and polymorphism.

Inheritance is the creation of one class, called the extended or derived class, from
another class called the base class. The extended class has all the features of the base
class, plus some additional features. For example, a secretary class might be derived
from a more general employee class, and include a field called typingSpeed that the
employee class lacked.

 In Java, inheritance is also called subclassing. The base class may be called the

superclass, and the extended class may be called the subclass.

Inheritance makes it easy to add features to an existing class and is an important aid in
the design of programs with many related classes. Inheritance thus makes it easy to
reuse classes for a slightly different purpose, a key benefit of OOP.

Polymorphism involves treating objects of different classes in the same way. For
polymorphism to work, these different classes must be derived from the same base class.
In practice, polymorphism usually involves a method call that actually executes different
methods for objects of different classes.

For example, a call to display() for a secretary object would invoke a display
method in the secretary class, while the exact same call for a manager object would
invoke a different display method in the manager class. Polymorphism simplifies and
clarifies program design and coding.

For those not familiar with them, inheritance and polymorphism involve significant
additional complexity. To keep the focus on data structures and algorithms, we have
avoided these features in our example programs. Inheritance and polymorphism are
important and powerful aspects of OOP but are not necessary for the explanation of data
structures and algorithms.

 Software Engineering

 - 21 -

In recent years, it has become fashionable to begin a book on data structures and
algorithms with a chapter on software engineering. We don't follow that approach, but
let's briefly examine software engineering and see how it fits into the topics we discuss in
this book.

Software engineering is the study of how to create large and complex computer
programs, involving many programmers. It focuses on the overall design of the program
and on the creation of that design from the needs of the end users. Software engineering
is concerned with life cycle of a software project, which includes specification, design,
verification, coding, testing, production, and maintenance.

It's not clear that mixing software engineering on one hand, and data structures and
algorithms on the other, actually helps the student understand either topic. Software
engineering is rather abstract and is difficult to grasp until you've been involved yourself
in a large project. Data structures and algorithms, on the other hand, is a nuts-and-bolts
discipline concerned with the details of coding and data storage.

Accordingly we focus on the nuts-and-bolts aspects of data structures and algorithms. How
do they really work? What structure or algorithm is best in a particular situation? What do
they look like translated into Java code? As we noted, our intent is to make the material as
easy to understand as possible. For further reading, we mention some books on software
engineering in Appendix B.

 Java for C++ Programmers

 If you're a C++ programmer who has not yet encountered Java, you might want to read

this section. We'll mention several ways in which Java differs from C++.

This section is not intended to be a primer on Java. We don't even cover all the
differences between C++ and Java. We're only interested in a few Java features that
might make it hard for C++ programmers to figure out what's going on in the example
programs.

 No Pointers

The biggest difference between C++ and Java is that Java doesn't use pointers. To a
C++ programmer this may at first seem quite amazing. How can you get along without
pointers?

 Throughout this book we'll be using pointer-free code to build complex data structures.

You'll see that it's not only possible, but actually easier than using C++ pointers.

Actually Java only does away with explicit pointers. Pointers, in the form of memory
addresses, are still there, under the surface. It's sometimes said that in Java, everything
is a pointer. This is not completely true, but it's close. Let's look at the details.

 References

 Java treats primitive data types (such as int, float, and double) differently than

objects. Look at these two statements:

 int intVar; // an int variable called intVar
 BankAccount bc1; // reference to a BankAccount object

In the first statement, a memory location called intVar actually holds a numerical value
such as 127 (assuming such a value has been placed there). However, the memory
location bc1 does not hold the data of a BankAccount object. Instead, it contains the
address of a BankAccount object that is actually stored elsewhere in memory. The

 - 22 -

name bc1 is a reference to this object; it's not the object itself.

Actually, bc1 won't hold a reference if it has not been assigned an object at some prior
point in the program. Before being assigned an object, it holds a reference to a special
object called null. In the same way, intVar won't hold a numerical value if it's never
been assigned one. The compiler will complain if you try to use a variable that has never
been assigned a value.

 In C++, the statement

 BankAccount bc1;

actually creates an object; it sets aside enough memory to hold all the object's data. In
Java, all this statement creates is a place to put an object's memory address. You can
think of a reference as a pointer with the syntax of an ordinary variable. (C++ has
reference variables, but they must be explicitly specified with the & symbol.)

 Assignment

 It follows that the assignment operator (=) operates differently with Java objects than with

C++ objects. In C++, the statement

 bc2 = bc1;

copies all the data from an object called bc1 into a different object called bc2. Following
this statement are two objects with the same data. In Java, on the other hand, this same
assignment statement copies the memory address that bc1 refers to into bc2. Both bc1
and bc2 now refer to exactly the same object; they are references to it.

 This can get you into trouble if you're not clear on what the assignment operator does.

Following the assignment statement shown above, the statement

 bc1.withdraw(21.00);

 and the statement

 bc2.withdraw(21.00);

 both withdraw $21 from the same bank account object.

Suppose you actually want to copy data from one object to another. In this case you must
make sure you have two separate objects to begin with, and then copy each field
separately. The equal sign won't do the job.

 The new Operator

Any object in Java must be created using new. However, in Java, new returns a
reference, not a pointer as in C++. Thus, pointers aren't necessary to use new. Here's
one way to create an object:

 BankAccount ba1;
 ba1 = new BankAccount();

Eliminating pointers makes for a more secure system. As a programmer, you can't find
out the actual address of ba1, so you can't accidentally corrupt it. However, you probably
don't need to know it unless you're planning something wicked.

 - 23 -

How do you release memory that you've acquired from the system with new and no
longer need? In C++, you use delete. In Java, you don't need to worry about it. Java
periodically looks through each block of memory that was obtained with new to see if
valid references to it still exist. If there are no such references, the block is returned to the
free memory store. This is called garbage collection.

In C++ almost every programmer at one time or another forgets to delete memory blocks,
causing "memory leaks" that consume system resources, leading to bad performance
and even crashing the system. Memory leaks can't happen in Java (or at least hardly
ever).

 Arguments

In C++, pointers are often used to pass objects to functions to avoid the overhead of
copying a large object. In Java, objects are always passed as references. This also
avoids copying the object.

 void method1()
 {
 BankAccount ba1 = new BankAccount(350.00);
 method2(ba1);
 }

 void method2(BankAccount acct)
 {
 }

 In this code, the references ba1 and acct both refer to the same object.

 Primitive data types, on the other hand, are always passed by value. That is, a new

variable is created in the function and the value of the argument is copied into it.

 Equality and Identity

 In Java, if you're talking about primitive types, the equality operator (==) will tell you

whether two variables have the same value:

 int intVar1 = 27;
 int intVar2 = intVar1;
 if(intVar1 == intVar2)
 System.out.println("They're equal");

This is the same as the syntax in C and C++, but in Java, because they use references,
relational operators work differently with objects. The equality operator, when applied to
objects, tells you whether two references are identical; that is, whether they refer to the
same object:

 carPart cp1 = new carPart("fender");
 carPart cp2 = cp1;
 if(cp1 == cp2)
 System.out.println("They're Identical");

In C++ this operator would tell you if two objects contained the same data. If you want to
see whether two objects contain the same data in Java, you must use the equals()
method of the Object class:

 - 24 -

 carPart cp1 = new carPart("fender");
 carPart cp2 = cp1;
 if(cp1.equals(cp2))
 System.out.println("They're equal");

 This works because all objects in Java are implicitly derived from the Object class.

 Overloaded Operators

This is easy: there are no overloaded operators in Java. In C++, you can redefine +, *, =,
and most other operators so they behave differently for objects of a particular class. No
such redefinition is possible in Java. Instead, use a method such as add().

 Primitive Variable Types

 The primitive or built-in variable types in Java are shown in Table 1.2.

 Table 1.2: Primitive Data Types

 Name

Size in Bits

Range of Values

 boolean

1

true or false

 byte

8

-128 to +127

 char

16

'\u0000' to '\uFFFF'

 short

16

-32,768 to +32,767

 int

32

-2,147,483,648 to +2,147,483,647

 long

64

-9,223,372,036,854,775,808 to
+9,223,372,036,854,775,807

 float

32

approximately 10-38 to 10+38; 7 significant digits

 double

64

approximately 10-308 to 10+308; 15 significant
digits

 Unlike C and C++, which use integers for true/false values, boolean is a distinct type

in Java.

 Type char is unsigned and uses two bytes to accommodate the Unicode character

representation scheme, which can handle international characters.

 The int type varies in size in C and C++, depending on the specific computer platform;

in Java an int is always 32 bits.

 - 25 -

Literals of type float use the suffix F (for example, 3.14159F); literals of type double
need no suffix. Literals of type long use suffix L (as in 45L); literals of the other integer
types need no suffix.

 Java is more strongly typed than C and C++; many conversions that were automatic in

those languages require an explicit cast in Java.

 All types not shown in Table 1.2, such as String, are classes.

 Input/Output

For the console-mode applications we'll be using for example programs in this book,
some clunky-looking but effective constructions are available for input and output.
They're quite different from the workhorse cout and cin approach in C++ and
printf() and scanf() in C.

 All the input/output routines we show here require the line

 import java.io.*;

 at the beginning of your source file.

 Output

 You can send any primitive type (numbers and characters), and String objects as well,

to the display with these statements:

 System.out.print(var); // displays var, no linefeed
 System.out.println(var); // displays var, then starts new line

 The first statement leaves the cursor on the same line; the second statement moves it to

the beginning of the next line.

Because output is buffered, you'll need to use a println() method as the last
statement in a series to actually display everything. It causes the contents of the buffer to
be transferred to the display:

 System.out.print(var1); // nothing appears
 System.out.print(var2); // nothing appears
 System.out.println(var3); // var1, var2, and var3 are all

displayed

 You can also use System.out.flush() to cause the buffer to be displayed without

going to a new line:

 System.out.print("Enter your name: ");
 System.out.flush();

 Inputting a String

Input is considerably more involved than output. In general, you want to read any input as
a String object. If you're actually inputting something else, such as a character or
number, you then convert the String object to the desired type.

 - 26 -

 String input is fairly baroque. Here's how it looks:

 public static String getString() throws IOException
 {
 InputStreamReader isr = new InputStreamReader(System.in);
 BufferedReader br = new BufferedReader(isr);
 String s = br.readLine();
 return s;
 }

 This method returns a String object, which is composed of characters typed on the

keyboard and terminated with the Enter key.

Besides importing java.io.*, you'll also need to add throws IOException to all
input methods, as shown in the preceding code. The details of the
InputStreamReader and BufferedReader classes need not concern us here. This
approach was introduced with version 1.1.3 of Sun Microsystems' Java Development Kit
(JDK).

Earlier versions of the JDK used the System.in. object to read individual characters,
which were then concatenated to form a String object. The termination of the input was
signaled by a newline ('\n') character, generated when the user pressed Enter.

 Here's the code for this older approach:

 public String getString() throws IOException
 {
 String s = "";
 int ch;

 while((ch=System.in.read()) != -1 && (char)ch != '\n')
 s += (char)ch;
 return s;
 }

Here characters are read as integers, which allows the negative value –1 to signal an
end-of-file (EOF). The while loop reads characters until an end-of-file or a newline
occurs. You'll need to use this version of getString() if you're using older versions of
the JDK.

 Inputting a Character

Suppose you want your program's user to enter a character. (By enter we mean typing
something and pressing the Enter key.) The user may enter a single character or
(incorrectly) more than one. Therefore, the safest way to read a character involves
reading a String and picking off its first character with the charAt() method:

 public static char getChar() throws IOException
 {
 String s = getString();
 return s.charAt(0);
 }

 The charAt() method of the String class returns a character at the specified position

in the String object; here we get the first one. The approach shown avoids extraneous

 - 27 -

characters being left in the input buffer. Such characters can cause problems with
subsequent input.

 Inputting Integers

To read numbers, you make a String object as shown before and convert it to the type
you want using a conversion method. Here's a method, getInt(), that converts input
into type int and returns it:

 public int getInt() throws IOException
 {
 String s = getString();
 return Integer.parseInt(s);
 }

 The parseInt() method of class Integer converts the string to type int. A similar

routine, parseLong(), can be used to convert type long.

For simplicity, we don't show any error-checking in the input routines in the example
programs. The user must type appropriate input or an exception will occur. With the code
shown here the exception will cause the program to terminate. In a serious program you
should analyze the input string before attempting to convert it, and also catch any
exceptions and process them appropriately.

 Inputting Floating-Point Numbers

 Types float and double can be handled in somewhat the same way as integers, but

the conversion process is more complex. Here's how you read a number of type double:

 public int getDouble() throws IOException
 {
 String s = getString();
 Double aDub = Double.valueOf(s);
 return aDub.doubleValue();
 }

The String is first converted to an object of type Double (uppercase D), which is a
"wrapper" class for type double. A method of Double called doubleValue() then
converts the object to type double.

 For type float, there's an equivalent Float class, which has equivalent valueOf() and
floatValue() methods.

Java Library Data Structures

The Java java.util package contains data structures, such as Vector (an extensible
array), Stack, Dictionary, and Hashtable. In this book we'll largely ignore these
built-in classes. We're interested in teaching fundamentals, not in the details of a
particular data-structure implementation.

However, such class libraries, whether those that come with Java or others available from
third-party developers, can offer a rich source of versatile, debugged storage classes. This
book should equip you with the knowledge you'll need to know what sort of data structure
you need and the fundamentals of how it works. Then you can decide whether you should
write your own classes or use pre-written library classes. If you use a class library, you'll
know which classes you need and whether a particular implementation works in your

 - 28 -

situation.

Summary

 • A data structure is the organization of data in a computer's memory or in a disk file.

 • The correct choice of data structure allows major improvements in program efficiency.

 • Examples of data structures are arrays, stacks, and linked lists.

 • An algorithm is a procedure for carrying out a particular task.

 • In Java, an algorithm is usually implemented by a class method.

 • Many of the data structures and algorithms described in this book are most often used

to build databases.

 • Some data structures are used as programmer's tools: they help execute an algorithm.

 • Other data structures model real-world situations, such as telephone lines running

between cities.

 • A database is a unit of data storage comprising many similar records.

 • A record often represents a real-world object, such as an employee or a car part.

 • A record is divided into fields. Each field stores one characteristic of the object

described by the record.

 • A key is a field in a record that's used to carry out some operation on the data. For

example, personnel records might be sorted by a LastName field.

 • A database can be searched for all records whose key field has a certain value. This

value is called a search key.

Summary

 • A data structure is the organization of data in a computer's memory or in a disk file.

 • The correct choice of data structure allows major improvements in program efficiency.

 • Examples of data structures are arrays, stacks, and linked lists.

 • An algorithm is a procedure for carrying out a particular task.

 • In Java, an algorithm is usually implemented by a class method.

 • Many of the data structures and algorithms described in this book are most often used

to build databases.

 • Some data structures are used as programmer's tools: they help execute an algorithm.

 • Other data structures model real-world situations, such as telephone lines running

between cities.

 - 29 -

 • A database is a unit of data storage comprising many similar records.

 • A record often represents a real-world object, such as an employee or a car part.

 • A record is divided into fields. Each field stores one characteristic of the object

described by the record.

 • A key is a field in a record that's used to carry out some operation on the data. For

example, personnel records might be sorted by a LastName field.

 • A database can be searched for all records whose key field has a certain value. This

value is called a search key.

The Array Workshop Applet

Suppose that you're coaching a kids-league baseball team and you want to keep track of
which players are present at the practice field. What you need is an attendance-
monitoring program for your laptop; a program that maintains a database of the players
who have shown up for practice. You can use a simple data structure to hold this data.
There are several actions you would like to be able to perform:

 • Insert a player into the data structure when the player arrives at the field.

 • Check to see if a particular player is present by searching for his or her number in the

structure.

 • Delete a player from the data structure when the player goes home.

 These three operations will be the fundamental ones in most of the data storage

structures we'll study in this book.

In this book we'll often begin the discussion of a particular data structure by
demonstrating it with a Workshop applet. This will give you a feeling for what the
structure and its algorithms do, before we launch into a detailed discussion and
demonstrate actual example code. The Workshop applet called Array shows how an
array can be used to implement insertion, searching, and deletion. Start up this applet, as
described in Appendix A, with

 C:appletviewer Array.html

Figure 2.1 shows what you'll see. There's an array with 20 elements, 10 of which have
data items in them. You can think of these items as representing your baseball players.
Imagine that each player has been issued a team shirt with the player's number on the
back. To make things visually interesting, the shirts come in a wide variety of colors. You
can see each player's number and shirt color in the array.

 - 30 -

 Figure 2.1: The Array Workshop applet

 This applet demonstrates the three fundamental procedures mentioned above:

 • The Ins button inserts a new data item.

 • The Find button searches for specified data item.

 • The Del button deletes a specified data item.

Using the New button, you can create a new array of a size you specify. You can fill this
array with as many data items as you want using the Fill button. Fill creates a set of items
and randomly assigns them numbers and colors. The numbers are in the range 0 to 999.
You can't create an array of more than 60 cells, and you can't, of course, fill more data
items than there are array cells.

Also, when you create a new array, you'll need to decide whether duplicate items will be
allowed; we'll return to this question in a moment. The default value is no duplicates and
the No Dups radio button is selected to indicate this.

 Insertion

Start with the default arrangement of 20 cells and 10 data items and the No Dups button
checked. You insert a baseball player's number into the array when the player arrives at
the practice field, having been dropped off by a parent. To insert a new item, press the
Ins button once. You'll be prompted to enter the value of the item:

 Enter key of item to insert

Type a number, say 678, into the text field in the upper-right corner of the applet. (Yes, it
is hard to get three digits on the back of a kid's shirt.) Press Ins again and the applet will
confirm your choice:

 Will insert item with key 678

 A final press of the button will cause a data item, consisting of this value and a random

color, to appear in the first empty cell in the array. The prompt will say something like:

 Inserted item with key 678 at index 10

Each button press in a Workshop applet corresponds to a step that an algorithm carries
out. The more steps required, the longer the algorithm takes. In the Array Workshop
applet the insertion process is very fast, requiring only a single step. This is because a

 - 31 -

new item is always inserted in the first vacant cell in the array, and the algorithm knows
where this is because it knows how many items are already in the array. The new item is
simply inserted in the next available space. Searching and deletion, however, are not so
fast.

In no-duplicates mode you're on your honor not to insert an item with the same key as an
existing item. If you do, the applet displays an error message, but it won't prevent the
insertion. The assumption is that you won't make this mistake.

 Searching

Click the Find button. You'll be prompted for the key number of the person you're looking
for. Pick a number that appears on an item somewhere in the middle of the array. Type in
the number and repeatedly press the Find button. At each button press, one step in the
algorithm is carried out. You'll see the red arrow start at cell 0 and move methodically
down the cells, examining a new one each time you push the button. The index number
in the message

 Checking next cell, index = 2

 will change as you go along. When you reach the specified item, you'll see the message

 Have found item with key 505

 or whatever key value you typed in. Assuming duplicates are not allowed, the search will

terminate as soon as an item with the specified key value is found.

 If you have selected a key number that is not in the array, the applet will examine every

occupied cell in the array before telling you that it can't find that item.

Notice that (again assuming duplicates are not allowed) the search algorithm must look
through an average of half the data items to find a specified item. Items close to the
beginning of the array will be found sooner, and those toward the end will be found later.
If N is the number of items, then the average number of steps needed to find an item is
N/2. In the worst-case scenario, the specified item is in the last occupied cell, and N
steps will be required to find it.

As we noted, the time an algorithm takes to execute is proportional to the number of
steps, so searching takes much longer on the average (N/2 steps) than insertion (one
step).

 Deletion

To delete an item you must first find it. After you type in the number of the item to be
deleted, repeated button presses will cause the arrow to move, step by step, down the
array until the item is located. The next button press deletes the item and the cell
becomes empty. (Strictly speaking, this step isn't necessary because we're going to copy
over this cell anyway, but deleting the item makes it clearer what's happening.)

Implicit in the deletion algorithm is the assumption that holes are not allowed in the array.
A hole is one or more empty cells that have filled cells above them (at higher index
numbers). If holes are allowed, all the algorithms become more complicated because
they must check to see if a cell is empty before examining its contents. Also, the
algorithms become less efficient because they must waste time looking at unoccupied
cells. For these reasons, occupied cells must be arranged contiguously: no holes
allowed.

 Therefore, after locating the specified item and deleting it, the applet must shift the

contents of each subsequent cell down one space to fill in the hole. Figure 2.2 shows an

 - 32 -

example.

 Figure2.2: Deleting an item

If the item in cell 5 (38, in the figure) is deleted, then the item in 6 would shift into 5, the
item in 7 would shift into 6, and so on to the last occupied cell. During the deletion
process, once the item is located, the applet will shift down the contents of the higher-
indexed cells as you continue to press the Del button.

A deletion requires (assuming no duplicates are allowed) searching through an average
of N/2 elements, and then moving the remaining elements (an average of N/2 moves) to
fill up the resulting hole. This is N steps in all.

 The Duplicates Issue

When you design a data storage structure, you need to decide whether items with
duplicate keys will be allowed. If you're talking about a personnel file and the key is an
employee number, then duplicates don't make much sense; there's no point in assigning
the same number to two employees. On the other hand, if the key value is last names,
then there's a distinct possibility several employees will have the same key value, so
duplicates should be allowed.

 Of course, for the baseball players, duplicate numbers should not be allowed. It would be

hard to keep track of the players if more than one wore the same number.

The Array Workshop applet lets you select either option. When you use New to create a
new array, you're prompted to specify both its size and whether duplicates are permitted.
Use the radio buttons Dups OK or No Dups to make this selection.

If you're writing a data storage program in which duplicates are not allowed, you may
need to guard against human error during an insertion by checking all the data items in
the array to ensure that none of them already has the same key value as the item being
inserted. This is inefficient, however, and increases the number of steps required for an
insertion from one to N. For this reason, our applet does not perform this check.

 Searching with Duplicates

Allowing duplicates complicates the search algorithm, as we noted. Even if it finds a
match, it must continue looking for possible additional matches until the last occupied
cell. At least this is one approach; you could also stop after the first match. It depends on
whether the question is "Find me everyone with blue eyes" or "Find me someone with
blue eyes."

When the Dups OK button is selected, the applet takes the first approach, finding all
items matching the search key. This always requires N steps, because the algorithm
must go all the way to the last occupied cell.

 - 33 -

 Insertion with Duplicates

Insertion is the same with duplicates allowed as when they're not: a single step inserts
the new item. But remember, if duplicates are not allowed, and there's a possibility the
user will attempt to input the same key twice, you may need to check every existing item
before doing an insertion.

 Deletion with Duplicates

Deletion may be more complicated when duplicates are allowed, depending on exactly
how "deletion" is defined. If it means to delete only the first item with a specified value,
then, on the average, only N/2 comparisons and N/2 moves are necessary. This is the
same as when no duplicates are allowed.

But if deletion means to delete every item with a specified key value, then the same
operation may require multiple deletions. This will require checking N cells and (probably)
moving more than N/2 cells. The average depends on how the duplicates are distributed
throughout the array.

The applet assumes this second meaning and deletes multiple items with the same key.
This is complicated, because each time an item is deleted, subsequent items must be
shifted farther. For example, if three items are deleted, then items beyond the last
deletion will need to be shifted three spaces. To see how this works, set the applet to
Dups OK and insert three or four items with the same key. Then try deleting them.

Table 2.1 shows the average number of comparisons and moves for the three
operations, first where no duplicates are allowed and then where they are allowed. N is
the number of items in the array. Inserting a new item counts as one move.

 You can explore these possibilities with the Array Workshop applet.

 Table 2.1: Duplicates OK Versus No Duplicates

No Duplicates

Duplicates OK

 Search

N/2 comparisons

N comparisons

 Insertion

No comparisons, one move

No comparisons, one move

 Deletion

N/2 comparisons, N/2
moves

N comparisons, more than
N/2 moves

The difference between N and N/2 is not usually considered very significant, except when
fine-tuning a program. Of more importance, as we'll discuss toward the end of this
chapter, is whether an operation takes one step, N steps, log(N) steps, or N e2 steps.

 Not Too Swift

One of the significant things to notice when using the Array applet is the slow and
methodical nature of the algorithms. With the exception of insertion, the algorithms involve
stepping through some or all of the cells in the array. Different data structures offer much

 - 34 -

faster (but more complex) algorithms. We'll see one, the binary search on an ordered array,
later in this chapter, and others throughout this book.

The Basics of Arrays in Java

The preceding section showed graphically the primary algorithms used for arrays. Now
we'll see how to write programs to carry out these algorithms, but we first want to cover a
few of the fundamentals of arrays in Java.

If you're a Java expert, you can skip ahead to the next section, but even C and C++
programmers should stick around. Arrays in Java use syntax similar to that in C and C++
(and not that different from other languages), but there are nevertheless some unique
aspects to the Java approach.

 Creating an Array

As we noted in Chapter 1, there are two kinds of data in Java: primitive types (such as
int and double), and objects. In many programming languages (even object-oriented
ones like C++) arrays are a primitive type, but in Java they're treated as objects.
Accordingly you must use the new operator to create an array:

 int[] intArray; // defines a reference to an array

 intArray = new int[100]; // creates the array, and

 // sets intArray to refer to it

 or the equivalent single-statement approach:

 int[] intArray = new int[100];

The [] operator is the sign to the compiler we're naming an array object and not an
ordinary variable. You can also use an alternative syntax for this operator, placing it after
the name instead of the type:

 int intArray[] = new int[100]; // alternative syntax

 However, placing the [] after the int makes it clear that the [] is part of the type, not

the name.

Because an array is an object, its name—intArray in the code above—is a reference
to an array; it's not the array itself. The array is stored at an address elsewhere in
memory, and intArray holds only this address.

 Arrays have a length field, which you can use to find the size, in bytes, of an array:

 int arrayLength = intArray.length; // find array length

Remember that this is the total number of bytes occupied by the array, not the number of
data items you have placed in it. As in most programming languages, you can't change
the size of an array after it's been created.

 Accessing Array Elements

 Array elements are accessed using square brackets. This is similar to how other

languages work:

 - 35 -

 temp = intArray[3]; // get contents of fourth element of array
 intArray[7] = 66; // insert 66 into the eighth cell

 Remember that in Java, as in C and C++, the first element is numbered 0, so that the

indices in an array of 10 elements run from 0 to 9.

If you use an index that's less than 0 or greater than the size of the array less 1, you'll get
the "Array Index Out of Bounds" runtime error. This is an improvement on C and C++,
which don't check for out-of-bounds indices, thus causing many program bugs.

 Initialization

Unless you specify otherwise, an array of integers is automatically initialized to 0 when
it's created. Unlike C++, this is true even of arrays defined within a method (function). If
you create an array of objects, like this:

 autoData[] carArray = new autoData[4000];

then, until they're given explicit values, the array elements contain the special null
object. If you attempt to access an array element that contains null, you'll get the
runtime error "Null Pointer Assignment." The moral is to make sure you assign something
to an element before attempting to access it.

 You can initialize an array of a primitive type to something besides 0 using this syntax:

 int[] intArray = { 0, 3, 6, 9, 12, 15, 18, 21, 24, 27 };

Perhaps surprisingly, this single statement takes the place of both the reference
declaration and the use of new to create the array. The numbers within the curly braces
are called the initialization list. The size of the array is determined by the number of
values in this list.

 An Array Example

Let's look at some example programs that show how an array can be used. We'll start
with an old-fashioned procedural version, and then show the equivalent objectoriented
approach. Listing 2.1 shows the old-fashioned version, called array.java.

 Listing 2.1 array.java

 // array.java
 // demonstrates Java arrays
 // to run this program: C>java ArrayApp
 import java.io.*; // for I/O
 //
 class ArrayApp
 {
 public static void main(String[] args) throws IOException
 {
 int[] arr; // reference
 arr = new int[100]; // make array
 int nElems = 0; // number of items
 int j; // loop counter
 int searchKey; // key of item to search for

 - 36 -

 //---

-
 arr[0] = 77; // insert 10 items
 arr[1] = 99;
 arr[2] = 44;
 arr[3] = 55;
 arr[4] = 22;
 arr[5] = 88;
 arr[6] = 11;
 arr[7] = 00;
 arr[8] = 66;
 arr[9] = 33;
 nElems = 10; // now 10 items in array

 //---

-
 for(j=0; j<nElems; j++) // display items
 System.out.print(arr[j] + " ");
 System.out.println("");

 //---

-
 searchKey = 66; // find item with key 66
 for(j=0; j<nElems; j++) // for each element,
 if(arr[j] == searchKey) // found item?
 break; // yes, exit before end
 if(j == nElems) // at the end?
 System.out.println("Can't find " + searchKey); // yes
 else
 System.out.println("Found " + searchKey); // no

 //---

-
 searchKey = 55; // delete item with key 55
 for(j=0; j<nElems; j++) // look for it
 if(arr[j] == searchKey)
 break;
 for(int k=j; k<nElems; k++) // move higher ones

down
 arr[k] = arr[k+1];
 nElems--; // decrement size

 //---

-
 for(j=0; j<nElems; j++) // display items
 System.out.print(arr[j] + " ");
 System.out.println("");
 } // end main()
 } // end class ArrayApp

In this program, we create an array called arr, place 10 data items (kids' numbers) in it,
search for the item with value 66 (the shortstop, Louisa), display all the items,remove the
item with value 55 (Freddy, who had a dentist appointment), and then display the
remaining nine items. The output of the program looks like this:

 - 37 -

 77 99 44 55 22 88 11 0 66 33
 Found 66
 77 99 44 22 88 11 0 66 33

The data we're storing in this array is type int. We've chosen a primitive type to simplify
the coding. Generally the items stored in a data structure consist of several fields, so they
are represented by objects rather than primitive types. We'll see an example of this
toward the end of this chapter.

 Insertion

 Inserting an item into the array is easy; we use the normal array syntax

 arr[0] = 77;

 We also keep track of how many items we've inserted into the array with the nElems

variable.

 Searching

The searchKey variable holds the value we're looking for. To search for an item, we
step through the array, comparing searchKey with each element. If the loop variable j
reaches the last occupied cell with no match being found, then the value isn't in the array.
Appropriate messages are displayed: "Found 66" or "Can't find 27."

 Deletion

Deletion begins with a search for the specified item. For simplicity we assume (perhaps
rashly) that the item is present. When we find it, we move all the items with higher index
values down one element to fill in the "hole" left by the deleted element, and we
decrement nElems. In a real program, we'd also take appropriate action if the item to be
deleted could not be found.

 Display

 Displaying all the elements is straightforward: we step through the array, accessing each

one with arr[j] and displaying it.

 Program Organization

The organization of array.java leaves something to be desired. There is only one
class, ArrayApp, and this class has only one method, main(). The program is
essentially an old-fashioned procedural program. Let's see if we can make it easier to
understand (among other benefits) by making it more object-oriented.

We're going to provide a gradual introduction to an object-oriented approach, using two
steps. In the first, we'll separate the data storage structure (the array) from the rest of the
program. This remaining part of the program will become a user of the structure. In the
second step, we'll improve the communication between the storage structure and its user.

 Dividing a Program into Classes

The array.java program essentially consisted of one big method. We can reap many
benefits by dividing the program into classes. What classes? The data storage structure
itself is one candidate, and the part of the program that uses this data structure is

 - 38 -

another. By dividing the program into these two classes we can clarify the functionality of
the program, making it easier to design and understand (and in real programs to modify
and maintain).

In array.java we used an array as a data storage structure, but we treated it simply as
a language element. Now we'll encapsulate the array in a class, called LowArray. We'll
also provide class methods by which objects of other classes (the LowArrayApp class in
this case) can access the array. These methods allow communication between
LowArray and LowArrayApp.

Our first design of the LowArray class won't be entirely successful, but it will
demonstrate the need for a better approach. The lowArray.java program in Listing 2.2
shows how it looks.

 Listing 2.2 The lowArray.java Program

 // lowArray.java
 // demonstrates array class with low-level interface
 // to run this program: C>java LowArrayApp
 import java.io.*; // for I/O
 //
 class LowArray
 {
 private double[] a; // ref to array a

 public LowArray(int size) // constructor
 {
 a = new double[size];
 }
 // put element into array
 public void setElem(int index, double value)
 {
 a[index] = value;
 }

 public double getElem(int index) // get element from array
 {
 return a[index];
 }
 } // end class LowArray

 //

 class LowArrayApp
 {
 public static void main(String[] args)
 {
 LowArray arr; // reference
 arr = new LowArray(100); // create LowArray object
 int nElems = 0; // number of items in array
 int j; // loop variable

 arr.setElem(0, 77); // insert 10 items
 arr.setElem(1, 99);

 - 39 -

 arr.setElem(2, 44);
 arr.setElem(3, 55);
 arr.setElem(4, 22);
 arr.setElem(5, 88);
 arr.setElem(6, 11);
 arr.setElem(7, 00);
 arr.setElem(8, 66);
 arr.setElem(9, 33);
 nElems = 10; // now 10 items in array

 //---

-
 for(j=0; j<nElems; j++) // display items
 System.out.print(arr.getElem(j) + " ");
 System.out.println("");

 //---

-
 int searchKey = 26; // search for data item
 for(j=0; j<nElems; j++) // for each element,
 if(arr.getElem(j) == searchKey) // found item?
 break;
 if(j == nElems) // no
 System.out.println("Can't find " + searchKey);
 else // yes
 System.out.println("Found " + searchKey);

 //---

-
 // delete value 55
 for(j=0; j<nElems; j++) // look for it
 if(arr.getElem(j) == 55)
 break;
 for(int k=j; k<nElems; k++) // move higher ones

down
 arr.setElem(k, arr.getElem(k+1));
 nElems--; // decrement size

 //---

-
 for(j=0; j<nElems; j++) // display items
 System.out.print(arr.getElem(j) + " ");
 System.out.println("");
 } // end main()
 } // end class LowArrayApp

 The output from this program is similar to that from array.java, except that we try to

find a non-existent key value (26) before deleting the item with the key value 55:

 77 99 44 55 22 88 11 0 66 33

 Can't find 26

 77 99 44 22 88 11 0 66 33

 - 40 -

 Classes LowArray and LowArrayApp

In lowArray.java, we essentially wrap the class LowArray around an ordinary Java
array. The array is hidden from the outside world inside the class; it's private, so only
LowArray class methods can access it. There are three LowArray methods:
setElem() and getElem(), which insert and retrieve an element, respectively; and a
constructor, which creates an empty array of a specified size.

Another class, LowArrayApp, creates an object of the LowArray class and uses it to
store and manipulate data. Think of LowArray as a tool, and LowArrayApp as a user of
the tool. We've divided the program into two classes with clearly defined roles. This is a
valuable first step in making a program object-oriented.

A class used to store data objects, as is LowArray in the lowArray.java program, is
sometimes called a container class. Typically, a container class not only stores the data but
provides methods for accessing the data, and perhaps also sorting it and performing other
complex actions on it.

 Class Interfaces

We've seen how a program can be divided into separate classes. How do these classes
interact with each other? Communication between classes, and the division of
responsibility between them, are important aspects of object-oriented programming.

This is especially true when a class may have many different users. Typically a class can
be used over and over by different users (or the same user) for different purposes. For
example, it's possible that someone might use the LowArray class in some other
program to store the serial numbers of their traveler's checks. The class can handle this
just as well as it can store the numbers of baseball players.

If a class is used by many different programmers, the class should be designed so that
it's easy to use. The way that a class user relates to the class is called the class interface.
Because class fields are typically private, when we talk about the interface we usually
mean the class methods: what they do and what their arguments are. It's by calling these
methods that a class user interacts with an object of the class. One of the important
advantages conferred by object-oriented programming is that a class interface can be
designed to be as convenient and efficient as possible. Figure 2.3 is a fanciful
interpretation of the LowArray interface.

 Not So Convenient

The interface to the LowArray class in lowArray.java is not particularly convenient.
The methods setElem() and getElem() operate on a low conceptual level, performing
exactly the same tasks as the [] operator in an ordinary Java array. The class user,
represented by the main() method in the LowArrayApp class, ends up having to carry
out the same low-level operations it did in the non-class version of an array in the
array.java program. The only difference was that it related to setElem() and
getElem() instead of the [] operator. It's not clear that this is an improvement.

 - 41 -

 Figure 2.3: The LowArray interface

Also notice that there's no convenient way to display the contents of the array. Somewhat
crudely, the LowArrayApp class simply uses a for loop and the getElem() method for
this purpose. We could avoid repeated code by writing a separate method for
lowArrayApp that it could call to display the array contents, but is it really the
responsibility of the lowArrayApp class to provide this method?

Thus lowArray.java demonstrates how you can divide a program into classes, but it
really doesn't buy us too much in practical terms. Let's see how to redistribute
responsibilities between the classes to obtain more of the advantages of OOP.

 Who's Responsible for What?

In the lowArray.java program, the main() routine in the LowArrayApp class, the
user of the data storage structure must keep track of the indices to the array. For some
users of an array who need random access to array elements and don't mind keeping
track of the index numbers, this arrangement might make sense. For example, sorting an
array, as we'll see in the next chapter, can make efficient use of this direct "hands-on"
approach.

However, in a typical program the user of the data storage device won't find access to the
array indices to be helpful or relevant. In the Cardfile program in Chapter 1, for example,
if the card data were stored in an array, and you wanted to insert a new card, it would be
easier not to have to worry about exactly where in the array it is going
to go.

 The highArray.java Example

Our next example program shows an improved interface for the storage structure class,
called HighArray. Using this interface, the class user (the HighArrayApp class) no
longer needs to think about index numbers. The setElem() and getElem() methods
are gone, replaced by insert(), find(), and delete(). These new methods don't
require an index number as an argument, because the class takes responsibility for
handling index numbers. The user of the class (HighArrayApp) is free to concentrate
on the what instead of the how: what's going to be inserted, deleted, and accessed,
instead of exactly how these activities are carried out.

 Figure 2.4 shows the HighArray interface and Listing 2.3 shows the highArray.java

program.

 - 42 -

 Figure 2.4: The HighArray interface

 Listing 2.3 The highArray.java Program

 // highArray.java
 // demonstrates array class with high-level interface
 // to run this program: C>java HighArrayApp
 import java.io.*; // for I/O
 //
 class HighArray
 {
 private double[] a; // ref to array a
 private int nElems; // number of data items

 //--

-
 public HighArray(int max) // constructor
 {
 a = new double[max]; // create the array
 nElems = 0; // no items yet
 }

 //--

-
 public boolean find(double searchKey)
 { // find specified value
 int j;
 for(j=0; j<nElems; j++) // for each element,
 if(a[j] == searchKey) // found item?
 break; // exit loop before end
 if(j == nElems) // gone to end?
 return false; // yes, can't find it
 else
 return true; // no, found it
 } // end find()

 //--

-
 public void insert(double value) // put element into array
 {
 a[nElems] = value; // insert it

 - 43 -

 nElems++; // increment size
 }

 //--

-
 public boolean delete(double value)
 {
 int j;
 for(j=0; j<nElems; j++) // look for it
 if(value == a[j])
 break;
 if(j==nElems) // can't find it
 return false;
 else // found it
 {
 for(int k=j; k<nElems; k++) // move higher ones down
 a[k] = a[k+1];
 nElems--; // decrement size
 return true;
 }
 } // end delete()

 //--

-
 public void display() // displays array contents
 {
 for(int j=0; j<nElems; j++) // for each element,
 System.out.print(a[j] + " "); // display it
 System.out.println("");
 }

 //--

-
 } // end class HighArray

 //

 class HighArrayApp
 {
 public static void main(String[] args)
 {
 int maxSize = 100; // array size
 HighArray arr; // reference to array
 arr = new HighArray(maxSize); // create the array

 arr.insert(77); // insert 10 items
 arr.insert(99);
 arr.insert(44);
 arr.insert(55);
 arr.insert(22);
 arr.insert(88);
 arr.insert(11);
 arr.insert(00);

 - 44 -

 arr.insert(66);
 arr.insert(33);

 arr.display(); // display items

 int searchKey = 35; // search for item
 if(arr.find(searchKey))
 System.out.println("Found " + searchKey);
 else
 System.out.println("Can't find " + searchKey);

 arr.delete(00); // delete 3 items
 arr.delete(55);
 arr.delete(99);

 arr.display(); // display items again
 } // end main()

 } // end class HighArrayApp

The HighArray class is now wrapped around the array. In main(), we create an array
of this class and carry out almost the same operations as in the lowArray.java
program: we insert 10 items, search for an item—one that isn't there—and display the
array contents. Because it's so easy, we delete three items (0, 55, and 99) instead of
one, and finally display the contents again. Here's the output:

 77 99 44 55 22 88 11 0 66 33
 Can't find 35
 77 44 22 88 11 66 33

 Notice how short and simple main() is. The details that had to be handled by main() in
lowArray.java are now handled by HighArray class methods.

In the HighArray class, the find() method looks through the array for the item whose
key value was passed to it as an argument. It returns true or false, depending on whether
it finds the item or not.

The insert() method places a new data item in the next available space in the array. A
field called nElems keeps track of the number of array cells that are actually filled with
data items. The main() method no longer needs to worry about how many items are in
the array.

The delete() method searches for the element whose key value was passed to it as an
argument, and when it finds it, shifts all the elements in higher index cells down one cell,
thus writing over the deleted value; it then decrements nElems.

 We've also included a display() method, which displays all the values stored in the

array.

 The User's Life Made Easier

In lowArray.java, the code in main() to search for an item took eight lines; in
highArray.java, it takes only one. The class user, the HighArrayApp class, need
not worry about index numbers or any other array details. Amazingly, the class user does
not even need to know what kind of data structure the HighArray class is using to store

 - 45 -

the data. The structure is hidden behind the interface. In fact, in the next section, we'll
see the same interface used with a somewhat different data structure.

 Abstraction

The process of separating the how from the what—how an operation is performed inside a
class, as opposed to what's visible to the class user—is called abstraction. Abstraction
is an important aspect of software engineering. By abstracting class functionality we make
it easier to design a program, because we don't need to think about implementation details
at too early a stage in the design process.

 The Ordered Workshop Applet

Imagine an array in which the data items are arranged in order of ascending key values;
that is, with the smallest value at index 0, and each cell holding a value larger than the
cell below. Such an array is called an ordered array.

When we insert an item into this array, the correct location must be found for the
insertion: just above a smaller value and just below a larger one. Then all the larger
values must be moved up to make room.

 Why would we want to arrange data in order? One advantage is that we can speed up

search times dramatically using a binary search.

 Start the Ordered Workshop applet. You'll see an array; it's similar to the one in the Array

Workshop applet, but the data is ordered. Figure 2.5 shows how this looks.

 In the ordered array we've chosen to not allow duplicates. As we saw earlier, this speeds

up searching somewhat but slows down insertion.

 Figure 2.5: The Ordered Workshop applet

 Linear Search

Two search algorithms are available for the Ordered Workshop applet: linear and binary.
Linear search is the default. Linear searches operate in much the same way as the
searches in the unordered array in the Array applet: the red arrow steps along, looking for
a match. The difference is that in the ordered array, the search quits if an item with a
larger key is found.

Try this out. Make sure the Linear radio button is selected. Then use the Find button to
search for a non-existent value that, if it were present, would fit somewhere in the middle
of the array. In Figure 2.5, this might be 400. You'll see that the search terminates when
the first item larger than 400 is reached, it's 427 in the figure. The algorithm knows there's

 - 46 -

no point looking further.

Try out the Ins and Del buttons as well. Use Ins to insert an item with a key value that will
go somewhere in the middle of the existing items. You'll see that insertion requires
moving all the items with larger key values larger than the item being inserted.

Use the Del button to delete an item from the middle of the array. Deletion works much
the same as it did in the Array applet, shifting items with higher index numbers down to fill
in the hole left by the deletion. In the ordered array, however, the deletion algorithm can
quit partway through if it doesn't find the item, just as the search routine can.

 Binary Search

 The payoff for using an ordered array comes when we use a binary search. This kind of

search is much faster than a linear search, especially for large arrays.

 The Guess-a-Number Game

Binary search uses the same approach you did as a kid (if you were smart) to guess a
number in the well-known children's guessing game. In this game, a friend asks you to
guess a number she's thinking of between 1 and 100. When you guess a number, she'll
tell you one of three things: your guess is larger than the number she's thinking of, it's
smaller, or you guessed correctly.

To find the number in the fewest guesses, you should always start by guessing 50. If she
says your guess is too low, you deduce the number is between 51 and 100, so your next
guess should be 75 (halfway between 51 and 100). If she says it's too high, you deduce
the number is between 1 and 49, so your next guess should be 25.

 Each guess allows you to divide the range of possible values in half. Finally, the range is

only one number long, and that's the answer.

Notice how few guesses are required to find the number. If you used a linear search,
guessing first 1, then 2, then 3, and so on, it would take you, on the average, 50 guesses
to find the number. In a binary search each guess divides the range of possible values in
half, so the number of quesses required is far fewer. Table 2.2 shows a game session
when the number to be guessed is 33.

 Table 2.2: Guessing a Number

Step Number

Number Guessed

Result

Range of Possible
Values

 0

 1-100

 1

50

Too high

 1-49

 2

25

Too low

26-49

 3

37

Too high

26-36

 4

31

Too low

32-36

 - 47 -

 5 34 Too high 32-33

 6

32

Too low

33-33

 7

33

Correct

The correct number is identified in only seven guesses. This is the maximum. You might
get lucky and guess the number before you've worked your way all the way down to a
range of one. This would happen if the number to be guessed was 50, for example, or 34.

 Binary Search in the Ordered Workshop Applet

To perform a binary search with the Ordered Workshop applet, you must use the New
button to create a new array. After the first press you'll be asked to specify the size of the
array (maximum 60) and which kind of searching scheme you want: linear or binary.
Choose binary by clicking the Binary radio button. After the array is created, use the Fill
button to fill it with data items. When prompted, type the amount (not more than the size
of the array). A few more presses fills in all the items.

Once the array is filled, pick one of the values in the array and see how the Find button
can be used to locate it. After a few preliminary presses, you'll see the red arrow pointing
to the algorithm's current guess, and you'll see the range shown by a vertical blue line
adjacent to the appropriate cells. Figure 2.6 depicts the situation when the range is the
entire array.

 At each press of the Find button the range is halved and a new guess is chosen in the

middle of the range. Figure 2.7 shows the next step in the process.

 Even with a maximum array size of 60 items, a half-dozen button presses suffices to

locate any item.

Try using the binary search with different array sizes. Can you figure out how many steps
are necessary before you run the applet? We'll return to this question in the last section
of this chapter.

Notice that the insertion and deletion operations also employ the binary search (when it's
selected). The place where an item should be inserted is found with a binary search, as is
an item to be deleted. In this applet, items with duplicate keys are not permitted.

 Figure 2.6: Initial range in binary search

 - 48 -

 Figure 2.7: Range in step 2 of binary search

Java Code for an Ordered Array

Let's examine some Java code that implements an ordered array. We'll use the
OrdArray class to encapsulate the array and its algorithms. The heart of this class is the
find() method, which uses a binary search to locate a specified data item. We'll
examine this method in detail before showing the complete program.

 Binary Search with the find() Method

 The find() method searches for a specified item by repeatedly dividing in half the

range of array elements to be considered. Here's how this method looks:

 public int find(double searchKey)
 {
 int lowerBound = 0;
 int upperBound = nElems-1;
 int curIn;

 while(true)
 {
 curIn = (lowerBound + upperBound) / 2;
 if(a[curIn]==searchKey)
 return curIn; // found it
 else if(lowerBound > upperBound)
 return nElems; // can't find it
 else // divide range
 {
 if(a[curIn] < searchKey)
 lowerBound = curIn + 1; // it's in upper half
 else
 upperBound = curIn - 1; // it's in lower half
 } // end else divide range
 } // end while

 } // end find()

The method begins by setting the lowerBound and upperBound variables to the first
and last occupied cells in the array. This specifies the range where the item we're looking
for, searchKey, may be found. Then, within the while loop, the current index, curIn,

 - 49 -

is set to the middle of this range.

 If we're lucky, curIn may already be pointing to the desired item, so we first check if this

is true. If it is, we've found the item so we return with its index, curIn.

Each time through the loop we divide the range in half. Eventually it will get so small it
can't be divided any more. We check for this in the next statement: If lowerBound is
greater than upperBound, the range has ceased to exist. (When lowerBound equals
upperBound the range is one and we need one more pass through the loop.) We can't
continue the search without a valid range, but we haven't found the desired item, so we
return nElems, the total number of items. This isn't a valid index, because the last filled
cell in the array is nElems-1. The class user interprets this value to mean that the item
wasn't found.

If curIn is not pointing at the desired item, and the range is still big enough, then we're
ready to divide the range in half. We compare the value at the current index, a[curIn],
which is in the middle of the range, with the value to be found, searchKey.

 If searchKey is larger, then we know we should look in the upper half of the range.

Accordingly, we move lowerBound up to curIn.

 Actually we move it one cell beyond curIn, because we've already checked curIn itself

at the beginning of the loop.

If searchKey is smaller than a[curIn], we know we should look in the lower half of the
range. So we move upperBound down to one cell below curIn. Figure 2.8 shows how
the range is altered in these two situations.

 Figure 2.8: Dividing the range in a binary search

 The OrdArray Class

 In general, the orderedArray.java program is similar to highArray.java. The main

difference is that find() uses a binary search, as we've seen.

We could have used a binary search to locate the position where a new item will be
inserted. This involves a variation on the find() routine, but for simplicity we retain the
linear search in insert(). The speed penalty may not be important because, as we've
seen, an average of half the items must be moved anyway when an insertion is
performed, so insertion will not be very fast even if we locate the item with a binary
search. However, for the last ounce of speed, you could change the initial part of
insert() to a binary search (as is done in the Ordered Workshop applet). Similarly, the
delete() method could call find() to figure out the location of the item to be deleted.

 - 50 -

The OrdArray class includes a new size() method, which returns the number of data
items currently in the array. This is helpful for the class user, main(), when it calls
find(). If find() returns nElems, which main() can discover with size(), then the
search was unsuccessful. Listing 2.4 shows the complete listing for the
orderedArray.java program.

 Listing 2.4 The orderedArray.java Program

 // orderedArray.java
 // demonstrates ordered array class
 // to run this program: C>java OrderedApp
 import java.io.*; // for I/O
 //
 class OrdArray
 {
 private double[] a; // ref to array a
 private int nElems; // number of data items

 //--

-
 public OrdArray(int max) // constructor
 {
 a = new double[max]; // create array
 nElems = 0;
 }

 //--

-
 public int size()
 { return nElems; }

 //--

-
 public int find(double searchKey)
 {
 int lowerBound = 0;
 int upperBound = nElems-1;
 int curIn;

 while(true)
 {
 curIn = (lowerBound + upperBound) / 2;
 if(a[curIn]==searchKey)
 return curIn; // found it else

if(lowerBound > upperBound)
 return nElems; // can't find it
 else // divide range
 {
 if(a[curIn] < searchKey)
 lowerBound = curIn + 1; // it's in upper half
 else
 upperBound = curIn - 1; // it's in lower half
 } // end else divide range
 } // end while

 - 51 -

 } // end find()

 //--

-
 public void insert(double value) // put element into array
 {
 int j;
 for(j=0; j<nElems; j++) // find where it goes
 if(a[j] > value) // (linear search)
 break;
 for(int k=nElems; k>j; k--) // move higher ones up
 a[k] = a[k-1];
 a[j] = value; // insert it
 nElems++; // increment size
 } // end insert()

 //--

-
 public boolean delete(double value)
 {
 int j = find(value);
 if(j==nElems) // can't find it
 return false;
 else // found it
 {
 for(int k=j; k<nElems; k++) // move higher ones down
 a[k] = a[k+1];
 nElems--; // decrement size
 return true;
 }
 } // end delete()

 //--

-
 public void display() // displays array contents
 {
 for(int j=0; j<nElems; j++) // for each element,
 System.out.print(a[j] + " "); // display it
 System.out.println("");
 }

 //--

-
 } // end class OrdArray

 //

 class OrderedApp
 {
 public static void main(String[] args)
 {
 int maxSize = 100; // array size
 OrdArray arr; // reference to array
 arr = new OrdArray(maxSize); // create the array

 - 52 -

 arr.insert(77); // insert 10 items
 arr.insert(99);
 arr.insert(44);
 arr.insert(55);
 arr.insert(22);
 arr.insert(88);
 arr.insert(11);
 arr.insert(00);
 arr.insert(66);
 arr.insert(33);

 int searchKey = 55; // search for item
 if(arr.find(searchKey) != arr.size())
 System.out.println("Found " + searchKey);
 else
 System.out.println("Can't find " + searchKey);

 arr.display(); // display items

 arr.delete(00); // delete 3 items
 arr.delete(55);
 arr.delete(99);

 arr.display(); // display items again
 } // end main()

 } // end class OrderedApp

 Advantages of Ordered Arrays

What have we gained by using an ordered array? The major advantage is that search
times are much faster than in an unordered array. The disadvantage is that insertion
takes longer, because all the data items with a higher key value must be moved up to
make room. Deletions are slow in both ordered and unordered arrays, because items
must be moved down to fill the hole left by the deleted item.

Ordered arrays are therefore useful in situations in which searches are frequent, but
insertions and deletions are not. An ordered array might be appropriate for a database of
company employees, for example. Hiring new employees and laying off existing ones
would probably be infrequent occurrences compared with accessing an existing
employee's record for information or updating it to reflect changes in salary, address, and
so on.

A retail store inventory, on the other hand, would not be a good candidate for an ordered
array because the frequent insertions and deletions, as items arrived in the store and were
sold, would run slowly.

 Logarithms

In this section we'll explain how logarithms are used to calculate the number of steps
necessary in a binary search. If you're a math major, you can probably skip this section. If
math makes you break out in a rash, you can also skip it, except for taking a long, hard
look at Table 2.3.

 - 53 -

We've seen that a binary search provides a significant speed increase over a linear
search. In the number guessing game, with a range from 1 to 100, it takes a maximum of
seven guesses to identify any number using a binary search; just as in an array of 100
records, it takes seven comparisons to find a record with a specified key value. How
about other ranges? Table 2.3 shows some representative ranges and the number of
comparisons needed for a binary search.

 Table 2.3: Comparisons needed in Binary Search

 ange

Comparisons Needed

 10

4

 100

7

 1,000

10

 10,000

14

 100,000

17

 1,000,000

20

 10,000,000

24

 100,000,000

27

 1,000,000,000

30

Notice the differences between binary search times and linear search times. For very
small numbers of items, the difference isn't dramatic. Searching 10 items would take an
average of five comparisons with a linear search (N/2), and a maximum of four
comparisons with a binary search. But the more items there are, the bigger the
difference. With 100 items, there are 50 comparisons in a linear search, but only seven in
a binary search. For 1,000 items, the numbers are 500 versus 10, and for 1,000,000
items, they're 500,000 versus 20. We can conclude that for all but very small arrays, the
binary search is greatly superior.

 The Equation

You can verify the results of Table 2.3 by repeatedly dividing a range (from the first
column) in half until it's too small to divide further. The number of divisions this process
requires is the number of comparisons shown in the second column.

Repeatedly dividing the range by two is an algorithmic approach to finding the number of
comparisons. You might wonder if you could also find the number using a simple
equation. Of course, there is such an equation and it's worth exploring here because it
pops up from time to time in the study of data structures. This formula involves
logarithms. (Don't panic yet.)

 - 54 -

The numbers in Table 2.3 leave out some interesting data. They don't answer questions
like, "What is the exact size of the maximum range that can be searched in five steps?"
To solve this, we must create a similar table, but one that starts at the beginning, with a
range of one, and works up from there by multiplying the range by two each time. Table
2.4 shows how this looks for the first ten steps.

 Table 2.4: Powers of Two

 Step s, Same as log2(r)

Range r

Range Expressed as Power of 2 (2s)

 0

1

20

 1

2

21

 2

4

22

 3

8

23

 4

16

24

 5

32

25

 6

64

26

 7

128

27

 8

256

28

 9

512

29

 10

1024

210

For our original problem with a range of 100, we can see that six steps doesn't produce a
range quite big enough (64), while seven steps covers it handily (128). Thus, the seven
steps that are shown for 100 items in Table 2.3 are correct, as are the 10 steps for a
range of 1000.

Doubling the range each time creates a series that's the same as raising two to a power,
as shown in the third column of Table 2.4. We can express this as a formula. If s
represents steps (the number of times you multiply by two—that is, the power to which
two is raised) and r represents the range, then the equation is

 r = 2s

 If you know s, the number of steps, this tells you r, the range. For example, if s is 6, the

range is 26, or 64.

 The Opposite of Raising Two to a Power

 - 55 -

But our original question was the opposite: given the range, we want to know how many
comparisons it will take to complete a search. That is, given r, we want an equation that
gives us s.

 Raising something to a power is the inverse of a logarithm. Here's the formula we want,

expressed with a logarithm:

 s = log2(r)

This says that the number of steps (comparisons) is equal to the logarithm to the base 2
of the range. What's a logarithm? The base-2 logarithm of a number r is the number of
times you must multiply two by itself to get r. In Table 2.4, we show that the numbers in
the first column, s, are equal to log2(r).

How do you find the logarithm of a number without doing a lot of dividing? Pocket
calculators and most computer languages have a log function. This is usually log to the
base 10, but you can convert easily to base 2 by multiplying by 3.322. For example,
log10(100) = 2, so log2(100) = 2 times 3.322, or 6.644. Rounded up to the whole number
7, this is what appears in the column to the right of 100 in Table 2.4.

In any case, the point here isn't to calculate logarithms. It's more important to understand
the relationship between a number and its logarithm. Look again at Table 2.3, which
compares the number of items and the number of steps needed to find a particular item.
Every time you multiply the number of items (the range) by a factor of 10, you add only
three or four steps (actually 3.322, before rounding off to whole numbers) to the number
needed to find a particular element. This is because, as a number grows larger, its
logarithm doesn't grow nearly as fast. We'll compare this logarithmic growth rate with that
of other mathematical functions when we talk about Big O notation later in this chapter.

 Storing Objects

In the Java examples we've shown so far, we've stored primitive variables of type
double in our data structures. This simplifies the program examples, but it's not repre
sentative of how you use data storage structures in the real world. Usually, the data items
(records) you want to store are combinations of many fields. For a personnel record, you
would store last name, first name, age, Social Security number, and so forth. For a stamp
collection, you'd store the name of the country that issued the stamp, its catalog number,
condition, current value, and so on.

 In our next Java example, we'll show how objects, rather than variables of primitive types,

can be stored.

 The Person Class

 In Java, a data record is usually represented by a class object. Let's examine a typical

class used for storing personnel data. Here's the code for the Person class:

 class Person
 {
 private String lastName;
 private String firstName;
 private int age;

 //--

-
 public Person(String last, String first, int a)
 { // constructor

 - 56 -

 lastName = last;
 firstName = first;
 age = a;
 }

 //--

-
 public void displayPerson()
 {
 System.out.print(" Last name: " + lastName);
 System.out.print(", First name: " + firstName);
 System.out.println(", Age: " + age);
 }

 //--

-
 public String getLast() // get last name
 { return lastName; }
 } // end class Person

 We show only three variables in this class, for a person's last name, first name, and age.

Of course, records for most applications would contain many additional fields.

A constructor enables a new Person object to be created and its fields initialized. The
displayPerson() method displays a Person object's data, and the getLast()
method returns the Person's last name; this is the key field used for searches.

 The classDataArray.java Program

The program that makes use of the Person class is similar to the highArray.java
program that stored items of type double. Only a few changes are necessary to adapt
that program to handle Person objects. Here are the major ones:

 • The type of the array a is changed to Person.

•

The key field (the last name) is now a String object, so comparisons require the
equals() method rather than the == operator. The getLast() method of Person
obtains the last name of a Person object, and equals() does the comparison:

 if(a[j].getLast().equals(searchName)) // found item?

 • The insert() method creates a new Person object and inserts it in the array,

instead of inserting a double value.

The main() method has been modified slightly, mostly to handle the increased quantity
of output. We still insert 10 items, display them, search for one, delete three items, and
display them all again. Here's the listing for classDataArray.java:

 // classDataArray.java
 // data items as class objects
 // to run this program: C>java ClassDataApp
 import java.io.*; // for I/O
 //
 class Person
 {

 - 57 -

 private String lastName;
 private String firstName;
 private int age;

 //--

-
 public Person(String last, String first, int a)
 { // constructor
 lastName = last;
 firstName = first;
 age = a;
 }

 //--

-
 public void displayPerson()
 {
 System.out.print(" Last name: " + lastName);
 System.out.print(", First name: " + firstName);
 System.out.println(", Age: " + age);
 }

 //--

-
 public String getLast() // get last name
 { return lastName; }
 } // end class Person

 //

 class ClassDataArray
 {
 private Person[] a; // reference to array
 private int nElems; // number of data items

 //--

-
 public ClassDataArray(int max) // constructor
 {
 a = new Person[max]; // create the array
 nElems = 0; // no items yet
 }

 //--

-
 public Person find(String searchName)
 { // find specified value
 int j;
 for(j=0; j<nElems; j++) // for each element,
 if(a[j].getLast().equals(searchName)) // found

item?
 break; // exit loop before

end
 if(j == nElems) // gone to end?
 return null; // yes, can't find it

 - 58 -

 else
 return a[j]; // no, found it
 } // end find()

 //--

-
 // put Person into array
 public void insert(String last, String first, int age)
 {
 a[nElems] = new Person(last, first, age);
 nElems++; // increment size
 }

 //--

-
 public boolean delete(String searchName)
 { // delete Person from

array
 int j;
 for(j=0; j<nElems; j++) // look for it
 if(a[j].getLast().equals(searchName))
 break;
 if(j==nElems) // can't find it
 return false;
 else // found it
 {
 for(int k=j; k<nElems; k++) // shift down
 a[k] = a[k+1];
 nElems--; // decrement size
 return true;
 }
 } // end delete()

 //--

-
 public void displayA() // displays array contents
 {
 for(int j=0; j<nElems; j++) // for each element,
 a[j].displayPerson(); // display it
 }

 //--

-
 } // end class ClassDataArray

 //

 class ClassDataApp
 {
 public static void main(String[] args)
 {
 int maxSize = 100; // array size
 ClassDataArray arr; // reference to array
 arr = new ClassDataArray(maxSize); // create the array

 - 59 -

 // insert 10 items
 arr.insert("Evans", "Patty", 24);
 arr.insert("Smith", "Lorraine", 37);
 arr.insert("Yee", "Tom", 43);
 arr.insert("Adams", "Henry", 63);
 arr.insert("Hashimoto", "Sato", 21);
 arr.insert("Stimson", "Henry", 29);
 arr.insert("Velasquez", "Jose", 72);
 arr.insert("Lamarque", "Henry", 54);
 arr.insert("Vang", "Minh", 22);
 arr.insert("Creswell", "Lucinda", 18);

 arr.displayA(); // display items

 String searchKey = "Stimson"; // search for item
 Person found;
 found=arr.find(searchKey);
 if(found != null)
 {
 System.out.print("Found ");
 found.displayPerson();
 }
 else
 System.out.println("Can't find " + searchKey);

 System.out.println("Deleting Smith, Yee, and Creswell");
 arr.delete("Smith"); // delete 3 items
 arr.delete("Yee");
 arr.delete("Creswell");

 arr.displayA(); // display items again
 } // end main()

 } // end class ClassDataApp

 Here's the output of this program:

 Last name: Evans, First name: Patty, Age: 24
 Last name: Smith, First name: Lorraine, Age: 37
 Last name: Yee, First name: Tom, Age: 43
 Last name: Adams, First name: Henry, Age: 63
 Last name: Hashimoto, First name: Sato, Age: 21
 Last name: Stimson, First name: Henry, Age: 29
 Last name: Velasquez, First name: Jose, Age: 72
 Last name: Lamarque, First name: Henry, Age: 54
 Last name: Vang, First name: Minh, Age: 22
 Last name: Creswell, First name: Lucinda, Age: 18
 Found Last name: Stimson, First name: Henry, Age: 29
 Deleting Smith, Yee, and Creswell
 Last name: Evans, First name: Patty, Age: 24
 Last name: Adams, First name: Henry, Age: 63
 Last name: Hashimoto, First name: Sato, Age: 21

 - 60 -

 Last name: Stimson, First name: Henry, Age: 29
 Last name: Velasquez, First name: Jose, Age: 72
 Last name: Lamarque, First name: Henry, Age: 54

 Last name: Vang, First name: Minh, Age: 22

This program shows that class objects can be handled by data storage structures in much
the same way as primitive types. (Note that a serious program using the last name as a key
would need to account for duplicate last names, which would complicate the programming
as discussed earlier.)

 Big O Notation

Automobiles are divided by size into several categories: subcompacts, compacts,
midsize, and so on. These categories provide a quick idea what size car you're talking
about, without needing to mention actual dimensions. Similarly, it's useful to have a
shorthand way to say how efficient a computer algorithm is. In computer science, this
rough measure is called Big O notation.

You might think that in comparing algorithms you would say things like "Algorithm A is
twice as fast as algorithm B," but in fact this sort of statement isn't too meaningful. Why
not? Because the proportion can change radically as the number of items changes.
Perhaps you increase the number of items by 50%, and now A is three times as fast as
B. Or you have half as many items, and A and B are now equal. What you need is a
comparison that's related to the number of items. Let's see how this looks for the
algorithms we've seen so far.

 Insertion in an Unordered Array: Constant

Insertion into an unordered array is the only algorithm we've seen that doesn't depend on
how many items are in the array. The new item is always placed in the next available
position, at a[nElems], and nElems is then incremented. This requires the same
amount of time no matter how big N—the number of items in the array—is. We can say
that the time, T, to insert an item into an unsorted array is a constant K:

 T = K

In a real situation, the actual time (in microseconds or whatever) required by the insertion
is related to the speed of the microprocessor, how efficiently the compiler has generated
the program code, and other factors. The constant K in the equation above is used to
account for all such factors. To find out what K is in a real situation, you need to measure
how long an insertion took. (Software exists for this very purpose.) K would then be equal
to that time.

 Linear Search: Proportional to N

We've seen that, in a linear search of items in an array, the number of comparisons that
must be made to find a specified item is, on the average, half of the total number of
items. Thus, if N is the total number of items, the search time T is proportional to half of
N:

 T = K * N / 2

As with insertions, discovering the value of K in this equation would require timing a
search for some (probably large) value of N, and then using the resulting value of T to
calculate K. Once you knew K, then you could calculate T for any other value of N.

 - 61 -

 For a handier formula, we could lump the 2 into the K. Our new K is equal to the old K
divided by 2. Now we have

 T = K * N

 This says that average linear search times are proportional to the size of the array. If an

array is twice as big, it will take twice as long to search.

 Binary Search: Proportional to log(N)

 Similarly, we can concoct a formula relating T and N for a binary search:

 T = K * log2(N)

As we saw earlier, the time is proportional to the base 2 logarithm of N. Actually, because
any logarithm is related to any other logarithm by a constant (3.322 to go from base 2 to
base 10), we can lump this constant into K as well. Then we don't need to specify the
base:

 T = K * log(N)

 Don't Need the Constant

Big O notation looks like these formulas, but it dispenses with the constant K. When
comparing algorithms you don't really care about the particular microprocessor chip or
compiler; all you want to compare is how T changes for different values of N, not what the
actual numbers are. Therefore, the constant isn't needed.

Big O notation uses the uppercase letter O, which you can think of as meaning "order of."
In Big O notation, we would say that a linear search takes O(N) time, and a binary search
takes O(log N) time. Insertion into an unordered array takes O(1), or constant time.
(That's the numeral 1 in the parentheses.)

 Table 2.5: Running times in Big O Notation

 Algorithm

Running Time in Big O Notation

 Linear search

O(N)

 Binary search

O(log N)

 Insertion in unordered array

O(1)

 Insertion in ordered array

O(N)

 Deletion in unordered array

O(N)

 Deletion in ordered array

O(N)

 - 62 -

 Figure 2.9: Graph of Big O times

 Table 2.5 summarizes the running times of the algorithms we've discussed so far.

Figure 2.9 graphs some Big O relationships between time and number of items. Based
on this graph, we might rate the various Big O values (very subjectively) like this: O(1) is
excellent, O(log N) is good, O(N) is fair, and O(N e2) is poor. O(N e2) occurs in the
bubble sort and also in certain graph algorithms that we'll look at later in this book.

The idea in Big O notation isn't to give an actual figure for running time, but to convey
how the running times are affected by the number of items. This is the most meaningful
way to compare algorithms, except perhaps actually measuring running times in a real
installation.

Why Not Use Arrays for Everything?

They seem to get the job done, so why not use arrays for all data storage? We've already
seen some of their disadvantages. In an unordered array you can insert items quickly, in
O(1) time, but searching takes slow O(N) time. In an ordered array you can search
quickly, in O(logN) time, but insertion takes O(N) time. For both kinds of arrays, deletion
takes O(N) time, because half the items (on the average) must be moved to fill in the
hole.

It would be nice if there were data structures that could do everything—insertion,
deletion, and searching—quickly, ideally in O(1) time, but if not that, then in O(logN) time.
In the chapters ahead, we'll see how closely this ideal can be approached, and the price
that must be paid in complexity.

Another problem with arrays is that their size is fixed when the array is first created with
new. Usually when the program first starts, you don't know exactly how many items will
be placed in the array later on, so you guess how big it should be. If your guess is too
large, you'll waste memory by having cells in the array that are never filled. If your guess
is too small, you'll overflow the array, causing at best a message to the program's user,
and at worst a program crash.

Other data structures are more flexible and can expand to hold the number of items
inserted in them. The linked list, discussed in Chapter 5, "Linked Lists," is such a
structure.

 We should mention that Java includes a class called Vector that acts much like an array

but is expandable. This added capability comes at the expense of some loss of efficiency.

 - 63 -

You might want to try creating your own vector class. If the class user is about to overflow
the internal array in this class, the insertion algorithm creates a new array of larger size,
copies the old array contents to the new array, and then inserts the new item. All this would
be invisible to the class user.

 Summary

 • Arrays in Java are objects, created with the new operator.

 • Unordered arrays offer fast insertion but slow searching and deletion.

 • Wrapping an array in a class protects the array from being inadvertently altered.

 • A class interface comprises the methods (and occasionally fields) that the class user

can access.

 • A class interface can be designed to make things simple for the class user.

 • A binary search can be applied to an ordered array.

 • The logarithm to the base B of a number A is (roughly) the number of times you can

divide A by B before the result is less than 1.

 • Linear searches require time proportional to the number of items in an array.

 • Binary searches require time proportional to the logarithm of the number of items.

 • Big O notation provides a convenient way to compare the speed of algorithms.

 • An algorithm that runs in O(1) time is the best, O(log N) is good, O(N) is fair, and O(N2)

is pretty bad.

Chapter 3: Simple Sorting

 Overview

As soon as you create a significant database, you'll probably think of reasons to sort it in
various ways. You need to arrange names in alphabetical order, students by grade,
customers by zip code, home sales by price, cities in order of increasing population,
countries by GNP, stars by magnitude, and so on.

Sorting data may also be a preliminary step to searching it. As we saw in the last chapter,
a binary search, which can be applied only to sorted data, is much faster than a linear
search.

Because sorting is so important and potentially so time-consuming, it has been the
subject of extensive research in computer science, and some very sophisticated methods
have been developed. In this chapter we'll look at three of the simpler algorithms: the
bubble sort, the selection sort, and the insertion sort. Each is demonstrated with its own
Workshop applet. In Chapter 7, "Advanced Sorting," we'll look at more sophisticated
approaches: Shellsort and quicksort.

The techniques described in this chapter, while unsophisticated and comparatively slow,
are nevertheless worth examining. Besides being easier to understand, they are actually
better in some circumstances than the more sophisticated algorithms. The insertion sort,

 - 64 -

for example, is preferable to quicksort for small files and for almost-sorted files. In fact, an
insertion sort is commonly used as a part of a quicksort implementation.

 The example programs in this chapter build on the array classes we developed in the last

chapter. The sorting algorithms are implemented as methods of similar array classes.

 Be sure to try out the Workshop applets included in this chapter. They are more effective in

explaining how the sorting algorithms work than prose and static pictures could ever be.

How Would You Do It?

Imagine that your kids-league baseball team (mentioned in Chapter 1, "Overview,") is
lined up on the field, as shown in Figure 3.1. The regulation nine players, plus an extra,
have shown up for practice. You want to arrange the players in order of increasing height
(with the shortest player on the left), for the team picture. How would you go about this
sorting process?

As a human being, you have advantages over a computer program. You can see all the
kids at once, and you can pick out the tallest kid almost instantly; you don't need to
laboriously measure and compare everyone. Also, the kids don't need to occupy
particular places. They can jostle each other, push each other a little to make room, and
stand behind or in front of each other. After some ad hoc rearranging, you would have no
trouble in lining up all the kids, as shown in Figure 3.2.

A computer program isn't able to glance over the data in this way. It can only compare
two players at once, because that's how the comparison operators work. This tunnel
vision on the part of algorithms will be a recurring theme. Things may seem simple to us
humans, but the algorithm can't see the big picture and must, therefore, concentrate on
the details and follow some simple rules.

 The three algorithms in this chapter all involve two steps, executed over and over until

the data is sorted:

 1. Compare two items.

 2. Swap two items or copy one item.

 However, each algorithm handles the details in a different way.

 Figure 3.1: The unordered baseball team

 - 65 -

 Figure 3.2: The ordered baseball team

Bubble Sort

The bubble sort is notoriously slow, but it's conceptually the simplest of the sorting
algorithms, and for that reason is a good beginning for our exploration of sorting
techniques.

 Bubble-Sorting the Baseball Players

Imagine that you're nearsighted (like a computer program) so that you can see only two
of the baseball players at the same time, if they're next to each other and if you stand
very close to them. Given this impediment, how would you sort them? Let's assume there
are N players, and the positions they're standing in are numbered from 0 on the left to N–
1 on the right.

The bubble sort routine works like this. You start at the left end of the line and compare
the two kids in positions 0 and 1. If the one on the left (in 0) is taller, you swap them. If
the one on the right is taller, you don't do anything. Then you move over one position and
compare the kids in positions 1 and 2. Again, if the one on the left is taller, you swap
them. This is shown in Figure 3.3.

 Here are the rules you're following:

 1. Compare two players.

 2. If the one on the left is taller, swap them.

 3. Move one position right.

You continue down the line this way until you reach the right end. You have by no means
finished sorting the kids, but you do know that the tallest kid is on the right. This must be
true, because as soon as you encounter the tallest kid, you'll end up swapping him every
time you compare two kids, until eventually he (or she) will reach the right end of the line.
This is why it's called the bubble sort: as the algorithm progresses, the biggest items
"bubble up" to the top end of the array. Figure 3.4 shows the baseball players at the end
of the first pass.

 - 66 -

 Figure 3.3: Bubble sort: beginning of first pass

 Figure 3.4: Bubble sort: end of first pass

After this first pass through all the data, you've made N–1 comparisons and somewhere
between 0 and N–1 swaps, depending on the initial arrangement of the players. The item
at the end of the array is sorted and won't be moved again.

Now you go back and start another pass from the left end of the line. Again you go
toward the right, comparing and swapping when appropriate. However, this time you can
stop one player short of the end of the line, at position N–2, because you know the last
position, at N–1, already contains the tallest player. This rule could be stated as:

 4. When you reach the first sorted player, start over at the left end of the line.

You continue this process until all the players are in order. This is all much harder to
describe than it is to demonstrate, so let's watch the bubbleSort Workshop applet at
work.

 The bubbleSort Workshop Applet

 Start the bubbleSort Workshop applet. You'll see something that looks like a bar graph,

with the bar heights randomly arranged, as shown in Figure 3.5.

 The Run Button

This is a two-speed graph: you can either let it run by itself or you can single-step through
the process. To get a quick idea of what happens, click the Run button. The algorithm will
bubble sort the bars. When it finishes, in 10 seconds or so, the bars will be sorted, as

 - 67 -

shown in Figure 3.6.

 Figure 3.5: The bubbleSort Workshop applet

 Figure 3.6: After the bubble sort

 The New Button

To do another sort, press the New button. New creates a new set of bars and initializes
the sorting routine. Repeated presses of New toggle between two arrangements of bars:
a random order as shown in Figure 3.5, and an inverse ordering where the bars are
sorted backward. This inverse ordering provides an extra challenge for many sorting
algorithms.

 The Step Button

 The real payoff for using the bubbleSort Workshop applet comes when you single-step

through a sort. You'll be able to see exactly how the algorithm carries out each step.

Start by creating a new randomly arranged graph with New. You'll see three arrows
pointing at different bars. Two arrows, labeled inner and inner+1, are side-by-side on
the left. Another arrow, outer, starts on the far right. (The names are chosen to
correspond to the inner and outer loop variables in the nested loops used in the
algorithm.)

Click once on the Step button. You'll see the inner and the inner+1 arrows move
together one position to the right, swapping the bars if it's appropriate. These arrows
correspond to the two players you compared, and possibly swapped, in the baseball
scenario.

 - 68 -

A message under the arrows tells you whether the contents of inner and inner+1 will
be swapped, but you know this just from comparing the bars: if the taller one is on the
left, they'll be swapped. Messages at the top of the graph tell you how many swaps and
comparisons have been carried out so far. (A complete sort of 10 bars requires 45
comparisons and, on the average, about 22 swaps.)

Continue pressing Step. Each time inner and inner+1 finish going all the way from 0
to outer, the outer pointer moves one position to the left. At all times during the sorting
process, all the bars to the right of outer are sorted; those to the left of (and at) outer
are not.

 The Size Button

 The Size button toggles between 10 bars and 100 bars. Figure 3.7 shows what the 100

random bars look like.

You probably don't want to single-step through the sorting process for 100 bars unless
you're unusually patient. Press Run instead, and watch how the blue inner and
inner+1 pointers seem to find the tallest unsorted bar and carry it down the row to the
right, inserting it just to the left of the sorted bars.

Figure 3.8 shows the situation partway through the sorting process. The bars to the right
of the red (longest) arrow are sorted. The bars to the left are beginning to look sorted, but
much work remains to be done.

If you started a sort with Run and the arrows are whizzing around, you can freeze the
process at any point by pressing the Step button. You can then single-step to watch the
details of the operation, or press Run again to return to high-speed mode.

 Figure 3.7: The bubbleSort applet with 100 bars

 - 69 -

 Figure 3.8: 100 partly sorted bars

 The Draw Button

Sometimes while running the sorting algorithm at full speed, the computer takes time off
to perform some other task. This can result in some bars not being drawn. If this
happens, you can press the Draw button to redraw all the bars. Doing so pauses the run,
so you'll need to press the Run button again to continue.

 You can press Draw at any time there seems to be a glitch in the display.

 Java Code for a Bubble Sort

 In the bubbleSort.java program, shown in Listing 3.1, a class called ArrayBub

encapsulates an array a[], which holds variables of type double.

In a more serious program, the data would probably consist of objects, but we use a
primitive type for simplicity. (We'll see how objects are sorted in the objectSort.java
program in the last section of this chapter.) Also, to reduce the size of the listing, we don't
show find() and delete() methods with the ArrayBub class, although they would
normally be part of a such a class.

 Listing 3.1 The bubbleSort.java Program

 // bubbleSort.java
 // demonstrates bubble sort
 // to run this program: C>java BubbleSortApp
 //---

-
 class ArrayBub
 {
 private double[] a; // ref to array a
 private int nElems; // number of data items

 //---

-
 public ArrayBub(int max) // constructor
 {
 a = new double[max]; // create the array
 nElems = 0; // no items yet
 }

 //---

-
 public void insert(double value) // put element into array
 {
 a[nElems] = value; // insert it
 nElems++; // increment size
 }

 //---

-
 public void display() // displays array contents
 {

 - 70 -

 for(int j=0; j<nElems; j++) // for each element,
 System.out.print(a[j] + " "); // display it
 System.out.println("");
 }

 //---

-
 public void bubbleSort()
 {
 int out, in;
 for(out=nElems-1; out>1; out--) // outer loop

(backward)
 for(in=0; in<out; in++) // inner loop (forward)
 if(a[in] > a[in+1]) // out of order?
 swap(in, in+1); // swap them
 } // end bubbleSort()

 //---

-
 private void swap(int one, int two)
 {
 double temp = a[one];
 a[one] = a[two];
 a[two] = temp;
 }

 //---

-
 } // end class ArrayBub

 //
 class BubbleSortApp
 {
 public static void main(String[] args)
 {
 int maxSize = 100; // array size
 ArrayBub arr; // reference to array
 arr = new ArrayBub(maxSize); // create the array
 arr.insert(77); // insert 10 items
 arr.insert(99);
 arr.insert(44);
 arr.insert(55);
 arr.insert(22);
 arr.insert(88);
 arr.insert(11);
 arr.insert(00);
 arr.insert(66);
 arr.insert(33);

 arr.display(); // display items

 arr.bubbleSort(); // bubble sort them

 arr.display(); // display them again

 - 71 -

 } // end main()

 } // end class BubbleSortApp

The constructor and the insert() and display() methods of this class are similar to
those we've seen before. However, there's a new method: bubbleSort(). When this
method is invoked from main(), the contents of the array are rearranged into sorted
order.

 The main() routine inserts 10 items into the array in random order, displays the array,

calls bubbleSort() to sort it, and then displays it again. Here's the output:

 77 99 44 55 22 88 11 0 66 33
 0 11 22 33 44 55 66 77 88 99

 The bubbleSort() method is only four lines long. Here it is, extracted from the listing:

 public void bubbleSort()
 {
 int out, in;

 for(out=nElems-1; out>1; out--) // outer loop (backward)
 for(in=0; in<out; in++) // inner loop (forward)
 if(a[in] > a[in+1]) // out of order?
 swap(in, in+1); // swap them
 } // end bubbleSort()

The idea is to put the smallest item at the beginning of the array (index 0) and the largest
item at the end (index nElems-1). The loop counter out in the outer for loop starts at
the end of the array, at nElems-1, and decrements itself each time through the loop. The
items at indices greater than out are always completely sorted. The out variable moves
left after each pass by in so that items that are already sorted are no longer involved in
the algorithm.

The inner loop counter in starts at the beginning of the array and increments itself each
cycle of the inner loop, exiting when it reaches out. Within the inner loop, the two array
cells pointed to by in and in+1 are compared and swapped if the one in in is larger
than the one in in+1.

For clarity, we use a separate swap() method to carry out the swap. It simply exchanges
the two values in the two array cells, using a temporary variable to hold the value of the
first cell while the first cell takes on the value in the second, then setting the second cell
to the temporary value. Actually, using a separate swap() method may not be a good
idea in practice, because the function call adds a small amount of overhead. If you're
writing your own sorting routine, you may prefer to put the swap instructions in line to
gain a slight increase in speed.

 Invariants

In many algorithms there are conditions that remain unchanged as the algorithm
proceeds. These conditions are called invariants. Recognizing invariants can be useful in
understanding the algorithm. In certain situations they may also be helpful in debugging;
you can repeatedly check that the invariant is true, and signal an error if it isn't.

 In the bubbleSort.java program, the invariant is that the data items to the right of
outer are sorted. This remains true throughout the running of the algorithm. (On the first

 - 72 -

pass, nothing has been sorted yet, and there are no items to the right of outer because
it starts on the rightmost element.)

 Efficiency of the Bubble Sort

As you can see by watching the Workshop applet with 10 bars, the inner and inner+1
arrows make 9 comparisons on the first pass, 8 on the second, and so on, down to 1
comparison on the last pass. For 10 items this is

 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 = 45

 In general, where N is the number of items in the array, there are N–1 comparisons on

the first pass, N–2 on the second, and so on. The formula for the sum of such a series is

 (N–1) + (N–2) + (N–3) + ... + 1 = N*(N–1)/2

 N*(N–1)/2 is 45 when N is 10.

 Thus the algorithm makes about N2/2 comparisons (ignoring the –1, which doesn't make

much difference, especially if N is large).

There are fewer swaps than there are comparisons, because two bars are swapped only
if they need to be. If the data is random, a swap is necessary about half the time, so there
will be about N2/4 swaps. (Although in the worst case, with the initial data inversely
sorted, a swap is necessary with every comparison.)

Both swaps and comparisons are proportional to N2. Because constants don't count in
Big O notation, we can ignore the 2 and the 4 and say that the bubble sort runs in O(N2)
time. This is slow, as you can verify by running the Workshop applet with 100 bars.

Whenever you see nested loops such as those in the bubble sort and the other sorting
algorithms in this chapter, you can suspect that an algorithm runs in O(N2) time. The outer
loop executes N times, and the inner loop executes N (or perhaps N divided by some
constant) times for each cycle of the outer loop. This means you're doing something
approximately N*N or N2 times.

Selection Sort

The selection sort improves on the bubble sort by reducing the number of swaps
necessary from O(N2) to O(N). Unfortunately, the number of comparisons remains O(N2).
However, the selection sort can still offer a significant improvement for large records that
must be physically moved around in memory, causing the swap time to be much more
important than the comparison time. (Typically this isn't the case in Java, where
references are moved around, not entire objects.)

 Selection sort on the Baseball Players

Let's consider the baseball players again. In the selection sort, you can no longer
compare only players standing next to each other. Thus you'll need to remember a
certain player's height; you can use a notebook to write it down. A magenta-colored towel
will also come in handy.

 A Brief Description

 What's involved is making a pass through all the players and picking (or selecting, hence

the name of the sort) the shortest one. This shortest player is then swapped with the

 - 73 -

player on the left end of the line, at position 0. Now the leftmost player is sorted, and
won't need to be moved again. Notice that in this algorithm the sorted players accumulate
on the left (lower indices), while in the bubble sort they accumulated on the right.

 The next time you pass down the row of players, you start at position 1, and, finding the

minimum, swap with position 1. This continues until all the players are sorted.

 A More Detailed Description

In more detail, start at the left end of the line of players. Record the leftmost player's
height in your notebook and throw the magenta towel on the ground in front of this
person. Then compare the height of the next player to the right with the height in your
notebook. If this player is shorter, cross out the height of the first player, and record the
second player's height instead. Also move the towel, placing it in front of this new
"shortest" (for the time being) player. Continue down the row, comparing each player with
the minimum. Change the minimum value in your notebook, and move the towel,
whenever you find a shorter player. When you're done, the magenta towel will be in front
of the shortest player.

 Swap this shortest player with the player on the left end of the line. You've now sorted

one player. You've made N–1 comparisons, but only one swap.

On the next pass, you do exactly the same thing, except that you can completely ignore
the player on the left, because this player has already been sorted. Thus the algorithm
starts the second pass at position 1 instead of 0. With each succeeding pass, one more
player is sorted and placed on the left, and one less player needs to be considered when
finding the new minimum. Figure 3.9 shows how this looks for the first three passes.

 The selectSort Workshop Applet

To see how the selection sort looks in action, try out the selectSort Workshop applet. The
buttons operate the same way as those in the bubbleSort applet. Use New to create a
new array of 10 randomly arranged bars. The red arrow called outer starts on the left; it
points to the leftmost unsorted bar. Gradually it will move right as more bars are added to
the sorted group on its left.

The magenta min arrow also starts out pointing to the leftmost bar; it will move to record
the shortest bar found so far. (The magenta min arrow corresponds to the towel in the
baseball analogy.) The blue inner arrow marks the bar currently being compared with
the minimum.

As you repeatedly press Step, inner moves from left to right, examining each bar in turn
and comparing it with the bar pointed to by min. If the inner bar is shorter, min jumps
over to this new, shorter bar. When inner reaches the right end of the graph, min points
to the shortest of the unsorted bars. This bar is then swapped with outer, the leftmost
unsorted bar.

Figure 3.10 shows the situation midway through a sort. The bars to the left of outer are
sorted, and inner has scanned from outer to the right end, looking for the shortest bar.
The min arrow has recorded the position of this bar, which will be swapped with outer.

Use the Size button to switch to 100 bars, and sort a random arrangement. You'll see
how the magenta min arrow hangs out with a perspective minimum value for a while, and
then jumps to a new one when the blue inner arrow finds a smaller candidate. The red
outer arrow moves slowly but inexorably to the right, as the sorted bars accumulate to
its left.

 - 74 -

 Figure 3.9: Selection sort on baseball players

 Figure 3.10: The selectSort Workshop appletred

 Java Code for Selection Sort

The listing for the selectSort.java program is similar to that for bubbleSort.java,
except that the container class is called ArraySel instead of ArrayBub, and the
bubbleSort() method has been replaced by selectSort(). Here's how this method
looks:

 public void selectionSort()
 {
 int out, in, min;

 for(out=0; out<nElems-1; out++) // outer loop
 {
 min = out; // minimum
 for(in=out+1; in<nElems; in++) // inner loop
 if(a[in] < a[min]) // if min greater,
 min = in; // we have a new min
 swap(out, min); // swap them
 } // end for(outer)
 } // end selectionSort()

 - 75 -

The outer loop, with loop variable out, starts at the beginning of the array (index 0) and
proceeds toward higher indices. The inner loop, with loop variable in, begins at out and
likewise proceeds to the right.

At each new position of in, the elements a[in] and a[min] are compared. If a[in] is
smaller, then min is given the value of in. At the end of the inner loop, min points to the
minimum value, and the array elements pointed to by out and min are swapped. Listing
3.2 shows the complete selectSort.java program.

 Listing 3.2 The selectSort.java Program

 // selectSort.java
 // demonstrates selection sort
 // to run this program: C>java SelectSortApp
 //---

-
 class ArraySel
 {
 private double[] a; // ref to array a
 private int nElems; // number of data items

 //---

-
 public ArraySel(int max) // constructor
 {
 a = new double[max]; // create the array
 nElems = 0; // no items yet
 }

 //---

-
 public void insert(double value) // put element into array
 {
 a[nElems] = value; // insert it
 nElems++; // increment size
 }

 //---

-
 public void display() // displays array contents
 {
 for(int j=0; j<nElems; j++) // for each element,
 System.out.print(a[j] + " "); // display it
 System.out.println("");
 }

 //---

-
 public void selectionSort()
 {
 int out, in, min;

 for(out=0; out<nElems-1; out++) // outer loop
 {

 - 76 -

 min = out; // minimum
 for(in=out+1; in<nElems; in++) // inner loop
 if(a[in] < a[min]) // if min greater,
 min = in; // we have a new min
 swap(out, min); // swap them
 } // end for(outer)
 } // end selectionSort()

 //---

-
 private void swap(int one, int two)
 {
 double temp = a[one];
 a[one] = a[two];
 a[two] = temp;
 }

 //---

-
 } // end class ArraySel

 //

 class SelectSortApp
 {
 public static void main(String[] args)
 {
 int maxSize = 100; // array size
 ArraySel arr; // reference to array
 arr = new ArraySel(maxSize); // create the array

 arr.insert(77); // insert 10 items
 arr.insert(99);
 arr.insert(44);
 arr.insert(55);
 arr.insert(22);
 arr.insert(88);
 arr.insert(11);
 arr.insert(00);
 arr.insert(66);
 arr.insert(33);

 arr.display(); // display items

 arr.selectionSort(); // selection-sort them

 arr.display(); // display them again
 } // end main()
 } // end class SelectSortApp

 //---

-

 - 77 -

 The output from selectSort.java is identical to that from bubbleSort.java:

 77 99 44 55 22 88 11 0 66 33
 0 11 22 33 44 55 66 77 88 99

 Invariant

 In the selectSort.java program, the data items with indices less than or equal to
outer are always sorted.

 Efficiency of the Selection Sort

The selection sort performs the same number of comparisons as the bubble sort: N*(N–
1)/2. For 10 data items, this is 45 comparisons. However, 10 items require fewer than 10
swaps. With 100 items, 4,950 comparisons are required, but fewer than 100 swaps. For
large values of N, the comparison times will dominate, so we would have to say that the
selection sort runs in O(N2) time, just as the bubble sort did. However, it is unquestionably
faster because there are so few swaps. For smaller values of N, it may in fact be
considerably faster, especially if the swap times are much larger than the comparison
times.

Insertion Sort

In most cases the insertion sort is the best of the elementary sorts described in this
chapter. It still executes in O(N2) time, but it's about twice as fast as the bubble sort and
somewhat faster than the selection sort in normal situations. It's also not too complex,
although it's slightly more involved than the bubble and selection sorts. It's often used as
the final stage of more sophisticated sorts, such as quicksort.

 Insertion sort on the Baseball Players

Start with your baseball players lined up in random order. (They wanted to play a game,
but clearly there's no time for that.) It's easier to think about the insertion sort if we begin
in the middle of the process, when the team is half sorted.

 Partial Sorting

At this point there's an imaginary marker somewhere in the middle of the line. (Maybe
you throw a red T-shirt on the ground in front of a player.) The players to the left of this
marker are partially sorted. This means that they are sorted among themselves; each one
is taller than the person to his left. However, they aren't necessarily in their final positions,
because they may still need to be moved when previously unsorted players are inserted
between them.

Note that partial sorting did not take place in the bubble sort and selection sort. In these
algorithms a group of data items was completely sorted at any given time; in the insertion
sort a group of items is only partially sorted.

 The Marked Player

 The player where the marker is, whom we'll call the "marked" player, and all the players

on her right, are as yet unsorted. This is shown in Figure 3.11.a.

What we're going to do is insert the marked player in the appropriate place in the
(partially) sorted group. However, to do this, we'll need to shift some of the sorted players
to the right to make room. To provide a space for this shift, we take the marked player out
of line. (In the program this data item is stored in a temporary variable.) This is shown in

 - 78 -

Figure 3.11.b.

 Now we shift the sorted players to make room. The tallest sorted player moves into the

marked player's spot, the next-tallest player into the tallest player's spot, and so on.

When does this shifting process stop? Imagine that you and the marked player are
walking down the line to the left. At each position you shift another player to the right, but
you also compare the marked player with the player about to be shifted. The shifting
process stops when you've shifted the last player that's taller than the marked player. The
last shift opens up the space where the marked player, when inserted, will be in sorted
order. This is shown in Figure 3.11.c.

 Figure 3.11: The insertion sort on baseball players

Now the partially sorted group is one player bigger, and the unsorted group is one player
smaller. The marker T-shirt is moved one space to the right, so it's again in front of the
leftmost unsorted player. This process is repeated until all the unsorted players have
been inserted (hence the name insertion sort) into the appropriate place in the partially
sorted group.

 The insertSort Workshop Applet

Use the insertSort Workshop applet to demonstrate the insertion sort. Unlike the other
sorting applets, it's probably more instructive to begin with 100 random bars rather than
10.

 Sorting 100 Bars

Change to 100 bars with the Size button, and click Run to watch the bars sort themselves
before your very eyes. You'll see that the short red outer arrow marks the dividing line
between the partially sorted bars to the left and the unsorted bars to the right. The blue
inner arrow keeps starting from outer and zipping to the left, looking for the proper
place to insert the marked bar. Figure 3.12 shows how this looks when about half the
bars are partially sorted.

The marked bar is stored in the temporary variable pointed to by the magenta arrow at
the right end of the graph, but the contents of this variable are replaced so often it's hard
to see what's there (unless you slow down to single-step mode).

 Sorting 10 Bars

 - 79 -

 To get down to the details, use Size to switch to 10 bars. (If necessary, use New to make
sure they're in random order.)

At the beginning, inner and outer point to the second bar from the left (array index 1),
and the first message is Will copy outer to temp. This will make room for the shift.
(There's no arrow for inner-1, but of course it's always one bar to the left of inner.)

Click the Step button. The bar at outer will be copied to temp. A copy means that there
are now two bars with the same height and color shown on the graph. This is slightly
misleading, because in a real Java program there are actually two references pointing to
the same object, not two identical objects. However, showing two identical bars is meant
to convey the idea of copying the reference.

 Figure 3.12: The insertSort Workshop applet with 100 bars

What happens next depends on whether the first two bars are already in order (smaller
on the left). If they are, you'll see Have compared inner-1 and temp, no copy
necessary.

If the first two bars are not in order, the message is Have compared inner-1 and
temp, will copy inner-1 to inner. This is the shift that's necessary to make
room for the value in temp to be reinserted. There's only one such shift on this first pass;
more shifts will be necessary on subsequent passes. The situation is shown in Figure
3.1.

On the next click, you'll see the copy take place from inner-1 to inner. Also, the
inner arrow moves one space left. The new message is Now inner is 0, so no
copy necessary. The shifting process is complete.

No matter which of the first two bars was shorter, the next click will show you Will copy
temp to inner. This will happen, but if the first two bars were initially in order, you
won't be able to tell a copy was performed, because temp and inner hold the same bar.
Copying data over the top of the same data may seem inefficient, but the algorithm runs
faster if it doesn't check for this possibility, which happens comparatively infrequently.

Now the first two bars are partially sorted (sorted with respect to each other), and the
outer arrow moves one space right, to the third bar (index 2). The process repeats, with
the Will copy outer to temp message. On this pass through the sorted data, there
may be no shifts, one shift, or two shifts, depending on where the third bar fits among the
first two.

Continue to single-step the sorting process. Again, it's easier to see what's happening
after the process has run long enough to provide some sorted bars on the left. Then you
can see how just enough shifts take place to make room for the reinsertion of the bar

 - 80 -

from temp into its proper place.

 Figure 3.13: The insertSort Workshop applet with 10 bars

 Java Code for Insertion Sort

 Here's the method that carries out the insertion sort, extracted from the
insertSort.java program:

 public void insertionSort()
 {
 int in, out;

 for(out=1; out<nElems; out++) // out is dividing line
 {
 double temp = a[out]; // remove marked item
 in = out; // start shifts at out
 while(in>0 && a[in-1] >= temp) // until one is smaller,
 {
 a[in] = a[in-1]; // shift item right,
 --in; // go left one position
 }
 a[in] = temp; // insert marked item
 } // end for

 } // end insertionSort()

In the outer for loop, out starts at 1 and moves right. It marks the leftmost unsorted
data. In the inner while loop, in starts at out and moves left, until either temp is
smaller than the array element there, or it can't go left any further. Each pass through the
while loop shifts another sorted element one space right.

It may be hard to see the relation between the steps in the Workshop applet and the
code, so Figure 3.14 is a flow diagram of the insertionSort() method, with the
corresponding messages from the insertSort Workshop applet. Listing 3.3 shows the
complete insertSort.java program.

 Listing 3.3 The insertSort.java Program

 // insertSort.java
 // demonstrates insertion sort

 - 81 -

 // to run this program: C>java InsertSortApp
 //---

-
 class ArrayIns
 {
 private double[] a; // ref to array a
 private int nElems; // number of data items

 //---

-
 public ArrayIns(int max) // constructor
 {
 a = new double[max]; // create the array
 nElems = 0; // no items yet
 }

 //---

-
 public void insert(double value) // put element into array
 {
 a[nElems] = value; // insert it
 nElems++; // increment size
 }

 //---

-
 public void display() // displays array contents
 {
 for(int j=0; j<nElems; j++) // for each element,
 System.out.print(a[j] + " "); // display it
 System.out.println("");
 }

 //---

-
 public void insertionSort()
 {
 int in, out;

 for(out=1; out<nElems; out++) // out is dividing line
 {
 double temp = a[out]; // remove marked item
 in = out; // start shifts at out
 while(in>0 && a[in-1] >= temp) // until one is

smaller,
 {
 a[in] = a[in-1]; // shift item right,
 --in; // go left one position
 }
 a[in] = temp; // insert marked item
 } // end for
 } // end insertionSort()

 //---

-

 - 82 -

 } // end class ArrayIns

 //

 class InsertSortApp
 {
 public static void main(String[] args)
 {
 int maxSize = 100; // array size
 ArrayIns arr; // reference to array
 arr = new ArrayIns(maxSize); // create the array

 arr.insert(77); // insert 10 items
 arr.insert(99);
 arr.insert(44);
 arr.insert(55);
 arr.insert(22);
 arr.insert(88);
 arr.insert(11);
 arr.insert(00);
 arr.insert(66);
 arr.insert(33);

 arr.display(); // display items

 arr.insertionSort(); // insertion-sort them

 arr.display(); // display them again
 } // end main()
 } // end class InsertSortApp

 Here's the output from the insertSort.java program; it's the same as that from the

other programs in this chapter:

 77 99 44 55 22 88 11 0 66 33
 0 11 22 33 44 55 66 77 88 99

 - 83 -

 Figure 3.14: Flow diagram for insertSort()

 Invariants in the Insertion Sort

 At the end of each pass, following the insertion of the item from temp, the data items with

smaller indices than outer are partially sorted.

