(e elafred by

MITCHELL WAITE

DATA STRUCTURES
AND ALGORITHMS
IN JAVA

SAMS

Release Team [oR] 2001
[x] java

Data Structures & Algorithms in Java
by Robert Lafore ISBN: 1571690956

=l Sams © 1998, 617 pages

DATA STRUCTURES - - - - -
T Seautifully written and illustrated, this book introduces you to

I JAVA manipulating data in practical ways using Java examples.

1 able of Contents

wBack Cover

Synopsis by Rebecca Rohan

Once you've learned to program, you run into real-world problems that require
more than a programming language alone to solve. Data Structures and
Algorithms in Java is a gentle immersion into the most practical ways to make
data do what you want it to do. Lafore's relaxed mastery of the techniques
comes through as though he's chatting with the reader over lunch, gesturing
toward appealing graphics. The book starts at the very beginning with data
structures and algorithms, but assumes the reader understands a language
such as Java or C++. Examples are given in Java to keep them free of explicit
pointers.

Table of Contents

Data Structures and Algorithms in Java - 4

Introduction - 7

Part I

Chapter 1 - Overview - 11

Chapter 2 - Arrays - 29

Chapter 3 - Simple Sorting - 63

Part 11

Chapter 4 - Stacks and Queues - 80
Chapter 5 - Linked Lists - 142
Chapter 6 - Recursion - 200

Part I11

Chapter 7 - Advanced Sorting - 243
Chapter 8 - Binary Trees - 280
Chapter 9 - Red-Black Trees - 311
Part IV

Chapter 10 - 2-3-4 Trees and External Storage - 335
Chapter 11 - Hash Tables - 372
Chapter 12 - Heaps - 416

PartVv

Chapter 13 - Graphs - 438

Chapter 14 - Weighted Graphs - 476
Chapter 15 - When to Use What - 510
Part VI Appendixes

Appendix A - How to Run the Workshop Applets and Example Programs - 521
Appendix B - Further Reading - 524

Back Cover

e Data Structures and Algorithms in Java, by Robert Lafore (The Waite
Group, 1998) "A beautifully written and illustrated introduction to
manipulating data in practical ways, using Java examples."

o Designed to be the most easily understood book ever written on data
structures and algorithms

e Data Structures and Algorithms is taught with "Workshop Applets+ -
animated Java programs that introduce complex topics in an
intuitively obvious way

e The textis clear, straightforward, non-academic, and supported by
numerous figures

e Simple programming examples are written in Java, which is easier to
understand than C++

About the Author

Robert Lafore has degrees in Electrical Engineering and Mathematics, has
worked as a systems analyst for the Lawrence Berkeley Laboratory, founded
his own software company, and is a best-selling writer in the field of computer
programming. Some of his current titles are C++ Interactive Course, Object-

_3-

Oriented Programming in C++, and C Programming Using Turbo C++. Earlier
best-selling titles include Assembly Language Primer for the IBM PC and XT
and (back at the beginning of the computer revolution) Soul of CP/M.

Data Structures and Algorithms in Java

Mitchell Waite

PUBLISHER: Mitchell Waite

ASSOCIATE PUBLISHER: Charles Drucker

EXECUTIVE EDITOR: Susan Walton

ACQUISITIONS EDITOR: Susan Walton

PROJECT DEVELOPMENT EDITOR: Kurt Stephan

CONTENT EDITOR: Harry Henderson

TECHNICAL EDITOR: Richard S. Wright, Jr.
CONTENT/TECHNICAL REVIEW: Jaime Nifio, PhD, University of New Orleans
COPY EDITORS: Jim Bowie, Tonya Simpson

MANAGING EDITOR: Jodi Jensen

INDEXING MANAGER: Johnna L. VanHoose

EDITORIAL ASSISTANTS: Carmela Carvajal, Rhonda Tinch-Mize
SOFTWARE SPECIALIST: Dan Scherf

DIRECTOR OF BRAND MANAGEMENT: Alan Bower
PRODUCTION MANAGER: Cecile Kaufman

PRODUCTION TEAM SUPERVISOR: Brad Chinn

COVER DESIGNER: Sandra Schroeder

BOOK DESIGNER: Jean Bisesi

PRODUCTION: Mike Henry, Linda Knose, Tim Osborn, Staci Somers, Mark Walchle
© 1998 by The Waite Group, Inc.®

Published by Waite Group Press™

200 Tamal Plaza, Corte Madera, CA 94925

Waite Group Press™ is a division of Macmillan Computer Publishing.

All rights reserved. No part of this manual shall be reproduced, stored in a retrieval
system, or transmitted by any means, electronic, mechanical, photocopying, desktop
publishing, recording, or otherwise, without permission from the publisher. No patent
liability is assumed with respect to the use of the information contained herein. While
every precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions. Neither is any liability assumed for
damages resulting from the use of the information contained herein.

All terms mentioned in this book that are known to be registered trademarks, trademarks,
or service marks are listed below. In addition, terms suspected of being trademarks,
registered trademarks, or service marks have been appropriately capitalized. Waite
Group Press cannot attest to the accuracy of this information. Use of a term in this book
should not be regarded as affecting the validity of any registered trademark, trademark,
or service mark.

The Waite Group is a registered trademark of The Waite Group, Inc.

Waite Group Press and The Waite Group logo are trademarks of The Waite Group, Inc.
Sun's Java Workshop, and JDK is copyrighted (1998) by Sun Microsystems, Inc. Sun,
Sun Microsystems, the Sun logo, Java, Java Workshop, JDK, the Java logo, and Duke
are trademarks or registered trademarks of Sun Microsystems, Inc., in the United States
and other countries. Netscape Navigator is a trademark of Netscape Communications
Corporation. All Microsoft products mentioned are trademarks or registered trademarks of
Microsoft Corporation.