 Efficiency of the Insertion Sort

How many comparisons and copies does this algorithm require? On the first pass, it
compares a maximum of one item. On the second pass, it's a maximum of two items, and
so on, up to a maximum of N–1 comparisons on the last pass. This is

 1 + 2 + 3 + ... + N–1 = N*(N–1)/2

However, because on each pass an average of only half of the maximum number of
items are actually compared before the insertion point is found, we can divide by 2, which
gives:

 N*(N–1)/4

The number of copies is approximately the same as the number of comparisons.
However, a copy isn't as time-consuming as a swap, so for random data this algorithm
runs twice as fast as the bubble sort and faster than the selection sort.

 In any case, like the other sort routines in this chapter, the insertion sort runs in O(N2)

time for random data.

For data that is already sorted or almost sorted, the insertion sort does much better.
When data is in order, the condition in the while loop is never true, so it becomes a
simple statement in the outer loop, which executes N–1 times. In this case the algorithm
runs in O(N) time. If the data is almost sorted, insertion sort runs in almost O(N) time,
which makes it a simple and efficient way to order a file that is only slightly out of order.

However, for data arranged in inverse sorted order, every possible comparison and shift is
carried out, so the insertion sort runs no faster than the bubble sort. You can check this
using the reverse-sorted data option (toggled with New) in the insertSort Workshop applet.

Sorting Objects

 For simplicity we've applied the sorting algorithms we've looked at thus far to a primitive

 - 84 -

data type: double. However, sorting routines will more likely be applied to objects than
primitive types. Accordingly, we show a Java program, objectSort.java, that sorts an
array of Person objects (last seen in the classDataArray.java program in Chapter
2).

 Java Code for Sorting Objects

The algorithm used is the insertion sort from the last section. The Person objects are
sorted on lastName; this is the key field. The objectSort.java program is shown in
Listing 3.4.

 Listing 3.4 The objectSort.java Program

 // objectSort.java
 // demonstrates sorting objects (uses insertion sort)
 // to run this program: C>java ObjectSortApp
 //
 class Person
 {
 private String lastName;
 private String firstName;
 private int age;

 //--

-
 public Person(String last, String first, int a)
 { // constructor
 lastName = last;
 firstName = first;
 age = a;
 }

 //--

-
 public void displayPerson()
 {
 System.out.print(" Last name: " + lastName);
 System.out.print(", First name: " + firstName);
 System.out.println(", Age: " + age);
 }

 //--

-
 public String getLast() // get last name
 { return lastName; }
 } // end class Person

 //

 class ArrayInOb
 {
 private Person[] a; // ref to array a
 private int nElems; // number of data items

 - 85 -

 //---
-

 public ArrayInOb(int max) // constructor
 {
 a = new Person[max]; // create the array
 nElems = 0; // no items yet
 }

 //---

-
 // put person into array
 public void insert(String last, String first, int age)
 {
 a[nElems] = new Person(last, first, age);
 nElems++; // increment size
 }

 //---

-
 public void display() // displays array contents
 {
 for(int j=0; j<nElems; j++) // for each element,
 a[j].displayPerson(); // display it
 System.out.println("");
 }

 //---

-
 public void insertionSort()
 {
 int in, out;

 for(out=1; out<nElems; out++) // out is dividing line
 {
 Person temp = a[out]; // remove marked person
 in = out; // start shifting at out

 while(in>0 && // until smaller one

found,
 a[in-1].getLast().compareTo(temp.getLast())>0)
 {
 a[in] = a[in-1]; // shift item to the right
 --in; // go left one position
 }
 a[in] = temp; // insert marked item
 } // end for
 } // end insertionSort()

 //---

-
 } // end class ArrayInOb

 //

 - 86 -

 class ObjectSortApp
 {
 public static void main(String[] args)
 {
 int maxSize = 100; // array size
 ArrayInOb arr; // reference to array
 arr = new ArrayInOb(maxSize); // create the array

 arr.insert("Evans", "Patty", 24);
 arr.insert("Smith", "Doc", 59);
 arr.insert("Smith", "Lorraine", 37);
 arr.insert("Smith", "Paul", 37);
 arr.insert("Yee", "Tom", 43);
 arr.insert("Hashimoto", "Sato", 21);
 arr.insert("Stimson", "Henry", 29);
 arr.insert("Velasquez", "Jose", 72);
 arr.insert("Vang", "Minh", 22);
 arr.insert("Creswell", "Lucinda", 18);

 System.out.println("Before sorting:");
 arr.display(); // display items

 arr.insertionSort(); // insertion-sort them

 System.out.println("After sorting:");
 arr.display(); // display them again
 } // end main()
 } // end class ObjectSortApp

 Here's the output of this program:

 Before sorting:
 Last name: Evans, First name: Patty, Age: 24
 Last name: Smith, First name: Doc, Age: 59
 Last name: Smith, First name: Lorraine, Age: 37
 Last name: Smith, First name: Paul, Age: 37
 Last name: Yee, First name: Tom, Age: 43
 Last name: Hashimoto, First name: Sato, Age: 21
 Last name: Stimson, First name: Henry, Age: 29
 Last name: Velasquez, First name: Jose, Age: 72
 Last name: Vang, First name: Minh, Age: 22
 Last name: Creswell, First name: Lucinda, Age: 18

 After sorting:
 Last name: Creswell, First name: Lucinda, Age: 18
 Last name: Evans, First name: Patty, Age: 24
 Last name: Hashimoto, First name: Sato, Age: 21
 Last name: Smith, First name: Doc, Age: 59
 Last name: Smith, First name: Lorraine, Age: 37
 Last name: Smith, First name: Paul, Age: 37
 Last name: Stimson, First name: Henry, Age: 29
 Last name: Vang, First name: Minh, Age: 22

 - 87 -

 Last name: Velasquez, First name: Jose, Age: 72
 Last name: Yee, First name: Tom, Age: 43

 Lexicographical Comparisons

The insertionSort() method is similar to that in insertSort.java, but it has been
adapted to compare the lastName key values of records rather than the value of a
primitive type.

 We use the compareTo() method of the String class to perform the comparisons in

the insertionSort() method. Here's the expression that uses it:

 a[in-1].getLast().compareTo(temp.getLast()) > 0

The compareTo() method returns different integer values depending on the
lexicographical (that is, alphabetical) ordering of the String for which it's invoked and
the String passed to it as an argument, as shown in Table 3.1.

 Table 3.1: Operation of the compareTo() method

 s2.compareTo(s1)

Return Value

 s1 < s2

< 0

 s1 equals s2

0

 s1 > s2

> 0

For example, if s1 is "cat" and s2 is "dog", the function will return a number less than
0. In the program this method is used to compare the last name of a[in-1] with the
last name of temp.

 Stability

Sometimes it matters what happens to data items that happen to have equal keys. For
example, you may have employee data arranged alphabetically by last names. (That is,
the last names were used as key values in the sort.) Now you want to sort the data by zip
code, but you want all the items with the same zip code to continue to be sorted by last
names. You want the algorithm to sort only what needs to be sorted, and leave
everything else in its original order. Some sorting algorithms retain this secondary
ordering; they're said to be stable.

All the algorithms in this chapter are stable. For example, notice the output of the
objectSort.java program. There are three persons with the last name of Smith. Initially
the order is Doc Smith, Lorraine Smith, and Paul Smith. After the sort, this ordering is
preserved, despite the fact that the various Smith objects have been moved to new
locations.

Comparing the Simple Sorts

 - 88 -

There's probably no point in using the bubble sort unless you don't have your algorithm
book handy. The bubble sort is so simple you can write it from memory. Even so, it's
practical only if the amount of data is small. (For a discussion of what "small" means, see
Chapter 15, "When to Use What.")

The selection sort minimizes the number of swaps, but the number of comparisons is still
high. It might be useful when the amount of data is small and swapping data items is very
time-consuming compared with comparing them.

The insertion sort is the most versatile of the three and is the best bet in most situations,
assuming the amount of data is small or the data is almost sorted. For larger amounts of
data, quicksort is generally considered the fastest approach; we'll examine quicksort in
Chapter 7.

We've compared the sorting algorithms in terms of speed. Another consideration for any
algorithm is how much memory space it needs. All three of the algorithms in this chapter
carry out their sort in place, meaning that, beside the initial array, very little extra memory
is required. All the sorts require an extra variable to store an item temporarily while it's
being swapped.

You can recompile the example programs, such as bubbleSort.java, to sort larger
amounts of data. By timing them for larger sorts, you can get an idea of the differences
between them and how long it takes to sort different amounts of data on your particular
system.

Summary

 • The sorting algorithms in this chapter all assume an array as a data storage structure.

 • Sorting involves comparing the keys of data items in the array and moving the items

(actually references to the items) around until they're in sorted order.

 • All the algorithms in this chapter execute in O(N2) time. Nevertheless, some can be

substantially faster than others.

 • An invariant is a condition that remains unchanged while an algorithm runs.

 The bubble sort is the least efficient, but the simplest, sort.

 • The insertion sort is the most commonly used of the O(N2) sorts described in this

chapter.

 • A sort is stable if the order of elements with the same key is retained.

 • None of the sorts in- this chapter require more than a single temporary variable in

addition to the original array.

Part II

 Chapter List

 Chapter

4: Stacks and Queues

 Chapter Linked Lists

 - 89 -

5:

 Chapter

6: Recursion

Chapter 4: Stacks and Queues

 Overview

In this chapter we'll examine three data storage structures: the stack, the queue, and the
priority queue. We'll begin by discussing how these structures differ from arrays; then we'll
examine each one in turn. In the last section, we'll look at an operation in which the stack
plays a significant role: parsing arithmetic expressions.

 A Different Kind of Structure

There are significant differences between the data structures and algorithms we've seen
in previous chapters and those we'll look at now. We'll discuss three of these differences
before we examine the new structures in detail.

 Programmer's Tools

The array—the data storage structure we've been examining thus far—as well as many
other structures we'll encounter later in this book (linked lists, trees, and so on), are
appropriate for the kind of data you might find in a database application. They're typically
used for personnel records, inventories, financial data, and so on; data that corresponds
to real-world objects or activities. These structures facilitate access to data: they make it
easy to insert, delete, and search for particular items.

The structures and algorithms we'll examine in this chapter, on the other hand, are more
often used as programmer's tools. They're primarily conceptual aids rather than full-
fledged data storage devices. Their lifetime is typically shorter than that of the database-
type structures. They are created and used to carry out a particular task during the
operation of a program; when the task is completed, they're discarded.

 Restricted Access

In an array, any item can be accessed, either immediately—if its index number is
known—or by searching through a sequence of cells until it's found. In the data structures
in this chapter, however, access is restricted: only one item can be read or removed at a
given time.

 The interface of these structures is designed to enforce this restricted access. Access to

other items is (in theory) not allowed.

 More Abstract

Stacks, queues, and priority queues are more abstract entities than arrays and many
other data storage structures. They're defined primarily by their interface: the permissible
operations that can be carried out on them. The underlying mechanism used to
implement them is typically not visible to their user.

For example, the underlying mechanism for a stack can be an array, as shown in this
chapter, or it can be a linked list. The underlying mechanism for a priority queue can be an
array or a special kind of tree called a heap. We'll return to the topic of one data structure
being implemented by another when we discuss Abstract Data Types (ADTs) in Chapter 5,
"Linked Lists."

 - 90 -

Stacks

A stack allows access to only one data item: the last item inserted. If you remove this
item, then you can access the next-to-last item inserted, and so on. This is a useful
capability in many programming situations. In this section, we'll see how a stack can be
used to check whether parentheses, braces, and brackets are balanced in a computer
program source file. At the end of this chapter, we'll see a stack playing a vital role in
parsing (analyzing) arithmetic expressions such as 3*(4+5).

A stack is also a handy aid for algorithms applied to certain complex data structures. In
Chapter 8, "Binary Trees," we'll see it used to help traverse the nodes of a tree. In
Chapter 13, "Graphs," we'll apply it to searching the vertices of a graph (a technique that
can be used to find your way out of a maze).

Most microprocessors use a stack-based architecture. When a method is called, its
return address and arguments are pushed onto a stack, and when it returns they're
popped off. The stack operations are built into the microprocessor.

Some older pocket calculators used a stack-based architecture. Instead of entering
arithmetic expressions using parentheses, you pushed intermediate results onto a stack.
We'll learn more about this approach when we discuss parsing arithmetic expressions in
the last section in this chapter.

 The Postal Analogy

To understand the idea of a stack, consider an analogy provided by the U. S. Postal
Service. Many people, when they get their mail, toss it onto a stack on the hall table or
into an "in" basket at work. Then, when they have a spare moment, they process the
accumulated mail from the top down. First they open the letter on the top of the stack and
take appropriate action—paying the bill, throwing it away, or whatever. When the first
letter has been disposed of, they examine the next letter down, which is now the top of
the stack, and deal with that. Eventually they work their way down to the letter on the
bottom of the stack (which is now the top). Figure 4.1 shows a stack of mail.

This "do the top one first" approach works all right as long as you can easily process all
the mail in a reasonable time. If you can't, there's the danger that letters on the bottom of
the stack won't be examined for months, and the bills they contain will become overdue.

Of course, many people don't rigorously follow this top-to-bottom approach. They may,
for example, take the mail off the bottom of the stack, so as to process the oldest letter
first. Or they might shuffle through the mail before they begin processing it and put
higher-priority letters on top. In these cases, their mail system is no longer a stack in the
computer-science sense of the word. If they take letters off the bottom, it's a queue; and if
they prioritize it, it's a priority queue. We'll look at these possibilities later.

 - 91 -

 Figure 4.1: A stack of letters

Another stack analogy is the tasks you perform during a typical workday. You're busy on
a long-term project (A), but you're interrupted by a coworker asking you for temporary
help with another project (B). While you're working on B, someone in accounting stops by
for a meeting about travel expenses (C), and during this meeting you get an emergency
call from someone in sales and spend a few minutes troubleshooting a bulky product (D).
When you're done with call D, you resume meeting C; when you're done with C, you
resume project B, and when you're done with B you can (finally!) get back to project A.
Lower priority projects are "stacked up" waiting for you to return to them.

Placing a data item on the top of the stack is called pushing it. Removing it from the top
of the stack is called popping it. These are the primary stack operations. A stack is said to
be a Last-In-First-Out (LIFO) storage mechanism, because the last item inserted is the
first one to be removed.

 The Stack Workshop Applet

 Let's use the Stack Workshop applet to get an idea how stacks work. When you start up

the applet, you'll see four buttons: New, Push, Pop, and Peek, as shown in Figure 4.2.

The Stack Workshop applet is based on an array, so you'll see an array of data items.
Although it's based on an array, a stack restricts access, so you can't access it as you
would an array. In fact, the concept of a stack and the underlying data structure used to
implement it are quite separate. As we noted earlier, stacks can also be implemented by
other kinds of storage structures, such as linked lists.

 Figure 4.2: The Stack Workshop applet

 - 92 -

 New

The stack in the Workshop applet starts off with four data items already inserted. If you
want to start with an empty stack, the New button creates a new stack with no items. The
next three buttons carry out the significant stack operations.

 Push

To insert a data item on the stack, use the button labeled Push. After the first press of
this button, you'll be prompted to enter the key value of the item to be pushed. After
typing it into the text field, a few more presses will insert the item on the top of the stack.

A red arrow always points to the top of the stack; that is, the last item inserted. Notice
how, during the insertion process, one step (button press) increments (moves up) the
Top arrow, and the next step actually inserts the data item into the cell. If you reversed
the order, you'd overwrite the existing item at Top. When writing the code to implement a
stack, it's important to keep in mind the order in which these two steps are executed.

If the stack is full and you try to push another item, you'll get the Can't insert:
stack is full message. (Theoretically, an ADT stack doesn't become full, but the
array implementing it does.)

 Pop

 To remove a data item from the top of the stack, use the Pop button. The value popped

appears in the Number text field; this corresponds to a pop() routine returning a value.

Again, notice the two steps involved: first the item is removed from the cell pointed to by
Top; then Top is decremented to point to the highest occupied cell. This is the reverse of
the sequence used in the push operation.

The pop operation shows an item actually being removed from the array, and the cell
color becoming gray to show the item has been removed. This is a bit misleading, in that
deleted items actually remain in the array until written over by new data. However, they
cannot be accessed once the Top marker drops below their position, so conceptually
they are gone, as the applet shows.

When you've popped the last item off the stack, the Top arrow points to –1, below the
lowest cell. This indicates that the stack is empty. If the stack is empty and you try to pop
an item, you'll get the Can't pop: stack is empty message.

 Peek

Push and pop are the two primary stack operations. However, it's sometimes useful to be
able to read the value from the top of the stack without removing it. The peek operation
does this. By pushing the Peek button a few times, you'll see the value of the item at Top
copied to the Number text field, but the item is not removed from the stack, which
remains unchanged.

 Notice that you can only peek at the top item. By design, all the other items are invisible

to the stack user.

 Stack Size

Stacks are typically small, temporary data structures, which is why we've shown a stack
of only 10 cells. Of course, stacks in real programs may need a bit more room than this,
but it's surprising how small a stack needs to be. A very long arithmetic expression, for

 - 93 -

example, can be parsed with a stack of only a dozen or so cells.

 Java Code for a Stack

 Let's examine a program, Stack.java, that implements a stack using a class called
StackX. Listing 4.1 contains this class and a short main() routine to exercise it.

 Listing 4.1 The Stack.java Program

 // Stack.java
 // demonstrates stacks
 // to run this program: C>java StackApp
 import java.io.*; // for I/O
 //
 class StackX
 {
 private int maxSize; // size of stack array
 private double[] stackArray;
 private int top; // top of stack

 //---

-
 public StackX(int s) // constructor
 {
 maxSize = s; // set array size
 stackArray = new double[maxSize]; // create array
 top = -1; // no items yet
 }

 //---

-
 public void push(double j) // put item on top of stack
 {
 stackArray[++top] = j; // increment top, insert item
 }

 //---

-
 public double pop() // take item from top of stack
 {
 return stackArray[top--]; // access item, decrement top
 }

 //---

-
 public double peek() // peek at top of stack
 {
 return stackArray[top];
 }

 //---

-
 public boolean isEmpty() // true if stack is empty
 {

 - 94 -

 return (top == -1);
 }

 //---

-
 public boolean isFull() // true if stack is full
 {
 return (top == maxSize-1);
 }

 //---

-
 } // end class StackX

 //

 class StackApp
 {
 public static void main(String[] args)
 {
 StackX theStack = new StackX(10); // make new stack
 theStack.push(20); // push items onto stack
 theStack.push(40);
 theStack.push(60);
 theStack.push(80);

 while(!theStack.isEmpty()) // until it's empty,
 { // delete item from

stack
 double value = theStack.pop();
 System.out.print(value); // display it
 System.out.print(" ");
 } // end while
 System.out.println("");
 } // end main()

 } // end class StackApp

The main() method in the StackApp class creates a stack that can hold 10 items,
pushes 4 items onto the stack, and then displays all the items by popping them off the
stack until it's empty. Here's the output:

 80 60 40 20

 Notice how the order of the data is reversed. Because the last item pushed is the first one

popped; the 80 appears first in the output.

 This version of the StackX class holds data elements of type double. As noted in the

last chapter, you can change this to any other type, including object types.

 StackX Class Methods

The constructor creates a new stack of a size specified in its argument. The fields of the
stack comprise a variable to hold its maximum size (the size of the array), the array itself,
and a variable top, which stores the index of the item on the top of the stack. (Note that

 - 95 -

we need to specify a stack size only because the stack is implemented using an array. If
it had been implemented using a linked list, for example, the size specification would be
unnecessary.)

The push() method increments top so it points to the space just above the previous
top, and stores a data item there. Notice that top is incremented before the item is
inserted.

The pop() method returns the value at top and then decrements top. This effectively
removes the item from the stack; it's inaccessible, although the value remains in the array
(until another item is pushed into the cell).

 The peek() method simply returns the value at top, without changing the stack.

The isEmpty() and isFull() methods return true if the stack is empty or full,
respectively. The top variable is at –1 if the stack is empty and maxSize-1 if the stack
is full.

 Figure 4.3 shows how the stack class methods work.

 Figure 4.3: Operation of the StackX class methods

 Error Handling

There are different philosophies about how to handle stack errors. What happens if you
try to push an item onto a stack that's already full, or pop an item from a stack that's
empty?

 We've left the responsibility for handling such errors up to the class user. The user should

always check to be sure the stack is not full before inserting an item:

 if(!theStack.isFull())
 insert(item);
 else
 System.out.print("Can't insert, stack is full");

In the interest of simplicity, we've left this code out of the main() routine (and anyway, in
this simple program, we know the stack isn't full because it has just been initialized). We
do include the check for an empty stack when main() calls pop().

 - 96 -

Many stack classes check for these errors internally, in the push() and pop() methods.
This is the preferred approach. In Java, a good solution for a stack class that discovers
such errors is to throw an exception, which can then be caught and processed by the
class user.

 Stack Example 1: Reversing a Word

For our first example of using a stack, we'll examine a very simple task: reversing a word.
When you run the program, it asks you to type in a word. When you press Enter, it
displays the word with the letters in reverse order.

A stack is used to reverse the letters. First the characters are extracted one by one from
the input string and pushed onto the stack. Then they're popped off the stack and
displayed. Because of its last-in-first-out characteristic, the stack reverses the order of the
characters. Listing 4.2 shows the code for the reverse.java program.

 Listing 4.2 The reverse.java Program

 // reverse.java
 // stack used to reverse a string
 // to run this program: C>java ReverseApp
 import java.io.*; // for I/O
 //
 class StackX
 {
 private int maxSize;
 private char[] stackArray;
 private int top;

 //---

-
 public StackX(int max) // constructor
 {
 maxSize = max;
 stackArray = new char[maxSize];
 top = -1;
 }

 //---

-
 public void push(char j) // put item on top of stack
 {
 stackArray[++top] = j;
 }

 //---

-
 public char pop() // take item from top of stack
 {
 return stackArray[top--];
 }

 //---

-
 public char peek() // peek at top of stack

 - 97 -

 {
 return stackArray[top];
 }

 //---

-
 public boolean isEmpty() // true if stack is empty
 {
 return (top == -1);
 }

 //---

-
 } // end class StackX

 //

 class Reverser
 {
 private String input; // input string
 private String output; // output string

 //---

-
 public Reverser(String in) // constructor
 { input = in; }

 //---

-
 public String doRev() // reverse the string
 {
 int stackSize = input.length(); // get max stack size
 StackX theStack = new StackX(stackSize); // make stack

 for(int j=0; j<input.length(); j++)
 {
 char ch = input.charAt(j); // get a char from

input
 theStack.push(ch); // push it
 }
 output = "";
 while(!theStack.isEmpty())
 {
 char ch = theStack.pop(); // pop a char,
 output = output + ch; // append to output
 }
 return output;
 } // end doRev()

 //---

-
 } // end class Reverser

 //

 - 98 -

 class ReverseApp
 {
 public static void main(String[] args) throws IOException
 {
 String input, output;
 while(true)
 {
 System.out.print("Enter a string: ");
 System.out.flush();
 input = getString(); // read a string from

kbd
 if(input.equals("")) // quit if [Enter]
 break;
 // make a Reverser
 Reverser theReverser = new Reverser(input);
 output = theReverser.doRev(); // use it
 System.out.println("Reversed: " + output);
 } // end while
 } // end main()

 //---

-
 public static String getString() throws IOException
 {
 InputStreamReader isr = new InputStreamReader(System.in);
 BufferedReader br = new BufferedReader(isr);
 String s = br.readLine();
 return s;
 }

 //---

-

 } // end class ReverseApp

We've created a class Reverser to handle the reversing of the input string. Its key
component is the method doRev(), which carries out the reversal, using a stack. The
stack is created within doRev(), which sizes it according to the length of the input string.

In main() we get a string from the user, create a Reverser object with this string as an
argument to the constructor, call this object's doRev() method, and display the return
value, which is the reversed string. Here's some sample interaction with the program:

 Enter a string: part
 Reversed: trap
 Enter a string:

 Stack Example 2: Delimiter Matching

 One common use for stacks is to parse certain kinds of text strings. Typically the strings

are lines of code in a computer language, and the programs parsing them are compilers.

 To give the flavor of what's involved, we'll show a program that checks the delimiters in a

line of text typed by the user. This text doesn't need to be a line of real Java code

 - 99 -

(although it could be) but it should use delimiters the same way Java does. The delimiters
are the braces '{'and'}', brackets '['and']', and parentheses '('and')'. Each opening or left
delimiter should be matched by a closing or right delimiter; that is, every '{' should be
followed by a matching '}' and so on. Also, opening delimiters that occur later in the string
should be closed before those occurring earlier. Examples:

 c[d] // correct
 a{b[c]d}e // correct
 a{b(c]d}e // not correct;] doesn't match (
 a[b{c}d]e} // not correct; nothing matches final }
 a{b(c) // not correct; Nothing matches opening {

 Opening Delimiters on the Stack

The program works by reading characters from the string one at a time and placing
opening delimiters, when it finds them, on a stack. When it reads a closing delimiter from
the input, it pops the opening delimiter from the top of the stack and attempts to match it
with the closing delimiter. If they're not the same type (there's an opening brace but a
closing parenthesis, for example), then an error has occurred. Also, if there is no opening
delimiter on the stack to match a closing one, or if a delimiter has not been matched, an
error has occurred. A delimiter that hasn't been matched is discovered because it
remains on the stack after all the characters in the string have been read.

 Let's see what happens on the stack for a typical correct string:

 a{b(c[d]e)f}

Table 4.1 shows how the stack looks as each character is read from this string. The stack
contents are shown in the second column. The entries in this column show the stack
contents, reading from the bottom of the stack on the left to the top on the right.

As it's read, each opening delimiter is placed on the stack. Each closing delimiter read
from the input is matched with the opening delimiter popped from the top of the stack. If
they form a pair, all is well. Nondelimiter characters are not inserted on the stack; they're
ignored.

 Table 4.1: Stack contents in delimiter matching

 Character Read

Stack Contents

 A

 {

{

 B

{

 (

{(

 C

{(

 [

{([

 - 100 -

 D

{([

]

{(

 E

{(

)

{

 F

{

 }

 This approach works because pairs of delimiters that are opened last should be closed

first. This matches the last-in-first-out property of the stack.

 Java Code for brackets.java

 The code for the parsing program, brackets.java, is shown in Listing 4.3. We've

placed check(), the method that does the parsing, in a class called BracketChecker.

 Listing 4.3 The brackets.java Program

 // brackets.java
 // stacks used to check matching brackets
 // to run this program: C>java BracketsApp
 import java.io.*; // for I/O
 //
 class StackX
 {
 private int maxSize;
 private char[] stackArray;
 private int top;

 //---

-
 public StackX(int s) // constructor
 {
 maxSize = s;
 stackArray = new char[maxSize];
 top = -1;
 }

 //---

-
 public void push(char j) // put item on top of stack
 {
 stackArray[++top] = j;
 }

 //---

-

 - 101 -

 public char pop() // take item from top of stack
 {
 return stackArray[top--];
 }

 //---

-
 public char peek() // peek at top of stack
 {
 return stackArray[top];
 }

 //---

-
 public boolean isEmpty() // true if stack is empty
 {
 return (top == -1);
 }

 //---

-
 } // end class StackX

 //

 class BracketChecker
 {
 private String input; // input string

 //---

-
 public BracketChecker(String in) // constructor
 { input = in; }

 //---

-
 public void check()
 {
 int stackSize = input.length(); // get max stack

size
 StackX theStack = new StackX(stackSize); // make stack

 for(int j=0; j<input.length(); j++) // get chars in turn
 {
 char ch = input.charAt(j); // get char
 switch(ch)
 {
 case '{': // opening symbols
 case '[':
 case '(':
 theStack.push(ch); // push them
 break;

 case '}': // closing symbols

 - 102 -

 case ']':
 case ')':
 if(!theStack.isEmpty()) // if stack not

empty,
 {
 char chx = theStack.pop(); // pop and check
 if((ch=='}' && chx!='{') ||
 (ch==']' && chx!='[') ||
 (ch==')' && chx!='('))
 System.out.println("Error: "+ch+" at "+j);
 }
 else // prematurely empty
 System.out.println("Error: "+ch+" at "+j);
 break;
 default: // no action on other characters
 break;
 } // end switch
 } // end for
 // at this point, all characters have been processed
 if(!theStack.isEmpty())
 System.out.println("Error: missing right delimiter");
 } // end check()

 //---

-
 } // end class BracketChecker

 //

 class BracketsApp
 {
 public static void main(String[] args) throws IOException
 {
 String input;
 while(true)
 {
 System.out.print(
 "Enter string containing delimiters: ");
 System.out.flush();
 input = getString(); // read a string from kbd
 if(input.equals("")) // quit if [Enter]
 break;
 // make a BracketChecker
 BracketChecker theChecker = new BracketChecker(input);
 theChecker.check(); // check brackets
 } // end while
 } // end main()

 //---

-
 public static String getString() throws IOException
 {
 InputStreamReader isr = new InputStreamReader(System.in);

 - 103 -

 BufferedReader br = new BufferedReader(isr);
 String s = br.readLine();
 return s;
 }

 //---

-

 } // end class BracketsApp

The check() routine makes use of the StackX class from the last program. Notice how
easy it is to reuse this class. All the code you need is in one place. This is one of the
payoffs for object-oriented programming.

The main() routine in the BracketsApp class repeatedly reads a line of text from the
user, creates a BracketChecker object with this text string as an argument, and then
calls the check() method for this BracketChecker object. If it finds any errors, the
check() method displays them; otherwise, the syntax of the delimiters is correct.

If it can, the check() method reports the character number where it discovered the error
(starting at 0 on the left), and the incorrect character it found there. For example, for the
input string

 a{b(c]d}e

 the output from check() will be

 Error:] at 5

 The Stack as a Conceptual Aid

Notice how convenient the stack is in the brackets.java program. You could have set
up an array to do what the stack does, but you would have had to worry about keeping
track of an index to the most recently added character, as well as other bookkeeping
tasks. The stack is conceptually easier to use. By providing limited access to its contents,
using the push() and pop() methods, the stack has made your program easier to
understand and less error prone. (Carpenters will also tell you it's safer to use the right
tool for the job.)

 Efficiency of Stacks

Items can be both pushed and popped from the stack implemented in the StackX class in
constant O(1) time. That is, the time is not dependent on how many items are in the stack,
and is therefore very quick. No comparisons or moves are necessary.

 Queues

The word queue is British for line (the kind you wait in). In Britain, to "queue up" means to
get in line. In computer science a queue is a data structure that is similar to a stack,
except that in a queue the first item inserted is the first to be removed (FIFO), while in a
stack, as we've seen, the last item inserted is the first to be removed (LIFO). A queue
works like the line at the movies: the first person to join the rear of the line is the first
person to reach the front of the line and buy a ticket. The last person to line up is the last
person to buy a ticket (or—if the show is sold out—to fail to buy a ticket). Figure 4.4
shows how this looks.

 - 104 -

 Figure 4.4: A queue of people

Queues are used as a programmer's tool as stacks are. We'll see an example where a
queue helps search a graph in Chapter 13. They're also used to model real-world
situations such as people waiting in line at a bank, airplanes waiting to take off, or data
packets waiting to be transmitted over the Internet.

There are various queues quietly doing their job in your computer's (or the network's)
operating system. There's a printer queue where print jobs wait for the printer to be
available. A queue also stores keystroke data as you type at the keyboard. This way, if
you're using a word processor but the computer is briefly doing something else when you
hit a key, the keystroke won't be lost; it waits in the queue until the word processor has
time to read it. Using a queue guarantees the keystrokes stay in order until they can be
processed.

 The Queue Workshop Applet

 Start up the Queue Workshop applet. You'll see a queue with four items preinstalled, as

shown in Figure 4.5.

 This applet demonstrates a queue based on an array. This is a common approach,

although linked lists are also commonly used to implement queues.

The two basic queue operations are inserting an item, which is placed at the rear of the
queue, and removing an item, which is taken from the front of the queue. This is similar to
a person joining the rear of a line of movie-goers, and, having arrived at the front of the
line and purchased a ticket, removing themselves from the front of the line.

The terms for insertion and removal in a stack are fairly standard; everyone says push
and pop. Standardization hasn't progressed this far with queues. Insert is also called put
or add or enque, while remove may be called delete

 Figure 4.5: The Queue Workshop applet

 - 105 -

The rear of the queue, where items are inserted, is also called the back or tail or end. The
front, where items are removed, may also be called the head. We'll use the terms insert,
remove, front, and rear.

 Insert

By repeatedly pressing the Ins button in the Queue Workshop applet, you can insert a
new item. After the first press, you're prompted to enter a key value for a new item into
the Number text field; this should be a number from 0 to 999. Subsequent presses will
insert an item with this key at the rear of the queue and increment the Rear arrow so it
points to the new item.

 Remove

Similarly, you can remove the item at the front of the queue using the Rem button. The
person is removed, the person's value is stored in the Number field (corresponding to the
remove() method returning a value) and the Front arrow is incremented. In the applet,
the cell that held the deleted item is grayed to show it's gone. In a normal
implementation, it would remain in memory but would not be accessible because Front
had moved past it. The insert and remove operations are shown in Figure 4.6.

Unlike the situation in a stack, the items in a queue don't always extend all the way down
to index 0 in the array. Once some items are removed, Front will point at a cell with a
higher index, as shown in Figure 4.7.

 Figure 4.6: Operation of the Queue class methods

 Notice that in this figure Front lies below Rear in the array; that is, Front has a lower

index. As we'll see in a moment, this isn't always true.

 Peek

We show one other queue operation, peek. This finds the value of the item at the front of
the queue without removing the item. (Like insert and remove, peek when applied to a
queue is also called by a variety of other names.) If you press the Peek button, you'll see
the value at Front transferred to the Number box. The queue is unchanged.

 - 106 -

 Figure 4.7: A queue with some items removed

This peek() method returns the value at the front of the queue. Some queue
implementations have a rearPeek() and a frontPeek() method, but usually you
want to know what you're about to remove, not what you just inserted.

 New

 If you want to start with an empty queue, you can use the New button to create one.

 Empty and Full

If you try to remove an item when there are no more items in the queue, you'll get the
Can't remove, queue is empty error message. If you try to insert an item when all
the cells are already occupied, you'll get the Can't insert, queue is full
message.

 A Circular Queue

When you insert a new item in the queue in the Workshop applet, the Front arrow moves
upward, toward higher numbers in the array. When you remove an item, Rear also
moves upward. Try these operations with the Workshop applet to convince yourself it's
true. You may find the arrangement counter-intuitive, because the people in a line at the
movies all move forward, toward the front, when a person leaves the line. We could move
all the items in a queue whenever we deleted one, but that wouldn't be very efficient.
Instead we keep all the items in the same place and move the front and rear of the
queue.

The trouble with this arrangement is that pretty soon the rear of the queue is at the end of
the array (the highest index). Even if there are empty cells at the beginning of the array,
because you've removed them with Rem, you still can't insert a new item because Rear
can't go any further. Or can it? This situation is shown in Figure 4.8.

 Wrapping Around

To avoid the problem of not being able to insert more items into the queue even when it's
not full, the Front and Rear arrows wrap around to the beginning of the array. The result
is a circular queue (sometimes called a ring buffer).

You can see how wraparound works with the Workshop applet. Insert enough items to
bring the Rear arrow to the top of the array (index 9). Remove some items from the front
of the array. Now, insert another item. You'll see the Rear arrow wrap around from index
9 to index 0; the new item will be inserted there. This is shown in Figure 4.9.

 - 107 -

Insert a few more items. The Rear arrow moves upward as you'd expect. Notice that
once Rear has wrapped around, it's now below Front, the reverse of the original
arrangement. You can call this a broken sequence: the items in the queue are in two
different sequences in the array.

Delete enough items so that the Front arrow also wraps around. Now you're back to the
original arrangement, with Front below Rear. The items are in a single contiguous
sequence.

 Figure 4.8: Rear arrow at the end of the array

 Figure 4.9: Rear arrow wraps around

 Java Code for a Queue

 The queue.java program features a Queue class with insert(), remove(), peek(),
isFull(), isEmpty(), and size() methods.

The main() program creates a queue of five cells, inserts four items, removes three
items, and inserts four more. The sixth insertion invokes the wraparound feature. All the
items are then removed and displayed. The output looks like this:

 40 50 60 70 80

 - 108 -

 Listing 4.4 shows the Queue.java program.

 Listing 4.4 The Queue.java Program

 // Queue.java
 // demonstrates queue
 // to run this program: C>java QueueApp
 import java.io.*; // for I/O
 //
 class Queue
 {
 private int maxSize;
 private int[] queArray;
 private int front;
 private int rear;
 private int nItems;

 //---

-
 public Queue(int s) // constructor
 {
 maxSize = s;
 queArray = new int[maxSize];
 front = 0;
 rear = -1;
 nItems = 0;
 }

 //---

-
 public void insert(int j) // put item at rear of queue
 {
 if(rear == maxSize-1) // deal with wraparound
 rear = -1;
 queArray[++rear] = j; // increment rear and

insert
 nItems++; // one more item
 }

 //---

-
 public int remove() // take item from front of queue
 {
 int temp = queArray[front++]; // get value and incr front
 if(front == maxSize) // deal with wraparound
 front = 0;
 nItems--; // one less item
 return temp;
 }

 //---

-
 public int peekFront() // peek at front of queue
 {

 - 109 -

 return queArray[front];
 }

 //---

-
 public boolean isEmpty() // true if queue is empty
 {
 return (nItems==0);
 }

 //---

-
 public boolean isFull() // true if queue is full
 {
 return (nItems==maxSize);
 }

 //---

-
 public int size() // number of items in queue
 {
 return nItems;
 }

 //---

-
 } // end class Queue

 //

 class QueueApp
 {
 public static void main(String[] args)
 {
 Queue theQueue = new Queue(5); // queue holds 5 items

 theQueue.insert(10); // insert 4 items
 theQueue.insert(20);
 theQueue.insert(30);
 theQueue.insert(40);

 theQueue.remove(); // remove 3 items
 theQueue.remove(); // (10, 20, 30)
 theQueue.remove();

 theQueue.insert(50); // insert 4 more items
 theQueue.insert(60); // (wraps around)
 theQueue.insert(70);
 theQueue.insert(80);

 while(!theQueue.isEmpty()) // remove and display
 { // all items
 int n = theQueue.remove(); // (40, 50, 60, 70, 80)
 System.out.print(n);

 - 110 -

 System.out.print(" ");
 }
 System.out.println("");
 } // end main()

 } // end class QueueApp

We've chosen an approach in which Queue class fields include not only front and
rear, but also the number of items currently in the queue: nItems. Some queue
implementations don't use this field; we'll show this alternative later.

 The insert() Method

The insert() method assumes that the queue is not full. We don't show it in main(),
but normally you should only call insert() after calling isFull() and getting a return
value of false. (It's usually preferable to place the check for fullness in the insert()
routine, and cause an exception to be thrown if an attempt was made to insert into a full
queue.)

Normally, insertion involves incrementing rear and inserting at the cell rear now points
to. However, if rear is at the top of the array, at maxSize-1, then it must wrap around to
the bottom of the array before the insertion takes place. This is done by setting rear to –
1, so when the increment occurs rear will become 0, the bottom of the array. Finally
nItems is incremented.

 The remove() Method

The remove() method assumes that the queue is not empty. You should call
isEmpty() to ensure this is true before calling remove(), or build this error-checking
into remove().

Removal always starts by obtaining the value at front and then incrementing front.
However, if this puts front beyond the end of the array, it must then be wrapped around
to 0. The return value is stored temporarily while this possibility is checked. Finally,
nItems is decremented.

 The peek() Method

The peek() method is straightforward: it returns the value at front. Some
implementations allow peeking at the rear of the array as well; such routines are called
something like peekFront() and peekRear() or just front() and rear().

 The isEmpty(), isFull(), and size() Methods

 The isEmpty(), isFull(), and size() methods all rely on the nItems field,

respectively checking if it's 0, if it's maxSize, or returning its value.

 Implementation Without an Item Count

The inclusion of the field nItems in the Queue class imposes a slight overhead on the
insert() and remove() methods in that they must respectively increment and
decrement this variable. This may not seem like an excessive penalty, but if you're
dealing with huge numbers of insertions and deletions, it might influence performance.

 Accordingly, some implementations of queues do without an item count and rely on the
front and rear fields to figure out whether the queue is empty or full and how many

 - 111 -

items are in it. When this is done, the isEmpty(), isFull(), and size() routines
become surprisingly complicated because the sequence of items may be either broken or
contiguous, as we've seen.

Also, a strange problem arises. The front and rear pointers assume certain positions
when the queue is full, but they can assume these exact same positions when the queue
is empty. The queue can then appear to be full and empty at the same time.

This problem can be solved by making the array one cell larger than the maximum
number of items that will be placed in it. Listing 4.5 shows a Queue class that implements
this no-count approach. This class uses the no-count implementation.

 Listing 4.5 The Queue Class Without nItems

 class Queue
 {
 private int maxSize;
 private int[] queArray;
 private int front;
 private int rear;

 //---

-
 public Queue(int s) // constructor
 {
 maxSize = s+1; // array is 1 cell larger
 queArray = new int[maxSize]; // than requested
 front = 0;
 rear = -1;
 }

 //---

-
 public void insert(int j) // put item at rear of queue
 {
 if(rear == maxSize-1)
 rear = -1;
 queArray[++rear] = j;
 }

 //---

-
 public int remove() // take item from front of queue
 {
 int temp = queArray[front++];
 if(front == maxSize)
 front = 0;
 return temp;
 }

 //---

-
 public int peek() // peek at front of queue
 {
 return queArray[front];

 - 112 -

 }

 //---

-
 public boolean isEmpty() // true if queue is empty
 {
 return (rear+1==front || (front+maxSize-1==rear));
 }

 //---

-
 public boolean isFull() // true if queue is full
 {
 return (rear+2==front || (front+maxSize-2==rear));
 }

 //---

-
 public int size() // (assumes queue not empty)
 {
 if(rear >= front) // contiguous sequence
 return rear-front+1;
 else // broken sequence
 return (maxSize-front) + (rear+1);
 }

 //---

-

 } // end class Queue

 Notice the complexity of the isFull(), isEmpty(), and size() methods. This no-

count approach is seldom needed in practice, so we'll refrain from discussing it in detail.

 Efficiency of Queues

 As with a stack, items can be inserted and removed from a queue in O(1) time.

 Deques

A deque is a double-ended queue. You can insert items at either end and delete them
from either end. The methods might be called insertLeft() and insertRight(),
and removeLeft() and removeRight().

If you restrict yourself to insertLeft() and removeLeft() (or their equivalents on
the right), then the deque acts like a stack. If you restrict yourself to insertLeft() and
removeRight() (or the opposite pair), then it acts like a queue.

A deque provides a more versatile data structure than either a stack or a queue, and is
sometimes used in container class libraries to serve both purposes. However, it's not used
as often as stacks and queues, so we won't explore it further here.

Priority Queues

 A priority queue is a more specialized data structure than a stack or a queue. However,

 - 113 -

it's a useful tool in a surprising number of situations. Like an ordinary queue, a priority
queue has a front and a rear, and items are removed from the front. However, in a priority
queue, items are ordered by key value, so that the item with the lowest key (or in some
implementations the highest key) is always at the front. Items are inserted in the proper
position to maintain the order.

Here's how the mail sorting analogy applies to a priority queue. Every time the postman
hands you a letter, you insert it into your pile of pending letters according to its priority. If
it must be answered immediately (the phone company is about to disconnect your
modem line), it goes on top, while if it can wait for a leisurely answer (a letter from your
Aunt Mabel), it goes on the bottom.

When you have time to answer your mail, you start by taking the letter off the top (the
front of the queue), thus ensuring that the most important letters are answered first. This
is shown in Figure 4.10.

Like stacks and queues, priority queues are often used as programmer's tools. We'll see
one used in finding something called a minimum spanning tree for a graph, in Chapter
14, "Weighted Graphs."

 Figure 4.10: Letters in a priority queue

Also, like ordinary queues, priority queues are used in various ways in certain computer
systems. In a preemptive multitasking operating system, for example, programs may be
placed in a priority queue so the highest-priority program is the next one to receive a
time-slice that allows it to execute.

In many situations you want access to the item with the lowest key value (which might
represent the cheapest or shortest way to do something). Thus the item with the smallest
key has the highest priority. Somewhat arbitrarily, we'll assume that's the case in this
discussion, although there are other situations in which the highest key has the highest
priority.

Besides providing quick access to the item with the smallest key, you also want a priority
queue to provide fairly quick insertion. For this reason, priority queues are, as we noted
earlier, often implemented with a data structure called a heap. We'll look at heaps in
Chapter 12. In this chapter, we'll show a priority queue implemented by a simple array.
This implementation suffers from slow insertion, but it's simpler and is appropriate when
the number of items isn't high or insertion speed isn't critical.

 The PriorityQ Workshop Applet

 - 114 -

The PriorityQ Workshop applet implements a priority queue with an array, in which the
items are kept in sorted order. It's an ascending-priority queue, in which the item with the
smallest key has the highest priority and is accessed with remove(). (If the highest-key
item were accessed, it would be a descending-priority queue.)

The minimum-key item is always at the top (highest index) in the array, and the largest
item is always at index 0. Figure 4.11 shows the arrangement when the applet is started.
Initially there are five items in the queue.

 Figure 4.11: The PriorityQ Workshop applet

 Insert

Try inserting an item. You'll be prompted to type the new item's key value into the
Number field. Choose a number that will be inserted somewhere in the middle of the
values already in the queue. For example, in Figure 4.11 you might choose 300. Then, as
you repeatedly press Ins, you'll see that the items with smaller keys are shifted up to
make room. A black arrow shows which item is being shifted. Once the appropriate
position is found, the new item is inserted into the newly created space.

Notice that there's no wraparound in this implementation of the priority queue. Insertion is
slow of necessity because the proper in-order position must be found, but deletion is fast.
A wraparound implementation wouldn't improve the situation. Note too that the Rear
arrow never moves; it always points to index 0 at the bottom of the array.

 Delete

The item to be removed is always at the top of the array, so removal is quick and easy;
the item is removed and the Front arrow moves down to point to the new top of the array.
No comparisons or shifting are necessary.

In the PriorityQ Workshop applet, we show Front and Rear arrows to provide a
comparison with an ordinary queue, but they're not really necessary. The algorithms
know that the front of the queue is always at the top of the array at nItems-1, and they
insert items in order, not at the rear. Figure 4.12 shows the operation of the PriorityQ
class methods.

 Peek and New

 You can peek at the minimum item (find its value without removing it) with the Peek

button, and you can create a new, empty, priority queue with the New button.

 Other Implementation Possibilities

 - 115 -

 The implementation shown in the PriorityQ Workshop applet isn't very efficient for
insertion, which involves moving an average of half the items.

Another approach, which also uses an array, makes no attempt to keep the items in
sorted order. New items are simply inserted at the top of the array. This makes insertion
very quick, but unfortunately it makes deletion slow, because the smallest item must be
searched for. This requires examining all the items and shifting half of them, on the
average, down to fill in the hole. Generally, the quick-deletion approach shown in the
Workshop applet is preferred.

For small numbers of items, or situations where speed isn't critical, implementing a
priority queue with an array is satisfactory. For larger numbers of items, or when speed is
critical, the heap is a better choice.

 Figure 4.12: Operation of the PriorityQ class methods

 Java Code for a Priority Queue

 The Java code for a simple array-based priority queue is shown in Listing 4.6.

 Listing 4.6 The priorityQ.java Program

 // priorityQ.java
 // demonstrates priority queue
 // to run this program: C>java PriorityQApp
 import java.io.*; // for I/O
 //

 class PriorityQ
 {
 // array in sorted order, from max at 0 to min at size-1
 private int maxSize;
 private double[] queArray;
 private int nItems;

 //---
 public PriorityQ(int s) // constructor
 {

 - 116 -

 maxSize = s;
 queArray = new double[maxSize];
 nItems = 0;
 }

 //---
 public void insert(double item) // insert item
 {
 int j;

 if(nItems==0) // if no items,
 queArray[nItems++] = item; // insert at 0
 else // if any items,
 {
 for(j=nItems-1; j>=0; j--) // start at end,
 {
 if(item > queArray[j]) // if new item

larger,
 queArray[j+1] = queArray[j]; // shift upward
 else // if smaller,
 break; // done shifting
 } // end for
 queArray[j+1] = item; // insert it
 nItems++;
 } // end else (nItems > 0)
 } // end insert()

 //---
 public double remove() // remove minimum item
 { return queArray[--nItems]; }

 //---
 public double peekMin() // peek at minimum item
 { return queArray[nItems-1]; }

 //---
 public boolean isEmpty() // true if queue is empty
 { return (nItems==0); }

 //---
 public boolean isFull() // true if queue is full
 { return (nItems == maxSize); }

 //---
 } // end class PriorityQ

 //

 class PriorityQApp
 {
 public static void main(String[] args) throws IOException
 {
 PriorityQ thePQ = new PriorityQ(5);

 - 117 -

 thePQ.insert(30);
 thePQ.insert(50);
 thePQ.insert(10);
 thePQ.insert(40);
 thePQ.insert(20);

 while(!thePQ.isEmpty())
 {
 double item = thePQ.remove();
 System.out.print(item + " "); // 10, 20, 30, 40, 50
 } // end while
 System.out.println("");
 } // end main()

 //---

 } // end class PriorityQApp

 In main() we insert five items in random order and then remove and display them. The

smallest item is always removed first, so the output is

 10, 20, 30, 40, 50

The insert() method checks if there are any items; if not, it inserts one at index 0.
Otherwise, it starts at the top of the array and shifts existing items upward until it finds the
place where the new item should go. Then it inserts it and increments nItems. Note that
if there's any chance the priority queue is full you should check for this possibility with
isFull() before using insert().

 The front and rear fields aren't necessary as they were in the Queue class, because,

as we noted, front is always at nItems-1 and rear is always at 0.

The remove() method is simplicity itself: it decrements nItems and returns the item
from the top of the array. The peekMin() method is similar, except it doesn't decrement
nItems. The isEmpty() and isFull() methods check if nItems is 0 or maxSize,
respectively.

 Efficiency of Priority Queues

In the priority-queue implementation we show here, insertion runs in O(N) time, while
deletion takes O(1) time. We'll see how to improve insertion time with heaps in Chapter
12.

Parsing Arithmetic Expressions

So far in this chapter, we've introduced three different data storage structures. Let's shift
gears now and focus on an important application for one of these structures. This
application is parsing (that is, analyzing) arithmetic expressions like 2+3 or 2*(3+4) or
((2+4)*7)+3*(9–5), and the storage structure it uses is the stack. In the brackets.java
program, we saw how a stack could be used to check whether delimiters were formatted
correctly. Stacks are used in a similar, although more complicated, way for parsing
arithmetic expressions.

In some sense this section should be considered optional. It's not a prerequisite to the
rest of the book, and writing code to parse arithmetic expressions is probably not
something you need to do every day, unless you are a compiler writer or are designing

 - 118 -

pocket calculators. Also, the coding details are more complex than any we've seen so far.
However, it's educational to see this important use of stacks, and the issues raised are
interesting in their own right.

 As it turns out, it's fairly difficult, at least for a computer algorithm, to evaluate an

arithmetic expression directly. It's easier for the algorithm to use a two-step process:

 1. Transform the arithmetic expression into a different format, called postfix notation.

 2. Evaluate the postfix expression.

Step 1 is a bit involved, but step 2 is easy. In any case, this two-step approach results in
a simpler algorithm than trying to parse the arithmetic expression directly. Of course, for a
human it's easier to parse the ordinary arithmetic expression. We'll return to the
difference between the human and computer approaches in a moment.

 Before we delve into the details of steps 1 and 2, we'll introduce postfix notation.

 Postfix Notation

Everyday arithmetic expressions are written with an operator (+, –, *, or /) placed
between two operands (numbers, or symbols that stand for numbers). This is called infix
notation, because the operator is written inside the operands. Thus we say 2+2 and 4/7,
or, using letters to stand for numbers, A+B and A/B.

In postfix notation (which is also called Reverse Polish Notation, or RPN, because it was
invented by a Polish mathematician), the operator follows the two operands. Thus A+B
becomes AB+, and A/B becomes AB/. More complex infix expressions can likewise be
translated into postfix notation, as shown in Table 4.2. We'll explain how the postfix
expressions are generated in a moment.

 Table 4.2: Infix and postfix expressions

 Infix

Postfix

 A+B–C

AB+C–

 A*B/C

AB*C/

 A+B*C

ABC*+

 A*B+C

AB*C+

 A*(B+C)

ABC+*

 A*B+C*D

AB*CD*+

 (A+B)*(C–D)

AB+CD–*

 ((A+B)*C)–D

AB+C*D–

 - 119 -

 A+B*(C–D/(E+F)) ABCDEF+/–*+

 Some computer languages also have an operator for raising a quantity to a power

(typically the ^ character), but we'll ignore that possibility in this discussion.

Besides infix and postfix, there's also a prefix notation, in which the operator is written
before the operands: +AB instead of AB+. This is functionally similar to postfix but seldom
used.

 Translating Infix to Postfix

The next several pages are devoted to explaining how to translate an expression from
infix notation into postfix. This is a fairly involved algorithm, so don't worry if every detail
isn't clear at first. If you get bogged down, you may want to skip ahead to the section,
"Evaluating Postfix Expressions." In understanding how to create a postfix expression, it
may be helpful to see how a postfix expression is evaluated; for example, how the value
14 is extracted from the expression 234+*, which is the postfix equivalent of 2*(3+4).
(Notice that in this discussion, for ease of writing, we restrict ourselves to expressions
with single-digit numbers, although these expressions may evaluate to multidigit
numbers.)

 How Humans Evaluate Infix

How do you translate infix to postfix? Let's examine a slightly easier question first: how
does a human evaluate a normal infix expression? Although, as we stated earlier, this is
difficult for a computer, we humans do it fairly easily because of countless hours in Mr.
Klemmer's math class. It's not hard for us to find the answer to 3+4+5, or 3*(4+5). By
analyzing how we do this, we can achieve some insight into the translation of such
expressions into postfix.

 Roughly speaking, when you "solve" an arithmetic expression, you follow rules something

like this:

1.

You read from left to right. (At least we'll assume this is true. Sometimes people skip
ahead, but for purposes of this discussion, you should assume you must read
methodically, starting at the left.)

2.

When you've read enough to evaluate two operands and an operator, you do the
calculation and substitute the answer for these two operands and operator. (You may
also need to solve other pending operations on the left, as we'll see later.)

 3. This process is continued—going from left to right and evaluating when possible—

until the end of the expression.

In Tables 4.3, 4.4, and 4.5 we're going to show three examples of how simple infix
expressions are evaluated. Later, in Tables 4.6, 4.7, and 4.8, we'll see how closely these
evaluations mirror the process of translating infix to postfix.

 To evaluate 3+4–5, you would carry out the steps shown in Table 4.3.

 Table 4.3: Evaluating 3+4–5

 Item Read

Expression Parsed So
Far

Comments

 - 120 -

 3

3

 +

3+

 4

3+4

 –

7

When you see the –, you can evaluate
3+4.

7–

 5

7–5

 End

2

When you reach the end of the
expression, you can evaluate 7–5.

 You can't evaluate the 3+4 until you see what operator follows the 4. If it's a * or / you

need to wait before applying the + sign until you've evaluated the * or /.

However, in this example the operator following the 4 is a –, which has the same
precedence as a +, so when you see the – you know you can evaluate 3+4, which is 7.
The 7 then replaces the 3+4. You can evaluate the 7–5 when you arrive at the end of the
expression.

Figure 4.13 shows how this looks in more detail. Notice how you go from left to right
reading items from the input, and then, when you have enough information, you go from
right to left, recalling previously examined input and evaluating each operand-operator-
operand combination.

 Because of precedence relationships, it's a bit more complicated to evaluate 3+4*5, as

shown in Table 4.4.

 Table 4.4: Evaluating 3+4*5

 Item Read

Expression Parsed So Far

Comments

 3

3

 +

3+

 4

3+4

 *

3+4*

Can't evaluate 3+4, because * is
higher precedence than +.

 5

3+4*5

When you see the 5, you can
evaluate 4*5.

 - 121 -

3+20

 End

23

When you see the end of the
expression, you can evaluate 3+20.

Here you can't add the 3 until you know the result of 4*5. Why not? Because
multiplication has a higher precedence than addition. In fact, both * and / have a higher
precedence than + and –, so all multiplications and divisions must be carried out before
any additions or subtractions (unless parentheses dictate otherwise; see the next
example).

 Figure 4.13: Evaluating 3+4*5

Often you can evaluate as you go from left to right, as in the last example. However, you
need to be sure, when you come to an operand-operator-operand combination like A+B,
that the operator on the right side of the B isn't one with a higher precedence than the +.
If it does have a higher precedence, as in this example, you can't do the addition yet.
However, once you've read the 5, the multiplication can be carried out because it has the
highest priority; it doesn't matter if a * or / follows the 5. However, you still can't do the
addition until you've found out what's beyond the 5. When you find there's nothing
beyond the 5 but the end of the expression, you can go ahead and do the addition.
Figure 4.14 shows this process.

Parentheses can by used to override the normal precedence of operators. Table 4.5
shows how you would evaluate 3*(4+5). Without the parentheses you'd do the
multiplication first; with them you do the addition first.

 - 122 -

 Figure 4.14: Evaluating 3*(4+5)

 Table 4.5: Evaluating 3*(4+5)

 Item Read

Expression Parsed So Far

Comments

 3

3

 *

3*

 (

3*(

 4

3*(4

Can't evaluate 3*4 because of
parentheses.

 +

3*(4+

 5

3*(4+5

Can't evaluate 4+5 yet.

)

3*(4+5)

When you see the ')' you can
evaluate 4+5.

3*9

When you've evaluated 4+5, you
can evaluate 3*9.

27

 End

Nothing left to evaluate.

Here we can't evaluate anything until we've reached the closing parenthesis.
Multiplication has a higher or equal precedence compared to the other operators, so
ordinarily we could carry out 3*4 as soon as we see the 4. However, parentheses have

 - 123 -

an even higher precedence than * and /. Accordingly, we must evaluate anything in
parentheses before using the result as an operand in any other calculation. The closing
parenthesis tells us we can go ahead and do the addition. We find that 4+5 is 9, and
once we know this, we can evaluate 3*9 to obtain 27. Reaching the end of the expression
is an anticlimax because there's nothing left to evaluate. The process is shown in Figure
4.15.

As we've seen, in evaluating an infix arithmetic expression, you go both forward and
backward through the expression. You go forward (left to right) reading operands and
operators. When you have enough information to apply an operator, you go backward,
recalling two operands and an operator and carrying out the arithmetic.

Sometimes you must defer applying operators if they're followed by higher precedence
operators or by parentheses. When this happens you must apply the later, higher-
precedence, operator first; then go backward (to the left) and apply earlier operators.

 Figure 4.15: Evaluating 3*(4+5)

 We could write an algorithm to carry out this kind of evaluation directly. However, as we

noted, it's actually easier to translate into postfix notation first.

 How Humans Translate Infix to Postfix

To translate infix to postfix notation, you follow a similar set of rules to those for
evaluating infix. However, there are a few small changes. You don't do any arithmetic.
The idea is not to evaluate the infix expression, but to rearrange the operators and
operands into a different format: postfix notation. The resulting postfix expression will be
evaluated later.

As before, you read the infix from left to right, looking at each character in turn. As you go
along, you copy these operands and operators to the postfix output string. The trick is
knowing when to copy what.

If the character in the infix string is an operand, you copy it immediately to the postfix
string. That is, if you see an A in the infix, you write an A to the postfix. There's never any
delay: you copy the operands as you get to them, no matter how long you must wait to
copy their associated operators.

Knowing when to copy an operator is more complicated, but it's the same as the rule for
evaluating infix expressions. Whenever you could have used the operator to evaluate
part of the infix expression (if you were evaluating instead of translating to postfix), you
instead copy it to the postfix string.

 - 124 -

 Table 4.6 shows how A+B–C is translated into postfix notation.

 Table 4.6: Translating A+B–C into postfix

 Character Read from

Infix Expression

Infix Expression
Parsed So Far

Postfix Expression
Written So Far

Comments

 A

A

A

 +

A+

A

 B

A+B

AB

 –

A+B–

AB+

When you
see the –,
you can copy
the + to the
postfix string.

 C

A+B–C

AB+C

 End

A+B–C

AB+C–

When you
reach the
end of the
expression,
you can copy
the –.

Notice the similarity of this table to Table 4.3, which showed the evaluation of the infix
expression 3+4–5. At each point where you would have done an evaluation in the earlier
table, you instead simply write an operator to the postfix output.

 Table 4.7 shows the translation of A+B*C to postfix. This is similar to Table 4.4, which

covered the evaluation of 3+4*5.

 Table 4.7: Translating A+B*C to postfix

 Character Read from

Infix Expression

Infix Expression
Parsed So Far

Postfix Expression
Written So Far

Comments

 A

A

A

 +

A+

A

 B

A+B

AB

 - 125 -

 *

A+B*

AB

Can't copy the
+, because * is
higher
precedence
than +.

 C

A+B*C

ABC

When you see
the C, you can
copy the *.

A+B*C

ABC*

 End

A+B*C

ABC*+

When you see
the end of the
expression,
you can copy
the +.

As the final example, Table 4.8 shows how A*(B+C) is translated to postfix. This is similar
to evaluating 3*(4+5) in Table 4.5. You can't write any postfix operators until you see the
closing parenthesis in the input.

 Table 4.8: Translating 3*(4+5) into postfix

 Character Read from

Infix Expression

Infix Expression
Parsed So Far

Postfix Expression
Written So Far

Comments

 A

A

A

 *

A*

A

 (

A*(

A

 B

A*(B

AB

Can't copy *
because of
parenthesis.

 +

A*(B+

AB

 C

A*(B+C

ABC

Can't copy the
+ yet.

)

A*(B+C)

ABC+

When you see
the) you can
copy the +.

A*(B+C)

ABC+*

When you've
copied the +,
you can copy
the*.

 - 126 -

 End

A*(B+C)

ABC+*

Nothing left to
copy.

As in the numerical evaluation process, you go both forward and backward through the
infix expression to complete the translation to postfix. You can't write an operator to the
output (postfix) string if it's followed by a higher-precedence operator or a left
parenthesis. If it is, the higher precedence operator, or the operator in parentheses, must
be written to the postfix before the lower priority operator.

 Saving Operators on a Stack

You'll notice in both Table 4.7 and Table 4.8 that the order of the operators is reversed
going from infix to postfix. Because the first operator can't be copied to the output until
the second one has been copied, the operators were output to the postfix string in the
opposite order they were read from the infix string. A longer example may make this
clearer. Table 4.9 shows the translation to postfix of the infix expression A+B*(C–D). We
include a column for stack contents, which we'll explain in a moment.

 Table 4.9: Translating A+B*(C–D) to postfix

 Character Read from

Infix Expression

Infix Expression
Parsed So Far

Postfix Expression
Written So Far

Stack
Contents

 A

A

A

 +

A+

A

+

 B

A+B

AB

+

 *

A+B*

AB

+*

 (

A+B*(

AB

+*(

 C

A+B*(C

ABC

+*(

 –

A+B*(C–

ABC

+*(–

 D

A+B*(C–D

ABCD

+*(–

)

A+B*(C–D)

ABCD–

+*(

A+B*(C–D)

ABCD–

+*(

A+B*(C–D)

ABCD–

+*

A+B*(C–D)

ABCD–*

+

A+B*(C–D)

ABCD–*+

 - 127 -

Here we see the order of the operands is +*– in the original infix expression, but the
reverse order, –*+, in the final postfix expression. This happens because * has higher
precedence than +, and –, because it's in parentheses, has higher precedence than *.

This order reversal suggests a stack might be a good place to store the operators while
we're waiting to use them. The last column in Table 4.9 shows the stack contents at
various stages in the translation process.

Popping items from the stack allows you to, in a sense, go backward (right to left) through
the input string. You're not really examining the entire input string, only the operators and
parentheses. These were pushed on the stack when reading the input, so now you can
recall them in reverse order by popping them off the stack.

The operands (A, B, and so on) appear in the same order in infix and postfix, so you can
write each one to the output as soon as you encounter it; they don't need to be stored on
a stack.

 Translation Rules

Let's make the rules for infix-to-postfix translation more explicit. You read items from the
infix input string and take the actions shown in Table 4.10. These actions are described in
pseudocode, a blend of Java and English.

In this table, the < and >= symbols refer to the operator precedence relationship, not
numerical values. The opThis operator has just been read from the infix input, while the
opTop operator has just been popped off the stack.

 Table 4.10: Translation rules

 Item Read from Input(Infix)

Action

 Operand

Write it to output (postfix)

 Open parenthesis (

Push it on stack

 Close parenthesis)

While stack not empty, repeat the following:

Pop an item,

If item is not (, write it to output

Quit loop if item is (

 Operator (opThis)

If stack empty,

Push opThis

Otherwise,

 - 128 -

While stack not empty, repeat:

Pop an item,

If item is (, push it, or

If item is an operator (opTop), and

If opTop < opThis, push opTop, or

If opTop >= opThis, output opTop

Quit loop if opTop < opThis or item is (

Push opThis

 No more items

While stack not empty,

Pop item, output it.

It may take some work to convince yourself that these rules work. Tables 4.11, 4.12, and
4.13 show how the rules apply to three sample infix expressions. These are similar to
Tables 4.6, 4.7, and 4.8, except that the relevant rules for each step have been added.
Try creating similar tables by starting with other simple infix expressions and using the
rules to translate some of them to postfix.

 Table 4.11: Translation Rules Applied to A+B–C

 Character Read

from Infix

Infix Parsed
So Far

Postfix
Written So Far

Stack
Contents

Rule

 A

A

A

Write operand
to output.

 +

A+

A

+

If stack empty,
push opThis.

 B

A+B

AB

+

Write operand
to output.

 –

A+B–

AB

Stack not
empty, so pop
item.

A+B–

AB+

opThis is –,
opTop is +,
opTop>=opThis,
so output opTop.

 - 129 -

A+B–

AB+

–

Then push
opThis.

 C

A+B–C

AB+C

–

Write operand
to output.

 End

A+B–C

AB+C-

Pop leftover
item, output it.

 Table 4.12: Translation rules applied to A+B*C

 Character Read

from Infix

Infix Parsed
So Far

Postfix
Written So Far

Stack
Contents

Rule

 A

A

A

Write operand
to postfix.

 +

A+

A

+

If stack empty,
push opThis.

 B

A+B

AB

+

Write operand
to output.

 *

A+B*

AB

+

Stack not
empty, so pop
opTop.

A+B*

AB

+

opThis is *,
opTop is +
opTop<opThis,
so push opTop.

A+B*

AB

+*

Then push
opThis.

 C

A+B*C

ABC

+*

Write operand
to output.

 End

A+B*C

ABC*

+

Pop leftover
item, output it.

A+B*C

ABC*+

Pop leftover
item, output it.

 - 130 -

 Table 4.13: Translation Rules Applied to A*(B+C)

 Character Read

from Infix

Infix Parsed
So Far

Postfix
Written So Far

Stack
Contents

Rule

 A

A

A

Write operand
to postfix.

 *

A*

A

*

If stack empty,
push opThis.

 (

A*(

A

*(

Push (on
stack.

 B

A*(B

AB

*(

Write operand
to postfix.

 +

A*(B+

AB

*

Stack not
empty, so pop
item.

A*(B+

AB

*(

It's (, so push
it.

A*(B+

AB

*(+

Then push
opThis.

 C

A*(B+C

ABC

*(+

Write operand
to postfix.

)

A*(B+C)

ABC+

*(

Pop item,
write to
output.

A*(B+C)

ABC+

*

Quit popping if
(.

 End

A*(B+C)

ABC+*

Pop leftover
item, output it.

 Java Code to Convert Infix to Postfix

 Listing 4.7 shows the infix.java program, which uses the rules of Table 4.10 to

translate an infix expression to a postfix expression.

 Listing 4.7 The infix.java Program

 // infix.java
 // converts infix arithmetic expressions to postfix
 // to run this program: C>java InfixApp
 import java.io.*; // for I/O

 - 131 -

 //
 class StackX
 {
 private int maxSize;
 private char[] stackArray;
 private int top;

 //---

-
 public StackX(int s) // constructor
 {
 maxSize = s;
 stackArray = new char[maxSize];
 top = -1;
 }

 //---

-
 public void push(char j) // put item on top of stack
 { stackArray[++top] = j; }

 //---

-
 public char pop() // take item from top of stack
 { return stackArray[top--]; }

 //---

-
 public char peek() // peek at top of stack
 { return stackArray[top]; }

 //---

-
 public boolean isEmpty() // true if stack is empty
 { return (top == -1); }

 //---
 public int size() // return size
 { return top+1; }

 //---

-
 public char peekN(int n) // return item at index n
 { return stackArray[n]; }

 //---

-
 public void displayStack(String s)
 {
 System.out.print(s);
 System.out.print("Stack (bottom-->top): ");
 for(int j=0; j<size(); j++)
 {
 System.out.print(peekN(j));
 System.out.print(' ');

 - 132 -

 }
 System.out.println("");
 }

 //---

-
 } // end class StackX

 //

 // infix to postfix conversion
 {
 private StackX theStack;
 private String input;
 private String output = "";

 //---

-
 public InToPost(String in) // constructor
 {
 input = in;
 int stackSize = input.length();
 theStack = new StackX(stackSize);
 }

 //---

-
 public String doTrans() // do translation to postfix
 {
 for(int j=0; j<input.length(); j++)
 {
 char ch = input.charAt(j);
 theStack.displayStack("For "+ch+" "); // *diagnostic*
 switch(ch)
 {
 case '+': // it's + or -
 case '-':
 gotOper(ch, 1); // go pop operators
 break; // (precedence 1)
 case '*': // it's * or /
 case '/':
 gotOper(ch, 2); // go pop operators
 break; // (precedence 2)
 case '(': // it's a left paren
 theStack.push(ch); // push it
 break;
 case ')': // it's a right paren
 gotParen(ch); // go pop operators
 break;
 default: // must be an operand
 output = output + ch; // write it to output
 break;
 } // end switch

 - 133 -

 } // end for
 while(!theStack.isEmpty()) // pop remaining opers
 {
 theStack.displayStack("While "); // *diagnostic*
 output = output + theStack.pop(); // write to output
 }
 theStack.displayStack("End "); // *diagnostic*
 return output; // return postfix
 } // end doTrans()

 //---

-
 public void gotOper(char opThis, int prec1)
 { // got operator from

input
 while(!theStack.isEmpty())
 {
 char opTop = theStack.pop();
 if(opTop == '(') // if it's a '('
 {
 theStack.push(opTop); // restore '('
 break;
 }
 else // it's an operator
 {
 int prec2; // precedence of new op

 if(opTop=='+' || opTop=='-') // find new op prec
 prec2 = 1;
 else
 prec2 = 2;
 if(prec2 < prec1) // if prec of new op

less
 { // than prec of old
 theStack.push(opTop); // save newly-popped op
 break;
 }
 else // prec of new not less
 output = output + opTop; // than prec of old
 } // end else (it's an operator)
 } // end while
 theStack.push(opThis); // push new operator
 } // end gotOp()

 //---

-
 public void gotParen(char ch)
 { // got right paren from

input
 while(!theStack.isEmpty())
 {
 char chx = theStack.pop();
 if(chx == '(') // if popped '('
 break; // we're done

 - 134 -

 else // if popped operator
 output = output + chx; // output it
 } // end while
 } // end popOps()

 //---

-
 } // end class InToPost

 //

 class InfixApp
 {
 public static void main(String[] args) throws IOException
 {
 String input, output;
 while(true)
 {
 System.out.print("Enter infix: ");
 System.out.flush();
 input = getString(); // read a string from kbd
 if(input.equals("")) // quit if [Enter]
 break;
 // make a translator
 InToPost theTrans = new InToPost(input);
 output = theTrans.doTrans(); // do the translation
 System.out.println("Postfix is " + output + '\n');
 } // end while
 } // end main()

 //---

-
 public static String getString() throws IOException
 {
 InputStreamReader isr = new InputStreamReader(System.in);
 BufferedReader br = new BufferedReader(isr);
 String s = br.readLine();
 return s;
 }

 //---

-

 } // end class InfixApp

The main() routine in the InfixApp class asks the user to enter an infix expression.
The input is read with the readString() utility method. The program creates an
InToPost object, initialized with the input string. Then it calls the doTrans() method
for this object to perform the translation. This method returns the postfix output string,
which is displayed.

The doTrans() method uses a switch statement to handle the various translation
rules shown in Table 4.10. It calls the gotOper() method when it reads an operator and
the gotParen() method when it reads a closing parenthesis ')'. These methods

 - 135 -

implement the second two rules in the table, which are more complex than other rules.

We've included a displayStack() method to display the entire contents of the stack in
the StackX class. In theory, this isn't playing by the rules; you're only supposed to
access the item at the top. However, as a diagnostic aid it's useful to see the contents of
the stack at each stage of the translation. Here's some sample interaction with
infix.java:

 Enter infix: Input=A*(B+C)-D/(E+F)
 For A Stack (bottom-->top):
 For * Stack (bottom-->top):
 For (Stack (bottom-->top): *
 For B Stack (bottom-->top): * (
 For + Stack (bottom-->top): * (
 For C Stack (bottom-->top): * (+
 For) Stack (bottom-->top): * (+
 For - Stack (bottom-->top): *
 For D Stack (bottom-->top): -
 Parsing Arithmetic ExpressionsFor / Stack (bottom-->top): -
 For (Stack (bottom-->top): - /
 For E Stack (bottom-->top): - / (
 For + Stack (bottom-->top): - / (
 For F Stack (bottom-->top): - / (+
 For) Stack (bottom-->top): - / (+
 While Stack (bottom-->top): - /
 While Stack (bottom-->top): -
 End Stack (bottom-->top):
 Postfix is ABC+*DEF+/-

The output shows where the displayStack() method was called (from the for loop,
the while loop, or at the end of the program) and within the for loop, what character
has just been read from the input string.

 You can use single-digit numbers like 3 and 7 instead of symbols like A and B. They're all

just characters to the program. For example:

 Enter infix: Input=2+3*4
 For 2 Stack (bottom-->top):
 For + Stack (bottom-->top):
 For 3 Stack (bottom-->top): +
 For * Stack (bottom-->top): +
 For 4 Stack (bottom-->top): + *
 While Stack (bottom-->top): + *
 While Stack (bottom-->top): +
 End Stack (bottom-->top):
 Postfix is 234*+

 Of course, in the postfix output, the 234 means the separate numbers 2, 3, and 4.

 The infix.java program doesn't check the input for errors. If you type an incorrect infix

expression, the program will provide erroneous output or crash and burn.

Experiment with this program. Start with some simple infix expressions, and see if you
can predict what the postfix will be. Then run the program to verify your answer. Pretty
soon, you'll be a postfix guru, much sought-after at cocktail parties.

 - 136 -

 Evaluating Postfix Expressions

As you can see, it's not trivial to convert infix expressions to postfix expressions. Is all this
trouble really necessary? Yes, the payoff comes when you evaluate a postfix expression.
Before we show how simple the algorithm is, let's examine how a human might carry out
such an evaluation.

 How Humans Evaluate Postfix

 Figure 4.16 shows how a human can evaluate a postfix expression using visual

inspection and a pencil.

Start with the first operator on the left, and draw a circle around it and the two operands
to its immediate left. Then apply the operator to these two operands—performing the
actual arithmetic—and write down the result inside the circle. In the figure, evaluating 4+5
gives 9.

 Figure 4.16: Visual approach to postfix evaluation of 345+*612+/-

Now go to the next operator to the right, and draw a circle around it, the circle you
already drew, and the operand to the left of that. Apply the operator to the previous circle
and the new operand, and write the result in the new circle. Here 3*9 gives 27. Continue
this process until all the operators have been applied: 1+2 is 3, and 6/3 is 2. The answer
is the result in the largest circle: 27–2 is 25.

 Rules for Postfix Evaluation

How do we write a program to reproduce this evaluation process? As you can see, each
time you come to an operator, you apply it to the last two operands you've seen. This
suggests that it might be appropriate to store the operands on a stack. (This is the
opposite of the infix to postfix translation algorithm, where operators were stored on the
stack.) You can use the rules shown in Table 4.14 to evaluate postfix expressions.

 Table 4.14: Evaluating a postfix expression

 Item Read from Postfix Expression

Action

 Operand

Push it onto the stack.

 Operator

Pop the top two operands from the stack,
and apply the operator to them. Push the
result.

 - 137 -

 When you're finished, pop the stack to obtain the answer. That's all there is to it. This

process is the computer equivalent of the human circle-drawing approach of Figure 4.16.

 Java Code to Evaluate Postfix Expressions

In the infix-to-postfix translation, we used symbols (A, B, and so on) to stand for numbers.
This worked because we weren't performing arithmetic operations on the operands, but
merely rewriting them in a different format.

Now we want to evaluate a postfix expression, which means carrying out the arithmetic
and obtaining an answer. Thus the input must consist of actual numbers. To simplify the
coding we've restricted the input to single-digit numbers.

 Our program evaluates a postfix expression and outputs the result. Remember numbers

are restricted to one digit. Here's some simple interaction:

 Enter postfix: 57+
 5 Stack (bottom-->top):
 7 Stack (bottom-->top): 5
 + Stack (bottom-->top): 5 7
 Evaluates to 12

You enter digits and operators, with no spaces. The program finds the numerical
equivalent. Although the input is restricted to single-digit numbers, the results are not; it
doesn't matter if something evaluates to numbers greater than 9. As in the infix.java
program, we use the displayStack() method to show the stack contents at each step.
Listing 4.8 shows the postfix.java program.

 Listing 4.8 The postfix.java Program

 // postfix.java
 // parses postfix arithmetic expressions
 // to run this program: C>java PostfixApp
 import java.io.*; // for I/O
 //
 class StackX
 {
 private int maxSize;
 private int[] stackArray;
 private int top;

 //---

-
 public StackX(int size) // constructor
 {
 maxSize = size;
 stackArray = new int[maxSize];
 top = -1;
 }

 //---

-
 public void push(int j) // put item on top of stack

 - 138 -

 { stackArray[++top] = j; }

 //---

-
 public int pop() // take item from top of stack
 { return stackArray[top--]; }

 //---

-
 public int peek() // peek at top of stack
 { return stackArray[top]; }

 //---

-
 public boolean isEmpty() // true if stack is empty
 { return (top == -1); }

 //---

-
 public boolean isFull() // true if stack is full
 { return (top == maxSize-1); }

 //---

-
 public int size() // return size
 { return top+1; }

 //---

-
 public int peekN(int n) // peek at index n
 { return stackArray[n]; }

 //---

-
 public void displayStack(String s)
 {
 System.out.print(s);
 System.out.print("Stack (bottom-->top): ");
 for(int j=0; j<size(); j++)
 {
 System.out.print(peekN(j));
 System.out.print(' ');
 }
 System.out.println("");
 }

 //---

-
 } // end class StackX

 //

 class ParsePost
 {
 private StackX theStack;

 - 139 -

 private String input;

 //---

-
 public ParsePost(String s)
 { input = s; }

 //---

-
 public int doParse()
 {
 theStack = new StackX(20); // make new stack
 char ch;
 int j;
 int num1, num2, interAns;

 for(j=0; j<input.length(); j++) // for each char,
 {
 ch = input.charAt(j); // read from input
 theStack.displayStack(""+ch+" "); // *diagnostic*
 if(ch >= '0' && ch <= '9') // if it's a number
 theStack.push((int)(ch-'0')); // push it
 else // it's an operator
 {
 num2 = theStack.pop(); // pop operands
 num1 = theStack.pop();
 switch(ch) // do arithmetic
 {
 case '+':
 interAns = num1 + num2;
 break;
 case '-':
 interAns = num1 - num2;
 break;
 case '*':
 interAns = num1 * num2;
 break;
 case '/':
 interAns = num1 / num2;
 break;
 default:
 interAns = 0;
 } // end switch
 theStack.push(interAns); // push result
 } // end else
 } // end for
 interAns = theStack.pop(); // get answer
 return interAns;
 } // end doParse()
 } // end class ParsePost

 //

 - 140 -

 class PostfixApp
 {
 public static void main(String[] args) throws IOException
 {
 String input;
 int output;

 while(true)
 {
 System.out.print("Enter postfix: ");
 System.out.flush();
 input = getString(); // read a string from kbd
 if(input.equals("")) // quit if [Enter]
 break;
 // make a parser
 ParsePost aParser = new ParsePost(input);
 output = aParser.doParse(); // do the evaluation
 System.out.println("Evaluates to " + output);
 } // end while
 } // end main()

 //---

-
 public static String getString() throws IOException
 {
 InputStreamReader isr = new InputStreamReader(System.in);
 BufferedReader br = new BufferedReader(isr);
 String s = br.readLine();
 return s;
 }

 //---

-

 } // end class PostfixApp

The main() method in the PostfixApp class gets the postfix string from the user and
then creates a ParsePost object, initialized with this string. It then calls the doParse()
method of ParsePost to carry out the evaluation.

The doParse() method reads through the input string, character by character. If the
character is a digit, it's pushed onto the stack. If it's an operator, it's applied immediately
to the two operators on the top of the stack. (These operators are guaranteed to be on
the stack already, because the input string is in postfix notation.)

The result of the arithmetic operation is pushed onto the stack. Once the last character
(which must be an operator) is read and applied, the stack contains only one item, which
is the answer to the entire expression.

Here's some interaction with more complex input: the postfix expression 345+*612+/–,
which we showed a human evaluating in Figure 4.16. This corresponds to the infix
3*(4+5)–6/(1+2). (We saw an equivalent translation using letters instead of numbers in
the last section: A*(B+C)–D/(E+F) in infix is ABC+*DEF+/– in postfix.) Here's how the
postfix is evaluated by the postfix.java program:

 - 141 -

 Enter postfix: 345+*612+/-
 3 Stack (bottom-->top):
 4 Stack (bottom-->top): 3
 5 Stack (bottom-->top): 3 4
 + Stack (bottom-->top): 3 4 5
 * Stack (bottom-->top): 3 9
 6 Stack (bottom-->top): 27
 1 Stack (bottom-->top): 27 6
 2 Stack (bottom-->top): 27 6 1
 + Stack (bottom-->top): 27 6 1 2
 / Stack (bottom-->top): 27 6 3
 - Stack (bottom-->top): 27 2
 Evaluates to 25

 As with the last program, postfix.java doesn't check for input errors. If you type in a

postfix expression that doesn't make sense, results are unpredictable.

 Experiment with the program. Trying different postfix expressions and seeing how they're

evaluated will give you an understanding of the process faster than reading about it.

 Summary

 • Stacks, queues, and priority queues are data structures usually used to simplify certain

programming operations.

 • In these data structures, only one data item can be accessed.

 • A stack allows access to the last item inserted.

 • The important stack operations are pushing (inserting) an item onto the top of the

stack and popping (removing) the item that's on the top.

 • A queue allows access to the first item that was inserted.

 • The important queue operations are inserting an item at the rear of the queue and

removing the item from the front of the queue.

 • A queue can be implemented as a circular queue, which is based on an array in which

the indices wrap around from the end of the array to the beginning.

 • A priority queue allows access to the smallest (or sometimes the largest) item.

 • The important priority queue operations are inserting an item in sorted order and

removing the item with the smallest key.

 • These data structures can be implemented with arrays or with other mechanisms such

as linked lists.

 • Ordinary arithmetic expressions are written in infix notation, so-called because the

operator is written between the two operands.

 • In postfix notation, the operator follows the two operands.

 • Arithmetic expressions are typically evaluated by translating them to postfix notation

and then evaluating the postfix expression.

 - 142 -

 • A stack is a useful tool both for translating an infix to a postfix expression and for

evaluating a postfix expression.

Chapter 5: Linked Lists

 Overview

In Chapter 2, "Arrays," we saw that arrays had certain disadvantages as data storage
structures. In an unordered array, searching is slow, whereas in an ordered array,
insertion is slow. In both kinds of arrays deletion is slow. Also, the size of an array can't
be changed after it's created.

In this chapter we'll look at a data storage structure that solves some of these problems:
the linked list. Linked lists are probably the second most commonly used general-purpose
storage structures after arrays.

The linked list is a versatile mechanism suitable for use in many kinds of general-purpose
databases. It can also replace an array as the basis for other storage structures such as
stacks and queues. In fact, you can use a linked list in many cases where you use an
array (unless you need frequent random access to individual items using an index).

Linked lists aren't the solution to all data storage problems, but they are surprisingly
versatile and conceptually simpler than some other popular structures such as trees.
We'll investigate their strengths and weaknesses as we go along.

In this chapter we'll look at simple linked lists, double-ended lists, sorted lists, doubly linked
lists, and lists with iterators (an approach to random access to list elements). We'll also
examine the idea of Abstract Data Types (ADTs) and see how stacks and queues can be
viewed as ADTs and how they can be implemented as linked lists instead of arrays.

 Links

In a linked list, each data item is embedded in a link. A link is an object of a class called
something like Link. Because there are many similar links in a list, it makes sense to use
a separate class for them, distinct from the linked list itself. Each link object contains a
reference (usually called next) to the next link in the list. A field in the list itself contains a
reference to the first link. This is shown in Figure 5.1.

 Here's part of the definition of a class Link. It contains some data and a reference to the

next link.

 class Link
 {
 public int iData; // data
 public double dData; // data
 public Link next; // reference to next link

 }

 This kind of class definition is sometimes called self-referential because it contains a

field—called next in this case—of the same type as itself.

We show only two data items in the link: an int and a double. In a typical application
there would be many more. A personnel record, for example, might have name, address,
Social Security number, title, salary, and many other fields. Often an object of a class that
contains this data is used instead of the items:

 - 143 -

 class Link
 {
 public inventoryItem iI; // object holding data
 public Link next; // reference to next link

 }

 Figure 5.1: Links in a list

 References and Basic Types

 It's easy to get confused about references in the context of linked lists, so let's review

how they work.

It may seem odd that you can put a field of type Link inside the class definition of this
same type. Wouldn't the compiler be confused? How can it figure out how big to make a
Link object if a link contains a link and the compiler doesn't already know how big a
Link object is?

The answer is that a Link object doesn't really contain another Link object, although it
may look like it does. The next field of type Link is only a reference to another link, not
an object.

A reference is a number that refers to an object. It's the object's address in the
computer's memory, but you don't need to know its value; you just treat it as a magic
number that tells you where the object is. In a given computer/operating system, all
references, no matter what they refer to, are the same size. Thus it's no problem for the
compiler to figure out how big this field should be, and thereby construct an entire Link
object.

Note that in Java, primitive types like int and double are stored quite differently than
objects. Fields containing primitive types do not contain references, but actual numerical
values like 7 or 3.14159. A variable definition like

 double salary = 65000.00;

 creates a space in memory and puts the number 65000.00 into this space. However, a

reference to an object, like

 Link aLink = someLink;

puts a reference to an object of type Link, called someLink, into aLink. The
someLink object isn't moved, or even created, by this statement; it must have been
created before. To create an object you must always use new:

 Link someLink = new Link();

 - 144 -

 Even the someLink field doesn't hold an object, it's still just a reference. The object is

somewhere else in memory, as shown in Figure 5.2.

 Other languages, like C++, handle objects quite differently than Java. In C++ a field like

 Link next;

actually contains an object of type Link. You can't write a self-referential class definition
in C++ (although you can put a pointer to a Link in class Link; a pointer is similar to a
reference). C++ programmers should keep in mind how Java handles objects; it may be
counter intuitive.

 Figure 5.2: Objects and references in memory

 Relationship, Not Position

Let's examine one of the major ways in which linked lists differ from arrays. In an array
each item occupies a particular position. This position can be directly accessed using an
index number. It's like a row of houses: you can find a particular house using its address.

In a list the only way to find a particular element is to follow along the chain of elements. It's
more like human relations. Maybe you ask Harry where Bob is. Harry doesn't know, but he
thinks Jane might know, so you go and ask Jane. Jane saw Bob leave the office with Sally,
so you call Sally's cell phone. She dropped Bob off at Peter's office, so…but you get the
idea. You can't access a data item directly; you must use relationships between the items
to locate it. You start with the first item, go to the second, then the third, until you find what
you're looking for.

The LinkList Workshop Applet

The LinkList Workshop applet provides three list operations. You can insert a new data
item, search for a data item with a specified key, and delete a data item with a specified
key. These operations are the same ones we explored in the Array Workshop applet in
Chapter 2; they're suitable for a general-purpose database application.

 Figure 5.3 shows how the LinkList Workshop applet looks when it's started up. Initially

there are 13 links on the list.

 - 145 -

 Figure 5.3: The LinkList Workshop applet

 Insert

If you think 13 is an unlucky number, you can insert a new link. Click on the Ins button,
and you'll be prompted to enter a key value between 0 and 999. Subsequent presses will
generate a link with this data in it, as shown in Figure 5.4.

In this version of a linked list, new links are always inserted at the beginning of the list.
This is the simplest approach, although it's also possible to insert links anywhere in the
list, as we'll see later.

A final press on Ins will redraw the list so the newly inserted link lines up with the other
links. This redrawing doesn't represent anything happening in the program itself, it just
makes the display look neater.

 Find

The Find button allows you find a link with a specified key value. When prompted, type in
the value of an existing link, preferably one somewhere in the middle of the list. As you
continue to press the button, you'll see the red arrow move along the list, looking for the
link. A message informs you when it finds it. If you type a nonexistent key value, the
arrow will search all the way to the end of the list before reporting that the item can't be
found.

 Figure 5.4: A new link being inserted

 Delete

 You can also delete a key with a specified value. Type in the value of an existing link, and

 - 146 -

repeatedly press Del. Again the arrow will move along the list, looking for the link. When it
finds it, it simply removes it and connects the arrow from the previous link straight across
to the following link. This is how links are removed: the reference to the preceding link is
changed to point to the following link.

A final keypress redraws the picture, but again this just provides evenly spaced links for
aesthetic reasons; the length of the arrows doesn't correspond to anything in the
program.

 Unsorted and Sorted

The LinkList Workshop applet can create both unsorted and sorted lists. Unsorted is the
default. We'll show how to use the applet for sorted lists when we discuss them later in this
chapter.

A Simple Linked List

 Our first example program, linkList.java, demonstrates a simple linked list. The only

operations allowed in this version of a list are

 • Inserting an item at the beginning of the list

 • Deleting the item at the beginning of the list

 • Iterating through the list to display its contents

 These operations are fairly easy to carry out, so we'll start with them. (As we'll see later,

these operations are also all you need to use a linked list as the basis for a stack.)

 Before we get to the complete linkList.java program, we'll look at some important

parts of the Link and LinkList classes.

 The Link Class

 You've already seen the data part of the Link class. Here's the complete class definition:

 class Link
 {
 public int iData; // data item
 public double dData; // data item
 public Link next; // next link in list

 // --

-
 public Link(int id, double dd) // constructor
 {
 iData = id; // initialize data
 dData = dd; // ('next' is automatically
 } // set to null)

 // --

-
 public void displayLink() // display ourself
 {
 System.out.print("{" + iData + ", " + dData + "} ");

 - 147 -

 }

 } // end class Link

In addition to the data, there's a constructor and a method, displayLink(), that
displays the link's data in the format {22, 33.9}. Object purists would probably object
to naming this method displayLink(), arguing that it should be simply display().
This would be in the spirit of polymorphism, but it makes the listing somewhat harder to
understand when you see a statement like

 current.display();

 and you've forgotten whether current is a Link object, a LinkList object, or

something else.

The constructor initializes the data. There's no need to initialize the next field, because
it's automatically set to null when it's created. (Although it could be set to null
explicitly, for clarity.) The null value means it doesn't refer to anything, which is the
situation until the link is connected to other links.

We've made the storage type of the Link fields (iData and so on) public. If they were
private we would need to provide public methods to access them, which would require
extra code, thus making the listing longer and harder to read. Ideally, for security we
would probably want to restrict Link-object access to methods of the LinkList class.
However, without an inheritance relationship between these classes, that's not very
convenient. We could use the default access specifier (no keyword) to give the data
package access (access restricted to classes in the same directory) but that has no effect
in these demo programs, which only occupy one directory anyway. The public specifier
at least makes it clear that this data isn't private.

 The LinkList Class

The LinkList class contains only one data item: a reference to the first link on the list.
This reference is called first. It's the only permanent information the list maintains
about the location of any of the links. It finds the other links by following the chain of
references from first, using each link's next field.

 class LinkList
 {
 private Link first; // ref to first link on list

 // --

-
 public void LinkList() // constructor
 {
 first = null; // no items on list yet
 }

 // --

-
 public boolean isEmpty() // true if list is empty
 {
 return (first==null);
 }

 - 148 -

 // --
-

 ... // other methods go here

 }

The constructor for LinkList sets first to null. This isn't really necessary because
as we noted, references are set to null automatically when they're created. However,
the explicit constructor makes it clear that this is how first begins.

When first has the value null, we know there are no items on the list. If there were
any items, first would contain a reference to the first one. The isEmpty() method
uses this fact to determine whether the list is empty.

 The insertFirst() Method

The insertFirst() method of LinkList inserts a new link at the beginning of the list.
This is the easiest place to insert a link, because first already points to the first link. To
insert the new link, we need only set the next field in the newly created link to point to
the old first link, and then change first so it points to the newly created link. This is
shown in Figure 5.5.

 In insertFirst() we begin by creating the new link using the data passed as

arguments. Then we change the link references as we just noted.

 // insert at start of list
 public void insertFirst(int id, double dd)
 { // make new link
 Link newLink = new Link(id, dd);
 newLink.next = first; // newLink --> old first
 first = newLink; // first --> newLink

 }

The arrows --> in the comments in the last two statements mean that a link (or the
first field) connects to the next (downstream) link. (In doubly linked lists we'll see
upstream connections as well, symbolized by <-- arrows.) Compare these two
statements with Figure 5.5. Make sure you understand how the statements cause the
links to be changed, as shown in the figure. This kind of reference-manipulation is the
heart of linked list algorithms.

 The deleteFirst() Method

The deleteFirst() method is the reverse of insertFirst(). It disconnects the first
link by rerouting first to point to the second link. This second link is found by looking at
the next field in the first link.

 public Link deleteFirst() // delete first item
 { // (assumes list not empty)
 Link temp = first; // save reference to link
 first = first.next; // delete it: first-->old next
 return temp; // return deleted link

 }

 - 149 -

 Figure 5.5: Inserting a new link

The second statement is all you need to remove the first link from the list. We choose to
also return the link, for the convenience of the user of the linked list, so we save it in
temp before deleting it, and return the value of temp. Figure 5.6 shows how first is
rerouted to delete the object.

In C++ and similar languages, you would need to worry about deleting the link itself after
it was disconnected from the list. It's in memory somewhere, but now nothing refers to it.
What will become of it? In Java, the garbage collection process will destroy it at some
point in the future; it's not your responsibility.

 Figure 5.6: Deleting a link

 Notice that the deleteFirst() method assumes the list is not empty. Before calling it,

your program should verify this with the isEmpty() method.

 The displayList() Method

To display the list, you start at first and follow the chain of references from link to link.
A variable current points to (or technically refers to) each link in turn. It starts off
pointing to first, which holds a reference to the first link. The statement

 current = current.next;

 - 150 -

 changes current to point to the next link, because that's what's in the next field in
each link. Here's the entire displayList() method:

 public void displayList()
 {
 System.out.print("List (first-->last): ");
 Link current = first; // start at beginning of list
 while(current != null) // until end of list,
 {
 current.displayLink(); // print data
 current = current.next; // move to next link
 }
 System.out.println("");

 }

The end of the list is indicated by the next field in the last link pointing to null rather
than another link. How did this field get to be null? It started that way when the link was
created and was never given any other value because it was always at the end of the list.
The while loop uses this condition to terminate itself when it reaches the end of the list.
Figure 5.7 shows how current steps along the list.

 At each link, the displayList() method calls the displayLink() method to display

the data in the link.

 The linkList.java Program

 Listing 5.1 shows the complete linkList.java program. You've already seen all the

components except the main() routine.

 Figure 5.7: Stepping along the list

 Listing 5.1 The linkList.java Program

 // linkList.java
 // demonstrates linked list
 // to run this program: C>java LinkListApp
 //
 class Link

 - 151 -

 {
 public int iData; // data item (key)
 public double dData; // data item
 public Link next; // next link in list

 // --

-
 public Link(int id, double dd) // constructor
 {
 iData = id; // initialize data
 dData = dd; // ('next' is automatically
 } // set to null)

 // --

-
 public void displayLink() // display ourself
 {
 System.out.print("{" + iData + ", " + dData + "} ");
 }
 } // end class Link

 //

 class LinkList
 {
 private Link first; // ref to first link on list

 // --

-
 public LinkList() // constructor
 {
 first = null; // no items on list yet
 }

 // --

-
 public boolean isEmpty() // true if list is empty
 {
 return (first==null);
 }

 // --

-
 // insert at start of list
 public void insertFirst(int id, double dd)
 { // make new link
 Link newLink = new Link(id, dd);
 newLink.next = first; // newLink --> old first
 first = newLink; // first --> newLink
 }

 // --

-

 - 152 -

 public Link deleteFirst() // delete first item
 { // (assumes list not empty)
 Link temp = first; // save reference to link
 first = first.next; // delete it: first-->old

next
 return temp; // return deleted link
 }

 // --

-
 public void displayList()
 {
 System.out.print("List (first-->last): ");
 Link current = first; // start at beginning of list
 while(current != null) // until end of list,
 {
 current.displayLink(); // print data
 current = current.next; // move to next link
 }
 System.out.println("");
 }

 // --

-
 } // end class LinkList

 //

 class LinkListApp
 {
 public static void main(String[] args)
 {
 LinkList theList = new LinkList(); // make new list

 theList.insertFirst(22, 2.99); // insert four items
 theList.insertFirst(44, 4.99);
 theList.insertFirst(66, 6.99);
 theList.insertFirst(88, 8.99);

 theList.displayList(); // display list

 while(!theList.isEmpty()) // until it's empty,
 {
 Link aLink = theList.deleteFirst(); // delete link
 System.out.print("Deleted "); // display it
 aLink.displayLink();
 System.out.println("");
 }
 theList.displayList(); // display list
 } // end main()

 } // end class LinkListApp

 - 153 -

In main() we create a new list, insert four new links into it with insertFirst(), and
display it. Then, in the while loop, we remove the items one by one with
deleteFirst() until the list is empty. The empty list is then displayed. Here's the
output from linkList.java:

 List (first-->last): {88, 8.99} {66, 6.99} {44, 4.99} {22,

2.99}
 Deleted {88, 8.99}
 Deleted {66, 6.99}
 Deleted {44, 4.99}
 Deleted {22, 2.99}
 List (first-->last):

Finding and Deleting Specified Links

Our next example program adds methods to search a linked list for a data item with a
specified key value, and to delete an item with a specified key value. These, along with
insertion at the start of the list, are the same operations carried out by the LinkList
Workshop applet. The complete linkList2.java program is shown in Listing 5.2.

 Listing 5.2 The linkList2.java Program

 // linkList2.java
 // demonstrates linked list
 // to run this program: C>java LinkList2App
 //
 class Link
 {
 public int iData; // data item (key)
 public double dData; // data item
 public Link next; // next link in list

 // --

-
 public Link(int id, double dd) // constructor
 {
 iData = id;
 dData = dd;
 }

 // --

-
 public void displayLink() // display ourself
 {
 System.out.print("{" + iData + ", " + dData + "} ");
 }
 } // end class Link

 //

 class LinkList
 {
 private Link first; // ref to first link on list

 - 154 -

 // --

-
 public LinkList() // constructor
 {
 first = null; // no links on list yet
 }

 // --

-
 public void insertFirst(int id, double dd)
 { // make new link
 Link newLink = new Link(id, dd);
 newLink.next = first; // it points to old first

link
 first = newLink; // now first points to this
 }

 // --

-
 public Link find(int key) // find link with given key
 { // (assumes non-empty list)
 Link current = first; // start at 'first'
 while(current.iData != key) // while no match,
 {
 if(current.next == null) // if end of list,
 return null; // didn't find it
 else // not end of list,
 current = current.next; // go to next link
 }
 return current; // found it
 }

 // --

-
 public Link delete(int key) // delete link with given key
 { // (assumes non-empty list)
 Link current = first; // search for link
 Link previous = first;
 while(current.iData != key)
 {
 if(current.next == null)
 return null; // didn't find it
 else
 {
 previous = current; // go to next link
 current = current.next;
 }
 } // found it
 if(current == first) // if first link,
 first = first.next; // change first
 else // otherwise,
 previous.next = current.next; // bypass it
 return current;

 - 155 -

 }

 // --

-
 public void displayList() // display the list
 {
 System.out.print("List (first-->last): ");
 Link current = first; // start at beginning of list
 while(current != null) // until end of list,
 {
 current.displayLink(); // print data
 current = current.next; // move to next link
 }
 System.out.println("");
 }

 // --

-
 } // end class LinkList

 //

 class LinkList2App
 {
 public static void main(String[] args)
 {
 LinkList theList = new LinkList(); // make list

 theList.insertFirst(22, 2.99); // insert 4 items
 theList.insertFirst(44, 4.99);
 theList.insertFirst(66, 6.99);
 theList.insertFirst(88, 8.99);

 theList.displayList(); // display list

 Link f = theList.find(44); // find item
 if(f != null)
 System.out.println("Found link with key " + f.iData);
 else
 System.out.println("Can't find link");

 Link d = theList.delete(66); // delete item
 if(d != null)
 System.out.println("Deleted link with key " +

d.iData);
 else
 System.out.println("Can't delete link");
 theList.displayList(); // display list
 } // end main()

 } // end class LinkList2App

 The main() routine makes a list, inserts four items, and displays the resulting list. It then

searches for the item with key 44, deletes the item with key 66, and displays the list

 - 156 -

again. Here's the output:

 List (first-->last): {88, 8.99} {66, 6.99} {44, 4.99} {22,

2.99}
 Found link with key 44
 Deleted link with key 66
 List (first-->last): {88, 8.99} {44, 4.99} {22, 2.99}

 The find() Method

The find() method works much like the displayList() method seen in the last
program. The reference current initially points to first, and then steps its way along
the links by setting itself repeatedly to current.next. At each link, find() checks if
that link's key is the one it's looking for. If it is, it returns with a reference to that link. If it
reaches the end of the list without finding the desired link, it returns null.

 The delete() Method

The delete() method is similar to find() in the way it searches for the link to be
deleted. However, it needs to maintain a reference not only to the current link (current),
but to the link preceding the current link (previous). This is because, if it deletes the
current link, it must connect the preceding link to the following link, as shown in Figure
5.8. The only way to tell where the preceding link is, is to maintain a reference to it.

 At each cycle through the while loop, just before current is set to current.next,
previous is set to current. This keeps it pointing at the link preceding current.

To delete the current link once it's found, the next field of the previous link is set to the
next link. A special case arises if the current link is the first link because the first link is
pointed to by the LinkList's first field and not by another link. In this case the link is
deleted by changing first to point to first.next, as we saw in the last program with
the deleteFirst() method. Here's the code that covers these two possibilities:

 // found it

 if(current == first) // if first link,
 first = first.next; // change first

 else // otherwise,

 previous.next = current.next; // bypass link

 Other Methods

We've seen methods to insert and delete items at the start of a list and to find a specified
item and delete a specified item. You can imagine other useful list methods. For example,
an insertAfter() method could find a link with a specified key value and insert a new
link following it. We'll see such a method when we talk about list iterators at the end of
this chapter.

 - 157 -

 Figure 5.8: Deleting a specified link

 Double-Ended Lists

 A double-ended list is similar to an ordinary linked list, but it has one additional feature: a

reference to the last link as well as to the first. Figure 5.9 shows what this looks like.

 Figure 5.9: A double-ended list

The reference to the last link permits you to insert a new link directly at the end of the list
as well as at the beginning. Of course you can insert a new link at the end of an ordinary
single-ended list by iterating through the entire list until you reach the end, but this is
inefficient.

Access to the end of the list as well as the beginning makes the double-ended list
suitable for certain situations that a single-ended list can't handle efficiently. One such
situation is implementing a queue; we'll see how this works in the next section.

Listing 5.3 contains the firstLastList.java program, which demonstrates a double-
ended list. (Incidentally, don't confuse the double-ended list with the doubly linked list,
which we'll explore later in this chapter.)

 Listing 5.3 The firstLastList.java Program

 // firstLastList.java
 // demonstrates list with first and last references
 // to run this program: C>java FirstLastApp
 //
 class Link
 {
 public double dData; // data item
 public Link next; // next link in list

 // --

-

 - 158 -

 public Link(double d) // constructor
 { dData = d; }

 // --

-
 public void displayLink() // display this link
 { System.out.print(dData + " "); }

 // --

-
 } // end class Link

 //

 class FirstLastList
 {
 private Link first; // ref to first link
 private Link last; // ref to last link

 // --

-
 public FirstLastList() // constructor
 {
 first = null; // no links on list yet
 last = null;
 }

 // --

-
 public boolean isEmpty() // true if no links
 { return first==null; }

 // --

-
 public void insertFirst(double dd) // insert at front of

list
 {
 Link newLink = new Link(dd); // make new link

 if(isEmpty()) // if empty list,
 last = newLink; // newLink <-- last
 newLink.next = first; // newLink --> old first
 first = newLink; // first --> newLink
 }

 // --

-
 public void insertLast(double dd) // insert at end of list
 {
 Link newLink = new Link(dd); // make new link

 if(isEmpty()) // if empty list,
 first = newLink; // first --> newLink
 else
 last.next = newLink; // old last --> newLink

 - 159 -

 last = newLink; // newLink <-- last
 }

 // --

-
 public double deleteFirst() // delete first link
 { // (assumes non-empty

list)
 double temp = first.dData; // save the data
 if(first.next == null) // if only one item
 last = null; // null <-- last
 first = first.next; // first --> old next
 return temp;
 }

 // --

-
 public void displayList()
 {
 System.out.print("List (first-->last): ");
 Link current = first; // start at beginning
 while(current != null) // until end of list,
 {
 current.displayLink(); // print data
 current = current.next; // move to next link
 }
 System.out.println("");
 }

 // --

-
 } // end class FirstLastList

 //

 class FirstLastApp
 {
 public static void main(String[] args)
 { // make a new list
 FirstLastList theList = new FirstLastList();

 theList.insertFirst(22); // insert at front
 theList.insertFirst(44);
 theList.insertFirst(66);

 theList.insertLast(11); // insert at rear
 theList.insertLast(33);
 theList.insertLast(55);

 theList.displayList(); // display the list

 theList.deleteFirst(); // delete first two items
 theList.deleteFirst();

 - 160 -

 theList.displayList(); // display again
 } // end main()

 } // end class FirstLastApp

For simplicity, in this program we've reduced the number of data items in each link from
two to one. This makes it easier to display the link contents. (Remember that in a serious
program there would be many more data items, or a reference to another object
containing many data items.)

This program inserts three items at the front of the list, inserts three more at the end, and
displays the resulting list. It then deletes the first two items and displays the list again.
Here's the output:

 List (first-->last): 66 44 22 11 33 55
 List (first-->last): 22 11 33 55

 Notice how repeated insertions at the front of the list reverse the order of the items, while

repeated insertions at the end preserve the order.

The double-ended list class is called the FirstLastList. As discussed, it has two data
items, first and last, which point to the first item and the last item in the list. If there is
only one item in the list, then both first and last point to it, and if there are no items,
they are both null.

The class has a new method, insertLast(), that inserts a new item at the end of the
list. This involves modifying last.next to point to the new link, and then changing last
to point to the new link, as shown in Figure 5.10.

 Figure 5.10: Insertion at the end of a list

The insertion and deletion routines are similar to those in a single-ended list. However,
both insertion routines must watch out for the special case when the list is empty prior to
the insertion. That is, if isEmpty() is true, then insertFirst() must set last to the
new link, and insertLast() must set first to the new link.

If inserting at the beginning with insertFirst(), first is set to point to the new link,
although when inserting at the end with insertLast(), last is set to point to the new
link. Deleting from the start of the list is also a special case if it's the last item on the list:
last must be set to point to null in this case.

 - 161 -

Unfortunately, making a list double-ended doesn't help you to delete the last link, because
there is still no reference to the next-to-last link, whose next field would need to be
changed to null if the last link were deleted. To conveniently delete the last link, you
would need a doubly linked list, which we'll look at soon. (Of course, you could also
traverse the entire list to find the last link, but that's not very efficient.)

Linked-List Efficiency

 Insertion and deletion at the beginning of a linked list are very fast. They involve changing

only one or two references, which takes O(1) time.

Finding, deleting, or insertion next to a specific item requires searching through, on the
average, half the items in the list. This requires O(N) comparisons. An array is also O(N)
for these operations, but the linked list is nevertheless faster because nothing needs to
be moved when an item is inserted or deleted. The increased efficiency can be
significant, especially if a copy takes much longer than a comparison.

Of course, another important advantage of linked lists over arrays is that the linked list uses
exactly as much memory as it needs, and can expand to fill all of the available memory.
The size of an array is fixed when it's created; this usually leads to inefficiency because the
array is too large, or to running out of room because the array is too small. Vectors, which
are expandable arrays, may solve this problem to some extent, but they usually expand in
fixed-sized increments (such as doubling the size of the array whenever it's about to
overflow). This is still not as efficient a use of memory as a linked list.

 Abstract Data Types

In this section we'll shift gears and discuss a topic that's more general than linked lists:
Abstract Data Types (ADTs). What is an ADT? Roughly speaking, it's a way of looking at
a data structure: focusing on what it does, and ignoring how it does it.

Stacks and queues are examples of ADTs. We've already seen that both stacks and
queues can be implemented using arrays. Before we return to a discussion of ADTs, let's
see how stacks and queues can be implemented using linked lists. This will demonstrate
the "abstract" nature of stacks and queues: how they can be considered separately from
their implementation.

 A Stack Implemented by a Linked List

When we created a stack in the last chapter, we used an ordinary Java array to hold the
stack's data. The stack's push() and pop() operations were actually carried out by
array operations such as

 arr[++top] = data;

 and

 data = arr[top--];

 which insert data into, and take it out of, an array.

 We can also use a linked list to hold a stack's data. In this case the push() and pop()

operations would be carried out by operations like

 theList.insertFirst(data)

 - 162 -

 and

 data = theList.deleteFirst()

The user of the stack class calls push() and pop() to insert and delete items, without
knowing, or needing to know, whether the stack is implemented as an array or as a linked
list. Listing 5.4 shows how a stack class called LinkStack can be implemented using
the LinkList class instead of an array. (Object purists would argue that the name
LinkStack should be simply Stack, because users of this class shouldn't need to know
that it's implemented as a list.)

 Listing 5.4 The linkStack() Program

 // linkStack.java
 // demonstrates a stack implemented as a list

 // to run this program: C>java LinkStackApp
 import java.io.*; // for I/O
 //
 class Link
 {
 public double dData; // data item
 public Link next; // next link in list

 // --

-
 public Link(double dd) // constructor
 { dData = dd; }

 // --

-
 public void displayLink() // display ourself
 { System.out.print(dData + " "); }
 } // end class Link

 //

 class LinkList
 {
 private Link first; // ref to first item on list

 // --

-
 public LinkList() // constructor
 { first = null; } // no items on list yet

 // --

-
 public boolean isEmpty() // true if list is empty
 { return (first==null); }

 // --

-
 public void insertFirst(double dd) // insert at start of

list

 - 163 -

 { // make new link
 Link newLink = new Link(dd);
 newLink.next = first; // newLink --> old first
 first = newLink; // first --> newLink
 }

 // --

-
 public double deleteFirst() // delete first item
 { // (assumes list not empty)
 Link temp = first; // save reference to link
 first = first.next; // delete it: first-->old

next
 return temp.dData; // return deleted link
 }

 // --

-
 public void displayList()
 {
 Link current = first; // start at beginning of list
 while(current != null) // until end of list,
 {
 current.displayLink(); // print data
 current = current.next; // move to next link
 }
 System.out.println("");
 }

 // --

-
 } // end class LinkList

 //

 class LinkStack
 {
 private LinkList theList;

 //---

-
 public LinkStack() // constructor
 {
 theList = new LinkList();
 }

 //---

-
 public void push(double j) // put item on top of stack
 {
 theList.insertFirst(j);
 }

 //---

-

 - 164 -

 public double pop() // take item from top of
stack

 {
 return theList.deleteFirst();
 }

 //---

-
 public boolean isEmpty() // true if stack is empty
 {
 return (theList.isEmpty());
 }

 //---

-
 public void displayStack()
 {
 System.out.print("Stack (top-->bottom): ");
 theList.displayList();
 }

 //---

-
 } // end class LinkStack

 //

 class LinkStackApp
 {
 public static void main(String[] args) throws IOException
 {
 LinkStack theStack = new LinkStack(); // make stack

 theStack.push(20); // push items
 theStack.push(40);

 theStack.displayStack(); // display stack

 theStack.push(60); // push items
 theStack.push(80);

 theStack.displayStack(); // display stack

 theStack.pop(); // pop items
 theStack.pop();

 theStack.displayStack(); // display stack
 } // end main()

 } // end class LinkStackApp

The main() routine creates a stack object, pushes two items on it, displays the stack,
pushes two more items, and displays it again. Finally it pops two items and displays the
stack again. Here's the output:

 - 165 -

 Stack (top-->bottom): 40 20
 Stack (top-->bottom): 80 60 40 20
 Stack (top-->bottom): 40 20

Notice the overall organization of this program. The main() routine in the
LinkStackApp class relates only to the LinkStack class. The LinkStack class
relates only to the LinkList class. There's no communication between main() and the
LinkList class.

More specifically, when a statement in main() calls the push() operation in the
LinkStack class, this method in turn calls insertFirst() in the LinkList class to
sactually insert data. Similarly, pop() calls deleteFirst() to delete an item, and
displayStack() calls displayList() to display the stack. To the class user, writing
code in main(), there is no difference between using the list-based LinkStack class
and using the array-based stack class from the Stack.java program in Chapter 4.

 A Queue Implemented by a Linked List

 Here's a similar example of an ADT implemented with a linked list. Listing 5.5 shows a

queue implemented as a double-ended linked list.

 Listing 5.5 The linkQueue() Program

 // linkQueue.java
 // demonstrates queue implemented as double-ended list
 // to run this program: C>java LinkQueueApp
 import java.io.*; // for I/O
 //
 class Link
 {
 public double dData; // data item
 public Link next; // next link in list

 // --

-
 public Link(double d) // constructor
 { dData = d; }

 // --

-
 public void displayLink() // display this link
 { System.out.print(dData + " "); }

 // --

-
 } // end class Link

 //

 class FirstLastList
 {
 private Link first; // ref to first item
 private Link last; // ref to last item

 - 166 -

 // --
-

 public FirstLastList() // constructor
 {
 first = null; // no items on list yet
 last = null;
 }

 // --

-
 public boolean isEmpty() // true if no links
 { return first==null; }

 // --

-
 public void insertLast(double dd) // insert at end of list
 {
 Link newLink = new Link(dd); // make new link
 if(isEmpty()) // if empty list,
 first = newLink; // first --> newLink
 else
 last.next = newLink; // old last --> newLink
 last = newLink; // newLink <-- last
 }

 // --

-
 public double deleteFirst() // delete first link
 { // (assumes non-empty

list)
 double temp = first.dData;
 if(first.next == null) // if only one item
 last = null; // null <-- last
 first = first.next; // first --> old next
 return temp;
 }

 // --

-
 public void displayList()
 {
 Link current = first; // start at beginning
 while(current != null) // until end of list,
 {
 current.displayLink(); // print data
 current = current.next; // move to next link
 }
 System.out.println("");
 }

 // --

-
 } // end class FirstLastList

 //

 - 167 -

 class LinkQueue
 {
 private FirstLastList theList;

 //---

-
 public LinkQueue() // constructor
 {
 theList = new FirstLastList(); // make a 2-ended list
 }

 //---

-
 public boolean isEmpty() // true if queue is empty
 {
 return theList.isEmpty();
 }

 //---

-
 public void insert(double j) // insert, rear of queue
 {
 theList.insertLast(j);
 }

 //---

-
 public double remove() // remove, front of queue
 {
 return theList.deleteFirst();
 }

 //---

-
 public void displayQueue()
 {
 System.out.print("Queue (front-->rear): ");
 theList.displayList();
 }

 //---

-
 } // end class LinkQueue

 //

 class LinkQueueApp
 {
 public static void main(String[] args) throws IOException
 {
 LinkQueue theQueue = new LinkQueue();
 theQueue.insert(20); // insert items
 theQueue.insert(40);

 - 168 -

 theQueue.displayQueue(); // display queue

 theQueue.insert(60); // insert items
 theQueue.insert(80);

 theQueue.displayQueue(); // display queue

 theQueue.remove(); // remove items
 theQueue.remove();

 theQueue.displayQueue(); // display queue
 } // end main()

 } // end class LinkQueueApp

 The program creates a queue, inserts two items, inserts two more items, and removes

two items; following each of these operations the queue is displayed. Here's the output:

 Queue (front-->rear): 20 40
 Queue (front-->rear): 20 40 60 80
 Queue (front-->rear): 60 80

Here the methods insert() and remove() in the LinkQueue class are implemented
by the insertLast() and deleteFirst() methods of the FirstLastList class.
We've substituted a linked list for the array used to implement the queue in the Queue
program of Chapter 4.

The LinkStack and LinkQueue programs emphasize that stacks and queues are
conceptual entities, separate from their implementations. A stack can be implemented
equally well by an array or by a linked list. What's important about a stack is the push()
and pop() operations and how they're used; it's not the underlying mechanism used to
implement these operations.

When would you use a linked list as opposed to an array as the implementation of a
stack or queue? One consideration is how accurately you can predict the amount of data
the stack or queue will need to hold. If this isn't clear, the linked list gives you more
flexibility than an array. Both are fast, so that's probably not a major consideration.

 Data Types and Abstraction

 Where does the term Abstract Data Type come from? Let's look at the "data type" part of

it first, and then return to "abstract."

 Data Types

 The phrase "data type" covers a lot of ground. It was first applied to built-in types such as
int and double. This is probably what you first think of when you hear the term.

When you talk about a primitive type, you're actually referring to two things: a data item
with certain characteristics, and permissible operations on that data. For example, type
int variables in Java can have whole-number values between –2,147,483,648 and
+2,147,483,647, and the operators +, –, *, /, and so on can be applied to them. The data
type's permissible operations are an inseparable part of its identity; understanding the
type means understanding what operations can be performed on it.

 With the advent of object-oriented programming, it became possible to create your own

 - 169 -

data types using classes. Some of these data types represent numerical quantities that
are used in ways similar to primitive types. You can, for example, define a class for time
(with fields for hours, minutes, seconds), a class for fractions (with numerator and
denominator fields), and a class for extra-long numbers (characters in a string represent
the digits). All these can be added and subtracted like int and double, except that in
Java you must use methods with functional notation like add() and sub() rather than
operators like + and –.

The phrase "data type" seems to fit naturally with such quantity-oriented classes.
However, it is also applied to classes that don't have this quantitative aspect. In fact, any
class represents a data type, in the sense that a class comprises data (fields) and
permissible operations on that data (methods).

By extension, when a data storage structure like a stack or queue is represented by a
class, it too can be referred to as a data type. A stack is different in many ways from an
int, but they are both defined as a certain arrangement of data and a set of operations
on that data.

 Abstraction

The word abstract means "considered apart from detailed specifications or
implementation." An abstraction is the essence or important characteristics of something.
The office of President, for example, is an abstraction, considered apart from the
individual who happens to occupy that office. The powers and responsibilities of the office
remain the same, while individual office-holders come and go.

In object-oriented programming, then, an abstract data type is a class considered without
regard to its implementation. It's a description of the data in the class (fields), a list of
operations (methods) that can be carried out on that data, and instructions on how to use
these operations. Specifically excluded are the details of how the methods carry out their
tasks. As a class user, you're told what methods to call, how to call them, and the results
you can expect, but not how they work.

The meaning of abstract data type is further extended when it's applied to data structures
like stacks and queues. As with any class, it means the data and the operations that can
be performed on it, but in this context even the fundamentals of how the data is stored
become invisible to the user. Users not only don't know how the methods work, they also
don't know what structure is used to store the data.

For the stack, the user knows that push() and pop() (and perhaps a few other
methods) exist and how they work. The user doesn't (at least not usually) need to know
how push() and pop() work, or whether data is stored in an array, a linked list, or some
other data structure like a tree.

 The Interface

An ADT specification is often called an interface. It's what the class user sees; usually its
public methods. In a stack class, push() and pop() and similar methods form the
interface.

 ADT Lists

Now that we know what an abstract data type is, we can mention another one: the list. A
list (sometimes called a linear list) is a group of items arranged in a linear order. That is,
they're lined up in a certain way, like beads on a string or houses on a street. Lists
support certain fundamental operations. You can insert an item, delete an item, and
usually read an item from a specified location (the third item, say).

 Don't confuse the ADT list with the linked list we've been discussing in this chapter. A list

 - 170 -

is defined by its interface: the specific methods used to interact with it. This interface can
be implemented by various structures, including arrays and linked lists. The list is an
abstraction of such data structures.

 ADTs as a Design Tool

The ADT concept is a useful aid in the software design process. If you need to store data,
start by considering the operations that need to be performed on that data. Do you need
access to the last item inserted? The first one? An item with a specified key? An item in a
certain position? Answering such questions leads to the definition of an ADT. Only after
the ADT is completely defined should you worry about the details of how to represent the
data and how to code the methods that access the data.

By decoupling the specification of the ADT from the implementation details, you can
simplify the design process. You also make it easier to change the implementation at
some future time. If the users relate only to the ADT interface, you should be able to
change the implementation without "breaking" the user's code.

Of course, once the ADT has been designed, the underlying data structure must be
carefully chosen to make the specified operations as efficient as possible. If you need
random access to element N, for example, then the linked-list representation isn't so
good because random access isn't an efficient operation for a linked list. You'd be better
off with an array.

 It's All Relative

Remember that the ADT concept is only a conceptual tool. Data storage structures are not
divided cleanly into some that are ADTs and some that are used to implement ADTs. A
linked list, for example, doesn't need to be wrapped in a list interface to be useful; it can act
as an ADT on its own, or it can be used to implement another data type such as a queue. A
linked list can be implemented using an array, and an array-type structure can be
implemented using a linked list. What's an ADT and what's a more basic structure must be
determined in a given context.

Sorted Lists

In linked lists we've seen thus far, there was no requirement that data be stored in order.
However, for certain applications it's useful to maintain the data in sorted order within the
list. A list with this characteristic is called a sorted list.

In a sorted list, the items are arranged in sorted order by key value. Deletion is often
limited to the smallest (or the largest) item in the list, which is at the start of the list,
although sometimes find() and delete() methods, which search through the list for
specified links, are used as well.

In general you can use a sorted list in most situations where you use a sorted array. The
advantages of a sorted list over a sorted array are speed of insertion (because elements
don't need to be moved) and the fact that a list can expand to fill available memory, while
an array is limited to a fixed size. However, a sorted list is somewhat more difficult to
implement than a sorted array.

Later we'll look at one application for sorted lists: sorting data. A sorted list can also be
used to implement a priority queue, although a heap (see Chapter 12) is a more common
implementation.

 The LinkList WorkShop Applet

 The LinkList Workshop applet introduced at the beginning of this chapter demonstrates

sorted as well as unsorted lists. Use the New button to create a new list with about 20

 - 171 -

links, and when prompted, click on the Sorted button. The result is a list with data in
sorted order, as shown in Figure 5.11.

 Figure 5.11: The LinkList Workshop applet with a sorted list

 Figure5.12: A newly inserted link

Use the Ins button to insert a new item. Type in a value that will fall somewhere in the
middle of the list. Watch as the algorithm traverses the links, looking for the appropriate
insertion place. When it finds it, it inserts the new link, as shown in Figure 5.12.

With the next press of Ins, the list will be redrawn to regularize its appearance. You can
also find a specified link using the Find button, and delete a specified link using the Del
button.

 Java Code to Insert an Item in a Sorted List

To insert an item in a sorted list, the algorithm must first search through the list until it
finds the appropriate place to put the item: this is just before the first item that's larger, as
shown in Figure 5.12.

Once the algorithm finds where to put it, the item can be inserted in the usual way by
changing next in the new link to point to the next link, and changing next in the
previous link to point to the new link. However, there are some special cases to consider:
the link might need to be inserted at the beginning of the list, or it might need to go at the
end. Let's look at the code:

 public void insert(double key) // insert in order
 {
 Link newLink = new Link(key); // make new link

 - 172 -

 Link previous = null; // start at first
 Link current = first;
 // until end of list,
 while(current != null && key > current.dData)
 { // or key > current,
 previous = current;
 current = current.next; // go to next item
 }
 if(previous==null) // at beginning of list
 first = newLink; // first --> newLink
 else // not at beginning
 previous.next = newLink; // old prev -->

newLink

 newLink.next = current; // newLink --> old currnt

 } // end insert()

We need to maintain a previous reference as we move along, so we can modify the
previous link's next field to point to the new link. After creating the new link, we prepare
to search for the insertion point by setting current to first in the usual way. We also
set previous to null; this is important because later we'll use this null value to
determine whether we're still at the beginning of the list.

The while loop is similar to those we've used before to search for the insertion point, but
there's an added condition. The loop terminates when the key of the link currently being
examined (current.dData) is no longer smaller than the key of the link being inserted
(key); this is the most usual case, where a key is inserted somewhere in the middle of
the list.

However, the while loop also terminates if current is null. This happens at the end
of the list (the next field of the last element is null), or if the list is empty to begin with
(first is null).

 Once the while loop terminates, we may be at the beginning, the middle, or the end of

the list, or the list may be empty.

If we're at the beginning or the list is empty, previous will be null; so we set first to
the new link. Otherwise, we're in the middle of the list or at the end, and we set
previous.next to the new link.

 In any case we set the new link's next field to current. If we're at the end of the list,
current is null, so the new link's next field is appropriately set to this value.

 The sortedList.java Program

The sortedList.java example shown in Listing 5.6 presents a SortedList class
with insert(), remove(), and displayList() methods. Only the insert() routine
is different from its counterpart in nonsorted lists.

 Listing 5.6 The sortedList.java Program

 // sortedList.java
 // demonstrates sorted list
 // to run this program: C>java SortedListApp

 - 173 -

 import java.io.*; // for I/O
 //
 class Link
 {
 public double dData; // data item
 public Link next; // next link in list

 // --

-
 public Link(double dd) // constructor
 { dData = dd; }

 // --

-
 public void displayLink() // display this link
 { System.out.print(dData + " "); }
 } // end class Link

 //

 class SortedList
 {
 private Link first; // ref to first item on

list

 // --

-
 public SortedList() // constructor
 { first = null; }

 // --

-
 public boolean isEmpty() // true if no links
 { return (first==null); }

 // --

-
 public void insert(double key) // insert in order
 {
 Link newLink = new Link(key); // make new link
 Link previous = null; // start at first
 Link current = first;
 // until end of list,
 while(current != null && key > current.dData)
 { // or key > current,
 previous = current;
 current = current.next; // go to next item
 }
 if(previous==null) // at beginning of list
 first = newLink; // first --> newLink
 else // not at beginning
 previous.next = newLink; // old prev --> newLink
 newLink.next = current; // newLink --> old currnt
 } // end insert()

 - 174 -

 // --

-
 public Link remove() // return & delete first link
 { // (assumes non-empty list)
 Link temp = first; // save first
 first = first.next; // delete first
 return temp; // return value
 }

 // --

-
 public void displayList()
 {
 System.out.print("List (first-->last): ");
 Link current = first; // start at beginning of list
 while(current != null) // until end of list,
 {
 current.displayLink(); // print data
 current = current.next; // move to next link
 }
 System.out.println("");
 }
 } // end class SortedList

 //

 class SortedListApp
 {
 public static void main(String[] args)
 { // create new list
 SortedList theSortedList = new SortedList();
 theSortedList.insert(20); // insert 2 items
 theSortedList.insert(40);

 theSortedList.displayList(); // display list

 theSortedList.insert(10); // insert 3 more items
 theSortedList.insert(30);
 theSortedList.insert(50);

 theSortedList.displayList(); // display list

 theSortedList.remove(); // remove an item

 theSortedList.displayList(); // display list
 } // end main()

 } // end class SortedListApp

In main() we insert two items with key values 20 and 40. Then we insert three more
items, with values 10, 30, and 50. These are inserted at the beginning of the list, in the
middle, and at the end; showing that the insert() routine correctly handles these
special cases. Finally, we remove one item to show removal is always from the front of

 - 175 -

the list. After each change the list is displayed. Here's the output from
sortedList.java:

 List (first-->last): 20 40
 List (first-->last): 10 20 30 40 50
 List (first-->last): 20 30 40 50

 Efficiency of Sorted Linked Lists

Insertion and deletion of arbitrary items in the sorted linked list require O(N) comparisons
(N/2 on the average) because the appropriate location must be found by stepping
through the list. However, the minimum value can be found, or deleted, in O(1) time
because it's at the beginning of the list. If an application frequently accesses the
minimum item and fast insertion isn't critical, then a sorted linked list is an effective
choice.

 List Insertion Sort

A sorted list can be used as a fairly efficient sorting mechanism. Suppose you have an
array of unsorted data items. If you take the items from the array and insert them one by
one into the sorted list, they'll be placed in sorted order automatically. If you then remove
them from the list and put them back in the array, they array will be sorted.

It turns out this is substantially more efficient than the more usual insertion sort within an
array, described in Chapter 3. This is because fewer copies are necessary. It's still an
O(N2) process, because inserting each item into the sorted list involves comparing a new
item with an average of half the items already in the list, and there are N items to insert,
resulting in about N2/4 comparisons. However, each item is only copied twice: once from
the array to the list, and once from the list to the array. N*2 copies compare favorably
with the insertion sort within an array, where there are about N2 copies.

Listing 5.7 shows the listInsertionSort.java program, which starts with an array
of unsorted items of type link, inserts them into a sorted list (using a constructor), and
then removes them and places them back into the array.

 Listing 5.7 The listInsertionSort.java Program

 // listInsertionSort.java
 // demonstrates sorted list used for sorting
 // to run this program: C>java ListInsertionSortApp
 import java.io.*; // for I/O
 //
 class Link
 {
 public double dData; // data item
 public Link next; // next link in list

 // --

-
 public Link(double dd) // constructor
 { dData = dd; }

 // --

-
 } // end class Link

 - 176 -

 //

 class SortedList
 {
 private Link first; // ref to first item on list

 // --

-
 public SortedList() // constructor (no args)
 { first = null; }

 // --

-
 public SortedList(Link[] linkArr) // constructor (array as
 { // argument)
 first = null;; // initialize list
 for(int j=0; j<linkArr.length; j++) // copy array
 insert(linkArr[j]); // to list
 }

 // --

-
 public void insert(Link k) // insert, in order
 {
 Link previous = null; // start at first
 Link current = first;
 // until end of list,
 while(current != null && k.dData > current.dData)
 { // or key > current,
 previous = current;
 current = current.next; // go to next item
 }
 if(previous==null) // at beginning of list
 first = k; // first --> k
 else // not at beginning
 previous.next = k; // old prev --> k
 k.next = current; // k --> old current
 } // end insert()

 // --

-
 public Link remove() // return & delete first link
 { // (assumes non-empty list)
 Link temp = first; // save first
 first = first.next; // delete first
 return temp; // return value
 }

 // --

-
 } // end class SortedList

 //

 - 177 -

 class ListInsertionSortApp
 {
 public static void main(String[] args)
 {
 int size = 10;
 // create array of links
 Link[] linkArray = new Link[size];

 for(int j=0; j<size; j++) // fill array with links
 { // random number
 int n = (int)(java.lang.Math.random()*99);
 Link newLink = new Link(n); // make link
 linkArray[j] = newLink; // put in array
 }
 // display array contents
 System.out.print("Unsorted array: ");
 for(int j=0; j<size; j++)
 System.out.print(linkArray[j].dData + " ");
 System.out.println("");

 // create new list,
 // initialized with array
 SortedList theSortedList = new SortedList(linkArray);

 for(int j=0; j<size; j++) // links from list to array
 linkArray[j] = theSortedList.remove();

 // display array contents
 System.out.print("Sorted Array: ");
 for(int j=0; j<size; j++)
 System.out.print(linkArray[j].dData + " ");
 System.out.println("");
 } // end main()

 } // end class ListInsertionSortApp

 This program displays the values in the array before the sorting operation, and again

afterward. Here's some sample output:

 Unsorted array: 59 69 41 56 84 15 86 81 37 35
 Sorted array: 15 35 37 41 56 59 69 81 84 86

 The output will be different each time because the initial values are generated randomly.

A new constructor for SortedList takes an array of Link objects as an argument and
inserts the entire contents of this array into the newly created list. This helps make things
easier for the client (the main() routine).

We've also made a change to the insert() routine in this program. It now accepts a
Link object as an argument, rather than a double. We do this so we can store Link
objects in the array and insert them directly into the list. In the sortedList.java
program, it was more convenient to have the insert() routine create each Link object,
using the double value passed as an argument.

 - 178 -

The downside of the list insertion sort, compared with an array-based insertion sort, is that
it takes somewhat more than twice as much memory: the array and linked list must be in
memory at the same time. However, if you have a sorted linked list class handy, the list
insertion sort is a convenient way to sort arrays that aren't too large.

Doubly Linked Lists

Let's examine another variation on the linked list: the doubly linked list (not to be
confused with the double-ended list). What's the advantage of a doubly linked list? A
potential problem with ordinary linked lists is that it's difficult to traverse backward along
the list. A statement like

 current=current.next

 steps conveniently to the next link, but there's no corresponding way to go to the previous

link. Depending on the application, this could pose problems.

For example, imagine a text editor in which a linked list is used to store the text. Each text
line on the screen is stored as a String object embedded in a link. When the editor's
user moves the cursor downward on the screen, the program steps to the next link to
manipulate or display the new line. But what happens if the user moves the cursor
upward? In an ordinary linked list, you'd need to return current (or its equivalent) to the
start of the list and then step all the way down again to the new current link. This isn't
very efficient. You want to make a single step upward.

The doubly linked list provides this capability. It allows you to traverse backward as well
as forward through the list. The secret is that each link has two references to other links
instead of one. The first is to the next link, as in ordinary lists. The second is to the
previous link. This is shown in Figure 5.13.

 The beginning of the specification for the Link class in a doubly linked list looks like this:

 class Link
 {
 public double dData; // data item
 public Link next; // next link in list
 public link previous; // previous link in list
 ...

 }

 Figure 5.13: A doubly linked list

The downside of doubly linked lists is that every time you insert or delete a link you must
deal with four links instead of two: two attachments to the previous link and two
attachments to the following one. Also, of course, each link is a little bigger because of
the extra reference.

 A doubly linked list doesn't necessarily need to be a double-ended list (keeping a

 - 179 -

reference to the last element on the list) but doing so is useful, so we'll include it in our
example.

 We'll show the complete listing for the doublyLinked.java program soon, but first let's

examine some of the methods in its doublyLinkedList class.

 Traversal

Two display methods demonstrate traversal of a doubly linked list. The
displayForward() method is the same as the displayList() method we've seen
in ordinary linked lists. The displayBackward() method is similar, but starts at the last
element in the list and proceeds toward the start of the list, going to each element's
previous field. This code fragment shows how this works:

 Link current = last; // start at end
 while(current != null) // until start of list,
 current = current.previous; // move to previous link

Incidentally, some people take the view that, because you can go either way equally
easily on a doubly linked list, there is no preferred direction and therefore terms like
previous and next are inappropriate. If you prefer, you can substitute direction-neutral
terms such as left and right.

 Figure 5.14: Insertion at the beginning

 Insertion

We've included several insertion routines in the DoublyLinkedList class. The
insertFirst() method inserts at the beginning of the list, insertLast() inserts at
the end, and insertAfter() inserts following an element with a specified key.

Unless the list is empty, the insertFirst() routine changes the previous field in the
old first link to point to the new link, and changes the next field in the new link to point
to the old first link. Finally it sets first to point to the new link. This is shown in Figure
5.14.

 If the list is empty, then the last field must be changed instead of the first.previous

field. Here's the code:

 if(isEmpty()) // if empty list,

 - 180 -

 last = newLink; // newLink <-- last
 else
 first.previous = newLink; // newLink <-- old first
 newLink.next = first; // newLink --> old first
 first = newLink; // first --> newLink

 The insertLast() method is the same process applied to the end of the list; it's a

mirror image of insertFirst().

The insertAfter() method inserts a new link following the link with a specified key
value. It's a bit more complicated because four connections must be made. First the link
with the specified key value must be found. This is handled the same way as the find()
routine in the linkList2 program earlier in this chapter. Then, assuming we're not at
the end of the list, two connections must be made between the new link and the next link,
and two more between current and the new link. This is shown in Figure 5.15.

 Figure 5.15: Insertion at an arbitrary location

If the new link will be inserted at the end of the list, then its next field must point to null,
and last must point to the new link. Here's the insertAfter() code that deals with
the links:

 if(current==last) // if last link,
 {
 newLink.next = null; // newLink --> null
 last = newLink; // newLink <-- last
 }
 else // not last link,
 {
 newLink.next = current.next; // newLink --> old next
 // newLink <-- old next
 current.next.previous = newLink;
 }
 newLink.previous = current; // old current <-- newLink

 current.next = newLink; // old current --> newLink

 Perhaps you're unfamiliar with the use of two dot operators in the same expression. It's a

natural extension of a single dot operator. The expression

 - 181 -

 current.next.previous

 means the previous field of the link referred to by the next field in the link current.

 Deletion

There are three deletion routines: deleteFirst(), deleteLast(), and
deleteKey(). The first two are fairly straightforward. In deleteKey(), the key being
deleted is current. Assuming the link to be deleted is neither the first nor the last one in
the list, then the next field of current.previous (the link before the one being
deleted) is set to point to current.next (the link following the one being deleted), and
the previous field of current.next is set to point to current.previous. This
disconnects the current link from the list. Figure 5.16 shows how this disconnection looks,
and the following two statements carry it out:

 Figure 5.16: Deleting an arbitrary link

 current.previous.next = current.next;
 current.next.previous = current.previous;

Special cases arise if the link to be deleted is either the first or last in the list, because
first or last must be set to point to the next or the previous link. Here's the code from
deleteKey() for dealing with link connections:

 if(current==first) // first item?
 first = current.next; // first --> old next
 else // not first
 // old previous --> old next
 current.previous.next = current.next;

 if(current==last) // last item?
 last = current.previous; // old previous <-- last
 else // not last
 // old previous <-- old next

 current.next.previous = current.previous;

 The doublyLinked.java Program

 Listing 5.8 shows the complete doublyLinked.java program, which includes all the

routines just discussed.

 Listing 5.8 The doublyLinked.java Program

 - 182 -

 // doublyLinked.java
 // demonstrates a doubly-linked list
 // to run this program: C>java DoublyLinkedApp
 //
 class Link
 {
 public double dData; // data item
 public Link next; // next link in list
 public Link previous; // previous link in list

 // --

-
 public Link(double d) // constructor
 { dData = d; }

 // --

-
 public void displayLink() // display this link
 { System.out.print(dData + " "); }

 // --

-
 } // end class Link

 //

 class DoublyLinkedList
 {
 private Link first; // ref to first item
 private Link last; // ref to last item

 // --

-
 public DoublyLinkedList() // constructor
 {
 first = null; // no items on list yet
 last = null;
 }

 // --

-
 public boolean isEmpty() // true if no links
 { return first==null; }

 // --

-
 public void insertFirst(double dd) // insert at front of

list
 {
 Link newLink = new Link(dd); // make new link
 if(isEmpty()) // if empty list,
 last = newLink; // newLink <-- last
 else
 first.previous = newLink; // newLink <-- old first
 newLink.next = first; // newLink --> old first

 - 183 -

 first = newLink; // first --> newLink
 }

 // --

-
 public void insertLast(double dd) // insert at end of list
 {
 Link newLink = new Link(dd); // make new link
 if(isEmpty()) // if empty list,
 first = newLink; // first --> newLink
 else
 {
 last.next = newLink; // old last --> newLink
 newLink.previous = last; // old last <-- newLink
 }
 last = newLink; // newLink <-- last
 }

 // --

-
 public Link deleteFirst() // delete first link
 { // (assumes non-empty

list)
 Link temp = first;
 if(first.next == null) // if only one item
 last = null; // null <-- last
 else
 first.next.previous = null; // null <-- old next
 first = first.next; // first --> old next
 return temp;
 }

 // --

-
 public Link deleteLast() // delete last link
 { // (assumes non-empty

list)
 Link temp = last;
 if(first.next == null) // if only one item
 first = null; // first --> null
 else
 last.previous.next = null; // old previous --> null
 last = last.previous; // old previous <-- last
 return temp;
 }

 // --

-
 // insert dd just after

key
 public boolean insertAfter(double key, double dd)
 { // (assumes non-empty

list)
 Link current = first; // start at beginning
 while(current.dData != key) // until match is found,

 - 184 -

 {
 current = current.next; // move to next link
 if(current == null)
 return false; // didn't find it
 }
 Link newLink = new Link(dd); // make new link

 if(current==last) // if last link,
 {
 newLink.next = null; // newLink --> null
 last = newLink; // newLink <-- last
 }
 else // not last link,
 {
 newLink.next = current.next; // newLink --> old next
 // newLink <-- old next
 current.next.previous = newLink;
 }
 newLink.previous = current; // old current <-- newLink
 current.next = newLink; // old current --> newLink
 return true; // found it, did insertion
 }

 // --

-
 public Link deleteKey(double key) // delete item w/ given

key
 { // (assumes non-empty

list)
 Link current = first; // start at beginning
 while(current.dData != key) // until match is found,
 {
 current = current.next; // move to next link
 if(current == null)
 return null; // didn't find it
 }
 if(current==first) // found it; first item?
 first = current.next; // first --> old next
 else // not first
 // old previous --> old

next
 current.previous.next = current.next;

 if(current==last) // last item?
 last = current.previous; // old previous <-- last
 else // not last
 // old previous <-- old

next
 current.next.previous = current.previous;
 return current; // return value
 }

 // --

-

 - 185 -

 public void displayForward()
 {
 System.out.print("List (first-->last): ");
 Link current = first; // start at beginning
 while(current != null) // until end of list,
 {
 current.displayLink(); // display data
 current = current.next; // move to next link
 }
 System.out.println("");
 }

 // --

-
 public void displayBackward()
 {
 System.out.print("List (last-->first): ");
 Link current = last; // start at end
 while(current != null) // until start of list,
 {
 current.displayLink(); // display data
 current = current.previous; // move to previous link
 }
 System.out.println("");
 }

 // --

-
 } // end class DoublyLinkedList

 //

 class DoublyLinkedApp
 {
 public static void main(String[] args)
 { // make a new list
 DoublyLinkedList theList = new DoublyLinkedList();

 theList.insertFirst(22); // insert at front
 theList.insertFirst(44);
 theList.insertFirst(66);

 theList.insertLast(11); // insert at rear
 theList.insertLast(33);
 theList.insertLast(55);

 theList.displayForward(); // display list forward
 theList.displayBackward(); // display list backward

 theList.deleteFirst(); // delete first item
 theList.deleteLast(); // delete last item
 theList.deleteKey(11); // delete item with key 11

 - 186 -

 theList.displayForward(); // display list forward

 theList.insertAfter(22, 77); // insert 77 after 22
 theList.insertAfter(33, 88); // insert 88 after 33

 theList.displayForward(); // display list forward
 } // end main()

 } // end class DoublyLinkedApp

In main() we insert some items at the beginning of the list and at the end, display the
items going both forward and backward, delete the first and last items and the item with
key 11, display the list again (forward only), insert two items using the insertAfter()
method, and display the list again. Here's the output:

 List (first-->last): 66 44 22 11 33 55
 List (last-->first): 55 33 11 22 44 66
 List (first-->last): 44 22 33
 List (first-->last): 44 22 77 33 88

The deletion methods and the insertAfter() method assume that the list isn't empty.
Although for simplicity we don't show it in main(), isEmpty() should be used to verify
that there's something in the list before attempting such insertions and deletions.

 Doubly Linked List as Basis for Deques

A doubly linked list can be used as the basis for a deque, mentioned in the last chapter. In
a deque you can insert and delete at either end, and the doubly linked list provides this
capability.

 Iterators

We've seen how it's possible for the user of a list to find a link with a given key using a
find() method. The method starts at the beginning of the list and examines each link
until it finds one matching the search key. Other operations we've looked at, such as
deleting a specified link or inserting before or after a specified link, also involve searching
through the list to find the specified link. However, these methods don't give the user any
control over the traversal to the specified item.

Suppose you wanted to traverse a list, performing some operation on certain links. For
example, imagine a personnel file stored as a linked list. You might want to increase the
wages of all employees who were being paid minimum wage, without affecting
employees already above the minimum. Or suppose that in a list of mail-order customers,
you decided to delete all customers who had not ordered anything in six months.

In an array, such operations are easy because you can use an array index to keep track
of your position. You can operate on one item, then increment the index to point to the
next item, and see if that item is a suitable candidate for the operation. However, in a
linked list, the links don't have fixed index numbers. How can we provide a list's user with
something analogous to an array index? You could repeatedly use find() to look for
appropriate items in a list, but this requires many comparisons to find each link. It's far
more efficient to step from link to link, checking if each one meets certain criteria and
performing the appropriate operation if it does.

 A Reference in the List Itself?

 - 187 -

As users of a list class, what we need is access to a reference that can point to any
arbitrary link. This allows us to examine or modify the link. We should be able to
increment the reference so we can traverse along the list, looking at each link in turn, and
we should be able to access the link pointed to by the reference.

Assuming we create such a reference, where will it be installed? One possibility is to use
a field in the list itself, called current or something similar. You could access a link
using current, and increment current to move to the next link.

One trouble with this approach is that you might need more than one such reference, just
as you often use several array indices at the same time. How many would be
appropriate? There's no way to know how many the user might need. Thus it seems
easier to allow the user to create as many such references as necessary. To make this
possible in an object-oriented language, it's natural to embed each reference in a class
object. (This can't be the same as the list class, because there's only one list object.)

 An Iterator Class

Objects containing references to items in data structures, used to traverse data
structures, are commonly called iterators (or sometimes, as in certain Java classes,
enumerators). Here's a preliminary idea of how they look:

 class ListIterator()
 {
 private Link current;

 }

The current field contains a reference to the link the iterator currently points to. (The
term "points" as used here doesn't refer to pointers in C++; we're using it in its generic
sense.)

To use such an iterator, the user might create a list and then create an iterator object
associated with the list. Actually, as it turns out, it's easier to let the list create the iterator,
so it can pass the iterator certain information, such as a reference to its first field. Thus
we add a getIterator() method to the list class; this method returns a suitable
iterator object to the user. Here's some abbreviated code in main() that shows how the
class user would invoke an iterator:

 public static void main(...)
 {
 LinkList theList = new LinkList(); // make list
 ListIterator iter1 = theList.getIterator(); // make iter

 Link aLink = iter1.getCurrent(); // access link at

iterator
 iter1.nextLink(); // move iter to next link

 }

Once we've made the iterator object, we can use it to access the link it points to, or
increment it so it points to the next link, as shown in the second two statements. We call
the iterator object iter1 to emphasize that you could make more iterators (iter2 and
so on) the same way.

 The iterator always points to some link in the list. It's associated with the list, but it's not

the same as the list. Figure 5.17 shows two iterators pointing to links in a list.

 - 188 -

 Figure 5.17: List iterators

 Additional Iterator Features

We've seen several programs where the use of a previous field made it simpler to
perform certain operations, such as deleting a link from an arbitrary location. Such a field
is also useful in an iterator.

Also, it may be that the iterator will need to change the value of the list's first field; for
example, if an item is inserted or deleted at the beginning of the list. If the iterator is an
object of a separate class, how can it access a private field, such as first, in the list?
One solution is for the list to pass a reference to itself to the iterator when it creates it.
This reference is stored in a field in the iterator.

The list must then provide public methods that allow the iterator to change first. These
are LinkList methods getFirst() and setFirst(). (The weakness of this
approach is that these methods allow anyone to change first, which introduces an
element of risk.)

 Here's a revised (although still incomplete) iterator class that incorporates these

additional fields, along with reset() and nextLink() methods:

 class ListIterator()
 {
 private Link current; // reference to current link
 private Link previous; // reference to previous link
 private LinkList ourList; // reference to "parent" list

 public void reset() // set to start of list
 {
 current = ourList.getFirst(); // current --> first
 previous = null; // previous --> null
 }
 public void nextLink() // go to next link
 {
 previous = current; // set previous to this
 current = current.next; // set this to next
 }

 - 189 -

 ...

 }

We might note, for you old-time C++ programmers, that in C++ the connection between
the iterator and the list is typically provided by making the iterator class a friend of the list
class. However, Java has no friend classes, which are controversial in any case because
they are a chink in the armor of data hiding.

 Iterator Methods

Additional methods can make the iterator a flexible and powerful class. All operations
previously performed by the class that involve iterating through the list, like
insertAfter(), are more naturally performed by the iterator. In our example the
iterator includes the following methods:

 • reset() Sets iterator to the start of the list

 • nextLink() Moves iterator to next link

 • getCurrent() Returns the link at iterator

 • tEnd() Returns true if iterator is at end of list

 • insertAfter() Inserts a new link after iterator

 • insertBefore() Inserts a new link before iterator

 • deleteCurrent() Deletes the link at the iterator

 The user can position the iterator using reset() and nextLink(), check if it's at the

end of the list with atEnd(), and perform the other operations shown.

Deciding which tasks should be carried out by an iterator and which by the list itself is not
always easy. An insertBefore() method works best in the iterator, but an
insertFirst() routine that always inserts at the beginning of the list might be more
appropriate in the list class. We've kept a displayList() routine in the list, but this
operation could also be handled with getCurrent() and nextLink() calls to the
iterator.

 The interIterator.java Program

The interIterator.java program includes an interactive interface that permits the
user to control the iterator directly. Once you've started the program, you can perform the
following actions by typing the appropriate letter:

 • s Show the list contents

 • r Reset the iterator to the start of the list

 • n Go to the next link

 • g Get the contents of the current link

 • b Insert before the current link

 - 190 -

 • a Insert a new link after the current link

 • d Delete the current link

 Listing 5.9 shows the complete interIterator.java program.

 Listing 5.9 The interIterator.java Program

 // interIterator.java
 // demonstrates iterators on a linked list
 // to run this program: C>java InterIterApp
 import java.io.*; // for I/O
 //
 class Link
 {
 public double dData; // data item
 public Link next; // next link in list

 // --

-
 public Link(double dd) // constructor
 { dData = dd; }

 // --

-
 public void displayLink() // display ourself
 { System.out.print(dData + " "); }
 } // end class Link

 //

 class LinkList
 {
 private Link first; // ref to first item on list

 // --

-
 public LinkList() // constructor
 { first = null; } // no items on list yet

 // --

-
 public Link getFirst() // get value of first
 { return first; }

 // --

-
 public void setFirst(Link f) // set first to new link
 { first = f; }

 // --

-

 - 191 -

 public boolean isEmpty() // true if list is empty
 { return first==null; }

 // --

-
 public ListIterator getIterator() // return iterator
 {
 return new ListIterator(this); // initialized with
 } // this list

 // --

-
 public void displayList()
 {
 Link current = first; // start at beginning of list
 while(current != null) // until end of list,
 {
 current.displayLink(); // print data
 current = current.next; // move to next link
 }
 System.out.println("");
 }

 // --

-
 } // end class LinkList

 //

 class ListIterator
 {
 private Link current; // current link
 private Link previous; // previous link
 private LinkList ourList; // our linked list

 //---

-
 public ListIterator(LinkList list) // constructor
 {
 ourList = list;
 reset();
 }

 //---

-
 public void reset() // start at 'first'
 {
 current = ourList.getFirst();
 previous = null;
 }

 //---

-
 public boolean atEnd() // true if last link

 - 192 -

 { return (current.next==null); }

 //---

-
 public void nextLink() // go to next link
 {
 previous = current;
 current = current.next;
 }

 //---

-
 public Link getCurrent() // get current link
 { return current; }

 //---

-
 public void insertAfter(double dd) // insert after
 { // current link
 Link newLink = new Link(dd);

 if(ourList.isEmpty()) // empty list
 {
 ourList.setFirst(newLink);
 current = newLink;
 }
 else // not empty
 {
 newLink.next = current.next;
 current.next = newLink;
 nextLink(); // point to new link
 }
 }

 //---

-
 public void insertBefore(double dd) // insert before
 { // current link
 Link newLink = new Link(dd);

 if(previous == null) // beginning of list
 { // (or empty list)
 newLink.next = ourList.getFirst();
 ourList.setFirst(newLink);
 reset();
 }
 else // not beginning
 {
 newLink.next = previous.next;
 previous.next = newLink;
 current = newLink;
 }
 }

 - 193 -

 //---
-

 public double deleteCurrent() // delete item at current
 {
 double value = current.dData;
 if(previous == null) // beginning of list
 {
 ourList.setFirst(current.next);
 reset();
 }
 else // not beginning
 {
 previous.next = current.next;
 if(atEnd())
 reset();
 else
 current = current.next;
 }
 return value;
 }

 //---

-
 } // end class ListIterator

 //

 class InterIterApp
 {
 public static void main(String[] args) throws IOException
 {
 LinkList theList = new LinkList(); // new list
 ListIterator iter1 = theList.getIterator(); // new iter

 double value;

 iter1.insertAfter(20); // insert items
 iter1.insertAfter(40);
 iter1.insertAfter(80);
 iter1.insertBefore(60);

 while(true)
 {
 System.out.print("Enter first letter of show, reset,

");
 System.out.print("next, get, before, after, delete:

");
 System.out.flush();
 int choice = getChar(); // get user's option
 switch(choice)
 {
 case 's': // show list
 if(!theList.isEmpty())
 theList.displayList();

 - 194 -

 else
 System.out.println("List is empty");
 break;
 case 'r': // reset (to first)
 iter1.reset();
 break;
 case 'n': // advance to next

item
 if(!theList.isEmpty() && !iter1.atEnd())
 iter1.nextLink();
 else
 System.out.println("Can't go to next link");
 break;
 case 'g': // get current item
 if(!theList.isEmpty())
 {
 value = iter1.getCurrent().dData;
 System.out.println("Returned " + value);
 }
 else
 System.out.println("List is empty");
 break;
 case 'b': // insert before

current
 System.out.print("Enter value to insert: ");
 System.out.flush();
 value = getInt();
 iter1.insertBefore(value);
 break;
 case 'a': // insert after

current
 System.out.print("Enter value to insert: ");
 System.out.flush();
 value = getInt();
 iter1.insertAfter(value);
 break;
 case 'd': // delete current item
 if(!theList.isEmpty())
 {
 value = iter1.deleteCurrent();
 System.out.println("Deleted " + value);
 }
 else
 System.out.println("Can't delete");
 break;
 default:
 System.out.println("Invalid entry");
 } // end switch
 } // end while
 } // end main()

 //---

-
 public static String getString() throws IOException

 - 195 -

 {
 InputStreamReader isr = new InputStreamReader(System.in);
 BufferedReader br = new BufferedReader(isr);
 String s = br.readLine();
 return s;
 }

 //---

-
 public static int getChar() throws IOException
 {
 String s = getString();
 return s.charAt(0);
 }

 //---

-
 public static int getInt() throws IOException
 {
 String s = getString();
 return Integer.parseInt(s);
 } // end getInt()

 //---

-

 } // end class InterIterApp

The main() routine inserts four items into the list, using an iterator and its
insertAfter() method. Then it waits for the user to interact with it. In the following
sample interaction, the user displays the list, resets the iterator to the beginning, goes
forward two links, gets the current link's key value (which is 60), inserts 100 before this,
inserts 7 after the 100, and displays the list again.

 Enter first letter of
 show, reset, next, get, before, after, delete: s
 20 40 60 80
 Enter first letter of
 show, reset, next, get, before, after, delete: r
 Enter first letter of
 show, reset, next, get, before, after, delete: n
 Enter first letter of
 show, reset, next, get, before, after, delete: n
 Enter first letter of
 show, reset, next, get, before, after, delete: g
 Returned 60
 Enter first letter of
 show, reset, next, get, before, after, delete: b
 Enter value to insert: 100
 Enter first letter of
 show, reset, next, get, before, after, delete: a
 Enter value to insert: 7
 Enter first letter of
 show, reset, next, get, before, after, delete: s

 - 196 -

 20 40 100 7 60 80

Experimenting with the interIterator.java program will give you a feeling for how
the iterator moves along the links and how it can insert and delete links anywhere in the
list.

 Where Does It Point?

 One of the design issues in an iterator class is deciding where the iterator should point

following various operations.

When you delete an item with deleteCurrent(), should the iterator end up pointing to
the next item, to the previous item, or back at the beginning of the list? It's convenient to
keep it in the vicinity of the deleted item, because the chances are the class user will be
carrying out other operations there. However, you can't move it to the previous item
because there's no way to reset the list's previous field to the previous item. (You'd
need a doubly linked list for that.) Our solution is to move the iterator to the link following
the deleted link. If we've just deleted the item at the end of the list, the iterator is set to
the beginning of the list.

 Following calls to insertBefore() and insertAfter(), we return with current

pointing to the newly inserted item.

 The atEnd() Method

There's another question about the atEnd() method. It could return true when the
iterator points to the last valid link in the list, or it could return true when the iterator
points past the last link (and is thus not pointing to a valid link).

With the first approach, a loop condition used to iterate through the list becomes awkward
because you need to perform an operation on the last link before checking whether it is
the last link (and terminating the loop if it is).

However, the second approach doesn't allow you to find out you're at the end of the list
until it's too late to do anything with the last link. (You couldn't look for the last link and
then delete it, for example.) This is because when atEnd() became true, the iterator
would no longer point to the last link (or indeed any valid link), and you can't "back up"
the iterator in a singly linked list.

 We take the first approach. This way the iterator always points to a valid link, although

you must be careful when writing a loop that iterates through the list, as we'll see next.

 Iterative Operations

As we noted, an iterator allows you to traverse the list, performing operations on certain
data items. Here's a code fragment that displays the list contents, using an iterator
instead of the list's displayList() method:

 iter1.reset(); // start at first
 double value = iter1.getCurrent().dData; // display link
 System.out.println(value + " ");
 while(!iter1.atEnd()) // until end,
 {
 iter1.nextLink(); // go to next

link,
 double value = iter1.getCurrent().dData; // display it
 System.out.println(value + " ");

 - 197 -

 }

 Although not shown here, you should check with isEmpty() to be sure the list is not

empty before calling getCurrent().

The following code shows how you could delete all items with keys that are multiples of 3.
We show only the revised main() routine; everything else is the same as in
interIterator.java.

 class InterIterApp
 {
 public static void main(String[] args) throws IOException
 {
 LinkList theList = new LinkList(); // new list
 ListIterator iter1 = theList.getIterator(); // new iter

 iter1.insertAfter(21); // insert links
 iter1.insertAfter(40);
 iter1.insertAfter(30);
 iter1.insertAfter(7);
 iter1.insertAfter(45);

 theList.displayList(); // display list

 iter1.reset(); // start at first link
 Link aLink = iter1.getCurrent(); // get it
 if(aLink.dData % 3 == 0) // if divisible by 3,
 iter1.deleteCurrent(); // delete it
 while(!iter1.atEnd()) // until end of list,
 {
 iter1.nextLink(); // go to next link

 aLink = iter1.getCurrent(); // get link
 if(aLink.dData % 3 == 0) // if divisible by 3,
 iter1.deleteCurrent(); // delete it
 }
 theList.displayList(); // display list
 } // end main()

 } // end class InterIterApp

 We insert five links and display the list. Then we iterate through the list, deleting those

links with keys divisible by 3, and display the list again. Here's the output:

 21 40 30 7 45
 40 7

 Again, although this code doesn't show it, it's important to check whether the list is empty

before calling deleteCurrent().

 Other Methods

 - 198 -

One could create other useful methods for the ListIterator class. For example, a
find() method would return an item with a specified key value, as we've seen when
find() is a list method. A replace() method could replace items that had certain key
values with other items.

Because it's a singly linked list, you can only iterate along it in the forward direction. If a
doubly linked list were used, you could go either way, allowing operations such as deletion
from the end of the list, just as with noniterator. This would probably be a convenience in
some applications.

Summary

 • A linked list consists of one linkedList object and a number of link objects.

 • The linkedList object contains a reference, often called first, to the first link in

the list.

 • Each link object contains data and a reference, often called next, to the next link in

the list.

 • A next value of null signals the end of the list.

 • Inserting an item at the beginning of a linked list involves changing the new link's next

field to point to the old first link, and changing first to point to the new item.

 • Deleting an item at the beginning of a list involves setting first to point to

first.next.

 • To traverse a linked list, you start at first; then go from link to link, using each link's

next field to find the next link.

 • A link with a specified key value can be found by traversing the list. Once found, an

item can be displayed, deleted, or operated on in other ways.

 • A new link can be inserted before or after a link with a specified key value, following a

traversal to find this link.

 • A double-ended list maintains a pointer to the last link in the list, often called last, as

well as to the first.

 • A double-ended list allows insertion at the end of the list.

 • An Abstract Data Type (ADT) is a data-storage class considered without reference to

its implementation.

 • Stacks and queues are ADTs. They can be implemented using either arrays or linked

lists.

 • In a sorted linked list, the links are arranged in order of ascending (or sometimes

descending) key value.

 • Insertion in a sorted list takes O(N) time because the correct insertion point must be

found. Deletion of the smallest link takes O(1) time.

 • In a doubly linked list, each link contains a reference to the previous link as well as the

next link.

 - 199 -

 • A doubly linked list permits backward traversal and deletion from the end of the list.

 • An iterator is a reference, encapsulated in a class object, that points to a link in an

associated list.

 • Iterator methods allow the user to move the iterator along the list and access the link

currently pointed to.

 • An iterator can be used to traverse through a list, performing some operation on

selected links (or all links).

Summary

 • A linked list consists of one linkedList object and a number of link objects.

 • The linkedList object contains a reference, often called first, to the first link in

the list.

 • Each link object contains data and a reference, often called next, to the next link in

the list.

 • A next value of null signals the end of the list.

 • Inserting an item at the beginning of a linked list involves changing the new link's next

field to point to the old first link, and changing first to point to the new item.

 • Deleting an item at the beginning of a list involves setting first to point to

first.next.

 • To traverse a linked list, you start at first; then go from link to link, using each link's

next field to find the next link.

 • A link with a specified key value can be found by traversing the list. Once found, an

item can be displayed, deleted, or operated on in other ways.

 • A new link can be inserted before or after a link with a specified key value, following a

traversal to find this link.

 • A double-ended list maintains a pointer to the last link in the list, often called last, as

well as to the first.

 • A double-ended list allows insertion at the end of the list.

 • An Abstract Data Type (ADT) is a data-storage class considered without reference to

its implementation.

 • Stacks and queues are ADTs. They can be implemented using either arrays or linked

lists.

 • In a sorted linked list, the links are arranged in order of ascending (or sometimes

descending) key value.

 • Insertion in a sorted list takes O(N) time because the correct insertion point must be

found. Deletion of the smallest link takes O(1) time.

 • In a doubly linked list, each link contains a reference to the previous link as well as the

next link.

 - 200 -

 • A doubly linked list permits backward traversal and deletion from the end of the list.

 • An iterator is a reference, encapsulated in a class object, that points to a link in an

associated list.

 • Iterator methods allow the user to move the iterator along the list and access the link

currently pointed to.

 • An iterator can be used to traverse through a list, performing some operation on

selected links (or all links).

 Triangular Numbers

It's said that the Pythagorians, a band of mathematicians in ancient Greece who worked
under Pythagoras (of Pythagorian theorem fame), felt a mystical connection with the
series of numbers 1, 3, 6, 10, 15, 21, … (where the … means the series continues
indefinitely). Can you find the next member of this series?

The nth term in the series is obtained by adding n to the previous term. Thus the second
term is found by adding 2 to the first term (which is 1), giving 3. The third term is 3 added
to the second term (which is 3), giving 6, and so on. The numbers in this series are called
triangular numbers because they can be visualized as a triangular arrangements of
objects, shown as little squares in Figure 6.1.

 Finding the nth Term Using a Loop

Suppose you wanted to find the value of some arbitrary nth term in the series; say the
fourth term (whose value is 10). How would you calculate it? Looking at Figure 6.2, you
might decide that the value of any term can be obtained by adding up all the vertical
columns of squares.

 In the fourth term, the first column has four little squares, the second column has three,

and so on. Adding 4+3+2+1 gives 10.

 Figure 6.1: The triangular numbers

 - 201 -

 Figure 6.2: Triangular number as columns

 The following triangle() method uses this column-based technique to find a triangular

number. It sums all the columns, from a height of n to a height of 1.

 int triangle(int n)
 {
 int total = 0;

 while(n > 0) // until n is 1
 {
 total = total + n; // add n (column height) to total
 --n; // decrement column height
 }
 return total;

 }

 The method cycles around the loop n times, adding n to total the first time, n-1 the

second time, and so on down to 1, quitting the loop when n becomes 0.

 Finding the nth Term Using Recursion

The loop approach may seem straightforward, but there's another way to look at this
problem. The value of the nth term can be thought of as the sum of only two things,
instead of a whole series. These are

 1. The first (tallest) column, which has the value n.

 2. The sum of all the remaining columns.

 This is shown in Figure 6.3.

 Figure 6.3: Triangular number as column plus triangle

 - 202 -

 Finding the Remaining Columns

If we knew about a method that found the sum of all the remaining columns, then we
could write our triangle() method, which returns the value of the nth triangular
number, like this:

 int triangle(int n)
 {
 return(n + sumRemainingColumns(n)); // (incomplete

version)

 }

But what have we gained here? It looks like it's just as hard to write the
sumRemainingColumns() method as to write the triangle() method in the first
place.

Notice in Figure 6.3, however, that the sum of all the remaining columns for term n is the
same as the sum of all the columns for term n-1. Thus, if we knew about a method that
summed all the columns for term n, we could call it with an argument of n-1 to find the
sum of all the remaining columns for term n:

 int triangle(int n)
 {
 return(n + sumAllColumns(n-1)); // (incomplete version)

 }

But when you think about it, the sumAllColumns() method is doing exactly the same
thing the triangle() method is doing: summing all the columns for some number n
passed as an argument. So why not use the triangle() method itself, instead of some
other method? That would look like this:

 int triangle(int n)
 {
 return(n + triangle(n-1)); // (incomplete version)

 }

It may seem amazing that a method can call itself, but why shouldn't it be able to? A
method call is (among other things) a transfer of control to the start of the method. This
transfer of control can take place from within the method as well as from outside.

 Passing the Buck

All this may seem like passing the buck. Someone tells me to find the 9th triangular
number. I know this is 9 plus the 8th triangular number, so I call Harry and ask him to find
the 8th triangular number. When I hear back from him, I'll add 9 to whatever he tells me,
and that will be the answer.

Harry knows the 8th triangular number is 8 plus the 7th triangular number, so he calls
Sally and asks her to find the 7th triangular number. This process continues with each
person passing the buck to another one.

 - 203 -

Where does this buck-passing end? Someone at some point must be able to figure out
an answer that doesn't involve asking another person to help them. If this didn't happen,
there would be an infinite chain of people asking other people questions; a sort of
arithmetic Ponzi scheme that would never end. In the case of triangle(), this would
mean the method calling itself over and over in an infinite series that would paralyze the
program.

 The Buck Stops Here

To prevent an infinite regress, the person who is asked to find the first triangular number
of the series, when n is 1, must know, without asking anyone else, that the answer is 1.
There are no smaller numbers to ask anyone about, there's nothing left to add to
anything else, so the buck stops there. We can express this by adding a condition to the
triangle() method:

 int triangle(int n)
 {
 if(n==1)
 return 1;
 else
 return(n + triangle(n-1));

 }

The condition that leads to a recursive method returning without making another
recursive call is referred to as the base case. It's critical that every recursive method have
a base case to prevent infinite recursion and the consequent demise of the program.

 The triangle.java Program

Does recursion actually work? If you run the triangle.java program, you'll see that it
does. Enter a value for the term number, n, and the program will display the value of the
corresponding triangular number. Listing 6.1 shows the triangle.java program.

 Listing 6.1 The triangle.java Program

 // triangle.java
 // evaluates triangular numbers
 // to run this program: C>java TriangleApp
 import java.io.*; // for I/O
 //
 class TriangleApp
 {
 static int theNumber;

 public static void main(String[] args) throws IOException
 {
 System.out.print("Enter a number: ");
 System.out.flush();
 theNumber = getInt();
 int theAnswer = triangle(theNumber);
 System.out.println("Triangle="+theAnswer);
 } // end main()

 //---

 - 204 -

 public static int triangle(int n)
 {
 if(n==1)
 return 1;
 else
 return(n + triangle(n-1));
 }

 //---
 public static String getString() throws IOException
 {
 InputStreamReader isr = new InputStreamReader(System.in);
 BufferedReader br = new BufferedReader(isr);
 String s = br.readLine();
 return s;
 }

 //---

-
 public static int getInt() throws IOException
 {
 String s = getString();
 return Integer.parseInt(s);
 }

 //---

-

 } // end class TriangleApp

 The main() routine prompts the user for a value for n, calls triangle(), and displays

the return value. The triangle() method calls itself repeatedly to do all the work.

 Here's some sample output:

 Enter a number: 1000
 Triangle = 500500

 Incidentally, if you're skeptical of the results returned from triangle(), you can check

them by using the following formula:

 nth triangular number = (n e2+n)/2

 What's Really Happening?

Let's modify the triangle() method to provide an insight into what's happening when it
executes. We'll insert some output statements to keep track of the arguments and return
values:

 public static int triangle(int n)
 {
 System.out.println("Entering: n=" + n);
 if(n==1)
 {

 - 205 -

 System.out.println("Returning 1");
 return 1;
 }
 else
 {
 int temp = n + triangle(n-1);
 System.out.println("Returning " + temp);
 return temp;
 }

 }

 Here's the interaction when this method is substituted for the earlier triangle()

method and the user enters 5:

 Enter a number: 5

 Entering: n=5
 Entering: n=4
 Entering: n=3
 Entering: n=2
 Entering: n=1
 Returning 1
 Returning 3
 Returning 6
 Returning 10
 Returning 15

 Triangle = 15

Each time the triangle() method calls itself, its argument, which starts at 5, is
reduced by 1. The method plunges down into itself again and again until its argument is
reduced to 1. Then it returns. This triggers an entire series of returns. The method rises
back up, phoenixlike, out of the discarded versions of itself. Each time it returns, it adds
the value of n it was called with to the return value from the method it called.

The return values recapitulate the series of triangular numbers, until the answer is
returned to main(). Figure 6.4 shows how each invocation of the triangle() method
can be imagined as being "inside" the previous one.

Notice that, just before the innermost version returns a 1, there are actually five different
incarnations of triangle() in existence at the same time. The outer one was passed
the argument 5; the inner one was passed the argument 1.

 - 206 -

 Figure 6.4: The recursive triangle() method

 Characteristics of Recursive Methods

 Although it's short, the triangle() method possesses the key features common to all

recursive routines:

 • It calls itself.

 • When it calls itself, it does so to solve a smaller problem.

 • There's some version of the problem that is simple enough that the routine can solve

it, and return, without calling itself.

In each successive call of a recursive method to itself, the argument becomes smaller (or
perhaps a range described by multiple arguments becomes smaller), reflecting the fact
that the problem has become "smaller" or easier. When the argument or range reaches a
certain minimum size, a condition is triggered and the method returns without calling
itself.

 Is Recursion Efficient?

Calling a method involves certain overhead. Control must be transferred from the location
of the call to the beginning of the method. In addition, the arguments to the method, and
the address to which the method should return, must be pushed onto an internal stack so
that the method can access the argument values and know where to return.

In the case of the triangle() method, it's probable that, as a result of this overhead,
the while loop approach executes more quickly than the recursive approach. The
penalty may not be significant, but if there are a large number of method calls as a result
of a recursive method, it might be desirable to eliminate the recursion. We'll talk about
this more at the end of this chapter.

 Another inefficiency is that memory is used to store all the intermediate arguments and

 - 207 -

return values on the system's internal stack. This may cause problems if there is a large
amount of data, leading to stack overflow.

 Recursion is usually used because it simplifies a problem conceptually, not because it's

inherently more efficient.

 Mathematical Induction

Recursion is the programming equivalent of mathematical induction. Mathematical
induction is a way of defining something in terms of itself. (The term is also used to
describe a related approach to proving theorems.) Using induction, we could define the
triangular numbers mathematically by saying

 if n = 1

 tri(n) = n + tri(n-1) if n > 1

 Defining something in terms of itself may seem circular, but in fact it's perfectly valid

(provided there's a base case).

Factorials

Factorials are similar in concept to triangular numbers, except that multiplication is used
instead of addition. The triangular number corresponding to n is found by adding n to the
triangular number of n–1, while the factorial of n is found by multiplying n by the factorial
of n–1. That is, the fifth triangular number is 5+4+3+2+1, while the factorial of 5 is
5*4*3*2*1, which equals 120. Table 6.1 shows the factorials of the first 10 numbers.

 Table 6.1: Factorials

 Number

Calculation

Factorial

 0

by definition

1

 1

1 * 1

1

 2

2 * 1

2

 3

3 * 2

6

 4

4 * 6

24

 5

5 * 24

120

 6

6 * 120

720

 7

7 * 720

5,040

 8

8 * 5,040

40,320

 - 208 -

 9 9 * 40,320 362,880

 The factorial of 0 is defined to be 1. Factorial numbers grow large very rapidly, as you

can see.

 A recursive method similar to triangle() can be used to calculate factorials. It looks

like this:

 int factorial(int n)
 {
 if(n==0)
 return 1;
 else
 return (n * factorial(n-1));

 }

 There are only two differences between factorial() and triangle(). First,
factorial() uses an * instead of a + in the expression

 n * factorial(n-1)

 Second, the base condition occurs when n is 0, not 1. Here's some sample interaction

when this method is used in a program similar to triangle.java:

 Enter a number: 6

 Factorial =720

 Figure 6.5 shows how the various incarnations of factorial() call themselves when

initially entered with n=4.

 Calculating factorials is the classic demonstration of recursion, although factorials aren't

as easy to visualize as triangular numbers.

Various other numerological entities lend themselves to calculation using recursion in a
similar way, such as finding the greatest common denominator of two numbers (which is
used to reduce a fraction to lowest terms), raising a number to a power, and so on.
Again, while these calculations are interesting for demonstrating recursion, they probably
wouldn't be used in practice because a loop-based approach is more efficient.

 - 209 -

 Figure 6.5: The recursive factorial() method

 Anagrams

Here's a different kind of situation in which recursion provides a neat solution to a
problem. Suppose you want to list all the anagrams of a specified word; that is, all
possible letter combinations (whether they make a real English word or not) that can be
made from the letters of the original word. We'll call this anagramming a word.
Anagramming cat, for example, would produce

 • cat

 • cta

 • atc

 • act

 • tca

 • tac

Try anagramming some words yourself. You'll find that the number of possibilities is the
factorial of the number of letters. For 3 letters there are 6 possible words, for 4 letters
there are 24 words, for 5 letters 120 words, and so on. (This assumes that all letters are
distinct; if there are multiple instances of the same letter, there will be fewer possible
words.)

 How would you write a program to anagram a word? Here's one approach. Assume the

word has n letters.

 1. Anagram the rightmost n–1 letters.

 2. Rotate all n letters.

 3. Repeat these steps n times.

 To rotate the word means to shift all the letters one position left, except for the leftmost

letter, which "rotates" back to the right, as shown in Figure 6.6.

 - 210 -

Rotating the word n times gives each letter a chance to begin the word. While the
selected letter occupies this first position, all the other letters are then anagrammed
(arranged in every possible position). For cat, which has only 3 letters, rotating the
remaining 2 letters simply switches them. The sequence is shown in Table 6.2.

 Figure 6.6: Rotating a word

 Table 6.2: Anagramming the word cat

 Word

Display Word?

First Letter

Remaining
Letters

Action

 cat

Yes

c

at

Rotate at

 cta

Yes

c

Ta

Rotate ta

 cat

No

c

at

Rotate cat

 atc

Yes

a

Tc

Rotate tc

 act

Yes

a

ct

Rotate ct

 atc

No

a

Tc

Rotate atc

 tca

Yes

t

ca

Rotate ca

 tac

Yes

t

ac

Rotate ac

 tca

No

t

ca

Rotate tca

 cat

No

c

at

Done

Notice that we must rotate back to the starting point with two letters before performing a
3-letter rotation. This leads to sequences like cat, cta, cat. The redundant combinations
aren't displayed.

 - 211 -

How do we anagram the rightmost n–1 letters? By calling ourselves. The recursive
doAnagram() method takes the size of the word to be anagrammed as its only
parameter. This word is understood to be the rightmost n letters of the complete word.
Each time doAnagram() calls itself, it does so with a word one letter smaller than
before, as shown in Figure 6.7.

The base case occurs when the size of the word to be anagrammed is only one letter.
There's no way to rearrange one letter, so the method returns immediately. Otherwise, it
anagrams all but the first letter of the word it was given and then rotates the entire word.
These two actions are performed n times, where n is the size of the word. Here's the
recursive routine doAnagram():

 public static void doAnagram(int newSize)
 {
 if(newSize == 1) // if too small,
 return; // go no further
 for(int j=0; j<newSize; j++) // for each position,
 {
 doAnagram(newSize-1); // anagram remaining
 if(newSize==2) // if innermost,
 displayWord(); // display it
 rotate(newSize); // rotate word
 }

 }

 Each time the doAnagram() method calls itself, the size of the word is one letter

smaller, and the starting position is one cell further to the right, as shown in Figure 6.8.

 Figure 6.7: The recursive doAnagram() method

 - 212 -

 Figure 6.8: Smaller and smaller words

Listing 6.2 shows the complete anagram.java program. The main() routine gets a
word from the user, inserts it into a character array so it can be dealt with conveniently,
and then calls doAnagram().

 Listing 6.2 The anagram.java Program

 // anagram.java
 // creates anagrams
 // to run this program: C>java AnagramApp
 import java.io.*; // for I/O
 //
 class AnagramApp
 {
 static int size;
 static int count;
 static char[] arrChar = new char[100];

 public static void main(String[] args) throws IOException
 {
 System.out.print("Enter a word: "); // get word
 System.out.flush();
 String input = getString();
 size = input.length(); // find its size
 count = 0;
 for(int j=0; j<size; j++) // put it in array
 arrChar[j] = input.charAt(j);
 doAnagram(size); // anagram it
 } // end main()

 //--

-
 public static void doAnagram(int newSize)
 {
 if(newSize == 1) // if too small,
 return; // go no further
 for(int j=0; j<newSize; j++) // for each

position,
 {
 doAnagram(newSize-1); // anagram remaining
 if(newSize==2) // if innermost,
 displayWord(); // display it
 rotate(newSize); // rotate word
 }
 }

 //--

-
 // rotate left all chars from position to end
 public static void rotate(int newSize)
 {

 - 213 -

 int j;
 int position = size - newSize;
 char temp = arrChar[position]; // save first letter
 for(j=position+1; j<size; j++) // shift others left
 arrChar[j-1] = arrChar[j];
 arrChar[j-1] = temp; // put first on

right
 }

 //--

-
 public static void displayWord()
 {
 if(count < 99)
 System.out.print(" ");
 if(count < 9)
 System.out.print(" ");
 System.out.print(++count + " ");
 for(int j=0; j<size; j++)
 System.out.print(arrChar[j]);
 System.out.print(" ");
 System.out.flush();
 if(count%6 == 0)
 System.out.println("");
 }

 //--

-
 public static String getString() throws IOException
 {
 InputStreamReader isr = new InputStreamReader(System.in);
 BufferedReader br = new BufferedReader(isr);
 String s = br.readLine();
 return s;
 }

 //--

 } // end class AnagramApp

The rotate() method rotates the word one position left as described earlier. The
displayWord() method displays the entire word and adds a count to make it easy to
see how many words have been displayed. Here's some sample interaction with the
program:

 Enter a word: cats
 1 cats 2 cast 3 ctsa 4 ctas 5 csat 6 csta
 7 atsc 8 atcs 9 asct 10 astc 11 acts 12 acst
 13 tsca 14 tsac 15 tcas 16 tcsa 17 tasc 18 tacs
 19 scat 20 scta 21 satc 22 sact 23 stca 24 stac

(Is it only coincidence that scat is an anagram of cats?) You can use the program to
anagram 5-letter or even 6-letter words. However, because the factorial of 6 is 720, this
may generate more words than you want to know about.

 - 214 -

 Anagrams

Here's a different kind of situation in which recursion provides a neat solution to a
problem. Suppose you want to list all the anagrams of a specified word; that is, all
possible letter combinations (whether they make a real English word or not) that can be
made from the letters of the original word. We'll call this anagramming a word.
Anagramming cat, for example, would produce

 • cat

 • cta

 • atc

 • act

 • tca

 • tac

Try anagramming some words yourself. You'll find that the number of possibilities is the
factorial of the number of letters. For 3 letters there are 6 possible words, for 4 letters
there are 24 words, for 5 letters 120 words, and so on. (This assumes that all letters are
distinct; if there are multiple instances of the same letter, there will be fewer possible
words.)

 How would you write a program to anagram a word? Here's one approach. Assume the

word has n letters.

 1. Anagram the rightmost n–1 letters.

 2. Rotate all n letters.

 3. Repeat these steps n times.

 To rotate the word means to shift all the letters one position left, except for the leftmost

letter, which "rotates" back to the right, as shown in Figure 6.6.

Rotating the word n times gives each letter a chance to begin the word. While the
selected letter occupies this first position, all the other letters are then anagrammed
(arranged in every possible position). For cat, which has only 3 letters, rotating the
remaining 2 letters simply switches them. The sequence is shown in Table 6.2.

 Figure 6.6: Rotating a word

 - 215 -

 Table 6.2: Anagramming the word cat

 Word

Display Word?

First Letter

Remaining
Letters

Action

 cat

Yes

c

at

Rotate at

 cta

Yes

c

Ta

Rotate ta

 cat

No

c

at

Rotate cat

 atc

Yes

a

Tc

Rotate tc

 act

Yes

a

ct

Rotate ct

 atc

No

a

Tc

Rotate atc

 tca

Yes

t

ca

Rotate ca

 tac

Yes

t

ac

Rotate ac

 tca

No

t

ca

Rotate tca

 cat

No

c

at

Done

Notice that we must rotate back to the starting point with two letters before performing a
3-letter rotation. This leads to sequences like cat, cta, cat. The redundant combinations
aren't displayed.

How do we anagram the rightmost n–1 letters? By calling ourselves. The recursive
doAnagram() method takes the size of the word to be anagrammed as its only
parameter. This word is understood to be the rightmost n letters of the complete word.
Each time doAnagram() calls itself, it does so with a word one letter smaller than
before, as shown in Figure 6.7.

The base case occurs when the size of the word to be anagrammed is only one letter.
There's no way to rearrange one letter, so the method returns immediately. Otherwise, it
anagrams all but the first letter of the word it was given and then rotates the entire word.
These two actions are performed n times, where n is the size of the word. Here's the
recursive routine doAnagram():

 public static void doAnagram(int newSize)
 {
 if(newSize == 1) // if too small,
 return; // go no further
 for(int j=0; j<newSize; j++) // for each position,
 {
 doAnagram(newSize-1); // anagram remaining

 - 216 -

 if(newSize==2) // if innermost,
 displayWord(); // display it
 rotate(newSize); // rotate word
 }

 }

 Each time the doAnagram() method calls itself, the size of the word is one letter

smaller, and the starting position is one cell further to the right, as shown in Figure 6.8.

 Figure 6.7: The recursive doAnagram() method

 Figure 6.8: Smaller and smaller words

Listing 6.2 shows the complete anagram.java program. The main() routine gets a
word from the user, inserts it into a character array so it can be dealt with conveniently,
and then calls doAnagram().

 Listing 6.2 The anagram.java Program

 // anagram.java
 // creates anagrams
 // to run this program: C>java AnagramApp
 import java.io.*; // for I/O
 //
 class AnagramApp
 {
 static int size;

 - 217 -

 static int count;
 static char[] arrChar = new char[100];

 public static void main(String[] args) throws IOException
 {
 System.out.print("Enter a word: "); // get word
 System.out.flush();
 String input = getString();
 size = input.length(); // find its size
 count = 0;
 for(int j=0; j<size; j++) // put it in array
 arrChar[j] = input.charAt(j);
 doAnagram(size); // anagram it
 } // end main()

 //--

-
 public static void doAnagram(int newSize)
 {
 if(newSize == 1) // if too small,
 return; // go no further
 for(int j=0; j<newSize; j++) // for each

position,
 {
 doAnagram(newSize-1); // anagram remaining
 if(newSize==2) // if innermost,
 displayWord(); // display it
 rotate(newSize); // rotate word
 }
 }

 //--

-
 // rotate left all chars from position to end
 public static void rotate(int newSize)
 {
 int j;
 int position = size - newSize;
 char temp = arrChar[position]; // save first letter
 for(j=position+1; j<size; j++) // shift others left
 arrChar[j-1] = arrChar[j];
 arrChar[j-1] = temp; // put first on

right
 }

 //--

-
 public static void displayWord()
 {
 if(count < 99)
 System.out.print(" ");
 if(count < 9)
 System.out.print(" ");
 System.out.print(++count + " ");

 - 218 -

 for(int j=0; j<size; j++)
 System.out.print(arrChar[j]);
 System.out.print(" ");
 System.out.flush();
 if(count%6 == 0)
 System.out.println("");
 }

 //--

-
 public static String getString() throws IOException
 {
 InputStreamReader isr = new InputStreamReader(System.in);
 BufferedReader br = new BufferedReader(isr);
 String s = br.readLine();
 return s;
 }

 //--

 } // end class AnagramApp

The rotate() method rotates the word one position left as described earlier. The
displayWord() method displays the entire word and adds a count to make it easy to
see how many words have been displayed. Here's some sample interaction with the
program:

 Enter a word: cats
 1 cats 2 cast 3 ctsa 4 ctas 5 csat 6 csta
 7 atsc 8 atcs 9 asct 10 astc 11 acts 12 acst
 13 tsca 14 tsac 15 tcas 16 tcsa 17 tasc 18 tacs
 19 scat 20 scta 21 satc 22 sact 23 stca 24 stac

(Is it only coincidence that scat is an anagram of cats?) You can use the program to
anagram 5-letter or even 6-letter words. However, because the factorial of 6 is 720, this
may generate more words than you want to know about.

The Towers of Hanoi

 The Towers of Hanoi is an ancient puzzle consisting of a number of disks placed on three

columns, as shown in Figure 6.10.

The disks all have different diameters and holes in the middle so they will fit over the
columns. All the disks start out on column A. The object of the puzzle is to transfer all the
disks from column A to column C. Only one disk can be moved at a time, and no disk can
be placed on a disk that's smaller than itself.

There's an ancient myth that somewhere in India, in a remote temple, monks labor day
and night to transfer 64 golden disks from one of three diamond-studded towers to
another. When they are finished, the world will end. Any alarm you may feel, however,
will be dispelled when you see how long it takes to solve the puzzle for far fewer than 64
disks.

 The Towers Workshop Applet

 - 219 -

Start up the Towers Workshop applet. You can attempt to solve the puzzle yourself by
using the mouse to drag the topmost disk to another tower. Figure 6.11 shows how this
looks after several moves have been made.

 There are three ways to use the workshop applet.

 • You can attempt to solve the puzzle manually, by dragging the disks from tower to

tower.

•

You can repeatedly press the Step button to watch the algorithm solve the puzzle. At
each step in the solution, a message is displayed, telling you what the algorithm is
doing.

 • You can press the Run button and watch the algorithm solve the puzzle with no

intervention on your part; the disks zip back and forth between the posts.

 Figure 6.10: The Towers of Hanoi

 Figure 6.11: The Towers Workshop applet

To restart the puzzle, type in the number of disks you want to use, from 1 to 10, and
press New twice. (After the first time, you're asked to verify that restarting is what you
want to do.) The specified number of disks will be arranged on tower A. Once you drag a
disk with the mouse, you can't use Step or Run; you must start over with New. However,
you can switch to manual in the middle of stepping or running, and you can switch to
Step when you're running, and Run when you're stepping.

Try solving the puzzle manually with a small number of disks, say 3 or 4. Work up to
higher numbers. The applet gives you the opportunity to learn intuitively how the problem
is solved.

 - 220 -

 Moving Subtrees

Let's call the initial tree-shaped (or pyramid-shaped) arrangement of disks on tower A a
tree. As you experiment with the applet, you'll begin to notice that smaller tree-shaped
stacks of disks are generated as part of the solution process. Let's call these smaller
trees, containing fewer than the total number of disks, subtrees. For example, if you're
trying to transfer 4 disks, you'll find that one of the intermediate steps involves a subtree
of 3 disks on tower B, as shown in Figure 6.12.

These subtrees form many times in the solution of the puzzle. This is because the
creation of a subtree is the only way to transfer a larger disk from one tower to another:
all the smaller disks must be placed on an intermediate tower, where they naturally form
a subtree.

 Figure 6.12: A subtree on tower B

Here's a rule of thumb that may help when you try to solve the puzzle manually. If the
subtree you're trying to move has an odd number of disks, start by moving the topmost
disk directly to the tower where you want the subtree to go. If you're trying to move a
subtree with an even number of disks, start by moving the topmost disk to the
intermediate tower.

 The Recursive Algorithm

The solution to the Towers of Hanoi puzzle can be expressed recursively using the notion
of subtrees. Suppose you want to move all the disks from a source tower (call it S) to a
destination tower (call it D). You have an intermediate tower available (call it I). Assume
there are n disks on tower S. Here's the algorithm:

 1. Move the subtree consisting of the top n–1 disks from S to I.

 2. Move the remaining (largest) disk from S to D.

 3. Move the subtree from I to D.

 When you begin, the source tower is A, the intermediate tower is B, and the destination

tower is C. Figure 6.13 shows the three steps for this situation.

 First, the subtree consisting of disks 1, 2, and 3 is moved to the intermediate tower B.

Then the largest disk, 4, is moved to tower C. Then the subtree is moved from B to C.

Of course, this doesn't solve the problem of how to move the subtree consisting of disks
1, 2, and 3 to tower B, because you can't move a subtree all at once; you must move it
one disk at a time. Moving the 3-disk subtree is not so easy. However, it's easier than
moving 4 disks.

As it turns out, moving 3 disks from A to the destination tower B can be done with the
same 3 steps as moving 4 disks. That is, move the subtree consisting of the top 2 disks
from tower A to intermediate tower C; then move disk 3 from A to B. Then move the
subtree back from C to B.

 - 221 -

How do you move a subtree of two disks from A to C? Move the subtree consisting of
only one disk (1) from A to B. This is the base case: when you're moving only one disk,
you just move it; there's nothing else to do. Then move the larger disk (2) from A to C,
and replace the subtree (disk 1) on it.

 Figure 6.13: Recursive solution to Towers puzzle

 The towers.java Program

The towers.java program solves the Towers of Hanoi puzzle using this recursive
approach. It communicates the moves by displaying them; this requires much less code
than displaying the towers. It's up to the human reading the list to actually carry out the
moves.

The code is simplicity itself. The main() routine makes a single call to the recursive
method doTowers(). This method then calls itself recursively until the puzzle is solved.
In this version, shown in Listing 6.4, there are initially only 3 disks, but you can recompile
the program with any number.

 Listing 6.4 The towers.java Program

 // towers.java
 // evaluates triangular numbers
 // to run this program: C>java TowersApp
 import java.io.*; // for I/O
 //
 class TowersApp
 {
 static int nDisks = 3;

 public static void main(String[] args)
 {
 doTowers(nDisks, 'A', 'B', 'C');
 }

 //--

-
 public static void doTowers(int topN,
 char from, char inter, char to)

 - 222 -

 {
 if(topN==1)
 System.out.println("Disk 1 from " + from + " to "+

to);
 else
 {
 doTowers(topN-1, from, to, inter); // from-->inter

 System.out.println("Disk " + topN +
 " from " + from + " to "+ to);
 doTowers(topN-1, inter, from, to); // inter-->to
 }
 }

 //--

 } // end class TowersApp

 Remember that 3 disks are moved from A to C. Here's the output from the program:

 Disk 1 from A to C
 Disk 2 from A to B
 Disk 1 from C to B
 Disk 3 from A to C
 Disk 1 from B to A
 Disk 2 from B to C
 Disk 1 from A to C

The arguments to doTowers() are the number of disks to be moved, and the source
(from), intermediate (inter), and destination (to) towers to be used. The number of
disks decreases by 1 each time the method calls itself. The source, intermediate, and
destination towers also change.

Here is the output with additional notations that show when the method is entered and
when it returns, its arguments, and whether a disk is moved because it's the base case (a
subtree consisting of only one disk) or because it's the remaining bottom disk after a
subtree has been moved.

 Enter (3 disks): s=A, i=B, d=C
 Enter (2 disks): s=A, i=C, d=B
 Enter (1 disk): s=A, i=B, d=C
 Base case: move disk 1 from A to C
 Return (1 disk)
 Move bottom disk 2 from A to B

 Enter (1 disk): s=C, i=A, d=B
 Base case: move disk 1 from C to B
 Return (1 disk)
 Return (2 disks)
 Move bottom disk 3 from A to C
 Enter (2 disks): s=B, i=A, d=C
 Enter (1 disk): s=B, i=C, d=A
 Base case: move disk 1 from B to A
 Return (1 disk)

 - 223 -

 Move bottom disk 2 from B to C
 Enter (1 disk): s=A, i=B, d=C
 Base case: move disk 1 from A to C
 Return (1 disk)
 Return (2 disks)
 Return (3 disks)

If you study this output along with the source code for doTower(), it should become clear
exactly how the method works. It's amazing that such a small amount of code can solve
such a seemingly complicated problem.

Mergesort

Our final example of recursion is the mergesort. This is a much more efficient sorting
technique than those we saw in Chapter 3, "Simple Sorting," at least in terms of speed.
While the bubble, insertion, and selection sorts take O(N2) time, the mergesort is
O(N*logN). The graph in Figure 2.9 (in Chapter 2) shows how much faster this is. For
example, if N (the number of items to be sorted) is 10,000, then N2 is 100,000,000, while
N*logN is only 40,000. If sorting this many items required 40 seconds with the mergesort,
it would take almost 28 hours for the insertion sort.

 The mergesort is also fairly easy to implement. It's conceptually easier than quicksort and

the Shell short, which we'll encounter in the next chapter.

The downside of the mergesort is that it requires an additional array in memory, equal in
size to the one being sorted. If your original array barely fits in memory, the mergesort
won't work. However, if you have enough space, it's a good choice.

 Merging Two Sorted Arrays

The heart of the mergesort algorithm is the merging of two already sorted arrays. Merging
two sorted arrays A and B creates a third array, C, that contains all the elements of A and
B, also arranged in sorted order. We'll examine the merging process first; later we'll see
how it's used in sorting.

Imagine two sorted arrays. They don't need to be the same size. Let's say array A has 4
elements and array B has 6. They will be merged into an array C that starts with 10
empty cells. Figure 6.14 shows how this looks.

In the figure, the circled numbers indicate the order in which elements are transferred
from A and B to C. Table 6.3 shows the comparisons necessary to determine which
element will be copied. The steps in the table correspond to the steps in the figure.
Following each comparison, the smaller element is copied to A.

 - 224 -

 Figure 6.14: Merging two arrays

 Table 6.3: Merging Operations

 Step

Comparison (If Any)

Copy

 1

Compare 23 and 7

Copy 7 from B to C

 2

Compare 23 and 14

Copy 14 from B to C

 3

Compare 23 and 39

Copy 23 from A to C

 4

Compare 39 and 47

Copy 39 from B to C

 5

Compare 55 and 47

Copy 47 from A to C

 6

Compare 55 and 81

Copy 55 from B to C

 7

Compare 62 and 81

Copy 62 from B to C

 8

Compare 74 and 81

Copy 74 from B to C

 9

Copy 81 from A to C

 10

Copy 95 from A to C

 Notice that, because B is empty following step 8, no more comparisons are necessary; all

the remaining elements are simply copied from A into C.

 Listing 6.5 shows a Java program that carries out the merge shown in Figure 6.14 and

Table 6.3.

 - 225 -

 Listing 6.5 The merge.java Program

 // merge.java
 // demonstrates merging two arrays into a third
 // to run this program: C>java MergeApp
 //
 class MergeApp
 {
 public static void main(String[] args)
 {
 int[] arrayA = {23, 47, 81, 95};
 int[] arrayB = {7, 14, 39, 55, 62, 74};
 int[] arrayC = new int[10];

 merge(arrayA, 4, arrayB, 6, arrayC);
 display(arrayC, 10);
 } // end main()

 //--

-
 // merge A and B into C
 public static void merge(int[] arrayA, int sizeA,
 int[] arrayB, int sizeB,
 int[] arrayC)
 {
 int aDex=0, bDex=0, cDex=0;

 while(aDex < sizeA && bDex < sizeB) // neither array

empty
 if(arrayA[aDex] < arrayB[bDex])
 arrayC[cDex++] = arrayA[aDex++];
 else
 arrayC[cDex++] = arrayB[bDex++];

 while(aDex < sizeA) // arrayB is empty,
 arrayC[cDex++] = arrayA[aDex++]; // but arrayA isn't

 while(bDex < sizeB) // arrayA is empty,
 arrayC[cDex++] = arrayB[bDex++]; // but arrayB isn't
 } // end merge()

 //--

-
 // display array
 public static void display(int[] theArray, int size)
 {
 for(int j=0; j<size; j++)
 System.out.print(theArray[j] + " ");
 System.out.println("");
 }

 //--

-

 - 226 -

 } // end class MergeApp

In main() the arrays arrayA, arrayB, and arrayC are created; then the merge()
method is called to merge arrayA and arrayB into arrayC, and the resulting contents
of arrayC are displayed. Here's the output:

 7 14 23 39 47 55 62 74 81 95

 The merge() method has three while loops. The first steps along both arrayA and
arrayB, comparing elements and copying the smaller of the two into arrayC.

The second while loop deals with the situation when all the elements have been
transferred out of arrayB, but arrayA still has remaining elements. (This is what
happens in the example, where 81 and 95 remain in arrayA.) The loop simply copies
the remaining elements from arrayA into arrayC.

 The third loop handles the similar situation when all the elements have been transferred

out of arrayA but arrayB still has remaining elements; they are copied to arrayC.

 Sorting by Merging

The idea in the mergesort is to divide an array in half, sort each half, and then use the
merge() method to merge the two halves into a single sorted array. How do you sort
each half? This chapter is about recursion, so you probably already know the answer:
You divide the half into two quarters, sort each of the quarters, and merge them to make
a sorted half.

Similarly, each pair of 8ths is merged to make a sorted quarter, each pair of 16ths is
merged to make a sorted 8th, and so on. You divide the array again and again until you
reach a subarray with only one element. This is the base case; it's assumed an array with
one element is already sorted.

We've seen that generally something is reduced in size each time a recursive method
calls itself, and built back up again each time the method returns. In mergeSort() the
range is divided in half each time this method calls itself, and each time it returns it
merges two smaller ranges into a larger one.

As mergeSort() returns from finding 2 arrays of 1 element each, it merges them into a
sorted array of 2 elements. Each pair of resulting 2-element arrays is then merged into a
4-element array. This process continues with larger and larger arrays until the entire
array is sorted. This is easiest to see when the original array size is a power of 2, as
shown in Figure 6.15.

 - 227 -

 Figure 6.15: Merging larger and larger arrays

First, in the bottom half of the array, range 0-0 and range 1-1 are merged into range 0-1.
Of course, 0-0 and 1-1 aren't really ranges; they're only one element, so they are base
cases. Similarly, 2-2 and 3-3 are merged into 2-3. Then ranges 0-1 and 2-3 are merged
0-3.

In the top half of the array, 4-4 and 5-5 are merged into 4-5, 6-6 and 7-7 are merged into
6-7, and 4-5 and 6-7 are merged into 4-7. Finally the top half, 0-3, and the bottom half, 4-
7, are merged into the complete array, 0-7, which is now sorted.

When the array size is not a power of 2, arrays of different sizes must be merged. For
example, Figure 6.16 shows the situation in which the array size is 12. Here an array of
size 2 must be merged with an array of size 1 to form an array of size 3.

 Figure 6.16: Array size not a power of 2

First the 1-element ranges 0-0 and 1-1 are merged into the 2-element range 0-1. Then
range 0-1 is merged with the 1-element range 2-2. This creates a 3-element range 0-2.
It's merged with the 3-element range 3-5. The process continues until the array is sorted.

 Notice that in mergesort we don't merge two separate arrays into a third one, as we

 - 228 -

demonstrated in the merge.java program. Instead, we merge parts of a single array
into itself.

You may wonder where all these subarrays are located in memory. In the algorithm, a
workspace array of the same size as the original array is created. The subarrays are
stored in sections of the workspace array. This means that subarrays in the original array
are copied to appropriate places in the workspace array. After each merge, the
workspace array is copied back into the original array.