All other product names are trademarks, registered trademarks, or service marks of their
respective owners.

Printed in the United States of America
989900 10987654321
Library of Congress Cataloging-in-Publication Data

International Standard Book Number: 1-57169-095-6

Dedication

This book is dedicated to my readers, who have rewarded me over the years not only by
buying my books, but with helpful suggestions and kind words. Thanks to you all.

About the Author

Robert Lafore has degrees in Electrical Engineering and Mathematics, has worked as a
systems analyst for the Lawrence Berkeley Laboratory, founded his own software
company, and is a best-selling writer in the field of computer programming. Some of his

-5-

current titles are C++ Interactive Course, Object-Oriented Programming in C++, and C
Programming Using Turbo C++. Earlier best-selling titles include Assembly Language
Primer for the IBM PC and XT and (back at the beginning of the computer revolution)
Soul of CP/M.

Acknowledgments

My gratitude for the following people (and many others) cannot be fully expressed in this
short acknowledgment. As always, Mitch Waite had the Java thing figured out before
anyone else. He also let me bounce the applets off him until they did the job and
extracted the overall form of the project from a miasma of speculation. My editor, Kurt
Stephan, found great reviewers, made sure everyone was on the same page, kept the
ball rolling, and gently but firmly ensured that | did what | was supposed to do. Harry
Henderson provided a skilled appraisal of the first draft, along with many valuable
suggestions. Richard S. Wright, Jr., as technical editor, corrected numerous problems
with his keen eye for detail. Jaime Nifio, Ph.D., of the University of New Orleans,
attempted to save me from myself and occasionally succeeded, but should bear no
responsibility for my approach or coding details. Susan Walton has been a staunch and
much-appreciated supporter in helping to convey the essence of the project to the
nontechnical. Carmela Carvajal was invaluable in extending our contacts with the
academic world. Dan Scherf not only put the CD-ROM together, but was tireless in
keeping me up-to-date on rapidly evolving software changes. Finally, Cecile Kaufman
ably shepherded the book through its transition from the editing to the production
process.

Acclaim for Robert Lafore's

"Robert has truly broken new ground with this book. Nowhere else have | seen these
topics covered in such a clear and easy-to-understand, yet complete, manner. This book
is sure to be an indispensable resource and reference to any programmer seeking to
advance his or her skills and value beyond the mundane world of data entry screens and
Windows dialog boxes.

| am especially impressed with the Workshop applets. Some 70 percent of your brain is
designed for processing visual data. By interactively 'showing' how these algorithms

work, he has really managed to find a way that almost anyone can use to approach this
subject. He has raised the bar on this type of book forever."

—Richard S. Wright, Jr.
Author, OpenGL SuperBible

"Robert Lafore's explanations are always clear, accessible, and practical. His Java
program examples reinforce learning with a visual demonstration of each concept. You
will be able to understand and use every technique right away."

—Harry Henderson
Author, The Internet and the Information Superhighway and Internet How-To

"l found the tone of the presentation inviting and the use of applets for this topic a major
plus."

—Jaime Nifio, PhD
Associate Professor, Computer Science Department,

University of New Orleans

Introduction

This introduction tells you briefly

* What this book is about

+ Why it's different

* Who might want to read it

* What you need to know before you read it

» The software and equipment you need to use it

* How this book is organized

What This Book Is About

This book is about data structures and algorithms as used in computer programming.
Data structures are ways in which data is arranged in your computer's memory (or stored
on disk). Algorithms are the procedures a software program uses to manipulate the data
in these structures.

Almost every computer program, even a simple one, uses data structures and algorithms.
For example, consider a program that prints address labels. The program might use an
array containing the addresses to be printed, and a simple for loop to step through the
array, printing each address.

The array in this example is a data structure, and the for loop, used for sequential
access to the array, executes a simple algorithm. For uncomplicated programs with small
amounts of data, such a simple approach might be all you need. However, for programs
that handle even moderately large amounts of data, or that solve problems that are
slightly out of the ordinary, more sophisticated techniques are necessary. Simply knowing
the syntax of a computer language such as Java or C++ isn't enough.

This book is about what you need to know after you've learned a programming language.
The material we cover here is typically taught in colleges and universities as a second-year
course in computer science, after a student has mastered the fundamentals of
programming.

What's Different About This Book

There are dozens of books on data structures and algorithms. What's different about this
one? Three things:

» Our primary goal in writing this book is to make the topics we cover easy to
understand.

» Demonstration programs called Workshop applets bring to life the topics we cover,
showing you step by step, with "moving pictures," how data structures and algorithms
work.

» The example code is written in Java, which is easier to understand than C, C++, or
Pascal, the languages traditionally used to demonstrate computer science topics.

Let's look at these features in more detail.

Easy to Understand

Typical computer science textbooks are full of theory, mathematical formulas, and
abstruse examples of computer code. This book, on the other hand, concentrates on
simple explanations of techniques that can be applied to real-world problems. We avoid
complex proofs and heavy math. There are lots of figures to augment the text.

Many books on data structures and algorithms include considerable material on sofware
engineering. Software engineering is a body of study concerned with designing and
implementing large and complex software projects.

However, it's our belief that data structures and algorithms are complicated enough
without involving this additional discipline, so we have deliberately de-emphasized
software engineering in this book. (We'll discuss the relationship of data structures and
algorithms to software engineering in_Chapter 1," Overview.")

Of course we do use an object-oriented approach, and we discuss various aspects of
object-oriented design as we go along, including a mini-tutorial on OOP in Chapter 1. Our
primary emphasis, however, is on the data structures and algorithms themselves.