 The MERGESORT Workshop Applet

All this is easier to appreciate when you see it happening before your very eyes. Start up
the mergeSort Workshop applet. Repeatedly pressing the Step button will execute
mergeSort step by step. Figure 6.17 shows what it looks like after the first three presses.

 Figure 6.17: The mergeSort Workshop applet

The Lower and Upper arrows show the range currently being considered by the
algorithm, and the Mid arrow shows the middle part of the range. The range starts as the
entire array and then is halved each time the mergeSort() method calls itself. When
the range is one element, mergeSort() returns immediately; that's the base case.
Otherwise, the two subarrays are merged. The applet provides messages, such as
Entering mergeSort: 0-5, to tell you what it's doing and the range it's operating on.

Many steps involve the mergeSort() method calling itself or returning. Comparisons
and copies are performed only during the merge process, when you'll see messages
such as Merged 0-0 and 1-1 into workspace. You can't see the merge
happening, because the workspace isn't shown. However, you can see the result when
the appropriate section of the workspace is copied back into the original (visible) array:
The bars in the specified range will appear in sorted order.

First, the first 2 bars will be sorted, then the first 3 bars, then the 2 bars in the range 3-4,
then the 3 bars in the range 3-5, then the 6 bars in the range 0-5, and so on,
corresponding to the sequence shown in Figure 6.16. Eventually all the bars will be
sorted.

You can cause the algorithm to run continuously by pressing the Run button. You can
stop this process at any time by pressing Step, single-step as many times as you want,
and resume running by pressing Run again.

As in the other sorting Workshop applets, pressing New resets the array with a new
group of unsorted bars and toggles between random and inverse arrangements. The
Size button toggles between 12 bars and 100 bars.

 It's especially instructive to watch the algorithm run with 100 inversely sorted bars. The

 - 229 -

resulting patterns show clearly how each range is sorted individually and merged with its
other half, and how the ranges grow larger and larger.

 The mergeSort.java Program

 In a moment we'll look at the entire mergeSort.java program. First, let's focus on the

method that carries out the mergesort. Here it is:

 private void recMergeSort(double[] workSpace, int lowerBound,
 int upperBound)
 {
 if(lowerBound == upperBound) // if range is 1,
 return; // no use sorting
 else
 { // find midpoint
 int mid = (lowerBound+upperBound) / 2;
 // sort low half
 recMergeSort(workSpace, lowerBound, mid);
 // sort high half
 recMergeSort(workSpace, mid+1, upperBound);
 // merge them
 merge(workSpace, lowerBound, mid+1, upperBound);
 } // end else

 } // end recMergeSort

As you can see, beside the base case, there are only four statements in this method.
One computes the midpoint, there are two recursive calls to recMergeSort() (one for
each half of the array), and finally a call to merge() to merge the two sorted halves. The
base case occurs when the range contains only one element
(lowerBound==upperBound) and results in an immediate return.

In the mergeSort.java program, the mergeSort() method is the one actually seen
by the class user. It creates the array workSpace[], and then calls the recursive routine
recMergeSort() to carry out the sort. The creation of the workspace array is handled
in mergeSort() because doing it in recMergeSort() would cause the array to be
created anew with each recursive call, an inefficiency.

The merge() method in the previous merge.java program operated on three separate
arrays: two source arrays and a destination array. The merge() routine in the
mergeSort.java program operates on a single array: the theArray member of the
DArray class. The arguments to this merge() method are the starting point of the low-
half subarray, the starting point of the high-half subarray, and the upper bound of the
high-half subarray. The method calculates the sizes of the subarrays based on this
information.

Listing 6.6 shows the complete mergeSort.java program. This program uses a variant
of the array classes from Chapter 2, adding the mergeSort() and recMergeSort()
methods to the DArray class. The main() routine creates an array, inserts 12 items,
displays the array, sorts the items with mergeSort(), and displays the array again.

 Listing 6.6 The mergeSort.java Program

 // mergeSort.java
 // demonstrates recursive mergesort

 - 230 -

 // to run this program: C>java MergeSortApp
 import java.io.*; // for I/O
 //
 class DArray
 {
 private double[] theArray; // ref to array theArray
 private int nElems; // number of data items

 //--

-
 public DArray(int max) // constructor
 {
 theArray = new double[max]; // create array
 nElems = 0;
 }

 //--

-
 public void insert(double value) // put element into array
 {
 theArray[nElems] = value; // insert it
 nElems++; // increment size
 }

 //--

-
 public void display() // displays array contents
 {
 for(int j=0; j<nElems; j++) // for each element,
 System.out.print(theArray[j] + " "); // display it
 System.out.println("");
 }

 //--

-
 public void mergeSort() // called by main()
 { // provides workspace
 double[] workSpace = new double[nElems];
 recMergeSort(workSpace, 0, nElems-1);
 }

 //--

-
 private void recMergeSort(double[] workSpace, int

lowerBound,
 int upperBound)
 {
 if(lowerBound == upperBound) // if range is 1,
 return; // no use sorting
 else
 { // find midpoint
 int mid = (lowerBound+upperBound) / 2;
 // sort low half
 recMergeSort(workSpace, lowerBound, mid);

 - 231 -

 // sort high half
 recMergeSort(workSpace, mid+1, upperBound);
 // merge them
 merge(workSpace, lowerBound, mid+1, upperBound);
 } // end else
 } // end recMergeSort

 //--

-
 private void merge(double[] workSpace, int lowPtr,
 int highPtr, int upperBound)
 {
 int j = 0; // workspace index
 int lowerBound = lowPtr;
 int mid = highPtr-1;
 int n = upperBound-lowerBound+1; // # of items

 while(lowPtr <= mid && highPtr <= upperBound)
 if(theArray[lowPtr] < theArray[highPtr])
 workSpace[j++] = theArray[lowPtr++];
 else
 workSpace[j++] = theArray[highPtr++];

 while(lowPtr <= mid)
 workSpace[j++] = theArray[lowPtr++];

 while(highPtr <= upperBound)
 workSpace[j++] = theArray[highPtr++];

 for(j=0; j<n; j++)
 theArray[lowerBound+j] = workSpace[j];
 } // end merge()

 //--

-
 } // end class DArray

 //

 class MergeSortApp
 {
 public static void main(String[] args)
 {
 int maxSize = 100; // array size
 DArray arr; // reference to array
 arr = new DArray(maxSize); // create the array

 arr.insert(64); // insert items
 arr.insert(21);
 arr.insert(33);
 arr.insert(70);
 arr.insert(12);
 arr.insert(85);

 - 232 -

 arr.insert(44);
 arr.insert(3);
 arr.insert(99);
 arr.insert(0);
 arr.insert(108);
 arr.insert(36);

 arr.display(); // display items

 arr.mergeSort(); // mergesort the array

 arr.display(); // display items again
 } // end main()

 } // end class MergeSortApp

 The output from the program is simply the display of the unsorted and sorted arrays:

 64 21 33 70 12 85 44 3 99 0 108 36
 0 3 12 21 33 36 44 64 70 85 99 108

If we put additional statements in the recMergeSort() method, we could generate a
running commentary on what the program does during a sort. The following output shows
how this might look for the 4-item array {64, 21, 33, 70}. (You can think of this as the
lower half of the array in Figure 6.15.)

 Entering 0-3
 Will sort low half of 0-3
 Entering 0-1
 Will sort low half of 0-1
 Entering 0-0
 Base-Case Return 0-0
 Will sort high half of 0-1
 Entering 1-1
 Base-Case Return 1-1
 Will merge halves into 0-1
 Return 0-1 theArray=21 64 33 70
 Will sort high half of 0-3
 Entering 2-3
 Will sort low half of 2-3
 Entering 2-2
 Base-Case Return 2-2
 Will sort high half of 2-3
 Entering 3-3
 Base-Case Return 3-3
 Will merge halves into 2-3
 Return 2-3 theArray=21 64 33 70
 Will merge halves into 0-3

 Return 0-3 theArray=21 33 64 70

 This is roughly the same content as would be generated by the mergeSort Workshop

applet if it could sort 4 items. Study of this output, and comparison with the code for

 - 233 -

recMergeSort() and Figure 6.15, will reveal the details of the sorting process.

 Efficiency of the Mergesort

As we noted, the mergesort runs in O(N*logN) time. How do we know this? Let's see how
we can figure out the number of times a data item must be copied, and the number of
times it must be compared with another data item, during the course of the algorithm. We
assume that copying and comparing are the most time-consuming operations; that the
recursive calls and returns don't add much overhead.

 Number of Copies

 Consider Figure 6.15. Each cell below the top line represents an element copied from the

array into the workspace.

Adding up all the cells in Figure 6.15 (the 7 numbered steps) shows there are 24 copies
necessary to sort 8 items. Log28 is 3, so 8*log28 equals 24. This shows that, for the case
of 8 items, the number of copies is proportional to N*log2N.

Another way to look at this is that, to sort 8 items requires 3 levels, each of which
involves 8 copies. A level means all copies into the same size subarray. In the first level,
there are 4 2-element subarrays; in the second level, there are 2 4-element subarrays;
and in the third level, there is 1 8-element subarray. Each level has 8 elements, so again
there are 3*8 or 24 copies.

In Figure 6.15, by considering only half the graph, you can see that 8 copies are
necessary for an array of 4 items (steps 1, 2, and 3), and 2 copies are necessary for 2
items. Similar calculations provide the number of copies necessary for larger arrays.
Table 6.4 summarizes this information.

 Table 6.4: Number of Operations When N is a Power of 2

 N

log2N

Number of Copies into
Workspace (N*log2N)

Total Copies

Comparisons
Max (Min)

 2

1

2

4

1 (1)

 4

2

8

16

5 (4)

 8

3

24

48

17 (12)

 16

4

64

128

49 (32)

 32

5

160

320

129 (80)

 64

6

384

768

321 (192)

 128

7

896

1792

769 (448)

 Actually, the items are not only copied into the workspace, they're also copied back into

 - 234 -

the original array. This doubles the number of copies, as shown in the Total Copies
column. The final column of Table 6.4 shows comparisons, which we'll return to in a
moment.

It's harder to calculate the number of copies and comparisons when N is not a multiple of
2, but these numbers fall between those that are a power of 2. For 12 items, there are 88
total copies, and for 100 items, 1344 total copies.

 Number of Comparisons

In the mergesort algorithm, the number of comparisons is always somewhat less than the
number of copies. How much less? Assuming the number of items is a power of 2, for
each individual merging operation, the maximum number of comparisons is always one
less than the number of items being merged, and the minimum is half the number of
items being merged. You can see why this is true in Figure 6.18, which shows two
possibilities when trying to merge 2 arrays of 4 items each.

 Figure 6.18: Maximum and minimum comparisons

In the first case, the items interleave, and 7 comparisons must be made to merge them.
In the second case, all the items in one array are smaller than all the items in the other,
so only 4 comparisons must be made.

There are many merges for each sort, so we must add the comparisons for each one.
Referring to Figure 6.15, you can see that 7 merge operations are required to sort 8
items. The number of items being merged and the resulting number of comparisons is
shown in Table 6.5.

 Table 6.5: Comparisons Involved in Sorting 8 Items

 Step Number

1

2

3

4

5

6

7

Totals

 Number of items

being merged(N)

2

2

4

2

2

4

8

24

 Maximum

comparisons(N–1)

1

1

3

1

1

3

7

17

 Minimum

1

1

2

1

1

2

4

12

 - 235 -

comparisons(N/2)

 For each merge, the maximum number of comparisons is one less than the number of

items. Adding these figures for all the merges gives us a total of 17.

The minimum number of comparisons is always half the number of items being merged,
and adding these figures for all the merges results in 12 comparisons. Similar arithmetic
results in the Comparisons columns for Table 6.4. The actual number of comparisons to
sort a specific array depends on how the data is arranged; but it will be somewhere
between the maximum and minimum values.

Eliminating Recursion

Some algorithms lend themselves to a recursive approach, some don't. As we've seen,
the recursive triangle() and factorial() methods can be implemented more
efficiently using a simple loop. However, various divide-and-conquer algorithms, such as
mergesort, work very well as a recursive routine.

Often an algorithm is easy to conceptualize as a recursive method, but in practice the
recursive approach proves to be inefficient. In such cases, it's useful to transform the
recursive approach into a nonrecursive approach. Such a transformation can often make
use of a stack.

 Recursion and Stacks

There is a close relationship between recursion and stacks. In fact, most compilers
implement recursion by using stacks. As we noted, when a method is called, they push
the arguments to the method and the return address (where control will go when the
method returns) on the stack, and then transfer control to the method. When the method
returns, they pop these values off the stack. The arguments disappear, and control
returns to the return address.

 Simulating a Recursive Method

In this section we'll demonstrate how any recursive solution can be transformed into a
stack-based solution. Remember the recursive triangle() method from the first
section in this chapter? Here it is again:

 int triangle(int n)
 {
 if(n==1)
 return 1;
 else
 return(n + triangle(n-1));

 }

We're going to break this algorithm down into its individual operations, making each
operation one case in a switch statement. (You can perform a similar decomposition
using goto statements in C++ and some other languages, but Java doesn't support
goto.)

The switch statement is enclosed in a method called step(). Each call to step()
causes one case section within the switch to be executed. Calling step() repeatedly
will eventually execute all the code in the algorithm.

 - 236 -

The triangle() method we just saw performs two kinds of operations. First, it carries
out the arithmetic necessary to compute triangular numbers. This involves checking if n is
1, and adding n to the results of previous recursive calls. However, triangle() also
performs the operations necessary to manage the method itself. These involve transfer of
control, argument access, and the return address. These operations are not visible by
looking at the code; they're built into all methods. Here, roughly speaking, is what
happens during a call to a method:

 • When a method is called, its arguments and the return address are pushed onto a

stack.

 • A method can access its arguments by peeking at the top of the stack.

 • When a method is about to return, it peeks at the stack to obtain the return address,

and then pops both this address and its arguments off the stack and discards them.

The stackTriangle.java program contains three classes: Params, StackX, and
StackTriangleApp. The Params class encapsulates the return address and the
method's argument, n; objects of this class are pushed onto the stack. The StackX class
is similar to those in other chapters, except that it holds objects of class Params. The
StackTriangleApp class contains four methods: main(), recTriangle(), step(),
and the usual getInt() method for numerical input.

 The main() routine asks the user for a number, calls the recTriangle() method to

calculate the triangular number corresponding to n, and displays the result.

The recTriangle() method creates a StackX object and initializes codePart to 1. It
then settles into a while loop where it repeatedly calls step(). It won't exit from the
loop until step() returns true by reaching case 6, its exit point. The step() method is
basically a large switch statement in which each case corresponds to a section of code
in the original triangle() method. Listing 6.7 shows the stackTriangle.java
program.

 Listing 6.7 The stackTriangle.java Program

 // stackTriangle.java
 // evaluates triangular numbers, stack replaces recursion
 // to run this program: C>java StackTriangleApp
 import java.io.*; // for I/O
 //
 class Params // parameters to save on stack
 {
 public int n;
 public int codePart;

 public Params(int nn, int ra)
 {
 n=nn;
 returnAddress = ra;
 }
 } // end class Params

 //

 - 237 -

 class StackX
 {
 private int maxSize; // size of stack array
 private Params[] stackArray;
 private int top; // top of stack

 //---

-
 public StackX(int s) // constructor
 {
 maxSize = s; // set array size
 stackArray = new Params[maxSize]; // create array
 top = -1; // no items yet
 }

 //---

-
 public void push(Params p) // put item on top of stack
 {
 stackArray[++top] = p; // increment top, insert item
 }

 //---

-
 public Params pop() // take item from top of stack
 {
 return stackArray[top--]; // access item, decrement top
 }

 //---

-
 public Params peek() // peek at top of stack
 {
 return stackArray[top];
 }

 //---

-
 } // end class StackX

 //

 class StackTriangleApp
 {
 static int theNumber;
 static int theAnswer;
 static StackX theStack;
 static int codePart;
 static Params theseParams;

 public static void main(String[] args) throws IOException
 {
 System.out.print("Enter a number: ");
 System.out.flush();

 - 238 -

 theNumber = getInt();
 triangle();
 System.out.println("Triangle="+theAnswer);
 } // end main()

 //---
 public static void recTriangle()
 {
 theStack = new StackX(50);
 codePart = 1;
 while(step() == false) // call step() until it's true
 ; // null statement
 }

 //---
 public static boolean step()
 {
 switch(codePart)
 {
 case 1: // initial call
 theseParams = new Params(theNumber, 6);
 theStack.push(theseParams);
 codePart = 2;
 break;
 case 2: // method entry
 theseParams = theStack.peek();
 if(theseParams.n == 1) // test
 {
 theAnswer = 1;
 codePart = 5; // exit
 }
 else
 codePart = 3; // recursive call
 break;
 case 3: // method call
 Params newParams = new Params(theseParams.n - 1,

4);
 theStack.push(newParams);
 codePart = 2; // go enter method
 break;
 case 4: // calculation
 theseParams = theStack.peek();
 theAnswer = theAnswer + theseParams.n;
 codePart = 5;
 break;
 case 5: // method exit
 theseParams = theStack.peek();
 codePart = theseParams.returnAddress; // (4 or 6)
 theStack.pop();
 break;
 case 6: // return point
 return true;
 } // end switch

 - 239 -

 return false; // all but 7
 } // end triangle

 //---
 public static String getString() throws IOException
 {
 InputStreamReader isr = new InputStreamReader(System.in);
 BufferedReader br = new BufferedReader(isr);
 String s = br.readLine();
 return s;
 }

 //---

-
 public static int getInt() throws IOException
 {
 String s = getString();
 return Integer.parseInt(s);
 }

 //---

-

 } // end class StackTriangleApp

 This program calculates triangular numbers, just as the triangle.java program at the

beginning of the chapter did. Here's some sample output:

 Enter a number: 100
 Triangle=5050

 Figure 6.19 shows how the sections of code in each case relate to the various parts of

the algorithm.

 Figure 6.19: The cases and the step() method

 The program simulates a method, but it has no name in the listing because it isn't a real

 - 240 -

Java method. Let's call this simulated method simMeth(). The initial call to simMeth()
(at case 1) pushes the value entered by the user and a return value of 6 onto the stack
and moves to the entry point of simMeth() (case 2).

At its entry (case 2), simMeth() tests whether its argument is 1. It accesses the
argument by peeking at the top of the stack. If the argument is 1, this is the base case
and control goes to simMeth()'s exit (case 5). If not, it calls itself recursively (case 3).
This recursive call consists of pushing n-1 and a return address of 4 onto the stack, and
going to the method entry at case 2.

On the return from the recursive call, simMeth() adds its argument n to the value
returned from the call. Finally it exits (case 5). When it exits, it pops the last Params
object off the stack; this information is no longer needed.

The return address given in the initial call was 6, so case 6 is where control goes when
the method returns. This code returns true to let the while loop in recTriangle()
know that the loop is over.

Note that in this description of simMeth()'s operation we use terms like argument,
recursive call, and return address to mean simulations of these features, not the normal
Java versions.

 If you inserted some output statements in each case to see what simMeth() was doing,

you could arrange for output like this:

 Enter a number: 4
 case 1. theAnswer=0 Stack:
 case 2. theAnswer=0 Stack: (4, 6)
 case 3. theAnswer=0 Stack: (4, 6)
 case 2. theAnswer=0 Stack: (4, 6) (3, 4)
 case 3. theAnswer=0 Stack: (4, 6) (3, 4)
 case 2. theAnswer=0 Stack: (4, 6) (3, 4) (2, 4)
 case 3. theAnswer=0 Stack: (4, 6) (3, 4) (2, 4)
 case 2. theAnswer=0 Stack: (4, 6) (3, 4) (2, 4) (1, 4)
 case 5. theAnswer=1 Stack: (4, 6) (3, 4) (2, 4) (1, 4)
 case 4. theAnswer=1 Stack: (4, 6) (3, 4) (2, 4)
 case 5. theAnswer=3 Stack: (4, 6) (3, 4) (2, 4)
 case 4. theAnswer=3 Stack: (4, 6) (3, 4)
 case 5. theAnswer=6 Stack: (4, 6) (3, 4)
 case 4. theAnswer=6 Stack: (4, 6)
 case 5. theAnswer=10 Stack: (4, 6)
 case 6. theAnswer=10 Stack:
 Triangle=10

The case number shows what section of code is being executed. The contents of the
stack (consisting of Params objects containing n followed by a return address) are also
shown. The simMeth() method is entered 4 times (case 2) and returns 4 times (case 5).
It's only when it starts returning that theAnswer begins to accumulate the results of the
calculations.

 What Does This Prove?

In stackTriangle.java we have a program that more or less systematically
transforms a program that uses recursion into a program that uses a stack. This suggests
that such a transformation is possible for any program that uses recursion, and in fact this
is the case.

 - 241 -

With some additional work, you can systematically refine the code we show here,
simplifying it and even eliminating the switch statement entirely to make the code more
efficient.

In practice, however, it's usually more practical to rethink the algorithm from the
beginning, using a stack-based approach instead of a recursive approach. Listing 6.8
shows what happens when we do that with the triangle() method.

 Listing 6.8 The stackTriangle2.java Program

 // stackTriangle2.java
 // evaluates triangular numbers, stack replaces recursion
 // to run this program: C>java StackTriangle2App
 import java.io.*; // for I/O
 //
 class StackX
 {
 private int maxSize; // size of stack array
 private int[] stackArray;
 private int top; // top of stack

 //---

-
 public StackX(int s) // constructor
 {
 maxSize = s;
 stackArray = new int[maxSize];
 top = -1;
 }

 //---

-
 public void push(int p) // put item on top of stack
 { stackArray[++top] = p; }

 //---

-
 public int pop() // take item from top of stack
 { return stackArray[top--]; }

 //---

-
 public int peek() // peek at top of stack
 { return stackArray[top]; }

 //---

-
 public boolean isEmpty() // true if stack is empty
 { return (top == -1); }

 //---

-
 } // end class StackX

 - 242 -

 //

 class StackTriangle2App
 {
 static int theNumber;
 static int theAnswer;
 static StackX theStack;

 public static void main(String[] args) throws IOException
 {
 System.out.print("Enter a number: ");
 System.out.flush();
 theNumber = getInt();
 stackTriangle();
 System.out.println("Triangle="+theAnswer);
 } // end main()

 //---
 public static void stackTriangle()
 {
 theStack = new StackX(10000); // make a stack

 theAnswer = 0; // initialize answer

 while(theNumber > 0) // until n is 1,
 {
 theStack.push(theNumber); // push value
 --theNumber; // decrement value
 }
 while(!theStack.isEmpty()) // until stack empty,
 {
 int newN = theStack.pop(); // pop value,
 theAnswer += newN; // add to answer
 }
 }

 //---
 public static String getString() throws IOException
 {
 InputStreamReader isr = new InputStreamReader(System.in);
 BufferedReader br = new BufferedReader(isr);
 String s = br.readLine();
 return s;
 }

 //---
 public static int getInt() throws IOException
 {
 String s = getString();
 return Integer.parseInt(s);
 }

 - 243 -

 //---

 } // end class StackTriangle2App

Here two short while loops in the stackTriangle() method substitute for the entire
step() method of the stackTriangle.java program. Of course, in this program you
can see by inspection that you can eliminate the stack entirely and use a simple loop.
However, in more complicated algorithms the stack must remain.

Often you'll need to experiment to see whether a recursive method, a stack-based
approach, or a simple loop is the most efficient (or practical) way to handle a particular
situation.

 Part III

 Chapter List

 Chapter

7: Advanced Sorting

 Chapter

8: Binary Trees

 Chapter

9: Red-Black Trees

 Chapter 7: Advanced Sorting

 Overview

We discussed simple sorting in Chapter 3. The sorts described there—the bubble,
selection, and insertion sorts—are easy to implement but are rather slow. In Chapter 6
we described the mergesort. It runs much faster than the simple sorts, but requires twice
as much space as the original array; this is often a serious drawback.

This chapter covers two advanced approaches to sorting: Shellsort and quicksort. These
sorts both operate much faster than the simple sorts; the Shellsort in about O(N*(logN)2)
time, and quicksort in O(N*logN) time, which is the fastest time for general-purpose sorts.
Neither of these sorts requires a large amount of extra space, as mergesort does. The
Shellsort is almost as easy to implement as mergesort, while quicksort is the fastest of all
the general-purpose sorts.

 We'll examine the Shellsort first. Quicksort is based on the idea of partitioning, so we'll then

examine partitioning separately, before examining quicksort itself.

 Shellsort

The Shellsort is named for Donald L. Shell, the computer scientist who discovered it in
1959. It's based on the insertion sort but adds a new feature that dramatically improves
the insertion sort's performance.

The Shellsort is good for medium-sized arrays, perhaps up to a few thousand items,
depending on the particular implementation. (However, see the cautionary notes in
Chapter 15 about how much data can be handled by a particular algorithm.) It's not quite

 - 244 -

as fast as quicksort and other O(N*logN) sorts, so it's not optimum for very large files.
However, it's much faster than the O(N2) sorts like the selection sort and the insertion
sort, and it's very easy to implement: the code is short and simple.

The worst-case performance is not significantly worse than the average performance.
(We'll see later in this chapter that the worst-case performance for quicksort can be much
worse unless precautions are taken.) Some experts (see Sedgewick in the bibliography)
recommend starting with a Shellsort for almost any sorting project, and only changing to
a more advanced sort, like quicksort, if Shellsort proves too slow in practice.

 Insertion Sort: Too Many Copies

Because Shellsort is based on the insertion sort, you might want to review the relevant
section of Chapter 3. Recall that partway through the insertion sort the items to the left of
a marker are internally sorted (sorted among themselves) and items to the right are not.
The algorithm removes the item at the marker and stores it in a temporary variable. Then,
beginning with the item to the left of the newly vacated cell, it shifts the sorted items right
one cell at a time, until the item in the temporary variable can be reinserted in sorted
order.

Here's the problem with the insertion sort. Suppose a small item is on the far right, where
the large items should be. To move this small item to its proper place on the left, all the
intervening items (between where it is and where it should be) must be shifted one space
right. This is close to N copies, just for one item. Not all the items must be moved a full N
spaces, but the average item must be moved N/2 spaces, which takes N times N/2 shifts
for a total of N 2/2 copies. Thus the performance of insertion sort is O(N2).

 This performance could be improved if we could somehow move a smaller item many

spaces to the left without shifting all the intermediate items individually.

 N-Sorting

The Shellsort achieves these large shifts by insertion-sorting widely spaced elements.
Once these are sorted, it sorts somewhat less widely spaced elements, and so on. The
spacing between elements for these sorts is called the increment and is traditionally
represented by the letter h. Figure 7.1 shows the first step in the process of sorting a 10-
element array with an increment of 4. Here the elements 0, 4, and 8 are sorted.

 Figure 7.1: 4-sorting 0, 4, and 8

Once 0, 4, and 8 are sorted, the algorithm shifts over one cell and sorts 1, 5, and 9. This
process continues until all the elements have been 4-sorted, which means that all items
spaced 4 cells apart are sorted among themselves. The process is shown (using a more

 - 245 -

compact visual metaphor) in Figure 7.2.

 Figure 7.2: A complete 4-sort

After the complete 4-sort, the array can be thought of as comprising four subarrays:
(0,4,8), (1,5,9), (2,6), and (3,7), each of which is completely sorted. These subarrays are
interleaved, but otherwise independent.

Notice that, in this particular example, at the end of the 4-sort no item is more than 2 cells
from where it would be if the array were completely sorted. This is what is meant by an
array being "almost" sorted and is the secret of the Shellsort. By creating interleaved,
internally sorted sets of items, we minimize the amount of work that must be done to
complete the sort.

Now, as we noted in Chapter 3, the insertion sort is very efficient when operating on an
array that's almost sorted. If it only needs to move items one or two cells to sort the file, it
can operate in almost O(N) time. Thus after the array has been 4-sorted, we can 1-sort it
using the ordinary insertion sort. The combination of the 4-sort and the 1-sort is much
faster than simply applying the ordinary insertion sort without the preliminary 4-sort.

 Diminishing Gaps

We've shown an initial interval—or gap—of 4 cells for sorting a 10-cell array. For larger
arrays the gap should start out much larger. The interval is then repeatedly reduced until
it becomes 1.

For instance, an array of 1,000 items might be 364-sorted, then 121-sorted, then 40-
sorted, then 13-sorted, then 4-sorted, and finally 1-sorted. The sequence of numbers
used to generate the intervals (in this example 364, 121, 40, 13, 4, 1) is called the interval
sequence or gap sequence. The particular interval sequence shown here, attributed to
Knuth (see the bibliography), is a popular one. In reversed form, starting from 1, it's
generated by the recursive expression

 h = 3*h + 1

 where the initial value of h is 1. The first two columns of Table 7.1 show how this formula

generates the sequence.

 Table 7.1: Knuth's Interval Sequence

 - 246 -

 h

3*h + 1

(h–1) / 3

 1

4

 4

13

1

 13

40

4

 40

121

13

 121

364

40

 364

1093

121

 1093

3280

364

 There are other approaches to generating the interval sequence; we'll return to this issue

later. First, we'll explore how the Shellsort works using Knuth's sequence.

In the sorting algorithm, the sequence-generating formula is first used in a short loop to
figure out the initial gap. A value of 1 is used for the first value of h, and the h=h*3+1
formula is applied to generate the sequence 1, 4, 13, 40, 121, 364, and so on. This
process ends when the gap is larger than the array. For a 1,000-element array, the 7th
number in the sequence, 1093, is too large. Thus we begin the sorting process with the
6th-largest number, creating a 364-sort. Then, each time through the outer loop of the
sorting routine, we reduce the interval using the inverse of the formula previously given:

 h = (h–1) / 3

This is shown in the third column of Table 7.1. This inverse formula generates the
reverse sequence 364, 121, 40, 13, 4, 1. Starting with 364, each of these numbers is
used to n-sort the array. When the array has been 1-sorted, the algorithm is done.

 The ShellSort Workshop Applet

 You can use the Shellsort Workshop applet to see how this sort works. Figure 7.3 shows

the applet after all the bars have been 4-sorted, just as the 1-sort begins.

 - 247 -

 Figure 7.3: The Shellsort Workshop applet

As you single-step through the algorithm, you'll notice that the explanation we gave in the
last section is slightly simplified. The sequence for the 4-sort is not actually (0,4,8),
(1,5,9), (2,6), and (3,7). Instead the first two elements of each group of three are sorted
first, then the first two elements of the second group, and so on. Once the first two
elements of all the groups are sorted, the algorithm returns and sorts three-element
groups. The actual sequence is (0,4), (1,5), (2,6), (3,7), (0,4,8), (1,5,9).

It might seem more obvious for the algorithm to 4-sort each complete subarray first: (0,4),
(0,4,8), (1,5), (1,5,9), (2,6), (3,7), but the algorithm handles the array indices more
efficiently using the first scheme.

The Shellsort is actually not very efficient with only 10 items, making almost as many
swaps and comparisons as the insertion sort. However, with 100 bars the improvement
becomes significant.

It's instructive to run the Workshop applet starting with 100 inversely sorted bars.
(Remember that, as in Chapter 3, the first press of New creates a random sequence of
bars, while the second press creates an inversely sorted sequence.) Figure 7.4 shows
how this looks after the first pass, when the array has been completely 40-sorted. Figure
7.5 shows the situation after the next pass, when it is 13-sorted. With each new value of
h, the array becomes more nearly sorted.

 Figure 7.4: After the 40-sort

 Figure 7.5: After the 13-sort

 - 248 -

Why is the Shellsort so much faster than the insertion sort, on which it's based? When h
is large, the number of items per pass is small, and items move long distances. This is
very efficient. As h grows smaller, the number of items per pass increases, but the items
are already closer together, which is more efficient for the insertion sort. It's the
combination of these trends that makes the Shellsort so effective.

Notice that later sorts (small values of h) don't undo the work of earlier sorts (large values
of h). An array that has been 40-sorted remains 40-sorted after a 13-sort, for example. If
this wasn't so the Shellsort couldn't work.

 Java Code for the ShellSort

The Java code for the Shellsort is scarcely more complicated than for the insertion sort.
Starting with the insertion sort, you substitute h for 1 in appropriate places and add the
formula to generate the interval sequence. We've made shellSort() a method in the
ArraySh class, a version of the array classes from Chapter 2. Listing 7.1 shows the
complete shellSort.java program.

 Listing 7.1 The shellSort.java Program

 // shellSort.java
 // demonstrates shell sort
 // to run this program: C>java ShellSortApp
 //---

-
 class ArraySh
 {
 private double[] theArray; // ref to array theArray
 private int nElems; // number of data items

 //---

-
 public ArraySh(int max) // constructor
 {
 theArray = new double[max]; // create the array
 nElems = 0; // no items yet
 }

 //---

-
 public void insert(double value) // put element into array
 {
 theArray[nElems] = value; // insert it
 nElems++; // increment size
 }

 //---

-
 public void display() // displays array contents
 {
 System.out.print("A=");
 for(int j=0; j<nElems; j++) // for each element,
 System.out.print(theArray[j] + " "); // display it
 System.out.println("");
 }

 - 249 -

 //---

-
 public void shellSort()
 {
 int inner, outer;
 double temp;

 int h = 1; // find initial value of h
 while(h <= nElems/3)
 h = h*3 + 1; // (1, 4, 13, 40, 121,

...)

 while(h>0) // decreasing h, until h=1
 {
 // h-sort the file
 for(outer=h; outer<nElems; outer++)
 {
 temp = theArray[outer];
 inner = outer;
 // one subpass (eg 0, 4,

8)
 while(inner > h-1 && theArray[inner-h] >= temp)
 {
 theArray[inner] = theArray[inner-h];
 inner -= h;
 }
 theArray[inner] = temp;
 } // end for
 h = (h-1) / 3; // decrease h
 } // end while(h>0)
 } // end shellSort()

 //---

-
 } // end class ArraySh

 //

 class ShellSortApp
 {
 public static void main(String[] args)
 {
 int maxSize = 10; // array size
 ArraySh arr;
 arr = new ArraySh(maxSize); // create the array

 for(int j=0; j<maxSize; j++) // fill array with
 { // random numbers
 double n = (int)(java.lang.Math.random()*99);
 arr.insert(n);
 }
 arr.display(); // display unsorted array
 arr.shellSort(); // shell sort the array

 - 250 -

 arr.display(); // display sorted array
 } // end main()

 } // end class ShellSortApp

 In main() we create an object of type ArraySh, capable of holding 10 items, fill it with

random data, display it, Shellsort it, and display it again. Here's some sample output:

 A=20 89 6 42 55 59 41 69 75 66
 A=6 20 41 42 55 59 66 69 75 89

 You can change maxSize to higher numbers, but don't go too high; 10,000 items take a

fraction of a minute to sort.

The Shellsort algorithm, although it's implemented in just a few lines, is not simple to
follow. To see the details of its operation, step through a 10-item sort with the Workshop
applet, comparing the messages generated by the applet with the code in the
shellSort() method.

 Other Interval Sequences

Picking an interval sequence is a bit of a black art. Our discussion so far used the formula
h=h*3+1 to generate the interval sequence, but other interval sequences have been used
with varying degrees of success. The only absolute requirement is that the diminishing
sequence ends with 1, so the last pass is a normal insertion sort.

In Shell's original paper, he suggested an initial gap of N/2, which was simply divided in
half for each pass. Thus the descending sequence for N=100 is 50, 25, 12, 6, 3, 1. This
approach has the advantage that you don't need to calculate the sequence before the
sort begins to find the initial gap; you just divide N by 2. However, this turns out not to be
the best sequence. Although it's still better than the insertion sort for most data, it
sometimes degenerates to O(N2) running time, which is no better than the insertion sort.

A better approach is to divide each interval by 2.2 instead of 2. For n=100 this leads to
45, 20, 9, 4, 1. This is considerably better than dividing by 2, as it avoids some worst-
case circumstances that lead to O(N2) behavior. Some extra code is needed to ensure
that the last value in the sequence is 1, no matter what N is. This gives results
comparable to Knuth's sequence shown in the listing.

 Another possibility for a descending sequence (from Flamig; see Appendix B, "Further

Reading") is

 if(h < 5)
 h = 1;
 else

 h = (5*h-1) / 11;

It's generally considered important that the numbers in the interval sequence are
relatively prime; that is, they have no common divisors except 1. This makes it more likely
that each pass will intermingle all the items sorted on the previous pass. The inefficiency
of Shell's original N/2 sequence is due to its failure to adhere to this rule.

You may be able to invent a gap sequence of your own that does just as well (or possibly
even better) than those shown. Whatever it is, it should be quick to calculate so as not to
slow down the algorithm.

 - 251 -

 Efficiency of the ShellSort

No one so far has been able to analyze the Shellsort's efficiency theoretically, except in
special cases. Based on experiments, there are various estimates, which range from
0(N3/2) down to O(N7/6).

Table 7.2 shows some of these estimated O() values, compared with the slower insertion
sort and the faster quicksort. The theoretical times corresponding to various values of N
are shown. Note that N ex/y means the yth root of N raised to the x power. Thus if N is
100, N3/2 is the square root of 1003, which is 1,000. Also, (logN)2 means the log of N,
squared. This is often written log2N, but that's easy to confuse with log2N, the logarithm
to the base 2 of N.

 Table 7.2: Estimates of ShellSort Running Time

 O() Value

Type of
Sort

10 Items

100 Items

1,000 Items

10,000
Items

 N2

Insertion,
etc.

100

10,000

1,000,000

100,000,000

 N3/2

Shellsort

32

1,000

32,000

1,000,000

 N*(logN)2

Shellsort

10

400

9,000

160,000

 N5/4

Shellsort

18

316

5,600

100,000

 N7/6

Shellsort

14

215

3,200

46,000

 N*logN

Quicksort,
etc.

10

200

3,000

40,000

 For most data the higher estimates, such as N3/2, are probably more realistic.

Partitioning

 Partitioning is the underlying mechanism of quicksort, which we'll explore next, but it's

also a useful operation on its own, so we'll cover it here in its own section.

To partition data is to divide it into two groups, so that all the items with a key value
higher than a specified amount are in one group, and all the items with a lower key value
are in another.

It's easy to imagine situations in which you would want to partition data. Maybe you want
to divide your personnel records into two groups: employees who live within 15 miles of
the office and those who live farther away. Or a school administrator might want to divide
students into those with grade point averages higher and lower than 3.5, so as to know
who deserves to be on the Dean's list.

 The Partition Workshop Applet

 - 252 -

 Our Partition Workshop applet demonstrates the partitioning process. Figure 7.6 shows

12 bars before partitioning, and Figure 7.7 shows them again after partitioning.

 Figure 7.6: Twelve bars before partitioning

 Figure 7.7: Twelve bars after partitioning

The horizontal line represents the pivot value. This is the value used to determine into
which of the two groups an item is placed. Items with a key value less than the pivot
value go in the left part of the array, and those with a greater (or equal) key go in the right
part. (In the section on quicksort, we'll see that the pivot value can be the key value of an
actual data item, called the pivot. For now, it's just a number.)

The arrow labeled partition points to the leftmost item in the right (higher) subarray. This
value is returned from the partitioning method, so it can be used by other methods that
need to know where the division is.

For a more vivid display of the partitioning process, set the Partition Workshop applet to
100 bars and press the Run button. The leftScan and rightScan pointers will zip
toward each other, swapping bars as they go. When they meet, the partition is complete.

You can choose any value you want for the pivot value, depending on why you're doing
the partition (such as choosing a grade point average of 3.5). For variety, the Workshop
applet chooses a random number for the pivot value (the horizontal black line) each time
New or Size is pressed, but the value is never too far from the average bar height.

After being partitioned, the data is by no means sorted; it has simply been divided into
two groups. However, it's more sorted than it was before. As we'll see in the next section,
it doesn't take much more trouble to sort it completely.

 - 253 -

Notice that partitioning is not stable. That is, each group is not in the same order it was
originally. In fact, partitioning tends to reverse the order of some of the data in each
group.

 The partition.java Program

How is the partitioning process carried out? Let's look at some sample code. Listing 7.2
shows the partition.java program, which includes the partitionIt() method for
partitioning an array.

 Listing 7.2 The partition.java Program

 // partition.java
 // demonstrates partitioning an array
 // to run this program: C>java PartitionApp
 //
 class ArrayPar
 {
 private double[] theArray; // ref to array theArray
 private int nElems; // number of data items

 //---

-
 public ArrayPar(int max) // constructor
 {
 theArray = new double[max]; // create the array
 nElems = 0; // no items yet
 }

 //---

-
 public void insert(double value) // put element into array
 {
 theArray[nElems] = value; // insert it
 nElems++; // increment size
 }

 //---

-
 public int size() // return number of items
 { return nElems; }

 //---

-
 public void display() // displays array contents
 {
 System.out.print("A=");
 for(int j=0; j<nElems; j++) // for each element,
 System.out.print(theArray[j] + " "); // display it
 System.out.println("");
 }

 //---

-

 - 254 -

 public int partitionIt(int left, int right, double pivot)
 {
 int leftPtr = left - 1; // right of first elem
 int rightPtr = right + 1; // left of pivot
 while(true)
 {
 while(leftPtr < right && // find bigger item
 theArray[++leftPtr] < pivot)
 ; // (nop)

 while(rightPtr > left && // find smaller item
 theArray[--rightPtr] > pivot)
 ; // (nop)
 if(leftPtr >= rightPtr) // if pointers cross,
 break; // partition done
 else // not crossed, so
 swap(leftPtr, rightPtr); // swap elements
 } // end while(true)
 return leftPtr; // return partition
 } // end partitionIt()

 //---

-
 public void swap(int dex1, int dex2) // swap two elements
 {
 double temp;
 temp = theArray[dex1]; // A into temp
 theArray[dex1] = theArray[dex2]; // B into A
 theArray[dex2] = temp; // temp into B
 } // end swap(

 //---

-
 } // end class ArrayPar

 //

 class PartitionApp
 {
 public static void main(String[] args)
 {
 int maxSize = 16; // array size
 ArrayPar arr; // reference to array
 arr = new ArrayPar(maxSize); // create the array

 for(int j=0; j<maxSize; j++) // fill array with
 { // random numbers
 double n = (int)(java.lang.Math.random()*199);
 arr.insert(n);
 }
 arr.display(); // display unsorted array

 double pivot = 99; // pivot value

 - 255 -

 System.out.print("Pivot is " + pivot);
 int size = arr.size();
 // partition array
 int partDex = arr.partitionIt(0, size-1, pivot);

 System.out.println(", Partition is at index " + partDex);
 arr.display(); // display sorted array
 } // end main()

 } // end class PartitionApp

The main() routine creates an ArrayPar object that holds 16 items of type double.
The pivot value is fixed at 99. The routine inserts 16 random values into ArrayPar,
displays them, partitions them by calling the partitionIt() method, and displays
them again. Here's some sample output:

 A=149 192 47 152 159 195 61 66 17 167 118 64 27 80 30 105
 Pivot is 99, partition is at index 8
 A=30 80 47 27 64 17 61 66 195 167 118 159 152 192 149 105

 You can see that the partition is successful: The first eight numbers are all smaller than

the pivot value of 99; the last eight are all larger.

Notice that the partitioning process doesn't necessarily divide the array in half as it does
in this example; that depends on the pivot value and key values of the data. There may
be many more items in one group than in the other.

 The Partition Algorithm

The partitioning algorithm works by starting with two pointers, one at each end of the
array. (We use the term pointers to mean indices that point to array elements, not C++
pointers.) The pointer on the left, leftPtr, moves toward the right, and the one of the
right, rightPtr, moves toward the left. Notice that leftPtr and rightPtr in the
partition.java program correspond to leftScan and rightScan in the Partition
Workshop applet.

Actually leftPtr is initialized to one position to the left of the first cell, and rightPtr to
one position to the right of the last cell, because they will be incremented and
decremented, respectively, before they're used.

 Stopping and Swapping

When leftPtr encounters a data item smaller than the pivot value, it keeps going,
because that item is in the right place. However, when it encounters an item larger than
the pivot value, it stops. Similarly, when rightPtr encounters an item larger than the
pivot, it keeps going, but when it finds a smaller item, it also stops. Two inner while
loops, the first for leftPtr and the second for rightPtr, control the scanning process.
A pointer stops because its while loop exits. Here's a simplified version of the code that
scans for out-of-place items:

 while(theArray[++leftPtr] < pivot) // find bigger item
 ; // (nop)
 while(theArray[--rightPtr] > pivot) // find smaller item
 ; // (nop)
 swap(leftPtr, rightPtr); // swap elements

 - 256 -

The first while loop exits when an item larger than pivot is found; the second loop
exits when an item smaller than pivot is found. When both these loops exit, both
leftPtr and rightPtr point to items that are in the wrong part of the array, so these
items are swapped.

After the swap, the two pointers continue on, again stopping at items that are in the
wrong part of the array and swapping them. All this activity is nested in an outer while
loop, as can be seen in the partitionIt() method in Listing 7.2. When the two
pointers eventually meet, the partitioning process is complete and this outer while loop
exits.

You can watch the pointers in action when you run the Partition Workshop applet with
100 bars. These pointers, represented by blue arrows, start at opposite ends of the array
and move toward each other, stopping and swapping as they go. The bars between them
are unpartitioned; those they've already passed over are partitioned. When they meet,
the entire array is partitioned.

 Handling Unusual Data

If we were sure that there was a data item at the right end of the array that was smaller
than the pivot value, and an item at the left end that was larger, the simplified while
loops previously shown would work fine. Unfortunately, the algorithm may be called upon
to partition data that isn't so well organized.

If all the data is smaller than the pivot value, for example, the leftPtr variable will go all
the way across the array, looking in vain for a larger item, and fall off the right end,
creating an array index out of bounds exception. A similar fate will befall
rightPtr if all the data is larger than the pivot value.

To avoid these problems, extra tests must be placed in the while loops to check for the
ends of the array: leftPtr<right in the first loop, and rightPtr>left in the second.
This can be seen in context in Listing 7.2.

In the section on quicksort, we'll see that a clever pivot-selection process can eliminate
these end-of-array tests. Eliminating code from inner loops is always a good idea if you
want to make a program run faster.

 Delicate Code

The code in the while loops is rather delicate. For example, you might be tempted to
remove the increment operators from the inner while loops and use them to replace the
nop statements. (Nop refers to a statement consisting only of a semicolon, and means no
operation.) For example, you might try to change this:

 while(leftPtr < right && theArray[++leftPtr] < pivot)
 ; // (nop)

 to this:

 while(leftPtr < right && theArray[leftPtr] < pivot)
 ++leftPtr;

and similarly for the other inner while loop. This would make it possible for the initial
values of the pointers to be left and right, which is somewhat clearer than left-1
and right+1.

 However, these changes result in the pointers being incremented only when the condition

 - 257 -

is satisfied. The pointers must move in any case, so two extra statements within the outer
while loop would be required to bump the pointers. The nop version is the most efficient
solution.

 Efficiency of the Partition Algorithm

The partition algorithm runs in O(N) time. It's easy to see this when running the Partition
Workshop applet: the two pointers start at opposite ends of the array and move toward
each other at a more or less constant rate, stopping and swapping as they go. When they
meet, the partition is complete. If there were twice as many items to partition, the pointers
would move at the same rate, but they would have twice as far to go (twice as many
items to compare and swap), so the process would take twice as long. Thus the running
time is proportional to N.

More specifically, for each partition there will be N+1 or N+2 comparisons. Every item will
be encountered and used in a comparison by one or the other of the pointers, leading to
N comparisons, but the pointers overshoot each other before they find out they've
"crossed" or gone beyond each other, so there are one or two extra comparisons before
the partition is complete. The number of comparisons is independent of how the data is
arranged (except for the uncertainty between 1 and 2 extra comparisons at the end of the
scan).

The number of swaps, however, does depend on how the data is arranged. If it's
inversely ordered and the pivot value divides the items in half, then every pair of values
must be swapped, which is N/2 swaps. (Remember in the Partition Workshop applet that
the pivot value is selected randomly, so that the number of swaps for inversely sorted
bars won't always be exactly N/2.)

For random data, there will be fewer than N/2 swaps in a partition, even if the pivot value
is such that half the bars are shorter and half are taller. This is because some bars will
already be in the right place (short bars on the left, tall bars on the right). If the pivot value
is higher (or lower) than most of the bars, there will be even fewer swaps because only
those few bars that are higher (or lower) than the pivot will need to be swapped. On
average, for random data, about half the maximum number of swaps take place.

Although there are fewer swaps than comparisons, they are both proportional to N. Thus
the partitioning process runs in O(N) time. Running the Workshop applet, you can see that
for 12 random bars there are about 3 swaps and 14 comparisons, and for 100 random bars
there are about 25 swaps and 102 comparisons.

Quicksort

Quicksort is undoubtedly the most popular sorting algorithm, and for good reason: in the
majority of situations, it's the fastest, operating in O(N*logN) time. (This is only true for
internal or in-memory sorting; for sorting data in disk files other methods may be better.)
Quicksort was discovered by C.A.R. Hoare in 1962.

To understand quicksort, you should be familiar with the partitioning algorithm described
in the last section. Basically the quicksort algorithm operates by partitioning an array into
two subarrays, and then calling itself to quicksort each of these subarrays. However,
there are some embellishments we can make to this basic scheme. These have to do
with the selection of the pivot and the sorting of small partitions. We'll examine these
refinements after we've looked at a simple version of the main algorithm.

It's difficult to understand what quicksort is doing before you understand how it does it, so
we'll reverse our usual presentation and show the Java code for quicksort before
presenting the quicksort Workshop applet.

 The Quicksort Algorithm

 - 258 -

 The code for a basic recursive quicksort method is fairly simple. Here's an example:

 public void recQuickSort(int left, int right)
 {
 if(right-left <= 0) // if size is 1,
 return; // it's already sorted
 else // size is 2 or larger
 {
 // partition range
 int partition = partitionIt(left, right);
 recQuickSort(left, partition-1); // sort left side
 recQuickSort(partition+1, right); // sort right side
 }

 }

 As you can see, there are three basic steps:

 1. Partition the array or subarray into left (smaller keys) and right (larger keys) groups.

 2. Call ourselves to sort the left group.

 3. Call ourselves again to sort the right group.

After a partition, all the items in the left subarray are smaller than all those on the right. If
we then sort the left subarray and sort the right subarray, the entire array will be sorted.
How do we sort these subarrays? By calling ourself.

The arguments to the recQuickSort() method determine the left and right ends of the
array (or subarray) it's supposed to sort. The method first checks whether this array
consists of only one element. If so, the array is by definition already sorted, and the
method returns immediately. This is the base case in the recursion process.

If the array has two or more cells, the algorithm calls the partitionIt() method,
described in the last section, to partition it. This method returns the index number of the
partition: the left element in the right (larger keys) subarray. The partition marks the
boundary between the subarrays. This is shown in Figure 7.8.

 Figure 7.8: Recursive calls sort subarrays

 - 259 -

Once the array is partitioned, recQuickSort() calls itself recursively, once for the left
part of its array, from left to partition-1, and once for the right part, from
partition+1 to right. Note that the data item at the index partition is not included
in either of the recursive calls. Why not? Doesn't it need to be sorted? The explanation
lies in how the pivot value is chosen.

 Choosing a Pivot Value

 What pivot value should the partitionIt() method use? Here are some relevant

ideas:

 • The pivot value should be the key value of an actual data item; this item is called the

pivot.

 • You can pick a data item to be the pivot more or less at random. For simplicity, let's

say we always pick the item on the right end of the subarray being partitioned.

 • After the partition, if the pivot is inserted at the boundary between the left and right

subarrays, it will be in its final sorted position.

This last point may sound unlikely, but remember that, because the pivot's key value is
used to partition the array, then following the partition the left subarray holds items
smaller than the pivot, and the right subarray holds items larger. The pivot starts out on
the right, but if it could somehow be placed between these two subarrays, it would be in
the right place; that is, in its final sorted position. Figure 7.9 shows how this looks with a
pivot whose key value is 36.

 Figure 7.9: The pivot and the subarrays

 This figure is somewhat fanciful because you can't actually take an array apart as we've

shown. So how do we move the pivot to its proper place?

We could shift all the items in the right subarray to the right one cell to make room for the
pivot. However, this is inefficient and unnecessary. Remember that all the items in the
right subarray, although they are larger than the pivot, are not yet sorted, so they can be
moved around within the right subarray without affecting anything.

Therefore, to simplify inserting the pivot in its proper place, we can simply swap the pivot
(36) and the left item in the right subarray, which is 63. This places the pivot in its proper
position between the left and right groups. The 63 is switched to the right end, but
because it remains in the right (larger) group, the partitioning is undisturbed. This is
shown in Figure 7.10.

 - 260 -

 Figure 7.10: Swapping the pivot

Once it's swapped into the partition's locaFiguretion, the pivot is in its final resting place.
All subsequent activity will take place on one side of it or on the other, but the pivot itself
won't be moved (or indeed even accessed) again.

To incorporate the pivot selection process into our recQuickSort() method, let's make
it an overt statement, and send the pivot value to partitionIt() as an argument.
Here's how that looks:

 public void recQuickSort(int left, int right)
 {
 if(right-left <= 0) // if size <= 1,
 return; // already sorted
 else // size is 2 or larger
 {
 double pivot = theArray[right]; // rightmost item
 // partition range
 int partition = partitionIt(left, right, pivot);
 recQuickSort(left, partition-1); // sort left side
 recQuickSort(partition+1, right); // sort right side
 }

 } // end recQuickSort()

When we use this scheme of choosing the rightmost item in the array as the pivot, we'll
need to modify the partitionIt() method to exclude this rightmost item from the
partitioning process; after all, we already know where it should go after the partitioning
process is complete: at the partition, between the two groups. Also, once the partitioning
process is completed, we need to swap the pivot from the right end into the partition's
location. Listing 7.3 shows the quickSort1.java program, which incorporates these
features.

 Listing 7.3 The quickSort1.java Program

 // quickSort1.java

 // demonstrates simple version of quick sort

 // to run this program: C>java QuickSort1App

 //

 - 261 -

 class ArrayIns
 {
 private double[] theArray; // ref to array theArray
 private int nElems; // number of data items

 //---

-
 public ArrayIns(int max) // constructor
 {
 theArray = new double[max]; // create the array
 nElems = 0; // no items yet
 }

 //---

-
 public void insert(double value) // put element into array
 {
 theArray[nElems] = value; // insert it
 nElems++; // increment size
 }

 //---

-
 public void display() // displays array contents
 {
 System.out.print("A=");
 for(int j=0; j<nElems; j++) // for each element,
 System.out.print(theArray[j] + " "); // display it
 System.out.println("");
 }

 //---

-
 public void quickSort()
 {
 recQuickSort(0, nElems-1);
 }

 //---

-
 public void recQuickSort(int left, int right)
 {
 if(right-left <= 0) // if size <= 1,
 return; // already sorted
 else // size is 2 or larger
 {
 double pivot = theArray[right]; // rightmost item
 // partition range
 int partition = partitionIt(left, right, pivot);
 recQuickSort(left, partition-1); // sort left side
 recQuickSort(partition+1, right); // sort right side
 }
 } // end recQuickSort()

 - 262 -

 //---
-

 public int partitionIt(int left, int right, double pivot)
 {
 int leftPtr = left-1; // left (after ++)
 int rightPtr = right; // right-1 (after --)
 while(true)
 { // find bigger item
 while(theArray[++leftPtr] < pivot)
 ; // (nop)
 // find smaller item
 while(rightPtr > 0 && theArray[--rightPtr] > pivot)
 ; // (nop)

 if(leftPtr >= rightPtr) // if pointers cross,
 break; // partition done
 else // not crossed, so
 swap(leftPtr, rightPtr); // swap elements
 } // end while(true)
 swap(leftPtr, right); // restore pivot
 return leftPtr; // return pivot location
 } // end partitionIt()

 //---

-
 public void swap(int dex1, int dex2) // swap two elements
 {
 double temp = theArray[dex1]; // A into temp
 theArray[dex1] = theArray[dex2]; // B into A
 theArray[dex2] = temp; // temp into B
 } // end swap(

 //---

-
 } // end class ArrayIns

 //

 class QuickSort1App
 {
 public static void main(String[] args)
 {
 int maxSize = 16; // array size
 ArrayIns arr;
 arr = new ArrayIns(maxSize); // create array

 for(int j=0; j<maxSize; j++) // fill array with
 { // random numbers
 double n = (int)(java.lang.Math.random()*99);
 arr.insert(n);
 }
 arr.display(); // display items
 arr.quickSort(); // quicksort them

 - 263 -

 arr.display(); // display them again
 } // end main()

 } // end class QuickSort1App

The main() routine creates an object of type ArrayIns, inserts 16 random data items
of type double in it, displays it, sorts it with the quickSort() method, and displays the
results. Here's some typical output:

 A=69 0 70 6 38 38 24 56 44 26 73 77 30 45 97 65
 A=0 6 24 26 30 38 38 44 45 56 65 69 70 73 77 97

An interesting aspect of the code in the partitionIt() method is that we've been able
to remove the test for the end of the array in the first inner while loop. This test, seen in
the earlier partitionIt() method in the partition.java program in Listing 7.2,
was

 leftPtr < right

It prevented leftPtr running off the right end of the array if there was no item there
larger than pivot. Why can we eliminate the test? Because we selected the rightmost
item as the pivot, so leftPtr will always stop there. However, the test is still necessary
for rightPtr in the second while loop. (Later we'll see how this test can be eliminated
as well.)

Choosing the rightmost item as the pivot is thus not an entirely arbitrary choice; it speeds
up the code by removing an unnecessary test. Picking the pivot from some other location
would not provide this advantage.

 The quickSort1 Workshop Applet

 At this point you know enough about the quicksort algorithm to understand the nuances

of the quickSort1 Workshop applet.

 The Big Picture

For the big picture, use the Size button to set the applet to sort 100 random bars, and
press the Run button. Following the sorting process, the display will look something like
Figure 7.11.

 Figure 7.11: The quickSort1 Workshop applet with 100 bars

 - 264 -

 Watch how the algorithm partitions the array into two parts, then sorts each of these parts
by partitioning it into two parts, and so on, creating smaller and smaller subarrays.

When the sorting process is complete, each dotted line provides a visual record of one of
the sorted subarrays. The horizontal range of the line shows which bars were part of the
subarray, and its vertical position is the pivot value (the height of the pivot). The total
length of all these lines on the display is a measure of how much work the algorithm has
done to sort the array; we'll return to this topic later.

Each dotted line (except the shortest ones) should have a line below it (probably
separated by other, shorter lines) and a line above it that together add up to the same
length as the original line (less one bar). These are the two partitions into which each
subarray is divided.

 The Details

For a more detailed examination of quicksort's operation, switch to the 12-bar display in
the quickSort1 applet and step through the sorting process. You'll see how the pivot
value corresponds to the height of the pivot on the right side of the array, how the
algorithm partitions the array, swaps the pivot into the space between the two sorted
groups, sorts the shorter group (using many recursive calls), and then sorts the larger
group.

Figure 7.12 shows all the steps involved in sorting 12 bars. The horizontal brackets under
the arrays show which subarray is being partitioned at each step, and the circled
numbers show the order in which these partitions are created. A pivot being swapped into
place is shown with a dotted arrow. The final position of the pivot is shown as a dotted
cell to emphasize that this cell contains a sorted item that will not be changed thereafter.
Horizontal brackets under single cells (steps 5, 6, 7, 11, and 12) are base case calls to
recQuickSort(); they return immediately.

 - 265 -

 Figure 7.12: The quicksort process

Sometimes, as in steps 4 and 10, the pivot ends up in its original position on the right
side of the array being sorted. In this situation, there is only one subarray remaining to be
sorted; that to the left of the pivot. There is no second subarray to its right.

The different steps in Figure 7.12 occur at different levels of recursion, as shown in Table
7.3. The initial call from main() to recQuickSort() is the first level,
recQuickSort() calling two new instances of itself is the second level, these two
instances calling four more instances is the third level, and so on.

The order in which the partitions are created, corresponding to the step numbers, does
not correspond with depth. It's not the case that all the first-level partitions are done first,
then all the second level ones, and so on. Instead, the left group at every level is handled
before any of the right groups.

 Table 7.3: Recursion levels for Figure 7.12

 Step

Recursion Level

 1

1

 2, 8

2

 3, 7, 9, 12

3

 4, 10

4

 5, 6, 11

5

 In theory there should be eight steps in the fourth level and 16 in the fifth level, but in this

small array we run out of items before these steps are necessary.

 - 266 -

The number of levels in the table shows that with 12 data items, the machine stack needs
enough space for 5 sets of arguments and return values; one for each recursion level.
This is, as we'll see later, somewhat greater than the logarithm to the base 2 of the
number of items: log2N. The size of the machine stack is determined by your particular
system. Sorting very large numbers of data items using recursive procedures may cause
this stack to overflow, leading to memory errors.

 Things to Notice

 Here are some details you may notice as you run the quickSort1 Workshop applet.

You might think that a powerful algorithm like quicksort would not be able to handle
subarrays as small as 2 or 3 items. However, this version of the quicksort algorithm is
quite capable of sorting such small subarrays; leftScan and rightScan just don't go
very far before they meet. For this reason we don't need to use a different sorting
scheme for small subarrays. (Although, as we'll see later, handling small subarrays
differently may have advantages.)

At the end of each scan, the leftScan variable ends up pointing to the partition—that is,
the left element of the right subarray. The pivot is then swapped with the partition to put
the pivot in its proper place, as we've seen. As we noted, in steps 3 and 9 of Figure 7.12,
leftScan ends up pointing to the pivot itself, so the swap has no effect. This may seem
like a wasted swap; you might decide that leftScan should stop one bar sooner.
However, it's important that leftScan scan all the way to the pivot; otherwise, a swap
would unsort the pivot and the partition.

Be aware that leftScan and rightScan start at left-1 and right. This may look
peculiar on the display, especially if left is 0; then leftScan will start at –1. Similarly
rightScan initially points to the pivot, which is not included in the partitioning process.
These pointers start outside the subarray being partitioned, because they will be
incremented and decremented respectively before they're used the first time.

The applet shows ranges as numbers in parentheses; for example, (2–5) means the
subarray from index 2 to index 5. The range given in some of the messages may be
negative: from a higher number to a lower one: Array partitioned; left (7–6),
right (8–8), for example. The (8–8) range means a single cell (8), but what does (7–
6) mean? This range isn't real; it simply reflects the values that left and right, the
arguments to recQuickSort(), have when this method is called. Here's the code in
question:

 int partition = partitionIt(left, right, pivot);
 recQuickSort(left, partition-1); // sort left side
 recQuickSort(partition+1, right); // sort right side

If partitionIt() is called with left = 7 and right = 8, for example, and happens to
return 7 as the partition, then the range supplied in the first call to recQuickSort() will
be (7–6) and the range to the second will be (8–8). This is normal. The base case in
recQuickSort() is activated by array sizes less than 1 as well as by 1, so it will return
immediately for negative ranges. Negative ranges are not shown in Figure 7.12, although
they do cause (brief) calls to recQuickSort().

 Degenerates to O(N2) Performance

If you use the quickSort1 Workshop applet to sort 100 inversely sorted bars, you'll see
that the algorithm runs much more slowly and that many more dotted horizontal lines are
generated, indicating more and larger subarrays are being partitioned. What's happening
here?

 - 267 -

The problem is in the selection of the pivot. Ideally, the pivot should be the median of the
items being sorted. That is, half the items should be larger than the pivot, and half
smaller. This would result in the array being partitioned into two subarrays of equal size.
Two equal subarrays is the optimum situation for the quicksort algorithm. If it has to sort
one large and one small array, it's less efficient because the larger subarray has to be
subdivided more times.

The worst situation results when a subarray with N elements is divided into one subarray
with 1 element and the other with N–1 elements. (This division into 1 cell and N–1 cells
can also be seen in steps 3 and 9 in Figure 7.12.) If this 1 and N–1 division happens with
every partition, then every element requires a separate partition step. This is in fact what
takes place with inversely sorted data: in all the subarrays, the pivot is the smallest item,
so every partition results in an N–1 element in one subarray and only the pivot in the
other.

To see this unfortunate process in action, step through the quickSort1 Workshop applet
with 12 inversely sorted bars. Notice how many more steps are necessary than with
random data. In this situation the advantage gained by the partitioning process is lost and
the performance of the algorithm degenerates to O(N2).

Besides being slow, there's another potential problem when quicksort operates in O(N2)
time. When the number of partitions increases, the number of recursive function calls
also increases. Every function call takes up room on the machine stack. If there are too
many calls, the machine stack may overflow and paralyze the system.

To summarize: In the quickSort1 applet, we select the rightmost element as the pivot. If
the data is truly random, this isn't too bad a choice, because usually the pivot won't be
too close to either end of the array. However, when the data is sorted or inversely sorted,
choosing the pivot from one end or the other is a bad idea. Can we improve on our
approach to selecting the pivot?

 Median of Three Partitioning

Many schemes have been devised for picking a better pivot. The method should be
simple but have a good chance of avoiding the largest or smallest value. Picking an
element at random is simple but—as we've seen—doesn't always result in a good
selection. However, we could examine all the elements and actually calculate which one
was the median. This would be the ideal pivot choice, but the process isn't practical, as it
would take more time than the sort itself.

A compromise solution is to find the median of the first, last, and middle elements of the
array, and use this for the pivot. (The median or middle item is the data item chosen so
that exactly half the other items are smaller and half are larger.) Picking the median of the
first, last, and middle elements is called the median-of-three approach and is shown in
Figure 7.13.

 Figure 7.13: The median of three

 - 268 -

Finding the median of three items is obviously much faster than finding the median of all
the items, and yet it successfully avoids picking the largest or smallest item in cases
where the data is already sorted or inversely sorted. There are probably some
pathological arrangements of data where the median-of-three scheme works poorly, but
normally it's a fast and effective technique for finding the pivot.

Besides picking the pivot more effectively, the median of three approach has an
additional benefit: We can dispense with the rightPtr>left test in the second inside
while loop, leading to a small increase in the algorithm's speed. How is this possible?

The test can be eliminated because we can use the median-of-three approach to not only
select the pivot, but also to sort the three elements used in the selection process. Figure
7.14 shows how this looks.

 Figure 7.14: Sorting the left, center, and right elements

Once these three elements are sorted, and the median item is selected as the pivot, we
are guaranteed that the element at the left end of the subarray is less than (or equal to)
the pivot, and the element at the right end is greater than (or equal to) the pivot. This
means that the leftPtr and rightPtr indices can't step beyond the right or left ends
of the array, respectively, even if we remove the leftPtr>right and rightPtr<left
tests. (The pointer will stop, thinking it needs to swap the item, only to find that it has
crossed the other pointer and the partition is complete.) The values at left and right
act as sentinels to keep leftPtr and rightPtr confined to valid array values.

Another small benefit to median-of-three partitioning is that after the left, center, and right
elements are sorted, the partition process doesn't need to examine these elements
again. The partition can begin at left+1 and right-1, because left and right have in
effect already been partitioned. We know that left is in the correct partition because it's
on the left and it's less than the pivot, and right is in the correct place because it's on
the right and it's greater than the pivot.

Thus, median-of-three partitioning not only avoids O(N2) performance for already sorted
data, it also allows us to speed up the inner loops of the partitioning algorithm and reduce
slightly the number of items that must be partitioned.

 The quickSort2.java Program

 Listing 7.4 shows the quickSort2.java program, which incorporates median-of-three

partitioning. We use a separate method, medianOf3(), to sort the left, center, and right

 - 269 -

elements of a subarray. This method returns the value of the pivot, which is then sent to
the partitionIt() method.

 Listing 7.4 The quickSort2.java Program

 // quickSort2.java
 // demonstrates quick sort with median-of-three partitioning
 // to run this program: C>java QuickSort2App
 //
 class ArrayIns
 {
 private double[] theArray; // ref to array theArray
 private int nElems; // number of data items

 //---

-
 public ArrayIns(int max) // constructor
 {
 theArray = new double[max]; // create the array
 nElems = 0; // no items yet
 }

 //---

-
 public void insert(double value) // put element into array
 {
 theArray[nElems] = value; // insert it
 nElems++; // increment size
 }

 //---

-
 public void display() // displays array contents
 {
 System.out.print("A=");
 for(int j=0; j<nElems; j++) // for each element,
 System.out.print(theArray[j] + " "); // display it
 System.out.println("");
 }

 //---

-
 public void quickSort()
 {
 recQuickSort(0, nElems-1);
 }

 //---

-
 public void recQuickSort(int left, int right)
 {
 int size = right-left+1;
 if(size <= 3) // manual sort if small
 manualSort(left, right);

 - 270 -

 else // quicksort if large
 {
 double median = medianOf3(left, right);
 int partition = partitionIt(left, right, median);
 recQuickSort(left, partition-1);
 recQuickSort(partition+1, right);
 }
 } // end recQuickSort()

 //---

-
 public double medianOf3(int left, int right)
 {
 int center = (left+right)/2;
 // order left & center
 if(theArray[left] > theArray[center])
 swap(left, center);
 // order left & right
 if(theArray[left] > theArray[right])
 swap(left, right);
 // order center & right
 if(theArray[center] > theArray[right])
 swap(center, right);

 swap(center, right-1); // put pivot on right
 return theArray[right-1]; // return median value
 } // end medianOf3()

 //---

-
 public void swap(int dex1, int dex2) // swap two elements
 {
 double temp = theArray[dex1]; // A into temp
 theArray[dex1] = theArray[dex2]; // B into A
 theArray[dex2] = temp; // temp into B
 } // end swap(

 //---

-
 public int partitionIt(int left, int right, double pivot)
 {
 int leftPtr = left; // right of first elem
 int rightPtr = right - 1; // left of pivot

 while(true)
 {
 while(theArray[++leftPtr] < pivot) // find bigger
 ; // (nop)
 while(theArray[--rightPtr] > pivot) // find smaller
 ; // (nop)
 if(leftPtr >= rightPtr) // if pointers cross,
 break; // partition done
 else // not crossed, so

 - 271 -

 swap(leftPtr, rightPtr); // swap elements
 } // end while(true)
 swap(leftPtr, right-1); // restore pivot

//***
 return leftPtr; // return pivot location
 } // end partitionIt()

 //---

-
 public void manualSort(int left, int right)
 {
 int size = right-left+1;
 if(size <= 1)
 return; // no sort necessary
 if(size == 2)
 { // 2-sort left and right
 if(theArray[left] > theArray[right])
 swap(left, right);
 return;
 }
 else // size is 3
 { // 3-sort left, center (right-1) &

right
 if(theArray[left] > theArray[right-1])
 swap(left, right-1); // left, center
 if(theArray[left] > theArray[right])
 swap(left, right); // left, right
 if(theArray[right-1] > theArray[right])
 swap(right-1, right); // center,

right
 }
 } // end manualSort()

 //---

-
 } // end class ArrayIns

 //

 class QuickSort2App
 {
 public static void main(String[] args)
 {
 int maxSize = 16; // array size
 ArrayIns arr; // reference to array
 arr = new ArrayIns(maxSize); // create the array

 for(int j=0; j<maxSize; j++) // fill array with
 { // random numbers
 double n = (int)(java.lang.Math.random()*99);
 arr.insert(n);
 }
 arr.display(); // display items
 arr.quickSort(); // quicksort them

 - 272 -

 arr.display(); // display them again
 } // end main()

 } // end class QuickSort2App

This program uses another new method, manualSort(), to sort subarrays of 3 or fewer
elements. It returns immediately if the subarray is 1 cell (or less), swaps the cells if
necessary if the range is 2, and sorts 3 cells if the range is 3. The recQuickSort()
routine can't be used to sort ranges of 2 or 3 because median partitioning requires at
least 4 cells.

 The main() routine and the output of quickSort2.java are similar to those of
quickSort1.java.

 The quickSort2 Workshop Applet

The quickSort2 Workshop applet demonstrates the quicksort algorithm using median-of-
three partitioning. This applet is similar to the quickSort1 Workshop applet, but starts off
sorting the first, center, and left elements of each subarray and selecting the median of
these as the pivot value. At least, it does this if the array size is greater than 3. If the
subarray is 2 or 3 units, the applet simply sorts it "by hand" without partitioning or
recursive calls.

Notice the dramatic improvement in performance when the applet is used to sort 100
inversely ordered bars. No longer is every subarray partitioned into 1 cell and N–1 cells;
instead, the subarrays are partitioned roughly in half.

Other than this improvement for ordered data, the quickSort2 Workshop applet produces
results similar to quickSort1. It is no faster when sorting random data; it's advantages
become evident only when sorting ordered data.

 Handling Small Partitions

If you use the median-of-three partitioning method, it follows that the quicksort algorithm
won't work for partitions of three or fewer items. The number 3 in this case is called a
cutoff point. In the previous examples we sorted subarrays of 2 or 3 items by hand. Is this
the best way?

 Using an Insertion Sort for Small Partitions

Another option for dealing with small partitions is to use the insertion sort. When you do
this, you aren't restricted to a cutoff of 3. You can set the cutoff to 10, 20, or any other
number. It's interesting to experiment with different values of the cutoff to see where the
best performance lies. Knuth (see the bibliography) recommends a cutoff of 9. However,
the optimum number depends on your computer, operating system, compiler (or
interpreter), and so on.

 The quickSort3.java program, shown in Listing 7.5, uses an insertion sort to handle

subarrays of fewer than 10 cells.

 Listing 7.5 The quickSort3.java Program

 // quickSort3.java
 // demonstrates quick sort; uses insertion sort for cleanup
 // to run this program: C>java QuickSort3App
 //
 class ArrayIns

 - 273 -

 {
 private double[] theArray; // ref to array theArray
 private int nElems; // number of data items

 //---

-
 public ArrayIns(int max) // constructor
 {
 theArray = new double[max]; // create the array
 nElems = 0; // no items yet
 }

 //---

-
 public void insert(double value) // put element into array
 {
 theArray[nElems] = value; // insert it
 nElems++; // increment size
 }

 //---

-
 public void display() // displays array contents
 {
 System.out.print("A=");
 for(int j=0; j<nElems; j++) // for each element,
 System.out.print(theArray[j] + " "); // display it
 System.out.println("");
 }

 //---

-
 public void quickSort()
 {
 recQuickSort(0, nElems-1);
 insertionSort(0, nElems-1);
 }

 //---

-
 public void recQuickSort(int left, int right)
 {
 int size = right-left+1;
 if(size < 10) // insertion sort if

small
 insertionSort(left, right);
 else // quicksort if large
 {
 double median = medianOf3(left, right);
 int partition = partitionIt(left, right, median);
 recQuickSort(left, partition-1);
 recQuickSort(partition+1, right);
 }
 } // end recQuickSort()

 - 274 -

 //---

-
 public double medianOf3(int left, int right)
 {
 int center = (left+right)/2;
 // order left & center
 if(theArray[left] > theArray[center])
 swap(left, center);
 // order left & right
 if(theArray[left] > theArray[right])
 swap(left, right);
 // order center & right
 if(theArray[center] > theArray[right])
 swap(center, right);

 swap(center, right-1); // put pivot on right
 return theArray[right-1]; // return median value
 } // end medianOf3()

 //---

-
 public void swap(int dex1, int dex2) // swap two elements
 {
 double temp = theArray[dex1]; // A into temp
 theArray[dex1] = theArray[dex2]; // B into A
 theArray[dex2] = temp; // temp into B
 } // end swap(

 //---

-
 public int partitionIt(int left, int right, double pivot)
 {
 int leftPtr = left; // right of first elem
 int rightPtr = right - 1; // left of pivot
 while(true)
 {
 while(theArray[++leftPtr] < pivot) // find bigger
 ; // (nop)
 while(theArray[--rightPtr] > pivot) // find smaller
 ; // (nop)
 if(leftPtr >= rightPtr) // if pointers cross,
 break; // partition done
 else // not crossed, so
 swap(leftPtr, rightPtr); // swap elements
 } // end while(true)
 swap(leftPtr, right-1); // restore pivot
 return leftPtr; // return pivot location
 } // end partitionIt()

 //---

-
 // insertion sort
 public void insertionSort(int left, int right)

 - 275 -

 {
 int in, out;
 // sorted on left of

out
 for(out=left+1; out<=right; out++)
 {
 double temp = theArray[out]; // remove marked item
 in = out; // start shifts at out
 // until one is smaller,
 while(in>left && theArray[in-1] >= temp)
 {
 theArray[in] = theArray[in-1]; // shift item to

right
 --in; // go left one position
 }
 theArray[in] = temp; // insert marked item
 } // end for
 } // end insertionSort()

 //---

-
 } // end class ArrayIns

 //

 class QuickSort3App
 {
 public static void main(String[] args)
 {
 int maxSize = 16; // array size
 ArrayIns arr; // reference to array
 arr = new ArrayIns(maxSize); // create the array

 for(int j=0; j<maxSize; j++) // fill array with
 { // random numbers
 double n = (int)(java.lang.Math.random()*99);
 arr.insert(n);
 }
 arr.display(); // display items
 arr.quickSort(); // quicksort them
 arr.display(); // display them again
 } // end main()

 } // end class QuickSort3App

Using the insertion sort for small subarrays turns out to be the fastest approach on our
particular installation, but it is not much faster than sorting subarrays of 3 or fewer cells
by hand, as in quickSort2.java. The numbers of comparisons and copies are
reduced substantially in the quicksort phase, but are increased by an almost equal
amount in the insertion sort, so the time savings are not dramatic. However, it's probably
a worthwhile approach if you are trying to squeeze the last ounce of performance out of
quicksort.

 Insertion Sort Following Quicksort

 - 276 -

Another option is to completely quicksort the array without bothering to sort partitions
smaller than the cutoff. When quicksort is finished, the array will be almost sorted. You
then apply the insertion sort to the entire array. The insertion sort is supposed to operate
efficiently on almost-sorted arrays, and this approach is recommended by some experts,
but on our installation it runs very slowly. The insertion sort appears to be happier doing a
lot of small sorts than one big one.

 Removing Recursion

Another embellishment recommended by many writers is removing recursion from the
quicksort algorithm. This involves rewriting the algorithm to store deferred subarray
bounds (left and right) on a stack, and using a loop instead of recursion to oversee
the partitioning of smaller and smaller subarrays. The idea in doing this is to speed up the
program by removing method calls. However, this idea arose with older compilers and
computer architectures, which imposed a large time penalty for each method call. It's not
clear that removing recursion is much of an improvement for modern systems, which
handle method calls more efficiently.

 Efficiency of Quicksort

We've said that quicksort operates in O(N*logN) time. As we saw in the discussion of
mergesort in Chapter 6, this is generally true of the divide-and-conquer algorithms, in
which a recursive method divides a range of items into two groups and then calls itself to
handle each group. In this situation the logarithm actually has a base of 2: the running
time is proportional to N*log2N.

You can get an idea of the validity of this N*log2N running time for quicksort by running
one of the quickSort Workshop applets with 100 random bars and examining the resulting
dotted horizontal lines.

Each dotted line represents an array or subarray being partitioned: the pointers
leftScan and rightScan moving toward each other, comparing each data items and
swapping when appropriate. We saw in the section on partitioning that a single partition
runs in O(N) time. This tells us that the total length of all the lines is proportional to the
running time of quicksort. But how long are all the lines? It would be tedious to measure
them with a ruler on the screen, but we can visualize them a different way.

There is always one line that runs the entire width of the graph, spanning N bars. This
results from the first partition. There will also be two lines (one below and one above the
first line) that have an average length of N/2 bars; together they are again N bars long.
Then there will be four lines with an average length of N/4 that again total N bars, then 8
lines, 16, and so on. Figure 7.15 shows how this looks for 1, 2, 4, and 8 lines.

 - 277 -

 Figure 7.15: Lines correspond to partitions

In this figure solid horizontal lines represent the dotted horizontal lines in the quicksort
applets, and captions like N/4 cells long indicate average, not actual, line lengths. The
circled numbers on the left show the order in which the lines are created.

Each series of lines (the eight N/8 lines, for example) corresponds to a level of recursion.
The initial call to recQuickSort() is the first level and makes the first line; the two calls
from within the first call—the second level of recursion—make the next two lines; and so
on. If we assume we start with 100 cells, the results are shown in Table 7.4.

 Table 7.4: Line Lengths and Recursion

 Recursion

level

Step Numbers
in Figure 7.15

Average Line
Length (Cells)

Number of
Lines

Total Length
(Cells)

 1

1

100

1

100

 2

2, 9

50

2

100

 3

3, 6, 10, 13

25

4

100

 4

4, 5, 7, 8, 11,
12, 14, 15

12

8

96

 5

Not shown

6

16

96

 6

Not shown

3

32

96

 7

Not shown

1

64

64

Total = 652

Where does this division process stop? If we keep dividing 100 by 2, and count how
many times we do this, we get the series 100, 50, 25, 12, 6, 3, 1, which is 7 levels of
recursion. This looks about right on the workshop applets: if you pick some point on the
graph and count all the dotted lines directly above and below it, there will be an average
of approximately 7. (In Figure 7.15, because not all levels of recursion are shown, only 4
lines intersect any vertical slice of the graph.)

Table 7.4 shows a total of 652 cells. This is only an approximation because of round-off
errors, but it's close to 100 times the logarithm to the base 2 of 100, which is 6.65. Thus
this informal analysis suggests the validity of the N*log2N running time for quicksort.

More specifically, in the section on partitioning, we found that there should be N+2
comparisons and fewer than N/2 swaps. Multiplying these quantities by log2N for various
values of N gives the results shown in Table 7.5.

 - 278 -

 Table 7.5: Swaps and Comparisons in Quicksort

 N

8

12

16

64

100

128

 log2N

3

3.59

4

6

6.65

7

 N*log2N

24

43

64

384

665

896

 Comparisons: (N+2)*log2N

30

50

72

396

678

910

 Swaps: fewer than N/2*log2N

12

21

32

192

332

448

The log2N quantity used in Table 7.5 is actually true only in the best-case scenario,
where each subarray is partitioned exactly in half. For random data the figure is slightly
greater. Nevertheless, the quickSort1 and quickSort2 Workshop applets approximate
these results for 12 and 100 bars, as you can see by running them and observing the
Swaps and Comparisons fields.

Because they have different cutoff points and handle the resulting small partitions
differently, quickSort1 performs fewer swaps but more comparisons than quickSort2. The
number of swaps shown in the table is the maximum (which assumes the data is inversely
sorted). For random data the actual number of swaps turns out to be half to two thirds of
the figures shown.

 Summary

 • The Shellsort applies the insertion sort to widely spaced elements, then less widely

spaced elements, and so on.

 • The expression n-sorting means sorting every nth element.

 • A sequence of numbers, called the interval sequence, or gap sequence, is used to

determine the sorting intervals in the Shellsort.

 • A widely used interval sequence is generated by the recursive expression h=3*h+1,

where the initial value of h is 1.

 • If an array holds 1,000 items, it could be 364-sorted, 121-sorted, 40-sorted, 13-sorted,

4-sorted, and finally 1-sorted.

•

The Shellsort is hard to analyze, but runs in approximately O(N*(logN)2) time. This is
much faster than the O(N2) algorithms like insertion sort, but slower than the
O(N*logN) algorithms like quicksort.

•

To partition an array is to divide it into two subarrays, one of which holds items with
key values less than a specified value, while the other holds items with keys greater or
equal to this value.

 • The pivot value is the value that determines into which group an item will go during

partitioning; items smaller than the pivot value go in the left group, larger items go in

 - 279 -

the right group.

•

In the partitioning algorithm, two array indices, each in its own while loop, start at
opposite ends of the array and step toward each other, looking for items that need to
be swapped.

 • When an index finds an item that needs to be swapped, its while loop exits.

 • When both while loops exit, the items are swapped.

 • When both while loops exit and the indices have met or passed each other, the

partition is complete.

 • Partitioning operates in linear O(N) time, making N plus 1 or 2 comparisons and fewer

than N/2 swaps.

 • The partitioning algorithm may require extra tests in its inner while loops to prevent

the indices running off the ends of the array.

 • Quicksort partitions an array and then calls itself twice recursively to sort the two

resulting subarrays.

 • Subarrays of one element are already sorted; this can be a base case for quicksort.

 • The pivot value for a partition in quicksort is the key value of a specific item, called the

pivot.

 • In a simple version of quicksort, the pivot can always be the item at the right end of the

subarray.

 • During the partition the pivot is placed out of the way on the right, and is not involved

in the partitioning process.

 • Later the pivot is swapped again, into the sace between the two partitions. This is its

final sorted position.

 • In the simple version of quicksort, performance is only O(N2) for already sorted (or

inversely sorted) data.

 • In a more advanced version of quicksort, the pivot can be the median of the first, last,

and center items in the subarray. This is called median-of-three partitioning.

 • Median-of-three partitioning effectively eliminates the problem of O(N2) performance

for already sorted data.

 • In median-of-three partitioning, the left, center, and right items are sorted at the same

time the median is determined.

 • This sort eliminates the need for the end-of-array tests in the inner while loops in the

partitioning algorithm.

 • Quicksort operates in O(N*log2N) time (except when the simpler version is applied to

already sorted data).

 • Subarrays smaller than a certain size (the cutoff) can be sorted by a method other

than quicksort.

 - 280 -

 • The insertion sort is commonly used to sort subarrays smaller than the cutoff.

 • The insertion sort can also be applied to the entire array, after it has been sorted down

to a cutoff point by quicksort.

 Chapter 8: Binary Trees

 Overview

In this chapter we switch from algorithms, the focus of the last chapter on sorting, to data
structures. Binary trees are one of the fundamental data storage structures used in
programming. They provide advantages that the data structures we've seen so far cannot.
In this chapter we'll learn why you would want to use trees, how they work, and how to go
about creating them.

 Why Use Binary Trees?

Why might you want to use a tree? Usually, because it combines the advantages of two
other structures: an ordered array and a linked list. You can search a tree quickly, as you
can an ordered array, and you can also insert and delete items quickly, as you can with a
linked list. Let's explore these topics a bit before delving into the details of trees.

 Slow Insertion in an Ordered Array

Imagine an array in which all the elements are arranged in order; that is, an ordered
array, such as we saw in Chapter 3, "Simple Sorting." As we learned, it's quick to search
such an array for a particular value, using a binary search. You check in the center of the
array; if the object you're looking for is greater than what you find there, you narrow your
search to the top half of the array; if it's less, you narrow your search to the bottom half.
Applying this process repeatedly finds the object in O(logN) time. It's also quick to iterate
through an ordered array, visiting each object in sorted order.

On the other hand, if you want to insert a new object into an ordered array, you first need
to find where the object will go, and then move all the objects with greater keys up one
space in the array to make room for it. These multiple moves are time consuming,
requiring, on the average, moving half the items (N/2 moves). Deletion involves the same
multimove operation, and is thus equally slow.

 If you're going to be doing a lot of insertions and deletions, an ordered array is a bad

choice.

 Slow Searching in a Linked List

On the other hand, as we saw in Chapter 7, "Advanced Sorting," insertions and deletions
are quick to perform on a linked list. They are accomplished simply by changing a few
references. These operations require O(1) time (the fastest Big-O time).

Unfortunately, however, finding a specified element in a linked list is not so easy. You
must start at the beginning of the list and visit each element until you find the one you're
looking for. Thus you will need to visit an average of N/2 objects, comparing each one's
key with the desired value. This is slow, requiring O(N) time. (Notice that times
considered fast for a sort are slow for data structure operations.)

You might think you could speed things up by using an ordered linked list, in which the
elements were arranged in order, but this doesn't help. You still must start at the
beginning and visit the elements in order, because there's no way to access a given
element without following the chain of references to it. (Of course, in an ordered list it's
much quicker to visit the nodes in order than it is in a non-ordered list, but that doesn't

 - 281 -

help to find an arbitrary object.)

 Trees to the Rescue

It would be nice if there were a data structure with the quick insertion and deletion of a
linked list, and also the quick searching of an ordered array. Trees provide both these
characteristics, and are also one of the most interesting data structures.

 What Is a Tree?

 We'll be mostly interested in a particular kind of tree called a binary tree, but let's start by

discussing trees in general before moving on to the specifics of binary trees.

A tree consists of nodes connected by edges. Figure 8.1 shows a tree. In such a picture
of a tree (or in our Workshop applet) the nodes are represented as circles, and the edges
as lines connecting the circles.

Trees have been studied extensively as abstract mathematical entities, so there's a large
amount of theoretical knowledge about them. A tree is actually an instance of a more
general category called a graph, but we don't need to worry about that here. We'll discuss
graphs in Chapters 13, "Graphs," and 14, "Weighted Graphs."

 Figure 8.1: A tree

In computer programs, nodes often represent such entities as people, car parts, airline
reservations, and so on; in other words, the typical items we store in any kind of data
structure. In an OOP language such as Java, these real-world entities are represented by
objects.

The lines (edges) between the nodes represent the way the nodes are related. Roughly
speaking, the lines represent convenience: It's easy (and fast) for a program to get from
one node to another if there is a line connecting them. In fact, the only way to get from
node to node is to follow a path along the lines. Generally you are restricted to going in
one direction along edges: from the root downward.

 Edges are likely to be represented in a program by references, if the program is written in

Java (or by pointers if the program is written in C or C++).

Typically there is one node in the top row of a tree, with lines connecting to more nodes
on the second row, even more on the third, and so on. Thus trees are small on the top
and large on the bottom. This may seem upside-down compared with real trees, but
generally a program starts an operation at the small end of the tree, and it's (arguably)
more natural to think about going from top to bottom, as in reading text.

There are different kinds of trees. The tree shown in Figure 8.1 has more than two children
per node. (We'll see what "children" means in a moment.) However, in this chapter we'll be
discussing a specialized form of tree called a binary tree. Each node in a binary tree has a
maximum of two children. More general trees, in which nodes can have more than two
children, are called multiway trees. We'll see an example in Chapter 10, "2-3-4 Tables and

 - 282 -

External Storage," where we discuss 2-3-4 trees.

 Why Use Binary Trees?

Why might you want to use a tree? Usually, because it combines the advantages of two
other structures: an ordered array and a linked list. You can search a tree quickly, as you
can an ordered array, and you can also insert and delete items quickly, as you can with a
linked list. Let's explore these topics a bit before delving into the details of trees.

 Slow Insertion in an Ordered Array

Imagine an array in which all the elements are arranged in order; that is, an ordered
array, such as we saw in Chapter 3, "Simple Sorting." As we learned, it's quick to search
such an array for a particular value, using a binary search. You check in the center of the
array; if the object you're looking for is greater than what you find there, you narrow your
search to the top half of the array; if it's less, you narrow your search to the bottom half.
Applying this process repeatedly finds the object in O(logN) time. It's also quick to iterate
through an ordered array, visiting each object in sorted order.

On the other hand, if you want to insert a new object into an ordered array, you first need
to find where the object will go, and then move all the objects with greater keys up one
space in the array to make room for it. These multiple moves are time consuming,
requiring, on the average, moving half the items (N/2 moves). Deletion involves the same
multimove operation, and is thus equally slow.

 If you're going to be doing a lot of insertions and deletions, an ordered array is a bad

choice.

 Slow Searching in a Linked List

On the other hand, as we saw in Chapter 7, "Advanced Sorting," insertions and deletions
are quick to perform on a linked list. They are accomplished simply by changing a few
references. These operations require O(1) time (the fastest Big-O time).

Unfortunately, however, finding a specified element in a linked list is not so easy. You
must start at the beginning of the list and visit each element until you find the one you're
looking for. Thus you will need to visit an average of N/2 objects, comparing each one's
key with the desired value. This is slow, requiring O(N) time. (Notice that times
considered fast for a sort are slow for data structure operations.)

You might think you could speed things up by using an ordered linked list, in which the
elements were arranged in order, but this doesn't help. You still must start at the
beginning and visit the elements in order, because there's no way to access a given
element without following the chain of references to it. (Of course, in an ordered list it's
much quicker to visit the nodes in order than it is in a non-ordered list, but that doesn't
help to find an arbitrary object.)

 Trees to the Rescue

It would be nice if there were a data structure with the quick insertion and deletion of a
linked list, and also the quick searching of an ordered array. Trees provide both these
characteristics, and are also one of the most interesting data structures.

 What Is a Tree?

 We'll be mostly interested in a particular kind of tree called a binary tree, but let's start by

discussing trees in general before moving on to the specifics of binary trees.

 - 283 -

A tree consists of nodes connected by edges. Figure 8.1 shows a tree. In such a picture
of a tree (or in our Workshop applet) the nodes are represented as circles, and the edges
as lines connecting the circles.

Trees have been studied extensively as abstract mathematical entities, so there's a large
amount of theoretical knowledge about them. A tree is actually an instance of a more
general category called a graph, but we don't need to worry about that here. We'll discuss
graphs in Chapters 13, "Graphs," and 14, "Weighted Graphs."

 Figure 8.1: A tree

In computer programs, nodes often represent such entities as people, car parts, airline
reservations, and so on; in other words, the typical items we store in any kind of data
structure. In an OOP language such as Java, these real-world entities are represented by
objects.

The lines (edges) between the nodes represent the way the nodes are related. Roughly
speaking, the lines represent convenience: It's easy (and fast) for a program to get from
one node to another if there is a line connecting them. In fact, the only way to get from
node to node is to follow a path along the lines. Generally you are restricted to going in
one direction along edges: from the root downward.

 Edges are likely to be represented in a program by references, if the program is written in

Java (or by pointers if the program is written in C or C++).

Typically there is one node in the top row of a tree, with lines connecting to more nodes
on the second row, even more on the third, and so on. Thus trees are small on the top
and large on the bottom. This may seem upside-down compared with real trees, but
generally a program starts an operation at the small end of the tree, and it's (arguably)
more natural to think about going from top to bottom, as in reading text.

There are different kinds of trees. The tree shown in Figure 8.1 has more than two children
per node. (We'll see what "children" means in a moment.) However, in this chapter we'll be
discussing a specialized form of tree called a binary tree. Each node in a binary tree has a
maximum of two children. More general trees, in which nodes can have more than two
children, are called multiway trees. We'll see an example in Chapter 10, "2-3-4 Tables and
External Storage," where we discuss 2-3-4 trees.

An Analogy

One commonly encountered tree is the hierarchical file structure in a computer system.
The root directory of a given device (designated with the backslash, as in C:\, on many
systems) is the tree's root. The directories one level below the root directory are its
children. There may be many levels of subdirectories. Files represent leaves; they have
no children of their own.

Clearly a hierarchical file structure is not a binary tree, because a directory may have
many children. A complete pathname, such as
C:\SALES\EAST\NOVEMBER\SMITH.DAT, corresponds to the path from the root to the
SMITH.DAT leaf. Terms used for the file structure, such as root and path, were borrowed

 - 284 -

from tree theory.

A hierarchical file structure differs in a significant way from the trees we'll be discussing
here. In the file structure, subdirectories contain no data; only references to other
subdirectories or to files. Only files contain data. In a tree, every node contains data (a
personnel record, car-part specifications, or whatever). In addition to the data, all nodes
except leaves contain references to other nodes.

How Do Binary Trees Work?

Let's see how to carry out the common binary-tree operations of finding a node with a
given key, inserting a new node, traversing the tree, and deleting a node. For each of
these operations we'll first show how to use the Tree Workshop applet to carry it out; then
we'll look at the corresponding Java code.

 The Tree Workshop Applet

Start up the binary Tree Workshop applet. You'll see a screen something like that shown
in Figure 8.5. However, because the tree in the Workshop applet is randomly generated,
it won't look exactly the same as the tree in the figure.

 Figure 8.5: The binary Tree Workshop applet

 Using the Applet

The key values shown in the nodes range from 0 to 99. Of course, in a real tree, there
would probably be a larger range of key values. For example, if employees' Social
Security numbers were used for key values, they would range up to 999,999,999.

Another difference between the Workshop applet and a real tree is that the Workshop
applet is limited to a depth of 5; that is, there can be no more than 5 levels from the root
to the bottom. This restriction ensures that all the nodes in the tree will be visible on the
screen. In a real tree the number of levels is unlimited (until you run out of memory).

Using the Workshop applet, you can create a new tree whenever you want. To do this,
click the Fill button. A prompt will ask you to enter the number of nodes in the tree. This
can vary from 1 to 31, but 15 will give you a representative tree. After typing in the
number, press Fill twice more to generate the new tree. You can experiment by creating
trees with different numbers of nodes.

 Unbalanced Trees

 Notice that some of the trees you generate are unbalanced; that is, they have most of

their nodes on one side of the root or the other, as shown in Figure 8.6. Individual

 - 285 -

subtrees may also be unbalanced.

 Figure 8.6: An unbalanced tree (with an unbalanced subtree)

Trees become unbalanced because of the order in which the data items are inserted. If
these key values are inserted randomly, the tree will be more or less balanced. However,
if an ascending sequence (like 11, 18, 33, 42, 65, and so on) or a descending sequence
is generated, all the values will be right children (if ascending) or left children (if
descending) and the tree will be unbalanced. The key values in the Workshop applet are
generated randomly, but of course some short ascending or descending sequences will
be created anyway, which will lead to local imbalances. When you learn how to insert
items into the tree in the Workshop applet you can try building up a tree by inserting such
an ordered sequence of items and see what happens.

If you ask for a large number of nodes when you use Fill to create a tree, you may not get
as many nodes as you requested. Depending on how unbalanced the tree becomes,
some branches may not be able to hold a full number of nodes. This is because the
depth of the applet's tree is limited to five; the problem would not arise in a real tree.

If a tree is created by data items whose key values arrive in random order, the problem of
unbalanced trees may not be too much of a problem for larger trees, because the
chances of a long run of numbers in sequence is small. But key values can arrive in strict
sequence; for example, when a data-entry person arranges a stack of personnel files into
order of ascending employee number before entering the data. When this happens, tree
efficiency can be seriously degraded. We'll discuss unbalanced trees and what to do
about them in Chapter 9, "Red-Black Trees."

 Representing the Tree in Java Code

Let's see how we might implement a binary tree in Java. As with other data structures,
there are several approaches to representing a tree in the computer's memory. The most
common is to store the nodes at unrelated locations in memory and connect them using
references in each node that point to its children.

It's also possible to represent a tree in memory as an array, with nodes in specific
positions stored in corresponding positions in the array. We'll return to this possibility at
the end of this chapter. For our sample Java code we'll use the approach of connecting
the nodes using references.

As we discuss individual operations we'll show code fragments pertaining to that
operation. The complete program from which these fragments are extracted can be seen
toward the end of this chapter in Listing 8.1.

 The Node Class

 - 286 -

First, we need a class of node objects. These objects contain the data representing the
objects being stored (employees in an employee database, for example) and also
references to each of the node's two children. Here's how that looks:

 class Node
 {
 int iData; // data used as key value
 float fData; // other data
 node leftChild; // this node's left child
 node rightChild; // this node's right child

 public void displayNode()
 {
 // (see Listing 8.1 for method body)
 }

 }

Some programmers also include a reference to the node's parent. This simplifies some
operations but complicates others, so we don't include it. We do include a method called
displayNode() to display the node's data, but its code isn't relevant here.

 There are other approaches to designing class Node. Instead of placing the data items

directly into the node, you could use a reference to an object representing the data item:

 class Node
 {
 person p1; // reference to person object
 node leftChild; // this node's left child
 node rightChild; // this node's right child

 }

 class person
 {
 int iData;
 float fData;

 }

This makes it conceptually clearer that the node and the data item it holds aren't the
same thing, but it results in somewhat more complicated code, so we'll stick to the first
approach.

 The Tree Class

We'll also need a class from which to instantiate the tree itself; the object that holds all
the nodes. We'll call this class Tree. It has only one field: a Node variable that holds the
root. It doesn't need fields for the other nodes because they are all accessed from the
root.

The Tree class has a number of methods: some for finding, inserting, and deleting
nodes, several for different kinds of traverses, and one to display the tree. Here's a
skeleton version:

 - 287 -

 class Tree
 {
 private Node root; // the only data field in Tree

 public void find(int key)
 {
 }
 public void insert(int id, double dd)
 {
 }
 public void delete(int id)
 {
 }
 // various other methods

 } // end class Tree

 The TreeApp Class

Finally, we need a way to perform operations on the tree. Here's how you might write a
class with a main() routine to create a tree, insert three nodes into it, and then search
for one of them. We'll call this class TreeApp:

 class TreeApp
 {
 public static void main(String[] args)
 {
 Tree theTree = new Tree; // make a tree

 theTree.insert(50, 1.5); // insert 3 nodes
 theTree.insert(25, 1.7);
 theTree.insert(75, 1.9);

 node found = theTree.find(25); // find node with key 25
 if(found != null)
 System.out.println("Found the node with key 25");
 else
 System.out.println("Could not find node with key 25");
 } // end main()

 } // end class TreeApp

 In Listing 8.1 the main() routine provides a primitive user interface so you can decide

from the keyboard whether you want to insert, find, delete, or perform other operations.

 Next we'll look at individual tree operations: finding a node, inserting a node, traversing the

tree, and deleting a node.

Finding a Node

 Finding a node with a specific key is the simplest of the major tree operations, so let's

start with that.

 - 288 -

Remember that the nodes in a binary search tree correspond to objects containing
information. They could be person objects, with an employee number as the key and also
perhaps name, address, telephone number, salary, and other fields. Or they could
represent car parts, with a part number as the key value and fields for quantity on hand,
price, and so on. However, the only characteristics of each node that we can see in the
Workshop applet are a number and a color. A node is created with these two
characteristics and keeps them throughout its life.

 Using the Workshop Applet to Find a Node

Look at the Workshop applet and pick a node, preferably one near the bottom of the tree
(as far from the root as possible). The number shown in this node is its key value. We're
going to demonstrate how the Workshop applet finds the node, given the key value.

For purposes of this discussion we'll assume you've decided to find the node
representing the item with key value 57, as shown in Figure 8.7. Of course, when you run
the Workshop applet you'll get a different tree and will need to pick a different key value.

 Figure 8.7: Finding node 57

 Click the Find button. The prompt will ask for the value of the node to find. Enter 57 (or

whatever the number is on the node you chose). Click Find twice more.

As the Workshop applet looks for the specified node, the prompt will display either "Going
to left child" or "Going to right child," and the red arrow will move down one level to the
right or left.

Figure 8.7 the arrow starts at the root. The program compares the key value 57 with the
value at the root, which is 63. The key is less, so the program knows the desired node
must be on the left side of the tree; either the root's left child or one of this child's
descendants. The left child of the root has the value 27, so the comparison of 57 and 27
will show that the desired node is in the right subtree of 27. The arrow will go to 51, the
root of this subtree. Here, 57 is again greater than the 51 node, so we go to the right, to
58, and then to the left, to 57. This time the comparison shows 57 equals the node's key
value, so we've found the node we want.

The Workshop applet doesn't do anything with the node once it finds it, except to display
a message saying it has been found. A serious program would perform some operation
on the found node, such as displaying its contents or changing one of its fields.

 Java Code for Finding a Node

 Here's the code for the find() routine, which is a method of the Tree class:

 - 289 -

 public Node find(int key) // find node with given key
 { // (assumes non-empty tree)
 Node current = root; // start at root

 while(current.iData != key) // while no match,
 {
 if(key < current.iData) // go left?
 current = current.leftChild;
 else
 current = current.rightChild; // or go right?
 if(current == null) // if no child,
 return null; // didn't find it
 }
 return current; // found it

 }

This routine uses a variable current to hold the node it is currently examining. The
argument key is the value to be found. The routine starts at the root. (It has to; this is the
only node it can access directly.) That is, it sets current to the root.

Then, in the while loop, it compares the value to be found, key, with the value of the
iData field (the key field) in the current node. If key is less than this field, then current
is set to the node's left child. If key is greater than (or equal) to the node's iData field,
then current is set to the node's right child.

 Can't Find It

If current becomes equal to null, then we couldn't find the next child node in the
sequence; we've reached the end of the line without finding the node we were looking for,
so it can't exist. We return null to indicate this fact.

 Found It

If the condition of the while loop is not satisfied, so that we exit from the bottom of the
loop, then the iData field of current is equal to key; that is, we've found the node we
want. We return the node, so that the routine that called find() can access any of the
node's data.

 Efficiency

As you can see, how long it takes to find a node depends on how many levels down it is
situated. In the Workshop applet there can be up to 31 nodes, but no more than 5 levels—
so you can find any node using a maximum of only 5 comparisons. This is O(logN) time, or
more specifically O(log2N) time; the logarithm to the base 2. We'll discuss this further
toward the end of this chapter.

Inserting a Node

To insert a node we must first find the place to insert it. This is much the same process
as trying to find a node that turns out not to exist, as described in the section on Find. We
follow the path from the root to the appropriate node, which will be the parent of the new
node. Once this parent is found, the new node is connected as its left or right child,
depending on whether the new node's key is less than or greater than that of the parent.

 - 290 -

 Using the Workshop Applet to Insert a Node

To insert a new node with the Workshop applet, press the Ins button. You'll be asked to
type the key value of the node to be inserted. Let's assume we're going to insert a new
node with the value 45. Type this into the text field.

 The first step for the program in inserting a node is to find where it should be inserted.

Figure 8.8a shows how this looks.

The value 45 is less than 60 but greater than 40, so we arrive at node 50. Now we want
to go left because 45 is less than 50, but 50 has no left child; its leftChild field is null.
When it sees this null, the insertion routine has found the place to attach the new node.
The Workshop applet does this by creating a new node with the value 45 (and a
randomly generated color) and connecting it as the left child of 50, as shown in Figure
8.8b.

 Figure 8.8: Inserting a node

 Java Code for Inserting a Node

 The insert() function starts by creating the new node, using the data supplied as

arguments.

Next, insert() must determine where to insert the new node. This is done using
roughly the same code as finding a node, described in the section on find(). The
difference is that when you're simply trying to find a node and you encounter a null (non-
existent) node, you know the node you're looking for doesn't exist so you return
immediately. When you're trying to insert a node you insert it (creating it first, if
necessary) before returning.

The value to be searched for is the data item passed in the argument id. The while
loop uses true as its condition because it doesn't care if it encounters a node with the
same value as id; it treats another node with the same key value as if it were simply
greater than the key value. (We'll return to the subject of duplicate nodes later in this
chapter.)

 A place to insert a new node will always be found (unless you run out of memory); when

it is, and the new node is attached, the while loop exits with a return statement.

 Here's the code for the insert() function:

 public void insert(int id, double dd)

 - 291 -

 {
 Node newNode = new Node(); // make new node
 newNode.iData = id; // insert data
 newNode.dData = dd;
 if(root==null) // no node in root
 root = newNode;
 else // root occupied
 {
 Node current = root; // start at root
 Node parent;
 while(true) // (exits internally)
 {
 parent = current;
 if(id < current.iData) // go left?
 {
 current = current.leftChild;
 if(current == null) // if end of the line,
 { // insert on left
 parent.leftChild = newNode;
 return;
 }
 } // end if go left
 else // or go right?
 {
 current = current.rightChild;
 if(current == null) // if end of the line
 { // insert on right
 parent.rightChild = newNode;
 return;
 }
 } // end else go right
 } // end while
 } // end else not root
 } // end insert()

 // --

-

We use a new variable, parent (the parent of current), to remember the last non-null
node we encountered (50 in the figure). This is necessary because current is set to
null in the process of discovering that its previous value did not have an appropriate
child. If we didn't save parent, we'd lose track of where we were.

To insert the new node, change the appropriate child pointer in parent (the last non-null
node you encountered) to point to the new node. If you were looking unsuccessfully for
parent's left child, you attach the new node as parent's left child; if you were looking for
its right child, you attach the new node as its right child. In Figure 8.8, 45 is attached as the
left child of 50.

 Traversing the Tree

 Traversing a tree means visiting each node in a specified order. This process is not as

commonly used as finding, inserting, and deleting nodes. One reason for this is that

 - 292 -

traversal is not particularly fast. But traversing a tree is useful in some circumstances and
the algorithm is interesting. (It's also simpler than deletion, the discussion of which we
want to defer as long as possible.)

There are three simple ways to traverse a tree. They're called preorder, inorder, and
postorder. The order most commonly used for binary search trees is inorder, so let's look
at that first, and then return briefly to the other two.

 Inorder Traversal

An inorder traversal of a binary search tree will cause all the nodes to be visited in
ascending order, based on their key values. If you want to create a sorted list of the data
in a binary tree, this is one way to do it.

The simplest way to carry out a traversal is the use of recursion (discussed in Chapter 6,
"Recursion"). A recursive method to traverse the entire tree is called with a node as an
argument. Initially, this node is the root. The method needs to do only three things:

 1. Call itself to traverse the node's left subtree

 2. Visit the node

 3. Call itself to traverse the node's right subtree

 Remember that visiting a node means doing something to it: displaying it, writing it to a

file, or whatever.

Traversals work with any binary tree, not just with binary search trees. The traversal
mechanism doesn't pay any attention to the key values of the nodes; it only concerns
itself with whether a node has children.

 Java Code for Traversing

The actual code for inorder traversal is so simple we show it before seeing how traversal
looks in the Workshop applet. The routine, inOrder(), performs the three steps already
described. The visit to the node consists of displaying the contents of the node. Like any
recursive function, there must be a base case: the condition that causes the routine to
return immediately, without calling itself. In inOrder() this happens when the node
passed as an argument is null. Here's the code for the inOrder() method:

 private void inOrder(node localRoot)
 {
 if(localRoot != null)
 {
 inOrder(localRoot.leftChild);
 localRoot.displayNode();
 inOrder(localRoot.rightChild);
 }

 }

 This method is initially called with the root as an argument:

 inOrder(root);

 After that, it's on its own, calling itself recursively until there are no more nodes to visit.

 - 293 -

 Traversing a 3-Node Tree

Let's look at a simple example to get an idea of how this recursive traversal routine
works. Imagine traversing a tree with only three nodes: a root (A) with a left child (B) and
a right child (C), as shown in Figure 8.9.

 Figure 8.9: inOrder() method applied to 3-node tree

We start by calling inOrder() with the root A as an argument. This incarnation of
inOrder() we'll call inOrder(A). inOrder(A) first calls inOrder() with its left
child, B, as an argument. This second incarnation of inOrder() we'll call inOrder(B).

inOrder(B) now calls itself with its left child as an argument. However, it has no left
child, so this argument is null. This creates an invocation of inOrder() we could call
inOrder(null). There are now three instances of inOrder() in existence:
inOrder(A), inOrder(B), and inOrder(null). However, inOrder(null) returns
immediately when it finds its argument is null. (We all have days like that.)

Now inOrder(B) goes on to visit B; we'll assume this means to display it. Then
inOrder(B) calls inOrder() again, with its right child as an argument. Again this
argument is null, so the second inOrder(null) returns immediately. Now
inOrder(B) has carried out steps 1, 2, and 3, so it returns (and thereby ceases to
exist).

Now we're back to inOrder(A), just returning from traversing A's left child. We visit A,
and then call inOrder() again with C as an argument, creating inOrder(C). Like
inOrder(B), inOrder(C) has no children, so step 1 returns with no action, step 2
visits C, and step 3 returns with no action. inOrder(B) now returns to inOrder(A).

However, inOrder(A) is now done, so it returns and the entire traversal is complete.
The order in which the nodes were visited is A, B, C; they have been visited inorder. In a
binary search tree this would be the order of ascending keys.

 More complex trees are handled similarly. The inOrder() function calls itself for each

node, until it has worked its way through the entire tree.

 Traversing with the Workshop Applet

 To see what a traversal looks like with the Workshop applet, repeatedly press the Trav

 - 294 -

button. (There's no need to type in any numbers.)

Here's what happens when you use the Tree Workshop applet to traverse inorder the
tree shown in Figure 8.10. This is slightly more complex than the 3-node tree seen
previously. The red arrow starts at the root. Table 8.1 shows the sequence of node keys
and the corresponding messages. The key sequence is displayed at the bottom of the
Workshop applet screen.

 Figure 8.10: Traversing a tree inorder

 Table 8.1: WORKSHOP APPLET TRAVERSAL

 Step Number

Red Arrow on Node

Message

List of Nodes Visited

 1

50 (root)

Will check left child

 2

30

Will check left child

 3

20

Will check left child

 4

20

Will visit this node

 5

20

Will check right
child

20

 6

20

Will go to root of
previous subtree

20

 7

30

Will visit this node

20

 8

30

Will check for right
child

20 30

 9

40

Will check left child

20 30

 10

40

Will visit this node

20 30

 11

40

Will check right
child

20 30 40

 12

40

Will go to root of
previous subtree

20 30 40

 - 295 -

 13

50

Will visit this node

20 30 40

 14

50

Will check right
child

20 30 40 50

 15

60

Will check left child

20 30 40 50

 16

60

Will visit this node

20 30 40 50

 17

60

Will check for right
child

20 30 40 50 60

 18

60

Will go to root of
previous subtree

20 30 40 50 60

 19

50

Done traversal

20 30 40 50 60

It may not be obvious, but for each node, the routine traverses the node's left subtree,
visits the node, and traverses the right subtree. For example, for node 30 this happens in
steps 2, 7, and 8.

 All this isn't as complicated as it looks. The best way to get a feel for what's happening is

to traverse a variety of different trees with the Workshop applet.

 Preorder and Postorder Traversals

You can traverse the tree in two ways besides inorder; they're called preorder and post-
order. It's fairly clear why you might want to traverse a tree inorder, but the motivation for
preorder and postorder traversals is more obscure. However, these traversals are indeed
useful if you're writing programs that parse or analyze algebraic expressions. Let's see
why that should be true.

A binary tree (not a binary search tree) can be used to represent an algebraic expression
that involves the binary arithmetic operators +, -, /, and *. The root node holds an
operator, and each of its subtrees represents either a variable name (like A, B, or C) or
another expression.

 For example, the binary tree shown in Figure 8.11 represents the algebraic expression

 A*(B+C)

This is called infix notation; it's the notation normally used in algebra. Traversing the tree
inorder will generate the correct inorder sequence A*B+C, but you'll need to insert the
parentheses yourself.

 - 296 -

 Figure 8.11: Tree representing an algebraic expression

What's all this got to do with preorder and postorder traversals? Let's see what's involved.
For these other traversals the same three steps are used as for inorder, but in a different
sequence. Here's the sequence for a preorder() method:

 1. Visit the node.

 2. Call itself to traverse the node's left subtree.

 3. Call itself to traverse the node's right subtree.

 Traversing the tree shown in Figure 8.11 using preorder would generate the expression

 *A+BC

This is called prefix notation. One of the nice things about it is that parentheses are never
required; the expression is unambiguous without them. It means "apply the operator * to
the next two things in the expression." These two things are A and +BC. The expression
+BC means "apply + to the next two things in the expression;" which are B and C, so this
last expression is B+C in inorder notation. Inserting that into the original expression
A+BC (preorder) gives us A(B+C) in inorder.

 The postorder traversal method contains the three steps arranged in yet another way:

 1. Call itself to traverse the node's left subtree.

 2. Call itself to traverse the node's right subtree.

 3. Visit the node.

 For the tree in Figure 8.11, visiting the nodes with a postorder traversal would generate

the expression

 ABC+*

This is called postfix notation. As described in Chapter 4, "Stacks and Queues," it means
"apply the last operator in the expression, *, to the first and second things." The first thing
is A, and the second thing is BC+.

BC+ means "apply the last operator in the expression, +, to the first and second things."
The first thing is B and the second thing is C, so this gives us (B+C) in infix. Inserting this
in the original expression ABC+* (postfix) gives us A*(B+C) postfix.

 The code in Listing 8.1 contains methods for preorder and postorder traversals, as well as

for inorder.

 Finding Maximum and Minimum Values

Incidentally, we should note how easy it is to find the maximum and minimum values in a
binary search tree. In fact, it's so easy we don't include it as an option in the Workshop
applet, nor show code for it in Listing 8.1. Still, it's important to understand how it works.

 For the minimum, go to the left child of the root; then go to the left child of that child, and

 - 297 -

so on, until you come to a node that has no left child. This node is the minimum, as
shown in Figure 8.12.

 Figure 8.12: Minimum value of a tree

 Here's some code that returns the node with the minimum key value:

 public Node minimum() // returns node with minimum key

value
 {
 Node current, last;
 current = root; // start at root
 while(current != null) // until the bottom,
 {
 last = current; // remember node
 current = current.leftChild; // go to left child
 }
 return last;

 }

 We'll need to know about finding the minimum value when we set about deleting a node.

For the maximum value in the tree, follow the same procedure but go from right child to
right child until you find a node with no right child. This node is the maximum. The code is
the same except that the last statement in the loop is

 current = current.rightChild; // go to right child

Deleting a Node

Deleting a node is the most complicated common operation required for binary search
trees. However, deletion is important in many tree applications, and studying the details
builds character.

 You start by finding the node you want to delete, using the same approach we saw in
find() and insert(). Once you've found the node, there are three cases to consider.

 1. The node to be deleted is a leaf (has no children).

 2. The node to be deleted has one child.

 3. The node to be deleted has two children.

 - 298 -

 We'll look at these three cases in turn. The first is easy, the second almost as easy, and

the third quite complicated.

 Case 1: The Node to be Deleted Has No Children

To delete a leaf node, you simply change the appropriate child field in the node's parent
to point to null instead of to the node. The node will still exist, but it will no longer be part
of the tree. This is shown in Figure 8.13.

 Figure 8.13: Deleting a node with no children

Because of Java's garbage collection feature, we don't need to worry about explicitly
deleting the node itself. When Java realizes that nothing in the program refers to the
node, it will be removed from memory. (In C and C++ you would need to execute free()
or delete() to remove the node from memory.)

 Using the Workshop Applet to Delete a Node With No Children

Assume you're going do delete node 7 in Figure 8.13. Press the Del button and enter 7
when prompted. Again, the node must be found before it can be deleted. Repeatedly
pressing Del will take you from 10 to 5 to 7. When it's found, it's deleted without incident.

 Java Code to Delete a Node With No Children

The first part of the delete() routine is similar to find() and insert(). It involves
finding the node to be deleted. As with insert(), we need to remember the parent of
the node to be deleted so we can modify its child fields. If we find the node, we drop out
of the while loop with parent containing the node to be deleted. If we can't find it, we
return from delete() with a value of false.

 public boolean delete(int key) // delete node with given key
 { // (assumes non-empty list)
 Node current = root;
 Node parent = root;
 boolean isLeftChild = true;

 while(current.iData != key) // search for node
 {
 parent = current;
 if(key < current.iData) // go left?
 {
 isLeftChild = true;
 current = current.leftChild;
 }
 else // or go right?

 - 299 -

 {
 isLeftChild = false;
 current = current.rightChild;
 }
 if(current == null) // end of the line,
 return false; // didn't find it
 } // end while
 // found node to delete
 // continues...

 }

Once we've found the node, we check first to see whether it has no children. When this is
true we check the special case of the root; if that's the node to be deleted, we simply set
it to null, and this empties the tree. Otherwise, we set the parent's leftChild or
rightChild field to null to disconnect the parent from the node.

 // delete() continued...
 // if no children, simply delete it
 if(current.leftChild==null &&
 current.rightChild==null)
 {
 if(current == root) // if root,
 root = null; // tree is empty
 else if(isLeftChild)
 parent.leftChild = null; // disconnect
 else // from parent
 parent.rightChild = null;
 }

 // continues...

 Case 2: The Node to be Deleted Has One Child

This case isn't so bad either. The node has only two connections: to its parent and to its
only child. You want to "snip" the node out of this sequence by connecting its parent
directly to its child. This involves changing the appropriate reference in the parent
(leftChild or rightChild) to point to the deleted node's child. This is shown in
Figure 8.14.

 Figure 8.14: Deleting a node with one child

 - 300 -

 Using the Workshop Applet to Delete a Node with One Child

Let's assume we're using the Workshop on the tree in Figure 8.14, and deleting node 71,
which has a left child but no right child. Press Del and enter 71 when prompted. Keep
pressing Del until the arrow rests on 71. Node 71 has only one child, 63. It doesn't matter
whether 63 has children of its own; in this case, it has one: 67.

Pressing Del once more causes 71 to be deleted. Its place is taken by its left child, 63. In
fact, the entire subtree of which 63 is the root is moved up and plugged in as the new
right child of 52.

Use the Workshop applet to generate new trees with one-child nodes, and see what
happens when you delete them. Look for the subtree whose root is the deleted node's
child. No matter how complicated this subtree is, it's simply moved up and plugged in as
the new child of the deleted node's parent.

 Java Code to Delete a Node With One Child

The following code shows how to deal with the one-child situation. There are four
variations: the child of the node to be deleted may be either a left or right child, and for
each of these cases the node to be deleted may be either the left or right child of its
parent.

There is also a specialized situation: The node to be deleted may be the root, in which
case it has no parent and is simply replaced by the appropriate subtree. Here's the code
(which continues from the end of the no-child code fragment shown earlier):

 // delete() continued...
 // if no right child, replace with left subtree
 else if(current.rightChild==null)
 if(current == root)
 root = current.leftChild;
 else if(isLeftChild) // left child of parent
 parent.leftChild = current.leftChild;
 else // right child of parent
 parent.rightChild = current.leftChild;

 // if no left child, replace with right subtree
 else if(current.leftChild==null)
 if(current == root)
 root = current.rightChild;
 else if(isLeftChild) // left child of parent
 parent.leftChild = current.rightChild;
 else // right child of parent
 parent.rightChild = current.rightChild;

 // continued...

Notice that working with references makes it easy to move an entire subtree. You do this
by simply disconnecting the old reference to the subtree and creating a new reference to
it somewhere else. Although there may be lots of nodes in the subtree, youdon't need to
worry about moving them individually. In fact, they only "move" in the sense of being
conceptually in different positions relative to the other nodes. As far as the program is
concerned, only the reference to the root of the subtree has changed.

 - 301 -

 Case 3: The Node to be Deleted Has Two Children

Now the fun begins. If the deleted node has two children, you can't just replace it with
one of these children, at least if the child has its own children. Why not? Examine Figure
8.15, and imagine deleting node 25 and replacing it with its right subtree, whose root is
35. Which left child would 35 have? The deleted node's left child, 15, or the new node's
left child, 30? In either case 30 would be in the wrong place, but we can't just throw it
away.

We need another approach. The good news is that there's a trick. The bad news is that,
even with the trick, there are a lot of special cases to consider. Remember that in a
binary search tree the nodes are arranged in order of ascending keys. For each node, the
node with the next-highest key is called its inorder successor, or simply its successor. In
Figure 8.15a, node 30 is the successor of node 25.

Here's the trick: To delete a node with two children, replace the node with its inorder
successor. Figure 8.16 shows a deleted node being replaced by its successor. Notice
that the nodes are still in order. (There's more to it if the successor itself has children;
we'll look at that possibility in a moment.)

 Figure 8.15: Can't replace with subtree

 Figure 8.16: Node replaced by its successor

 Finding the Successor

How do you find the successor of a node? As a human being, you can do this quickly (for
small trees, anyway). Just take a quick glance at the tree and find the next-largest
number following the key of the node to be deleted. In Figure 8.16 it doesn't take long to
see that the successor of 25 is 30. There's just no other number which is greater than 25
and also smaller than 35. However, the computer can't do things "at a glance," it needs
an algorithm.

 - 302 -

First the program goes to the original node's right child, which must have a key larger
than the node. Then it goes to this right child's left child (if it has one), and to this left
child's left child, and so on, following down the path of left children. The last left child in
this path is the successor of the original node, as shown in Figure 8.17.

 Figure 8.17: Finding the successor

Why does this work? What we're really looking for is the smallest of the set of nodes that
are larger than the original node. When you go to the original node's right child, all the
nodes in the resulting subtree are greater than the original node, because this is how a
binary search tree is defined. Now we want the smallest value in this subtree. As we
learned, you can find the minimum value in a subtree by following the path down all the
left children. Thus, this algorithm finds the minimum value that is greater than the original
node; this is what we mean by its successor.

 If the right child of the original node has no left children, then this right child is itself the

successor, as shown in Figure 8.18.

 Figure 8.18: The right child is the successor

 Using the Workshop Applet to Delete a Node with Two Children

Generate a tree with the Workshop applet, and pick a node with two children. Now
mentally figure out which node is its successor by going to its right child and then
following down the line of this right child's left children (if it has any). You may want to
make sure the successor has no children of its own. If it does, the situation gets more
complicated because entire subtrees are moved around, rather than a single node.

Once you've chosen a node to delete, click the Del button. You'll be asked for the key
value of the node to delete. When you've specified it, repeated presses of the Del button
will show the red arrow searching down the tree to the designated node. When the node
is deleted, it's replaced by its successor.

 - 303 -

 In the example shown in Figure 8.15, the red arrow will go from the root at 50 to 25; then
25 will be replaced by 30.

 Java Code to Find the Successor

Here's some code for a method getSuccessor(), which returns the successor of the
node specified as its delNode argument. (This routine assumes that delNode does
indeed have a right child, but we know this is true because we've already determined that
the node to be deleted has two children.)

 // returns node with next-highest value after delNode
 // goes to right child, then right child's left descendants

 private node getSuccessor(node delNode)

 {
 Node successorParent = delNode;
 Node successor = delNode;
 Node current = delNode.rightChild; // go to right child
 while(current != null) // until no more
 { // left children,
 successorParent = successor;
 successor = current;
 current = current.leftChild; // go to left child
 }
 // if successor not

 if(successor != delNode.rightChild) // right child,
 { // make connections
 successorParent.leftChild = successor.rightChild;
 successor.rightChild = delNode.rightChild;
 }

 return successor;

 }

The routine first goes to delNode's right child, then, in the while loop, follows down the
path of all this right child's left children. When the while loop exits, successor contains
delNode's successor.

 Once we've found the successor, we may need to access its parent, so within the while

loop we also keep track of the parent of the current node.

The getSuccessor() routine carries out two additional operations in addition to finding
the successor. However, to understand these, we need to step back and consider the big
picture.

As we've seen, the successor node can occupy one of two possible positions relative to
current, the node to be deleted. The successor can be current's right child, or it can
be one of this right child's left descendants. We'll look at these two situations in turn.

 successor Is Right Child of delNode

 If successor is the right child of delNode, things are simplified somewhat because we

 - 304 -

can simply move the subtree of which successor is the root and plug it in where the
deleted node was. This requires only two steps:

 1. Unplug current from the rightChild field of its parent (or leftChild field if

appropriate), and set this field to point to successor.

 2. Unplug current's left child from current, and plug it into the leftChild field of successor.

 Here are the code statements that carry out these steps, excerpted from delete():

 1. parent.rightChild = successor;

 2. successor.leftChild = current.leftChild;

 This situation is summarized in Figure 8.19, which shows the connections affected by

these two steps.

 Figure 8.19: Deletion when successor is right child

 Here's the code in context (a continuation of the else-if ladder shown earlier):

 // delete() continued

 else // two children, so replace with inorder successor
 {
 // get successor of node to delete (current)
 Node successor = getSuccessor(current);

 // connect parent of current to successor instead
 if(current == root)
 root = successor;
 else if(isLeftChild)
 parent.leftChild = successor;
 else
 parent.rightChild = successor;
 // connect successor to current's left child
 successor.leftChild = current.leftChild;
 } // end else two children

 // (successor cannot have a left child)
 return true;

 } // end delete()

 - 305 -

 Notice that this is—finally—the end of the delete() routine. Let's review the code for

these two steps.

Step 1: If the node to be deleted, current, is the root, it has no parent so we merely set
the root to the successor. Otherwise, the node to be deleted can be either a left or right
child (the figure shows it as a right child), so we set the appropriate field in its parent to
point to successor. Once delete() returns and current goes out of scope, the node
referred to by current will have no references to it, so it will be discarded during Java's
next garbage collection.

 Step 2: We set the left child of successor to point to current's left child.

What happens if the successor has children of its own? First of all, a successor node is
guaranteed not to have a left child. This is true whether the successor is the right child of
the node to be deleted or one of this right child's left children. How do we know this?

Well, remember that the algorithm we use to determine the successor goes to the right
child first, and then to any left children of that right child. It stops when it gets to a node
with no left child, so the algorithm itself determines that the successor can't have any left
children. If it did, that left child would be the successor instead.

You can check this out on the Workshop applet. No matter how many trees you make,
you'll never find a situation in which a node's successor has a left child (assuming the
original node has two children, which is the situation that leads to all this trouble in the
first place).

On the other hand, the successor may very well have a right child. This isn't much of a
problem when the successor is the right child of the node to be deleted. When we move
the successor, its right subtree simply follows along with it. There's no conflict with the
right child of the node being deleted, because the successor is this right child.

 In the next section we'll see that a successor's right child needs more attention if the

successor is not the right child of the node to be deleted.

 successor Is Left Descendant of Right Child of delNode

 If successor is a left descendant of the right child of the node to be deleted, four steps

are required to perform the deletion:

 1. Plug the right child of successor into the leftChild field of the successor's

parent.

 2. Plug the right child of the node to be deleted into the rightChild field of

successor.

 3. Unplug current from the rightChild field of its parent, and set this field to point to

successor.

 4. Unplug current's left child from current, and plug it into the leftChild field of

successor.

 Steps 1 and 2 are handled in the getSuccessor() routine, while 3 and 4 are carried in
delete(). Figure 8.20 shows the connections affected by these four steps.

 - 306 -

 Figure 8.20: Deletion when successor is left child

 Here's the code for these four steps:

 1. successorParent.leftChild = successor.rightChild;

 2. successor.rightChild = delNode.rightChild;

 3. parent.rightChild = successor;

 4. successor.leftChild = current.leftChild;

(Step 3 could also refer to the left child of its parent.) The numbers in Figure 8.20 show
the connections affected by the four steps. Step 1 in effect replaces the successor with its
right subtree. Step 2 keeps the right child of the deleted node in its proper place (this
happens automatically when the successor is the right child of the deleted node). Steps 1
and 2 are carried out in the if statement that ends the getSuccessor() method
shown earlier. Here's that statement again:

 // if successor not

 if(successor != delNode.rightChild) // right child,
 { // make connections
 successorParent.leftChild = successor.rightChild;
 successor.rightChild = delNode.rightChild;

 }

These steps are more convenient to perform here than in delete(), because in
getSuccessor() it's easy to figure out where the successor's parent is while we're
descending the tree to find the successor.

Steps 3 and 4 we've seen already; they're the same as steps 1 and 2 in the case where
the successor is the right child of the node to be deleted, and the code is in the if
statement at the end of delete().

 Is Deletion Necessary?

If you've come this far, you can see that deletion is fairly involved. In fact, it's so
complicated that some programmers try to sidestep it altogether. They add a new
Boolean field to the node class, called something like isDeleted. To delete a node,
they simply set this field to true. Then other operations, like find(), check this field to

 - 307 -

be sure the node isn't marked as deleted before working with it. This way, deleting a
node doesn't change the structure of the tree. Of course, it also means that memory can
fill up with "deleted" nodes.

 This approach is a bit of a cop-out, but it may be appropriate where there won't be many

deletions in a tree. (If ex-employees remain in the personnel file forever, for example.)

 The Efficiency of Binary Trees

As you've seen, most operations with trees involve descending the tree from level to level
to find a particular node. How long does it take to do this? In a full tree, about half the
nodes are on the bottom level. (Actually there's one more node on the bottom row than in
the rest of the tree.) Thus about half of all searches or insertions or deletions require
finding a node on the lowest level. (An additional quarter of these operations require
finding the node on the next-to-lowest level, and so on.)

During a search we need to visit one node on each level so we can get a good idea how
long it takes to carry out these operations by knowing how many levels there are.
Assuming a full tree, Table 8.2 shows how many levels are necessary to hold a given
number of nodes.

 Table 8.2: NUMBER OF LEVELS FOR SPECIFIED NUMBER OF NODES

 Number of Nodes

Number of Levels

 1

1

 3

2

 7

3

 15

4

 31

5

 ...

...

 1,023

10

 ...

...

 32,767

15

 ...

...

 1,048,575

20

 ...

...

 33,554,432

25

 - 308 -

 1,073,741,824

30

This situation is very much like the ordered array discussed in Chapter 3. In that case,
the number of comparisons for a binary search was approximately equal to the base-2
logarithm of the number of cells in the array. Here, if we call the number of nodes in the
first column N, and the number of levels in the second column L, then we can say that N
is 1 less than 2 raised to the power L, or

 N = 2L – 1

 Adding 1 to both sides of the equation, we have

 N+1 = 2L

 This is equivalent to

 L = log2(N+1)

 Thus the time needed to carry out the common tree operations is proportional to the

base-2 log of N. In Big-O notation we say such operations take O(logN) time.

If the tree isn't full, analysis is difficult. We can say that for a tree with a given number of
levels, average search times will be shorter for the non-full tree than the full tree because
fewer searches will proceed to lower levels.

Compare the tree to the other data-storage structures we've discussed so far. In an
unordered array or a linked list containing 1,000,000 items, it would take you on the
average 500,000 comparisons to find the one you wanted. But in a tree of 1,000,000
items, it takes 20 (or fewer) comparisons.

In an ordered array you can find an item equally quickly, but inserting an item requires,
on the average, moving 500,000 items. Inserting an item in a tree with 1,000,000 items
requires 20 or fewer comparisons, plus a small amount of time to connect the item.

Similarly, deleting an item from a 1,000,000-item array requires moving an average of
500,000 items, while deleting an item from a 1,000,000-node tree requires 20 or fewer
comparisons to find the item, plus (possibly) a few more comparisons to find its
successor, plus a short time to disconnect the item and connect its successor.

 Thus a tree provides high efficiency for all the common data-storage operations.

Traversing is not as fast as the other operations. However, traversals are probably not very
commonly carried out in a typical large database. They're more appropriate when a tree is
used as an aid to parsing algebraic or similar expressions, which are probably not too long
anyway.

Trees Represented as Arrays

Our code examples are based on the idea that a tree's edges are represented by
leftChild and rightChild references in each node. However, there's a completely
different way to represent a tree: with an array.

 In the array approach, the nodes are stored in an array and are not linked by references.

 - 309 -

The position of the node in the array corresponds to its position in the tree. The node at
index 0 is the root, the node at index 1 is the root's left child, and so on, progressing from
left to right along each level of the tree. This is shown in Figure 8.21.

 Figure 8.21: Tree represented by an array

Every position in the tree, whether it represents an existing node or not, corresponds to a
cell in the array. Adding a node at a given position in the tree means inserting the node
into the equivalent cell in the array. Cells representing tree positions with no nodes are
filled with zero or null.

With this scheme, a node's children and parent can be found by applying some simple
arithmetic to the node's index number in the array. If a node's index number is index,
then this node's left child is

 2*index + 1

 its right child is

 2*index + 2

 and its parent is

 (index-1) / 2

 (where the '/' character indicates integer division with no remainder). You can check this

out by looking at the figure.

In most situations, representing a tree with an array isn't very efficient. Unfilled nodes and
deleted nodes leave holes in the array, wasting memory. Even worse, when deletion of a
node involves moving subtrees, every node in the subtree must be moved to its new
location in the array, which is time-consuming in large trees.

However, if deletions aren't allowed, then the array representation may be useful,
especially if obtaining memory for each node dynamically is, for some reason, too time-
consuming. The array representation may also be useful in special situations. The tree in
the Workshop applet, for example, is represented internally as an array to make it easy to
map the nodes from the array to fixed locations on the screen display.

Duplicate Keys

 As in other data structures, the problem of duplicate keys must be addressed. In the code

 - 310 -

shown for insert(), and in the Workshop applet, a node with a duplicate key will be
inserted as the right child of its twin.

The problem is that the find() routine will find only the first of two (or more) duplicate
nodes. The find() routine could be modified to check an additional data item, to
distinguish data items even when the keys were the same, but this would be (at least
somewhat) time-consuming.

One option is to simply forbid duplicate keys. When duplicate keys are excluded by the
nature of the data (employee ID numbers, for example) there's no problem. Otherwise,
you need to modify the insert() routine to check for equality during the insertion
process, and abort the insertion if a duplicate is found.

 The Fill routine in the Workshop applet excludes duplicates when generating the random

keys.

Duplicate Keys

As in other data structures, the problem of duplicate keys must be addressed. In the code
shown for insert(), and in the Workshop applet, a node with a duplicate key will be
inserted as the right child of its twin.

The problem is that the find() routine will find only the first of two (or more) duplicate
nodes. The find() routine could be modified to check an additional data item, to
distinguish data items even when the keys were the same, but this would be (at least
somewhat) time-consuming.

One option is to simply forbid duplicate keys. When duplicate keys are excluded by the
nature of the data (employee ID numbers, for example) there's no problem. Otherwise,
you need to modify the insert() routine to check for equality during the insertion
process, and abort the insertion if a duplicate is found.

 The Fill routine in the Workshop applet excludes duplicates when generating the random

keys.

Summary

 • Trees consist of nodes (circles) connected by edges (lines).

 • The root is the topmost node in a tree; it has no parent.

 • In a binary tree, a node has at most two children.

•

In a binary search tree, all the nodes that are left descendants of node A have key
values less than A; all the nodes that are A's right descendants have key values
greater than (or equal to) A.

 • Trees perform searches, insertions, and deletions in O(log N) time.

 • Nodes represent the data-objects being stored in the tree.

 • Edges are most commonly represented in a program by references to a node's

children (and sometimes to its parent).

 • Traversing a tree means visiting all its nodes in some order.

 - 311 -

 • The simplest traversals are preorder, inorder, and postorder.

 • An unbalanced tree is one whose root has many more left descendents than right

descendants, or vice versa.

•

Searching for a node involves comparing the value to be found with the key value of a
node, and going to that node's left child if the key search value is less, or to the node's
right child if the search value is greater.

 • Insertion involves finding the place to insert the new node, and then changing a child

field in its new parent to refer to it.

 • An inorder traversal visits nodes in order of ascending keys.

 • Preorder and postorder traversals are useful for parsing algebraic expressions.

 • When a node has no children, it can be deleted by setting the child field in its parent to

null.

 • When a node has one child, it can be deleted by setting the child field in its parent to

point to its child.

 • When a node has two children, it can be deleted by replacing it with its successor.

 • The successor to a node A can be found by finding the minimum node in the subtree

whose root is A's right child.

•

In a deletion of a node with two children, different situations arise, depending on
whether the successor is the right child of the node to be deleted or one of the right
child's left descendants.

 • Nodes with duplicate key values may cause trouble in arrays because only the first

one can be found in a search.

 • Trees can be represented in the computer's memory as an array, although the

reference-based approach is more common.

 Chapter 9: Red-Black Trees

 Overview

As you learned in the last chapter, ordinary binary search trees offer important
advantages as data storage devices: You can quickly search for an item with a given key,
and you can also quickly insert or delete an item. Other data storage structures, such as
arrays, sorted arrays, and linked lists, perform one or the other of these activities slowly.
Thus binary search trees might appear to be the ideal data storage structure.

Unfortunately, ordinary binary search trees suffer from a troublesome problem. They
work well if the data is inserted into the tree in random order. However, they become
much slower if data is inserted in already sorted order (17, 21, 28, 36,…) or inversely
sorted order (36, 28, 21, 17,…). When the values to be inserted are already ordered, a
binary tree becomes unbalanced. With an unbalanced tree, the capability to quickly find
(or insert or delete) a given element is lost.

 This chapter explores one way to solve the problem of unbalanced trees: the red-black

tree, which is a binary search tree with some added features.

 - 312 -

There are other ways to ensure that trees are balanced. We'll mention some at the end of
this chapter, and examine one, the 2-3-4 tree, in Chapter 10, "2-3-4 Tables and External
Storage." However, the red-black tree is in most cases the most efficient balanced tree, at
least when data is stored in memory as opposed to external files.

Our Approach to the Discussion

We'll explain insertion into red-black trees a little differently than we have explained
insertion into other data structures. Red-black trees are not trivial to understand. Because
of this and also because of a multiplicity of symmetrical cases (for left or right children,
and inside or outside grandchildren) the actual code is more lengthy and complex than
one might expect. It's therefore hard to learn about the algorithm by examining code.

 Conceptual

For this reason, we're going to concentrate on conceptual understanding rather than
coding details. In this we will be aided by the RBTree Workshop applet. We'll describe
how you can work in partnership with the applet to insert new nodes into a tree. Including
a human in the insertion routine certainly slows it down, but it also makes it easier for the
human to understand how the process works.

Searching works the same way in a red-black tree as it does in an ordinary binary tree.
On the other hand, insertion and deletion, while based on the algorithms in an ordinary
tree, are extensively modified. Accordingly, in this chapter we'll be concentrating on the
insertion process.

 Top-Down Insertion

In this chapter, the approach to insertion that we'll discuss is called top-down insertion.
This means that some structural changes may be made to the tree as the search routine
descends the tree looking for the place to insert the node.

Another approach is bottom-up insertion. This involves finding the place to insert the node
and then working back up through the tree making structural changes. Bottom-up insertion
is less efficient because two passes must be made through the tree.

Balanced and Unbalanced Trees

Before we begin our investigation of red-black trees, let's review how trees become
unbalanced. Fire up the Tree Workshop applet from Chapter 8, "Binary Trees," (not this
chapter's RBTree applet). Use the Fill button to create a tree with only one node. Then
insert a series of nodes whose keys are in either ascending or descending order. The
result will be something like that in Figure 9.1.

 Figure 9.1: Items inserted in ascending order

 - 313 -

The nodes arrange themselves in a line with no branches. Because each node is larger
than the previously inserted one, every node is a right child, so all the nodes are on one
side of the root. The tree is maximally unbalanced. If you inserted items in descending
order, every node would be the left child of its parent; the tree would be unbalanced on
the other side.

 Degenerates to O(N)

When there are no branches, the tree becomes, in effect, a linked list. The arrangement
of data is one-dimensional instead of two-dimensional. Unfortunately, as with a linked list,
you must now search through (on the average) half the items to find the one you're
looking for. In this situation the speed of searching is reduced to O(N), instead of O(logN)
as it is for a balanced tree. Searching through 10,000 items in such an unbalanced tree
would require an average of 5,000 comparisons, whereas for a balanced tree with
random insertions it requires only 14. For presorted data you might just as well use a
linked list in the first place.

Data that's only partly sorted will generate trees that are only partly unbalanced. If you
use the Tree Workshop applet from Chapter 8 to attempt to generate trees with 31
nodes, you'll see that some of them are more unbalanced than others, as shown in
Figure 9.2.

 Figure 9.2: A partially unbalanced tree

 Although not as bad as a maximally unbalanced tree, this situation is not optimal for

searching times.

In the Tree Workshop applet, trees can become partially unbalanced, even with randomly
generated data, because the amount of data is so small that even a short run of ordered
numbers will have a big effect on the tree. Also, a very small or very large key value can
cause an unbalanced tree by not allowing the insertion of many nodes on one side or the
other. A root of 3, for example, allows only two more nodes to be inserted to its left.

With a realistic amount of random data it's not likely a tree would become seriously
unbalanced. However, there may be runs of sorted data that will partially unbalance a
tree. Searching partially unbalanced trees will take time somewhere between O(N) and
O(logN), depending on how badly the tree is unbalanced.

 Balance to the Rescue

To guarantee the quick O(log N) search times a tree is capable of, we need to ensure
that our tree is always balanced (or at least almost balanced). This means that each node
in a tree needs to have roughly the same number of descendents on its left side as it has
on its right.

 - 314 -

In a red-black tree, balance is achieved during insertion (and also deletion, but we'll
ignore that for the moment). As an item is being inserted, the insertion routine checks that
certain characteristics of the tree are not violated. If they are, it takes corrective action,
restructuring the tree as necessary. By maintaining these characteristics, the tree is kept
balanced.

 Red-Black Tree Characteristics

 What are these mysterious tree characteristics? There are two, one simple and one more

complicated:

 • The nodes are colored.

 • During insertion and deletion, rules are followed that preserve various arrangements of

these colors.

 Colored Nodes

In a red-black tree, every node is either black or red. These are arbitrary colors; blue and
yellow would do just as well. In fact, the whole concept of saying that nodes have "colors"
is somewhat arbitrary. Some other analogy could have been used instead: We could say
that every node is either heavy or light, or yin or yang. However, colors are convenient
labels. A data field, which can be boolean (isRed, for example), is added to the node
class to embody this color information.

In the RBTree Workshop applet, the red/black characteristic of a node is shown by its
border color. The center color, as it was in the Tree applet in the last chapter, is simply a
randomly generated data field of the node.

When we speak of a node's color in this chapter we'll almost always be referring to its
red-black border color. In the figures (except the screen shot of Figure 9.2) we'll show
black nodes with a solid black border and red nodes with a white border. (Nodes are
sometimes shown with no border to indicate that it doesn't matter whether they're black
or red.)

 Red-Black Rules

When inserting (or deleting) a new node, certain rules, which we call the red-black rules,
must be followed. If they're followed, the tree will be balanced. Let's look briefly at these
rules:

 1. Every node is either red or black.

 2. The root is always black.

 3. If a node is red, its children must be black (although the converse isn't necessarily

true).

 4. Every path from the root to a leaf, or to a null child, must contain the same number of

black nodes.

The "null child" referred to in Rule 4 is a place where a child could be attached to a non-
leaf node. In other words, it's the potential left child of a node with a right child, or the
potential right child of a node with a left child. This will make more sense as we go along.

The number of black nodes on a path from root to leaf is called the black height. Another
way to state Rule 4 is that the black height must be the same for all paths from the root to
a leaf.

 - 315 -

These rules probably seem completely mysterious. It's not obvious how they will lead to a
balanced tree, but they do; some very clever people invented them. Copy them onto a
sticky note, and keep it on your computer. You'll need to refer to them often in the course
of this chapter.

You can see how the rules work by using the RBTree Workshop applet. We'll do some
experiments with the applet in a moment, but first you should understand what actions
you can take to fix things if one of the red-black rules is broken.

 Duplicate Keys

What happens if there's more than one data item with the same key? This presents a
slight problem in red-black trees. It's important that nodes with the same key are
distributed on both sides of other nodes with the same key. That is, if keys arrive in the
order 50, 50, 50, you want the second 50 to go to the right of the first one, and the third
50 to go to the left of the first one. Otherwise, the tree becomes unbalanced.

This could be handled by some kind of randomizing process in the insertion algorithm.
However, the search process then becomes more complicated if all items with the same
key must be found.

 It's simpler to outlaw items with the same key. In this discussion we'll assume duplicates

aren't allowed.

 The Actions

Suppose you see (or are told by the applet) that the color rules are violated. How can you
fix things so your tree is in compliance? There are two, and only two, possible actions
you can take:

 • You can change the colors of nodes.

 • You can perform rotations.

Changing the color of a node means changing its red-black border color (not the center
color). A rotation is a rearrangement of the nodes that hopefully leaves the tree more
balanced.

 At this point such concepts probably seem very abstract, so let's become familiar with the

RBTree Workshop applet, which can help to clarify things.

Using the RBTree Workshop Applet

Figure 9.3 shows what the RBTree Workshop applet looks like after some nodes have
been inserted. (It may be hard to tell the difference between red and black node borders
in the figure, but they should be clear on a color monitor.)

 - 316 -

 Figure 9.3: The RBTree Workshop applet

There are quite a few buttons in the RBTree applet. We'll briefly review what they do,
although at this point some of the descriptions may be a bit puzzling. Soon we'll do some
experimenting with these buttons.

 Clicking on a Node

The red arrow points to the currently selected node. It's this node whose color is changed
or which is the top node in a rotation. You select a node by single-clicking it with the
mouse. This moves the red arrow to the node.

 The Start Button

When you first start the Workshop applet, and also when you press the Start button,
you'll see that a tree is created that contains only one node. Because an understanding
of red-black trees focuses on using the red-black rules during the insertion process, it's
more convenient to begin with the root and build up the tree by inserting additional nodes.
To simplify future operations, the initial root node is always given a value of 50. (You
select your own numbers for subsequent insertions.)

 The Ins Button

The Ins button causes a new node to be created, with the value that was typed into the
Number box, and then inserted into the tree. (At least this is what happens if no color flips
are necessary. See the section on the Flip button for more on this possibility.)

Notice that the Ins button does a complete insertion operation with one push; multiple
pushes are not required as they were with the Tree Workshop applet in the last chapter.
The focus in the RBTree applet is not on the process of finding the place to insert the
node, which is similar to that in ordinary binary search trees, but on keeping the tree
balanced, so the applet doesn't show the individual steps in the insertion.

 The Del Button

Pushing the Del button causes the node with the key value typed into the Number box to
be deleted. As with the Ins button, this takes place immediately after the first push;
multiple pushes are not required.

The Del button and the Ins button use the basic insertion algorithms; the same as those
in the Tree Workshop applet. This is how the work is divided between the applet and the
user: the applet does the insertion, but it's (mostly) up to the user to make the appropriate
changes to the tree to ensure the red-black rules are followed and the tree thereby
becomes balanced.

 - 317 -

 The Flip Button

If there is a black parent with two red children, and you place the red arrow on the parent
by clicking on the node with the mouse, then when you press the Flip button the parent
will become red and the children will become black. That is, the colors are flipped
between the parent and children. You'll learn later why this is a desirable thing to do.

 If you try to flip the root, it will remain black, so as not to violate Rule 2, but its children will

change from red to black.

 The RoL Button

This button carries out a left rotation. To rotate a group of nodes, first single-click the
mouse to position the arrow at the topmost node of the group to be rotated. For a left
rotation, the top node must have a right child. Then click the button. We'll examine
rotations in detail later.

 The RoR Button

 This button performs a right rotation. Position the arrow on the top node to be rotated,

making sure it has a left child; then click the button.

 The R/B Button

The R/B button changes a red node to black, or a black node to red. Single-click the
mouse to position the red arrow on the node, and then push the button. (This button
changes the color of a single node; don't confuse it with the Flip button, which changes
three nodes at once.)

 Text Messages

Messages in the text box below the buttons tell you whether the tree is red-black correct.
The tree is red-black correct if it adheres to rules 1 to 4 listed previously. If it's not correct,
you'll see messages advising which rule is being violated. In some cases the red arrow
will point to where the violation occurred.

 Where's the Find Button?

In red-black trees, a search routine operates exactly as it did in the ordinary binary
search trees described in the last chapter. It starts at the root, and, at each node it
encounters (the current node), it decides whether to go to the left or right child by
comparing the key of the current node with the search key.

 We don't include a Find button in the RBTree applet because you already understand this

process and our attention will be on manipulating the red-black aspects of the tree.

Experimenting

Now that you're familiar with the RBTree buttons, let's do some simple experiments to get
a feel for what the applet does. The idea here is to learn to manipulate the applet's
controls. Later you'll use these skills to balance the tree.

 Experiment 1

 Press Start to clear any extra nodes. You'll be left with the root node, which always has

 - 318 -

the value 50.

Insert a new node with a value smaller than the root, say 25, by typing the number into
the Number box and pressing the Ins button. This doesn't cause any rule violations, so
the message continues to say Tree is red-black correct.

Insert a second node that's larger than the root, say 75. The tree is still red-black correct.
It's also balanced; there are the same number of nodes on the right of the only non-leaf
node (the root) as there are on its left. The result is shown in Figure 9.4.

 Figure 9.4: A balanced tree

Notice that newly inserted nodes are always colored red (except for the root). This is not
an accident. It's less likely that inserting a red node will violate the red-black rules than
inserting a black one.

This is because if the new red node is attached to a black one, no rule is broken. It
doesn't create a situation in which there are two red nodes together (Rule 3), and it
doesn't change the black height in any of the paths (Rule 4). Of course, if you attach a
new red node to a red node, Rule 3 will be violated. However, with any luck this will only
happen half the time. Whereas, if it were possible to add a new black node, it would
always change the black height for its path, violating Rule 4.

 Also, it's easier to fix violations of Rule 3 (parent and child are both red) than Rule 4

(black heights differ), as we'll see later.

 Experiment 2

Let's try some rotations. Start with the three nodes as shown in Figure 9.4. Position the
red arrow on the root (50) by clicking it with the mouse. This node will be the top node in
the rotation. Now perform a right rotation by pressing the RoR button. The nodes all shift
to new positions, as shown in Figure 9.5.

 Figure 9.5: Following a right rotation

In this right rotation, the parent or top node moves into the place of its right child, the left
child moves up and takes the place of the parent, and the right child moves down to
become the grandchild of the new top node.

 Notice that the tree is now unbalanced; there are more nodes to the right of the root than

to the left. Also, the message indicates that the red-black rules are violated, specifically

 - 319 -

Rule 2 (the root is always black). Don't worry about this yet.

Instead, rotate the other way. Position the red arrow on 25, which is now the root (the
arrow should already point to 25 after the previous rotation). Click the RoL button to
rotate left. The nodes will return to the position of Figure 9.4.

 Experiment 3

Start with the position of Figure 9.4, with nodes 25 and 75 inserted in addition to 50 in the
root position. Note that the parent (the root) is black and both its children are red. Now try
to insert another node. No matter what value you use, you'll see the message Can't
Insert: Needs color flip.

 As we mentioned, a color flip is necessary whenever, during the insertion process, a

black node with two red children is encountered.

The red arrow should already be positioned on the black parent (the root node), so click
the Flip button. The root's two children change from red to black. Ordinarily the parent
would change from black to red, but this is a special case because it's the root: it remains
black to avoid violating Rule 2. Now all three nodes are black. The tree is still red-black
correct.

 Now click the Ins button again to insert the new node. Figure 9.6 shows the result if the

newly inserted node has the key value 12.

The tree is still red-black correct. The root is black, there's no situation in which a parent
and child are both red, and all the paths have the same number of black nodes (2).
Adding the new red node didn't change the red-black correctness.

 Experiment 4

Now let's see what happens when you try to do something that leads to an unbalanced
tree. In Figure 9.6 one path has one more node than the other. This isn't very
unbalanced, and no red-black rules are violated, so neither we nor the red-black
algorithms need to worry about it. However, suppose that one path differs from another
by two or more levels (where level is the same as the number of nodes along the path).
In this case the red-black rules will always be violated, and we'll need to rebalance the
tree.

 Figure 9.6: Colors flipped, new node inserted

 Insert a 6 into the tree of Figure 9.6. You'll see the message Error: parent and
child are both red. Rule 3 has been violated, as shown in Figure 9.7.

 - 320 -

 Figure 9.7: Parent and child are both red

How can we fix things so Rule 3 isn't violated? An obvious approach is to change one of
the offending nodes to black. Let's try changing the child node, 6. Position the red arrow
on it and press the R/B button. The node becomes black.

The good news is we fixed the problem of both parent and child being red. The bad news
is that now the message says Error: Black heights differ. The path from the
root to node 6 has three black nodes in it, while the path from the root to node 75 has
only two. Thus Rule 4 is violated. It seems we can't win.

 This problem can be fixed with a rotation and some color changes. How to do this will be

the topic of later sections.

 More Experiments

Experiment with the RBTree Workshop applet on your own. Insert more nodes and see
what happens. See if you can use rotations and color changes to achieve a balanced
tree. Does keeping the tree red-black correct seem to guarantee an (almost) balanced
tree?

Try inserting ascending keys (50, 60, 70, 80, 90) and then restart with the Start button
and try descending keys (50, 40, 30, 20, 10). Ignore the messages; we'll see what they
mean later. These are the situations that get the ordinary binary search tree into trouble.
Can you still balance the tree?

 The Red-Black Rules and Balanced Trees

Try to create a tree that is unbalanced by two or more levels but is red-black correct. As it
turns out, this is impossible. That's why the red-black rules keep the tree balanced. If one
path is more than one node longer than another, then it must either have more black
nodes, violating Rule 4, or it must have two adjacent red nodes, violating Rule 3.
Convince yourself that this is true by experimenting with the applet.

 Null Children

Remember that Rule 4 specifies all paths that go from the root to any leaf or to any null
children must have the same number of black nodes. A null child is a child that a non-leaf
node might have, but doesn't. Thus in Figure 9.8 the path from 50 to 25 to the right child
of 25 (its null child) has only one black node, which is not the same as the paths to 6 and
75, which have 2. This arrangement violates Rule 4, although both paths to leaf nodes
have the same number of black nodes.

 - 321 -

 Figure 9.8: Path to a null child

The term black height is used to describe the number of black nodes from between a given
node and the root. In Figure 9.8 the black height of 50 is 1, of 25 is still 1, of 12 is 2, and so
on.

Rotations

To balance a tree, it's necessary to physically rearrange the nodes. If all the nodes are on
the left of the root, for example, you need to move some of them over to the right side.
This is done using rotations. In this section we'll learn what rotations are and how to
execute them.

 Rotations are ways to rearrange nodes. They were designed to do the following two

things:

 • Raise some nodes and lower others to help balance the tree.

 • Ensure that the characteristics of a binary search tree are not violated.

Recall that in a binary search tree the left children of any node have key values less than
the node, while its right children have key values greater or equal to the node. If the
rotation didn't maintain a valid binary search tree it wouldn't be of much use, because the
search algorithm, as we saw in the last chapter, relies on the search-tree arrangement.

Note that color rules and node color changes are used only to help decide when to
perform a rotation; fiddling with the colors doesn't accomplish anything by itself; it's the
rotation that's the heavy hitter. Color rules are like rules of thumb for building a house
(such as "exterior doors open inward"), while rotations are like the hammering and
sawing needed to actually build it.

 Simple Rotations

In Experiment 2 we tried rotations to the left and right. These rotations were easy to
visualize because they involved only three nodes. Let's clarify some aspects of this
process.

 What's Rotating?

The term rotation can be a little misleading. The nodes themselves aren't rotated, the
relationship between them changes. One node is chosen as the "top" of the rotation. If
we're doing a right rotation, this "top" node will move down and to the right, into the
position of its right child. Its left child will move up to take its place.

 Remember that the top node isn't the "center" of the rotation. If we talk about a car tire,

the top node doesn't correspond to the axle or the hubcap, it's more like the topmost part

 - 322 -

of the tire tread.

The rotation we described in Experiment 2 was performed with the root as the top node,
but of course any node can be the top node in a rotation, provided it has the appropriate
child.

 Mind the Children

You must be sure that, if you're doing a right rotation, the top node has a left child.
Otherwise there's nothing to rotate into the top spot. Similarly, if you're doing a left
rotation, the top node must have a right child.

 The Weird Crossover Node

Rotations can be more complicated than the three-node example we've discussed so far.
Click Start, and then, with 50 already at the root, insert nodes with following values, in
this order: 25, 75, 12, 37.

When you try to insert the 12, you'll see the Can't insert: needs color flip
message. Just click the Flip button. The parent and children change color. Then press Ins
again to complete the insertion of the 12. Finally insert the 37. The resulting arrangement
is shown in Figure 9.9a.

 FIGURE 9.9: Rotation with crossover node

 Now we'll try a rotation. Place the arrow on the root (don't forget this!) and press the RoR

button. All the nodes move. The 12 follows the 25 up, and the 50 follows the 75 down.

But what's this? The 37 has detached itself from the 25, whose right child it was, and
become instead the left child of 50. Some nodes go up, some nodes go down, but the 37
moves across. The result is shown in Figure 9.9b. The rotation has caused a violation of
Rule 4; we'll see how to fix this later.

In the original position of Figure 9.9a, the 37 is called an inside grandchild of the top
node, 50. (The 12 is an outside grandchild.) The inside grandchild, if it's the child of the
node that's going up (which is the left child of the top node in a right rotation) is always
disconnected from its parent and reconnected to its former grandparent. It's like
becoming your own uncle (although it's best not to dwell too long on this analogy).

 Subtrees on the Move

 We've shown individual nodes changing position during a rotation, but entire subtrees

can move as well. To see this, click Start to put 50 at the root, and then insert the

 - 323 -

following sequence of nodes in order: 25, 75, 12, 37, 62, 87, 6, 18, 31, 43. Click Flip
whenever you can't complete an insertion because of the Can't insert: needs
color flip message. The resulting arrangement is shown in Figure 9.10a.

 Figure 9.10: Subtree motion during rotation

 Position the arrow on the root, 50. Now press RoR. Wow! (Or is it WoW?) A lot of nodes

have changed position. The result is shown in Figure 9.10b. Here's what happens:

 • The top node (50) goes to its right child.

 • The top node's left child (25) goes to the top.

 • The entire subtree of which 12 is the root moves up.

 • The entire subtree of which 37 is the root moves across to become the left child of 50.

 • The entire subtree of which 75 is the root moves down.

You'll see the Error: root must be black message but you can ignore it for the
time being. You can flip back and forth by alternately pressing RoR and RoL with the
arrow on the top node. Do this and watch what happens to the subtrees, especially the
one with 37 as its root.

The figures show the subtrees encircled by dotted triangles. Note that the relations of the
nodes within each subtree are unaffected by the rotation. The entire subtree moves as a
unit. The subtrees can be larger (have more descendants) than the three nodes we show
in this example. No matter how many nodes there are in a subtree, they will all move
together during a rotation.

 Human Beings Versus Computers

This is pretty much all you need to know about what a rotation does. To cause a rotation,
you position the arrow on the top node, then press RoR or RoL. Of course, in a real red-
black tree insertion algorithm, rotations happen under program control, without human
intervention.

Notice however that, in your capacity as a human being, you could probably balance any
tree just by looking at it and performing appropriate rotations. Whenever a node has a lot
of left descendants and not too many right ones, you rotate it right, and vice versa.

 - 324 -

Unfortunately, computers aren't very good at "just looking" at a pattern. They work better if
they can follow a few simple rules. That's what the red-black scheme provides, in the form
of color coding and the four color rules.

 Inserting a New Node

 Now you have enough background to see how a red-black tree's insertion routine uses

rotations and the color rules to maintain the tree's balance.

 Preview

We're going to briefly preview our approach to describing the insertion process. Don't
worry if things aren't completely clear in the preview; we'll discuss things in more detail in
a moment.

In the discussion that follows we'll use X, P, and G to designate a pattern of related
nodes. X is a node that has caused a rule violation. (Sometimes X refers to a newly
inserted node, and sometimes to the child node when a parent and child have a red-red
conflict.)

 • X is a particular node.

 • P is the parent of X.

 • G is the grandparent of X (the parent of P).

On the way down the tree to find the insertion point, you perform a color flip whenever
you find a black node with two red children (a violation of Rule 2). Sometimes the flip
causes a red-red conflict (a violation of Rule 3). Call the red child X and the red parent P.
The conflict can be fixed with a single rotation or a double rotation, depending on whether
X is an outside or inside grandchild of G. Following color flips and rotations, you continue
down to the insertion point and insert the new node.

After you've inserted the new node X, if P is black you simply attach the new red node. If
P is red, there are two possibilities: X can be an outside or inside grandchild of G. You
perform two color changes (we'll see what they are in a moment). If X is an outside
grandchild, you perform one rotation, and if it's an inside grandchild you perform two.
This restores the tree to a balanced state.

 Now we'll recapitulate this preview in more detail. We'll divide the discussion into three

parts, arranged in order of complexity:

 1. Color flips on the way down

 2. Rotations once the node is inserted

 3. Rotations on the way down

If we were discussing these three parts in strict chronological order, we'd examine part 3
before part 2. However, it's easier to talk about rotations at the bottom of the tree than in
the middle, and operations 1 and 2 are encountered more frequently than operation 3, so
we'll discuss 2 before 3.

 Color Flips on the Way Down

 The insertion routine in a red-black tree starts off doing essentially the same thing it does

 - 325 -

in an ordinary binary search tree: It follows a path from the root to the place where the
node should be inserted, going left or right at each node depending on the relative size of
the node's key and the search key.

However, in a red-black tree, getting to the insertion point is complicated by color flips
and rotations. We introduced color flips in Experiment 3; now we'll look at them in more
detail.

Imagine the insertion routine proceeding down the tree, going left or right at each node,
searching for the place to insert a new node. To make sure the color rules aren't broken,
it needs to perform color flips when necessary. Here's the rule: Every time the insertion
routine encounters a black node that has two red children, it must change the children to
black and the parent to red (unless the parent is the root, which always remains black).

 Figure 9.11: Color flip

How does a color flip affect the red-black rules? For convenience, let's call the node at
the top of the triangle, the one that's red before the flip, P for parent. We'll call P's left and
right children X1 and X2. This is shown in Figure 9.11a.

 Black Heights Unchanged

Figure 9.11b shows the nodes after the color flip. The flip leaves unchanged the number
of black nodes on the path from the root on down through P to the leaf or null nodes. All
such paths go through P, and then through either X1 or X2. Before the flip, only P is
black, so the triangle (consisting of P, X1, and X2) adds one black node to each of these
paths.

After the flip, P is no longer black, but both L and R are, so again the triangle contributes
one black node to every path that passes through it. So a color flip can't cause Rule 4 to
be violated.

 Color flips are helpful because they make red leaf nodes into black leaf nodes. This

makes it easier to attach new red nodes without violating Rule 3.

 Could Be Two Reds

Although Rule 4 is not violated by a color flip, Rule 3 (a node and its parent can't both be
red) may be. If the parent of P is black, there's no problem when P is changed from black
to red. However, if the parent of P is red, then, after the color change, we'll have two reds
in a row.

 This needs to be fixed before we continue down the path to insert the new node. We can

correct the situation with a rotation, as we'll soon see.

 The Root Situation

 What about the root? Remember that a color flip of the root and its two children leaves

the root, as well as its children, black. This avoids violating Rule 2. Does this affect the

 - 326 -

other red-black rules? Clearly there are no red-to-red conflicts, because we've made
more nodes black and none red. Thus, Rule 3 isn't violated. Also, because the root and
one or the other of its two children are in every path, the black height of every path is
increased the same amount; that is, by 1. Thus, Rule 4 isn't violated either.

 Finally, Just Insert It

Once you've worked your way down to the appropriate place in the tree, performing color
flips (and rotations) if necessary on the way down, you can then insert the new node as
described in the last chapter for an ordinary binary search tree. However, that's not the
end of the story.

 Rotations Once the Node is Inserted

 The insertion of the new node may cause the red-black rules to be violated. Therefore,

following the insertion, we must check for rule violations and take appropriate steps.

Remember that, as described earlier, the newly inserted node, which we'll call X, is
always red. X may be located in various positions relative to P and G, as shown in Figure
9.12.

 Figure 9.12: Handed variations of node being inserted

Remember that a node X is an outside grandchild if it's on the same side of its parent P
that P is of its parent G. That is, X is an outside grandchild if either it's a left child of P and
P is a left child of G, or it's a right child of P and P is a right child of G. Conversely, X is an
inside grandchild if it's on the opposite side of its parent P that P is of its parent G.

If X is an outside grandchild, it may be either the left or right child of P, depending on
whether P is the left or right child of G. Two similar possibilities exist if X is an inside
grandchild. It's these four situations that are shown in Figure 9.12. This multiplicity of
what we might call "handed" (left or right) variations is one reason the red-black insertion
routine is challenging to program.

The action we take to restore the red-black rules is determined by the colors and
configuration of X and its relatives. Perhaps surprisingly, there are only three major ways
in which nodes can be arranged (not counting the handed variations already mentioned).
Each possibility must be dealt with in a different way to preserve red-black correctness
and thereby lead to a balanced tree. We'll list the three possibilities briefly, then discuss
each one in detail in its own section. Figure 9.13 shows what they look like. Remember
that X is always red.

 - 327 -

 Figure 9.13: Three post-insertion possibilities

 1. P is black.

 2. P is red and X is an outside grandchild of G.

 3. P is red and X is an inside grandchild of G.

 It might seem that this list doesn't cover all the possibilities. We'll return to this question

after we've explored these three.

 Possibility 1: P Is Black

If P is black, we get a free ride. The node we've just inserted is always red. If its parent is
black, there's no red-to-red conflict (Rule 3), and no addition to the number of black
nodes (Rule 4). Thus no color rules are violated. We don't need to do anything else. The
insertion is complete.

 Possibility 2: P Is Red, X Is Outside

If P is red and X is an outside grandchild, we need a single rotation and some color
changes. Let's set this up with the Workshop applet so we can see what we're talking
about. Start with the usual 50 at the root, and insert 25, 75, and 12. You'll need to do a
color flip before you insert the 12.

Now insert 6, which is X, the new node. Figure 9.14a shows how this looks. The
message on the Workshop applet says Error: parent and child both red, so
we know we need to take some action.

 - 328 -

 Figure 9.14: P is red, X is an outside grandchild

 In this situation, we can take three steps to restore red-black correctness and thereby

balance the tree. Here are the steps:

 1. Switch the color of X's grandparent G (25 in this example).

 2. Switch the color of X's parent P (12).

 3. Rotate with X's grandparent G (25) at the top, in the direction that raises X (6). This is

a right rotation in the example.

As you've learned, to switch colors, put the arrow on the node and press the R/B button.
To rotate right, put the arrow on the top node and press RoR. When you've completed
the three steps, the Workshop applet will inform you that the Tree is red/black
correct. It's also more balanced than it was, as shown in Figure 9.14b.

In this example, X was an outside grandchild and a left child. There's a symmetrical
situation when the X is an outside grandchild but a right child. Try this by creating the tree
50, 25, 75, 87, 93 (with color flips when necessary). Fix it by changing the colors of 75
and 87, and rotating left with 75 at the top. Again the tree is balanced.

 Possibility 3: P Is Red and X Is Inside

If P is red and X is an inside grandchild, we need two rotations and some color changes.
To see this one in action, use the Workshop applet to create the tree 50, 25, 75, 12, 18.
(Again you'll need a color flip before you insert the 12.) The result is shown in Figure
9.15a.

 - 329 -

 Figure 9.15: Possibility 3: P is red and X is an inside grandchild

 Note that the 18 node is an inside grandchild. It and its parent are both red, so again you

see the error message Error: parent and child both red.

Fixing this arrangement is slightly more complicated. If we try to rotate right with the
grandparent node G (25) at the top, as we did in Possibility 2, the inside grandchild X (18)
moves across rather than up, so the tree is no more balanced than before. (Try this, then
rotate back, with 12 at the top, to restore it.) A different solution is needed.

The trick when X is an inside grandchild is to perform two rotations rather than one. The
first changes X from an inside grandchild to an outside grandchild, as shown in Figure
9.15b. Now the situation is similar to Possibility 1, and we can apply the same rotation,
with the grandparent at the top, as we did before. The result is shown in Figure 9.15c.

We must also recolor the nodes. We do this before doing any rotations. (This order
doesn't really matter, but if we wait until after the rotations to recolor the nodes, it's hard
to know what to call them.) The steps are

 1. Switch the color of X's grandparent (25 in this example).

 2. Switch the color of X (not its parent; X is 18 here).

 3. Rotate with X's parent P at the top (not the grandparent; the parent is 12), in the

direction that raises X (a left rotation in this example).

 4. Rotate again with X's grandparent (25) at the top, in the direction that raises X (a right

rotation).

This restores the tree to red-black correctness and also balances it (as much as
possible). As with Possibility 2, there is an analogous case in which P is the right child of
G rather than the left.

 What About Other Possibilities?

 Do the three Post-Insertion Possibilities we just discussed really cover all situations?

Suppose, for example, that X has a sibling S; the other child of P. This might complicate
the rotations necessary to insert X. But if P is black, there's no problem inserting X (that's
Possibility 1). If P is red, then both its children must be black (to avoid violating Rule 3). It

 - 330 -

can't have a single child S that's black, because the black heights would be different for S
and the null child. However, we know X is red, so we conclude that it's impossible for X to
have a sibling unless P is red.

Another possibility is that G, the grandparent of P, has a child U, the sibling of P and the
uncle of X. Again, this would complicate any necessary rotations. However, if P is black,
there's no need for rotations when inserting X, as we've seen. So let's assume P is red.
Then U must also be red, otherwise the black height going from G to P would be different
from that going from G to U. But a black parent with two red children is flipped on the way
down, so this situation can't exist either.

 Thus the three possibilities discussed above are the only ones that can exist (except that,

in Possibilities 2 and 3, X can be a right or left child and G can be a right or left child).

 What the Color Flips Accomplished

Suppose that performing a rotation and appropriate color changes caused other
violations of the red-black rules to appear further up the tree. One can imagine situations
in which you would need to work your way all the way back up the tree, performing
rotations and color switches, to remove rule violations.

Fortunately, this situation can't arise. Using color flips on the way down has eliminated
the situations in which a rotation could introduce any rule violations further up the tree. It
ensures that one or two rotations will restore red-black correctness in the entire tree.
Actually proving this is beyond the scope of this book, but such a proof is possible.

It's the color flips on the way down that make insertion in red-black trees more efficient
than in other kinds of balanced trees, such as AVL trees. They ensure that you need to
pass through the tree only once, on the way down.

 Rotations on the Way Down

Now we'll discuss the last of the three operations involved in inserting a node: making
rotations on the way down to the insertion point. As we noted, although we're discussing
this last, it actually takes place before the node is inserted. We've waited until now to
discuss it only because it was easier to explain rotations for a just-installed node than for
nodes in the middle of the tree.

During the discussion of color flips during the insertion process, we noted that it's
possible for a color flip to cause a violation of Rule 3 (a parent and child can't both be
red). We also noted that a rotation can fix this violation.

There are two possibilities, corresponding to Possibility 2 and Possibility 3 during the
insertion phase described above. The offending node can be an outside grandchild or it
can be an inside grandchild. (In the situation corresponding to Possibility 1, no action is
required.)

 Outside Grandchild

First we'll examine an example in which the offending node is an outside grandchild. By
"offending node" we mean the child in the parent-child pair that caused the red-red
conflict.

 Start a new tree with the 50 node, and insert the following nodes: 25, 75, 12, 37, 6, and

18. You'll need to do color flips when inserting 12 and 6.

Now try to insert a node with the value 3. You'll be told you must flip 12 and its children 6
and 18. You push the Flip button. The flip is carried out, but now the message says
Error: parent and child are both red, referring to 25 and its child 12. The

 - 331 -

resulting tree is shown in Figure 9.16a.

 Figure 9.16: Outside grandchild on the way down

The procedure used to fix this is similar to the post-insertion operation with an outside
grandchild, described earlier. We must perform two color switches and one rotation. So
we can discuss this in the same terms we did when inserting a node, we'll call the node
at the top of the triangle that was flipped (which is 12 in this case) X. This looks a little
odd, because we're used to thinking of X as the node being inserted, and here it's not
even a leaf node. However, these on-the-way-down rotations can take place anywhere
within the tree.

The parent of X is P (25 in this case), and the grandparent of X—the parent of P—is G
(50 in this case). We follow the same set of rules we did under Possibility 2, discussed
above.

 1. Switch the color of X's grandparent G (50 in this example). Ignore the message that

the root must be black.

 2. Switch the color of X's parent P (25).

 3. Rotate with X's grandparent (50) at the top, in the direction that raises X (here a right

rotation).

 Suddenly, the tree is balanced! It has also become pleasantly symmetrical. It appears to

be a bit of a miracle, but it's only a result of following the color rules.

Now the node with value 3 can be inserted in the usual way. Because the node it
connects to, 6, is black, there's no complexity about the insertion. One color flip (at 50) is
necessary. Figure 9.16b shows the tree after 3 is inserted.

 Inside Grandchild

If X is an inside grandchild when a red-red conflict occurs on the way down, two rotations
are required to set it right. This situation is similar to the inside grandchild in the post-
insertion phase, which we called Possibility 3.

 Click Start in the RBTree Workshop applet to begin with 50, and insert 25, 75, 12, 37, 31,

and 43. You'll need color flips before 12 and 31.

 - 332 -

Now try to insert a new node with the value 28. You'll be told it needs a color flip (at 37).
But when you perform the flip, 37 and 25 are both red, and you get the Error: parent
and child are both red message. Don't press Ins again.

 In this situation G is 50, P is 25, and X is 37, as shown in Figure 9.17a

 Figure 9.17: Inside grandchild on the way down

 To cure the red-red conflict, you must do the same two color changes and two rotations

as in Possibility 3.

 1. Change the color of G (it's 50; ignore the message that the root must be black).

 2. Change the color of X (37).

 3. Rotate with P (25) as the top, in the direction that raises X (left in this example). The

result is shown in Figure 9.17b.

 4. Rotate with G as the top, in the direction that raises X (right in this example).

 Now you can insert the 28. A color flip changes 25 and 50 to black as you insert it. The

result is shown in Figure 9.17c.

 This concludes the description of how a tree is kept red-black correct, and therefore

balanced, during the insertion process.

 Deletion

As you may recall, coding for deletion in an ordinary binary search tree is considerably
harder than for insertion. The same is true in red-black trees, but in addition, the deletion
process is, as you might expect, complicated by the need to restore red-black
correctness after the node is removed.

In fact, the deletion process is so complicated that many programmers sidestep it in various
ways. One approach, as with ordinary binary trees, is to mark a node as deleted without
actually deleting it. A search routine that finds the node then knows not to tell anyone about
it. This works in many situations, especially if deletions are not a common occurrence. In
any case, we're going to forgo a discussion of the deletion process. You can refer to
Appendix B, "Further Reading," if you want to pursue it.

 - 333 -

 The Efficiency of Red-Black Trees

Like ordinary binary search trees, a red-black tree allows for searching, insertion, and
deletion in O(log2N) time. Search times should be almost the same in the red-black tree
as in the ordinary tree because the red-black characteristics of the tree aren't used during
searches. The only penalty is that the storage required for each node is increased slightly
to accommodate the red-black color (a boolean variable).

More specifically, according to Sedgewick (see Appendix B), in practice a search in a
red-black tree takes about log2N comparisons, and it can be shown that it cannot require
more than 2*log2N comparisons.

The times for insertion and deletion are increased by a constant factor because of having
to perform color flips and rotations on the way down and at the insertion point. On the
average, an insertion requires about one rotation. Therefore, insertion still takes O(log2N)
time, but is slower than insertion in the ordinary binary tree.

Because in most applications there will be more searches than insertions and deletions,
there is probably not much overall time penalty for using a red-black tree instead of an
ordinary tree. Of course, the advantage is that in a red-black tree sorted data doesn't lead
to slow O(N) performance.

 Implementation

If you're writing an insertion routine for red-black trees, all you need to do (irony intended)
is to write code to carry out the operations described above. As we noted, showing and
describing such code is beyond the scope of this book. However, here's what you'll need
to think about.

 You'll need to add a red-black field (which can be type boolean) to the Node class.

You can adapt the insertion routine from the tree.java program in Chapter 8. On the
way down to the insertion point, check whether the current node is black and its two
children are both red. If so, change the color of all three (unless the parent is the root,
which must be kept black).

 After a color flip, check that there are no violations of Rule 3. If so, perform the

appropriate rotations: one for an outside grandchild, two for an inside grandchild.

 When you reach a leaf node, insert the new node as in tree.java, making sure the

node is red. Check again for red-red conflicts, and perform any necessary rotations.

Perhaps surprisingly, your software need not keep track of the black height of different
parts of the tree (although you might want to check this during debugging). You only need
to check for violations of Rule 3, a red parent with a red child, which can be done locally
(unlike checks of black heights, Rule 4, which would require more complex bookkeeping).

If you perform the color flips, color changes, and rotations described earlier, the black
heights of the nodes should take care of themselves and the tree should remain balanced.
The RBTree Workshop applet reports black-height errors only because the user is not
forced to carry out insertion algorithm correctly.

 Other Balanced Trees

The AVL tree is the earliest kind of balanced tree. It's named after its inventors: Adelson-
Velskii and Landis. In AVL trees each node stores an additional piece of data: the
difference between the heights of its left and right subtrees. This difference may not be

 - 334 -

larger than 1. That is, the height of a node's left subtree may be no more than one level
different from the height of its right subtree.

Following insertion, the root of the lowest subtree into which the new node was inserted
is checked. If the height of its children differs by more than 1, a single or double rotation
is performed to equalize their heights. The algorithm then moves up and checks the node
above, equalizing heights if necessary. This continues all the way back up to the root.

Search times in an AVL tree are O(logN) because the tree is guaranteed to be balanced.
However, because two passes through the tree are necessary to insert (or delete) a
node, one down to find the insertion point and one up to rebalance the tree, AVL trees
are not as efficient as red-black trees and are not used as often.

The other important kind of balanced tree is the multiway tree, in which each node can
have more than two children. We'll look at one version of multiway trees, the 2-3-4 tree, in
the next chapter. One problem with multiway trees is that each node must be larger than
for a binary tree, because it needs a reference to every one of its children.

 Summary

 • It's important to keep a binary search tree balanced to ensure that the time necessary

to find a given node is kept as short as possible.

 • Inserting data that has already been sorted can create a maximally unbalanced tree,

which will have search times of O(N).

 • In the red-black balancing scheme, each node is given a new characteristic: a color

that can be either red or black.

 • A set of rules, called red-black rules, specifies permissible ways that nodes of different

colors can be arranged.

 • These rules are applied while inserting (or deleting) a node.

 • A color flip changes a black node with two red children to a red node with two black

children.

 • In a rotation, one node is designated the top node.

 • A right rotation moves the top node into the position of its right child, and the top

node's left child into its position.

 • A left rotation moves the top node into the position of its left child, and the top node's

right child into its position.

•

Color flips, and sometimes rotations, are applied while searching down the tree to find
where a new node should be inserted. These flips simplify returning the tree to red-
black correctness following an insertion.

 • After a new node is inserted, red-red conflicts are checked again. If a violation is

found, appropriate rotations are carried out to make the tree red-black correct.

 • These adjustments result in the tree being balanced, or at least almost balanced.

 • Adding red-black balancing to a binary tree has only a small negative effect on average

performance, and avoids worst-case performance when the data is already sorted.

 - 335 -

 Part IV

 Chapter List

 Chapter

10: 2-3-4 Trees and External Storage

 Chapter

11: Hash Tables

 Chapter

12: Heaps

 Chapter 10: 2-3-4 Trees and External Storage

 Overview

In a binary tree, each node has one data item and can have up to two children. If we
allow more data items and children per node, the result is a multiway tree. 2-3-4 trees, to
which we devote the first part of this chapter, are multiway trees that can have up to four
children and three data items per node.

2-3-4 trees are interesting for several reasons. First, they're balanced trees like red-black
trees. They're slightly less efficient than red-black trees, but easier to program. Second,
and most importantly, they serve as an easy-to-understand introduction to B-trees.

A B-tree is another kind of multiway tree that's particularly useful for organizing data in
external storage. (External means external to main memory; usually this is a disk drive.) A
node in a B-tree can have dozens or hundreds of children. We'll discuss external storage
and B-trees in the second part of this chapter.

 Introduction to 2-3-4 Trees

In this section we'll look at the characteristics of 2-3-4 trees. Later we'll see how a
Workshop applet models a 2-3-4 tree, and how we can program a 2-3-4 tree in Java.
We'll also look at the surprisingly close relationship between 2-3-4 trees and red-black
trees.

 Figure 10.1 shows a small 2-3-4 tree. Each lozenge-shaped node can hold one, two, or

three data items.

 Figure 10.1: A 2-3-4 tree

Here the top three nodes have children, and the six nodes on the bottom row are all leaf
nodes, which by definition have no children. In a 2-3-4 tree all the leaf nodes are always
on the same level.

 - 336 -

 What's in a Name?

The 2, 3, and 4 in the name 2-3-4 tree refer to how many links to child nodes can
potentially be contained in a given node. For non-leaf nodes, three arrangements are
possible:

 • A node with one data item always has two children

 • A node with two data items always has three children

 • A node with three data items always has four children

 In short, a non-leaf node must always have one more child than it has data items. Or, to

put it symbolically, if the number of child links is L and the number of data items is D, then

 L = D + 1

This is a critical relationship that determines the structure of 2-3-4 trees. A leaf node, by
contrast, has no children, but it can nevertheless contain one, two, or three data items.
Empty nodes are not allowed.

 Because a 2-3-4 tree can have nodes with up to four children, it's called a multiway tree

of order 4.

You may wonder why a 2-3-4 tree isn't called a 1-2-3-4 tree. Can't a node have only one
child, as nodes in binary trees can? A binary tree (described in Chapters 8, "Binary
Trees," and 9, "Red-Black Trees") can be thought of as a multiway tree of order 2
because each node can have up to two children. However, there's a difference (besides
the maximum number of children) between binary trees and 2-3-4 trees. In a binary tree,
a node can have up to two child links. A single link, to its left or to its right child, is also
perfectly permissible. The other link has a null value.

 In a 2-3-4 tree, on the other hand, nodes with a single link are not permitted. A node with

one data item must always have two links, unless it's a leaf, in which case it has no links.

Figure 10.2 shows the possibilities. A node with two links is called a 2-node, a node with
three links is a 3-node, and a node with 4 links is a 4-node, but there is no such thing as
a 1-node.

 Figure 10.2: Nodes in a 2-3-4 tree

 2-3-4 Tree Organization

 - 337 -

For convenience we number the data items in a link from 0 to 2, and the child links from 0
to 3, as shown in Figure 10.2. The data items in a node are arranged in ascending key
order; by convention from left to right (lower to higher numbers).

An important aspect of any tree's structure is the relationship of its links to the key values
of its data items. In a binary tree, all children with keys less than the node's key are in a
subtree rooted in the node's left child, and all children with keys larger than or equal to
the node's key are rooted in the node's right child. In a 2-3-4 tree the principle is the
same, but there's more to it:

 • All children in the subtree rooted at child 0 have key values less than key 0.

 • All children in the subtree rooted at child 1 have key values greater than key 0 but less

than key 1.

 • All children in the subtree rooted at child 2 have key values greater than key 1 but less

than key 2.

 • All children in the subtree rooted at child 3 have key values greater than key 2.

 This is shown in Figure 10.3. Duplicate values are not usually permitted in 2-3-4 trees, so

we don't need to worry about comparing equal keys.

 Figure 10.3: Keys and children

Refer to the tree in Figure 10.1. As in all 2-3-4 trees, the leaves are all on the same level
(the bottom row). Upper-level nodes are often not full; that is, they may contain only one
or two data items instead of three.

Also, notice that the tree is balanced. It retains its balance even if you insert a sequence
of data in ascending (or descending) order. The 2-3-4 tree's self-balancing capability
results from the way new data items are inserted, as we'll see in a moment.

 Searching

Finding a data item with a particular key is similar to the search routine in a binary tree.
You start at the root, and, unless the search key is found there, select the link that leads
to the subtree with the appropriate range of values.

For example, to search for the data item with key 64 in the tree in Figure 10.1, you start
at the root. You search the root, but don't find the item. Because 64 is larger than 50, you
go to child 1, which we will represent as 60/70/80. (Remember that child 1 is on the right,
because the numbering of children and links starts at 0 on the left.) You don't find the
data item in this node either, so you must go to the next child. Here, because 64 is
greater than 60 but less than 70, you go again to child 1. This time you find the specified
item in the 62/64/66 link.

 Insertion

 New data items are always inserted in leaves, which are on the bottom row of the tree. If

 - 338 -

items were inserted in nodes with children, then the number of children would need to be
changed to maintain the structure of the tree, which stipulates that there should be one
more child than data items in a node.

 Insertion into a 2-3-4 tree is sometimes quite easy and sometimes rather complicated. In

any case the process begins by searching for the appropriate leaf node.

If no full nodes are encountered during the search, insertion is easy. When the
appropriate leaf node is reached, the new data item is simply inserted into it. Figure 10.4
shows a data item with key 18 being inserted into a 2-3-4 tree.

 Figure 10.4: Insertion with no splits

Insertion may involve moving one or two other items in a node so the keys will be in the
correct order after the new item is inserted. In this example the 23 had to be shifted right
to make room for the 18.

 Node Splits

Insertion becomes more complicated if a full node is encountered on the path down to the
insertion point. When this happens, the node must be split. It's this splitting process that
keeps the tree balanced. The kind of 2-3-4 tree we're discussing here is often called a
top-down 2-3-4 tree because nodes are split on the way down to the insertion point.

Let's name the data items in the node that's about to be split A, B, and C. Here's what
happens in a split. (We assume the node being split is not the root; we'll examine splitting
the root later.)

 • A new, empty node is created. It's a sibling of the node being split, and is placed to its

right.

 • Data item C is moved into the new node.

 • Data item B is moved into the parent of the node being split.

 • Data item A remains where it is.

 • The rightmost two children are disconnected from the node being split and connected

to the new node.

 An example of a node split is shown in Figure 10.5. Another way of describing a node

split is to say that a 4-node has been transformed into two 2-nodes.

 - 339 -

 Figure 10.5: Splitting a node

 Notice that the effect of the node split is to move data up and to the right. It's this

rearrangement that keeps the tree balanced.

Here the insertion required only one node split, but more than one full node may be
encountered on the path to the insertion point. When this is the case there will be multiple
splits.

 Splitting the Root

 When a full root is encountered at the beginning of the search for the insertion point, the

resulting split is slightly more complicated:

 • A new node is created that becomes the new root and the parent of the node being

split.

 • A second new node is created that becomes a sibling of the node being split.

 • Data item C is moved into the new sibling.

 • Data item B is moved into the new root.

 • Data item A remains where it is.

 • The two rightmost children of the node being split are disconnected from it and

connected to the new right-hand node.

 Figure 10.6 shows the root being split. This process creates a new root that's at a higher

level than the old one. Thus the overall height of the tree is increased by one.

 - 340 -

 Figure 10.6: Splitting the root

 Another way to describe splitting the root is to say that a 4-node is split into three 2-

nodes.

 Following a node split, the search for the insertion point continues down the tree. In

Figure 10.6, the data item with a key of 41 is inserted into the appropriate leaf.

 Figure 10.7: Insertions into a 2-3-4 tree

 Splitting on the Way Down

Notice that, because all full nodes are split on the way down, a split can't cause an effect
that ripples back up through the tree. The parent of any node that's being split is
guaranteed not to be full, and can therefore accept data item B without itself needing to
be split. Of course, if this parent already had two children when its child was split, it will

 - 341 -

become full. However, that just means that it will be split when the next search
encounters it.

 Figure 10.7 shows a series of insertions into an empty tree. There are four node splits, two

of the root and two of leaves.

The Tree234 Workshop Applet

 Operating the Tree234 Workshop applet provides a quick way to see how 2-3-4 trees

work. When you start the applet you'll see a screen similar to Figure 10.8.

 Figure 10.8: The Tree234 Workshop applet

 The Fill Button

When it's first started, the Tree234 Workshop applet inserts 10 data items into the tree.
You can use the Fill button to create a new tree with a different number of data items
from 0 to 45. Click Fill and type the number into the field when prompted. Another click
will create the new tree.

 The tree may not look very full with 45 nodes, but more nodes require more levels, which

won't fit in the display.

 The Find Button

You can watch the applet locate a data item with a given key by repeatedly clicking the
Find button. When prompted, type in the appropriate key. Then, as you click the button,
watch the red arrow move from node to node as it searches for the item.

Messages will say something like Went to child number 1. As we've seen, children
are numbered from 0 to 3 from left to right, while data items are numbered from 0 to 2.
After a little practice you should be able to predict the path the search will take.

A search involves examining one node on each level. The applet supports a maximum of
four levels, so any item can be found by examining only four nodes. Within each non-leaf
node, the algorithm examines each data item, starting on the left, to see which child it
should go to next. In a leaf node it examines each data item to see if it contains the
specified key. If it can't find such an item in the leaf node, the search fails.

In the Tree234 Workshop applet it's important to complete each operation before
attempting a new one. Continue to click the button until the message says Press any
button. This is the signal that an operation is complete.

 The Ins Button

 - 342 -

The Ins button causes a new data item, with a key specified in the text box, to be inserted
in the tree. The algorithm first searches for the appropriate node. If it encounters a full
node along the way, it splits it before continuing on.

Experiment with the insertion process. Watch what happens when there are no full nodes
on the path to the insertion point. This is a straightforward process. Then try inserting at
the end of a path that includes a full node, either at the root, at the leaf, or somewhere in
between. Watch how new nodes are formed and the contents of the node being split are
distributed among three different nodes.

 The Zoom Button

One of the problems with 2-3-4 trees is that there are a great many nodes and data items
just a few levels down. The Tree234 Workshop applet supports only four levels, but there
are potentially 64 nodes on the bottom level, each of which can hold up to three data
items.

It would be impossible to display so many items at once on one row, so the applet shows
only some of them: the children of a selected node. (To see the children of another node,
you click on it; we'll discuss that in a moment.) To see a zoomed-out view of the entire
tree, click the Zoom button. Figure 10.9 shows what you'll see.

 Figure 10.9: The zoomed-out view

In this view nodes are shown as small rectangles; data items are not shown. Nodes that
exist and are visible in the zoomed-in view (which you can restore by clicking Zoom
again) are shown in green. Nodes that exist but aren't currently visible in the zoomed-out
view are shown in magenta, and nodes that don't exist are shown in gray. These colors
are hard to distinguish on the figure; you'll need to view the applet on your color monitor
to make sense of the display.

Using the Zoom button to toggle back and forth between the zoomed-out and zoomed-in
views allows you to see both the big picture and the details, and hopefully put the two
together in your mind.

 Viewing Different Nodes

In the zoomed-in view you can always see all the nodes in the top two rows: there's only
one, the root, in the top row, and only four in the second row. Below the second row
things get more complicated because there are too many nodes to fit on the screen: 16
on the third row, 64 on the fourth. However, you can see any node you want by clicking
on its parent, or sometimes its grandparent and then its parent.

 A blue triangle at the bottom of a node shows where a child is connected to a node. If a

 - 343 -

node's children are currently visible, the lines to the children can be seen running from
the blue triangles to them. If the children aren't currently visible, there are no lines, but
the blue triangles indicate that the node nevertheless has children. If you click on the
parent node, its children and the lines to them will appear. By clicking the appropriate
nodes you can navigate all over the tree.

For convenience, all the nodes are numbered, starting with 0 at the root and continuing
up to 85 for the node on the far right of the bottom row. The numbers are displayed to the
upper right of each node, as shown in Figure 10.8. Nodes are numbered whether they
exist or not, so the numbers on existing nodes probably won't be contiguous.

 Figure 10.10 shows a small tree with four nodes in the third row. The user has clicked on

node 1, so its two children, numbered 5 and 6, are visible.

 Figure 10.10: Selecting the leftmost children

 If the user clicks on node 2, its children 9 and 10 will appear, as shown in Figure 10.11.

 Figure 10.11: Selecting the rightmost children

These figures show how to switch among different nodes in the third row by clicking
nodes in the second row. To switch nodes in the fourth row you'll need to click first on a
grandparent in the second row, then on a parent in the third row.

 During searches and insertions with the Find and Ins buttons, the view will change

automatically to show the node currently being pointed to by the red arrow.

 Experiments

 The Tree234 Workshop applet offers a quick way to learn about 2-3-4 trees. Try inserting

items into the tree. Watch for node splits. Stop before one is about to happen, and figure

 - 344 -

out where the three data items from the split node are going to go. Then press Ins again
to see if you're right.

As the tree gets larger you'll need to move around it to see all the nodes. Click on a node
to see its children (and their children, and so on). If you lose track of where you are, use
the Zoom key to see the big picture.

How many data items can you insert in the tree? There's a limit because only four levels
are allowed. Four levels can potentially contain 1 + 4 + 16 + 64 nodes, for a total of 85
nodes (all visible on the zoomed-out display). Assume a full 3 items per node gives 255
data items. However, the nodes can't all be full at the same time. Long before they fill up,
another root split, leading to five levels, would be necessary, and this is impossible
because the applet supports only four levels.

You can insert the most items by deliberately inserting them into nodes that lie on paths
with no full nodes, so that no splits are necessary. Of course this is not a reasonable
procedure with real data. For random data you probably can't insert more than about 50
items into the applet. The Fill button allows only 45, to minimize the possibility of overflow.

Java Code for a 2-3-4 Tree

In this section we'll examine a Java program that models a 2-3-4 tree. We'll show the
complete tree234.java program at the end of the section. This is a relatively complex
program, and the classes are extensively interrelated, so you'll need to peruse the entire
listing to see how it works.

 There are four classes: DataItem, Node, Tree234, and Tree234App. We'll discuss

them in turn.

 The DataItem Class

Objects of this class represent the data items stored in nodes. In a real-world program
each object would contain an entire personnel or inventory record; but here there's only
one piece of data, of type double, associated with each DataItem object.

The only actions that objects of this class can perform are to initialize themselves and
display themselves. The display is the data value preceded by a slash: /27. (The display
routine in the Node class will call this routine to display all the items in a node.)

 The Node Class

The Node class contains two arrays: childArray and itemArray. The first is four cells
long and holds references to whatever children the node might have. The second is three
cells long and holds references to objects of type DataItem contained in the node.

Note that the data items in itemArray comprise an ordered array. New items are
added, or existing ones removed, in the same way they would be in any ordered array
(as described in Chapter 2, "Arrays"). Items may need to be shifted to make room to
insert a new item in order or to close an empty cell when an item is removed.

We've chosen to store the number of items currently in the node (numItems) and the
node's parent (parent) as fields in this class. Neither of these is strictly necessary, and
could be eliminated to make the nodes smaller. However, including them clarifies the
programming, and only a small price is paid in increased node size.

Various small utility routines are provided in the Node class to manage the connections to
child and parent and to check if the node is full and if it is a leaf. However, the major work
is done by the findItem(), insertItem(), and removeItem() routines. These

 - 345 -

handle individual items within the node. They search through the node for a data item
with a particular key; insert a new item into the node, moving existing items if necessary;
and remove an item, again moving existing items if necessary. Don't confuse these
methods with the find() and insert() routines in the Tree234 class, which we'll look
at next.

 A display routine displays a node with slashes separating the data items, like /27/56/89/,

/14/66/, or /45/.

 Don't forget that in Java, references are automatically initialized to null and numbers to 0

when their object is created, so class Node doesn't need a constructor.

 The Tree234 Class

An object of the Tree234 class represents the entire tree. The class has only one field:
root, of type Node. All operations start at the root, so that's all a tree needs to
remember.

 Searching

Searching for a data item with a specified key is carried out by the find() routine. It
starts at the root, and at each node calls that node's findItem() routine to see if the
item is there. If so, it returns the index of the item within the node's item array.

If find() is at a leaf and can't find the item, the search has failed, so it returns –1. If it
can't find the item in the current node, and the current node isn't a leaf, find() calls the
getNextChild() method, which figures out which of a node's children the routine
should go to next.

 Inserting

The insert() method starts with code similar to find(), except that if it finds a full
node it splits it. Also, it assumes it can't fail; it keeps looking, going to deeper and deeper
levels, until it finds a leaf node. At this point it inserts the new data item into the leaf.
(There is always room in the leaf, otherwise the leaf would have been split.)

 Splitting

The split() method is the most complicated in this program. It is passed the node that
will be split as an argument. First, the two rightmost data items are removed from the
node and stored. Then the two rightmost children are disconnected; their references are
also stored.

 A new node, called newRight, is created. It will be placed to the right of the node being

split. If the node being split is the root, an additional new node is created: a new root.

Next, appropriate connections are made to the parent of the node being split. It may be a
pre-existing parent, or if the root is being split it will be the newly created root node.
Assume the three data items in the node being split are called A, B, and C. Item B is
inserted in this parent node. If necessary, the parent's existing children are disconnected
and reconnected one position to the right to make room for the new data item and new
connections. The newRight node is connected to this parent. (Refer to Figures 10.5 and
10.6.)

Now the focus shifts to the newRight node. Data item C is inserted in it, and child 2 and
child 3, which were previously disconnected from the node being split, are connected to
it. The split is now complete, and the split() routine returns.

 - 346 -

 The Tree234App Class

In the Tree234App class, the main() routine inserts a few data items into the tree. It
then presents a character-based interface for the user, who can enter s to see the tree, i
to insert a new data item, and f to find an existing item. Here's some sample interaction:

 Enter first letter of show, insert, or find: s
 level=0 child=0 /50/
 level=1 child=0 /30/40/
 level=1 child=1 /60/70/

 Enter first letter of show, insert, or find: f
 Enter value to find: 40
 Found 40

 Enter first letter of show, insert, or find: i
 Enter value to insert: 20
 Enter first letter of show, insert, or find: s
 level=0 child=0 /50/
 level=1 child=0 /20/30/40/
 level=1 child=1 /60/70/

 Enter first letter of show, insert, or find: i
 Enter value to insert: 10
 Enter first letter of show, insert, or find: s
 level=0 child=0 /30/50/
 level=1 child=0 /10/20/
 level=1 child=1 /40/
 level=1 child=2 /60/70/

The output is not very intuitive, but there's enough information to draw the tree if you
want. The level, starting with 0 at the root, is shown, as well as the child number. The
display algorithm is depth-first, so the root is shown first, then its first child and the
subtree of which the first child is the root, then the second child and its subtree, and so
on.

The output shows two items being inserted, 20 and 10. The second of these caused a
node (the root's child 0) to split. Figure 10.12 depicts the tree that results from these
insertions, following the final press of the s key.

 Listing for tree234.java

Listing 10.1 shows the complete tree234.java program, including all the classes just
discussed. As with most object-oriented programs, it's probably easiest to start by
reeexamining the big picture classes first and then work down to the detail-oriented
classes. In this program this order is Tree234App, Tree234, Node, DataItem.