Workshop Applets

The CD-ROM that accompanies this book includes demonstration programs, in the form
of Java applets, that cover the topics we discuss. These applets, which we call Workshop
applets, will run on many computer systems, appletviewers, and Web browsers. (See the
readme file on the CD-ROM for more details on compatibility.) The Workshop applets
create graphic images that show you in "slow motion" how an algorithm works.

For example, in one Workshop applet, each time you push a button, a bar chart shows
you one step in the process of sorting the bars into ascending order. The values of
variables used in the sorting algorithm are also shown, so you can see exactly how the
computer code works when executing the algorithm. Text displayed in the picture
explains what's happening.

Another applet models a binary tree. Arrows move up and down the tree, so you can
follow the steps involved in inserting or deleting a node from the tree. There are more
than 20 Workshop applets—at least one for every major topic in the book.

These Workshop applets make it far more obvious what a data structure really looks like,
or what an algorithm is supposed to do, than a text description ever could. Of course, we
provide a text description as well. The combination of Workshop applets, clear text, and
illustrations should make things easy.

These Workshop applets are standalone graphics-based programs. You can use them as
a learning tool that augments the material in the book. (Note that they're not the same as
the example code found in the text of the book, which we'll discuss next.)

Java Example Code

The Java language is easier to understand (and write) than languages such as C and
C++. The biggest reason for this is that Java doesn't use pointers. Although it surprises
some people, pointers aren't necessary for the creation of complex data structures and
algorithms. In fact, eliminating pointers makes such code not only easier to write and to
understand, but more secure and less prone to errors as well.

Java is a modern object-oriented language, which means we can use an object-oriented

approach for the programming examples. This is important, because object-oriented
programming (OOP) offers compelling advantages over the old-fashioned procedural

-8-

approach, and is quickly supplanting it for serious program development. Don't be alarmed
if you aren't familiar with OOP. It's not that hard to understand, especially in a pointer-free
environment such as Java. We'll explain the basics of OOP in_Chapter 1.

Who This Book Is For

This book can be used as a text in a data structures and algorithms course, typically taught
in the second year of a computer science curriculum. However, it is also designed for
professional programmers and for anyone else who needs to take the next step up from
merely knowing a programming language. Because it's easy to understand, it is also
appropriate as a supplemental text to a more formal course.

Who This Book Is For

This book can be used as a text in a data structures and algorithms course, typically taught
in the second year of a computer science curriculum. However, it is also designed for
professional programmers and for anyone else who needs to take the next step up from
merely knowing a programming language. Because it's easy to understand, it is also
appropriate as a supplemental text to a more formal course.

The Software You Need to Use this Book

All the software you need to use this book is included on the accompanying CD-ROM.

To run the Workshop applets you need a Web browser or an appletviewer utility such as
the one in the Sun Microsystems Java Development Kit (JDK). Both a browser and the
JDK are included on the CD-ROM. To compile and run the example programs you'll need
the JDK. Microsoft Windows and various other platforms are supported. See the readme
file on the included CD-ROM for details on supported platforms and equipment
requirements.

How This Book Is Organized

This section is intended for teachers and others who want a quick overview of the
contents of the book. It assumes you're already familiar with the topics and terms
involved in a study of data structures and algorithms. (If you can't wait to get started with
the Workshop applets, read Appendix A, "How to Run the Workshop Applets and
Example Programs," and the readme file on the CD-ROM first.)

The first two chapters are intended to ease the reader into data structures and algorithms
as painlessly as possible.

Chapter 1, "Overview," presents an overview of the topics to be discussed and introduces
a small number of terms that will be needed later on. For readers unfamiliar with object-
oriented programming, it summarizes those aspects of this discipline that will be needed
in the balance of the book, and for programmers who know C++ but not Java, the key
differences between these languages are reviewed.

Chapter 2, "Arrays," focuses on arrays. However, there are two subtopics: the use of
classes to encapsulate data storage structures and the class interface. Searching,
insertion, and deletion in arrays and ordered arrays are covered. Linear searching and
binary searching are explained. Workshop applets demonstrate these algorithms with
unordered and ordered arrays.

In Chapter 3, "Simple Sorting," we introduce three simple (but slow) sorting techniques:
the bubble sort, selection sort, and insertion sort. Each is demonstrated by a Workshop
applet.

Chapter 4, "Stacks and Queues," covers three data structures that can be thought of as
Abstract Data Types (ADTSs): the stack, queue, and priority queue. These structures
reappear later in the book, embedded in various algorithms. Each is demonstrated by a
Workshop applet. The concept of ADTs is discussed.

Chapter 5, "Linked Lists," introduces linked lists, including doubly linked lists and double-
ended lists. The use of references as "painless pointers" in Java is explained. A
Workshop applet shows how insertion, searching, and deletion are carried out.

In Chapter 6, "Recursion," we explore recursion, one of the few chapter topics that is not
a data structure. Many examples of recursion are given, including the Towers of Hanoi
puzzle and the mergesort, which are demonstrated by Workshop applets.

Chapter 7, "Advanced Sorting," delves into some advanced sorting techniques: Shellsort
and quicksort. Workshop applets demonstrate Shellsort, partitioning (the basis of
quicksort), and two flavors of quicksort.

In Chapter 8, "Binary Trees," we begin our exploration of trees. This chapter covers the
simplest popular tree structure: unbalanced binary search trees. A Workshop applet
demonstrates insertion, deletion, and traversal of such trees.

Chapter 9, "Red-Black Trees," explains red-black trees, one of the most efficient
balanced trees. The Workshop applet demonstrates the rotations and color switches
necessary to balance the tree.

In Chapter 10, "2-3-4 Trees and External Storage," we cover 2-3-4 trees as an example
of multiway trees. A Workshop applet shows how they work. We also discuss the
relationship of 2-3-4 trees to B-trees, which are useful in storing external (disk) files.