 - 347 -

 Figure 10.12: Sample output of tree234.java program

 Listing 10.1 The tree234.java Program

 // tree234.java
 // demonstrates 234 tree
 // to run this program: C>java Tree234App
 import java.io.*; // for I/O
 import java.lang.Integer; // for parseInt()
 //
 class DataItem
 {
 public double dData; // one data item

 //---

-
 public DataItem(double dd) // constructor
 { dData = dd; }

 //---

-
 public void displayItem() // display item, format "/27"
 { System.out.print("/"+dData); }

 //---

-
 } // end class DataItem

 //

 class Node
 {
 private static final int ORDER = 4;
 private int numItems;
 private Node parent;
 private Node childArray[] = new Node[ORDER];
 private DataItem itemArray[] = new DataItem[ORDER-1];

 // --

-
 // connect child to this node
 public void connectChild(int childNum, Node child)
 {
 childArray[childNum] = child;
 if(child != null)
 child.parent = this;
 }

 // --

-
 // disconnect child from this node, return it
 public Node disconnectChild(int childNum)

 - 348 -

 {
 Node tempNode = childArray[childNum];
 childArray[childNum] = null;
 return tempNode;
 }

 // --

-
 public Node getChild(int childNum)
 { return childArray[childNum]; }

 // --

-
 public Node getParent()
 { return parent; }

 // --

-
 public boolean isLeaf()
 { return (childArray[0]==null) ? true : false; }

 // --

-
 public int getNumItems()
 { return numItems; }

 // --

-
 public DataItem getItem(int index) // get DataItem at

index
 { return itemArray[index]; }

 // --

-
 public boolean isFull()
 { return (numItems==ORDER-1) ? true : false; }

 // --

-
 public int findItem(double key) // return index of
 { // item (within

node)
 for(int j=0; j<ORDER-1; j++) // if found,
 { // otherwise,
 if(itemArray[j] == null) // return -1
 break;
 else if(itemArray[j].dData == key)
 return j;
 }
 return -1;
 } // end findItem

 // --

-
 public int insertItem(DataItem newItem)
 {

 - 349 -

 // assumes node is not full
 numItems++; // will add new item
 double newKey = newItem.dData; // key of new item

 for(int j=ORDER-2; j>=0; j--) // start on right,
 { // examine items
 if(itemArray[j] == null) // if item null,
 continue; // go left one cell
 else // not null,
 { // get its key
 double itsKey = itemArray[j].dData;
 if(newKey < itsKey) // if it's bigger
 itemArray[j+1] = itemArray[j]; // shift it right
 else
 {
 itemArray[j+1] = newItem; // insert new item
 return j+1; // return index to
 } // new item
 } // end else (not null)
 } // end for // shifted all

items,
 itemArray[0] = newItem; // insert new item
 return 0;
 } // end insertItem()

 // --

-
 public DataItem removeItem() // remove largest item
 {
 // assumes node not empty
 DataItem temp = itemArray[numItems-1]; // save item
 itemArray[numItems-1] = null; // disconnect it
 numItems--; // one less item
 return temp; // return item
 }

 // --

-
 public void displayNode() // format "/24/56/74/"
 {
 for(int j=0; j<numItems; j++)
 itemArray[j].displayItem(); // "/56"
 System.out.println("/"); // final "/"
 }

 // --

-
 } // end class Node

 //

 class Tree234
 {
 private Node root = new Node(); // make root node

 - 350 -

 // --

-
 public int find(double key)
 {
 Node curNode = root;
 int childNumber;
 while(true)
 {
 if((childNumber=curNode.findItem(key)) != -1)
 return childNumber; // found it
 else if(curNode.isLeaf())
 return -1; // can't find it
 else // search deeper
 curNode = getNextChild(curNode, key);
 } // end while
 }

 // --

-
 // insert a DataItem
 public void insert(double dValue)
 {
 Node curNode = root;
 DataItem tempItem = new DataItem(dValue);

 while(true)
 {
 if(curNode.isFull()) // if node full,
 {
 split(curNode); // split it
 curNode = curNode.getParent(); // back up
 // search once
 curNode = getNextChild(curNode, dValue);
 } // end if(node is full)

 else if(curNode.isLeaf()) // if node is

leaf,
 break; // go insert
 // node is not full, not a leaf; so go to lower level
 else
 curNode = getNextChild(curNode, dValue);
 } // end while

 curNode.insertItem(tempItem); // insert new

DataItem
 } // end insert()

 // --

-
 public void split(Node thisNode) // split the node
 {
 // assumes node is full
 DataItem itemB, itemC;

 - 351 -

 Node parent, child2, child3;
 int itemIndex;

 itemC = thisNode.removeItem(); // remove items from
 itemB = thisNode.removeItem(); // this node
 child2 = thisNode.disconnectChild(2); // remove children
 child3 = thisNode.disconnectChild(3); // from this node

 Node newRight = new Node(); // make new node

 if(thisNode==root) // if this is the root,
 {
 root = new Node(); // make new root
 parent = root; // root is our

parent
 root.connectChild(0, thisNode); // connect to parent
 }
 else // this node not the

root
 parent = thisNode.getParent(); // get parent

 // deal with parent
 itemIndex = parent.insertItem(itemB); // item B to parent
 int n = parent.getNumItems(); // total items?

 for(int j=n-1; j>itemIndex; j--) // move

parent's
 { // connections
 Node temp = parent.disconnectChild(j); // one child
 parent.connectChild(j+1, temp); // to the right
 }
 // connect newRight to

parent
 parent.connectChild(itemIndex+1, newRight);

 // deal with newRight
 newRight.insertItem(itemC); // item C to newRight
 newRight.connectChild(0, child2); // connect to 0 and 1
 newRight.connectChild(1, child3); // on newRight
 } // end split()

 // --

-
 // gets appropriate child of node during search for value
 public Node getNextChild(Node theNode, double theValue)
 {
 int j;
 // assumes node is not empty, not full, not a leaf
 int numItems = theNode.getNumItems();
 for(j=0; j<numItems; j++) // for each item in

node
 { // are we less?
 if(theValue < theNode.getItem(j).dData)
 return theNode.getChild(j); // return left child

 - 352 -

 } // end for // we're greater, so
 return theNode.getChild(j); // return right child
 }

 // --

-
 public void displayTree()
 {
 recDisplayTree(root, 0, 0);
 }

 // --

-
 private void recDisplayTree(Node thisNode, int level,
 int childNumber)
 {
 System.out.print("level="+level+" child="+childNumber+"

");
 thisNode.displayNode(); // display this

node

 // call ourselves for each child of this node
 int numItems = thisNode.getNumItems();
 for(int j=0; j<numItems+1; j++)
 {
 Node nextNode = thisNode.getChild(j);
 if(nextNode != null)
 recDisplayTree(nextNode, level+1, j);
 else
 return;
 }
 } // end recDisplayTree()

 // --

-\
 } // end class Tree234

 //

 class Tree234App
 {
 public static void main(String[] args) throws IOException
 {
 double value;
 Tree234 theTree = new Tree234();

 theTree.insert(50);
 theTree.insert(40);
 theTree.insert(60);
 theTree.insert(30);
 theTree.insert(70);

 while(true)
 {

 - 353 -

 putText("Enter first letter of ");
 putText("show, insert, or find: ");
 char choice = getChar();
 switch(choice)
 {
 case 's':
 theTree.displayTree();
 break;
 case 'i':
 putText("Enter value to insert: ");
 value = getInt();
 theTree.insert(value);
 break;
 case 'f':
 putText("Enter value to find: ");
 value = getInt();
 int found = theTree.find(value);
 if(found != -1)
 System.out.println("Found "+value);
 else
 System.out.println("Could not find "+value);
 break;
 default:
 putText("Invalid entry\n");
 } // end switch
 } // end while
 } // end main()

 //---

-
 public static void putText(String s)
 {
 System.out.print(s);
 System.out.flush();
 }

 //---

-
 public static String getString() throws IOException
 {
 InputStreamReader isr = new InputStreamReader(System.in);
 BufferedReader br = new BufferedReader(isr);
 String s = br.readLine();
 return s;
 }

 //---

-
 public static char getChar() throws IOException
 {
 String s = getString();
 return s.charAt(0);
 }

 - 354 -

 //---
 public static int getInt() throws IOException
 {
 String s = getString();
 return Integer.parseInt(s);
 }

 //---

 } // end class Tree234App

 2-3-4 Trees and Red-Black Trees

At this point 2-3-4 trees and red-black trees (described in Chapter 9) probably seem like
entirely different entities. However, it turns out that in a certain sense they are completely
equivalent. One can be transformed into the other by the application of a few simple
rules, and even the operations needed to keep them balanced are equivalent.
Mathematicians would say they were isomorphic.

You probably won't ever need to transform a 2-3-4 tree into a red-black tree, but
equivalence of these structures casts additional light on their operation and is useful in
analyzing their efficiency.

 Historically the 2-3-4 tree was developed first; later the red-black tree evolved from it.

 Transformation from 2-3-4 to Red-Black

 A 2-3-4 tree can be transformed into a red-black tree by applying the following rules:

 • Transform any 2-node in the 2-3-4 tree into a black node in the red-black tree.

•

Transform any 3-node into a child C (with two children of its own) and a parent P (with
children C and one other child). It doesn't matter which item becomes the child and
which the parent. C is colored red and P is colored black.

 Transform any 4-node into a parent P and two children C1 and C2, both with two children

of their own. C1 and C2 are colored red and P is black.

 Figure 10.13 shows these transformations. The child nodes in these subtrees are colored

red; all other nodes are colored black.

 - 355 -

 Figure 10.13: Transformations: 2-3-4 to red-black

Figure 10.14 shows a 2-3-4 tree and the corresponding red-black tree obtained by
applying these transformations. Dotted lines surround the subtrees that were made from
3-nodes and 4-nodes. The red-black rules are automatically satisfied by the
transformation. Check that this is so: two red nodes are never connected, and there is the
same number of black nodes on every path from root to leaf (or null child).

 Figure 10.14: A 2-3-4 tree and its red-black equivalent

You can say that a 3-node in a 2-3-4 tree is equivalent to a parent with a red child in a
red-black tree, and a 4-node is equivalent to a parent with two red children. It follows that
a black parent with a black child in a red-black tree does not represent a 3-node in a 2-3-
4 tree; it simply represents a 2-node with another 2-node child. Similarly, a black parent
with two black children does not represent a 4-node.

 Operational Equivalence

Not only does the structure of a red-black tree correspond to a 2-3-4 tree, but the
operations applied to these two kinds of trees are also equivalent. In a 2-3-4 tree the tree
is kept balanced using node splits. In a red-black tree the two balancing methods are
color flips and rotations.

 4-Node Splits and Color Flips

 - 356 -

As you descend a 2-3-4 tree searching for the insertion point for a new node, you split
each 4-node into two 2-nodes. In a red-black tree you perform color flips. How are these
operations equivalent?

 Figure 10.15: 4-node split and color flip

In Figure 10.15-a we show a 4-node in a 2-3-4 tree before it is split; Figure 10.15-b
shows the situation after the split. The 2-node that was the parent of the 4-node becomes
a 3-node.

In Figure 10.15-c we show the red-black equivalent to the 2-3-4 tree in 10.15-a. The
dotted line surrounds the equivalent of the 4-node. A color flip results in the red-black tree
of Figure 10.15-d. Now nodes 40 and 60 are black and 50 is red. Thus 50 and its parent
form the equivalent of a 3-node, as shown by the dotted line. This is the same 3-node
formed by the node split in Figure 10.15-b.

 Thus we see that splitting a 4-node during the insertion process in a 2-3-4 tree is

equivalent to performing color flips during the insertion process in a red-black tree.

 3-Node Splits and Rotations

When a 3-node in a 2-3-4 tree is transformed into its red-black equivalent, two
arrangements are possible, as we showed earlier in Figure 10.13-b. Either of the two
data items can become the parent. Depending on which one is chosen, the child will be
either a left child or a right child, and the slant of the line connecting parent and child will
be either left or right.

 Both arrangements are valid; however, they may not contribute equally to balancing the

tree. Let's look at the situation in a slightly larger context.

Figure 10.16-a shows a 2-3-4 tree, and 10.16-b and 10.16-c show two equivalent red-
black trees derived from the 2-3-4 tree by applying the transformation rules. The
difference between them is the choice of which of the two data items in the 3-node to
make the parent; in b) 80 is the parent, in c) it's 70.

 - 357 -

 Figure 10.16: 3-node and rotation

Although these arrangements are equally valid, you can see that the tree in b) is not
balanced, while that in c) is. Given the red-black tree in b), we would want to rotate it to
the right (and perform two color changes) to balance it. Amazingly, this rotation results in
the exact same tree shown in c).

Thus we see an equivalence between rotations in red-black trees and the choice of which
node to make the parent when transforming 2-3-4 trees to red-black trees. Although we
don't show it, a similar equivalence can be seen for the double rotation necessary for inside
grandchildren.

Efficiency of 2-3-4 Trees

 It's harder to analyze the efficiency of a 2-3-4 tree than a red-black tree, but the

equivalence of red-black trees and 2-3-4 trees gives us a starting point.

 Speed

As we saw in Chapter 8, in a red-black tree one node on each level must be visited
during a search, whether to find an existing node or insert a new one. The number of
levels in a red-black tree (a balanced binary tree) is about log2(N+1), so search times are
proportional to this.

One node must be visited at each level in a 2-3-4 tree as well, but the 2-3-4 tree is
shorter (has fewer levels) than a red-black tree with the same number of data items.
Refer to Figure 10.14, where the 2-3-4 tree has three levels and the red-black tree has
five.

More specifically, in 2-3-4 trees there are up to 4 children per node. If every node were
full, the height of the tree would be proportional to log4N. Logarithms to the base 2 and to
the base 4 differ by a constant factor of 2. Thus, the height of a 2-3-4 tree would be about
half that of a red-black tree, provided that all the nodes were full. Because they aren't all
full, the height of the 2-3-4 tree is somewhere between log2(N+1) and log2(N+1)/2.

 Thus, the reduced height of the 2-3-4 tree decreases search times slightly compared with

red-black trees.

On the other hand, there are more items to examine in each node, which increases the
search time. Because the data items in the node are examined using a linear search, this
multiplies the search times by an amount proportional to M, the average number of items

 - 358 -

per node. The result is a search time proportional to M*log4N.

Some nodes contain 1 item, some 2, and some 3. If we estimate that the average is 2,
search times will be proportional to 2*log4N. This is a small constant number that can be
ignored in Big O notation.

Thus, for 2-3-4 trees the increased number of items per node tends to cancel out the
decreased height of the tree. The search times for a 2-3-4 tree and for a balanced binary
tree such as a red-black tree are approximately equal, and are both O(logN).

 Storage Requirements

Each node in a 2-3-4 tree contains storage for three references to data items and four
references to its children. This space may be in the form of arrays, as shown in
tree234.java, or of individual variables. Not all this storage is used. A node with only
one data item will waste two thirds of the space for data and half the space for children. A
node with two data items will waste one third of the space for data and one quarter of the
space for children; to put it another way, it will use 5/7 of the available space.

 If we take two data items per node as the average utilization, about 2/7 of the available

storage is wasted.

One might imagine using linked lists instead of arrays to hold the child and data
references, but the overhead of the linked list compared with an array, for only 3 or 4
items, would probably not make this a worthwhile approach.

Because they're balanced, red-black trees contain few nodes that have only one child, so
almost all the storage for child references is used. Also, every node contains the
maximum number of data items, which is 1. This makes red-black trees more efficient
than 2-3-4 trees in terms of memory usage.

In Java, which stores references to objects instead of the objects themselves, this
difference in storage between 2-3-4 trees and red-black trees may not be important, and
the programming is certainly simpler for 2-3-4 trees. However, in languages that don't use
references this way, the difference in storage efficiency between red-black trees and 2-3-4
trees may be significant.

 External Storage

2-3-4 trees are an example of multiway trees, which have more than two children and
more than one data item. Another kind of multiway tree, the B-tree, is useful when data
resides in external storage. External storage typically refers to some kind of disk system,
such as the hard disk found in most desktop computers or servers.

In this section we'll begin by describing various aspects of external file handling. We'll talk
about a simple approach to organizing external data: sequential ordering. Finally we'll
discuss B-trees and explain why they work so well with disk files. We'll finish with another
approach to external storage, indexing, which can be used alone or with a B-tree.

 We'll also touch on other aspects of external storage, such as searching techniques. In

the next chapter we'll mention a different approach to external storage: hashing.

The details of external storage techniques are dependent on the operating system,
language, and even the hardware used in a particular installation. As a consequence, our
discussion in this section will be considerably more general than for most topics in this
book.

 Accessing External Data

 - 359 -

The data structures we've discussed so far are all based on the assumption that data is
stored entirely in main memory (often called RAM, for Random Access Memory).
However, in many situations the amount of data to be processed is too large to fit in main
memory all at once. In this case a different kind of storage is necessary. Disk files
generally have a much larger capacity than main memory; this is made possible by their
lower cost per byte of storage.

Of course, disk files have another advantage: their permanence. When you turn off your
computer (or the power fails), the data in main memory is lost. Disk files can retain data
indefinitely with the power off. However, it's mostly the size difference that we'll be
involved with here.

 The disadvantage of external storage is that it's much slower than main memory. This

speed difference means that different techniques must be used to handle it efficiently.

As an example of external storage, imagine that you're writing a database program to
handle the data found in the phone book for a medium-sized city; perhaps 500,000
entries. Each entry includes a name, address, phone number, and various other data
used internally by the phone company. Let's say an entry is stored as a record requiring
512 bytes. The result is a file size of 500,000x512, which is 256,000,000 bytes or 256
megabytes. We'll assume that on the target machine this is too large to fit in main
memory, but small enough to fit on your disk drive.

 Thus you have a large amount of data on your disk drive. How do you structure it to

provide the usual desirable characteristics: quick search, insertion, and deletion?

In investigating the answers, you must keep in mind two facts. First, accessing data on a
disk drive is much slower than accessing it in main memory. Second, you must access
many records at once. Let's explore these points.

 Very Slow Access

 A computer's main memory works electronically. Any byte can be accessed just as fast

as any other byte, in a fraction of a microsecond (a millionth of a second).

Things are more complicated with disk drives. Data is arranged in circular tracks on a
spinning disk, something like the tracks on a compact disc (CD) or the grooves in an old-
style phonograph record.

To access a particular piece of data on a disk drive, the read-write head must first be
moved to the correct track. This is done with a stepping motor or similar device; it's a
mechanical activity that requires several milliseconds (thousandths of a second).

Once the correct track is found, the read-write head must wait for the data to rotate into
position. On the average, this takes half a revolution. Even if the disk is spinning at
10,000 revolutions per minute, about 3 more milliseconds pass before the data can be
read. Once the read-write head is positioned, the actual reading (or writing) process
begins; this might take a few more milliseconds.

 Thus, disk access times of around 10 milliseconds are common. This is something like

10,000 times slower than main memory.

Technological progress is reducing disk access times every year, but main memory
access times are being reduced faster, so the disparity between disk access and main
memory access times will grow even larger in the future.

 One Block at a Time

 Once it is correctly positioned and the reading (or writing) process begins, a disk drive

can transfer a large amount of data to main memory fairly quickly. For this reason, and to

 - 360 -

simplify the drive control mechanism, data is stored on the disk in chunks called blocks,
pages, allocation units, or some other name, depending on the system. We'll call them
blocks.

The disk drive always reads or writes a minimum of one block of data at a time. Block
size varies, depending on the operating system, the size of the disk drive, and other
factors, but it is usually a power of 2. For our phone book example, let's assume a block
size of 8,192 bytes (2e13). Thus our phone book database will require 256,000,000 bytes
divided by 8,192 bytes per block, which is 31,250 blocks.

Your software is most efficient when it specifies a read or write operation that's a multiple
of the block size. If you ask to read 100 bytes, the system will read one block, 8,192
bytes, and throw away all but 100. Or if you ask to read 8,200 bytes, it will read two
blocks, or 16,384 bytes, and throw away almost half of them. By organizing your software
so that it works with a block of data at a time you can optimize its performance.

Assuming our phone book record size of 512 bytes, you can store 16 records in a block
(8,192 divided by 512), as shown in Figure 10.17. Thus for maximum efficiency it's
important to read 16 records at a time (or multiples of this number).

 Figure 10.17: Blocks and records

 Notice that it's also useful to make your record size a multiple of 2. That way an integral

number of them will always fit in a block.

Of course the sizes shown in our phone book example for records, blocks, and so on are
only illustrative; they will vary widely depending on the number and size of records and
other software and hardware constraints. Blocks containing hundreds of records are
common, and records may be much larger or smaller than 512 bytes.

Once the read-write head is positioned as described earlier, reading a block is fairly fast,
requiring only a few milliseconds. Thus a disk access to read or write a block is not very
dependent on the size of the block. It follows that the larger the block, the more efficiently
you can read or write a single record (assuming you use all the records in the block).

 Sequential Ordering

One way to arrange the phone book data in the disk file would be to order all the records
according to some key, say alphabetically by last name. The record for Joseph Aardvark
would come first, and so on. This is shown in Figure 10.18.

 - 361 -

 Figure 10.18: Sequential ordering

 Searching

To search a sequentially ordered file for a particular last name such as Smith, you could
use a binary search. You would start by reading a block of records from the middle of the
file. The 16 records in the block are all read at once into a 8,192-byte buffer in main
memory.

If the keys of these records are too early in the alphabet (Keller, for example), you'd go to
the 3/4 point in the file (Prince) and read a block there; if the keys were too late, you'd go
to the 1/4 point (DeLeon). By continually dividing the range in half you'd eventually find
the record you were looking for.

As we saw in Chapter 2, a binary search in main memory takes log2N comparisons,
which for 500,000 items is about 19. If every comparison took, say 10 microseconds, this
would be 190 microseconds, or about 2/10,000 of a second; less than an eye blink.

However, we're now dealing with data stored on a disk. Because each disk access is so
time consuming, it's more important to focus on how many disk accesses are necessary
than on how many individual records there are. The time to read a block of records will be
very much larger than the time to search the 16 records in the block once they're in
memory.

Disk accesses are much slower than memory accesses, but on the other hand we access
a block at a time, and there are far fewer blocks than records. In our example there are
31,250 blocks. Log2 of this number is about 15, so in theory we'll need about 15 disk
accesses to find the record we want.

In practice this number is reduced somewhat because we read 16 records at once. In the
beginning stages of a binary search it doesn't help to have multiple records in memory
because the next access will be in a distant part of the file. However, when we get close
to the desired record, the next record we want may already be in memory because it's
part of the same block of 16. This may reduce the number of comparisons by two or so.
Thus we'll need about 13 disk accesses (15 – 2), which at 10 milliseconds per access
requires about 130 milliseconds, or 1/7 second. This is much slower than in-memory
access, but still not too bad.

 Insertion

Unfortunately the picture is much worse if we want to insert (or delete) an item from a
sequentially ordered file. Because the data is ordered, both operations require moving
half the records on the average, and therefore about half the blocks.

Moving each block requires two disk accesses, one read and one write. Once the
insertion point is found, the block containing it is read into a memory buffer. The last
record in the block is saved, and the appropriate number of records are shifted up to
make room for the new one, which is inserted. Then the buffer contents are written back
to the disk file.

Next the second block is read into the buffer. Its last record is saved, all the other records
are shifted up, and the last record from the previous block is inserted at the External
Storagebeginning of the buffer. Then the buffer contents are again written back to disk.
This process continues until all the blocks beyond the insertion point have been rewritten.

 - 362 -

Assuming there are 31,250 blocks, we must read and write (on the average) 15,625 of
them, which at 10 milliseconds per read and write requires more than five minutes to
insert a single entry. This won't be satisfactory if you have thousands of new names to
add to the phone book.

Another problem with the sequential ordering is that it only works quickly for one key. Our
file is arranged by last names. But suppose you wanted to search for a particular phone
number. You can't use a binary search, because the data is ordered by name. You would
need to go through the entire file, block by block, using sequential access. This would
require reading an average of half the blocks, which would require about 2.5 minutes,
very poor performance for a simple search. It would be nice to have a more efficient way
to store disk data.

 B-Trees

How can the records of a file be arranged to provide fast search, insertion, and deletion
times? We've seen that trees are a good approach to organizing in-memory data. Will
trees work with files?

They will, but a different kind of tree must be used for external data than for in-memory
data. The appropriate tree is a multiway tree somewhat like a 2-3-4 tree, but with many
more data items per node; it's called a B-tree. B-trees were first conceived as appropriate
structures for external storage by R. Bayer and E. M. McCreight in 1972.

 One Block Per Node

Why do we need so many items per node? We've seen that disk access is most efficient
when data is read or written one block at a time. In a tree, the entity containing data is a
node. It makes sense then to store an entire block of data in each node of the tree. This
way, reading a node accesses a maximum amount of data in the shortest time.

 How much data can be put in a node? When we simply stored the 512-byte data records

for our phone book example, we could fit 16 into a 8,192-byte block.

In a tree, however, we also need to store the links to other nodes (which means links to
other blocks, because a node corresponds to a block). In an in-memory tree, such as
those we've discussed in previous chapters, these links are references (or pointers, in
languages like C++) to nodes in other parts of memory. For a tree stored in a disk file, the
links are block numbers in a file (from 0 to 31,249, in our phone book example). For block
numbers we can use a field of type int, a 4-byte type, which can point to more than 2
billion possible blocks; probably enough for most files.Now we can no longer squeeze 16
512-byte records into a block, because we need room for the links to child nodes. We
could reduce the number of records to 15 to make room for the links, but it's most
efficient to have an even number of records per node, so (after appropriate negotiation
with management) we reduce the record size to 507 bytes. There will be 17 child links
(one more than the number of data items) so the links will require 68 bytes (17x4). This
leaves room for 16 507-byte records with 12 bytes left over (507x16 + 68 = 8,180). A
block in such a tree, and the corresponding node representation, is shown in Figure
10.19.

 - 363 -

 Figure 10.19: A node in a B-tree of order 17

Within each node the data is ordered sequentially by key, as in a 2-3-4 tree. In fact, the
structure of a B-tree is similar to that of a 2-3-4 tree, except that there are more data
items per node and more links to children. The order of a B-tree is the number of children
each node can potentially have. In our example this is 17, so the tree is an order 17 B-
tree.

 Searching

A search for a record with a specified key is carried out in much the same way it is in an
in-memory 2-3-4 tree. First, the block containing the root is read into memory. The search
algorithm then starts examining each of the 15 records (or, if it's not full, as many as the
node actually holds), starting at 0. When it finds a record with a greater key, it knows to
go to the child whose link lies between this record and the preceding one.

 This process continues until the correct node is found. If a leaf is reached without finding

the specified key, the search is unsuccessful.

 Insertion

The insertion process in a B-tree is somewhat different than it is in a 2-3-4 tree. Recall
that in a 2-3-4 tree many nodes are not full, and in fact contain only one data item. In
particular, a node split always produces two nodes with one item in each. This is not an
optimum approach in a B-tree.

In a B-tree it's important to keep the nodes as full as possible so that each disk access,
which reads an entire node, can acquire the maximum amount of data. To help achieve
this end, the insertion process differs from that of 2-3-4 trees in three ways:

 • A node split divides the data items equally: half go to the newly created node, and half

remain in the old one.

 • Node splits are performed from the bottom up rather than from the top down.

 • It's not the middle item in a node that's promoted upward, but the middle item in the

sequence formed from the items in the node plus the new item.

We'll demonstrate these features of the insertion process by building a small B-tree, as
shown in Figure 10.20. There isn't room to show a realistic number of records per node,
so we'll show only four; thus the tree is an order 5 B-tree.

 - 364 -

 Figure 10.20: Building a B-tree

 - 365 -

Figure 10.20-a shows a root node that's already full; items with keys 20, 40, 60, and 80
have already been inserted into the tree. A new data item with a key of 70 is inserted,
resulting in a node split. Here's how the split is accomplished. Because it's the root that's
being split, two new nodes are created (as in a 2-3-4 tree): a new root and a new node to
the right of the one being split.

To decide where the data items go, the insertion algorithm arranges their 5 keys in order,
in an internal buffer. Four of these keys are from the node being split, and the fifth is from
the new item being inserted. In Figure 10.20, these 5-item sequences are shown to the
side of the tree. In this first step the sequence 20, 40, 60, 70, 80 is shown.

The center item in this sequence, 60 in this first step, is promoted to the new root node.
(In the figure, an arrow indicates that the center item will go upward.) All the items to the
left of center remain in the node being split, and all the items to the right go into the new
right-hand node. The result is shown in Figure 10.20-b. (In our phone book example, 8
items would go into each child node, rather than the 2 shown in the figure.)

In Figure 10.20-b we insert two more items, 10 and 30. They fill up the left child, as
shown in Figure 10.20-c. The next item to be inserted, 15, splits this left child, with the
result shown in Figure 10.20-d. Here the 20 has been promoted upward into the root.

Next, three items, 75, 85, and 90, are inserted into the tree. The first two fill up the third
child, and the third splits it, causing the creation of a new node and the promotion of the
middle item, 80, to the root. The result is shown in Figure 10.20-e.

Again three items, 25, 35, and 50, are added to the tree. The first two items fill up the
second child, and the third one splits it, causing the creation of a new node and the
promotion of the middle item, 35, to the root, as shown in Figure 10.20-f.

Now the root is full. However, subsequent insertions don't necessarily cause a node split,
because nodes are split only when a new item is inserted into a full node, not when a full
node is encountered in the search down the tree. Thus 22 and 27 are inserted in the
second child without causing any splits, as shown in Figure 10.20-g.

However, the next item to be inserted, 32, does cause a split; in fact it causes two of
them. The second node child is full, so it's split, as shown in Figure 10.20-b. However, the
27, promoted from this split, has no place to go because the root is full. Therefore, the
root must be split as well, resulting in the arrangement of Figure 10.20-j.

Notice that throughout the insertion process no node (except the root) is ever less than
half full, and many are more than half full. As we noted, this promotes efficiency because
a file access that reads a node always acquires a substantial amount of data.

 Efficiency of B-Trees

Because there are so many records per node, and so many nodes per level, operations
on B-trees are very fast, considering that the data is stored on disk. In our phone book
example there are 500,000 records. All the nodes in the B-tree are at least half full, so
they contain at least 8 records and 9 links to children. The height of the tree is thus
somewhat less than log9N (logarithm to the base 9 of N), where N is 500,000. This is
5.972, so there will be about 6 levels in the tree.

Thus, using a B-tree, only six disk accesses are necessary to find any record in a file of
500,000 records. At 10 milliseconds per access, this takes about 60 milliseconds, or
6/100 of a second. This is dramatically faster than the binary search of a sequentially
ordered file.

 The more records there are in a node, the fewer levels there are in the tree. We've seen

that there are 6 levels in our B-tree, even though the nodes hold only 16 records. In

 - 366 -

contrast, a binary tree with 500,000 items would have about 19 levels, and a 2-3-4 tree
would have 10. If we use blocks with hundreds of records, we can reduce the number of
levels in the tree and further improve access times.

 Although searching is faster in B-trees than in sequentially ordered disk files, it's for

insertion and deletion that B-trees show the greatest advantage.

Let's first consider a B-tree insertion in which no nodes need to be split. This is the most
likely scenario, because of the large number of records per node. In our phone book
example, as we've seen, only 6 accesses are required to find the insertion point. Then
one more access is required to write the block containing the newly inserted record back
to the disk; a total of 7 accesses.

Next let's see how things look if a node must be split. The node being split must be read,
have half its records removed, and be written back to disk. The newly created node must
be written to the disk, and the parent must be read and, following the insertion of the
promoted record, written back to disk. This is 5 accesses in addition to the six necessary
to find the insertion point, for a total of 12. This is a major improvement over the 500,000
accesses required for insertion in a sequential file.

In some versions of the B-tree, only leaf nodes contain records. Non-leaf nodes contain
only keys and block numbers. This may result in faster operation because each block can
hold many more block numbers. The resulting higher-order tree will have fewer levels,
and access speed will be increased. However, programming may be complicated
because there are two kinds of nodes: leaves and non-leaves.

 Indexing

A different approach to speeding up file access is to store records in sequential order but
use a file index along with the data itself. A file index is a list of key/block pairs, arranged
with the keys in order. Recall that in our original phone book example we had 500,000
records of 512 bytes each, stored 16 records to a block, in 31,250 blocks. Assuming our
search key is the last name, every entry in the index contains two items:

 • The key, such as Jones.

 • The number of the block where the Jones record is located within the file. These

numbers run from 0 to 31,249.

Let's say we use a string 28 bytes long for the key (big enough for most last names), and
4 bytes for the block number (a type int in Java). Each entry in our index thus requires
32 bytes. This is only 1/16 the amount necessary for each record.

The entries in the index are arranged sequentially by last name. The original records on
the disk can be arranged in any convenient order. This usually means that new records
are simply appended to the end of the file, so the records are ordered by time of
insertion. This arrangement is shown in Figure 10.21.

 - 367 -

 Figure 10.21: A file index

 Index File in Memory

Because it's so much smaller than the file containing actual records, it may be that the
index is small enough to fit entirely in main memory. In our example there are 500,000
records. Each one has a 32-byte entry in the index, so the index will be 32x500,000 or
1,600,000 bytes long (1.6 megabytes). In modern computers there's no problem fitting
this in memory. The index can be stored on the disk, but read into memory whenever the
database program is started up. From then on, operations on the index can take place in
memory. At the end of the day (or perhaps more frequently) the index can be written back
to disk for permanent storage.

 Searching

The index-in-memory approach allows much faster operations on the phone book file
than are possible with a file in which the records themselves are arranged sequentially.
For example, a binary search requires 19 index accesses. At 20 microseconds per
access, that's only about 4/10,000 of a second. Then there's (inevitably) the time to read
the actual record from the file, once its block number has been found in the index.
However, this is only one disk access of (say) 10 milliseconds.

 Insertion

To insert a new item in an indexed file two steps are necessary. We first insert its full
record into the main file; then we insert an entry, consisting of the key and the block
number where the new record is stored, into the index.

Because the index is in sequential order, to insert a new item we need to move half the
index entries, on the average. Figuring 2 microseconds to move a byte in memory, we
have 250,000 times 32 times 2, or about 16 seconds to insert a new entry. This
compares with five minutes for the unindexed sequential file. (Note that we don't need to
move any records in the main file; we simply append the new record at the end of the
file.)

Of course, you can use a more sophisticated approach to storing the index in memory.
You could store it as a binary tree, 2-3-4 tree, or red-black tree, for example. Any of these
would significantly reduce insertion and deletion times. In any case the index-in-memory
approach is much faster than the sequential-file approach. In some cases it will also be
faster than a B-tree.

 The only actual disk accesses necessary for an insertion into an indexed file involve the

new record itself. Usually the last block in the file is read into memory, the new record is

 - 368 -

appended, and the block is written back out. This involves only two file accesses.

 Multiple Indexes

An advantage of the indexed approach is that multiple indexes, each with a different key,
can be created for the same file. In one index the keys can be last names, in another
telephone numbers, in another addresses. Because the indexes are small compared with
the file, this doesn't increase the total data storage very much. Of course, it does present
more of a challenge when items are deleted from the file, because entries must be
deleted from all the indexes, but we won't get into that here.

 Index Too Large for Memory

If the index is too large to fit in memory, it must be broken into blocks and stored on the
disk. For large files it may then be profitable to store the index itself as a B-tree. In the
main file the records are stored in any convenient order.

This arrangement can be very efficient. Appending records to the end of the main file is a
fast operation, and the index entry for the new record is also quick to insert because the
index is a tree. The result is very fast searching and insertion for large files.

Note that when an index is arranged as a B-tree, each node contains a number of child
pointers and one fewer data items. The child pointers are the block numbers of other
nodes in the index. The data items consist of a key value and a pointer to a block in the
main file. Don't confuse these two kinds of block pointers.

 Complex Search Criteria

In complex searches the only practical approach may be to read every block in a file
sequentially. Suppose in our phone book example we wanted a list of all entries in the
phone book with first name Frank, who lived in Springfield, and who had a phone number
with three "7" digits in it. (These were perhaps clues found scrawled on a scrap of paper
clutched in the hand of a victim of foul play.)

A file organized by last names would be no help at all. Even if there were index files
ordered by first names and cities, there would be no convenient way to find which files
contained both Frank and Springfield. In such cases (which are quite common in many
kinds of databases) the fastest approach is probably to read the file sequentially, block by
block, checking each record to see if it meets the criteria.

 Sorting External Files

Mergesort is the preferred algorithm for sorting external data. This is because, more so
than most sorting techniques, disk accesses tend to occur in adjacent records rather than
random parts of the file.

Recall from Chapter 6, "Recursion," that mergesort works recursively by calling itself to
sort smaller and smaller sequences. Once two of the smallest sequences (one byte each
in the internal-memory version) have been sorted, they are then merged into a sorted
sequence twice as long. Larger and larger sequences are merged, until eventually the
entire file is sorted.

 The approach for external storage is similar. However, the smallest sequence that can be

read from the disk is a block of records. Thus, a two-stage process is necessary.

In the first phase, a block is read, its records are sorted internally, and the resulting
sorted block is written back to disk. The next block is similarly sorted and written back to
disk. This continues until all the blocks are internally sorted.

 - 369 -

In the second phase, two sorted blocks are read, merged into a two-block sequence, and
written back to disk. This continues until all pairs of blocks have been merged. Next each
pair of 2-block sequences is merged into a 4-block sequence. Each time the size of the
sorted sequences doubles, until the entire file is sorted.

Figure 10.22 shows the mergesort process on an external file. The file consists of four
blocks of four records each, for a total of 16 records. Only three blocks can fit in internal
memory. (Of course all these sizes would be much larger in a real situation.) Figure
10.22-a shows the file before sorting; the number in each record is its key value.

 Figure 10.22: Mergesort on an external file

 Internal Sort of Blocks

In the first phase all the blocks in the file are sorted internally. This is done by reading the
block into memory and sorting it with any appropriate internal sorting algorithm, such as
Quicksort (or for smaller numbers of records, shellsort or insertion sort). The result of
sorting the blocks internally is shown in Figure 10.22-b. The dotted lines in the figure
separate sorted records; solid lines separate unsorted records.

 A second file may be used to hold the sorted blocks, and we assume that availability of

external storage is not a problem. It's often desirable to avoid modifying the original file.

 Merging

In the second phase we want to merge the sorted blocks. In the first pass we merge
every pair of blocks into a sorted 2-block sequence. Thus the two blocks 2-9-11-14 and
4-12-13-16 are merged into 2-4-9-11-12-13-14-16. Also, 3-5-10-15 and 1-6-7-8 are
merged into 1-3-5-6-7-8-10-15. The result is shown in Figure 10.22-c. A third file is
necessary to hold the result of this merge step.

In the second pass, the two 8-record sequences are merged into a 16-record sequence,
and the sort is complete. Of course more merge steps would be required to sort larger
files; the number of such steps is proportional to log2N. The merge steps can alternate
between two files.

 Internal Arrays

Because the computer's internal memory has room for only three blocks, the merging
process must take place in stages. Let's say there are three arrays, called arr1, arr2,
and arr3, each of which can hold a block.

 - 370 -

In the first merge, block 2-9-11-14 is read into arr1, and 4-12-13-16 is read into arr2.
These two arrays are then merge-sorted into arr3. However, because arr3 holds only
one block, it becomes full before the sort is completed. When it becomes full, its contents
are written to disk. The sort then continues, filling up arr3 again. This completes the
sort, and arr3 is again written to disk. The following lists show the details of each of the
three mergesorts.

 Mergesort 1:

 1. Read 2-9-11-14 into arr1

 2. Read 4-12-13-16 into arr2

 3. Merge 2, 4, 9, 11 into arr3; write to disk

 4. Merge 12, 13, 14, 16 into arr3; write to disk

 Mergesort 2:

 1. Read 3-5-10-15 into arr1

 2. Read 1-6-7-8 into arr2

 3. Merge 1, 3, 5, 6 into arr3; write to disk

 4. Merge 7, 8, 10, 15 into arr3, write to disk

 Mergesort 3:

 1. Read 2-4-9-11 into arr1

 2. Read 1-3-5-6 into arr2

 3. Merge 1, 2, 3, 4 into arr3; write to disk

 4. Merge 5, 6 into arr3 (arr2 is now empty)

 5. Read 7-8-10-15 into arr2

 6. Merge 7, 8 into arr3; write to disk

 7. Merge 9, 10, 11 into arr3 (arr1 is now empty)

 8. Read 12-13-14-16 into arr1

 9. Merge 12 into arr3; write to disk

 10. Merge 13, 14, 15, 16 into arr3; write to disk

This last sequence of 10 steps is rather lengthy, so it may be helpful to examine the
details of the array contents as the steps are completed. Figure 10.23 shows how these
arrays look at various stages of Mergesort 3.

 - 371 -

 Figure 10.23: Array contents during Mergesort 3

 Summary

 • A multiway tree has more keys and children than a binary tree.

 • A 2-3-4 tree is a multiway tree with up to three keys and four children per node.

 • In a multiway tree, the keys in a node are arranged in ascending order.

 • In a 2-3-4 tree, all insertions are made in leaf nodes, and all leaf nodes are on the

same level.

•

Three kinds of nodes are possible in a 2-3-4 tree: A 2-node has one key and two
children, a 3-node has two keys and three children, and a 4-node has three keys and
four children.

 • There is no 1-node in a 2-3-4 tree.

•

In a search in a 2-3-4 tree, at each node the keys are examined. If the search key is
not found the next node will be child 0 if the search key is less than key 0; child 1 if the
search key is between key 0 and key 1; child 2 if the search key is between key 1 and
key 2; and child 3 if the search key is greater than key 2.

 • Insertion into a 2-3-4 tree requires that any full node be split on the way down the tree,

during the search for the insertion point.

 • Splitting the root creates two new nodes; splitting any other node creates one new

node.

 • The height of a 2-3-4 tree can increase only when the root is split.

 • There is a one-to-one correspondence between a 2-3-4 tree and a red-black tree.

•

To transform a 2-3-4 tree into a red-black tree, make each 2-node into a black node,
make each 3-node into a black parent with a red child, and make each 4-node into a
black parent with two red children.

 • When a 3-node is transformed into a parent and child, either node can become the

parent.

 - 372 -

 • Splitting a node in a 2-3-4 tree is the same as performing a color flip in a red-black
tree.

 • A rotation in a red-black tree corresponds to changing between the two possible

orientations (slants) when transforming a 3-node.

 • The height of a 2-3-4 tree is less than log2N.

 • Search times are proportional to the height.

 • The 2-3-4 tree wastes space because many nodes are not even half full.

 • External storage means storing data outside of main memory; usually on a disk.

 • External storage is larger, cheaper (per byte), and slower than main memory.

 • Data in external storage is typically transferred to and from main memory a block at a

time.

 • Data can be arranged in external storage in sequential key order. This gives fast

search times but slow insertion (and deletion) times.

 • A B-tree is a multiway tree in which each node may have dozens or hundreds of keys

and children.

 • There is always one more child than there are keys in a B-tree node.

 • For the best performance, a B-tree is typically organized so that a node holds one

block of data.

 • If the search criteria involve many keys, a sequential search of all the records in a file

may be the most practical approach.

Chapter 11: Hash Tables

 Overview

A hash table is a data structure that offers very fast insertion and searching. When you
first hear about them, hash tables sound almost too good to be true. No matter how many
data items there are, insertion and searching (and sometimes deletion) can take close to
constant time: O(1) in Big O notation. In practice this is just a few machine instructions.

For a human user of a hash table this is essentially instantaneous. It's so fast that
computer programs typically use hash tables when they need to look up tens of
thousands of items in less than a second (as in spelling checkers). Hash tables are
significantly faster than trees, which, as we learned in the preceding chapters, operate in
relatively fast O(logN) time. Not only are they fast, hash tables are relatively easy to
program.

Hash tables do have several disadvantages. They're based on arrays, and arrays are
difficult to expand once they've been created. For some kinds of hash tables,
performance may degrade catastrophically when the table becomes too full, so the
programmer needs to have a fairly accurate idea of how many data items will need to be
stored (or be prepared to periodically transfer data to a larger hash table, a time-
consuming process).

 Also, there's no convenient way to visit the items in a hash table in any kind of order

 - 373 -

(such as from smallest to largest). If you need this capability, you'll need to look
elsewhere.

 However, if you don't need to visit items in order, and you can predict in advance the size

of your database, hash tables are unparalleled in speed and convenience.

Introduction to Hashing

In this section we'll introduce hash tables and hashing. One important concept is how a
range of key values is transformed into a range of array index values. In a hash table this
is accomplished with a hash function. However, for certain kinds of keys, no hash
function is necessary; the key values can be used directly as array indices. We'll look at
this simpler situation first and then go on to show how hash functions can be used when
keys aren't distributed in such an orderly fashion.

 Employee Numbers as Keys

Suppose you're writing a program to access employee records for a small company with,
say, 1,000 employees. Each employee record requires 1,000 bytes of storage. Thus you
can store the entire database in only 1 megabyte, which will easily fit in your computer's
memory.

The company's personnel director has specified that she wants the fastest possible
access to any individual record. Also, every employee has been given a number from 1
(for the founder) to 1,000 (for the most recently hired worker). These employee numbers
can be used as keys to access the records; in fact, access by other keys is deemed
unnecessary. Employees are seldom laid off, but even when they are, their record
remains in the database for reference (concerning retirement benefits and so on). What
sort of data structure should you use in this situation?

 Keys Are Index Numbers

One possibility is a simple array. Each employee record occupies one cell of the array,
and the index number of the cell is the employee number for that record. This is shown in
Figure 11.1.

 Figure 11.1: Employee numbers as array indices

As you know, accessing a specified array element is very fast if you know its index
number. The clerk looking up Herman Alcazar knows that he is employee number 72, so
he enters that number, and the program goes instantly to index number 72 in the array. A
single program statement is all that's necessary:

 empRecord rec = databaseArray[72];

It's also very quick to add a new item: You insert it just past the last occupied element.
The next new record—for Jim Chan, the newly hired employee number 1,001—would go
in cell 1,001. Again, a single statement inserts the new record:

 - 374 -

 databaseArray[totalEmployees++] = newRecord;

 Presumably the array is made somewhat larger than the current number of employees, to

allow room for expansion; but not much expansion is anticipated.

 Not Always So Orderly

The speed and simplicity of data access using this array-based database make it very
attractive. However, it works in our example only because the keys are unusually well
organized. They run sequentially from 1 to a known maximum, and this maximum is a
reasonable size for an array. There are no deletions, so memory-wasting gaps don't
develop in the sequence. New items can be added sequentially at the end of the array,
and the array doesn't need to be very much larger than the current number of items.

 A Dictionary

In many situations the keys are not so well behaved as in the employee database just
described. The classic example is a dictionary. If you want to put every word of an
English-language dictionary, from a to zyzzyva (yes, it's a word), into your computer's
memory, so they can be accessed quickly, a hash table is a good choice.

A similar widely used application for hash tables is in computer-language compilers,
which maintain a symbol table in a hash table. The symbol table holds all the variable
and function names made up by the programmer, along with the addresses where they
can be found in memory. The program needs to access these names very quickly, so a
hash table is the preferred data structure.

Let's say we want to store a 50,000-word English-language dictionary in main memory.
You would like every word to occupy its own cell in a 50,000-cell array, so you can
access the word using an index number. This will make access very fast. But what's the
relationship of these index numbers to the words? Given the word morphosis, for
example, how do we find its index number?

 Converting Words to Numbers

What we need is a system for turning a word into an appropriate index number. To begin,
we know that computers use various schemes for representing individual characters as
numbers. One such scheme is the ASCII code, in which a is 97, b is 98, and so on, up to
122 for z.

However, the ASCII code runs from 0 to 255, to accommodate capitals, punctuation, and
so on. There are really only 26 letters in English words, so let's devise our own code—a
simpler one that can potentially save memory space. Let's say a is 1, b is 2, c is 3, and so
on up to 26 for z. We'll also say a blank is 0, so we have 27 characters. (Uppercase
letters aren't used in this dictionary.)

How do we combine the digits from individual letters into a number that represents an
entire word? There are all sorts of approaches. We'll look at two representative ones, and
their advantages and disadvantages.

 Add the Digits

A simple approach to converting a word to a number might be to simply add the code
numbers for each character. Say we want to convert the word cats to a number. First we
convert the characters to digits using our homemade code:

 c = 3

 - 375 -

 a = 1
 t = 20
 s = 19

 Then we add them:

 3 + 1 + 20 + 19 = 43

Thus in our dictionary the word cats would be stored in the array cell with index 43. All
the other English words would likewise be assigned an array index calculated by this
process.

How well would this work? For the sake of argument, let's restrict ourselves to 10-letter
words. Then (remembering that a blank is 0), the first word in the dictionary, a, would be
coded by

 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 1 = 1

 The last potential word in the dictionary would be zzzzzzzzzz (ten Zs). Our code obtained

by adding its letters would be

 26 + 26 + 26 + 26 + 26 + 26 + 26 + 26 + 26 + 26 = 260

Thus the total range of word codes is from 1 to 260. Unfortunately, there are 50,000
words in the dictionary, so there aren't enough index numbers to go around. Each array
element will need to hold about 192 words (50,000 divided by 260).

Clearly this presents problems if we're thinking in terms of our one word-per-array
element scheme. Maybe we could put a subarray or linked list of words at each array
element. However, this would seriously degrade the access speed. It would be quick to
access the array element, but slow to search through the 192 words to find the one we
wanted.

So our first attempt at converting words to numbers leaves something to be desired. Too
many words have the same index. (For example, was, tin, give, tend, moan, tick, bails,
dredge, and hundreds of other words add to 43, as cats does.) We conclude that this
approach doesn't discriminate enough, so the resulting array has too few elements. We
need to spread out the range of possible indices.

 Multiply by Powers

Let's try a different way to map words to numbers. If our array was too small before, let's
make sure it's big enough. What would happen if we created an array in which every
word, in fact every potential word, from a to zzzzzzzzzz, was guaranteed to occupy its
own unique array element?

 To do this, we need to be sure that every character in a word contributes in a unique way

to the final number.

We'll begin by thinking about an analogous situation with numbers instead of words.
Recall that in an ordinary multi-digit number, each digit position represents a value 10
times as big as the position to its right. Thus 7,546 really means

 7*1000 + 5*100 + 4*10 + 6*1

 Or, writing the multipliers as powers of 10:

 - 376 -

 7*103 + 5*102 + 4*101 + 6*100

(An input routine in a computer program performs a similar series of multiplications and
additions to convert a sequence of digits, entered at the keyboard, into a number stored
in memory.)

 In this system we break a number into its digits, multiply them by appropriate powers of

10 (because there are 10 possible digits), and add the products.

In a similar way we can decompose a word into its letters, convert the letters to their
numerical equivalents, multiply them by appropriate powers of 27 (because there are 27
possible characters, including the blank), and add the results. This gives a unique
number for every word.

Say we want to convert the word cats to a number. We convert the digits to numbers as
shown earlier. Then we multiply each number by the appropriate power of 27, and add
the results:

 3*273 + 1*272 + 20*271 + 19*270

 Calculating the powers gives

 3*19,683 + 1*729 + 20*27 + 19*1

 and multiplying the letter codes times the powers yields

 59,049 + 729 + 540 + 19

 which sums to 60,337.

This process does indeed generate a unique number for every potential word. We just
calculated a four-letter word. What happens with larger words? Unfortunately the range of
numbers becomes rather large. The largest 10-letter word, zzzzzzzzzz, translates into

 26*279 + 26*278 + 26*277 + 26*276 + 26*275 + 26*274 + 26*273 + 26*272 + 26*271 +

26*270

 Just by itself, 279 is more than 7,000,000,000,000, so you can see that the sum will be

huge. An array stored in memory can't possibly have this many elements.

The problem is that this scheme assigns an array element to every potential word,
whether it's an actual English word or not. Thus there are cells for aaaaaaaaaa,
aaaaaaaaab, aaaaaaaaac, and so on, up to zzzzzzzzzz. Only a small fraction of these
are necessary for real words, so most array cells are empty. This is shown in Figure 11.2.

 Figure 11.2: Index for every potential

 Our first scheme—adding the numbers—generated too few indices. This latest scheme—

 - 377 -

adding the numbers times powers of 27—generates too many.

 Hashing

What we need is a way to compress the huge range of numbers we obtain from the
numbers-multiplied-by-powers system into a range that matches a reasonably sized
array.

How big an array are we talking about for our English dictionary? If we only have 50,000
words, you might assume our array should have approximately this many elements.
However, it turns out we're going to need an array with about twice this many cells. (It will
become clear later why this is so.) So we need an array with 100,000 elements.

Thus we look for a way to squeeze a range of 0 to more than 7,000,000,000,000 into the
range 0 to 100,000. A simple approach is to use the modulo operator (%), which finds the
remainder when one number is divided by another.

To see how this works, let's look at a smaller and more comprehensible range. Suppose
we squeeze numbers in the range 0 to 199 (we'll represent them by the variable
largeNumber) into the range 0 to 9 (the variable smallNumber). There are 10 numbers
in the range of small numbers, so we'll say that a variable smallRange has the value 10.
It doesn't really matter what the large range is (unless it overflows the program's variable
size). The Java expression for the conversion is

 smallNumber = largeNumber % smallRange;

The remainders when any number is divided by 10 are always in the range 0 to 9; for
example, 13%10 gives 3, and 157%10 is 7. This is shown in Figure 11.3. We've
squeezed the range 0–199 into the range 0–9, a 20-to-1 compression ratio.

 Figure 11.3: Range conversion

 A similar expression can be used to compress the really huge numbers that uniquely

represent every English word into index numbers that fit in our dictionary array:

 arrayIndex = hugeNumber % arraySize;

This is an example of a hash function. It hashes (converts) a number in a large range into
a number in a smaller range. This smaller range corresponds to the index numbers in an
array. An array into which data is inserted using a hash function is called a hash table.

 - 378 -

(We'll talk more about the design of hash functions later in the chapter.)

To review: We convert a word into a huge number by multiplying each character in the
word by an appropriate power of 27.hugeNumber = ch0*279 + ch1*278 + ch2*277 +
ch3*276 + ch4*275 + ch5*274 + ch6*273 + ch7*272 + ch8*271 + ch9*270

Then, using the modulo (%) operator, we squeeze the resulting huge range of numbers
into a range about twice as big as the number of items we want to store. This is an
example of a hash function:

 arraySize = numberWords * 2;
 arrayIndex = hugeNumber % arraySize;

In the huge range, each number represents a potential data item (an arrangement of
letters), but few of these numbers represent actual data items (English words). A hash
function transforms these large numbers into the index numbers of a much smaller array.
In this array we expect that, on the average, there will be one word for every two cells.
Some cells will have no words, and some more than one.

A practical implementation of this scheme runs into trouble because hugeNumber will
probably overflow its variable size, even for type long. We'll see how to deal with this
later.

 Collisions

 We pay a price for squeezing a large range into a small one. There's no longer a

guarantee that two words won't hash to the same array index.

This is similar to what happened when we added the letter codes, but the situation is
nowhere near as bad. When we added the letters, there were only 260 possible results
(for words up to 10 letters). Now we're spreading this out into 50,000 possible results.

Even so, it's impossible to avoid hashing several different words into the same array
location, at least occasionally. We'd hoped that we could have one data item per index
number, but this turns out not to be possible. The best we can do is hope that not too
many words will hash to the same index.

Perhaps you want to insert the word melioration into the array. You hash the word to
obtain its index number, but find that the cell at that number is already occupied by the
word demystify, which happens to hash to the exact same number (for a certain size
array). This situation, shown in Figure 11.4, is called a collision.

 Figure 11.4: Collision

 - 379 -

 It may appear that the possibility of collisions renders the hashing scheme impractical,

but in fact we can work around the problem in a variety of ways.

Remember that we've specified an array with twice as many cells as data items. Thus
perhaps half the cells are empty. One approach, when a collision occurs, is to search the
array in some systematic way for an empty cell, and insert the new item there, instead of
at the index specified by the hash function. This approach is called open addressing. If
cats hashes to 5,421, but this location is already occupied by parsnip, then we might try
to insert cats in 5,422, for example.

A second approach (mentioned earlier) is to create an array that consists of linked lists of
words instead of the words themselves. Then when a collision occurs, the new item is
simply inserted in the list at that index. This is called separate chaining.

 In the balance of this chapter we'll discuss open addressing and separate chaining, and

then return to the question of hash functions.

Open Addressing

In open addressing, when a data item can't be placed at the index calculated by the hash
function, another location in the array is sought. We'll explore three methods of open
addressing, which vary in the method used to find the next vacant cell. These methods
are linear probing, quadratic probing, and double hashing.

 Linear Probing

In linear probing we search sequentially for vacant cells. If 5,421 is occupied when we try
to insert cats there, we go to 5,422, then 5,423, and so on, incrementing the index until
we find an empty cell. This is called linear probing because it steps sequentially along the
line of cells.

 The Hash Workshop Applet

 The Hash Workshop applet demonstrates linear probing. When you start this applet,

you'll see a screen similar to Figure 11.5.

 Figure 11.5: The Hash Workshop applet

In this applet the range of keys runs from 0 to 999. The initial size of the array is 60. The
hash function has to squeeze the range of keys down to match the array size. It does this
with the modulo (%) operator, as we've seen before:

 arrayIndex = key % arraySize;

 - 380 -

 For the initial array size of 60, this is

 arrayIndex = key % 60;

This hash function is simple enough that you can solve it mentally. For a given key, keep
subtracting multiples of 60 until you get a number under 60. For example, to hash 143,
subtract 60, giving 83, and then 60 again, giving 23. This is the index number where the
algorithm will place 143. Thus you can easily check that the algorithm has hashed a key
to the correct address. (An array size of 10 is even easier to figure out, as a key's last
digit is the index it will hash to.)

As with other applets, operations are carried out by repeatedly pressing the same button.
For example, to find a data item with a specified number, click the Find button repeatedly.
Remember, finish a sequence with one button before using another button. For example,
don't switch from clicking Fill to some other button until the Press any key message is
displayed.

All the operations require you to type a numerical value at the beginning of the sequence.
The Find button requires you to type a key value, for example, while New requires the
size of the new table.

The New Button You can create a new hash table of a size you specify by using the
New button. The maximum size is 60; this limitation results from the number of cells
Open Addressingthat can be viewed in the applet window. The initial size is also 60. We
use this number because it makes it easy to check if the hash values are correct, but as
we'll see later, in a general-purpose hash table, the array size should be a prime number,
so 59 would be a better choice.

The Fill Button Initially the hash table contains 30 items, so it's half full. However, you
can also fill it with a specified number of data items using the Fill button. Keep clicking
Fill, and when prompted, type the number of items to fill. Hash tables work best when
they are not more than half or at the most two-thirds full (40 items in a 60-cell table).

 You'll see that the filled cells aren't evenly distributed in the cells. Sometimes there's a

sequence of several empty cells, and sometimes a sequence of filled cells.

Let's call a sequence of filled cells in a hash table a filled sequence. As you add more
and more items, the filled sequences become longer. This is called clustering, and is
shown in Figure 11.6.

 Figure 11.6: Clustering

 - 381 -

When you use the applet, note that it may take a long time to fill a hash table if you try to
fill it too full (for example, if you try to put 59 items in a 60-cell table). You may think the
program has stopped, but be patient. It's extremely inefficient at filling an almost-full
array.

 Also, note that if the hash table becomes completely full the algorithms all stop working;

in this applet they assume that the table has at least one empty cell.

The Find Button The Find button starts by applying the hash function to the key value
you type into the number box. This results in an array index. The cell at this index may be
the key you're looking for; this is the optimum situation, and success will be reported
immediately.

However, it's also possible that this cell is already occupied by a data item with some
other key. This is a collision; you'll see the red arrow pointing to an occupied cell.
Following a collision, the search algorithm will look at the next cell in sequence. The
process of finding an appropriate cell following a collision is called a probe.

Following a collision, the Find algorithm simply steps along the array looking at each cell
in sequence. If it encounters an empty cell before finding the key it's looking for, it knows
the search has failed. There's no use looking further, because the insertion algorithm
would have inserted the item at this cell (if not earlier). Figure 11.7 shows successful and
unsuccessful linear probes.

 Figure 11.7: Linear probes

The Ins Button The Ins button inserts a data item, with a key value that you type into
the number box, into the hash table. It uses the same algorithm as the Find button to
locate the appropriate cell. If the original cell is occupied, it will probe linearly for a vacant
cell. When it finds one, it inserts the item.

Try inserting some new data items. Type in a 3-digit number and watch what happens.
Most items will go into the first cell they try, but some will suffer collisions, and need to
step along to find an empty cell. The number of steps they take is the probe length. Most
probe lengths are only a few cells long. Sometimes, however, you may see probe lengths
of 4 or 5 cells, or even longer as the array becomes excessively full.

Notice which keys hash to the same index. If the array size is 60, the keys 7, 67, 127,
187, 247, and so on up to 967 all hash to index 7. Try inserting this sequence or a similar
one. This will demonstrate the linear probe.

 - 382 -

The Del Button The Del button deletes an item whose key is typed by the user. Deletion
isn't accomplished by simply removing a data item from a cell, leaving it empty. Why not?
Remember that during insertion the probe process steps along a series of cells, looking
for a vacant one. If a cell is made empty in the middle of this sequence of full cells, the
Find routine will give up when it sees the empty cell, even if the desired cell can
eventually be reached.

For this reason a deleted item is replaced by an item with a special key value that
identifies it as deleted. In this applet we assume all legitimate key values are positive, so
the deleted value is chosen as –1. Deleted items are marked with the special key *Del*.

The Insert button will insert a new item at the first available empty cell or in a *Del* item.
The Find button will treat a *Del* item as an existing item for the purposes of searching
for another item further along.

If there are many deletions, the hash table fills up with these ersatz *Del* data items,
which makes it less efficient. For this reason many hash table implementations don't
allow deletion. If it is implemented, it should be used sparingly.

 Duplicates Allowed?

Can you allow data items with duplicate keys to be used in hash tables? The fill routine in
the Hash applet doesn't allow duplicates, but you can insert them with the Insert button if
you like. Then you'll see that only the first one can be accessed. The only way to access
a second item with the same key is to delete the first one. This isn't too convenient.

You could rewrite the Find algorithm to look for all items with the same key instead of just
the first one. However, it would then need to search through all the cells of every linear
sequence it encountered. This wastes time for all table accesses, even when no
duplicates are involved. In the majority of cases you probably want to forbid duplicates.

 Clustering

Try inserting more items into the hash table in the Hash Workshop applet. As it gets more
full, clusters grow larger. Clustering can result in very long probe lengths. This means
that it's very slow to access cells at the end of the sequence.

The more full the array is, the worse clustering becomes. It's not a problem when the
array is half full, and still not too bad when it's two-thirds full. Beyond this, however,
performance degrades seriously as the clusters grow larger and larger. For this reason
it's critical when designing a hash table to ensure that it never becomes more than half,
or at the most two-thirds, full. (We'll discuss the mathematical relationship between how
full the hash table is and probe lengths at the end of this chapter.)

 Java Code for a Linear Probe Hash Table

It's not hard to create methods to handle search, insertion, and deletion with linear-probe
hash tables. We'll show the Java code for these methods, and then a complete
hash.java program that puts them in context.

 The find() Method

The find() method first calls hashFunc() to hash the search key to obtain the index
number hashVal. The hashFunc() method applies the % operator to the search key
and the array size, as we've seen before.

 Next, in a while condition, find() checks if the item at this index is empty (null). If

not, it checks if the item contains the search key. If it does, it returns the item. If it doesn't,

 - 383 -

find() increments hashVal and goes back to the top of the while loop to check if the
next cell is occupied. Here's the code for find():

 public DataItem find(int key) // find item with key
 // (assumes table not full)
 {
 int hashVal = hashFunc(key); // hash the key

 while(hashArray[hashVal] != null) // until empty cell,
 { // found the key?
 if(hashArray[hashVal].iData == key)
 return hashArray[hashVal]; // yes, return item
 ++hashVal; // go to next cell
 hashVal %= arraySize; // wrap around if necessary
 }
 return null; // can't find item
 }

As hashVal steps through the array, it eventually reaches the end. When this happens
we want it to wrap around to the beginning. We could check for this with an if statement,
setting hashVal to 0 whenever it equaled the array size. However, we can accomplish
the same thing by applying the % operator to hashVal and the array size.

Cautious programmers might not want to assume the table is not full, as is done here.
The table should not be allowed to become full, but if it did, this method would loop
forever. For simplicity we don't check for this situation.

 The insert() Method

The insert() method uses about the same algorithm as find() to locate where a
data item should go. However, it's looking for an empty cell or a deleted item (key –1),
rather than a specific item. Once this empty cell has been located, insert() places the
new item into it.

 public void insert(DataItem item) // insert a DataItem
 // (assumes table not full)
 {
 int key = item.iData; // extract key
 int hashVal = hashFunc(key); // hash the key
 // until empty cell or -1,
 while(hashArray[hashVal] != null &&
 hashArray[hashVal].iData != -1)
 {
 ++hashVal; // go to next cell
 hashVal %= arraySize; // wrap around if necessary
 }
 hashArray[hashVal] = item; // insert item
 } // end insert()

 The delete() Method

The delete() method finds an existing item using code similar to find(). Once the
item is found, delete() writes over it with the special data item nonItem, which is
predefined with a key of –1.

 - 384 -

 public DataItem delete(int key) // delete a DataItem
 {
 int hashVal = hashFunc(key); // hash the key

 while(hashArray[hashVal] != null) // until empty cell,
 { // found the key?
 if(hashArray[hashVal].iData == key)
 {
 DataItem temp = hashArray[hashVal]; // save item
 hashArray[hashVal] = nonItem; // delete item
 return temp; // return item
 }
 ++hashVal; // go to next cell
 hashVal %= arraySize; // wrap around if necessary
 }
 return null; // can't find item

 } // end delete()

 The hash.java Program

Here's the complete hash.java program. A DataItem object contains just one field, an
integer that is its key. As in other data structures we've discussed, these objects could
contain more data, or a reference to an object of another class (such as employee or
partNumber).

 The major field in class HashTable is an array called hashArray. Other fields are the

size of the array and the special nonItem object used for deletions.

 Here's the listing for hash.java:

 // hash.java
 // demonstrates hash table with linear probing
 // to run this program: C:>java HashTableApp
 import java.io.*; // for I/O
 import java.util.*; // for Stack class
 import java.lang.Integer; // for parseInt()
 //
 class DataItem
 { // (could have more data)
 public int iData; // data item (key)

 //---

-
 public DataItem(int ii) // constructor
 { iData = ii; }

 //---

-
 } // end class DataItem

 //

 - 385 -

 class HashTable
 {
 DataItem[] hashArray; // array holds hash table
 int arraySize;
 DataItem nonItem; // for deleted items

 // --

-
 public HashTable(int size) // constructor
 {
 arraySize = size;
 hashArray = new DataItem[arraySize];
 nonItem = new DataItem(-1); // deleted item key is -1
 }

 // --

-
 public void displayTable()
 {
 System.out.print("Table: ");
 for(int j=0; j<arraySize; j++)
 {
 if(hashArray[j] != null)
 System.out.print(hashArray[j].iData+ " ");
 else
 System.out.print("** ");
 }
 System.out.println("");
 }

 // --

-
 public int hashFunc(int key)
 {
 return key % arraySize; // hash function
 }

 // --

-
 public void insert(DataItem item) // insert a DataItem
 // (assumes table not full)
 {
 int key = item.iData; // extract key
 int hashVal = hashFunc(key); // hash the key
 // until empty cell or -1,
 while(hashArray[hashVal] != null &&
 hashArray[hashVal].iData != -

1)
 {
 ++hashVal; // go to next cell
 hashVal %= arraySize; // wraparound if necessary
 }
 hashArray[hashVal] = item; // insert item
 } // end insert()

 - 386 -

 // --

-
 public DataItem delete(int key) // delete a DataItem
 {
 int hashVal = hashFunc(key); // hash the key

 while(hashArray[hashVal] != null) // until empty cell,
 { // found the key?
 if(hashArray[hashVal].iData == key)
 {
 DataItem temp = hashArray[hashVal]; // save item
 hashArray[hashVal] = nonItem; // delete item
 return temp; // return item
 }
 ++hashVal; // go to next cell
 hashVal %= arraySize; // wraparound if necessary
 }
 return null; // can't find item
 } // end delete()

 // --

-
 public DataItem find(int key) // find item with key
 {
 int hashVal = hashFunc(key); // hash the key

 while(hashArray[hashVal] != null) // until empty cell,
 { // found the key?
 if(hashArray[hashVal].iData == key)
 return hashArray[hashVal]; // yes, return item
 ++hashVal; // go to next cell
 hashVal %= arraySize; // wraparound if necessary
 }
 return null; // can't find item
 }

 // --

-
 } // end class HashTable

 //

 class HashTableApp
 {
 public static void main(String[] args) throws IOException
 {
 DataItem aDataItem;
 int aKey, size, n, keysPerCell;
 // get sizes
 putText("Enter size of hash table: ");
 size = getInt();
 putText("Enter initial number of items: ");

 - 387 -

 n = getInt();
 keysPerCell = 10;
 // make table
 HashTable theHashTable = new HashTable(size);

 for(int j=0; j<n; j++) // insert data
 {
 aKey = (int)(java.lang.Math.random() *
 keysPerCell * size);
 aDataItem = new DataItem(aKey);
 theHashTable.insert(aDataItem);
 }

 while(true) // interact with user
 {
 putText("Enter first letter of ");
 putText("show, insert, delete, or find: ");
 char choice = getChar();
 switch(choice)
 {
 case 's':
 theHashTable.displayTable();
 break;
 case 'i':
 putText("Enter key value to insert: ");
 aKey = getInt();
 aDataItem = new DataItem(aKey);
 theHashTable.insert(aDataItem);
 break;
 case 'd':
 putText("Enter key value to delete: ");
 aKey = getInt();
 theHashTable.delete(aKey);
 break;
 case 'f':
 putText("Enter key value to find: ");
 aKey = getInt();
 aDataItem = theHashTable.find(aKey);
 if(aDataItem != null)
 {
 System.out.println("Found " + aKey);
 }
 else
 System.out.println("Could not find " + aKey);
 break;
 default:
 putText("Invalid entry\n");
 } // end switch
 } // end while
 } // end main()

 //---

-

 - 388 -

 public static void putText(String s)
 {
 System.out.print(s);
 System.out.flush();
 }

 //---

-
 public static String getString() throws IOException
 {
 InputStreamReader isr = new InputStreamReader(System.in);
 BufferedReader br = new BufferedReader(isr);
 String s = br.readLine();
 return s;
 }

 //---

-
 public static char getChar() throws IOException
 {
 String s = getString();
 return s.charAt(0);
 }

 //---
 public static int getInt() throws IOException
 {
 String s = getString();
 return Integer.parseInt(s);
 }

 //---

-
 } // end class HashTableApp

The main() routine in the HashTableApp class contains a user interface that allows the
user to show the contents of the hash table (enter s), insert an item (i), delete an item (d),
or find an item (f).

Initially, it asks the user to input the size of the hash table and the number of items in it.
You can make it almost any size, from a few items to 10,000. (It may take a little time to
build larger tables than this.) Don't use the s (for show) option on tables of more than a
few hundred items; they scroll off the screen and it takes a long time to display them.

A variable in main(), keysPerCell, specifies the ratio of the range of keys to the size
of the array. In the listing, it's set to 10. This means that if you specify a table size of 20,
the keys will range from 0 to 200.

 To see what's going on, it's best to create tables with fewer than about 20 items, so all

the items can be displayed on one line. Here's some sample interaction with hash.java:

 Enter size of hash table: 12
 Enter initial number of items: 8

 Enter first letter of show, insert, delete, or find: s

 - 389 -

 Table: 108 13 0 ** ** 113 5 66 ** 117 ** 47

 Enter first letter of show, insert, delete, or find: f
 Enter key value to find: 66
 Found 66

 Enter first letter of show, insert, delete, or find: i
 Enter key value to insert: 100
 Enter first letter of show, insert, delete, or find: s
 Table: 108 13 0 ** 100 113 5 66 ** 117 ** 47

 Enter first letter of show, insert, delete, or find: d
 Enter key value to delete: 100
 Enter first letter of show, insert, delete, or find: s
 Table: 108 13 0 ** -1 113 5 66 ** 117 ** 47

Key values run from 0 to 119 (12 times 10, minus 1). The ** symbol indicates that a cell
is empty. The item with key 100 is inserted at location 4 (the first item is numbered 0)
because 100%12 is 4. Notice how 100 changes to –1 when this item is deleted.

 Expanding the Array

One option when a hash table becomes too full is to expand its array. In Java, arrays
have a fixed size and can't be expanded. Your program could create a new, larger array,
and then rehash the contents of the old small array into the new large one. However, this
is a time-consuming process.

Remember that the hash function calculates the location of a given data item based on
the array size, so the locations in the large array won't be the same as those in a small
array. You can't, therefore, simply copy the items from one array to the other. You'll need
to go through the old array in sequence, inserting each item into the new array with the
insert() method.

Java offers a class Vector that is an array-like data structure that can be expanded.
However, it's not much help because of the need to rehash all data items when the table
changes size. Expanding the array is only practical when there's plenty of time available
to carry it out.

 Quadratic Probing

We've seen that clusters can occur in the linear probe approach to open addressing.
Once a cluster forms, it tends to grow larger. Items that hash to any value in the range of
the cluster will step along and insert themselves at the end of the cluster, thus making it
even bigger. The bigger the cluster gets, the faster it grows.

It's like the crowd that gathers when someone faints at the shopping mall. The first
arrivals come because they saw the victim fall; later arrivals gather because they
wondered what everyone else was looking at. The larger the crowd grows, the more
people are attracted to it.

 The ratio of the number of items in a table, to the table's size, is called the load factor. A

table with 10,000 cells and 6,667 items has a load factor of 2/3.

 loadFactor = nItems / arraySize;

 Clusters can form even when the load factor isn't high. Parts of the hash table may

consist of big clusters, while others are sparsely inhabited. Clusters reduce performance.

 - 390 -

 Quadratic probing is an attempt to keep clusters from forming. The idea is to probe more

widely separated cells, instead of those adjacent to the primary hash site.

 The Step Is the Square of the Step Number

In a linear probe, if the primary hash index is x, subsequent probes go to x+1, x+2, x+3,
and so on. In quadratic probing, probes go to x+1, x+4, x+9, x+16, x+25, and so on. The
distance from the initial probe is the square of the step number: x+12, x+22, x+32, x+42,
x+52, and so on.

 Figure 11.8 shows some quadratic probes.

 Figure 11.8: Quadratic probes

It's as if a quadratic probe became increasingly desperate as its search lengthened. At
first it calmly picks the adjacent cell. If that's occupied, it thinks it may be in a small cluster
so it tries something 4 cells away. If that's occupied it becomes a little concerned, thinking
it may be in a larger cluster, and tries 9 cells away. If that's occupied it feels the first
tinges of panic and jumps 16 cells away. Pretty soon it's flying hysterically all over the
place, as you can see if you try searching with the HashDouble Workshop applet when
the table is almost full.

 The HashDouble Applet with Quadratic Probes

The HashDouble Workshop applet allows two different kinds of collision handling:
quadratic probes and double hashing. (We'll look at double hashing in the next section.)
This applet generates a display much like that of the Hash Workshop applet, except that
it includes radio buttons to select quadratic probing or double hashing.

To see how quadratic probes look, start up this applet and create a new hash table of 59
items using the New button. When you're asked to select double or quadratic probe, click
the Quad button. Once the new table is created, fill it four-fifths full using the Fill button
(47 items in a 59-cell array). This is too full, but it will generate longer probes so you can
study the probe algorithm.

Incidentally, if you try to fill the hash table too full, you may see the message Can't
complete fill. This occurs when the probe sequences get very long. Every additional
step in the probe sequence makes a bigger step size. If the sequence is too long, the
step size will eventually exceed the capacity of its integer variable, so the applet shuts
down the fill process before this happens.

 Once the table is filled, select an existing key value and use the Find key to see if the

 - 391 -

algorithm can find it. Often it's located at the initial cell, or the one adjacent to it. If you're
patient, however, you'll find a key that requires three or four steps, and you'll see the step
size lengthen for each step. You can also use Find to search for a nonexistent key; this
search continues until an empty cell is encountered.

Important: Always make the array size a prime number. Use 59 instead of 60, for
example. (Other primes less than 60 are 53, 47, 43, 41, 37, 31, 29, 23, 19, 17, 13, 11, 7,
5, 3, and 2.) If the array size is not prime, an endless sequence of steps may occur
during a probe. If this happens during a Fill operation, the applet will be paralyzed.

 The Problem with Quadratic Probes

Quadratic probes eliminate the clustering problem we saw with the linear probe, which is
called primary clustering. However, quadratic probes suffer from a different and more
subtle clustering problem. This occurs because all the keys that hash to a particular cell
follow the same sequence in trying to find a vacant space.

Let's say 184, 302, 420, 544 all hash to 7 and are inserted in this order. Then 302 will
require a one-step probe, 420 will require a 2-step probe, and 544 will require a 3-step
probe. Each additional item with a key that hashes to 7 will require a longer probe. This
phenomenon is called secondary clustering.

 Secondary clustering is not a serious problem, but quadratic probing is not often used

because there's a slightly better solution.

 Double Hashing

To eliminate secondary clustering as well as primary clustering, another approach can be
used: double hashing (sometimes called rehashing). Secondary clustering occurs
because the algorithm that generates the sequence of steps in the quadratic probe
always generates the same steps: 1, 4, 9, 16, and so on.

What we need is a way to generate probe sequences that depend on the key instead of
being the same for every key. Then numbers with different keys that hash to the same
index will use different probe sequences.

The solution is to hash the key a second time, using a different hash function, and use
the result as the step size. For a given key the step size remains constant throughout a
probe, but it's different for different keys.

 Experience has shown that this secondary hash function must have certain

characteristics:

 • It must not be the same as the primary hash function.

 • It must never output a 0 (otherwise there would be no step; every probe would land on

the same cell, and the algorithm would go into an endless loop).

 Experts have discovered that functions of the following form work well:

 stepSize = constant - (key % constant);

 where constant is prime and smaller than the array size. For example,

 stepSize = 5 - (key % 5);

 This is the secondary hash function used in the Workshop applet. For any given key all

the steps will be the same size, but different keys generate different step sizes. With this

 - 392 -

hash function the step sizes are all in the range 1 to 5. This is shown in Figure 11.9.

 Figure 11.9: Double hashing

 The HashDouble Applet with Double Hashing

You can use the HashDouble Workshop applet to see how double hashing works. It
starts up automatically in Double-hashing mode, but if it's in Quadratic mode you can
switch to Double by creating a new table with the New button and clicking the Double
button when prompted. To best see probes at work you'll need to fill the table rather full;
say to about nine-tenths capacity or more. Even with such high load factors, most data
items will be found in the cell found by the first hash function; only a few will require
extended probe sequences.

Try finding existing keys. When one needs a probe sequence, you'll see how all the steps
are the same size for a given key, but that the step size is different—between 1 and 5—
for different keys.

 Java Code for Double Hashing

Here's the listing for hashDouble.java, which uses double hashing. It's similar to the
hash.java program, but uses two hash functions, one for finding the initial index, and
the second for generating the step size. As before, the user can show the table contents,
insert an item, delete an item, and find an item.

 // hashDouble.java
 // demonstrates hash table with double hashing
 // to run this program: C:>java HashDoubleApp
 import java.io.*; // for I/O
 import java.util.*; // for Stack class
 import java.lang.Integer; // for parseInt()
 //
 class DataItem
 { // (could have more items)
 public int iData; // data item (key)

 //---

-
 public DataItem(int ii) // constructor
 { iData = ii; }

 //---

-

 - 393 -

 } // end class DataItem

 //

 class HashTable
 {
 DataItem[] hashArray; // array is the hash table
 int arraySize;
 DataItem nonItem; // for deleted items

 // --

-
 HashTable(int size) // constructor
 {
 arraySize = size;
 hashArray = new DataItem[arraySize];
 nonItem = new DataItem(-1);
 }

 // --

-
 public void displayTable()
 {
 System.out.print("Table: ");
 for(int j=0; j<arraySize; j++)
 {
 if(hashArray[j] != null)
 System.out.print(hashArray[j].iData+ " ");
 else
 System.out.print("** ");
 }
 System.out.println("");
 }

 // --

-
 public int hashFunc1(int key)
 {
 return key % arraySize;
 }

 // --

-
 public int hashFunc2(int key)
 {
 // non-zero, less than array size, different from hF1
 // array size must be relatively prime to 5, 4, 3, and 2
 return 5 - key % 5;
 }

 // --

-
 // insert a DataItem
 public void insert(int key, DataItem item)

 - 394 -

 // (assumes table not full)
 {
 int hashVal = hashFunc1(key); // hash the key
 int stepSize = hashFunc2(key); // get step size
 // until empty cell or -1
 while(hashArray[hashVal] != null &&
 hashArray[hashVal].iData != -

1)
 {
 hashVal += stepSize; // add the step
 hashVal %= arraySize; // for wraparound
 }
 hashArray[hashVal] = item; // insert item
 } // end insert()

 // --

-
 public DataItem delete(int key) // delete a DataItem
 {
 int hashVal = hashFunc1(key); // hash the key
 int stepSize = hashFunc2(key); // get step size

 while(hashArray[hashVal] != null) // until empty cell,
 { // is correct hashVal?
 if(hashArray[hashVal].iData == key)
 {
 DataItem temp = hashArray[hashVal]; // save item
 hashArray[hashVal] = nonItem; // delete item
 return temp; // return item
 }
 hashVal += stepSize; // add the step
 hashVal %= arraySize; // for wraparound
 }
 return null; // can't find item
 } // end delete()

 // --

-
 public DataItem find(int key) // find item with key
 // (assumes table not full)
 {
 int hashVal = hashFunc1(key); // hash the key
 int stepSize = hashFunc2(key); // get step size

 while(hashArray[hashVal] != null) // until empty cell,
 { // is correct hashVal?
 if(hashArray[hashVal].iData == key)
 return hashArray[hashVal]; // yes, return item
 hashVal += stepSize; // add the step
 hashVal %= arraySize; // for wraparound
 }
 return null; // can't find item
 }

 - 395 -

 // --

-
 } // end class HashTable

 //

 class HashDoubleApp
 {
 public static void main(String[] args) throws IOException
 {
 int aKey;
 DataItem aDataItem;
 int size, n;
 // get sizes
 putText("Enter size of hash table: ");
 size = getInt();
 putText("Enter initial number of items: ");
 n = getInt();
 // make table
 HashTable theHashTable = new HashTable(size);

 for(int j=0; j<n; j++) // insert data
 {
 aKey = (int)(java.lang.Math.random() * 2 * size);
 aDataItem = new DataItem(aKey);
 theHashTable.insert(aKey, aDataItem);
 }

 while(true) // interact with user
 {
 putText("Enter first letter of ");
 putText("show, insert, delete, or find: ");
 char choice = getChar();
 switch(choice)
 {
 case 's':
 theHashTable.displayTable();
 break;
 case 'i':
 putText("Enter key value to insert: ");
 aKey = getInt();
 aDataItem = new DataItem(aKey);
 theHashTable.insert(aKey, aDataItem);
 break;
 case 'd':
 putText("Enter key value to delete: ");
 aKey = getInt();
 theHashTable.delete(aKey);
 break;
 case 'f':
 putText("Enter key value to find: ");
 aKey = getInt();

 - 396 -

 aDataItem = theHashTable.find(aKey);
 if(aDataItem != null)
 System.out.println("Found " + aKey);
 else
 System.out.println("Could not find " + aKey);
 break;
 default:
 putText("Invalid entry\n");
 } // end switch
 } // end while
 } // end main()

 //---

-
 public static void putText(String s)
 {
 System.out.print(s);
 System.out.flush();
 }

 //---

-
 public static String getString() throws IOException
 {
 InputStreamReader isr = new InputStreamReader(System.in);
 BufferedReader br = new BufferedReader(isr);
 String s = br.readLine();
 return s;
 }

 //---

-
 public static char getChar() throws IOException
 {
 String s = getString();
 return s.charAt(0);
 }

 //---
 public static int getInt() throws IOException
 {
 String s = getString();
 return Integer.parseInt(s);
 }

 //---

-

 } // end class HashDoubleApp

Output and operation of this program are similar to those of hash.java. Table 11.1
shows what happens when 21 items are inserted into a 23-cell hash table using double
hashing. The step sizes run from 1 to 5.

 - 397 -

 Table 11.1: Filling a 23-Cell Table Using Double Hashing

 Item Number

Key

Hash Value

Step Size

Cells in Probe
Sequence

 1

1

1

4

 2

38

15

2

 3

37

14

3

 4

16

16

4

 5

20

20

5

 6

3

3

2

 7

11

11

4

 8

24

1

1

2

 9

5

5

5

 10

16

16

4

20 1 5 9

 11

10

10

5

 12

31

8

4

 13

18

18

2

 14

12

12

3

 15

30

7

5

 16

1

1

4

5 9 13

 17

19

19

1

 18

36

13

4

17

 19

41

18

4

22

 20

15

15

5

20 2 7 12 17 22 4

 21

25

2

5

7 12 17 22 4 9 14 19 1 6

 - 398 -

The first 15 keys mostly hash to a vacant cell (the 10th one is an anomaly). After that, as
the array gets more full, the probe sequences become quite long. Here's the resulting
array of keys:

 ** 1 24 3 15 5 25 30 31 16 10 11 12 1 37 38 16 36 18 19 20 ** 41

 Table Size a Prime Number

Double hashing requires that the size of the hash table is a prime number. To see why,
imagine a situation where the table size is not a prime number. For example, suppose the
array size is 15 (indices from 0 to 14), and that a particular key hashes to an initial index
of 0 and a step size of 5. The probe sequence will be 0, 5, 10, 0, 5, 10, and so on,
repeating endlessly. Only these three cells are ever examined, so the algorithm will never
find the empty cells that might be waiting at 1, 2, 3, and so on. The algorithm will crash
and burn.

If the array size were 13, which is prime, the probe sequence eventually visits every cell.
It's 0, 5, 10, 2, 7, 12, 4, 9, 1, 6, 11, 3, and so on and on. If there is even one empty cell,
the probe will find it. Using a prime number as the array size makes it impossible for any
number to divide it evenly, so the probe sequence will eventually check every cell.

A similar effect occurs using the quadratic probe. In that case, however, the step size
gets larger with each step, and will eventually overflow the variable holding it, thus
preventing an endless loop.

 In general, double hashing is the probe sequence of choice when open addressing is used.

 Separate Chaining

In open addressing, collisions are resolved by looking for an open cell in the hash table.
A different approach is to install a linked list at each index in the hash table. A data item's
key is hashed to the index in the usual way, and the item is inserted into the linked list at
that index. Other items that hash to the same index are simply added to the linked list;
there's no need to search for empty cells in the primary array. Figure 11.10 shows how
separate chaining looks.

 Figure 11.10: eparate chaining

Separate chaining is conceptually somewhat simpler than the various probe schemes
used in open addressing. However, the code is longer because it must include the
mechanism for the linked lists, usually in the form of an additional class.

 The HashChain Workshop Applet

 - 399 -

 To see how separate chaining works, start the HashChain Workshop applet. It displays
an array of linked lists, as shown in Figure 11.11.

 Figure 11.11: The HashChain Workshop applet

Each element of the array occupies one line of the display, and the linked lists extend
from left to right. Initially there are 25 cells in the array (25 lists). This is more than fits on
the screen; you can move the display up and down with the scrollbar to see the entire
array. The display shows up to six items per list. You can create a hash table with up to
100 lists, and use load factors up to 2.0. Higher load factors may cause the linked lists to
exceed six items and run off the right edge of the screen, making it impossible to see all
the items. (This may happen very occasionally even at the 2.0 load factor.)

Experiment with the HashChain applet by inserting some new items with the Ins button.
You'll see how the red arrow goes immediately to the correct list and inserts the item at
the beginning of the list. The lists in the HashChain applet are not sorted, so insertion
does not require searching through the list. (The example program will demonstrate
sorted lists.)

Try to find specified items using the Find button. During a Find operation, if there are
several items on the list, the red arrow must step through the items looking for the correct
one. For a successful search, half the items in the list must be examined on the average,
as we discussed in Chapter 5, "Linked Lists." For an unsuccessful search all the items
must be examined.

 Load Factors

The load factor (the ratio of the number of items in a hash table to its size) is typically
different in separate chaining than in open addressing. In separate chaining it's normal to
put N or more items into an N-cell array; thus the load factor can be 1 or greater. There's
no problem with this; some locations will simply contain two or more items in their lists.

Of course, if there are many items on the lists, access time is reduced because access to
a specified item requires searching through an average of half the items on the list.
Finding the initial cell takes fast O(1) time, but searching through a list takes time
proportional to the number of items on the list; O(M) time. Thus we don't want the lists to
become too full.

A load factor of 1, as shown in the Workshop applet, is common. With this load factor,
roughly one third of the cells will be empty, one third will hold one item, and one third will
hold two or more items.

In open addressing, performance degrades badly as the load factor increases above one
half or two thirds. In separate chaining the load factor can rise above 1 without hurting
performance very much. This makes separate chaining a more robust mechanism,

 - 400 -

especially when it's hard to predict in advance how much data will be placed in the hash
table.

 Duplicates

Duplicates are allowed and may be generated in the Fill process. All items with the same
key will be inserted in the same list, so if you need to discover all of them, you must
search the entire list in both successful and unsuccessful searches. This lowers
performance. The Find operation in the applet only finds the first of several duplicates.

 Deletion

In separate chaining, deletion poses no special problems as it does in open addressing.
The algorithm hashes to the proper list and then deletes the item from the list. Because
probes aren't used, it doesn't matter if the list at a particular cell becomes empty. We've
included a Del button in the Workshop applet to show how deletion works.

 Table Size

With separate chaining it's not so important to make the table size a prime number, as it
is with quadratic probes and double hashing. There are no probes in separate chaining,
so there's no need to worry that a probe will go into an endless sequence because the
step size divides evenly into the array size.

On the other hand, certain kinds of key distributions can cause data to cluster when the
array size is not a prime number. We'll have more to say about this when we discuss
hash functions.

 Buckets

Another approach similar to separate chaining is to use an array at each location in the
hash table, instead of a linked list. Such arrays are called buckets. This approach is not
as efficient as the linked list approach, however, because of the problem of choosing the
size of the buckets. If they're too small they may overflow, and if they're too large they
waste memory. Linked lists, which allocate memory dynamically, don't have this problem.

 Java Code for Separate Chaining

The hashChain.java program includes a SortedList class and an associated Link
class. Sorted lists don't speed up a successful search, but they do cut the time of an
unsuccessful search in half. (As soon as an item larger than the search key is reached,
which on average is half the items in a list, the search is declared a failure.)

Deletion times are also cut in half; however, insertion times are lengthened, because the
new item can't just be inserted at the beginning of the list; its proper place in the ordered
list must be located before it's inserted. If the lists are short, the increase in insertion
times may not be important.

In situations where many unsuccessful searches are anticipated, it may be worthwhile to
use the slightly more complicated sorted list, rather than an unsorted list. However, an
unsorted list is preferred if insertion speed is more important.

The hashChain.java program, shown in Listing 11.1, begins by constructing a hash
table with a table size and number of items entered by the user. The user can then insert,
find, and delete items, and display the list. For the entire hash table to be viewed on the
screen, the size of the table must be no greater than 16 or so.

 Listing 11.1 The hashChain.java Program

 - 401 -

 // hashChain.java
 // demonstrates hash table with separate chaining
 // to run this program: C:>java HashChainApp
 import java.io.*; // for I/O
 import java.util.*; // for Stack class
 import java.lang.Integer; // for parseInt()
 //
 class Link
 { // (could be other

items)
 public int iData; // data item
 public Link next; // next link in list

 // --

-
 public Link(int it) // constructor
 { iData= it; }

 // --

-
 public void displayLink() // display this link
 { System.out.print(iData + " "); }
 } // end class Link

 //
 class SortedList
 {
 private Link first; // ref to first list item

 // --

-
 public void SortedList() // constructor
 { first = null; }

 // --

-
 public void insert(Link theLink) // insert link, in order
 {
 int key = theLink.iData;
 Link previous = null; // start at first
 Link current = first;
 // until end of list,
 while(current != null && key > current.iData)
 { // or current > key,
 previous = current;
 current = current.next; // go to next item
 }
 if(previous==null) // if beginning of list,
 first = theLink; // first --> new link
 else // not at beginning,
 previous.next = theLink; // prev --> new link
 theLink.next = current; // new link --> current
 } // end insert()

 - 402 -

 // --

-
 public void delete(int key) // delete link
 { // (assumes non-empty

list)
 Link previous = null; // start at first
 Link current = first;
 // until end of list,
 while(current != null && key != current.iData)
 { // or key == current,
 previous = current;
 current = current.next; // go to next link
 }
 // disconnect link
 if(previous==null) // if beginning of list
 first = first.next; // delete first link
 else // not at beginning
 previous.next = current.next; // delete current

link
 } // end delete()

 // --

-
 public Link find(int key) // find link
 {
 Link current = first; // start at first
 // until end of list,
 while(current != null && current.iData <= key)
 { // or key too small,
 if(current.iData == key) // is this the link?
 return current; // found it, return link
 current = current.next; // go to next item
 }
 return null; // didn't find it
 } // end find()

 // --

-
 public void displayList()
 {
 System.out.print("List (first-->last): ");
 Link current = first; // start at beginning of list
 while(current != null) // until end of list,
 {
 current.displayLink(); // print data
 current = current.next; // move to next link
 }
 System.out.println("");
 }
 } // end class SortedList

 //

 - 403 -

 class HashTable
 {
 private SortedList[] hashArray; // array of lists
 private int arraySize;

 // --

-
 public HashTable(int size) // constructor
 {
 arraySize = size;
 hashArray = new SortedList[arraySize]; // create array
 for(int j=0; j<arraySize; j++) // fill array
 hashArray[j] = new SortedList(); // with lists
 }

 // --

-
 public void displayTable()
 {
 for(int j=0; j<arraySize; j++) // for each cell,
 {
 System.out.print(j + ". "); // display cell number
 hashArray[j].displayList(); // display list
 }
 }

 // --

-
 public int hashFunc(int key) // hash function
 {
 return key % arraySize;
 }

 // --

-
 public void insert(Link theLink) // insert a link
 {
 int key = theLink.iData;
 int hashVal = hashFunc(key); // hash the key
 hashArray[hashVal].insert(theLink); // insert at hashVal
 } // end insert()

 // --

-
 public void delete(int key) // delete a link
 {
 int hashVal = hashFunc(key); // hash the key
 hashArray[hashVal].delete(key); // delete link
 } // end delete()

 // --

-
 public Link find(int key) // find link
 {

 - 404 -

 int hashVal = hashFunc(key); // hash the key
 Link theLink = hashArray[hashVal].find(key); // get link
 return theLink; // return link
 }

 // --

-
 } // end class HashTable

 //

 class HashChainApp
 {
 public static void main(String[] args) throws IOException
 {
 int aKey;
 Link aDataItem;
 int size, n, keysPerCell = 100;
 // get sizes
 putText("Enter size of hash table: ");
 size = getInt();
 putText("Enter initial number of items: ");
 n = getInt();
 // make table
 HashTable theHashTable = new HashTable(size);

 for(int j=0; j<n; j++) // insert data
 {
 aKey = (int)(java.lang.Math.random() *
 keysPerCell * size);
 aDataItem = new Link(aKey);
 theHashTable.insert(aDataItem);
 }
 while(true) // interact with user
 {
 putText("Enter first letter of ");
 putText("show, insert, delete, or find: ");
 char choice = getChar();
 switch(choice)
 {
 case 's':
 theHashTable.displayTable();
 break;
 case 'i':
 putText("Enter key value to insert: ");
 aKey = getInt();
 aDataItem = new Link(aKey);
 theHashTable.insert(aDataItem);
 break;
 case 'd':
 putText("Enter key value to delete: ");
 aKey = getInt();
 theHashTable.delete(aKey);

 - 405 -

 break;
 case 'f':
 putText("Enter key value to find: ");
 aKey = getInt();
 aDataItem = theHashTable.find(aKey);
 if(aDataItem != null)
 System.out.println("Found " + aKey);
 else
 System.out.println("Could not find " + aKey);
 break;
 default:
 putText("Invalid entry\n");
 } // end switch
 } // end while
 } // end main()

 //---

-
 public static void putText(String s)
 {
 System.out.print(s);
 System.out.flush();
 }

 //---

-
 public static String getString() throws IOException
 {
 InputStreamReader isr = new InputStreamReader(System.in);
 BufferedReader br = new BufferedReader(isr);
 String s = br.readLine();
 return s;
 }

 //---
 public static char getChar() throws IOException
 {
 String s = getString();
 return s.charAt(0);
 }

 //---
 public static int getInt() throws IOException
 {
 String s = getString();
 return Integer.parseInt(s);
 }

 //---

-
 } // end class HashChainApp

 Here's the output when the user creates a table with 20 lists, inserts 20 items into it, and

displays it with the s option.

 - 406 -

 Enter size of hash table: 20
 Enter initial number of items: 20
 Enter first letter of show, insert, delete, or find: s
 0. List (first-->last): 240 1160
 1. List (first-->last):
 2. List (first-->last):
 3. List (first-->last): 143
 4. List (first-->last): 1004
 5. List (first-->last): 1485 1585
 6. List (first-->last):
 7. List (first-->last): 87 1407
 8. List (first-->last):
 9. List (first-->last): 309
 10. List (first-->last): 490
 11. List (first-->last):
 12. List (first-->last): 872
 13. List (first-->last): 1073
 14. List (first-->last): 594 954
 15. List (first-->last): 335
 16. List (first-->last): 1216
 17. List (first-->last): 1057 1357
 18. List (first-->last): 938 1818
 19. List (first-->last):

 If you insert more items into this table, you'll see the lists grow longer, but maintain their

sorted order. You can delete items as well.

 We'll return to the question of when to use separate chaining when we discuss hash table

efficiency later in this chapter.

Hash Functions

 In this section we'll explore the issue of what makes a good hash function, and see if we

can improve the approach to hashing strings mentioned at the beginning of this chapter.

 Quick Computation

A good hash function is simple, so it can be computed quickly. The major advantage of
hash tables is their speed. If the hash function is slow, this speed will be degraded. A
hash function with many multiplications and divisions is not a good idea. (The bit-
manipulation facilities of Java or C++, such as shifting bits right to divide a number by a
multiple of 2, can sometimes be used to good advantage.)

The purpose of a hash function is to take a range of key values and transform them into
index values in such a way that the key values are distributed randomly across all the
indices of the hash table. Keys may be completely random or not so random.

 Random Keys

A so-called perfect hash function maps every key into a different table location. This is
only possible for keys that are unusually well behaved, and whose range is small enough
to be used directly as array indices (as in the employee-number example at the beginning
of this chapter).

 - 407 -

 In most cases neither of these situations exist, and the hash function will need to
compress a larger range of keys into a smaller range of index numbers.

The distribution of key values in a particular database determines what the hash function
needs to do. In this chapter we've assumed that the data was randomly distributed over
its entire range. In this situation the hash function

 index = key % arraySize;

 is satisfactory. It involves only one mathematical operation, and if the keys are truly

random the resulting indices will be random too, and therefore well distributed.

 Non-Random Keys

 However, data is often distributed non-randomly. Imagine a database that uses car-part

numbers as keys. Perhaps these numbers are of the form

 033-400-03-94-05-0-535

 This is interpreted as follows:

 • Digits 0–2: Supplier number (1 to 999, currently up to 70)

 • Digits 3–5: Category code (100, 150, 200, 250, up to 850)

 • Digits 6–7: Month of introduction (1 to 12)

 • Digits 8–9: Year of introduction (00 to 99)

 • Digits 10–11: Serial number (1 to 99, but never exceeds 100)

 • Digit 12: Toxic risk flag (0 or 1)

 • Digits 13–15: Checksum (sum of other fields, modulo 100)

The key used for the part number shown would be 0,334,000,394,050,535. However,
such keys are not randomly distributed. The majority of numbers from 0 to
9,999,999,999,999,999 can't actually occur. (For example, supplier numbers above 70,
category codes from that aren't multiples of 50, and months from 13 to 99.) Also, the
checksum is not independent of the other numbers. Some work should be done to these
part numbers to help ensure that they form a range of more truly random numbers.

 Don't Use Non-Data

The key fields should be squeezed down until every bit counts. For example, the
category codes should be changed to run from 0 to 15. Also, the checksum should be
removed because it doesn't add any additional information; it's deliberately redundant.
Various bit-twiddling techniques are appropriate for compressing the various fields in the
key.

 Use All the Data

Every part of the key (except non-data, as described above) should contribute to the
hash function. Don't just use the first 4 digits or some such expurgation. The more data
that contributes to the key, the more likely it is that the keys will hash evenly into the
entire range of indices.