Chapter 11, "Hash Tables," moves into a new field, hash tables. Workshop applets
demonstrate several approaches: linear and quadratic probing, double hashing, and
separate chaining. The hash-table approach to organizing external files is discussed.

In Chapter 12, "Heaps," we discuss the heap, a specialized tree used as an efficient
implementation of a priority queue.

Chapters 13, "Graphs," and 14, "Weighted Graphs," deal with graphs, the first with
unweighted graphs and simple searching algorithms, and the second with weighted
graphs and more complex algorithms involving the minimum spanning trees and shortest
paths.

In Chapter 15, "When to Use What," we summarize the various data structures described
in earlier chapters, with special attention to which structure is appropriate in a given
situation.

Appendix A, "How to Run the Workshop Applets and Example Programs," tells how to
use the Java Development Kit (the JDK) from Sun Microsystems, which can be used to
run the Workshop applets and the example programs. The readme file on the included
CD-ROM has additional information on these topics.

Appendix B, "Further Reading," describes some books appropriate for further reading on
data structures and other related topics.

Enjoy Yourself!

We hope we've made the learning process as painless as possible. Ideally, it should even
be fun. Let us know if you think we've succeeded in reaching this ideal, or if not, where you
think improvements might be made.

-10 -

Part |

Chapter List

Chapter Overview
1:

Chapter Arrays
2:

Chapter Simple Sorting
3:

Chapter 1: Overview

Overview

As you start this book, you may have some questions:

+ What are data structures and algorithms?

* What good will it do me to know about them?

* Why can't | just use arrays and for loops to handle my data?
* When does it make sense to apply what | learn here?

This chapter attempts to answer these questions. We'll also introduce some terms you'll
need to know, and generally set the stage for the more detailed chapters to follow.

Next, for those of you who haven't yet been exposed to an object-oriented language, we'll
briefly explain enough about OOP to get you started. Finally, for C++ programmers who
don't know Java, we'll point out some of the differences between these languages.

Chapter 1: Overview

Overview

As you start this book, you may have some questions:

+ What are data structures and algorithms?

* What good will it do me to know about them?

* Why can't | just use arrays and for loops to handle my data?
* When does it make sense to apply what | learn here?

This chapter attempts to answer these questions. We'll also introduce some terms you'll
need to know, and generally set the stage for the more detailed chapters to follow.

-11 -

Next, for those of you who haven't yet been exposed to an object-oriented language, we'll
briefly explain enough about OOP to get you started. Finally, for C++ programmers who
don't know Java, we'll point out some of the differences between these languages.

Overview of Data Structures

Another way to look at data structures is to focus on their strengths and weaknesses. In
this section we'll provide an overview, in the form of a table, of the major data storage
structures we'll be discussing in this book. This is a bird's-eye view of a landscape that
we'll be covering later at ground level, so don't be alarmed if it looks a bit mysterious.
Table 1.1 shows the advantages and disadvantages of the various data structures
described in this book.

Table 1.1: Characteristics of Data Structures

Data Structure Advantages

Disadvantages

Array

Ordered array

Quick insertion, very fast
access if index known

Quicker search than
unsorted array.

Slow search, slow deletion, fixed
size.

Slow insertion and deletion, fixed
size.

Stack Provides last-in, first-out Slow access to other items.
access.

Queue Provides first-in, first-out Slow access to other items.
access.

Linked list Quick insertion, quick Slow search.
deletion.

Binary tree Quick search, insertion, Deletion algorithm is complex.

deletion (if tree remains
balanced).

Red-black tree Quick search, insertion, Complex.
deletion. Tree always
balanced.
2-3-4 tree Quick search, insertion, Complex.
deletion. Tree always
balanced. Similar trees
good for disk storage.
Hash table Very fast access if key Slow deletion, access slow if key
known. Fast insertion. not known, inefficient memory
usage.
Heap Fast insertion, deletion, Slow access to other items.access
to largest item.
Graph Models real-world Some algorithms are slow and

situations.

complex.

-12 -

(The data structures shown in this table, except the arrays, can be thought of as Abstract
Data Types, or ADTs. We'll describe what this means in Chapter 5, "Linked Lists.")

Overview of Algorithms

Many of the algorithms we'll discuss apply directly to specific data structures. For most
data structures, you need to know how to

* Insert a new data item.
» Search for a specified item.
» Delete a specified item.

You may also need to know how to iterate through all the items in a data structure,
visiting each one in turn so as to display it or perform some other action on it.

One important algorithm category is sorting. There are many ways to sort data, and we
devote Chapter 3, "Simple Sorting," and_Chapter 7, "Advanced Sorting," to these
algorithms.

The concept of recursion is important in designing certain algorithms. Recursion involves a
method (a function) calling itself. We'll look at recursion in_Chapter 6, "Recursion.”

Definitions

Let's look at a few of the terms that we'll be using throughout this book.

Database

We'll use the term database to refer to all the data that will be dealt with in a particular
situation. We'll assume that each item in a database has a similar format. As an example,
if you create an address book using the Cardfile program, all the cards you've created
constitute a database. The term file is sometimes used in this sense, but because our
database is often stored in the computer's memory rather than on a disk, this term can be
misleading.

The term database can also refer to a large program consisting of many data structures
and algorithms, which relate to each other in complex ways. However, we'll restrict our
use of the term to the more modest definition.

Record

Records are the units into which a database is divided. They provide a format for storing
information. In the Cardfile program, each card represents a record. A record includes all
the information about some entity, in a situation in which there are many such entities. A
record might correspond to a person in a personnel file, a car part in an auto supply
inventory, or a recipe in a cookbook file.

Field

A record is usually divided into several fields. A field holds a particular kind of data. In the
Cardfile program there are really only two fields: the index line (above the double line)

- 13-

and the rest of the data (below the line), which both hold text. Generally, each field holds
a particular kind of data. Figure 1.1 shows the index line field as holding a person's
name.

More sophisticated database programs use records with more fields than Cardfile has.
Figure 1.2 shows such a record, where each line represents a distinct field.

In a Java program, records are usually represented by objects of an appropriate class. (In
C, records would probably be represented by structures.) Individual variables within an
object represent data fields. Fields within a class object are called fields in Java (but
members in C and C++).

Key

To search for a record within a database you need to designate one of the record's fields
as a key. You'll search for the record with a specific key. For example, in the Cardfile
program you might search in the index-line field for the key "Brown." When you find the
record with this key, you'll be able to access all its fields, not just the key. We might say
that the key unlocks the entire record.

In Cardfile you can also search for individual words or phrases in the rest of the data on
the card, but this is actually all one field. The program searches through the text in the
entire field even if all you're looking for is the phone number. This kind of text search isn't
very efficient, but it's flexible because the user doesn't need to decide how to divide the
card into fields.

Employee mumber:
Social security namber.
Lazt name:

First name:

Sireed address

City:

State

Fip code:

Phone number:

Date of birth:

Date of first employment:
Salary:

Figure 1.2: A record with multiple fields

In a more full-featured database program, you can usually designate any field as the key.
In Figure 1.2, for example, you could search by zip code and the program would find all
employees who live in that zip code.

Search Key

The key value you're looking for in a search is called the search key. The search key is
compared with the key field of each record in turn. If there's a match, the record can be
returned or displayed. If there's no match, the user can be informed of this fact.

Object-Oriented Programming

This section is for those of you who haven't been exposed to object-oriented
programming. However, caveat emptor. We cannot, in a few pages, do justice to all the
innovative new ideas associated with OOP. Our goal is merely to make it possible for you

- 14 -

to understand the example programs in the text. What we say here won't transform you
into an object-oriented Java programmer, but it should make it possible for you to follow
the example programs.

If after reading this section and examining some of the sample code in the following
chapters you still find the whole OOP business as alien as quantum physics, then you
may need a more thorough exposure to OOP. See the reading list in Appendix B,
"Further Reading," for suggestions.

Problems with Procedural Languages

OOP was invented because procedural languages, such as C, Pascal, and BASIC, were
found to be inadequate for large and complex programs. Why was this?

The problems have to do with the overall organization of the program. Procedural
programs are organized by dividing the code into functions (called procedures or
subroutines in some languages). Groups of functions could form larger units called
modules or files.

Crude Organizational Units

One difficulty with this kind of function-based organization was that it focused on
functions at the expense of data. There weren't many options when it came to data. To
simplify slightly, data could be local to a particular function or it could be global—
accessible to all functions. There was no way (at least not a flexible way) to specify that
some functions could access a variable and others couldn't.

This caused problems when several functions needed to access the same data. To be
available to more than one function, such variables had to be global, but global data
could be accessed inadvertently by any function in the program. This lead to frequent
programming errors. What was needed was a way to fine-tune data accessibility, allowing
variables to be available to functions with a need to access it, but hiding it from others.

Poor Modeling of the Real World

It is also hard to conceptualize a real-world problem using procedural languages.
Functions carry out a task, while data stores information, but most real-world objects do
both these things. The thermostat on your furnace, for example, carries out tasks (turning
the furnace on and off) but also stores information (the actual current temperature and
the desired temperature).

If you wrote a thermostat control program, you might end up with two functions,
furnace on() and furnace off (), but also two global variables, currentTemp
(supplied by a thermometer) and desiredTemp (set by the user). However, these
functions and variables wouldn't form any sort of programming unit; there would be no
unit in the program you could call thermostat. The only such unit would be in the
programmer's mind.

For large programs, which might contain hundreds of entities like thermostats, this
procedural approach made things chaotic, error-prone, and sometimes impossible to
implement at all.

Objects in a Nutshell

The idea of objects arose in the programming community as a solution to the problems
with procedural languages.

Objects

- 15 -

Here's the amazing breakthrough that is the key to OOP: An object contains both
functions and variables. A thermostat object, for example, would contain not only
furnace on() and furnace off () functions, but also currentTemp and
desiredTemp. Incidentally, before going further we should note that in Java, functions
are called methods and variables are called fields.

This new entity, the object, solves several problems simultaneously. Not only does a
programming object correspond more accurately to objects in the real world, it also
solves the problem engendered by global data in the procedural model. The
furnace on () and furnace off () methods can access currentTemp and
desiredTemp. These variables are hidden from methods that are not part of
thermostat, however, so they are less likely to be accidentally changed by a rogue
method.

Classes

You might think that the idea of an object would be enough for one programming
revolution, but there's more. Early on, it was realized that you might want to make several
objects of the same type. Maybe you're writing a furnace control program for an entire
apartment house, for example, and you need several dozen thermostat objects in your
program. It seems a shame to go to the trouble of specifying each one separately. Thus,
the idea of classes was born.

A class is a specification—a blueprint—for one or more objects. Here's how a
thermostat class, for example, might look in Java:

class thermostat

{

private float currentTemp () ;
private float desiredTemp() ;

public void furnace on()
{
// method body goes here
}

public void furnace off ()

{
// method body goes here

}

} // end class thermostat

The Java keyword class introduces the class specification, followed by the name you
want to give the class; here it's thermostat. Enclosed in curly brackets are the fields
and methods (variables and functions) that make up the class. We've left out the body of
the methods; normally there would be many lines of program code for each one.

C programmers will recognize this syntax as similar to a structure, while C++
programmers will notice that it's very much like a class in C++, except that there's no
semicolon at the end. (Why did we need the semicolon in C++ anyway?)