 - 408 -

 Sometimes the range of keys is so large it overflows type int or type long variables.

We'll see how to handle overflow when we talk about hashing strings in a moment.

 To summarize: The trick is to find a hash function that's simple and fast, yet excludes the

non-data parts of the key and uses all the data.

 Use a Prime Number for the Modulo Base

Often the hash function involves using the modulo operator (%) with the table size. We've
already seen that it's important for the table size to be prime number when using a
quadratic probe or double hashing. However, if the keys themselves may not be
randomly distributed, it's important for the table size to be a prime number no matter what
hashing system is used.

This is because, if many keys share a divisor with the array size, they may tend to hash
to the same location, causing clustering. Using a prime table size eliminates this
possibility. For example, if the table size is a multiple of 50 in our car part example, the
category codes will all hash to index numbers that are multiples of 50. However, with a
prime number such as 53, you are guaranteed that no keys will divide into the table size.

 The moral is to examine your keys carefully, and tailor your hash algorithm to remove any

irregularity in the distribution of the keys.

 Hashing Strings

We saw at the beginning of this chapter how to convert short strings to key numbers by
multiplying digit codes by powers of a constant. In particular, we saw that the four-letter
word cats could turn into a number by calculating

 key = 3*273 + 1*272 + 20*271 + 19*270

 This approach has the desirable attribute of involving all the characters in the input string.

The calculated key value can then be hashed into an array index in the usual way:

 index = (key) % arraySize;

 Here's a Java method that finds the key value of a word:

 public static int hashFunc1(String key)
 {
 int hashVal = 0;
 int pow27 = 1; // 1, 27, 27*27, etc

 for(int j=key.length()-1; j>=0; j--) // right to left
 {
 int letter = key.charAt(j) - 96; // get char code
 hashVal += pow27 * letter; // times power of 27
 pow27 *= 27; // next power of 27
 }
 return hashVal % arraySize;
 } // end hashFunc1()

The loop starts at the rightmost letter in the word. If there are N letters, this is N–1. The
numerical equivalent of the letter, according to the code we devised at the beginning of
this chapter (a=1 and so on), is placed in letter. This is then multiplied by a power of

 - 409 -

27, which is 1 for the letter at N–1, 27 for the letter at N–2, and so on.

The hashFunc1() method is not as efficient as it might be. Aside from the character
conversion, there are two multiplications and an addition inside the loop. We can
eliminate a multiplication by taking advantage of a mathematical identity called Horner's
method. (Horner was an English mathematician, 1773–1827.) This states that an
expression like

 var4*n 4 + var3*n 3 + var2*n 2 + var1*n 1 + var0*n 0

 can be written as

 (((var4*n + var3)*n + var2)*n + var1)*n + var0

 To evaluate this, we can start inside the innermost parentheses and work outward. If we

translate this to a Java method we have the following code:

 public static int hashFunc2(String key)
 {
 int hashVal = 0;
 for(int j=0; j<key.length(); j++) // left to right
 {
 int letter = key.charAt(j) - 96; // get char code
 hashVal = hashVal * 27 + letter; // multiply and add
 }
 return hashVal % arraySize; // mod
 } // end hashFunc2()

Here we start with the leftmost letter of the word (which is somewhat more natural than
starting on the right), and we have only one multiplication and one addition each time
through the loop (aside from extracting the character from the string).

The hashFunc2() method unfortunately can't handle strings longer than about 7 letters.
Longer strings cause the value of hashVal to exceed the size of type int. (If we used
type long, the same problem would still arise for somewhat longer strings.)

Can we modify this basic approach so we don't overflow any variables? Notice that the
key we eventually end up with is always less than the array size, because we apply the
modulo operator. It's not the final index that's too big; it's the intermediate key values.

It turns out that with Horner's formulation we can apply the modulo (%) operator at each
step in the calculation. This gives the same result as applying the modulo operator once
at the end, but avoids overflow. (It does add an operation inside the loop.) The
hashFunc3() method shows how this looks:

 public static int hashFunc3(String key)
 {
 int hashVal = 0;
 for(int j=0; j<key.length(); j++) // left to right
 {
 int letter = key.charAt(j) - 96; // get char code
 hashVal = (hashVal * 27 + letter) % arraySize; // mod
 }
 return hashVal; // no mod
 } // end hashFunc3()

 - 410 -

This approach or something like it is normally taken to hash a string. Various bit-
manipulation tricks can be played as well, such as using a base of 32 (or a larger power
of 2) instead of 27, so that multiplication can be effected using the shift (>>) operator,
which is faster than the modulo (%) operator.

 You can use an approach similar to this to convert any kind of string to a number suitable

for hashing. The strings can be words, names, or any other concatenation of characters.

Hashing Efficiency

We've noted that insertion and searching in hash tables can approach O(1) time. If no
collision occurs, only a call to the hash function and a single array reference are
necessary to insert a new item or find an existing item. This is the minimum access time.

If collisions occur, access times become dependent on the resulting probe lengths. Each
cell accessed during a probe adds another time increment to the search for a vacant cell
(for insertion) or for an existing cell. During an access, a cell must be checked to see if it's
empty, and—in the case of searching or deletion—if it contains the desired item.

 Thus an individual search or insertion time is proportional to the length of the probe. This

is in addition to a constant time for the hash function.

The average probe length (and therefore the average access time) is dependent on the
load factor (the ratio of items in the table to the size of the table). As the load factor
increases, probe lengths grow longer.

 We'll look at the relationship between probe lengths and load factors for the various kinds

of hash tables we've studied.

 Open Addressing

 The loss of efficiency with high load factors is more serious for the various open

addressing schemes than for separate chaining.

In open addressing, unsuccessful searches generally take longer than successful
searches. During a probe sequence, the algorithm can stop as soon as it finds the
desired item, which is, on the average halfway through the probe sequence. On the other
hand, it must go all the way to the end of the sequence before it's sure it can't find an
item.

 Linear Probing

 The following equations show the relationship between probe length (P) and load factor

(L) for linear probing. For a successful search it's

 P = (1 + 1 / (1–L) 2) / 2

 and for an unsuccessful search it's

 P = (1 + 1 / (1–L)) / 2

 These formulas are from Knuth (see Appendix B, "Further Reading"), and their derivation

is quite complicated. Figure 11.12 shows the result of graphing these equations.

 - 411 -

 Figure 11.12: Linear probe performance

At a load factor of 1/2, a successful search takes 1.5 comparisons and an unsuccessful
search takes 2.5. At a load factor of 2/3, the numbers are 2.0 and 5.0. At higher load
factors the numbers become very large.

The moral, as you can see, is that the load factor must be kept under 2/3 and preferably
under 1/2. On the other hand, the lower the load factor, the more memory is needed for a
given amount of data. The optimum load factor in a particular situation depends on the
tradeoff between memory efficiency, which decreases with lower load factors, and speed,
which increases.

 Quadratic Probing and Double Hashing

Quadratic probing and double hashing share their performance equations. These indicate
a modest superiority over linear probing. For a successful search, the formula (again from
Knuth) is

 –log2(1–loadFactor) / loadFactor

 For an unsuccessful search it is

 1 / (1–loadFactor)

Figure 11.13 shows graphs of these formulas. At a load factor of 0.5, successful and
unsuccessful searches both require an average of two probes. At a 2/3 load factor, the
numbers are 2.37 and 3.0, and at 0.8 they're 2.90 and 5.0. Thus somewhat higher load
factors can be tolerated for quadratic probing and double hashing than for linear probing.

 - 412 -

 Figure 11.13: Quadratic-probe and double-hashing performance

 Separate Chaining

 The efficiency analysis for separate chaining is different, and generally easier, than for

open addressing.

We want to know how long it takes to search for or insert an item into a separate-chaining
hash table. We'll assume that the most time-consuming part of these operations is
comparing the search key of the item with the keys of other items in the list. We'll also
assume that the time required to hash to the appropriate list, and to determine when the
end of a list has been reached, is equivalent to one key comparison. Thus all operations
require 1+nComps time, where nComps is the number of key comparisons.

Let's say that the hash table consists of arraySize elements, each of which holds a list,
and that N data items have been inserted in the table. Then, on the average, each list will
hold N divided by arraySize items:

 Average List Length = N / arraySize

 This is the same as the definition of the load factor:

 loadFactor = N / arraySize

 so the average list length equals the load factor.

 Searching

In a successful search, the algorithm hashes to the appropriate list and then searches
along the list for the item. On the average, half the items must be examined before the
correct one is located. Thus the search time is

 1 + loadFactor / 2

 This is true whether the lists are ordered or not. In an unsuccessful search, if the lists are

unordered, all the items must be searched, so the time is

 1 + loadFactor

 - 413 -

 These formulas are graphed in Figure 11.14.

 Figure 11.14: Separate-chaining performance

 For an ordered list, only half the items must be examined in an unsuccessful search, so

the time is the same as for a successful search.

In separate chaining it's typical to use a load factor of about 1.0 (the number of data
items equals the array size). Smaller load factors don't improve performance significantly,
but the time for all operations increases linearly with load factor, so going beyond 2 or so
is generally a bad idea.

 Insertion

If the lists are not ordered, insertion is always immediate, in the sense that no
comparisons are necessary. The hash function must still be computed, so let's call the
insertion time 1.

 If the lists are ordered, then, as with an unsuccessful search, an average of half the items

in each list must be examined, so the insertion time is 1 + loadFactor / 2.

 Open Addressing Versus Separate Chaining

If open addressing is to be used, double hashing seems to be the preferred system by a
small margin over quadratic probing. The exception is the situation where plenty of
memory is available and the data won't expand after the table is created; in this case
linear probing is somewhat simpler to implement and, if load factors below 0.5 are used,
causes little performance penalty.

If the number of items that will be inserted in a hash table isn't known when the table is
created, separate chaining is preferable to open addressing. Increasing the load factor
causes major performance penalties in open addressing, but performance degrades only
linearly in separate chaining.

When in doubt, use separate chaining. Its drawback is the need for a linked list class, but
the payoff is that adding more data than you anticipated won't cause performance to slow
to a crawl.

Hashing and External Storage

 At the end of the last chapter we discussed using B-trees as data structures for external

 - 414 -

(disk-based) storage. Let's look briefly at the use of hash tables for external storage.

Recall from the last chapter that a disk file is divided into blocks containing many records,
and that the time to access a block is much larger than any internal processing on data in
main memory. For these reasons the overriding consideration in devising an external
storage strategy is minimizing the number of block accesses.

On the other hand, external storage is not expensive per byte, so it may be acceptable to
use large amounts of it, more than is strictly required to hold the data, if by so doing we
can speed up access time. This is possible using hash tables.

 Table of File Pointers

The central feature in external hashing is a hash table containing block numbers, which
refer to blocks in external storage. The hash table is sometimes called an index (in the
sense of a book's index). It can be stored in main memory, or, if it is too large, stored
externally on disk, with only part of it being read into main memory at a time. Even if it fits
entirely in main memory, a copy will probably be maintained on the disk, and read into
memory when the file is opened.

 Non-Full Blocks

Let's reuse the example from the last chapter in which the block size is 8,192 bytes, and
a record is 512 bytes. Thus a block can hold 16 records. Every entry in the hash table
points to one of these blocks. Let's say there are 100 blocks in a particular file.

 The index (hash table) in main memory holds pointers to the file blocks, which start at 0

at the beginning of the file and run up to 99.

In external hashing it's important that blocks don't become full. Thus we might store an
average of 8 records per block. Some blocks would have more records, and some fewer.
There would be about 800 records in the file. This arrangement is shown in Figure 11.15.

 Figure 11.15: External hashing

All records with keys that hash to the same value are located in the same block. To find a
record with a particular key, the search algorithm hashes the key, uses the hash value as
an index to the hash table, gets the block number at that index, and reads the block.

 This is an efficient process because only one block access is necessary to locate a given

item. The downside is that considerable disk space is wasted because the blocks are, by

 - 415 -

design, not full.

To implement this scheme the hash function and the size of the hash table must be
chosen with some care, so that a limited number of keys hash to the same value. In our
example we want only 8 records per key, on the average.

 Full Blocks

Even with a good hash function, a block will occasionally become full. This can be
handled using variations of the collision-resolution schemes discussed for internal hash
tables: open addressing and separate chaining.

In open addressing, if during insertion one block is found to be full, the algorithm inserts
the new record in a neighboring block. In linear probing this is the next block, but it could
also be selected using a quadratic probe or double hashing. In separate chaining, special
overflow blocks are made available; when a primary block is found to be full, the new
record is inserted in the overflow block.

Full blocks are undesirable because an additional disk access is necessary for the
second block; this doubles the access time. However, this is acceptable if it happens
rarely.

 We've discussed only the simplest hash table implementation for external storage. There

are many more complex approaches that are beyond the scope of this book.

 Summary

 • A hash table is based on an array.

 • The range of key values is usually greater than the size of the array.

 • A key value is hashed to an array index by a hash function.

 • An English-language dictionary is a typical example of a database that can be

efficiently handled with a hash table.

 • The hashing of a key to an already filled array cell is called a collision.

 • Collisions can be handled in two major ways: open addressing and separate chaining.

 • In open addressing, data items that hash to a full array cell are placed in another cell

in the array.

 • In separate chaining, each array element consists of a linked list. All data items

hashing to a given array index are inserted in that list.

 • We discussed three kinds of open addressing: linear probing, quadratic probing, and

double hashing.

 • In linear probing the step size is always 1, so if x is the array index calculated by the

hash function, the probe goes to x, x+1, x+2, x+3, and so on.

 • The number of such steps required to find a specified item is called the probe length.

 • In linear probing, contiguous sequences of filled cells appear. These are called primary

clusters, and they reduce performance.

 - 416 -

 • In quadratic probing the offset from x is the square of the step number, so the probe
goes to x, x+1, x+4, x+9, x+16, and so on.

 • Quadratic probing eliminates primary clustering, but suffers from the less severe

secondary clustering.

 • Secondary clustering occurs because all the keys that hash to the same value follow

the same sequence of steps during a probe.

 • All keys that hash to the same value follow the same probe sequence because the

step size does not depend on the key, but only on the hash value.

 • In double hashing the step size depends on the key, and is obtained from a secondary

hash function.

•

If the secondary hash function returns a value s in double hashing, the probe goes to
x, x+s, x+2s, x+3s, x+4s, and so on, where s depends on the key, but remains
constant during the probe.

 • The load factor is the ratio of data items in a hash table to the array size.

 • The maximum load factor in open addressing should be around 0.5. For double

hashing at this load factor, searches will have an average probe length of 2.

 • Search times go to infinity as load factors approach 1.0 in open addressing.

 • It's crucial that an open-addressing hash table does not become too full.

 • A load factor of 1.0 is appropriate for separate chaining.

 • At this load factor a successful search has an average probe length of 1.5, and an

unsuccessful search, 2.0.

 • Probe lengths in separate chaining increase linearly with load factor.

•

A string can be hashed by multiplying each character by a different power of a
constant, adding the products, and using the modulo (%) operator to reduce the result
to the size of the hash table.

 • To avoid overflow, the modulo operator can be applied at each step in the process, if

the polynomial is expressed using Horner's method.

 • Hash table sizes should generally be prime numbers. This is especially important in

quadratic probing and separate chaining.

 • Hash tables can be used for external storage. One way to do this is to have the

elements in the hash table contain disk-file block numbers.

Chapter 12: Heaps

 Overview

We saw in Chapter 4, "Stacks and Queues," that a priority queue is a data structure that
offers convenient access to the data item with the smallest (or largest) key. This is useful
when key values indicate the order in which items should be accessed.

 - 417 -

Priority queues may be used for task scheduling in computers, where some programs
and activities should be executed sooner than others and are therefore given a higher
priority.

Another example is in weapons systems, say in a navy cruiser. A variety of threats—
airplanes, missiles, submarines, and so on—are detected and must be prioritized. For
example, a missile that's a short distance from the cruiser is assigned a higher priority
than an aircraft a long distance away, so that countermeasures (surface-to-air missiles,
for example) can deal with it first.

Priority queues are also used internally in other computer algorithms. In Chapter 14,
"Weighted Graphs," we'll see priority queues used in graph algorithms, such as Dijkstra's
Algorithm.

A priority queue is an Abstract Data Type (ADT) offering methods that allow removal of
the item with the maximum (or minimum) key value, insertion, and sometimes other
activities. As with other ADTs, priority queues can be implemented using a variety of
underlying structures. In Chapter 4 we saw a priority queue implemented as an array.
The trouble with that approach is that, even though removal of the largest item is
accomplished in fast O(1) time, insertion requires slow O(N) time, because an average of
half the items in the array must be moved to insert the new one in order.

In this chapter we'll describe another structure that can be used to implement a priority
queue: the heap. A heap is a kind of tree. It offers both insertion and deletion in O(logN)
time. Thus it's not quite as fast for deletion, but much faster for insertion. It's the method
of choice for implementing priority queues where speed is important and there will be
many insertions.

(Incidentally, don't confuse the term heap, used here for a special kind of binary tree, with
the same term used to mean the portion of computer memory available to a programmer
with new in languages like Java and C++.)

Chapter 12: Heaps

 Overview

We saw in Chapter 4, "Stacks and Queues," that a priority queue is a data structure that
offers convenient access to the data item with the smallest (or largest) key. This is useful
when key values indicate the order in which items should be accessed.

Priority queues may be used for task scheduling in computers, where some programs
and activities should be executed sooner than others and are therefore given a higher
priority.

Another example is in weapons systems, say in a navy cruiser. A variety of threats—
airplanes, missiles, submarines, and so on—are detected and must be prioritized. For
example, a missile that's a short distance from the cruiser is assigned a higher priority
than an aircraft a long distance away, so that countermeasures (surface-to-air missiles,
for example) can deal with it first.

Priority queues are also used internally in other computer algorithms. In Chapter 14,
"Weighted Graphs," we'll see priority queues used in graph algorithms, such as Dijkstra's
Algorithm.

A priority queue is an Abstract Data Type (ADT) offering methods that allow removal of
the item with the maximum (or minimum) key value, insertion, and sometimes other
activities. As with other ADTs, priority queues can be implemented using a variety of
underlying structures. In Chapter 4 we saw a priority queue implemented as an array.
The trouble with that approach is that, even though removal of the largest item is

 - 418 -

accomplished in fast O(1) time, insertion requires slow O(N) time, because an average of
half the items in the array must be moved to insert the new one in order.

In this chapter we'll describe another structure that can be used to implement a priority
queue: the heap. A heap is a kind of tree. It offers both insertion and deletion in O(logN)
time. Thus it's not quite as fast for deletion, but much faster for insertion. It's the method
of choice for implementing priority queues where speed is important and there will be
many insertions.

(Incidentally, don't confuse the term heap, used here for a special kind of binary tree, with
the same term used to mean the portion of computer memory available to a programmer
with new in languages like Java and C++.)

 The Heap Workshop Applet

The Heap Workshop applet demonstrates the operations we discussed in the last
section: It allows you to insert new items into a heap and remove the largest item. In
addition you can change the priority of a given item.

 When you start up the Heap Workshop applet, you'll see a display similar to Figure 12.7.

 Figure 12.7: The Heap Workshop applet

 There are four buttons: Fill, Chng, Rem, and Ins, for fill, change, remove, and insert. Let's

see how they work.

 Fill

The heap contains 10 nodes when the applet is first started. Using the Fill key you can
create a new heap with any number of nodes from 1 to 31. Press Fill repeatedly, and type
in the desired number when prompted.

 Change

It's possible to change the priority of an existing node. This is a useful procedure in many
situations. For example, in our cruiser example, a threat such as an approaching airplane
may reverse course away from the carrier; its priority should be lowered to reflect this
new development, although the aircraft would remain in the priority queue until it was out
of radar range.

To change the priority of a node, repeatedly press the Chng key. When prompted, click
on the node with the mouse. This will position the red arrow on the node. Then, when
prompted, type in the node's new priority.

 - 419 -

 If the node's priority is raised, it will trickle upward to a new position. If the priority is
lowered, the node will trickle downward.

 Remove

Repeatedly pressing the Rem button causes the node with the highest key, located at the
root, to be removed. You'll see it disappear, and then be replaced by the last (rightmost)
node on the bottom row. Finally this node will trickle down until it reaches the position that
reestablishes the heap order.

 Insert

A new node is always inserted initially in the first available array cell, just to the right of the
last node on the bottom row of the heap. From there it trickles up to the appropriate
position. Pressing the Ins key repeatedly carries out this operation.

Java Code for Heaps

 The complete code for heap.java is shown later in this section. Before we get to it, we'll

focus on the individual operations of insertion, removal, and change.

 Here are some things to remember from Chapter 8 about representing a tree as an array.

For a node at index x in the array,

 • Its parent is (x–1) / 2

 • Its left child is 2*x + 1

 • Its right child is 2*x + 2

These relationships can be seen in Figure 12.2. (Remember that the / symbol, when
applied to integers, performs integer division, in which the answer is rounded to the
lowest integer.)

 Insertion

 We place the trickle-up algorithm in its own method. The insert() method, which

includes a call to this trickleUp() method, is straightforward:

 public boolean insert(int key)
 {
 if(currentSize==maxSize) // if array is full,
 return false; // failure
 Node newNode = new Node(key); // make a new node
 heapArray[currentSize] = newNode; // put it at the end
 trickleUp(currentSize++); // trickle it up
 return true; // success

 } // end insert()

We check to make sure the array isn't full and then make a new node using the key value
passed as an argument. This node is inserted at the end of the array. Finally the
trickleUp() routine is called to move this node up to its proper position.

 In trickleUp() (shown below) the argument is the index of the newly inserted item.

 - 420 -

We find the parent of this position and then save the node in a variable called bottom.
Inside the while loop, the variable index will trickle up the path toward the root,
pointing to each node in turn. The while loop runs as long as we haven't reached the
root (index>0) and the key (iData) of index's parent is less than the new node.

The body of the while loop executes one step of the trickle-up process. It first copies the
parent node into index, moving the node down. (This has the effect of moving the "hole"
upward.) Then it moves index upward by giving it its parent's index, and giving its parent
its parent's index.

 public void trickleUp(int index)
 {
 int parent = (index-1) / 2;
 Node bottom = heapArray[index];

 while(index > 0 &&
 heapArray[parent].iData < bottom.iData)
 {
 heapArray[index] = heapArray[parent]; // move node down
 index = parent; // move index up
 parent = (parent-1) / 2; // parent <- its parent
 } // end while
 heapArray[index] = bottom;

 } // end trickleUp()

Finally, when the loop has exited, the newly inserted node, which has been temporarily
stored in bottom, is inserted into the cell pointed to by index. This is the first location
where it's not larger than its parent, so inserting it here satisfies the heap condition.

 Removal

The removal algorithm is also not complicated if we subsume the trickle-down algorithm
into its own routine. We save the node from the root, copy the last node (at index
currentSize-1) into the root, and call trickleDown() to place this node in its
appropriate location.

 public Node remove() // delete item with max key
 { // (assumes non-empty list)
 Node root = heapArray[0]; // save the root
 heapArray[0] = heapArray[--currentSize]; // root <- last
 trickleDown(0); // trickle down the root
 return root; // return removed node

 } // end remove()

 This method returns the node that was removed; the user of the heap usually needs to

process it in some way.

The trickleDown() routine is more complicated than trickleUp() because we must
determine which of the two children is larger. First we save the node at index in a
variable called top. If trickleDown() has been called from remove(), index is the
root; but, as we'll see, it can be called from other routines as well.

 The while loop will run as long as index is not on the bottom row—that is, as long as it

 - 421 -

has at least one child. Within the loop we check if there is a right child (there may be only
a left) and if so, compare the children's keys, setting largerChild appropriately.

 Then we check if the key of the original node (now in top) is greater than that of
largerChild; if so, the trickle-down process is complete and we exit the loop.

 public void trickleDown(int index)
 {
 int largerChild;
 Node top = heapArray[index]; // save root
 while(index < currentSize/2) // while node has at
 { // least one child,
 int leftChild = 2*index+1;
 int rightChild = leftChild+1;
 // find larger child
 if(rightChild < currentSize && // (rightChild exists?)
 heapArray[leftChild].iData <
 heapArray[rightChild].iData)
 largerChild = rightChild;
 else
 largerChild = leftChild;
 // top >= largerChild?
 if(top.iData >= heapArray[largerChild].iData)
 break;
 // shift child up
 heapArray[index] = heapArray[largerChild];
 index = largerChild; // go down
 } // end while
 heapArray[index] = top; // index <- root

 } // end trickleDown()

 On exiting the loop we need only restore the node stored in top to its appropriate

position, pointed to by index.

 Key Change

Once we've created the trickleDown() and trickleUp() methods, it's easy to
implement an algorithm to change the priority (the key) of a node and then trickle it up or
down to its proper position. The change() method accomplishes this:

 public boolean change(int index, int newValue)
 {
 if(index<0 || index>=currentSize)
 return false;
 int oldValue = heapArray[index].iData; // remember old
 heapArray[index].iData = newValue; // change to new

 if(oldValue < newValue) // if raised,
 trickleUp(index); // trickle it up
 else // if lowered,
 trickleDown(index); // trickle it down
 return true;

 - 422 -

 } // end change()

This routine first checks that the index given in the first argument is valid, and if so,
changes the iData field of the node at that index to the value specified as the second
argument.

 Then, if the priority has been raised, the node is trickled up; if it's been lowered, the node

is trickled down.

Actually, the difficult part of changing a node's priority is not shown in this routine: finding
the node you want to change. In the change() method just shown we supply the index
as an argument, and in the Heap Workshop applet the user simply clicks on the selected
node. In a real-world application a mechanism would be needed to find the appropriate
node; as we've seen, the only node to which we normally have convenient access in a
heap is the one with the largest key.

The problem can be solved in linear O(N) time by searching the array sequentially. Or, a
separate data structure (perhaps a hash table) could be updated with the new index
value whenever a node was moved in the priority queue. This would allow quick access
to any node. Of course, keeping a second structure updated would itself be time-
consuming.

 The Array Size

We should note that the array size, equivalent to the number of nodes in the heap, is a
vital piece of information about the heap's state and a critical field in the Heap class.
Nodes copied from the last position aren't erased, so the only way for algorithms to know
the location of the last occupied cell is to refer to the current size of the array.

 The heap.java Program

The heap.java program (see Listing 12.1) uses a Node class whose only field is the
iData variable that serves as the node's key. As usual, this class would hold many other
fields in a useful program. The Heap class contains the methods we discussed, plus
isEmpty() and displayHeap(), which outputs a crude but comprehensible character-
based representation of the heap.

 Listing 12.1 The heap.java Program

 // heap.java
 // demonstrates heaps
 // to run this program: C>java HeapApp
 import java.io.*; // for I/O
 import java.lang.Integer; // for parseInt()
 //
 class Node
 {
 public int iData; // data item (key)

 public Node(int key) // constructor
 { iData = key; }
 } // end class Node

 //

 - 423 -

 class Heap
 {
 private Node[] heapArray;
 private int maxSize; // size of array
 private int currentSize; // number of nodes in array

 // --

-
 public Heap(int mx) // constructor
 {
 maxSize = mx;
 currentSize = 0;
 heapArray = new Node[maxSize]; // create array
 }

 // --

-
 public boolean isEmpty()
 { return currentSize==0; }

 // --

-
 public boolean insert(int key)
 {
 if(currentSize==maxSize)
 return false;
 Node newNode = new Node(key);
 heapArray[currentSize] = newNode;
 trickleUp(currentSize++);
 return true;
 } // end insert()

 // --

-
 public void trickleUp(int index)
 {
 int parent = (index-1) / 2;
 Node bottom = heapArray[index];

 while(index > 0 &&
 heapArray[parent].iData < bottom.iData)
 {
 heapArray[index] = heapArray[parent]; // move it down
 index = parent;
 parent = (parent-1) / 2;
 } // end while
 heapArray[index] = bottom;
 } // end trickleUp()

 // --

-
 public Node remove() // delete item with max key
 { // (assumes non-empty list)
 Node root = heapArray[0];

 - 424 -

 heapArray[0] = heapArray[--currentSize];
 trickleDown(0);
 return root;
 } // end remove()

 // --

-
 public void trickleDown(int index)
 {
 int largerChild;
 Node top = heapArray[index]; // save root
 while(index < currentSize/2) // while node has at
 { // least one child,
 int leftChild = 2*index+1;
 int rightChild = leftChild+1;
 // find larger child
 if(rightChild < currentSize && // (rightChild

exists?)
 heapArray[leftChild].iData <
 heapArray[rightChild].iData)
 largerChild = rightChild;
 else
 largerChild = leftChild;
 // top >= largerChild?
 if(top.iData >= heapArray[largerChild].iData)
 break;
 // shift child up
 heapArray[index] = heapArray[largerChild];
 index = largerChild; // go down
 } // end while
 heapArray[index] = top; // root to index
 } // end trickleDown()

 // --

-
 public boolean change(int index, int newValue)
 {
 if(index<0 || index>=currentSize)
 return false;
 int oldValue = heapArray[index].iData; // remember old
 heapArray[index].iData = newValue; // change to new

 if(oldValue < newValue) // if raised,
 trickleUp(index); // trickle it up
 else // if lowered,
 trickleDown(index); // trickle it down
 return true;
 } // end change()

 // --

-
 public void displayHeap()
 {
 System.out.print("heapArray: "); // array format

 - 425 -

 for(int m=0; m<currentSize; m++)
 if(heapArray[m] != null)
 System.out.print(heapArray[m].iData + " ");
 else
 System.out.print("-- ");
 System.out.println();
 // heap format
 int nBlanks = 32;
 int itemsPerRow = 1;
 int column = 0;
 int j = 0; // current item
 String dots = "...............................";
 System.out.println(dots+dots); // dotted top line

 while(currentSize > 0) // for each heap item
 {
 if(column == 0) // first item in row?
 for(int k=0; k<nBlanks; k++) // preceding blanks
 System.out.print(' ');
 // display item
 System.out.print(heapArray[j].iData);

 if(++j == currentSize) // done?
 break;

 if(++column==itemsPerRow) // end of row?
 {
 nBlanks /= 2; // half the blanks
 itemsPerRow *= 2; // twice the items
 column = 0; // start over on
 System.out.println(); // new row
 }
 else // next item on row
 for(int k=0; k<nBlanks*2-2; k++)
 System.out.print(' '); // interim blanks
 } // end for
 System.out.println("\n"+dots+dots); // dotted bottom line
 } // end displayHeap()

 // --

-
 } // end class Heap

 //

 class HeapApp
 {
 public static void main(String[] args) throws IOException
 {
 int value, value2;
 Heap theHeap = new Heap(31); // make a Heap; max size 31
 boolean success;

 - 426 -

 theHeap.insert(70); // insert 10 items
 theHeap.insert(40);
 theHeap.insert(50);
 theHeap.insert(20);
 theHeap.insert(60);
 theHeap.insert(100);
 theHeap.insert(80);
 theHeap.insert(30);
 theHeap.insert(10);
 theHeap.insert(90);

 while(true) // until [Ctrl]-[C]
 {
 putText("Enter first letter of ");
 putText("show, insert, remove, change: ");
 int choice = getChar();
 switch(choice)
 {
 case 's': // show
 theHeap.displayHeap();
 break;
 case 'i': // insert
 putText("Enter value to insert: ");
 value = getInt();
 success = theHeap.insert(value);
 if(!success)
 putText("Can't insert; heap is full" + '\n');
 break;
 case 'r': // remove
 if(!theHeap.isEmpty())
 theHeap.remove();
 else
 putText("Can't remove; heap is empty" +

'\n');
 break;
 case 'c': // change
 putText("Enter index of item: ");
 value = getInt();
 putText("Enter new priority: ");
 value2 = getInt();
 success = theHeap.change(value, value2);
 if(!success)
 putText("Can't change; invalid index" +

'\n');
 break;
 default:
 putText("Invalid entry\n");
 } // end switch
 } // end while
 } // end main()

 // --

-

 - 427 -

 public static void putText(String s)
 {
 System.out.print(s);
 System.out.flush();
 }

 //---
 public static String getString() throws IOException
 {
 InputStreamReader isr = new InputStreamReader(System.in);
 BufferedReader br = new BufferedReader(isr);
 String s = br.readLine();
 return s;
 }

 //---
 public static char getChar() throws IOException
 {
 String s = getString();
 return s.charAt(0);
 }

 //---
 public static int getInt() throws IOException
 {
 String s = getString();
 return Integer.parseInt(s);
 }

 //---

 } // end class HeapApp

The array places the heap's root at index 0. Some heap implementations start the array
with the root at 1, using position 0 as a sentinel value with the largest possible key. This
saves an instruction in some of the algorithms, but complicates things conceptually.

The main() routine in HeapApp creates a heap with a maximum size of 31 (dictated by
the limitations of the display routine) and inserts into it 10 nodes with random keys. Then
it enters a loop in which the user can enter s, i, r, or c, for show, insert, remove, or
change.

 Here's some sample interaction with the program:

 Enter first letter of show, insert, remove, change: s

 heapArray: 100 90 80 30 60 50 70 20 10 40

 ..

 100

 90 80

 - 428 -

 30 60 50 70

 20 10 40

 ..

 Enter first letter of show, insert, remove, change: i

 Enter value to insert: 53

 Enter first letter of show, insert, remove, change: s

 heapArray: 100 90 80 30 60 50 70 20 10 40 53

 ..

 100

 90 80

 30 60 50 70

 20 10 40 53

 ..

 Enter first letter of show, insert, remove, change: r

 Enter first letter of show, insert, remove, change: s

 heapArray: 90 60 80 30 53 50 70 20 10 40

 ..

 90

 60 80

 30 53 50 70

 20 10 40

 ..

 Enter first letter of show, insert, remove, change:

The user displays the heap, adds an item with a key of 53, shows the heap again,
removes the item with the greatest key, and shows the heap a third time. The show()
routine displays both the array and the tree versions of the heap. You'll need to use your
imagination to fill in the connections between nodes.

 Expanding the Heap Array

 - 429 -

What happens if, while a program is running, too many items are inserted for the size of
the heap array? A new array can be created, and the data from the old array copied into
it. (Unlike the situation with hash tables, changing the size of a heap doesn't require
reordering the data.) The copying operation takes linear time, but enlarging the array size
shouldn't be necessary very often, especially if the array size is increased substantially
each time it's expanded (by doubling it, for example).

 In Java, a Vector class object could be used instead of an array; vectors can be

expanded dynamically.

 Efficiency of Heap Operations

For a heap with a substantial number of items, it's the trickle-up and trickle-down
algorithms that are the most time-consuming parts of the operations we've seen. These
algorithms spend time in a loop, repeatedly moving nodes up or down along a path. The
number of copies necessary is bounded by the height of the heap; if there are five levels,
four copies will carry the "hole" from the top to the bottom. (We'll ignore the two moves
used to transfer the end node to and from temporary storage; they're always necessary
so they require constant time.)

The trickleUp() method has only one major operation in its loop: comparing the key
of the new node with the node at the current location. The trickleDown() method
needs two comparisons, one to find the largest child, and a second to compare this child
with the "last" node. They must both copy a node from top to bottom or bottom to top to
complete the operation.

A heap is a special kind of binary tree, and as we saw in Chapter 8, the number of levels L
in a binary tree equals log2(N+1), where N is the number of nodes. The trickleUp() and
trickleDown() routines cycle through their loops L–1 times, so the first takes time
proportional to log2N, and the second somewhat more because of the extra comparison.
Thus the heap operations we've talked about here all operate in O(logN) time.

Heapsort

 The efficiency of the heap data structure lends itself to a surprisingly simple and very

efficient sorting algorithm called heapsort.

The basic idea is to insert the unordered items into a heap using the normal insert()
routine. Repeated application of the remove() routine will then remove the items in
sorted order. Here's how that might look:

 for(j=0; j<size; j++)
 theHeap.insert(anArray[j]); // from unsorted array
 for(j=0; j<size; j++)
 anArray[j] = theHeap.remove(); // to sorted array

Because insert() and remove() operate in O(logN) time, and each must be applied
N times, the entire sort requires O(N*logN) time, which is the same as quicksort.
However, it's not quite as fast as quicksort. Partly this is because there are more
operations in the inner while loop in trickleDown() than in the inner loop in
quicksort.

 However, several tricks can make heapsort more efficient. The first saves time, and the

second saves memory.

 Trickling Down in Place

 - 430 -

If we insert N new items into a heap, we apply the trickleUp() method N times.
However, if all the items are already in an array, they can be rearranged into a heap with
only N/2 applications of trickleDown(). This offers a small speed advantage.

 Two Correct Subheaps Make a Correct Heap

To see how this works, you should know that trickleDown() will create a correct heap
if, when an out-of-order item is placed at the root, both the child subheaps of this root are
correct heaps. (The root can itself be the root of a subheap as well as of the entire heap.)
This is shown in Figure 12.8.

 Figure 12.8: Both subtrees must be correct

This suggests a way to transform an unordered array into a heap. We can apply
trickleDown() to the nodes on the bottom of the (potential) heap—that is, at the end
of the array—and work our way upward to the root at index 0. At each step the subheaps
below us will already be correct heaps because we already applied trickleDown() to
them. After we apply trickleDown() to the root, the unordered array will have been
transformed into a heap.

Notice however that the nodes on the bottom row—those with no children—are already
correct heaps, because they are trees with only one node; they have no relationships to
be out of order. Therefore we don't need to apply trickleDown() to these nodes. We
can start at node N/2–1, the rightmost node with children, instead of N–1, the last node.
Thus we need only half as many trickle operations as we would using insert() N
times. Figure 12.9 shows the order in which the trickle-down algorithm is applied, starting
at node 6 in a 15-node heap.

 Figure 12.9: Order of applying trickleDown()

 The following code fragment applies trickleDown() to all nodes, except those on the

bottom row, starting at N/2–1 and working back to the root:

 for(j=size/2-1; j >=0; j--)

 - 431 -

 theHeap.trickleDown(j);

 A Recursive Approach

A recursive approach can also be used to form a heap from an array. A heapify()
method is applied to the root. It calls itself for the root's two children, then for each of
these children's two children, and so on. Eventually it works its way down to the bottom
row, where it returns immediately whenever it finds a node with no children.

Once it has called itself for two child subtrees, heapify() then applies trickleDo
n() to the root of the subtree. This ensures that the subtree is a correct heap. Then
heapify() returns and works on the subtree one level higher.

 heapify(int index) // transform array into heap
 {
 if(index > N/2-1) // if node has no children,
 return; // return
 heapify(index*2+2); // turn right subtree into heap
 heapify(index*2+1); // turn left subtree into heap
 trickleDown(index); // apply trickle-down to this node

 }

 This recursive approach is probably not quite as efficient as the simple loop.

 Using the Same Array

Our initial code fragment showed unordered data in an array. This data was then inserted
into a heap, and finally removed from the heap and written back to the array in sorted
order. In this procedure two size-N arrays are required: the initial array and the array
used by the heap.

In fact, the same array can be used both for the heap and for the initial array. This cuts in
half the amount of memory needed for heapsort; no memory beyond the initial array is
necessary.

We've already seen how trickleDown() can be applied to half the elements of an
array to transform them into a heap. We transform the unordered array data into a heap
in place; only one array is necessary for this. Thus the first step in heapsort requires only
one array.

 However, things are more complicated when we apply remove() repeatedly to the heap.

Where are we going to put the items that are removed?

Each time an item is removed from the heap, an element at the end of the heap array
becomes empty; the heap shrinks by one. We can put the recently removed item in this
newly freed cell. As more items are removed, the heap array becomes smaller and
smaller, while the array of ordered data becomes larger and larger. Thus with a little
planning it's possible for the ordered array and the heap array to share the same space.
This is shown in Figure 12.10.

 - 432 -

 FIGURE 12.10: Dual-purpose array

 The heapSort.java Program

We can put these two tricks—applying trickleDown() without using insert(), and
using the same array for the initial data and the heap—together in a program that
performs heapsort. Listing 12.2 shows how this looks.

 Listing 12.2 The heapSort.java Program

 // heapSort.java

 // demonstrates heap sort

 // to run this program: C>java HeapSortApp

 import java.io.*; // for I/O

 import java.lang.Integer; // for parseInt()

 //

 class Node
 {
 public int iData; // data item (key)

 public Node(int key) // constructor
 { iData = key; }
 } // end class Node

 //

 class Heap
 {
 private Node[] heapArray;
 private int maxSize; // size of array
 private int currentSize; // number of items in array

 // --

-
 public Heap(int mx) // constructor

 - 433 -

 {
 maxSize = mx;
 currentSize = 0;
 heapArray = new Node[maxSize];
 }

 // --

-
 public Node remove() // delete item with max key
 { // (assumes non-empty list)
 Node root = heapArray[0];
 heapArray[0] = heapArray[--currentSize];
 trickleDown(0);
 return root;
 } // end remove()

 // --

-
 public void trickleDown(int index)
 {
 int largerChild;
 Node top = heapArray[index]; // save root
 while(index < currentSize/2) // not on bottom row
 {
 int leftChild = 2*index+1;
 int rightChild = leftChild+1;
 // find larger child
 if(rightChild < currentSize && // right ch exists?
 heapArray[leftChild].iData <
 heapArray[rightChild].iData)
 largerChild = rightChild;
 else
 largerChild = leftChild;
 // top >=

largerChild?
 if(top.iData >= heapArray[largerChild].iData)
 break;
 // shift child up
 heapArray[index] = heapArray[largerChild];
 index = largerChild; // go down
 } // end while
 heapArray[index] = top; // root to index
 } // end trickleDown()

 // --

-
 public void displayHeap()
 {
 int nBlanks = 32;
 int itemsPerRow = 1;
 int column = 0;
 int j = 0; // current item
 String dots = "...............................";
 System.out.println(dots+dots); // dotted top line

 - 434 -

 while(currentSize > 0) // for each heap item
 {
 if(column == 0) // first item in row?
 for(int k=0; k<nBlanks; k++) // preceding blanks
 System.out.print(' ');
 // display item
 System.out.print(heapArray[j].iData);

 if(++j == currentSize) // done?
 break;

 if(++column==itemsPerRow) // end of row?
 {
 nBlanks /= 2; // half the blanks
 itemsPerRow *= 2; // twice the items
 column = 0; // start over on
 System.out.println(); // new row
 }
 else // next item on row
 for(int k=0; k<nBlanks*2-2; k++)
 System.out.print(' '); // interim blanks
 } // end for
 System.out.println("\n"+dots+dots); // dotted bottom line
 } // end displayHeap()

 // --

-
 public void displayArray()
 {
 for(int j=0; j<maxSize; j++)
 System.out.print(heapArray[j].iData + " ");
 System.out.println("");
 }

 // --

-
 public void insertAt(int index, Node newNode)
 { heapArray[index] = newNode; }

 // --

-
 public void incrementSize()
 { currentSize++; }

 // --

-
 } // end class Heap

 //

 class HeapSortApp
 {
 public static void main(String[] args) throws IOException

 - 435 -

 {
 int size, j;

 System.out.print("Enter number of items: ");
 size = getInt();
 Heap theHeap = new Heap(size);

 for(j=0; j<size; j++) // fill array with
 { // random nodes
 int random = (int)(java.lang.Math.random()*100);
 Node newNode = new Node(random);
 theHeap.insertAt(j, newNode);
 theHeap.incrementSize();
 }

 System.out.print("Random: ");
 theHeap.displayArray(); // display random array

 for(j=size/2-1; j>=0; j--) // make random array into

heap
 theHeap.trickleDown(j);

 System.out.print("Heap: ");
 theHeap.displayArray(); // dislay heap array
 theHeap.displayHeap(); // display heap

 for(j=size-1; j>=0; j--) // remove from heap and
 { // store at array end
 Node biggestNode = theHeap.remove();
 theHeap.insertAt(j, biggestNode);
 }
 System.out.print("Sorted: ");
 theHeap.displayArray(); // display sorted array
 } // end main()

 // --

-
 public static String getString() throws IOException
 {
 InputStreamReader isr = new InputStreamReader(System.in);
 BufferedReader br = new BufferedReader(isr);
 String s = br.readLine();
 return s;
 }

 //---
 public static int getInt() throws IOException
 {
 String s = getString();
 return Integer.parseInt(s);
 }

 // --

 - 436 -

-

 } // end class HeapSortApp

The Heap class is much the same as in the heap.java program, except that to save
space we've removed the trickleUp() and insert() methods, which aren't
necessary for heapsort. We've also added an insertAt() method that allows direct
insertion into the heap's array.

Notice that this addition is not in the spirit of object-oriented programming. The Heap
class interface is supposed to shield class users from the underlying implementation of
the heap. The underlying array should be invisible, but insertAt() allows direct access
to it. In this situation we accept the violation of OOP principles because the array is so
closely tied to the heap architecture.

An incrementSize() method is another addition to the heap class. It might seem as
though we could combine this with insertAt(), but when inserting into the array in its
role as an ordered array we don't want to increase the heap size, so we keep these
functions separate.

 The main() routine in the HeapSortApp class

 1. Gets the array size from the user.

 2. Fills the array with random data.

 3. Turns the array into a heap with N/2 applications of trickleDown().

 4. Removes the items from the heap and writes them back at the end of the array.

 After each step the array contents are displayed. The user selects the array size. Here's

some sample output from heapSort.java:

 Enter number of items: 10
 Random: 81 6 23 38 95 71 72 39 34 53
 Heap: 95 81 72 39 53 71 23 38 34 6
 ..
 95
 81 72
 39 53 71 23
 38 34 6
 ..

 Sorted: 6 23 34 38 39 53 71 72 81 95

 The Efficiency of Heapsort

As we noted, heapsort runs in O(N*logN) time. Although it may be slightly slower than
quicksort, an advantage over quicksort is that it is less sensitive to the initial distribution of
data. Certain arrangements of key values can reduce quicksort to slow O(N2) time,
whereas heapsort runs in O(N*logN) time no matter how the data is distributed.

Summary

 • In an ascending priority queue the item with the largest key (or smallest in a

 - 437 -

descending queue) is said to have the highest priority.

 • A priority queue is an Abstract Data Type (ADT) that offers methods for insertion of

data and removal of the largest (or smallest) item.

 • A heap is an efficient implementation of an ADT priority queue.

 • A heap offers removal of the largest item, and insertion, in O(N*logN) time.

 • The largest item is always in the root.

 • Heaps do not support ordered traversal of the data, locating an item with a specific

key, or deletion.

 • A heap is usually implemented as an array representing a complete binary tree. The

root is at index 0 and the last item at index N–1.

 • Each node has a key less than its parents and greater than its children.

 • An item to be inserted is always placed in the first vacant cell of the array, and then

trickled up to its appropriate position.

 • When an item is removed from the root, it's replaced by the last item in the array,

which is then trickled down to its appropriate position.

 • The trickle-up and trickle-down processes can be thought of as a sequence of swaps,

but are more efficiently implemented as a sequence of copies.

•

The priority of an arbitrary item can be changed. First its key is changed; then, if the
key was increased, the item is trickled up, while if the key was decreased the item is
trickled down.

 • Heapsort is an efficient sorting procedure that requires O(N*logN) time.

 • Conceptually heapsort consists of making N insertions into a heap, followed by N

removals.

 • Heapsort can be made to run faster by applying the trickle-down algorithm directly to

N/2 items in the unsorted array, rather than inserting N items.

 • The same array can be used for the initial unordered data, for the heap array, and for

the final sorted data. Thus heapsort requires no extra memory.

 - 438 -

 Part V

 Chapter List

 Chapter

13: Graphs

 Chapter

14: Weighted Graphs

 Chapter

15: When to Use What

Chapter 13: Graphs

 Overview

Graphs are one of the most versatile structures used in computer programming. The
sorts of problems that graphs can help solve are generally quite different from those
we've dealt with thus far in this book. If you're dealing with general kinds of data storage
problems, you probably won't need a graph, but for some problems—and they tend to be
interesting ones—a graph is indispensable.

Our discussion of graphs is divided into two chapters. In this chapter we'll cover the
algorithms associated with unweighted graphs, show some algorithms that these graphs
can represent, and present two Workshop applets to model them. In the next chapter we'll
look at the more complicated algorithms associated with weighted graphs.

Introduction to Graphs

Graphs are data structures rather like trees. In fact, in a mathematical sense, a tree is a
kind of graph. In computer programming, however, graphs are used in different ways
than trees.

The data structures examined previously in this book have an architecture dictated by the
algorithms used on them. For example, a binary tree is shaped the way it is because that
shape makes it easy to search for data and insert new data. The edges in a tree
represent quick ways to get from node to node.

Graphs, on the other hand, often have a shape dictated by a physical problem. For
example, nodes in a graph may represent cities, while edges may represent airline flight
routes between the cities. Another more abstract example is a graph representing the
individual tasks necessary to complete a project. In the graph, nodes may represent
tasks, while directed edges (with an arrow at one end) indicate which task must be
completed before another. In both cases, the shape of the graph arises from the specific
real-world situation.

Before going further, we must mention that, when discussing graphs, nodes are called
vertices (the singular is vertex). This is probably because the nomenclature for graphs is
older than that for trees, having arisen in mathematics centuries ago. Trees are more
closely associated with computer science.

 Definitions

 Figure 13.1-a shows a simplified map of the freeways in the vicinity of San Jose,

California. Figure 13.1-b shows a graph that models these freeways.

 - 439 -

 Figure 13.1: Road map and graph

In the graph, circles represent freeway interchanges and straight lines connecting the
circles represent freeway segments. The circles are vertices, and the lines are edges.
The vertices are usually labeled in some way—often, as shown here, with letters of the
alphabet. Each edge is bounded by the two vertices at its ends.

The graph doesn't attempt to reflect the geographical positions shown on the map; it
shows only the relationships of the vertices and the edges—that is, which edges are
connected to which vertex. It doesn't concern itself with physical distances or directions.
Also, one edge may represent several different route numbers, as in the case of the edge
from I to H, which involves routes 101, 84, and 280. It's the connectedness (or lack of it)
of one intersection to another that's important, not the actual routes.

 Adjacency

Two vertices are said to be adjacent to one another if they are connected by a single
edge. Thus in Figure 13.1, vertices I and G are adjacent, but vertices I and F are not. The
vertices adjacent to a given vertex are sometimes said to be its neighbors. For example,
the neighbors of G are I, H, and F.

 Paths

A path is a sequence of edges. Figure 13.1 shows a path from vertex B to vertex J that
passes through vertices A and E. We can call this path BAEJ. There can be more than
one path between two vertices; another path from B to J is BCDJ.

 Connected Graphs

A graph is said to be connected if there is at least one path from every vertex to every
other vertex, as in the graph in Figure 13.2-a. However, if "You can't get there from here"
(as Vermont farmers traditionally tell city slickers who stop to ask for directions), the

 - 440 -

graph is not connected, as in Figure 13.2-b.

 A non-connected graph consists of several connected components. In Figure 13.2-b, A

and B are one connected component, and C and D are another.

For simplicity, the algorithms we'll be discussing in this chapter are written to apply to
connected graphs, or to one connected component of a non-connected graph. If
appropriate, small modifications will usually enable them to work with non-connected
graphs as well.

 Directed and Weighted Graphs

The graphs in Figures 13.1 and 13.2 are non-directed graphs. That means that the edges
don't have a direction; you can go either way on them. Thus you can go from vertex A to
vertex B, or from vertex B to vertex A, with equal ease. (This models freeways
appropriately, because you can usually go either way on a freeway.)

However, graphs are often used to model situations in which you can go in only one
direction along an edge; from A to B but not from B to A, as on a one-way street. Such a
graph is said to be directed. The allowed direction is typically shown with an arrowhead at
the end of the edge.

In some graphs, edges are given a weight, a number that can represent the physical
distance between two vertices, or the time it takes to get from one vertex to another, or
how much it costs to travel from vertex to vertex (on airline routes, for example). Such
graphs are called weighted graphs. We'll explore them in the next chapter.

 We're going to begin this chapter by discussing simple undirected, unweighted graphs;

later we'll explore directed unweighted graphs.

 We have by no means covered all the definitions that apply to graphs; we'll introduce

more as we go along.

 Figure 13.2: onnected and nonconnected graphs

 Historical Note

One of the first mathematicians to work with graphs was Leonhard Euler in the early 18th
century. He solved a famous problem dealing with the bridges in the town of Königsberg,
Poland. This town included an island and seven bridges, as shown in Figure 13.3-a.

 - 441 -

 Figure 13.3: The bridges of Königsberg

The problem, much discussed by the townsfolk, was to find a way to walk across all
seven bridges without recrossing any of them. We won't recount Euler's solution to the
problem; it turns out that there is no such path. However, the key to his solution was to
represent the problem as a graph, with land areas as vertices and bridges as edges, as
shown in Figure 13.3-b. This is perhaps the first example of a graph being used to
represent a problem in the real world.

 Representing a Graph in a Program

It's all very well to think about graphs in the abstract, as Euler and other mathematicians
did until the invention of the computer, but we want to represent graphs by using a
computer. What sort of software structures are appropriate to model a graph? We'll look
at vertices first, and then at edges.

 Vertices

In a very abstract graph program you could simply number the vertices 0 to N–1 (where
N is the number of vertices). You wouldn't need any sort of variable to hold the vertices,
because their usefulness would result from their relationships with other vertices.

In most situations, however, a vertex represents some real-world object, and the object
must be described using data items. If a vertex represents a city in an airline route
simulation, for example, it may need to store the name of the city, its altitude, its location,
and other such information. Thus it's usually convenient to represent a vertex by an
object of a vertex class. Our example programs store only a letter (like A), used as a label
for identifying the vertex, and a flag for use in search algorithms, as we'll see later. Here's
how the Vertex class looks:

 class Vertex
 {
 public char label; // label (e.g. 'A')
 public boolean wasVisited;

 public Vertex(char lab) // constructor
 {
 label = lab;
 wasVisited = false;
 }

 } // end class Vertex

 Vertex objects can be placed in an array and referred to using their index number. In our

 - 442 -

examples we'll store them in an array called vertexList. The vertices might also be
placed in a list or some other data structure. Whatever structure is used, this storage is
for convenience only. It has no relevance to how the vertices are connected by edges.
For this, we need another mechanism.

 Edges

In Chapter 9, "Red-Black Trees," we saw that a computer program can represent trees in
several ways. Mostly we examined trees in which each node contained references to its
children, but we also mentioned that an array could be used, with a node's position in the
array indicating its relationship to other nodes. Chapter 12, "Heaps," described arrays
used to represent a kind of tree called a heap.

A graph, however, doesn't usually have the same kind of fixed organization as a tree. In a
binary tree, each node has a maximum of two children, but in a graph each vertex may
be connected to an arbitrary number of other vertices. For example, in Figure 13.2-a,
vertex A is connected to three other vertices, whereas C is connected to only one.

To model this sort of free-form organization, a different approach to representing edges is
preferable to that used for trees. Two methods are commonly used for graphs:the
adjacency matrix and the adjacency list. (Remember that one vertex is said to be
adjacent to another if they're connected by a single edge.)

 The Adjacency Matrix

An adjacency matrix is a two-dimensional array in which the elements indicate whether
an edge is present between two vertices. If a graph has N vertices, the adjacency matrix
is an NxN array. Table 13.1 shows the adjacency matrix for the graph in Figure 13.2-a.

 Table 13.1: Adjacency Matrix

A

B

C

D

 A

0

1

1

1

 B

1

0

0

1

 C

1

0

0

0

 D

1

1

0

0

The vertices are used as headings for both rows and columns. An edge between two
vertices is indicated by a 1; the absence of an edge is a 0. (You could also use Boolean
true/false values.) As you can see, vertex A is adjacent to all three other vertices, B is
adjacent to A and D, C is adjacent only to A, and D is adjacent to A and B. In this
example, the "connection" of a vertex to itself is indicated by 0, so the diagonal from
upper-left to lower-right, A-A to D-D, which is called the identity diagonal, is all 0s. The
entries on the identity diagonal don't convey any real information, so you can equally well
put 1s along it, if that's more convenient in your program.

 Note that the triangular-shaped part of the matrix above the identity diagonal is a mirror

 - 443 -

image of the part below; both triangles contain the same information. This redundancy
may seem inefficient, but there's no convenient way to create a triangular array in most
computer languages, so it's simpler to accept the redundancy. Consequently, when you
add an edge to the graph, you must make two entries in the adjacency matrix rather than
one.

 The Adjacency List

The other way to represent edges is with an adjacency list. The list in adjacency list
refers to a linked list of the kind we examined in Chapter 6, "Recursion." Actually, an
adjacency list is an array of lists (or a list of lists). Each individual list shows what vertices
a given vertex is adjacent to. Table 13.2 shows the adjacency lists for the graph of Figure
13.2-a.

 Table 13.2: Adjacency Lists

 Vertex

List Containing Adjacent Vertices

 A

B Æ C Æ D

 B

A Æ D

 C

A

 D

A Æ B

In this table, the Æ symbol indicates a link in a linked list. Each link in the list is a vertex.
Here the vertices are arranged in alphabetical order in each list, although that's not really
necessary. Don't confuse the contents of adjacency lists with paths. The adjacency list
shows which vertices are adjacent to—that is, one edge away from—a given vertex, not
paths from vertex to vertex.

Later we'll discuss when to use an adjacency matrix as opposed to an adjacency list. The
workshop applets shown in this chapter all use the adjacency matrix approach, but
sometimes the list approach is more efficient.

 Adding Vertices and Edges to a Graph

To add a vertex to a graph, you make a new vertex object with new and insert it into your
vertex array, vertexList. In a real-world program a vertex might contain many data
items, but for simplicity we'll assume that it contains only a single character. Thus the
creation of a vertex looks something like this:

 vertexList[nVerts++] = new Vertex('F');

 This inserts a vertex F, where nVerts is the number of vertices currently in the graph.

How you add an edge to a graph depends on whether you're using an adjacency matrix
or adjacency lists to represent the graph. Let's say that you're using an adjacency matrix
and want to add an edge between vertices 1 and 3. These numbers correspond to the

 - 444 -

array indices in vertexList where the vertices are stored. When you first created the
adjacency matrix adjMat, you filled it with 0s. To insert the edge, you say

 adjMat[1][3] = 1;
 adjMat[3][1] = 1;

 If you were using an adjacency list, you would add a 1 to the list for 3, and a 3 to the list

for 1.

 The Graph Class

 Let's look at a class Graph that contains methods for creating a vertex list and an

adjacency matrix, and for adding vertices and edges to a Graph object:

 class Graph
 {
 private final int MAX_VERTS = 20;
 private Vertex vertexList[]; // array of vertices
 private int adjMat[][]; // adjacency matrix
 private int nVerts; // current number of vertices

 // --

-
 public Graph() // constructor
 {
 vertexList = new Vertex[MAX_VERTS];
 // adjacency matrix
 adjMat = new int[MAX_VERTS][MAX_VERTS];
 nVerts = 0;
 for(int j=0; j<MAX_VERTS; j++) // set adjacency
 for(int k=0; k<MAX_VERTS; k++) // matrix to 0
 adjMat[j][k] = 0;
 } // end constructor

 // --

-
 public void addVertex(char lab) // argument is label
 {
 vertexList[nVerts++] = new Vertex(lab);
 }

 // --

-
 public void addEdge(int start, int end)
 {
 adjMat[start][end] = 1;
 adjMat[end][start] = 1;
 }

 // --

-
 public void displayVertex(int v)
 {
 System.out.print(vertexList[v].label);

 - 445 -

 }

 // --

-

 } // end class Graph

 Within the Graph class, vertices are identified by their index number in vertexList.

 We've already discussed most of the methods shown here. To display a vertex, we

simply print out its one-character label.

The adjacency matrix (or the adjacency list) provides information that is local to a given
vertex. Specifically, it tells you which vertices are connected by a single edge to a given
vertex. To answer more global questions about the arrangement of the vertices, we must
resort to various algorithms. We'll begin with searches.

Searches

One of the most fundamental operations to perform on a graph is finding which vertices
can be reached from a specified vertex. For example, imagine trying to find out how
many towns in the United States can be reached by passenger train from Kansas City
(assuming that you don't mind changing trains). Some towns could be reached. Others
couldn't be reached because they didn't have passenger rail service. Possibly others
couldn't be reached, even though they had rail service, because their rail system (the
narrow-gauge Hayfork-Hicksville RR, for example) didn't connect with the standard-
gauge line you started on or any of the lines that could be reached from your line.

Here's another situation in which you might need to find all the vertices reachable from a
specified vertex. Imagine that you're designing a printed circuit board, like the ones inside
your computer. (Open it up and take a look!) Various components—mostly integrated
circuits (ICs)—are placed on the board, with pins from the ICs protruding through holes in
the board. The ICs are soldered in place, and their pins are electrically connected to
other pins by traces—thin metal lines applied to the surface of the circuit board, as shown
in Figure 13.4. (No, you don't need to worry about the details of this figure.)

 Figure 13.4: ins and traces on a circuit boardSearches

In a graph, each pin might be represented by a vertex, and each trace by an edge. On a
circuit board there are many electrical circuits that aren't connected to each other, so the
graph is by no means a connected one. During the design process, therefore, it may be
genuinely useful to create a graph and use it to find which pins are connected to the
same electrical circuit.

Assume that you've created such a graph. Now you need an algorithm that provides a
systematic way to start at a specified vertex, and then move along edges to other
vertices, in such a way that when it's done you are guaranteed that it has visited every

 - 446 -

vertex that's connected to the starting vertex. Here, as it did in Chapter 8, "Binary Trees,"
when we discussed binary trees, visit means to perform some operation on the vertex,
such as displaying it.

There are two common approaches to searching a graph: depth-first search (DFS) and
breadth-first search (BFS). Both will eventually reach all connected vertices. The
difference is that the depth-first search is implemented with a stack, whereas the breadth-
first search is implemented with a queue. These mechanisms result, as we'll see, in the
graph being searched in different ways.

 Depth-First Search

The depth-first search uses a stack to remember where it should go when it reaches a
dead end. We'll show an example, encourage you to try similar examples with the
GraphN Workshop applet, and then finally show some code that carries out the search.

 An Example

 We'll discuss the idea behind the depth-first search in relation to Figure 13.5. The

numbers in this figure show the order in which the vertices are visited.

 Figure 13.5: Depth-first search

To carry out the depth-first search, you pick a starting point—in this case, vertex A. You
then do three things: visit this vertex, push it onto a stack so you can remember it, and
mark it so you won't visit it again.

Next you go to any vertex adjacent to A that hasn't yet been visited. We'll assume the
vertices are selected in alphabetical order, so that brings up B. You visit B, mark it, and
push it on the stack.

 Now what? You're at B, and you do the same thing as before: go to an adjacent vertex

that hasn't been visited. This leads you to F. We can call this process Rule 1.

 REMEMBER
 Rule 1: If possible, visit an adjacent unvisited vertex, mark it, and push it on the stack.

Applying Rule 1 again leads you to H. At this point, however, you need to do something
else, because there are no unvisited vertices adjacent to H. Here's where Rule 2 comes
in.

 REMEMBER
 Rule 2: If you can't follow Rule 1, then, if possible, pop a vertex off the stack.

 Following this rule, you pop H off the stack, which brings you back to F. F has no

unvisited adjacent vertices, so you pop it. Ditto B. Now only A is left on the stack.

A, however, does have unvisited adjacent vertices, so you visit the next one, C. But C is
the end of the line again, so you pop it and you're back to A. You visit D, G, and I, and
then pop them all when you reach the dead end at I. Now you're back to A. You visit E,

 - 447 -

and again you're back to A.

 This time, however, A has no unvisited neighbors, so we pop it off the stack. But now

there's nothing left to pop, which brings up Rule 3.

 REMEMBER
 Rule 3: If you can't follow Rule 1 or Rule 2, you're finished.

 Table 13.3 shows how the stack looks in the various stages of this process, as applied to

Figure 13.5.

 Table 13.3: Stack Contents During Depth-First Search

 Event

Stack

 Visit A

A

 Visit B

AB

 Visit F

ABF

 Visit H

ABFH

 Pop H

ABF

 Pop F

AB

 Pop B

A

 Visit C

AC

 Pop C

A

 Visit D

AD

 Visit G

ADG

 Visit I

ADGI

 Pop I

ADG

 Pop G

AD

 Pop D

A

 Visit E

AE

 Pop E

A

 - 448 -

 Pop A

 Done

The contents of the stack is the route you took from the starting vertex to get where you
are. As you move away from the starting vertex, you push vertices as you go. As you
move back toward the starting vertex, you pop them. The order in which you visit the
vertices is ABFHCDGIE.

You might say that the depth-first search algorithm likes to get as far away from the
starting point as quickly as possible, and returns only when it reaches a dead end. If you
use the term depth to mean the distance from starting point, you can see where the name
depth-first search comes from.

 An Analogy

An analogy you might think about in relation to depth-first search is a maze. The maze—
perhaps one of the people-size ones made of hedges, popular in England—consists of
narrow passages (think of edges) and intersections where passages meet (vertices).

Suppose that someone is lost in the maze. She knows there's an exit and plans to
traverse the maze systematically to find it. Fortunately, she has a ball of string and a
marker pen. She starts at some intersection and goes down a randomly chosen passage,
unreeling the string. At the next intersection, she goes down another randomly chosen
passage, and so on, until finally she reaches a dead end.

At the dead end she retraces her path, reeling in the string, until she reaches the
previous intersection. Here she marks the path she's been down so she won't take it
again, and tries another path. When she's marked all the paths leading from that
intersection, she returns to the previous intersection and repeats the process.

 The string represents the stack: It "remembers" the path taken to reach a certain point.

 The GraphN Workshop Applet and DFS

 You can try out the depth-first search with the DFS button in the GraphN Workshop

applet. (The N is for not directed, not weighted.)

Start the applet. At the beginning, there are no vertices or edges, just an empty rectangle.
You create vertices by double-clicking the desired location. The first vertex is
automatically labeled A, the second one is B, and so on. They're colored randomly.

 To make an edge, drag from one vertex to another. Figure 13.6 shows the graph of

Figure 13.5 as it looks when created using the applet.

 - 449 -

 Figure 13.6: The GraphN Workshop applet

There's no way to delete individual edges or vertices, so if you make a mistake, you'll
need to start over by clicking the New button, which erases all existing vertices and
edges. (It warns you before it does this.) Clicking the View button switches you to the
adjacency matrix for the graph you've made, as shown in Figure 13.7. Clicking View
again switches you back to the graph.

 Figure 13.7: Adjacency matrix view in GraphNSearches

 To run the depth-first search algorithm, click the DFS button repeatedly. You'll be

prompted to click (not double-click) the starting vertex at the beginning of the process.

You can re-create the graph of Figure 13.6, or you can create simpler or more complex
ones of your own. After you play with it a while, you can predict what the algorithm will do
next (unless the graph is too weird).

 If you use the algorithm on an unconnected graph, it will find only those vertices that are

connected to the starting vertex.

 Java Code

A key to the DFS algorithm is being able to find the vertices that are unvisited and
adjacent to a specified vertex. How do you do this? The adjacency matrix is the key. By
going to the row for the specified vertex and stepping across the columns, you can pick
out the columns with a 1; the column number is the number of an adjacent vertex. You
can then check whether this vertex is unvisited. If so, you've found what you want—the
next vertex to visit. If no vertices on the row are simultaneously 1 (adjacent) and also
unvisited, then there are no unvisited vertices adjacent to the specified vertex. We put the
code for this process in the getAdjUnvisitedVertex() method:

 // returns an unvisited vertex adjacent to v
 public int getAdjUnvisitedVertex(int v)
 {
 for(int j=0; j<nVerts; j++)
 if(adjMat[v][j]==1 && vertexList[j].wasVisited==false)
 return j; // return first such vertex
 return -1; // no such vertices

 } // end getAdjUnvisitedVert()

 - 450 -

Now we're ready for the dfs() method of the Graph class, which actually carries out the
depth-first search. You can see how this code embodies the three rules listed earlier. It
loops until the stack is empty. Within the loop, it does four things:

 1. It examines the vertex at the top of the stack, using peek().

 2. It tries to find an unvisited neighbor of this vertex.

 3. If it doesn't find one, it pops the stack.

 4. If it finds such a vertex, it visits it and pushes it onto the stack.

 Here's the code for the dfs() method:

 public void dfs() // depth-first search
 { // begin at vertex 0
 vertexList[0].wasVisited = true; // mark it
 displayVertex(0); // display it
 theStack.push(0); // push it

 while(!theStack.isEmpty()) // until stack empty,
 {
 // get an unvisited vertex adjacent to stack top
 int v = getAdjUnvisitedVertex(theStack.peek());
 if(v == -1) // if no such vertex,
 theStack.pop(); // pop a new one
 else // if it exists,
 {
 vertexList[v].wasVisited = true; // mark it
 displayVertex(v); // display it
 theStack.push(v); // push it
 }
 } // end while

 // stack is empty, so we're done
 for(int j=0; j<nVerts; j++) // reset flags
 vertexList[j].wasVisited = false;

 } // end dfs

 At the end of dfs(), we reset all the wasVisited flags so we'll be ready to run dfs()

again later. The stack should already be empty, so it doesn't need to be reset.

Now we have all the pieces of the Graph class we need. Here's some code that creates
a graph object, adds some vertices and edges to it, and then performs a depth-first
search:

 Graph theGraph = new Graph();
 theGraph.addVertex('A'); // 0 (start for dfs)
 theGraph.addVertex('B'); // 1
 theGraph.addVertex('C'); // 2
 theGraph.addVertex('D'); // 3
 theGraph.addVertex('E'); // 4

 - 451 -

 theGraph.addEdge(0, 1); // AB
 theGraph.addEdge(1, 2); // BC
 theGraph.addEdge(0, 3); // AD
 theGraph.addEdge(3, 4); // DE

 System.out.print("Visits: ");
 theGraph.dfs(); // depth-first search
 System.out.println();

 Figure 13.8 shows the graph created by this code. Here's the output:

 Visits: ABCDE

 Figure 13.8: Graph used by dfs.java and bfs.javaSearches

 You can modify this code to create the graph of your choice, and then run it to see it carry

out the depth-first search.

 The dfs.java Program

 Listing 13.1 shows the dfs.java program, which includes the dfs() method. It

includes a version of the StackX class from Chapter 4, "Stacks and Queues."

 Listing 13.1 The dfs.java Program

 // dfs.java
 // demonstrates depth-first search
 // to run this program: C>java DFSApp
 import java.awt.*;
 //
 class StackX
 {
 private final int SIZE = 20;
 private int[] st;
 private int top;
 public StackX() // constructor
 {
 st = new int[SIZE]; // make array
 top = -1;
 }
 public void push(int j) // put item on stack
 { st[++top] = j; }

 - 452 -

 public int pop() // take item off stack
 { return st[top--]; }
 public int peek() // peek at top of stack
 { return st[top]; }
 public boolean isEmpty() // true if nothing on stack
 { return (top == -1); }
 } // end class StackX

 //

 class Vertex
 {
 public char label; // label (e.g. 'A')
 public boolean wasVisited;

 // ------------------
 public Vertex(char lab) // constructor
 {
 label = lab;
 wasVisited = false;
 }

 // ------------------
 } // end class Vertex

 //

 class Graph
 {
 private final int MAX_VERTS = 20;
 private Vertex vertexList[]; // list of vertices
 private int adjMat[][]; // adjacency matrix
 private int nVerts; // current number of vertices
 private StackX theStack;

 // ------------------
 public Graph() // constructor
 {
 vertexList = new Vertex[MAX_VERTS];
 // adjacency matrix
 adjMat = new int[MAX_VERTS][MAX_VERTS];
 nVerts = 0;
 for(int j=0; j<MAX_VERTS; j++) // set adjacency
 for(int k=0; k<MAX_VERTS; k++) // matrix to 0
 adjMat[j][k] = 0;
 theStack = new StackX();
 } // end constructor

 // ------------------
 public void addVertex(char lab)
 {
 vertexList[nVerts++] = new Vertex(lab);

 - 453 -

 }

 // ------------------
 public void addEdge(int start, int end)
 {
 adjMat[start][end] = 1;
 adjMat[end][start] = 1;
 }

 // ------------------
 public void displayVertex(int v)
 {
 System.out.print(vertexList[v].label);
 }

 // ------------------
 public void dfs() // depth-first search
 { // begin at vertex 0
 vertexList[0].wasVisited = true; // mark it
 displayVertex(0); // display it
 theStack.push(0); // push it

 while(!theStack.isEmpty()) // until stack empty,
 {
 // get an unvisited vertex adjacent to stack top
 int v = getAdjUnvisitedVertex(theStack.peek());
 if(v == -1) // if no such vertex,
 theStack.pop();
 else // if it exists,
 {
 vertexList[v].wasVisited = true; // mark it
 displayVertex(v); // display it
 theStack.push(v); // push it
 }
 } // end while

 // stack is empty, so we're done
 for(int j=0; j<nVerts; j++) // reset flags
 vertexList[j].wasVisited = false;
 } // end dfs

 // ------------------
 // returns an unvisited vertex adj to v
 public int getAdjUnvisitedVertex(int v)
 {
 for(int j=0; j<nVerts; j++)
 if(adjMat[v][j]==1 && vertexList[j].wasVisited==false)
 return j;
 return -1;
 } // end getAdjUnvisitedVert()

 // ------------------

 - 454 -

 } // end class Graph

 //

 class DFSApp
 {
 public static void main(String[] args)
 {
 Graph theGraph = new Graph();
 theGraph.addVertex('A'); // 0 (start for dfs)
 theGraph.addVertex('B'); // 1
 theGraph.addVertex('C'); // 2
 theGraph.addVertex('D'); // 3
 theGraph.addVertex('E'); // 4

 theGraph.addEdge(0, 1); // AB
 theGraph.addEdge(1, 2); // BC
 theGraph.addEdge(0, 3); // AD
 theGraph.addEdge(3, 4); // DE

 System.out.print("Visits: ");
 theGraph.dfs(); // depth-first search
 System.out.println();
 } // end main()
 } // end class DFSApp

 //

 Breadth-First Search

As we saw in the depth-first search, the algorithm acts as though it wants to get as far
away from the starting point as quickly as possible. In the breadth-first search, on the
other hand, the algorithm likes to stay as close as possible to the starting point. It visits all
the vertices adjacent to the starting vertex, and only then goes further afield. This kind of
search is implemented using a queue instead of a stack.

 An Example

 Figure 13.9 shows the same graph as Figure 13.5, but here the breadth-first search is

used. Again, the numbers indicate the order in which the vertices are visited.

 Figure 13.9: Breadth-first search

 A is the starting vertex, so you visit it and make it the current vertex. Then you follow

these rules:

 - 455 -

 REMEMBER

 Rule 1: Visit the next unvisited vertex (if there is one) that's adjacent to the current vertex,

mark it, and insert it into the queue.

 REMEMBER

 Rule 2: If you can't carry out Rule 1 because there are no more unvisited vertices,

remove a vertex from the queue (if possible) and make it the current vertex.

 REMEMBER
 Rule 3: If you can't carry out Rule 2 because the queue is empty, you're finished.

Thus you first visit all the vertices adjacent to A, inserting each one into the queue as you
visit it. Now you've visited A, B, C, D, and E. At this point the queue (from front to rear)
contains BCDE.

There are no more unvisited vertices adjacent to A, so you remove B from the queue and
look for vertices adjacent to B, so you remove C from the queue. It has no adjacent
unvisited adjacent vertices, so you remove D and visit G. D has no more adjacent
unvisited vertices, so you remove E. Now the queue is FG. You remove F and visit H,
and then you remove G and visit I.

Now the queue is HI, but when you've removed each of these and found no adjacent
unvisited vertices, the queue is empty, so you're finished. Table 13.4 shows this
sequence.

 Table 13.4: Queue Contents During Breadth-First Search

 Event

Queue (Front to Rear)

 Visit A

 Visit B

B

 Visit C

BC

 Visit D

BCD

 Visit E

BCDE

 Remove B

CDE

 Visit F

CDEF

 Remove C

DEF

 Remove D

EF

 Visit G

EFG

 - 456 -

 Remove E FG

 Remove F

G

 Visit H

GH

 Remove G

H

 Visit I

HI

 Remove H

I

 Remove I

 Done

At each moment, the queue contains the vertices that have been visited but whose
neighbors have not yet been fully explored. (Contrast this with the depth-first search,
where the contents of the stack is the route you took from the starting point to the current
vertex.) The nodes are visited in the order ABCDEFGHI.

 The GraphN Workshop Applet and BFS

 Use the GraphN Workshop applet to try out a breadth-first search using the BFS button.

Again, you can experiment with the graph of Figure 13.9, or you can make up your own.

 Notice the similarities and the differences of the breadth-first search compared with the

depth-first search.

You can think of the breadth-first search as proceeding like ripples widening when you
drop a stone in water—or, for those of you who enjoy epidemiology, as the influenza virus
carried by air travelers from city to city. First, all the vertices one edge (plane flight) away
from the starting point are visited, then all the vertices two edges away are visited, and so
on.

 Java Code

The bfs() method of the Graph class is similar to the dfs() method, except that it
uses a queue instead of a stack and features nested loops instead of a single loop. The
outer loop waits for the queue to be empty, whereas the inner one looks in turn at each
unvisited neighbor of the current vertex. Here's the code:

 public void bfs() // breadth-first search
 { // begin at vertex 0
 vertexList[0].wasVisited = true; // mark it
 displayVertex(0); // display it
 theQueue.insert(0); // insert at tail
 int v2;

 while(!theQueue.isEmpty()) // until queue empty,
 {
 int v1 = theQueue.remove(); // remove vertex at head
 // until it has no unvisited neighbors

 - 457 -

 while((v2=getAdjUnvisitedVertex(v1)) != -1)
 { // get one,
 vertexList[v2].wasVisited = true; // mark it
 displayVertex(v2); // display it
 theQueue.insert(v2); // insert it
 } // end while(unvisited neighbors)
 } // end while(queue not empty)

 // queue is empty, so we're done
 for(int j=0; j<nVerts; j++) // reset flags
 vertexList[j].wasVisited = false;

 } // end bfs()

 Given the same graph as in dfs.java (shown earlier in Figure 13.8), the output from
bfs.java is now

 Visits: ABDCE

 The bfs.java Program

The bfs.java program, shown in Listing 13.2, is similar to dfs.java except for the
inclusion of a Queue class (modified from the version in Chapter 5, "Linked Lists")
instead of a StackX class, and a bfs() method instead of a dfs() method.

 Listing 13.2 The bfs.java Program

 // bfs.java
 // demonstrates breadth-first search
 // to run this program: C>java BFSApp
 import java.awt.*;
 //
 class Queue
 {
 private final int SIZE = 20;
 private int[] queArray;
 private int front;
 private int rear;

 public Queue() // constructor
 {
 queArray = new int[SIZE];
 front = 0;
 rear = -1;
 }
 public void insert(int j) // put item at rear of queue
 {
 if(rear == SIZE-1)
 rear = -1;
 queArray[++rear] = j;
 }
 public int remove() // take item from front of queue
 {

 - 458 -

 int temp = queArray[front++];
 if(front == SIZE)
 front = 0;
 return temp;
 }
 public boolean isEmpty() // true if queue is empty
 {
 return (rear+1==front || (front+SIZE-1==rear));
 }
 } // end class Queue

 //
 class Vertex
 {
 public char label; // label (e.g. 'A')
 public boolean wasVisited;

 // --

-
 public Vertex(char lab) // constructor
 {
 label = lab;
 wasVisited = false;
 }

 // --

-
 } // end class Vertex

 //

 class Graph
 {
 private final int MAX_VERTS = 20;
 private Vertex vertexList[]; // list of vertices
 private int adjMat[][]; // adjacency matrix
 private int nVerts; // current number of vertices
 private Queue theQueue;

 // ------------------
 public Graph() // constructor
 {
 vertexList = new Vertex[MAX_VERTS];
 // adjacency matrix
 adjMat = new int[MAX_VERTS][MAX_VERTS];
 nVerts = 0;
 for(int j=0; j<MAX_VERTS; j++) // set adjacency
 for(int k=0; k<MAX_VERTS; k++) // matrix to 0
 adjMat[j][k] = 0;
 theQueue = new Queue();
 } // end constructor

 // --

 - 459 -

-
 public void addVertex(char lab)
 {
 vertexList[nVerts++] = new Vertex(lab);
 }

 // --

-
 public void addEdge(int start, int end)
 {
 adjMat[start][end] = 1;
 adjMat[end][start] = 1;
 }

 // --

-
 public void displayVertex(int v)
 {
 System.out.print(vertexList[v].label);
 }

 // --

-
 public void bfs() // breadth-first search
 { // begin at vertex 0
 vertexList[0].wasVisited = true; // mark it
 displayVertex(0); // display it
 theQueue.insert(0); // insert at tail
 int v2;

 while(!theQueue.isEmpty()) // until queue empty,
 {
 int v1 = theQueue.remove(); // remove vertex at head
 // until it has no unvisited neighbors
 while((v2=getAdjUnvisitedVertex(v1)) != -1)
 { // get one,
 vertexList[v2].wasVisited = true; // mark it
 displayVertex(v2); // display it
 theQueue.insert(v2); // insert it
 } // end while
 } // end while(queue not empty)

 // queue is empty, so we're done
 for(int j=0; j<nVerts; j++) // reset flags
 vertexList[j].wasVisited = false;
 } // end bfs()

 // --

-
 // returns an unvisited vertex adj to v
 public int getAdjUnvisitedVertex(int v)
 {
 for(int j=0; j<nVerts; j++)
 if(adjMat[v][j]==1 && vertexList[j].wasVisited==false)

 - 460 -

 return j;
 return -1;
 } // end getAdjUnvisitedVert()

 // --

-
 } // end class Graph

 //
 class BFSApp
 {
 public static void main(String[] args)
 {
 Graph theGraph = new Graph();
 theGraph.addVertex('A'); // 0 (start for dfs)
 theGraph.addVertex('B'); // 1
 theGraph.addVertex('C'); // 2
 theGraph.addVertex('D'); // 3
 theGraph.addVertex('E'); // 4

 theGraph.addEdge(0, 1); // AB
 theGraph.addEdge(1, 2); // BC
 theGraph.addEdge(0, 3); // AD
 theGraph.addEdge(3, 4); // DE

 System.out.print("Visits: ");
 theGraph.bfs(); // breadth-first search
 System.out.println();
 } // end main()
 } // end class BFSApp

 //

Minimum Spanning Trees

Suppose that you've designed a printed circuit board like the one shown in Figure 13.4,
and you want to be sure you've used the minimum number of traces. That is, you don't
want any extra connections between pins; such extra connections would take up extra
room and make other circuits more difficult to lay out.

It would be nice to have an algorithm that, for any connected set of pins and traces
(vertices and edges, in graph terminology), would remove any extra traces. The result
would be a graph with the minimum number of edges necessary to connect the vertices.
For example, Figure 13.10-a shows five vertices with an excessive number of edges,
while Figure 13.10-b shows the same vertices with the minimum number of edges
necessary to connect them. This constitutes a minimum spanning tree.

 Figure 13.10: Minimum spanning tree

 - 461 -

There are many possible minimum spanning trees for a given set of vertices. Figure
13.10-b shows edges AB, BC, CD, and DE, but edges AC, CE, ED, and DB would do just
as well. The arithmetically inclined will note that the number of edges E in a minimum
spanning tree is always one less than the number of vertices V:

 E = V – 1

Remember that we're not worried here about the length of the edges. We're not trying to
find a minimum physical length, just the minimum number of edges. (This will change
when we talk about weighted graphs in the next chapter.)

The algorithm for creating the minimum spanning tree is almost identical to that used for
searching. It can be based on either the depth-first search or the breadth-first search. In
our example we'll use the depth-first-search.

It turns out that by executing the depth-first search and recording the edges you've
traveled to make the search, you automatically create a minimum spanning tree. The only
difference between the minimum spanning tree method mst(), which we'll see in a
moment, and the depth-first search method dfs(), which we saw earlier, is that mst()
must somehow record the edges traveled.

 GraphN Workshop Applet

Repeatedly clicking the Tree button in the GraphN Workshop algorithm will create a
minimum spanning tree for any graph you create. Try it out with various graphs. You'll
see that the algorithm follows the same steps as when using the DFS button to do a
search. When using Tree, however, the appropriate edge is darkened when the algorithm
assigns it to the minimum spanning tree. When it's finished, the applet removes all the
non-darkened lines, leaving only the minimum spanning tree. A final button press
restores the original graph, in case you want to use it again.

 Java Code for the Minimum Spanning Tree

 Here's the code for the mst() method:

 while(!theStack.isEmpty()) // until stack empty
 { // get stack top
 int currentVertex = theStack.peek();
 // get next unvisited neighbor
 int v = getAdjUnvisitedVertex(currentVertex);
 if(v == -1) // if no more neighbors
 theStack.pop(); // pop it away
 else // got a neighbor
 {
 vertexList[v].wasVisited = true; // mark it
 theStack.push(v); // push it
 // display edge
 displayVertex(currentVertex); // from currentV
 displayVertex(v); // to v
 System.out.print(" ");
 }
 } // end while(stack not empty)

 // stack is empty, so we're done

 - 462 -

 for(int j=0; j<nVerts; j++) // reset flags
 vertexList[j].wasVisited = false;

 } // end mst()

As you can see, this code is very similar to dfs(). In the else statement, however, the
current vertex and its next unvisited neighbor are displayed. These two vertices define
the edge that the algorithm is currently traveling to get to a new vertex, and it's these
edges that make up the minimum spanning tree.

 In the main() part of the mst.java program, we create a graph by using these

statements:

 Graph theGraph = new Graph();
 theGraph.addVertex('A'); // 0 (start for mst)
 theGraph.addVertex('B'); // 1
 theGraph.addVertex('C'); // 2
 theGraph.addVertex('D'); // 3
 theGraph.addVertex('E'); // 4

 theGraph.addEdge(0, 1); // AB
 theGraph.addEdge(0, 2); // AC
 theGraph.addEdge(0, 3); // AD
 theGraph.addEdge(0, 4); // AE
 theGraph.addEdge(1, 2); // BC
 theGraph.addEdge(1, 3); // BD
 theGraph.addEdge(1, 4); // BE
 theGraph.addEdge(2, 3); // CD
 theGraph.addEdge(2, 4); // CE
 theGraph.addEdge(3, 4); // DE

The graph that results is the one shown in Figure 13.10-a. When the mst() method has
done its work, only four edges are left, as shown in Figure 13.10-b. Here's the output
from the mst.java program:

 Minimum spanning tree: AB BC CD DE

As we noted, this is only one of many possible minimum scanning trees that can be
created from this graph. Using a different starting vertex, for example, would result in a
different tree. So would small variations in the code, such as starting at the end of the
vertexList[] instead of the beginning in the getAdjUnvisitedVertex() method.

 The mst.java Program

 Listing 13.3 shows the mst.java program. It's similar to dfs.java, except for the
mst() method and the graph created in main().

 Listing 13.3 The mst.java Program

 // mst.java

 // demonstrates minimum spanning tree

 // to run this program: C>java MSTApp

 - 463 -

 import java.awt.*;

 //

 class StackX
 {
 private final int SIZE = 20;
 private int[] st;
 private int top;
 public StackX() // constructor
 {
 st = new int[SIZE]; // make array
 top = -1;
 }
 public void push(int j) // put item on stack
 { st[++top] = j; }
 public int pop() // take item off stack
 { return st[top--]; }
 public int peek() // peek at top of stack
 { return st[top]; }
 public boolean isEmpty() // true if nothing on stack
 { return (top == -1); }
 }

 //

 class Vertex
 {
 public char label; // label (e.g. 'A')
 public boolean wasVisited;

 // --

-
 public Vertex(char lab) // constructor
 {
 label = lab;
 wasVisited = false;
 }

 // --

-
 } // end class Vertex

 //

 class Graph
 {
 private final int MAX_VERTS = 20;
 private Vertex vertexList[]; // list of vertices
 private int adjMat[][]; // adjacency matrix
 // current number of vertices
 private StackX theStack;

 - 464 -

 // --

-
 public Graph() // constructor
 {
 vertexList = new Vertex[MAX_VERTS];
 // adjacency matrix
 adjMat = new int[MAX_VERTS][MAX_VERTS];
 nVerts = 0;
 for(int j=0; j<MAX_VERTS; j++) // set adjacency
 for(int k=0; k<MAX_VERTS; k++) // matrix to 0
 adjMat[j][k] = 0;
 theStack = new StackX();
 } // end constructor

 // --

-
 public void addVertex(char lab)
 {
 vertexList[nVerts++] = new Vertex(lab);
 }

 // --

-
 public void addEdge(int start, int end)
 {
 adjMat[start][end] = 1;
 adjMat[end][start] = 1;
 }

 // --

-
 public void displayVertex(int v)
 {
 System.out.print(vertexList[v].label);
 }

 // --

-
 public void mst() // minimum spanning tree (depth first)
 { // start at 0
 vertexList[0].wasVisited = true; // mark it
 theStack.push(0); // push it

 while(!theStack.isEmpty()) // until stack empty
 { // get stack top
 int currentVertex = theStack.peek();
 // get next unvisited neighbor
 int v = getAdjUnvisitedVertex(currentVertex);
 if(v == -1) // if no more

neighbors
 theStack.pop(); // pop it away
 else // got a neighbor
 {

 - 465 -

 vertexList[v].wasVisited = true; // mark it
 theStack.push(v); // push it
 // display edge
 displayVertex(currentVertex); // from currentV
 displayVertex(v); // to v
 System.out.print(" ");
 }
 } // end while(stack not empty)

 // stack is empty, so we're done
 for(int j=0; j<nVerts; j++) // reset flags
 vertexList[j].wasVisited = false;
 } // end tree

 // --

-
 // returns an unvisited vertex adj to v
 public int getAdjUnvisitedVertex(int v)
 {
 for(int j=0; j<nVerts; j++)
 if(adjMat[v][j]==1 && vertexList[j].wasVisited==false)
 return j;
 return -1;
 } // end getAdjUnvisitedVert()

 // --

-
 } // end class Graph

 //

 class MSTApp
 {
 public static void main(String[] args)
 {
 Graph theGraph = new Graph();
 theGraph.addVertex('A'); // 0 (start for mst)
 theGraph.addVertex('B'); // 1
 theGraph.addVertex('C'); // 2
 theGraph.addVertex('D'); // 3
 theGraph.addVertex('E'); // 4

 theGraph.addEdge(0, 1); // AB
 theGraph.addEdge(0, 2); // AC
 theGraph.addEdge(0, 3); // AD
 theGraph.addEdge(0, 4); // AE
 theGraph.addEdge(1, 2); // BC
 theGraph.addEdge(1, 3); // BD
 theGraph.addEdge(1, 4); // BE
 theGraph.addEdge(2, 3); // CD
 theGraph.addEdge(2, 4); // CE
 theGraph.addEdge(3, 4); // DE

 - 466 -

 System.out.print("Minimum spanning tree: ");
 theGraph.mst(); // minimum spanning tree
 System.out.println();
 } // end main()
 } // end class MSTApp

 //

 Topological Sorting with Directed Graphs

Topological sorting is another operation that can be modeled with graphs. It's useful in
situations in which items or events must be arranged in a specific order. Let's look at an
example.

 An Example: Course Prerequisites

In high school and college, students find (sometimes to their dismay) that they can't take
just any course they want. Some courses have prerequisites—other courses that must be
taken first. Indeed, taking certain courses may be a prerequisite to obtaining a degree in
a certain field. Figure 13.11 shows a somewhat fanciful arrangement of courses
necessary for graduating with a degree in mathematics.

 Figure 13.11: Course prerequisites

To obtain your degree, you must complete the Senior Seminar and (because of pressure
from the English Department) Comparative Literature. But you can't take Senior Seminar
without having already taken Advanced Algebra and Analytic Geometry, and you can't
take Comparative Literature without taking English Composition. Also, you need
Geometry for Analytic Geometry, and Algebra for both Advanced Algebra and Analytic
Geometry.

 Directed Graphs

 As the figure shows, a graph can represent this sort of arrangement. However, the graph

needs a feature we haven't seen before: The edges need to have a direction.

 Figure 13.12: A small directed graph

 When this is the case, the graph is called a directed graph. In a directed graph you can

only proceed one way along an edge. The arrows in Figure 13.11 show the direction of

 - 467 -

the edges.

In a program, the difference between a non-directed graph and a directed graph is that
an edge in a directed graph has only one entry in the adjacency matrix. Figure 13.12
shows a small directed graph; Table 13.5 shows its adjacency matrix.

 Table 13.5: Adjacency Matrix for Small Directed Graph

A

B

C

 A

0

1

0

 B

0

0

1

 C

0

0

0

Each edge is represented by a single 1. The row labels show where the edge starts, and
the column labels show where it ends. Thus, the edge from A to B is represented by a
single 1 at row A column B. If the directed edge were reversed so that it went from B to A,
there would be a 1 at row B column A instead.

For a non-directed graph, as we noted earlier, half of the adjacency matrix mirrors the
other half, so half the cells are redundant. However, for a weighted graph, every cell in
the adjacency matrix conveys unique information.

 For a directed graph, the method that adds an edge thus needs only a single statement,

 public void addEdge(int start, int end) // directed graph
 {
 adjMat[start][end] = 1;

 }

 instead of the two statements required in a non-directed graph.

 If you use the adjacency-list approach to represent your graph, then A has B in its list

but—unlike a non-directed graph—B does not have A in its list.

 Topological Sorting

Imagine that you make a list of all the courses necessary for your degree, using Figure
13.11 as your input data. You then arrange the courses in the order you need to take
them. Obtaining your degree is the last item on the list, which might look like this:

 BAEDGCFH

 Arranged this way, the graph is said to be topologically sorted. Any course you must take

before some other course occurs before it in the list.

 - 468 -

 Actually, many possible orderings would satisfy the course prerequisites. You could take
the English courses C and F first, for example:

 CFBAEDGH

This also satisfies all the prerequisites. There are many other possible orderings as well.
When you use an algorithm to generate a topological sort, the approach you take and the
details of the code determine which of various valid sortings are generated.

Topological sorting can model other situations besides course prerequisites. Job
scheduling is an important example. If you're building a car, you want to arrange things
so that brakes are installed before the wheels and the engine is assembled before it's
bolted onto the chassis. Car manufacturers use graphs to model the thousands of
operations in the manufacturing process, to ensure that everything is done in the proper
order.

Modeling job schedules with graphs is called critical path analysis. Although we don't
show it here, a weighted graph (discussed in the next chapter) can be used, which allows
the graph to include the time necessary to complete different tasks in a project. The
graph can then tell you such things as the minimum time necessary to complete the
project.

 The GraphD Workshop Applet

The GraphD Workshop applet models directed graphs. This applet operates in much the
same way as GraphN but provides a dot near one end of each edge to show which
direction the edge is pointing. Be careful: The direction you drag the mouse to create the
edge determines the direction of the edge. Figure 13.13 shows the GraphD workshop
applet used to model the course-prerequisite situation of Figure 13.11.

 The idea behind the topological sorting algorithm is unusual but simple. Two steps are

necessary:

 Figure 13.13: The GraphD Workshop applet

 REMEMBER
 Step 1: Find a vertex that has no successors.

The successors to a vertex are those vertices that are directly "downstream" from it—that
is, connected to it by an edge that points in their direction. If there is an edge pointing
from A to B, then B is a successor to A. In Figure 13.11, the only vertex with no
successors is H.

 REMEMBER

 - 469 -

 Step 2: Delete this vertex from the graph, and insert its label at the beginning of a list.

 Steps 1 and 2 are repeated until all the vertices are gone. At this point, the list shows the

vertices arranged in topological order.

You can see the process at work by using the GraphD applet. Construct the graph of
Figure 13.11 (or any other graph, if you prefer) by double-clicking to make vertices and
dragging to make edges. Then repeatedly click the Topo button. As each vertex is
removed, its label is placed at the beginning of the list below the graph.

Deleting a vertex may seem like a drastic step, but it's the heart of the algorithm. The
algorithm can't figure out the second vertex to remove until the first vertex is gone. If you
need to, you can save the graph's data (the vertex list and the adjacency matrix)
elsewhere and restore it when the sort is completed, as we do in the GraphD applet.

The algorithm works because if a vertex has no successors, it must be the last one in the
topological ordering. As soon as it's removed, one of the remaining vertices must have no
successors, so it will be the next-to-last one in the ordering, and so on.

The topological sorting algorithm works on unconnected graphs as well as connected
graphs. This models the situation in which you have two unrelated goals, such as getting
a degree in mathematics and at the same time obtaining a certificate in first aid.

 Cycles and Trees

One kind of graph the topological-sort algorithm cannot handle is a graph with cycles.
What's a cycle? It's a path that ends up where it started. In Figure 13.14 the path B-C-D-
B forms a cycle. (Notice that A-B-C-A is not a cycle because you can't go from C to A.)

 Figure 13.14: Graph with a cycle

A cycle models the Catch-22 situation (which some students claim to have actually
encountered at certain institutions), where course B is a prerequisite for course C, C is a
prerequisite for D, and D is a prerequisite for B.

A graph with no cycles is called a tree. The binary and multiway trees we saw earlier in
this book are trees in this sense. However, the trees that arise in graphs are more
general than binary and multiway trees, which have a fixed maximum number of child
nodes. In a graph, a vertex in a tree can be connected to any number of other vertices,
provided that no cycles are created.

 A topological sort is carried out on a directed graph with no cycles. Such a graph is called

a directed, acyclic graph, often abbreviated DAG.

 Java Code

 Here's the Java code for the topo() method, which carries out the topological sort:

 public void topo() // toplogical sort
 {

 - 470 -

 int orig_nVerts = nVerts; // remember how many verts

 while(nVerts > 0) // while vertices remain,
 {
 // get a vertex with no successors, or -1
 int currentVertex = noSuccessors();
 if(currentVertex == -1) // must be a cycle
 {
 System.out.println("ERROR: Graph has cycles");
 return;
 }
 // insert vertex label in sorted array (start at end)
 sortedArray[nVerts-1] = vertexList[currentVertex].label;

 deleteVertex(currentVertex); // delete vertex
 } // end while

 // vertices all gone; display sortedArray
 System.out.print("Topologically sorted order: ");
 for(int j=0; j<orig_nVerts; j++)
 System.out.print(sortedArray[j]);
 System.out.println("");

 } // end topo

 The work is done in the while loop, which continues until the number of vertices is

reduced to 0. Here are the steps involved:

 1. Call noSuccessors() to find any vertex with no successors.

 2. If such a vertex is found, put the vertex label at the end of sortedArray[] and

delete the vertex from the graph.

 If an appropriate vertex isn't found, the graph must have a cycle.

The last vertex to be removed appears first on the list, so the vertex label is placed in
sortedArray starting at the end and working toward the beginning, as nVerts (the
number of vertices in the graph) gets smaller.

If vertices remain in the graph but all of them have successors, the graph must have a
cycle, and the algorithm displays a message and quits. Normally, however, the while
loop exits, and the list from sortedArray is displayed, with the vertices in topologically
sorted order.

The noSuccessors() method uses the adjacency matrix to find a vertex with no
successors. In the outer for loop, it goes down the rows, looking at each vertex. For
each vertex, it scans across the columns in the inner for loop, looking for a 1. If it finds
one, it knows that that vertex has a successor, because there's an edge from that vertex
to another one. When it finds a 1, it bails out of the inner loop so that the next vertex can
be investigated.

Only if an entire row is found with no 1s do we know we have a vertex with no
successors; in this case, its row number is returned. If no such vertex is found, –1 is
returned. Here's the noSuccessors() method:

 - 471 -

 public int noSuccessors() // returns vert with no successors
 { // (or -1 if no such verts)
 boolean isEdge; // edge from row to column in adjMat

 for(int row=0; row<nVerts; row++) // for each vertex,
 {
 isEdge = false; // check edges
 for(int col=0; col<nVerts; col++)
 {
 if(adjMat[row][col] > 0) // if edge to
 { // another,
 isEdge = true;
 break; // this vertex
 } // has a successor
 } // try another
 if(!isEdge) // if no edges,
 return row; // has no successors
 }
 return -1; // no such vertex

 } // end noSuccessors()

Deleting a vertex is straightforward except for a few details. The vertex is removed from
the vertexList[] array, and the vertices above it are moved down to fill up the vacant
position. Likewise, the row and column for the vertex are removed from the adjacency
matrix, and the rows and columns above and to the right are moved down and to the left
to fill the vacancies. This is carried out by the deleteVertex(), moveRowUp(), and
moveColLeft() methods, which you can examine in the complete listing for
topo.java. It's actually more efficient to use the adjacency-list representation of the
graph for this algorithm, but that would take us too far afield.