Creating Objects

Specifying a class doesn't create any objects of that class. (In the same way specifying a
structure in C doesn't create any variables.) To actually create objects in Java you must
use the keyword new. At the same time an object is created, you need to store a

- 16 -

reference to it in a variable of suitable type; that is, the same type as the class.

What's a reference? We'll discuss references in more detail later. In the meantime, think
of it as a name for an object. (It's actually the object's address, but you don't need to
know that.)

Here's how we would create two references to type thermostat, create two new
thermostat objects, and store references to them in these variables:

thermostat therml, therm2; // create two references

therml

new thermostat(); // create two objects and

therm?2

new thermostat(); // store references to them

Incidentally, creating an object is also called instantiating it, and an object is often
referred to as an instance of a class.

Accessing Object Methods

Once you've specified a class and created some objects of that class, other parts of your
program need to interact with these objects. How do they do that?

Typically, other parts of the program interact with an object's methods (functions), not
with its data (fields). For example, to tell the therm2 object to turn on the furnace, we
would say

therm2.furnace on();

The dot operator (.) associates an object with one of its methods (or occasionally with
one of its fields).

At this point we've covered (rather telegraphically) several of the most important features
of OOP. To summarize:

» Objects contain both methods (functions) and fields (data).

» Aclass is a specification for any number of objects.

* To create an object, you use the keyword new in conjunction with the class name.
» To invoke a method for a particular object you use the dot operator.

These concepts are deep and far-reaching. It's almost impossible to assimilate them the
first time you see them, so don't worry if you feel a bit confused. As you see more classes
and what they do, the mist should start to clear.

A Runnable Object-Oriented Program

Let's look at an object-oriented program that runs and generates actual output. It features
a class called BankAccount that models a checking account at a bank. The program
creates an account with an opening balance, displays the balance, makes a deposit and
a withdrawal, and then displays the new balance. Here's the listing for bank. java:

// bank.java

-17 -

// demonstrates basic OOP syntax
// to run this program: C>java BankApp

import java.io.*; // for I/0
I 7777777777777 7777777777777 77777777777777777777777777777

class BankAccount

{

private double balance; // account balance

public BankAccount (double openingBalance) // constructor

{

balance = openingBalance;

}

public void deposit (double amount) // makes deposit

{

balance = balance + amount;

}

public void withdraw (double amount) // makes
withdrawal
{
balance = balance - amount;
}
public void display() // displays
balance
{
System.out.println ("balance=" + balance);

}

} // end class BankAccount

[I1177
class BankApp
{

public static void main(String[] args)

{

BankAccount bal = new BankAccount (100.00); // create acct

System.out.print ("Before transactions, ");

bal.display(); // display balance
bal.deposit (74.35); // make deposit
bal.withdraw (20.00); // make withdrawal

System.out.print ("After transactions, ");
bal.display(); // display balance
}// end main ()

} // end class BankApp

- 18 -

Here's the output from this program:
Before transactions, balance=100
After transactions, balance=154.35

There are two classes in bank. java. The first one, BankAccount, contains the fields
and methods for our bank account. We'll examine it in detail in a moment. The second
class, BankApp, plays a special role.

The BankApp Class

To execute the program from a DOS box, you type java BankApp following the C:
prompt:

C:java BankApp

This tells the java interpreter to look in the BankApp class for the method called

main (). Every Java application must have a main () method; execution of the program
starts at the beginning of main (), as you can see in the bank. java listing. (You don't
need to worry yet about the String[] args argumentinmain().)

The main () method creates an object of class BankAccount, initialized to a value of
100.00, which is the opening balance, with this statement:

BankAccount bal = new BankAccount (100.00); // create acct

The System.out.print () method displays the string used as its argument, Before
transactions,, and the account displays its balance with the following statement:

bal.display();
The program then makes a deposit to, and a withdrawal from, the account:

bal.deposit (74.35);
bal.withdraw (20.00);

Finally, the program displays the new account balance and terminates.

The BankAccount Class

The only data field in the BankAccount class is the amount of money in the account,
called balance. There are three methods. The deposit () method adds an amount to
the balance, withdrawal () subtracts an amount, and display () displays the
balance.

Constructors

The BankAccount class also features a constructor. A constructor is a special method
that's called automatically whenever a new object is created. A constructor always has
exactly the same name as the class, so this one is called BankAccount (). This
constructor has one argument, which is used to set the opening balance when the
account is created.

-19 -

A constructor allows a new object to be initialized in a convenient way. Without the
constructor in this program, you would have needed an additional call to deposit () to
put the opening balance in the account.

Public and Private

Notice the keywords public and private in the BankAccount class. These keywords
are access modifiers and determine what methods can access a method or field. The
balance field is preceded by private. A field or method that is private can only be
accessed by methods that are part of the same class. Thus, balance cannot be
accessed by statements in main (), because main () is not a method in BankAccount.

However, all the methods in BankAccount have the access modifier public, so they
can be accessed by methods in other classes. That's why statements in main () can call
deposit (), withdrawal (), and display ().

Data fields in a class are typically made private and methods are made public. This
protects the data; it can't be accidentally modified by methods of other classes. Any
outside entity that needs to access data in a class must do so using a method of the
same class. Data is like a queen bee, kept hidden in the middle of the hive, fed and cared
for by worker-bee methods.

Inheritance and Polymorphism

We'll briefly mention two other key features of object-oriented programming: inheritance
and polymorphism.

Inheritance is the creation of one class, called the extended or derived class, from
another class called the base class. The extended class has all the features of the base
class, plus some additional features. For example, a secretary class might be derived
from a more general employee class, and include a field called typingSpeed that the
employee class lacked.

In Java, inheritance is also called subclassing. The base class may be called the
superclass, and the extended class may be called the subclass.