The main() routine in this program calls on methods, similar to those we saw earlier, to
create the same graph shown in Figure 13.10. The addEdge() method, as we noted,
inserts a single number into the adjacency matrix because this is a directed graph. Here's
the code for main():

 public static void main(String[] args)
 {
 Graph theGraph = new Graph();
 theGraph.addVertex('A'); // 0
 theGraph.addVertex('B'); // 1
 theGraph.addVertex('C'); // 2
 theGraph.addVertex('D'); // 3
 theGraph.addVertex('E'); // 4
 theGraph.addVertex('F'); // 5
 theGraph.addVertex('G'); // 6
 theGraph.addVertex('H'); // 7

 theGraph.addEdge(0, 3); // AD
 theGraph.addEdge(0, 4); // AE
 theGraph.addEdge(1, 4); // BE
 theGraph.addEdge(2, 5); // CF
 theGraph.addEdge(3, 6); // DG
 theGraph.addEdge(4, 6); // EG

 - 472 -

 theGraph.addEdge(5, 7); // FH
 theGraph.addEdge(6, 7); // GH

 theGraph.topo(); // do the sort

 } // end main()

 Once the graph is created, main() calls topo() to sort the graph and display the result.

Here's the output:

 Topologically sorted order: BAEDGCFH

 Of course, you can rewrite main() to generate other graphs.

 The Complete topo.java Program

 You've seen most of the routines in topo.java already. Listing 13.4 shows the

complete program.

 Listing 13.4 The topo.java Program

 // topo.java
 // demonstrates topological sorting
 // to run this program: C>java TopoApp
 import java.awt.*;
 //
 class Vertex
 {
 public char label; // label (e.g. 'A')

 public Vertex(char lab) // constructor
 { label = lab; }
 } // end class Vertex

 //

 class Graph
 {
 private final int MAX_VERTS = 20;
 private Vertex vertexList[]; // list of vertices
 private int adjMat[][]; // adjacency matrix
 private int nVerts; // current number of vertices
 private char sortedArray[];

 // --

-
 public Graph() // constructor
 {
 vertexList = new Vertex[MAX_VERTS];
 // adjacency matrix
 adjMat = new int[MAX_VERTS][MAX_VERTS];
 nVerts = 0;
 for(int j=0; j<MAX_VERTS; j++) // set adjacency

 - 473 -

 for(int k=0; k<MAX_VERTS; k++) // matrix to 0
 adjMat[j][k] = 0;
 sortedArray = new char[MAX_VERTS]; // sorted vert labels
 } // end constructor

 // --

-
 public void addVertex(char lab)
 {
 vertexList[nVerts++] = new Vertex(lab);
 }

 // --

-
 public void addEdge(int start, int end)
 {
 adjMat[start][end] = 1;
 }

 // --

-
 public void displayVertex(int v)
 {
 System.out.print(vertexList[v].label);
 }

 // --

-
 public void topo() // toplogical sort
 {
 int orig_nVerts = nVerts; // remember how many verts

 while(nVerts > 0) // while vertices remain,
 {
 // get a vertex with no successors, or -1
 int currentVertex = noSuccessors();
 if(currentVertex == -1) // must be a cycle
 {
 System.out.println("ERROR: Graph has cycles");
 return;
 }
 // insert vertex label in sorted array (start at end)
 sortedArray[nVerts-1] =

vertexList[currentVertex].label;

 deleteVertex(currentVertex); // delete vertex
 } // end while

 // vertices all gone; display sortedArray
 System.out.print("Topologically sorted order: ");
 for(int j=0; j<orig_nVerts; j++)
 System.out.print(sortedArray[j]);
 System.out.println("");
 } // end topo

 - 474 -

 public int noSuccessors() // returns vert with no

successors
 { // (or -1 if no such verts)
 boolean isEdge; // edge from row to column in adjMat

 for(int row=0; row<nVerts; row++) // for each vertex,
 {
 isEdge = false; // check edges
 for(int col=0; col<nVerts; col++)
 {
 if(adjMat[row][col] > 0) // if edge to
 { // another,
 isEdge = true;
 break; // this vertex
 } // has a successor
 } // try another
 if(!isEdge) // if no edges,
 return row; // has no

successors
 }
 return -1; // no such vertex
 } // end noSuccessors()

 // ------------------
 public void deleteVertex(int delVert)
 {
 if(delVert != nVerts-1) // if not last vertex,
 { // delete from vertexList
 for(int j=delVert; j<nVerts-1; j++)
 vertexList[j] = vertexList[j+1];
 // delete row from adjMat
 for(int row=delVert; row<nVerts-1; row++)
 moveRowUp(row, nVerts);
 // delete col from adjMat
 for(int col=delVert; col<nVerts-1; col++)
 moveColLeft(col, nVerts-1);
 }
 nVerts--; // one less vertex
 } // end deleteVertex

 // ------------------
 private void moveRowUp(int row, int length)
 {
 for(int col=0; col<length; col++)
 adjMat[row][col] = adjMat[row+1][col];
 }

 // ------------------
 private void moveColLeft(int col, int length)
 {
 for(int row=0; row<length; row++)

 - 475 -

 adjMat[row][col] = adjMat[row][col+1];
 }

 // --

-
 } // end class Graph

 //

 class TopoApp
 {
 public static void main(String[] args)
 {
 Graph theGraph = new Graph();
 theGraph.addVertex('A'); // 0
 theGraph.addVertex('B'); // 1
 theGraph.addVertex('C'); // 2
 theGraph.addVertex('D'); // 3
 theGraph.addVertex('E'); // 4
 theGraph.addVertex('F'); // 5
 theGraph.addVertex('G'); // 6
 theGraph.addVertex('H'); // 7

 theGraph.addEdge(0, 3); // AD
 theGraph.addEdge(0, 4); // AE
 theGraph.addEdge(1, 4); // BE
 theGraph.addEdge(2, 5); // CF
 theGraph.addEdge(3, 6); // DG
 theGraph.addEdge(4, 6); // EG
 theGraph.addEdge(5, 7); // FH
 theGraph.addEdge(6, 7); // GH

 theGraph.topo(); // do the sort
 } // end main()
 } // end class TopoApp

 //

 In the next chapter, we'll see what happens when edges are given a weight as well as a

direction.

 Summary

 • Graphs consist of vertices connected by edges.

 • Graphs can represent many real-world entities, including airline routes, electrical

circuits, and job scheduling.

 • Search algorithms allow you to visit each vertex in a graph in a systematic way.

Searches are the basis of several other activities.

 • The two main search algorithms are depth-first search (DFS) and breadth-first search

(BFS).

 - 476 -

 • The depth-first search algorithm can be based on a stack; the breadth-first search
algorithm can be based on a queue.

 • A minimum spanning tree (MST) consists of the minimum number of edges necessary

to connect all a graph's vertices.

 • A slight modification of the depth-first search algorithm on an unweighted graph yields

its minimum spanning tree.

 • In a directed graph, edges have a direction (often indicated by an arrow).

 • A topological sorting algorithm creates a list of vertices arranged so that a vertex A

precedes a vertex B in the list if there's a path from A to B.

 • A topological sort can be carried out only on a DAG, a directed, acyclic (no cycles)

graph.

 • Topological sorting is typically used for scheduling complex projects that consist of tasks

contingent on other tasks.

Chapter 14: Weighted Graphs

 Overview

In the last chapter we saw that a graph's edges can have direction. In this chapter we'll
explore another edge feature: weight. For example, if vertices in a weighted graph
represent cities, the weight of the edges might represent distances between the cities, or
costs to fly between them, or the number of automobile trips made annually between
them (a figure of interest to highway engineers).

When we include weight as a feature of a graph's edges, some interesting and complex
questions arise. What is the minimum spanning tree for a weighted graph? What is the
shortest (or cheapest) distance from one vertex to another? Such questions have
important applications in the real world.

We'll first examine a weighted but non-directed graph and its minimum spanning tree. In
the second half of this chapter we'll examine graphs that are both directed and weighted, in
connection with the famous Dijkstra's Algorithm, used to find the shortest path from one
vertex to another.

 Minimum Spanning Tree with Weighted Graphs

To introduce weighted graphs we'll return to the question of the minimum spanning tree.
Creating such a tree is a bit more complicated with a weighted graph than with an
unweighted one. When all edges are the same length it's fairly straightforward—as we saw
in the last chapter—for the algorithm to choose one to add to the minimum spanning tree.
But when edges can have different weights, some arithmetic is needed to choose the right
one.

An Example: Cable TV in the Jungle

Suppose we want to install a cable television line that connects six towns in the mythical
country of Magnaguena. Five links will connect the six cities, but which five links should
they be? The cost of connecting each pair of cities varies, so we must pick the route
carefully to minimize the overall cost.

 Figure 14.1 shows a weighted graph with 6 vertices, representing the towns Ajo, Bordo,

Colina, Danza, Erizo, and Flor. Each edge has a weight, shown by a number alongside

 - 477 -

the edge. Imagine that these numbers represent the cost, in millions of Magnaguenian
dollars, of installing a cable link between two cities. (Notice that some links are
impractical because of distance or terrain; for example, we will assume that it's too far
from Ajo to Colina or from Danza to Flor, so these links don't need to be considered and
don't appear on the graph.)

 Figure 14.1: A weighted graph

How can we pick a route that minimizes the cost of installing the cable system? The
answer is to calculate a minimum spanning tree. It will have five links (one fewer than the
number of towns), it will connect all six towns, and it will minimize the total cost of building
these links. Can you figure out this route by looking at the graph in Figure 14.1? If not,
you can solve the problem with the GraphW Workshop applet.

 The GraphW Workshop Applet

The GraphW Workshop applet is similar to GraphN and GraphD, but it creates weighted,
undirected graphs. Before you drag from vertex to vertex to create an edge, you must
type the weight of the edge into the text box in the upper-right corner.

This applet carries out only one algorithm: when you repeatedly click the Tree button, it
finds the minimum spanning tree for whatever graph you have created. The New and
View buttons work as in previous graph applets to erase an old graph and to view the
adjacency matrix.

Try out this applet by creating some small graphs and finding their minimum spanning
trees. (For some configurations you'll need to be careful positioning the vertices so that
the weight numbers don't fall on top of each other.)

As you step through the algorithm you'll see that vertices acquire red borders, and edges
are made thicker, when they're added to the minimum spanning tree. Vertices that are in
the tree are also listed below the graph, on the left. On the right, the contents of a priority
queue (PQ) is shown. The items in the priority queue are edges. For instance, the entry
AB6 in the queue is the edge from A to B, which has a weight of 6. We'll explain what the
priority queue does after we've shown an example of the algorithm.

 Use the GraphW Workshop applet to construct the graph of Figure 14.1. The result

should resemble Figure 14.2.

 - 478 -

 Figure 14.2: The GraphW Workshop applet

 Now find this graph's minimum spanning tree by stepping through the algorithm with the

Tree key. The result should be the minimum spanning tree shown in Figure 14.3.

 Figure 14.3: The minimum spanning tree

The applet should discover that the minimum spanning tree consists of the edges AD,
AB, BE, EC, and CF, for a total edge weight of 28. The order in which the edges are
specified is unimportant. If you start at a different vertex you will create a tree with the
same edges, but in a different order.

 Send Out the Surveyors

The algorithm for constructing the minimum spanning tree is a little involved, so we're
going to introduce it using an analogy involving cable TV employees. You are one
employee—a manager, of course—and there are also various surveyors.

A computer algorithm (unless perhaps it's a neural network) doesn't "know" about all the
data in a given problem at once; it can't deal with the big picture. It must acquire the data
little by little, modifying its view of things as it goes along. With graphs, algorithms tend to
start at some vertex and work outward, acquiring data about nearby vertices before
finding out about vertices farther away. We've seen examples of this in the depth-first and
breadth-first searches in the last chapter.

In a similar way, we're going to assume that you don't start out knowing the costs of
installing the cable TV line between all the pairs of towns in Magnaguena. Acquiring this
information takes time. That's where the surveyors come in.

 Starting in Ajo

You start by setting up an office in Ajo. (You could start in any town, but Ajo has the best
restaurants.) Only two towns are reachable from Ajo: Bordo and Danza (refer to Figure
14.1). You hire two tough, jungle-savvy surveyors and send them out along the
dangerous wilderness trails, one to Bordo and one to Danza. Their job is to determine the
cost of installing cable along these routes.

The first surveyor arrives in Bordo, having completed her survey, and calls you on her
cellular phone; she says it will cost 6 million dollars to install the cable link between Ajo
and Bordo. The second surveyor, who has had some trouble with crocodiles, reports a
little later from Danza that the Ajo–Danza link, which crosses more level country, will cost
only 4 million dollars. You make a list:

 • Ajo–Danza, $4 million

 • Ajo–Bordo, $6 million

 You always list the links in order of increasing cost; we'll see why this is a good idea

 - 479 -

soon.

 Building the Ajo–Danza Link

At this point you figure you can send out the construction crew to actually install the cable
from Ajo to Danza. How can you be sure the Ajo–Danza route will eventually be part of
the cheapest solution (the minimum spanning tree)? So far, you only know the cost of two
links in the system. Don't you need more information?

To get a feel for this situation, try to imagine some other route linking Ajo to Danza that
would be cheaper than the direct link. If it doesn't go directly to Danza, this other route
must go through Bordo and circle back to Danza, possibly via one or more other towns.
But you already know the link to Bordo is more expensive, at 6 million dollars,than the
link to Danza, at 4. So even if the remaining links in this hypothetical circle route are
cheap, as shown in Figure 14.4, it will still be more expensive to get to Danza by going
through Bordo. Also, it will be more expensive to get to towns on the circle route, like X,
by going through Bordo than by going through Danza.

 Figure 14.4: Hypothetical circle route

We conclude that the Ajo–Danza route will be part of the minimum spanning tree. This
isn't a formal proof (which is beyond the scope of this book), but it does suggest your
best bet is to pick the cheapest link. So you build the Ajo–Danza link and install an office
in Danza.

Why do you need an office? Due to a Magnaguena government regulation, you must
install an office in a town before you can send out surveyors from that town to adjacent
towns. In graph terms, you must add a vertex to the tree before you can learn the weight
of the edges leading away from that vertex. All towns with offices are connected by cable
with each other; towns with no offices are not yet connected.

 Building the Ajo–Bordo Link

Once you've completed the Ajo–Danza link and built your office in Danza, you can send
out surveyors from Danza to all the towns reachable from there. These are Bordo, Colina,
and Erizo. The surveyors reach their destinations and report back costs of 7, 8, and 12
million dollars, respectively. (Of course you don't send a surveyor to Ajo because you've
already surveyed the Ajo–Danza route and installed its cable.)

 Now you know the costs of four links from towns with offices to towns with no offices:

 • Ajo–Bordo, $6 million

 • Danza–Bordo, $7 million

 • Danza–Colina, $8 million

 • Danza–Erizo, $12 million

 - 480 -

Why isn't the Ajo–Danza link still on the list? Because you've already installed the cable
there; there's no point giving any further consideration to this link. The route on which a
cable has just been installed is always removed from the list.

 At this point it may not be obvious what to do next. There are many potential links to

choose from. What do you imagine is the best strategy now? Here's the rule:

 REMEMBER
 Rule: From the list, always pick the cheapest edge.

Actually, you already followed this rule when you chose which route to follow from Ajo;
the Ajo–Danza edge was the cheapest. Here the cheapest edge is Ajo–Bordo, so you
install a cable link from Ajo to Bordo for a cost of 6 million dollars, and build an office in
Bordo.

 Let's pause for a moment and make a general observation. At a given time in the cable

system construction, there are three kinds of towns:

 1. Towns that have offices and are linked by cable. (In graph terms they're in the

minimum spanning tree.)

 2. Towns that aren't linked yet and have no office, but for which you know the cost to

link them to at least one town with an office. We can call these "fringe" towns.

 3. Towns you don't know anything about.

At this stage, Ajo, Danza, and Bordo are in category 1, Colina and Erizo are in category
2, and Flor is in category 3, as shown in Figure 14.5. As we work our way through the
algorithm, towns move from category 3 to 2, and from 2 to 1.

 Figure 14.5: Partway through the minimum spanning tree algorithm

 Building the Bordo–Erizo Link

At this point, Ajo, Danza, and Bordo are connected to the cable system and have offices.
You already know the costs from Ajo and Danza to towns in category 2, but you don't
know these costs from Bordo. So from Bordo you send out surveyors to Colina and Erizo.
They report back costs of 10 to Colina and 7 to Erizo. Here's the new list:

 • Bordo–Erizo, $7 million

 • Danza–Colina, $8 million

 • Bordo–Colina, $10 million

 • Danza–Erizo, $12 million

 - 481 -

The Danza–Bordo link was on the previous list but is not on this one because, as we
noted, there's no point in considering links to towns that are already connected, even by
an indirect route.

From this list we can see that the cheapest route is Bordo–Erizo, at 7 million dollars. You
send out the crew to install this cable link, and you build an office in Erizo (refer to Figure
14.3).

 Building the Erizo–Colina Link

From Erizo the surveyors report back costs of 5 to Colina and 7 to Flor. The Danza–Erizo
link from the previous list must be removed because Erizo is now a connected town. Your
new list is

 • Erizo–Colina, $5 million

 • Erizo–Flor, $7 million

 • Danza–Colina, $8 million

 • Bordo–Colina, $10 million

 The cheapest of these links is Erizo–Colina, so you built this link and install an office in

Colina.

 And, Finally, the Colina–Flor Link

 The choices are narrowing. After removing already linked towns, your list now shows only

 • Colina–Flor, $6 million

 • Erizo–Flor, $7 million

You install the last link of cable from Colina to Flor, build an office in Flor, and you're
done. You know you're done because there's now an office in every town. You've
constructed the cable route Ajo–Danza, Ajo–Bordo, Bordo–Erizo, Erizo–Colina, and
Colina–Flor, as shown earlier in Figure 14.3. This is the cheapest possible route linking
the six towns of Magnaguena.

 Creating the Algorithm

Using the somewhat fanciful idea of installing a cable TV system, we've shown the main
ideas behind the minimum spanning tree for weighted graphs. Now let's see how we'd go
about creating the algorithm for this process.

 The Priority Queue

The key activity in carrying out the algorithm, as described in the cable TV example, was
maintaining a list of the costs of links between pairs of cities. We decided where to build
the next link by selecting the minimum of these costs.

A list in which we repeatedly select the minimum value suggests a priority queue as an
appropriate data structure, and in fact this turns out to be an efficient way to handle the
minimum spanning tree problem. Instead of a list or array, we use a priority queue. In a
serious program this priority queue might be based on a heap, as described in Chapter
12, "Heaps." This would speed up operations on large priority queues. However, in our

 - 482 -

demonstration program we'll use a priority queue based on a simple array.

 Outline of the Algorithm

 Let's restate the algorithm in graph terms (as opposed to cable TV terms):

 Start with a vertex, put it in the tree. Then repeatedly do the following:

 1. Find all the edges from the newest vertex to other vertices that aren't in the tree. Put

these edges in the priority queue.

 2. Pick the edge with the lowest weight, and add this edge and its destination vertex to

the tree.

 Do these steps until all the vertices are in the tree. At that point, you're done.

In step 1, "newest" means most recently installed in the tree. The edges for this step can
be found in the adjacency matrix. After step 1, the list will contain all the edges from
vertices in the tree to vertices on the fringe.

 Extraneous Edges

In maintaining the list of links, we went to some trouble to remove links that led to a town
that had recently become connected. If we didn't do this, we would have ended up
installing unnecessary cable links.

In a programming algorithm we must likewise make sure that we don't have any edges in
the priority queue that lead to vertices that are already in the tree. We could go through
the queue looking for and removing any such edges each time we added a new vertex to
the tree. As it turns out, it is easier to keep only one edge from the tree to a given fringe
vertex in the priority queue at any given time. That is, the queue should contain only one
edge to each category 2 vertex.

You'll see that this is what happens in the GraphW Workshop applet. There are fewer
edges in the priority queue than you might expect; just one entry for each category 2
vertex. Step through the minimum spanning tree for Figure 14.1 and verify that this is
what happens. Table 14.1 shows how edges with duplicate destinations have been
removed from the priority queue.

 Table 14.1: Edge pruning

 Step Number

Unpruned Edge
List

Pruned Edge List
(in PriorityQueue)

Duplicate
Removed from
Priority Queue

 1

AB6, AD4

AB6, AD4

 2

DE12, DC8, DB7,
AB6

DE12, DC8, AB6

DB7(AB6)

 3

DE12, BC10, DC8,
BE7

DC8, BE7

DE12(BE7),
BC10(DC8)

 - 483 -

 4 BC10, DC8, EF7,
EC5

EF7, EC5 BC10(EC5),
DC8(EC5)

 5

EF7, CF6

CF6

EF7

Remember that an edge consists of a letter for the source (starting) vertex of the edge, a
letter for the destination (ending vertex), and a number for the weight. The second
column in this table corresponds to the lists you kept when constructing the cable TV
system. It shows all edges from category 1 vertices (those in the tree) to category 2
vertices (those with at least one known edge from a category 1 vertex).

The third column is what you see in the priority queue when you run the GraphW applet.
Any edge with the same destination vertex as another edge, and which has a greater
weight, has been removed.

The fourth column shows the edges that have been removed, and, in parentheses, the
edge with the smaller weight that superseded it and remains in the queue. Remember
that as you go from step to step the last entry on the list is always removed because this
edge is added to the tree.

 Looking for Duplicates in the Priority Queue

How do we make sure there is only one edge per category 2 vertex? Each time we add
an edge to the queue, we make sure there's no other edge going to the same destination.
If there is, we keep only the one with the smallest weight.

This necessitates looking through the priority queue item by item, to see if there's such a
duplicate edge. Priority queues are not designed for random access, so this is not an
efficient activity. However, violating the spirit of the priority queue is necessary in this
situation.

 Java Code

The method that creates the minimum spanning tree for a weighted graph, mstw(),
follows the algorithm outlined above. As in our other graph programs, it assumes there's
a list of vertices in vertexList[], and that it will start with the vertex at index 0. The
currentVert variable represents the vertex most recently added to the tree. Here's the
code for mstw():

 public void mstw() // minimum spanning tree
 {
 currentVert = 0; // start at 0

 while(nTree < nVerts-1) // while not all verts in tree
 { // put currentVert in tree
 vertexList[currentVert].isInTree = true;
 nTree++;

 // insert edges adjacent to currentVert into PQ
 for(int j=0; j<nVerts; j++) // for each vertex,
 {
 if(j==currentVert) // skip if it's us
 continue;
 if(vertexList[j].isInTree) // skip if in the tree

 - 484 -

 continue;
 int distance = adjMat[currentVert][j];
 if(distance == INFINITY) // skip if no edge
 continue;
 putInPQ(j, distance); // put it in PQ (maybe)
 }
 if(thePQ.size()==0) // no vertices in PQ?
 {
 System.out.println(" GRAPH NOT CONNECTED");
 return;
 }
 // remove edge with minimum distance, from PQ
 Edge theEdge = thePQ.removeMin();
 int sourceVert = theEdge.srcVert;
 currentVert = theEdge.destVert;

 // display edge from source to current
 System.out.print(vertexList[sourceVert].label);
 System.out.print(vertexList[currentVert].label);
 System.out.print(" ");
 } // end while(not all verts in tree)

 // mst is complete
 for(int j=0; j<nVerts; j++) // unmark vertices
 vertexList[j].isInTree = false;

 } // end mstw()

 The algorithm is carried out in the while loop, which terminates when all vertices are in

the tree. Within this loop the following activities take place:

 1. The current vertex is placed in the tree.

 2. The edges adjacent to this vertex are placed in the priority queue (if appropriate).

 3. The edge with the minimum weight is removed from priority queue. The destination

vertex of this edge becomes the current vertex.

 Let's look at these steps in more detail. In step 1, the currentVert is placed in the tree

by marking its isInTree field.

In step 2, the edges adjacent to this vertex are considered for insertion in the priority
queue. The edges are examined by scanning across the row whose number is
currentVert in the adjacency matrix. An edge is placed in the queue unless one of
these conditions is true:

 • The source and destination vertices are the same.

 • The destination vertex is in the tree.

 • There is no edge to this destination.

 If none of these conditions is true, the putInPQ() method is called to put the edge in the

priority queue. Actually, this routine doesn't always put the edge in the queue either, as

 - 485 -

we'll see in a moment.

In step 3, the edge with the minimum weight is removed from the priority queue. This
edge and its destination vertex are added to the tree, and the source vertex
(currentVert) and destination vertex are displayed.

At the end of mstw(), the vertices are removed from the tree by resetting their
isInTree variables. That isn't strictly necessary in this program, because only one tree
is created from the data. However, it's good housekeeping to restore the data to its
original form when you finish with it.

As we noted, the priority queue should contain only one edge with a given destination
vertex. The putInPQ() method makes sure this is true. It calls the find() method of
the PriorityQ class, which has been doctored to find the edge with a specified
destination vertex. If there is no such vertex, and find() therefore returns –1, then
putInPQ() simply inserts the edge into the priority queue. However, if such an edge
does exist, putInPQ() checks to see whether the existing edge or the new proposed
edge has the lower weight. If it's the old edge, no change is necessary. If the new one
has a lower weight, the old edge is removed from the queue and the new one is installed.
Here's the code for putInPQ():

 public void putInPQ(int newVert, int newDist)
 {
 // is there another edge with the same destination vertex?
 int queueIndex = thePQ.find(newVert); // got edge's index
 if(queueIndex != -1) // if there is one,
 { // get edge
 Edge tempEdge = thePQ.peekN(queueIndex);
 int oldDist = tempEdge.distance;
 if(oldDist > newDist) // if new edge shorter,
 {
 thePQ.removeN(queueIndex); // remove old edge
 Edge theEdge = new Edge(currentVert, newVert,

newDist);
 thePQ.insert(theEdge); // insert new edge
 }
 // else no action; just leave the old vertex there
 } // end if
 else // no edge with same destination vertex
 { // so insert new one
 Edge theEdge = new Edge(currentVert, newVert, newDist);
 thePQ.insert(theEdge);
 }

 } // end putInPQ()

 The mstw.java Program

The PriorityQ class uses an array to hold the members. As we noted, in a program
dealing with large graphs a heap would be more appropriate than the array shown here.
The PriorityQ class has been augmented with various methods. It can, as we've seen,
find an edge with a given destination vertex with find(). It can also peek at an arbitrary
member with peekN() and remove an arbitrary member with removeN(). Most of the
rest of this program you've seen before. Listing 14.1 shows the complete mstw.java
program.

 - 486 -

 Listing 14.1 The mstw.java Program

 // mstw.java
 // demonstrates minimum spanning tree with weighted graphs
 // to run this program: C>java MSTWApp
 import java.awt.*;
 //
 class Edge
 {
 public int srcVert; // index of a vertex starting edge
 public int destVert; // index of a vertex ending edge
 public int distance; // distance from src to dest

 public Edge(int sv, int dv, int d) // constructor
 {
 srcVert = sv;
 destVert = dv;
 distance = d;
 }
 } // end class Edge

 //

 class PriorityQ
 {
 // array in sorted order, from max at 0 to min at size-1
 private final int SIZE = 20;
 private Edge[] queArray;
 private int size;

 public PriorityQ() // constructor
 {
 queArray = new Edge[SIZE];
 size = 0;
 }

 public void insert(Edge item) // insert item in sorted

order
 {
 int j;

 for(j=0; j<size; j++) // find place to insert
 if(item.distance >= queArray[j].distance)
 break;

 for(int k=size-1; k>=j; k--) // move items up
 queArray[k+1] = queArray[k];

 queArray[j] = item; // insert item
 size++;
 }

 public Edge removeMin() // remove minimum item

 - 487 -

 { return queArray[--size]; }

 public void removeN(int n) // remove item at n
 {
 for(int j=n; j<size-1; j++) // move items down
 queArray[j] = queArray[j+1];
 size--;
 }

 public Edge peekMin() // peek at minimum item
 { return queArray[size-1]; }

 public int size() // return number of items
 { return size; }

 public boolean isEmpty() // true if queue is empty
 { return (size==0); }

 public Edge peekN(int n) // peek at item n
 { return queArray[n]; }

 public int find(int findDex) // find item with specified
 { // destVert value
 for(int j=0; j<size; j++)
 if(queArray[j].destVert == findDex)
 return j;
 return -1;
 }
 } // end class PriorityQ

 //

 class Vertex
 {
 public char label; // label (e.g. 'A')
 public boolean isInTree;

 // --

-
 public Vertex(char lab) // constructor
 {
 label = lab;
 isInTree = false;
 }

 // --

-
 } // end class Vertex

 //

 class Graph
 {

 - 488 -

 private final int MAX_VERTS = 20;
 private final int INFINITY = 1000000;
 private Vertex vertexList[]; // list of vertices
 private int adjMat[][]; // adjacency matrix
 private int nVerts; // current number of vertices
 private int currentVert;
 private PriorityQ thePQ;
 private int nTree; // number of verts in tree

 // --

-
 public Graph() // constructor
 {
 vertexList = new Vertex[MAX_VERTS];
 // adjacency matrix
 adjMat = new int[MAX_VERTS][MAX_VERTS];
 nVerts = 0;
 for(int j=0; j<MAX_VERTS; j++) // set adjacency
 for(int k=0; k<MAX_VERTS; k++) // matrix to 0
 adjMat[j][k] = INFINITY;
 thePQ = new PriorityQ();
 } // end constructor

 // --

-
 public void addVertex(char lab)
 {
 vertexList[nVerts++] = new Vertex(lab);
 }

 // --

-
 public void addEdge(int start, int end, int weight)
 {
 adjMat[start][end] = weight;
 adjMat[end][start] = weight;
 }

 // --

-
 public void displayVertex(int v)
 {
 System.out.print(vertexList[v].label);
 }

 // --

-
 public void mstw() // minimum spanning tree
 {
 currentVert = 0; // start at 0

 while(nTree < nVerts-1) // while not all verts in tree
 { // put currentVert in tree
 vertexList[currentVert].isInTree = true;

 - 489 -

 nTree++;

 // insert edges adjacent to currentVert into PQ
 for(int j=0; j<nVerts; j++) // for each vertex,
 {
 if(j==currentVert) // skip if it's us
 continue;
 if(vertexList[j].isInTree) // skip if in the tree
 continue;
 int distance = adjMat[currentVert][j];
 if(distance == INFINITY) // skip if no edge
 continue;
 putInPQ(j, distance); // put it in PQ (maybe)
 }
 if(thePQ.size()==0) // no vertices in PQ?
 {
 System.out.println(" GRAPH NOT CONNECTED");
 return;
 }
 // remove edge with minimum distance, from PQ
 Edge theEdge = thePQ.removeMin();
 int sourceVert = theEdge.srcVert;
 currentVert = theEdge.destVert;

 // display edge from source to current
 System.out.print(vertexList[sourceVert].label);
 System.out.print(vertexList[currentVert].label);
 System.out.print(" ");
 } // end while(not all verts in tree)

 // mst is complete
 for(int j=0; j<nVerts; j++) // unmark vertices
 vertexList[j].isInTree = false;
 } // end mstw

 // --

-
 public void putInPQ(int newVert, int newDist)
 {
 // is there another edge with the same destination

vertex?
 int queueIndex = thePQ.find(newVert);
 if(queueIndex != -1) // got edge's index
 {
 Edge tempEdge = thePQ.peekN(queueIndex); // get edge
 int oldDist = tempEdge.distance;
 if(oldDist > newDist) // if new edge shorter,
 {
 thePQ.removeN(queueIndex); // remove old edge
 Edge theEdge =
 new Edge(currentVert, newVert,

newDist);
 thePQ.insert(theEdge); // insert new edge

 - 490 -

 }
 // else no action; just leave the old vertex there
 } // end if
 else // no edge with same destination vertex
 { // so insert new one
 Edge theEdge = new Edge(currentVert, newVert,

newDist);
 thePQ.insert(theEdge);
 }
 } // end putInPQ()

 // --

-
 } // end class Graph

 //

 class MSTWApp
 {
 public static void main(String[] args)
 {
 Graph theGraph = new Graph();
 theGraph.addVertex('A'); // 0 (start for mst)
 theGraph.addVertex('B'); // 1
 theGraph.addVertex('C'); // 2
 theGraph.addVertex('D'); // 3
 theGraph.addVertex('E'); // 4
 theGraph.addVertex('F'); // 5

 theGraph.addEdge(0, 1, 6); // AB 6
 theGraph.addEdge(0, 3, 4); // AD 4
 theGraph.addEdge(1, 2, 10); // BC 10
 theGraph.addEdge(1, 3, 7); // BD 7
 theGraph.addEdge(1, 4, 7); // BE 7
 theGraph.addEdge(2, 3, 8); // CD 8
 theGraph.addEdge(2, 4, 5); // CE 5
 theGraph.addEdge(2, 5, 6); // CF 6
 theGraph.addEdge(3, 4, 12); // DE 12
 theGraph.addEdge(4, 5, 7); // EF 7

 System.out.print("Minimum spanning tree: ");
 theGraph.mstw(); // minimum spanning tree
 System.out.println();
 } // end main()
 } // end class MSTWApp

 ///

 The main() routine in class MSTWApp creates the tree in Figure 14.1. Here's the output:

 Minimum spanning tree: AD AB BE EC CF

The Shortest-Path Problem

 - 491 -

Perhaps the most commonly encountered problem associated with weighted graphs is
that of finding the shortest path between two given vertices. The solution to this problem
is applicable to a wide variety of real-world situations, from the layout of printed circuit
boards to project scheduling. It is a more complex problem than we've seen before, so
let's start by looking at a (somewhat) real-world scenario in the same mythical country of
Magnaguena introduced in the last section.

 The Railroad Line

This time we're concerned with railroads rather than cable TV. However, this project is
not as ambitious as the last one. We're not going to build the railroad; it already exists.
We just want to find the cheapest route from one city to another.

The railroad charges passengers a fixed fare to travel between any two towns. These
fares are shown in Figure 14.6. That is, from Ajo to Bordo is $50, from Bordo to Danza is
$90, and so on. These rates are the same whether the ride between two towns is part of
a longer itinerary or not (unlike the situation with today's airline fares).

The edges in Figure 14.6 are directed. They represent single-track railroad lines, on
which (in the interest of safety) travel is permitted in only one direction. For example, you
can go directly from Ajo to Bordo, but not from Bordo to Ajo.

 Figure 14.6: Train fares in Magnaguena

Although in this situation we're interested in the cheapest fares, the graph problem is
nevertheless always referred to as the shortest path problem. Here shortest doesn't
necessarily mean shortest in terms of distance; it can also mean cheapest, fastest, or
best route by some other measure.

 Cheapest Fares

There are several possible routes between any two towns. For example, to take the train
from Ajo to Erizo you could go through Danza, or you could go through Bordo and Colina,
or through Danza and Colina, or you could take several other routes. (It's not possible to
reach the town of Flor by rail because it lies beyond the rugged Sierra Descaro range, so
it doesn't appear on the graph. This is fortunate, because it reduces the size of certain
lists we'll need to make.)

The shortest-path problem is, for a given starting point and destination, what's the
cheapest route? In Figure 14.6, you can see (with a little mental effort) that the cheapest
route from Ajo to Erizo passes through Danza and Colina; it will cost you $140.

 A Directed, Weighted Graph

As we noted, our railroad has only single-track lines, so you can go in only one direction
between any two cities. This corresponds to a directed graph. We could have portrayed
the more realistic situation in which you can go either way between two cities for the
same price; this would correspond to a nondirected graph. However, the

 - 492 -

shortest-path problem is similar in these cases, so for variety we'll show how it looks in a
directed graph.

 Dijkstra's Algorithm

The solution we'll show for the shortest-path problem is called Dijkstra's Algorithm, after
Edsger Dijkstra, who first described it in 1959. This algorithm is based on the adjacency
matrix representation of a graph. Somewhat surprisingly, it finds not only the shortest
path from one specified vertex to another, but the shortest paths from the specified vertex
to all the other vertices.

 Agents and Train Rides

To see how Dijkstra's Algorithm works, imagine that you want to find the cheapest way to
travel from Ajo to all the other towns in Magnaguena. You (and various agents you will
hire) are going to play the role of the computer program carrying out Dijkstra's Algorithm.
Of course in real life you could probably obtain a schedule from the railroad with all the
fares. The Algorithm, however, must look at one piece of information at a time, so (as in
the last section) we'll assume that you are similarly unable to see the big picture.

At each town, the stationmaster can tell you how much it will cost to travel to the other
towns that you can reach directly (that is, in a single ride, without passing through
another town). Alas, he cannot tell you the fares to towns further than one ride away. You
keep a notebook, with a column for each town. You hope to end up with each column
showing the cheapest route from your starting point to that town.

 The First Agent: In Ajo

 Eventually you're going to place an agent in every town; this agent's job is to obtain

information about ticket costs to other towns. You yourself are the agent in Ajo.

 All the stationmaster in Ajo can tell you is that it will cost $50 to ride to Bordo, and $80 to

ride to Danza. You write this in your notebook, as shown in Table 14.2.

 Table 14.2:

Step 1: An agent at Ajo

 From Ajo toÆ

Bordo

Colina

Danza

Erizo

 Step 1

50 (via Ajo)

inf

80 (via Ajo)

inf

The entry "inf" is short for "infinity," and means that you can't get from Ajo to the town
shown in the column head, or at least that you don't yet know how to get there. (In the
algorithm infinity will be represented by a very large number, which will help with
calculations, as we'll see.) The entries in the table in parentheses are the last town visited
before you arrive at the various destinations. We'll see later why this is good to know.
What do you do now? Here's the rule you'll follow:

 REMEMBER
 Rule: Always send an agent to the town whose overall fare from the starting point (Ajo) is

the cheapest.

 - 493 -

You don't consider towns that already have an agent. Notice that this is not the same rule
as that used in the minimum spanning tree problem (the cable TV installation). There,
you picked the least expensive single link (edge) from the connected towns to an
unconnected town. Here, you pick the least expensive total route from Ajo to a town with
no agent. In this particular point in your investigation these two approaches amount to the
same thing, because all known routes from Ajo consist of only one edge; but as you send
agents to more towns, the routes from Ajo will become the sum of several direct edges.

 The Second Agent: In Bordo

The cheapest fare from Ajo is to Bordo, at $50. So you hire a passerby and send him to
Bordo, where he'll be your agent. Once he's there, he calls you by telephone, and tells
you that the Bordo stationmaster says it costs $60 to ride to Colina and $90 to Danza.

Doing some quick arithmetic, you figure it must be $50 plus $60, or $110 to go from Ajo
to Colina via Bordo, so you modify the entry for Colina. You also can see that, going via
Bordo, it must be $50 plus $90, or $140, from Ajo to Danza. However—and this is a key
point—you already know it's only $80 going directly from Ajo to Danza. You only care
about the cheapest route from Ajo, so you ignore the more expensive route, leaving this
entry as it was. The resulting notebook entries are shown in the last row in Table 14.3.
Figure 14.7 shows the situation geographically.

 Table 14.3:

Step 2: Agents at Ajo and Bordo

 From Ajo toÆ

Bordo

Colina

Danza

Erizo

 Step 1

50 (via Ajo)

inf

80 (via Ajo)

inf

 Step 2

50 (via Ajo)*

110 (via Bordo)

80 (via Ajo)

inf

 Figure 14.7: Following step 2 in the shortest-path algorithm

Once we've installed an agent in a town, we can be sure that the route taken by the
agent to get to that town is the cheapest route. Why? Consider the present case. If there
were a cheaper route than the direct one from Ajo to Bordo, it would need to go through
some other town. But the only other way out of Ajo is to Danza, and that ride is already
more expensive than the direct route to Bordo. Adding additional fares to get from Danza

 - 494 -

to Bordo would make the Danza route still more expensive.

From this we decide that from now on we won't need to update the entry for the cheapest
fare from Ajo to Bordo. This fare will not change, no matter what we find out about other
towns. We'll put an * next to it to show that there's an agent in the town and that the
cheapest fare to it is fixed.

 Three Kinds of Town

 As in the minimum spanning tree algorithm, we're dividing the towns into three

categories:

 1. Towns in which we've installed an agent; they're in the tree.

 2. Towns with known fares from towns with an agent; they're on the fringe.

 3. Unknown towns.

At this point Ajo and Bordo are category 1 towns because there are agents there.
Category 1 towns form a tree consisting of paths that all begin at the starting vertex and
that each end on a different destination vertex. (This is not the same tree, of course, as a
minimum spanning tree.)

Some other towns have no agents, but you know the fares to them because you have
agents in adjacent category 1 towns. You know the fare from Ajo to Danza is $80, and
from Bordo to Colina is $60. Because the fares to them are known, Danza and Colina are
category 2 (fringe) towns.

 You don't know anything yet about Erizo, it's an "unknown" town. Figure 14.7 shows

these categories at the current point in the algorithm.

As in the minimum spanning tree algorithm, the algorithm moves towns from the
unknown category to the fringe category, and from the fringe category to the tree, as it
goes along.

 The Third Agent: In Danza

At this point, the cheapest route you know that goes from Ajo to any town without an
agent is $80, the direct route from Ajo to Danza. Both the Ajo–Bordo–Colina route at
$110, and the Ajo–Bordo–Danza route at $140, are more expensive.

You hire another passerby and send her to Danza with an $80 ticket. She reports that
from Danza it's $20 to Colina and $70 to Erizo. Now you can modify your entry for Colina.
Before, it was $110 from Ajo, going via Bordo. Now you see you can reach Colina for
only $100, going via Danza. Also, you now know a fare from Ajo to the previously
unknown Erizo: it's $150, via Danza. You note these changes, as shown in Table 14.4
and Figure 14.8.

 Table 14.4:

Step 3: Agents at Ajo, Bordo, and Danza

 From Ajo

toÆ

Bordo

Colina

Danza

Erizo

 - 495 -

 Step 1 50 (via Ajo) inf 80 (via Ajo) inf

 Step 2

50 (via Ajo)*

110 (via Bordo)

80 (via Ajo)

inf

 Step 3

50 (via Ajo)*

100 (via Danza)

80 (via Ajo)*

150 (via Danza)

 Figure 14.8: Following step 3 in the shortest-path algorithm

 The Fourth Agent: In Colina

Now the cheapest path to any town without an agent is the $100 trip from Ajo to Colina,
going via Danza. Accordingly, you dispatch an agent over this route to Colina. He reports
that it's $40 from there to Erizo. Now you can calculate that, because Colina is $100 from
Ajo (via Danza), and Erizo is $40 from Colina, you can reduce the minimum Ajo-to-Erizo
fare from $150 (the Ajo–Danza–Erizo route) to $140 (the Ajo–Danza–Colina–Erizo route).
You update your notebook accordingly, as shown in Table 14.5 and Figure 14.9.

 Table 14.5:

Step 4: Agents in Ajo, Bordo, Danza, and Colina

 From Ajo toÆ

Bordo

Colina

Danza

Erizo

 Step 1

50 (via Ajo)

inf

80 (via Ajo)

inf

 Step 2

50 (via Ajo)*

110 (via Bordo)

80 (via Ajo)

inf

 Step 3

50 (via Ajo)*

100 (via
Danza)

80 (via Ajo)*

150 (via Danza)

 Step 4

50 (via Ajo)*

100 (via
Danza)*

80 (via Ajo)*

140 (via Colina)

 - 496 -

 Figure 14.9: Following step 4 in the shortest-path algorithm

 The Last Agent: In Erizo

The cheapest path from Ajo to any town you know about that doesn't have an agent is
now $140 to Erizo, via Danza and Colina. You dispatch an agent to Erizo, but she reports
that there are no routes from Erizo to towns without agents. (There's a route to Bordo, but
Bordo has an agent.) Table 14.6 shows the final line in your notebook; all you've done is
add a star to the Erizo entry to show there's an agent there.

 Table 14.6:

Step 5: Agents in Ajo, Bordo, Danza, Colina, and Erizo

 From Ajo toÆ

Bordo

Colina

Danza

Erizo

 Step 1

50 (via Ajo)

inf

80 (via Ajo)

inf

 Step 2

50 (via Ajo)*

110 (via Bordo)

80 (via Ajo)

inf

 Step 3

50 (via Ajo)*

100 (via
Danza)

80 (via Ajo)*

150 (via Danza)

 Step 4

50 (via Ajo)*

100 (via
Danza)*

80 (via Ajo)*

140 (via Colina)

 Step 5

50 (via Ajo)*

100 (via
Danza)*

80 (via Ajo)*

140 (via Colina)*

When there's an agent in every town, you know the fares from Ajo to every other town.
So you're done. With no further calculations, the last line in your notebook shows the
cheapest routes from Ajo to all other towns.

 This narrative has demonstrated the essentials of Dijkstra's Algorithm. The key points are

•

Each time you send an agent to a new town, you use the new information provided by
that agent to revise your list of fares. Only the cheapest fare (that you know about)
from the starting point to a given town is retained.

 • You always send the new agent to the town that has the cheapest path from the

starting point. (Not the cheapest edge from any town with an agent, as in the minimum

 - 497 -

spanning tree.)

 Using the Workshop Applet

Let's see how this looks using the GraphDW (for Directed and Weighted) Workshop
applet. Use the applet to create the graph from Figure 14.6. The result should look
something like Figure 14.10. (We'll see how to make the table appear below the graph in
a moment.) This is a weighted, directed graph, so to make an edge, you must type a
number before dragging, and you must drag in the correct direction, from the start to the
destination.

 Figure 14.10: The railroad scenario in GraphDW

When the graph is complete, click the Path button, and when prompted, click the A
vertex. A few more clicks on Path will place A in the tree, shown with a red circle around
A.

 The Shortest-Path Array

An additional click will install a table under the graph, as you can see in Figure 14.10.
The corresponding message near the top of the figure is Copied row A from
adjacency matrix to shortest-path array. Dijkstra's Algorithm starts by
copying the appropriate row of the adjacency matrix (that is, the row for the starting
vertex) to an array. (Remember that you can examine the adjacency matrix at any time
by pressing the View button.)

This array is called the "shortest-path" array. It corresponds to the most recent row of
notebook entries you made while determining the cheapest train fares in Magnaguena.
This array will hold the current versions of the shortest paths to the other vertices, which
we can call the destination vertices. These destination vertices are represented by the
column heads in the table.

 Table 14.7:

Step 1: The Shortest-Path Array

 A

B

C

D

E

 inf(A)

50(A)

inf(A)

80(A)

inf(A)

 - 498 -

In the applet, the shortest-path figures in the array are followed by the parent vertex
enclosed in parentheses. The parent is the vertex you reached just before you reached
the destination vertex. In this case the parents are all A because we've only moved one
edge away from A.

If a fare is unknown (or meaningless, as from A to A) it's shown as infinity, represented by
"inf," as in the rail-fare notebook entries. Notice that the column heads of those vertices
that have already been added to the tree are shown in red. The entries for these columns
won't change.

 Minimum Distance

Initially, the algorithm knows the distances from A to other vertices that are exactly one
edge from A. Only B and D are adjacent to A, so they're the only ones whose distances
are shown. The algorithm picks the minimum distance. Another click on Path will show
you the message

 Minimum distance from A is 50, to vertex B

 The algorithm adds this vertex to the tree, so the next click will show you

 Added vertex B to tree

 Now B is circled in the graph, and the B column head is in red. The edge from A to B is

made darker to show it's also part of the tree.

 Column by Column in the Shortest-Path Array

Now the algorithm knows, not only all the edges from A, but the edges from B as well. So
it goes through the shortest-path array, column by column, checking whether a shorter
path than that shown can be calculated using this new information. Vertices that are
already in the tree, here A and B, are skipped. First column C is examined.

 You'll see the message

 To C: A to B (50) plus edge BC (60) less than A to C (inf)

The algorithm has found a shorter path to C than that shown in the array. The array
shows infinity in the C column. But from A to B is 50 (which the algorithm finds in the B
column in the shortest-path array) and from B to C is 60 (which it finds in row B column C
in the adjacency matrix). The sum is 110. The 110 distance is less than infinity, so the
algorithm updates the shortest-path array for column C, inserting 110.

 This is followed by a B in parentheses, because that's the last vertex before reaching C;

B is the parent of C.

 Next the D column is examined. You'll see the message

 To D: A to B (50) plus edge BD (90) greater than or equal to A

to D (80)

The algorithm is comparing the previously shown distance from A to D, which is 80 (the
direct route), with a possible route via B (that is, A–B–D). But path A–B is 50 and edge
BD is 90, so the sum is 140. This is bigger than 80, so 80 is not changed.

 - 499 -

 For column E, the message is

 To E: A to B (50) plus edge BE (inf) greater than or equal to A

to E

 (inf)

The newly calculated route from A to E via B (50 plus infinity) is still greater than or equal
to the current one in the array (infinity), so the E column is not changed. The shortest-
path array now looks like Table 14.8.

 Table 14.8:

Step 2: The Shortest-Path Array

 A

B

C

D

E

 inf(A)

50(A)

110(B)

80(A)

inf(A)

Now we can see more clearly the role played by the parent vertex shown in parentheses
after each distance. Each column shows the distance from A to an ending vertex. The
parent is the immediate predecessor of the ending vertex along the path from A. In
column C, the parent vertex is B, meaning that the shortest path from A to C passes
through B just before it gets to C. This information is used by the algorithm to place the
appropriate edge in the tree. (When the distance is infinity, the parent vertex is
meaningless and is shown as A.)

 New Minimum Distance

 Now that the shortest-path array has been updated, the algorithm finds the shortest

distance in the array, as you will see with another Path key press. The message is

 Minimum distance from A is 80, to vertex D

 Accordingly, the message

 Added vertex D to tree

 appears and the new vertex and edge AC are added to the tree.

 Do It Again, and Again

Now the algorithm goes through the shortest-path array again, checking and updating the
distances for destination vertices not in the tree; only C and E are still in this category.
Column C and E are both updated. The result is shown in Table 14.9.

 Table 14.9:

Step 3: The Shortest-Path Array

 - 500 -

 A B C D E

 inf(A)

50(A)

100(D)

80(A)

150(D)

 The shortest path from A to a non-tree vertex is 100, to vertex C, so C is added to the

tree.

 Next time through the shortest-path array, only the distance to E is considered. It can be

shortened by going via C, so we have the entries shown in Table 14.10.

 Table 14.10:

Step 4: The Shortest-Path Array

 A

B

C

D

E

 inf(A)

50(A)

100(D)

80(A)

140(C)

Now the last vertex, E, is added to the tree, and you're done. The shortest-path array
shows the shortest distances from A to all the other vertices. The tree consists of all the
vertices and the edges AB, AD, DC, and CE, shown with thick lines.

You can work backward to reconstruct the sequence of vertices along the shortest path
to any vertex. For the shortest path to E, for example, the parent of E, shown in the array
in parentheses, is C. The predecessor of C, again from the array, is D, and the
predecessor of D is A. So the shortest path from A to E follows the route A–D–C–E.

Experiment with other graphs using GraphDW, starting with small ones. You'll find that
after a while you can predict what the algorithm is going to do, and you'll be on your way
to understanding Dijkstra's Algorithm.

 Java Code

The code for the shortest-path algorithm is among the most complex in this book, but
even so it's not beyond mere mortals. We'll look first at a helper class and then at the
chief method that executes the algorithm, path(), and finally at two methods called by
path() to carry out specialized tasks.

 The sPath Array and the DistPar Class

As we've seen, the key data structure in the shortest-path algorithm is an array that
keeps track of the minimum distances from the starting vertex to the other vertices
(destination vertices). During the execution of the algorithm these distances are changed,
until at the end they hold the actual shortest distances from the start. In the example
code, this array is called sPath[] (for shortest paths).

 As we've seen, it's important to record not only the minimum distance from the starting

 - 501 -

vertex to each destination vertex, but also the path taken. Fortunately, the entire path
need not be explicitly stored. It's only necessary to store the parent of the destination
vertex. The parent is the vertex reached just before the destination. We've seen this in
the workshop applet, where, if 100(D) appears in the C column, it means that the
cheapest path from A to C is 100, and D is the last vertex before C on this path.

There are several ways to keep track of the parent vertex, but we choose to combine the
parent with the distance and put the resulting object into the sPath[] array. We call this
class of objects DistPar (for distance-parent).

 class DistPar // distance and parent
 { // items stored in sPath array
 public int distance; // distance from start to this vertex
 public int parentVert; // current parent of this vertex

 public DistPar(int pv, int d) // constructor
 {
 distance = d;
 parentVert = pv;
 }

 }

 The path() Method

The path() method carries out the actual shortest-path algorithm. It uses the DistPar
class and the Vertex class, which we saw in the mstw.java program earlier in this
chapter. The path() method is a member of the graph class, which we also saw in
mstw.java in a somewhat different version.

 public void path() // find all shortest paths
 {
 int startTree = 0; // start at vertex 0
 vertexList[startTree].isInTree = true;
 nTree = 1; // put it in tree

 // transfer row of distances from adjMat to sPath
 for(int j=0; j<nVerts; j++)
 {
 int tempDist = adjMat[startTree][j];
 sPath[j] = new DistPar(startTree, tempDist);
 }

 // until all vertices are in the tree
 while(nTree < nVerts)
 {
 int indexMin = getMin(); // get minimum from sPath
 int minDist = sPath[indexMin].distance;

 if(minDist == INFINITY) // if all infinite
 { // or in tree,
 System.out.println("There are unreachable vertices");
 break; // sPath is complete
 }

 - 502 -

 else
 { // reset currentVert
 currentVert = indexMin; // to closest vert
 startToCurrent = sPath[indexMin].distance;
 // minimum distance from startTree is
 // to currentVert, and is startToCurrent
 }
 // put current vertex in tree
 vertexList[currentVert].isInTree = true;
 nTree++;
 adjust_sPath(); // update sPath[] array
 } // end while(nTree<nVerts)

 displayPaths(); // display sPath[] contents

 nTree = 0; // clear tree
 for(int j=0; j<nVerts; j++)
 vertexList[j].isInTree = false;

 } // end path()

The starting vertex is always at index 0 of the vertexList[] array. The first task in
path() is to put this vertex into the tree. As the algorithm proceeds we'll be moving other
vertices into the tree as well. The Vertex class contains a flag that indicates whether a
vertex object is in the tree. Putting a vertex in the tree consists of setting this flag and
incrementing nTree, which counts how many vertices are in the tree.

Second, path() copies the distances from the appropriate row of the adjacency matrix
to sPath[]. This is always row 0, because for simplicity we assume 0 is the index of the
starting vertex. Initially, the parent field of all the sPath[] entries is A, the starting
vertex.

 We now enter the main while loop of the algorithm. This loop terminates when all the

vertices have been placed in the tree. There are basically three actions in this loop:

 1. Choose the sPath[] entry with the minimum distance.

 2. Put the corresponding vertex (the column head for this entry) in the tree. This

becomes the "current vertex" currentVert.

 3. Update all the sPath[] entries to reflect distances from currentVert.

If path() finds that the minimum distance is infinity, it knows that there are vertices that
are unreachable from the starting point. Why? Because not all the vertices are in the tree
(the while loop hasn't terminated), and yet there's no way to get to these extra vertices;
if there were, there would be a non-infinite distance.

Before returning, path() displays the final contents of sPath[] by calling the
displayPaths() method. This is the only output from the program. Also, path() sets
nTree to 0 and removes the isInTree flags from all the vertices, in case they might be
used again by another algorithm (although they aren't in this program).

 Finding the Minimum Distance with getMin()

 To find the sPath[] entry with the minimum distance, path() calls the getMin()

 - 503 -

method. This routine is straightforward; it steps across the sPath[] entries and returns
with the column number (the array index) of the entry with the minimum distance.

 public int getMin() // get entry from sPath
 { // with minimum distance
 int minDist = INFINITY; // assume large minimum
 int indexMin = 0;
 for(int j=1; j<nVerts; j++) // for each vertex,
 { // if it's in tree and
 if(!vertexList[j].isInTree && // smaller than old one
 sPath[j].distance < minDist)
 {
 minDist = sPath[j].distance;
 indexMin = j; // update minimum
 }
 } // end for
 return indexMin; // return index of minimum

 } // end getMin()

We could have used a priority queue as the basis for the shortest-path algorithm, as we
did in the last section to find the minimum spanning tree. If we had, the getMin()
method would not have been necessary; the minimum-weight edge would have appeared
automatically at the front of the queue. However, the array approach shown makes it
easier to see what's going on.

 Updating sPath[] with adjust_sPath()

The adjust_sPath() method is used to update the sPath[] entries to reflect new
information obtained from the vertex just inserted in the tree. When this routine is called,
currentVert has just been placed in the tree, and startToCurrent is the current
entry in sPath[] for this vertex. The adjust_sPath() method now examines each
vertex entry in sPath[], using the loop counter column to point to each vertex in turn.

 For each sPath[] entry, provided the vertex is not in the tree, it does three things:

1.

It adds the distance to the current vertex (already calculated and now in
startToCurrent) to the edge distance from currentVert to the column vertex.
We call the result startToFringe.

 2. It compares startToFringe with the current entry in sPath[].

 3. If startToFringe is less, it replaces the entry in sPath[].

This is the heart of Dijkstra's Algorithm. It keeps sPath[] updated with the shortest
distances to all the vertices that are currently known. Here's the code for
adjust_sPath():

 public void adjust_sPath()
 {
 // adjust values in shortest-path array sPath
 int column = 1; // skip starting vertex
 while(column < nVerts) // go across columns
 {
 // if this column's vertex already in tree, skip it

 - 504 -

 if(vertexList[column].isInTree)
 {
 column++;
 continue;
 }
 // calculate distance for one sPath entry
 // get edge from currentVert to column
 int currentToFringe = adjMat[currentVert][column];
 // add distance from start
 int startToFringe = startToCurrent + currentToFringe;
 // get distance of current sPath entry
 int sPathDist = sPath[column].distance;

 // compare distance from start with sPath entry
 if(startToFringe < sPathDist) // if shorter,
 { // update sPath
 sPath[column].parentVert = currentVert;
 sPath[column].distance = startToFringe;
 }
 column++;
 } // end while(column < nVerts)

 } // end adjust_sPath()

 The main() routine in the path.java program creates the tree of Figure 14.6 and

displays its shortest-path array. Here's the code:

 public static void main(String[] args)
 {
 Graph theGraph = new Graph();
 theGraph.addVertex('A'); // 0 (start)
 theGraph.addVertex('B'); // 1
 theGraph.addVertex('C'); // 2
 theGraph.addVertex('D'); // 3
 theGraph.addVertex('E'); // 4

 theGraph.addEdge(0, 1, 50); // AB 50
 theGraph.addEdge(0, 3, 80); // AD 80
 theGraph.addEdge(1, 2, 60); // BC 60
 theGraph.addEdge(1, 3, 90); // BD 90
 theGraph.addEdge(2, 4, 40); // CE 40
 theGraph.addEdge(3, 2, 20); // DC 20
 theGraph.addEdge(3, 4, 70); // DE 70
 theGraph.addEdge(4, 1, 50); // EB 50

 System.out.println("Shortest paths");
 theGraph.path(); // shortest paths
 System.out.println();

 } // end main()

 The output of this program is

 - 505 -

 A=inf(A) B=50(A) C=100(D) D=80(A) E=140(C)

 The path.java Program

 Listing 14.2 is the complete code for the path.java program. Its various components

were all discussed earlier.

 Listing 14.2 The path.java Program

 // path.java
 // demonstrates shortest path with weighted, directed graphs
 // to run this program: C>java PathApp
 import java.awt.*;
 //
 class DistPar // distance and parent
 { // items stored in sPath array
 public int distance; // distance from start to this vertex
 public int parentVert; // current parent of this vertex

 public DistPar(int pv, int d) // constructor
 {
 distance = d;
 parentVert = pv;
 }
 } // end class DistPar

 ///

 class Vertex
 {
 public char label; // label (e.g. 'A')
 public boolean isInTree;

 // --

-
 public Vertex(char lab) // constructor
 {
 label = lab;
 isInTree = false;
 }

 // --

-
 } // end class Vertex

 //

 class Graph
 {
 private final int MAX_VERTS = 20;
 private final int INFINITY = 1000000;
 private Vertex vertexList[]; // list of vertices
 private int adjMat[][]; // adjacency matrix

 - 506 -

 private int nVerts; // current number of vertices
 private int nTree; // number of verts in tree
 private DistPar sPath[]; // array for shortest-path data
 private int currentVert; // current vertex
 private int startToCurrent; // distance to currentVert

 // --

-
 public Graph() // constructor
 {
 vertexList = new Vertex[MAX_VERTS];
 // adjacency matrix
 adjMat = new int[MAX_VERTS][MAX_VERTS];
 nVerts = 0;
 nTree = 0;
 for(int j=0; j<MAX_VERTS; j++) // set adjacency
 for(int k=0; k<MAX_VERTS; k++) // matrix
 adjMat[j][k] = INFINITY; // to infinity
 sPath = new DistPar[MAX_VERTS]; // shortest paths
 } // end constructor

 // --

-
 public void addVertex(char lab)
 {
 vertexList[nVerts++] = new Vertex(lab);
 }

 // --

-
 public void addEdge(int start, int end, int weight)
 {
 adjMat[start][end] = weight; // (directed)
 }

 // --

-
 public void path() // find all shortest paths
 {
 int startTree = 0; // start at vertex 0
 vertexList[startTree].isInTree = true;
 nTree = 1; // put it in tree

 // transfer row of distances from adjMat to sPath
 for(int j=0; j<nVerts; j++)
 {
 int tempDist = adjMat[startTree][j];
 sPath[j] = new DistPar(startTree, tempDist);
 }

 // until all vertices are in the tree
 while(nTree < nVerts)
 {
 int indexMin = getMin(); // get minimum from sPath

 - 507 -

 int minDist = sPath[indexMin].distance;

 if(minDist == INFINITY) // if all infinite
 { // or in tree,
 System.out.println("There are unreachable

vertices");
 break; // sPath is complete
 }
 else
 { // reset currentVert
 currentVert = indexMin; // to closest vert
 startToCurrent = sPath[indexMin].distance;
 // minimum distance from startTree is
 // to currentVert, and is startToCurrent
 }
 // put current vertex in tree
 vertexList[currentVert].isInTree = true;
 nTree++;
 adjust_sPath(); // update sPath[] array
 } // end while(nTree<nVerts)

 displayPaths(); // display sPath[]

contents

 nTree = 0; // clear tree
 for(int j=0; j<nVerts; j++)
 vertexList[j].isInTree = false;
 } // end path()

 // --

-
 public int getMin() // get entry from sPath
 { // with minimum

distance
 int minDist = INFINITY; // assume minimum
 int indexMin = 0;
 for(int j=1; j<nVerts; j++) // for each vertex,
 { // if it's in tree and
 if(!vertexList[j].isInTree && // smaller than old

one
 sPath[j].distance < minDist)
 {
 minDist = sPath[j].distance;
 indexMin = j; // update minimum
 }
 } // end for
 return indexMin; // return index of minimum
 } // end getMin()

 // --

-
 public void adjust_sPath()
 {
 // adjust values in shortest-path array sPath

 - 508 -

 int column = 1; // skip starting vertex
 while(column < nVerts) // go across columns
 {
 // if this column's vertex already in tree, skip it
 if(vertexList[column].isInTree)
 {
 column++;
 continue;
 }
 // calculate distance for one sPath entry
 // get edge from currentVert to column
 int currentToFringe = adjMat[currentVert][column];
 // add distance from start
 int startToFringe = startToCurrent + currentToFringe;
 // get distance of current sPath entry
 int sPathDist = sPath[column].distance;

 // compare distance from start with sPath entry
 if(startToFringe < sPathDist) // if shorter,
 { // update sPath
 sPath[column].parentVert = currentVert;
 sPath[column].distance = startToFringe;
 }
 column++;
 } // end while(column < nVerts)
 } // end adjust_sPath()

 // --

-
 public void displayPaths()
 {
 for(int j=0; j<nVerts; j++) // display contents of

sPath[]
 {
 System.out.print(vertexList[j].label + "="); // B=
 if(sPath[j].distance == INFINITY)
 System.out.print("inf"); // inf
 else
 System.out.print(sPath[j].distance); // 50
 char parent = vertexList[sPath[j].parentVert].label;
 System.out.print("(" + parent + ") "); // (A)
 }
 System.out.println("");
 }

 // --

-
 } // end class Graph

 //

 class PathApp
 {

 - 509 -

 public static void main(String[] args)
 {
 Graph theGraph = new Graph();
 theGraph.addVertex('A'); // 0 (start)
 theGraph.addVertex('C'); // 2
 theGraph.addVertex('B'); // 1
 theGraph.addVertex('D'); // 3
 theGraph.addVertex('E'); // 4

 theGraph.addEdge(0, 1, 50); // AB 50
 theGraph.addEdge(0, 3, 80); // AD 80
 theGraph.addEdge(1, 2, 60); // BC 60
 theGraph.addEdge(1, 3, 90); // BD 90
 theGraph.addEdge(2, 4, 40); // CE 40
 theGraph.addEdge(3, 2, 20); // DC 20
 theGraph.addEdge(3, 4, 70); // DE 70
 theGraph.addEdge(4, 1, 50); // EB 50

 System.out.println("Shortest paths");
 theGraph.path(); // shortest paths
 System.out.println();
 } // end main()
 } // end class PathApp

 //

Efficiency

So far we haven't discussed the efficiency of the various graph algorithms. The issue is
complicated by the two ways of representing graphs: the adjacency matrix and adjacency
lists.

If an adjacency matrix is used, the algorithms we've discussed all require O(V2) time,
where V is the number of vertices. Why? If you analyze the algorithms, you'll see that
they involve examining each vertex once, and for that vertex going across its row in the
adjacency matrix, looking at each edge in turn. In other words, each cell of the adjacency
matrix, which has V2 cells, is examined.

For large matrices, O(V2) isn't very good performance. If the graph is dense there isn't
much we can do about improving this performance. (As we noted earlier, by dense we
mean a graph that has many edges; one in which many or most of the cells in the
adjacency matrix are filled.)

However, many graphs are sparse, the opposite of dense. There's no clear-cut definition
of how many edges a graph must have to be described as sparse or dense, but if each
vertex in a large graph is connected by only a few edges, the graph would normally be
described as sparse.

In a sparse graph, running times can be improved by using the adjacency list
representation rather than the adjacency matrix. This is easy to understand: you don't
waste time examining adjacency matrix cells that don't hold edges.

For unweighted graphs the depth-first search with adjacency lists requires O(V+E) time,
where V is the number of vertices and E is the number of edges. For weighted graphs, both
the minimum spanning tree and the shortest-path algorithm require O((E+V)logV) time. In
large, sparse graphs these times can represent dramatic improvements over the adjacency

 - 510 -

matrix approach. However, the algorithms are somewhat more complicated, which is why
we've used the adjacency matrix approach throughout this chapter. You can consult
Sedgewick (see Appendix B, "Further Reading") and other writers for examples of graph
algorithms using the adjacency list approach.

Summary

 • In a weighted graph, edges have an associated number called the weight, which might

represent distances, costs, times, or other quantities.

 • The minimum spanning tree in a weighted graph minimizes the weights of the edges

necessary to connect all the vertices.

 • An algorithm using a priority queue can be used to find the minimum spanning tree of

a weighted graph.

 • The minimum spanning tree of a weighted graph models real-world situations such as

installing utility cables between cities.

 • The shortest-path problem in a nonweighted graph involves finding the minimum

number of edges between two vertices.

 • Solving the shortest-path problem for weighted graphs yields the path with the

minimum total edge weight.

 • The shortest-path problem for weighted graphs can be solved with Dijkstra's

Algorithm.

 • The algorithms for large, sparse graphs generally run much faster if the adjacency list

representation of the graph is used rather than the adjacency matrix.

Chapter 15: When to Use What

 Overview

 In this chapter we briefly summarize what we've learned so far, with an eye toward

deciding what data structure or algorithm to use in a particular situation.

This chapter comes with the usual caveats. Of necessity it's very general. Every real-
world situation is unique, so what we say here may not be the right answer to your
problem. This chapter is divided into three somewhat arbitrary sections:

 • General-purpose data structures: arrays, linked lists, trees, and hash tables

 • Specialized data structures: stacks, queues, priority queues, and graphs

 • Sorting

 For detailed information on these topics, refer to the individual chapters in this book.

General-Purpose Data Structures

If you need to store real-world data such as personnel records, inventories, contact lists,
or sales data, you need a general-purpose data structure. The structures of this type that
we've discussed in this book are arrays, linked lists, trees, and hash tables. We call these
general-purpose data structures because they are used to store and retrieve data using

 - 511 -

key values. This works for general-purpose database programs (as opposed to
specialized structures such as stacks, which allow access to only certain data items).

Which of these general-purpose data structures is appropriate for a given problem?
Figure 15.1 shows a first approximation to this question. However, there are many factors
besides those shown in the figure. For more detail, we'll explore some general
considerations first, and then zero in on the individual structures.

 Figure 15.1: Relationship of general-purpose data structures

 Speed and Algorithms

 The general-purpose data structures can be roughly arranged in terms of speed: Arrays

and linked lists are slow, trees are fairly fast, and hash tables are very fast.

However, don't draw the conclusion from this figure that it's always best to use the fastest
structures. There's a penalty for using them. First, they are—in varying degrees—more
complex to program than the array and linked list. Also, hash tables require you to know
in advance about how much data can be stored, and they don't use memory very
efficiently. Ordinary binary trees will revert to slow O(N) operation for ordered data, and
balanced trees, which avoid this problem, are difficult to program.

 Computers Grow Faster Every Year

The fast structures come with penalties, and another development makes the slow
structures more attractive. Every year there's an increase in the CPU and memory-
access speed of the latest computers. Moore's Law (postulated by Gordon Moore in
1965) specifies that CPU performance will double every 18 months. This adds up to an
astonishing difference in performance between the earliest computers and those
available today, and there's no reason to think this increase will slow down any time
soon.

Suppose a computer a few years ago handled an array of 100 objects in acceptable time.
Now, computers are 100 times faster, so an array with 10,000 objects can run at the
same speed. Many writers provide estimates of the maximum size you can make a data
structure before it becomes too slow. Don't trust these estimates (including those in this
book). Today's estimate doesn't apply to tomorrow.

Instead, start by considering the simple data structures. Unless it's obvious they'll be too
slow, code a simple version of an array or linked list and see what happens. If it runs in
acceptable time, look no further. Why slave away on a balanced tree, when no one would
ever notice if you used an array instead? Even if you must deal with thousands or tens of
thousands of items, it's still worthwhile to see how well an array or linked list will handle

 - 512 -

them. Only when experimentation shows their performance to be too slow should you
revert to more sophisticated data structures.

 References Are Faster

Java has an advantage over some languages in the speed with which objects can be
manipulated, because, in most data structures, Java stores only references, not actual
objects. Therefore most algorithms will run faster than in languages where actual objects
occupy space in a data structure. In analyzing the algorithms it's not the case, as when
objects themselves are stored, that the time to "move" an object depends on the size of
the object. Because only a reference is moved, it doesn't matter how large the object is.

Of course in other languages, such as C++, pointers to objects can be stored instead of
the objects themselves; this has the same effect as using references, but the syntax is
more complicated.

 Libraries

Libraries of data structures are available commercially in all major programming
languages. Languages themselves may have some structures built in. Java, for example,
includes Vector, Stack, and Hashtable classes. C++ includes the Standard Template
Library (STL), which contains classes for many data structures and algorithms.

Using a commercial library may eliminate or at least reduce the programming necessary
to create the data structures described in this book. When that's the case, using a
complex structure such as a balanced tree, or a delicate algorithm such as quicksort,
becomes a more attractive possibility. However, you must ensure that the class can be
adapted to your particular situation.

 Arrays

 In many situations the array is the first kind of structure you should consider when storing

and manipulating data. Arrays are useful when

 • The amount of data is reasonably small.

 • The amount of data is predictable in advance.

 If you have plenty of memory, you can relax the second condition; just make the array big

enough to handle any foreseeable influx of data.

If insertion speed is important, use an unordered array. If search speed is important, use
an ordered array with a binary search. Deletion is always slow in arrays because an
average of half the items must be moved to fill in the newly vacated cell. Traversal is fast
in an ordered array but not supported in an unordered array.

Vectors, such as the Vector class supplied with Java, are arrays that expand
themselves when they become too full. Vectors may work when the amount of data isn't
known in advance. However, there may periodically be a significant pause while they
enlarge themselves by copying the old data into the new space.

 Linked lists

Consider a linked list whenever the amount of data to be stored cannot be predicted in
advance or when data will frequently be inserted and deleted. The linked list obtains
whatever storage it needs as new items are added, so it can expand to fill all of available
memory; and there is no need to fill "holes" during deletion, as there is in arrays.

 - 513 -

Insertion is fast in an unordered list. Searching and deletion are slow (although deletion is
faster than in an array), so, like arrays, linked lists are best used when the amount of data
is comparatively small.

 A linked list is somewhat more complicated to program than an array, but is simple

compared with a tree or hash table.

 Binary Search Trees

A binary tree is the first structure to consider when arrays and linked lists prove too slow.
A tree provides fast O(logN) insertion, searching, and deletion. Traversal is O(N), which
is the maximum for any data structure (by definition, you must visit every item). You can
also find the minimum and maximum quickly, and traverse a range of items.

An unbalanced binary tree is much easier to program than a balanced tree, but
unfortunately, ordered data can reduce its performance to O(N) time, no better than a
linked list. However, if you're sure the data will arrive in random order, there's no point
using a balanced tree.

 Balanced Trees

Of the various kinds of balanced trees, we discussed red-black trees and 2-3-4 trees.
They are both balanced trees, and thus guarantee O(logN) performance whether the
input data is ordered or not. However, these balanced trees are challenging to program,
with the red-black tree being the more difficult. They also impose additional memory
overhead, which may or may not be significant.

The problem of complex programming may be reduced if a commercial class can be
used for a tree. In some cases a hash table may be a better choice than a balanced tree.
Hash-table performance doesn't degrade when the data is ordered.

 There are other kinds of balanced trees, including AVL trees, splay trees, 2-3 trees, and

so on, but they are not as commonly used as the red-black tree.

 Hash Tables

Hash tables are the fastest data storage structure. This makes them a necessity for
situations in which a computer program, rather than a human, is interacting with the data.
Hash tables are typically used in spelling checkers and as symbol tables in computer
language compilers, where a program must check thousands of words or symbols in a
fraction of a second.

Hash tables may also be useful when a person, as opposed to a computer, initiates data-
access operations. As noted above, hash tables are not sensitive to the order in which
data is inserted, and so can take the place of a balanced tree. Programming is much
simpler than for balanced trees.

Hash tables require additional memory, especially for open addressing. Also, the amount
of data to be stored must be known fairly accurately in advance, because an array is
used as the underlying structure.

A hash table with separate chaining is the most robust implementation unless the amount
of data is known accurately in advance, in which case open addressing offers simpler
programming because no linked list class is required.

Hash tables don't support any kind of ordered traversal or access to the minimum or
maximum items. If these capabilities are important, the binary search tree is a better
choice.

 - 514 -

 Comparing the General-Purpose Storage Structures

 Table 15.1 summarizes the speeds of the various general-purpose data storage

structures using Big O notation.

 Table 15.1: GENERAL-PURPOSE DATA STORAGE STRUCTURES

 Data Structure

Search

Insertion

Deletion

Traversal

 Array

O(N)

O(1)

O(N)

—

 Ordered array

O(logN)

O(N)

O(N)

O(N)

 Linked list

O(N)

O(1)

O(N)

—

 Ordered linked list

O(N)

O(N)

O(N)

O(N)

 Binary tree (average)

O(logN)

O(logN)

O(logN)

O(N)

 Binary tree (worst case)

O(N)

O(N)

O(N)

O(N)

 Balanced tree (averageand worst

case)

O(logN)

O(logN)

O(logN)

O(N)

 Hash table

O(1)

O(1)

O(1)

—

Insertion in an unordered array is assumed to be at the end of the array. The ordered array
uses a binary search, which is fast, but insertion and deletion require moving half the items
on the average, which is slow. Traversal implies visiting the data items in order of
ascending or descending keys; the — means this operation is not supported.

Special-Purpose Data Structures

The special-purpose data structures discussed in this book are the stack, the queue, and
the priority queue. These structures, instead of supporting a database of user-accessible
data, are usually used by a computer program to aid in carrying out some algorithm.
We've seen examples of this throughout this book, such as in Chapters 13, "Graphs," and
14, "Weighted Graphs," where stacks, queues, and priority queues are all used in graph
algorithms.

Stacks, queues, and priority queues are abstract data types (ADTs) that are implemented
by a more fundamental structure such as an array, linked list, or (in the case of the
priority queue) a heap. These ADTs present a simple interface to the user, typically
allowing only insertion and the ability to access or delete only one data item. These items
are

 • For stacks: the last item inserted

 • For queues: the first item inserted

 - 515 -

 • For priority queues: the item with the highest priority

These ADTs can be seen as conceptual aids. Their functionality could be obtained using
the underlying structure (such as an array) directly, but the reduced interface they offer
simplifies many problems.

 These ADTs can't be conveniently searched for an item by key value or traversed.

 Stack

 A stack is used when you want access only to the last data item inserted; it's a last-in-

first-out (LIFO) structure.

A stack is often implemented as an array or a linked list. The array implementation is
efficient because the most recently inserted item is placed at the end of the array, where
it's also easy to delete it. Stack overflow can occur, but is not likely if the array is
reasonably sized, because stacks seldom contain huge amounts of data.

If the stack will contain a lot of data and the amount can't be predicted accurately in
advance (as when recursion is implemented as a stack) a linked list is a better choice
than an array. A linked list is efficient because items can be inserted and deleted quickly
from the head of the list. Stack overflow can't occur (unless the entire memory is full). A
linked list is slightly slower than an array because memory allocation is necessary to
create a new link for insertion, and deallocation of the link is necessary at some point
following removal of an item from the list.

 Queue

 A queue is used when you want access only to the first data item inserted; it's a first-in-

first-out (FIFO) structure.

Like stacks, queues can be implemented as arrays or linked lists. Both are efficient. The
array requires additional programming to handle the situation in which the queue wraps
around at the end of the array. A linked list must be double-ended, to allow insertions at
one end and deletions at the other.

As with stacks, the choice between an array implementation and a linked list
implementation is determined by how well the amount of data can be predicted. Use the
array if you know about how much data there will be; otherwise, use a linked list.

 Priority queue

 A priority queue is used when the only access desired is to the data item with the highest

priority. This is the item with the largest (or sometimes the smallest) key.

Priority queues can be implemented as an ordered array or as a heap. Insertion into an
ordered array is slow, but deletion is fast. With the heap implementation, both insertion
and deletion take O(logN) time.

Use an array or a double-ended linked list if insertion speed is not a problem. The array
works when the amount of data to be stored can be predicted in advance; the linked list
when the amount of data is unknown. If speed is important, a heap is a better choice.

 Table 15.2: SPECIAL-PURPOSE DATA-STORAGE STRUCTURES

 - 516 -

 Data Structure

Insertion

Deletion

Comment

 Stack (array or linked

list)

O(1)

O(1)

Deletes most
recently inserted
item

 Queue (array or

linked list)

O(1)

O(1)

Deletes least
recently inserted
item

 Priority queue

(ordered array)

O(N)

O(1)

Deletes highest-
priority item

 Priority queue (heap)

O(logN)

O(logN)

Deletes highest-
priority item

 Comparison of Special-Purpose Structures

 Table 15.2 shows the Big O times for stacks, queues, and priority queues. These structures

don't support searching or traversal.

Special-Purpose Data Structures

The special-purpose data structures discussed in this book are the stack, the queue, and
the priority queue. These structures, instead of supporting a database of user-accessible
data, are usually used by a computer program to aid in carrying out some algorithm.
We've seen examples of this throughout this book, such as in Chapters 13, "Graphs," and
14, "Weighted Graphs," where stacks, queues, and priority queues are all used in graph
algorithms.

Stacks, queues, and priority queues are abstract data types (ADTs) that are implemented
by a more fundamental structure such as an array, linked list, or (in the case of the
priority queue) a heap. These ADTs present a simple interface to the user, typically
allowing only insertion and the ability to access or delete only one data item. These items
are

 • For stacks: the last item inserted

 • For queues: the first item inserted

 • For priority queues: the item with the highest priority

These ADTs can be seen as conceptual aids. Their functionality could be obtained using
the underlying structure (such as an array) directly, but the reduced interface they offer
simplifies many problems.

 These ADTs can't be conveniently searched for an item by key value or traversed.

 Stack

 A stack is used when you want access only to the last data item inserted; it's a last-in-

first-out (LIFO) structure.

 - 517 -

A stack is often implemented as an array or a linked list. The array implementation is
efficient because the most recently inserted item is placed at the end of the array, where
it's also easy to delete it. Stack overflow can occur, but is not likely if the array is
reasonably sized, because stacks seldom contain huge amounts of data.

If the stack will contain a lot of data and the amount can't be predicted accurately in
advance (as when recursion is implemented as a stack) a linked list is a better choice
than an array. A linked list is efficient because items can be inserted and deleted quickly
from the head of the list. Stack overflow can't occur (unless the entire memory is full). A
linked list is slightly slower than an array because memory allocation is necessary to
create a new link for insertion, and deallocation of the link is necessary at some point
following removal of an item from the list.

 Queue

 A queue is used when you want access only to the first data item inserted; it's a first-in-

first-out (FIFO) structure.

Like stacks, queues can be implemented as arrays or linked lists. Both are efficient. The
array requires additional programming to handle the situation in which the queue wraps
around at the end of the array. A linked list must be double-ended, to allow insertions at
one end and deletions at the other.

As with stacks, the choice between an array implementation and a linked list
implementation is determined by how well the amount of data can be predicted. Use the
array if you know about how much data there will be; otherwise, use a linked list.

 Priority queue

 A priority queue is used when the only access desired is to the data item with the highest

priority. This is the item with the largest (or sometimes the smallest) key.

Priority queues can be implemented as an ordered array or as a heap. Insertion into an
ordered array is slow, but deletion is fast. With the heap implementation, both insertion
and deletion take O(logN) time.

Use an array or a double-ended linked list if insertion speed is not a problem. The array
works when the amount of data to be stored can be predicted in advance; the linked list
when the amount of data is unknown. If speed is important, a heap is a better choice.

 Table 15.2: SPECIAL-PURPOSE DATA-STORAGE STRUCTURES

 Data Structure

Insertion

Deletion

Comment

 Stack (array or linked

list)

O(1)

O(1)

Deletes most
recently inserted
item

 Queue (array or

linked list)

O(1)

O(1)

Deletes least
recently inserted
item

 Priority queue

O(N)

O(1)

Deletes highest-

 - 518 -

(ordered array) priority item

 Priority queue (heap)

O(logN)

O(logN)

Deletes highest-
priority item

 Comparison of Special-Purpose Structures

 Table 15.2 shows the Big O times for stacks, queues, and priority queues. These structures

don't support searching or traversal.

Sorting

As with the choice of data structures, it's worthwhile initially to try a slow but simple sort,
such as the insertion sort. It may be that the fast processing speeds available in modern
computers will allow sorting of your data in reasonable time. (As a wild guess, the slow
sort might be appropriate for under 1,000 items.)

Insertion sort is also good for almost-sorted files, operating in about O(N) time if not too
many items are out of place. This is typically the case where a few new items are added
to an already sorted file.

If the insertion sort proves too slow, then the Shellsort is the next candidate. It's fairly
easy to implement, and not very temperamental. Sedgewick estimates it to be useful up
to 5,000 items.

Only when the Shellsort proves too slow should you use one of the more complex but
faster sorts: mergesort, heapsort, or quicksort. Mergesort requires extra memory,
heapsort requires a heap data structure, and both are somewhat slower than quicksort,
so quicksort is the usual choice when the fastest sorting time is necessary.

However, quicksort is suspect if there's a danger that the data may not be random, in
which case it may deteriorate to O(N2) performance. For potentially non-random data,
heapsort is better. Quicksort is also prone to subtle errors if it is not implemented
correctly. Small mistakes in coding can make it work poorly for certain arrangements of
data, a situation that may be hard to diagnose.

 Table 15.3: COMPARISON OF SORTING ALGORITHMS

 Sort

Average

Worst

Comparison

Extra Memory

 Bubble

O(N2)

O(N2)

Poor

No

 Selection

O(N2)

O(N2)

Fair

No

 Insertion

O(N2)

O(N2)

Good

No

 Shellsort

O(N3/2)

O(N3/2)

—

No

 Quicksort

O(N*logN)

O(N2)

Good

No

 - 519 -

 Mergesort O(N*logN) O(N*logN) Fair Yes

 Heapsort

O(N*logN)

O(N*logN)

Fair

No

Table 15.3 summarizes the running time for various sorting algorithms. The column labeled
Comparison attempts to estimate the minor speed differences between algorithms with the
same average Big O times. (There's no entry for Shellsort because there are no other
algorithms with the same Big O performance.)

External Storage

In the previous discussion we assumed that data was stored in main memory. However,
amounts of data too large to store in memory must be stored in external storage, which
generally means disk files. We discussed external storage in the second parts of
Chapters 10, "2-3-4 Tables and External Storage," and 11, "Hash Tables."

We assumed that data is stored in a disk file in fixed-size units called blocks, each of
which holds a number of records. (A record in a disk file holds the same sort of data as
an object in main memory.) Like an object, a record has a key value used to access it.

We also assumed that reading and writing operations always involve a single block, and
these read and write operations are far more time-consuming than any processing of
data in main memory. Thus for fast operation the number of disk accesses must be
minimized.

 Sequential Storage

The simplest approach is to store records randomly and read them sequentially when
searching for one with a particular key. New records can simply be inserted at the end of
the file. Deleted records can be marked as deleted, or records can be shifted down (as in
an array) to fill in the gap.

On the average, searching and deletion will involve reading half the blocks, so sequential
storage is not very fast, operating in O(N) time. Still, it might be satisfactory for a small
number of records.

 Indexed Files

Speed is increased dramatically when indexed files are used. In this scheme an index of
keys and corresponding block numbers is kept in main memory. To access a record with
a specified key, the index is consulted. It supplies the block number for the key, and only
one block needs to be read, taking O(1) time.

Several indices with different kinds of keys can be used (one for last names, one for
Social Security numbers, and so on). This scheme works well until the index becomes
too large to fit in memory.

 Typically the index files are themselves stored on disk and read into memory as needed.

The disadvantage of indexed files is that at some point the index must be created. This
probably involves reading through the file sequentially, so creating the index is slow.
Also, the index will need to be updated when items are added to the file.

 B-trees

 - 520 -

B-trees are multiway trees, commonly used in external storage, in which nodes
correspond to blocks on the disk. As in other trees, the algorithms find their way down the
tree, reading one block at each level. B-trees provide searching, insertion, and deletion of
records in O(logN) time. This is quite fast and works even for very large files. However,
the programming is not trivial.

 Hashing

If it's acceptable to use about twice as much external storage as a file would normally
take, then external hashing might be a good choice. It has the same access time as
indexed files, O(1), but can handle larger files.

 Figure 15.2 shows, rather impressionistically, these choices for external storage

structures.

 Figure 15.2: Relationship of external storage choices

 Virtual Memory

 Sometimes you can let your operating system's virtual memory capabilities (if it has them)

solve disk access problems with little programming effort on your part.

If you read a file that's too big to fit in main memory, the virtual memory system will read
in that part of the file that fits and store the rest on the disk. As you access different parts
of the file, they will be read from the disk automatically and placed in memory.

You can apply internal algorithms to the entire file just as if it were all in memory at the
same time, and let the operating system worry about reading the appropriate part of the
file if it isn't in memory already.

Of course operation will be much slower than when the entire file is in memory, but this
would also be true if you dealt with the file block by block using one of the external-storage
algorithms. It may be worth simply ignoring the fact that a file does not fit in memory, and
see how well your algorithms work with the help of virtual memory. Especially for files that
aren't much larger than the available memory, this may be an easy solution.

 Onward

We've come to the end of our survey of data structures and algorithms. The subject is
large and complex, so no one book can make you an expert, but we hope this book has
made it easy for you to learn about the fundamentals. Appendix B, "Further Reading,"
contains suggestions for further study.

 - 521 -

Part VI: Appendixes

 Appendix List

 Appendix

A: How to Run the Workshop Applets and Example
Programs

 Appendix

B: Further Reading

Appendix A: How to Run the Workshop
Applets and Example Programs

 Overview

In this appendix we discuss the details of running the Workshop applets and the example
programs. The Workshop applets are graphics-based demonstration programs that show
what trees and other data structures look like. The example programs, whose code is
shown in the text, present runnable Java code.

The readme.txt file in the CD-ROM that accompanies this book contains further
information on the topics discussed in this appendix. Be sure to read this file for the latest
information on working with the Workshop applets and example programs.

The Java Development Kit

Both the Workshop applets and the example programs can be executed using utility
programs that are part of the Sun Microsystems Java Development Kit (JDK). The JDK is
included on the CD-ROM. The readme.txt file on the CD-ROM explains how Appendix
A - How to Run the Workshop Applets and Example Programsto load the contents of the
CD-ROM onto your hard drive. In this appendix we'll assume that you've transferred all
appropriate files, including the JDK.

The CD-ROM contains software to support various hardware and software platforms. See
the readme.txt file for details. We'll base this discussion on using the JDK in Microsoft
Windows 95. The details of usage in other platforms may vary.

 Command-line Programs

The JDK operates in text mode, using the command line to launch its various programs.
In Windows 95, you'll need to open an MS-DOS box to obtain this command line. Click
the Start button, and select MS-DOS Prompt from the Programs menu.

Then, in MS-DOS, use the cd command to move to the appropriate subdirectory on your
hard disk, where either a Workshop applet or an example program is stored. Then
execute the applet or program using the appropriate JDK utility as detailed below.

 Setting the Path

In Windows 95, the location of the JDK utility programs should be specified in a PATH
statement in the autoexec.bat file so they can be accessed conveniently from within
any subdirectory. This PATH statement should be placed automatically in your
autoexec.bat file when you run the setup program on your CD-ROM. Otherwise, use
the Notepad utility to insert the line

 - 522 -

 SET PATH=C:\JDK1.1.3\BIN;%PATH%

 into the autoexec.bat file, following other SET PATH commands. You'll find this file in

your root directory. Reboot your computer to activate this new path.

 Workshop Applets

An applet is a special kind of Java program that is easy to send over the World Wide
Web. Because Java applets are designed for the Internet, they can run on any computer
platform that has an appropriate applet viewer or Web browser.

In this book, the Workshop applets provide dynamic graphics-based demonstrations of
the concepts discussed in the text. For example, the chapter on binary trees (Chapter 8)
includes a Workshop applet that shows a tree in the applet window. Clicking buttons will
show the steps involved in inserting a new node into the tree, deleting an existing node,
traversing the tree, and so on. Other chapters include appropriate Workshop applets.

 Files and the appletviewer Utility

The Workshop applets are found on the CD-ROM that accompanies this book. Each
applet consists of an .html file and several .class files. These are grouped in a
subdirectory that has approximately the same name as the applet itself. This subdirectory
is placed within the directory for the appropriate chapter. Don't confuse the directory that
holds the applets (javaapps) with the directory that holds the example programs
(javaprogs).

To run the Workshop applets, first use the cd command to navigate to the desired
subdirectory. For example, to execute the Array Workshop applet from Chapter 2, move
to its directory:

 C:cd javaapps
 C:cd chap02

 C:cd array

 Then use the appletviewer utility from the JDK to execute the applet's .html file:

 C:appletviewer Array.html

The applet should start running. (Sometimes they take a while to load, so be patient.) The
applet's appearance should be close to the screen shots shown in the text. (It won't look
exactly the same because every applet viewer and browser interpret HTML and Java
format somewhat differently.)

 You can use various other Web browsers to execute the applets. Check the HTML and

Java file on the CD-ROM to find which browsers are currently compatible.

 Operating the Workshop Applets

Each chapter gives instructions for operating specific Workshop applets. In general,
remember that in most cases you'll need to repeatedly click a single button to carry out
an operation. Each press of the Ins button in the Array Workshop applet, for example,
causes one step of the insertion process to be carried out. Generally a message is
displayed telling what's happening at each step.

 You should complete each operation—that is, each sequence of button clicks—before

 - 523 -

clicking a different button to start a different operation. For example, keep clicking the
Find button until the item with the specified key is located, and you see the message
Press any button. Only then should you switch to another operation involving
another button, such as inserting a new item with the Ins button.

The sorting applets from Chapters 3 and 7 have a Step button with which you can view
the sorting process one step at a time. They also have a Run mode in which the sort runs
at high speed without additional button clicks. Just click the Run button once and watch
the bars sort themselves. To pause, you can click the Step button at any time. Running
can be resumed by clicking the Run button again.

 It's not intended that readers study the code for the Workshop applets, which is mostly

concerned with the graphic presentation. Hence source listings are not provided.

Example Programs

The example programs are intended to show as simply as possible how the data
structures and algorithms discussed in this book can be implemented in Java. These
example Appendix A - How to Run the Workshop Applets and Example
Programsprograms consist of Java applications (as opposed to applets). Java
applications are not meant to be sent over the Web, but instead run as normal programs
on a specific machine.

Java applications can run in either console mode or graphics mode. For simplicity, our
example programs run in console mode, which means that output is displayed as text
and input is performed by the user typing at the keyboard. In the Windows environment
the console mode runs in an MS-DOS box. There is no graphics display in console mode.

The source code for the example programs is presented in the text of the book. Source
files, consisting of the same text as in the book, are included on the CD-ROM. There are
also compiled versions of the example programs. The source code for each program is a
single .java file, while the compiled code consists of several .class files.

 Running the Example Programs

You can use the java interpreter from the CD-ROM to run the example programs directly
from the .class files. For each program, one .class file ends with the letters App, for
application. It's this file that must be invoked with java.

From an MS-DOS prompt, go to the appropriate subdirectory (using the cd command)
and find this App file. For example, for the insertSort program of Chapter 3, go to the
insertSort subdirectory for Chapter 3. (Don't confuse the directory holding the applets
with the directory holding the example programs.) You'll find a .java file and several
.class files. One of these is insertSortApp.class. To execute the program, enter

 C:java insertSortApp

Don't type a file extension. The insertSort program should run, and you'll see a text
display of unsorted and sorted data. In some example programs you'll see a prompt
inviting you to enter input, which you type at the keyboard.

 Compiling the Example Programs

You can experiment with the example programs by modifying them and then compiling
and running the modified versions. You can also write your own applications from
scratch, compile them, and run them. To compile a Java application, you use the javac
program, invoking the example's .java file. For example, to compile the insertSort
program, you would go to the insertSort directory and enter

 - 524 -

 C:javac insertSort.java

 This will compile the .java file into as many .class files as there are classes in the

program. If there are errors in the source code, you'll see them displayed on the screen.

 Editing the Source Code

Many text editors are appropriate for modifying the .java source files or writing new
ones. For example, you can invoke an MS-DOS editor called edit from the DOS
command line, and Windows includes the Notepad editor (Start/Programs/Accessories/ in
Windows 95). Many commercial text editors are available as well. See the readme.txt
file on the CD-ROM for more information.

Don't use a fancy word processor, such as Microsoft Word, for editing source files. Word
processors typically generate output files with strange characters, which the Java
interpreter won't understand.

 Terminating the Example Programs

You can terminate any running console-mode program, including any of the example
programs, by pressing the CTRL-c key combination (the control key and the C key pressed
at the same time). Some example programs have a termination procedure that's mentioned
in the text, such as pressing Enter at the beginning of a line, but for the others you must
press CTRL-c.

 Multiple Class Files

Often several Workshop applets, or several example programs, will use .class files with
the same names. Note, however, that these files may not be identical. The applet or
example program may not work if the wrong class file is used with it, even if the file has
the correct name.

This should not normally be a problem, because all the files for a given program are placed
in the same subdirectory. However, if you move files by hand you may inadvertently copy a
file to the wrong directory. Doing this may cause problems that are hard to trace.

 Other Development Systems

There are many other Java development systems besides Sun's JDK. Products are
available from Symantec, Microsoft, Borland, Asymetrix, and so on. These products are
generally faster and more convenient to use than the JDK. They typically combine all
functions—editing, compiling, and execution—in a single window.

For use with the example programs in this book, such development systems should be able
to handle Java 1.1.4 or later. Many example programs (specifically, those that include user
input) cannot be compiled with products designed for earlier versions of Java.

Appendix B: Further Reading

 Overview

In this appendix we'll mention some books on various aspects of software development,
including data structures and algorithms. This is a subjective list; there are many other
excellent titles on all the topics mentioned.

 - 525 -

Data Structures and Algorithms

The definitive reference for any study of data structures and algorithms is The Art of
Computer Programming by Donald E. Knuth, of Stanford University (Addison Wesley,
1997). This seminal work, originally published in the 1970s, is now in its third edition. It
consists of three volumes: Volume 1: Fundamental Algorithms, Volume 2: Seminumerical
Algorithms, and Volume 3: Sorting and Searching. Of these, the last is the most relevant
to the topics in this book. This work is highly mathematical and does not make for easy
reading, but it is the bible for anyone contemplating serious research in the field.

A somewhat more accessible text is Robert Sedgewick's Algorithms in C++ (Addison
Wesley, 1992). This book is adapted from the earlier Algorithms (Addison Wesley, 1988)
in which the code examples were written in Pascal. It is comprehensive and authoritative.
The text and code examples are quite compact and require close reading.

A good text for an undergraduate course in data structures and algorithms is Data
Abstraction and Problem Solving with C++: Walls and Mirrors by Frank M. Carrano
(Benjamin Cummings, 1995). There are many illustrations, and the chapters end with
exercises and projects.

Appendix B - Further ReadingPractical Algorithms in C++, by Bryan Flamig (John Wiley
and Sons, 1995), covers many of the usual topics in addition to some topics not
frequently covered by other books, such as algorithm generators and string searching.

Some other worthwhile texts on data structures and algorithms are Classic Data Structures
in C++ by Timothy A. Budd (Addison Wesley, 1994); Algorithms, Data Structures, and
Problem Solving with C++ by Mark Allen Weiss (Addison Wesley, 1996); and Data
Structures Using C and C++ by Y. Langsam, et al. (Prentice Hall, 1996).

Object-Oriented Programming Languages

For an accessible and thorough introduction to Java and object-oriented programming,
try Object-Oriented Programming in Java, by Stephen Gilbert and Bill McCarty (Waite
Group Press, 1997).

 If you're interested in C++, try Object-Oriented Programming in C++ by Robert Lafore

(Waite Group Press, 1995).

The Java Programming Language by Ken Arnold and James Gosling (Addison Wesley,
1996) deals with Java syntax and is certainly authoritative (although briefer than many
books): Gosling, who works at Sun Microsystems, is the creator of Java.

 Java How to Program by H. M. Deitel and P. J. Deitel (Prentice Hall, 1997) is a good

Java text book, complete with many exercises.

Core Java by Cay S. Horstmann and Gary Cornell (Prentice Hall, 1997) is a multivolume
series that covers in depth such advanced Java topics such as the AWT, debugging, and
the Java event model.

Object-Oriented Design (OOD) and Software Engineering

For an easy, non-academic introduction to software engineering, try The Object Primer:
The Application Developer's Guide to Object-Orientation by Scott W. Ambler (Sigs Books,
1995). This short book explains in plain language how to design a large software
application. The title is a bit of misnomer; it goes way beyond mere OO concepts.

 To be published in 1998 is Object-Oriented Design in Java by Stephen Gilbert and Bill

McCarty (Waite Group Press). This is an unusually accessible text.

 - 526 -

A classic in the field of OOD is Object-Oriented Analysis and Design with Applications by
Grady Booch (Addison Wesley, 1994). The author is one of the pioneers in this field and
the creator of the Booch notation for depicting class relationships. This book isn't easy for
beginners, but is essential for more advanced readers.

An early book on OOD is The Mythical Man-Month by Frederick P. Brooks, Jr. (Addison
Wesley, 1975, reprinted in 1995), which explains in a very clear and literate Data
Structures and Algorithms in Javaway some of the reasons why good software design is
necessary. It is said to have sold more copies than any other computer book.

Other good texts on OOD are An Introduction to Object-Oriented Programming, by Timothy
Budd (Addison Wesley, 1996); Object-Oriented Design Heuristics, by Arthur J. Riel,
(Addison Wesley, 1996); and Design Patterns: Elements of Reusable Object-Oriented
Software, by Erich Gamma, et al. (Addison Wesley, 1995).

 Programming Style

 Books on other aspects of good programming:

Programming Pearls by Jon Bentley (Addison Wesley, 1986) was written before OOP but
is nevertheless stuffed full of great advice for the programmer. Much of the material deals
with data structures and algorithms.

Writing Solid Code, by Steve Maguire (Microsoft Press, 1993) and Code Complete by
Steve McConnell (Microsoft Press, 1993) contain good ideas for software development and
coding and will help you develop good programming practices.