Inheritance makes it easy to add features to an existing class and is an important aid in
the design of programs with many related classes. Inheritance thus makes it easy to
reuse classes for a slightly different purpose, a key benefit of OOP.

Polymorphism involves treating objects of different classes in the same way. For
polymorphism to work, these different classes must be derived from the same base class.
In practice, polymorphism usually involves a method call that actually executes different
methods for objects of different classes.

For example, a call to display () for a secretary object would invoke a display
method in the secretary class, while the exact same call for a manager object would
invoke a different display method in the manager class. Polymorphism simplifies and
clarifies program design and coding.

For those not familiar with them, inheritance and polymorphism involve significant
additional complexity. To keep the focus on data structures and algorithms, we have
avoided these features in our example programs. Inheritance and polymorphism are
important and powerful aspects of OOP but are not necessary for the explanation of data
structures and algorithms.

Software Engineering

-20 -

In recent years, it has become fashionable to begin a book on data structures and
algorithms with a chapter on software engineering. We don't follow that approach, but
let's briefly examine software engineering and see how it fits into the topics we discuss in
this book.

Software engineering is the study of how to create large and complex computer
programs, involving many programmers. It focuses on the overall design of the program
and on the creation of that design from the needs of the end users. Software engineering
is concerned with life cycle of a software project, which includes specification, design,
verification, coding, testing, production, and maintenance.

It's not clear that mixing software engineering on one hand, and data structures and
algorithms on the other, actually helps the student understand either topic. Software
engineering is rather abstract and is difficult to grasp until you've been involved yourself
in a large project. Data structures and algorithms, on the other hand, is a nuts-and-bolts
discipline concerned with the details of coding and data storage.

Accordingly we focus on the nuts-and-bolts aspects of data structures and algorithms. How
do they really work? What structure or algorithm is best in a particular situation? What do
they look like translated into Java code? As we noted, our intent is to make the material as
easy to understand as possible. For further reading, we mention some books on software

engineering in Appendix B.
Java for C++ Programmers

If you're a C++ programmer who has not yet encountered Java, you might want to read
this section. We'll mention several ways in which Java differs from C++.

This section is not intended to be a primer on Java. We don't even cover all the
differences between C++ and Java. We're only interested in a few Java features that
might make it hard for C++ programmers to figure out what's going on in the example
programs.

No Pointers

The biggest difference between C++ and Java is that Java doesn't use pointers. To a
C++ programmer this may at first seem quite amazing. How can you get along without
pointers?

Throughout this book we'll be using pointer-free code to build complex data structures.
You'll see that it's not only possible, but actually easier than using C++ pointers.

Actually Java only does away with explicit pointers. Pointers, in the form of memory
addresses, are still there, under the surface. It's sometimes said that in Java, everything
is a pointer. This is not completely true, but it's close. Let's look at the details.

References

Java treats primitive data types (such as int, float, and double) differently than
objects. Look at these two statements:

int intVar; // an int variable called intVar
BankAccount bcl; // reference to a BankAccount object

In the first statement, a memory location called intvar actually holds a numerical value
such as 127 (assuming such a value has been placed there). However, the memory
location bc1 does not hold the data of a BankAccount object. Instead, it contains the
address of a BankAccount object that is actually stored elsewhere in memory. The

-21 -

name bcl is a reference to this object; it's not the object itself.

Actually, bc1 won't hold a reference if it has not been assigned an object at some prior
point in the program. Before being assigned an object, it holds a reference to a special
object called null. In the same way, intVar won't hold a numerical value if it's never
been assigned one. The compiler will complain if you try to use a variable that has never
been assigned a value.

In C++, the statement

BankAccount bcl;

actually creates an object; it sets aside enough memory to hold all the object's data. In
Java, all this statement creates is a place to put an object's memory address. You can
think of a reference as a pointer with the syntax of an ordinary variable. (C++ has
reference variables, but they must be explicitly specified with the &« symbol.)

Assignment

It follows that the assignment operator (=) operates differently with Java objects than with
C++ objects. In C++, the statement

bc2 = bcl;

copies all the data from an object called bc1 into a different object called bc2. Following
this statement are two objects with the same data. In Java, on the other hand, this same
assignment statement copies the memory address that bc1 refers to into bc2. Both bel
and bc2 now refer to exactly the same object; they are references to it.

This can get you into trouble if you're not clear on what the assignment operator does.
Following the assignment statement shown above, the statement

bcl.withdraw (21.00);
and the statement
bc2.withdraw (21.00);
both withdraw $21 from the same bank account object.

Suppose you actually want to copy data from one object to another. In this case you must
make sure you have two separate objects to begin with, and then copy each field
separately. The equal sign won't do the job.

The new Operator

Any object in Java must be created using new. However, in Java, new returns a
reference, not a pointer as in C++. Thus, pointers aren't necessary to use new. Here's
one way to create an object:

BankAccount bal;
bal = new BankAccount () ;

Eliminating pointers makes for a more secure system. As a programmer, you can't find
out the actual address of ba1l, so you can't accidentally corrupt it. However, you probably
don't need to know it unless you're planning something wicked.

-22 -

How do you release memory that you've acquired from the system with new and no
longer need? In C++, you use delete. In Java, you don't need to worry about it. Java
periodically looks through each block of memory that was obtained with new to see if
valid references to it still exist. If there are no such references, the block is returned to the
free memory store. This is called garbage collection.

In C++ almost every programmer at one time or another forgets to delete memory blocks,
causing "memory leaks" that consume system resources, leading to bad performance
and even crashing the system. Memory leaks can't happen in Java (or at least hardly
ever).

Arguments

In C++, pointers are often used to pass objects to functions to avoid the overhead of
copying a large object. In Java, objects are always passed as references. This also
avoids copying the object.

void methodl ()

{
BankAccount bal = new BankAccount (350.00);

method2 (bal) ;
}

void method2 (BankAccount acct)

{
}

In this code, the references bal and acct both refer to the same object.

Primitive data types, on the other hand, are always passed by value. That is, a new
variable is created in the function and the value of the argument is copied into it.

Equality and Identity

In Java, if you're talking about primitive types, the equality operator (==) will tell you
whether two variables have the same value:

27;

int intVar2 intVarl;

if (intVarl == intVar2)
System.out.println ("They're equal);

int intVarl

This is the same as the syntax in C and C++, but in Java, because they use references,
relational operators work differently with objects. The equality operator, when applied to
objects, tells you whether two references are identical; that is, whether they refer to the
same object:

carPart cpl = new carPart ("fender");

carPart cp2 cpl;
if (cpl == cp2)

System.out.println ("They're Identical");

In C++ this operator would tell you if two objects contained the same data. If you want to
see whether two objects contain the same data in Java, you must use the equals ()
method of the Object class:

_23 .

carPart cpl new carPart ("fender");

carPart cp2 cpl;

if(cpl.equals(cp2))
System.out.println ("They're equal");

This works because all objects in Java are implicitly derived from the Object class.

Overloaded Operators

This is easy: there are no overloaded operators in Java. In C++, you can redefine +, *, =,
and most other operators so they behave differently for objects of a particular class. No
such redefinition is possible in Java. Instead, use a method such as add ().

Primitive Variable Types
The primitive or built-in variable types in Java are shown in Table 1.2.

Table 1.2: Primitive Data Types

Name Size in Bits Range of Values

]

boolean 1 true or false

byte 8 -128 to +127

char 16 "\u0000"' to "\uFFFF'

short 16 -32,768 to +32,767

int 32 -2,147,483,648 to +2,147,483,647

long 64 -9,223,372,036,854,775,808 to
+9,223,372,036,854,775,807

float 32 approximately 10~° to 10™%; 7 significant digits

double 64 approximately 10~ to 10°%; 15 significant

digits

Unlike C and C++, which use integers for t rue/false values, boolean is a distinct type
in Java.

Type char is unsigned and uses two bytes to accommodate the Unicode character
representation scheme, which can handle international characters.

The int type varies in size in C and C++, depending on the specific computer platform;
in Java an int is always 32 bits.

-4 -

Literals of type float use the suffix F (for example, 3.14159F); literals of type double
need no suffix. Literals of type 1ong use suffix L (as in 451); literals of the other integer
types need no suffix.

Java is more strongly typed than C and C++; many conversions that were automatic in
those languages require an explicit cast in Java.

All types not shown in Table 1.2, such as string, are classes.

Input/Output
For the console-mode applications we'll be using for example programs in this book,
some clunky-looking but effective constructions are available for input and output.
They're quite different from the workhorse cout and cin approach in C++ and
printf () and scanf () in C.
All the input/output routines we show here require the line

import java.io.*;

at the beginning of your source file.

Output

You can send any primitive type (numbers and characters), and String objects as well,
to the display with these statements:

System.out.print (var) ; // displays var, no linefeed
System.out.println(var); // displays var, then starts new line

The first statement leaves the cursor on the same line; the second statement moves it to
the beginning of the next line.

Because output is buffered, you'll need to use a println () method as the last
statement in a series to actually display everything. It causes the contents of the buffer to
be transferred to the display:

System.out.print (varl); // nothing appears
System.out.print (var2); // nothing appears

System.out.println(var3); // varl, var2, and var3 are all
displayed

You can also use System.out.flush () to cause the buffer to be displayed without
going to a new line:

System.out.print ("Enter your name: ");
System.out.flush{();

Inputting a String

Input is considerably more involved than output. In general, you want to read any input as
a String object. If you're actually inputting something else, such as a character or
number, you then convert the String object to the desired type.

_25.-

String input is fairly baroque. Here's how it looks:

public static String getString() throws IOException
{
InputStreamReader isr = new InputStreamReader (System.in);
BufferedReader br = new BufferedReader (isr);
String s = br.readLine();
return s;

}

This method returns a String object, which is composed of characters typed on the
keyboard and terminated with the Enter key.

Besides importing java.io.*, you'll also need to add throws IOException to all
input methods, as shown in the preceding code. The details of the
InputStreamReader and BufferedReader classes need not concern us here. This
approach was introduced with version 1.1.3 of Sun Microsystems' Java Development Kit
(JDK).

Earlier versions of the JDK used the System. in. object to read individual characters,

which were then concatenated to form a String object. The termination of the input was
signaled by a newline (' \n"') character, generated when the user pressed Enter.

Here's the code for this older approach:

public String getString() throws IOException
{

String s = "";

int ch;

while ((ch=System.in.read()) !'= -1 && (char)ch != '"\n')
s += (char)ch;

return s;

}

Here characters are read as integers, which allows the negative value —1 to signal an
end-of-file (EOF). The while loop reads characters until an end-of-file or a newline
occurs. You'll need to use this version of getString () if you're using older versions of
the JDK.

Inputting a Character

Suppose you want your program's user to enter a character. (By enter we mean typing
something and pressing the Enter key.) The user may enter a single character or
(incorrectly) more than one. Therefore, the safest way to read a character involves
reading a String and picking off its first character with the charat () method:

public static char getChar () throws IOException

{
String s = getString();
return s.charAt (0);

}

The charat () method of the String class returns a character at the specified position
in the string object; here we get the first one. The approach shown avoids extraneous

-26 -

characters being left in the input buffer. Such characters can cause problems with
subsequent input.

Inputting Integers

To read numbers, you make a String object as shown before and convert it to the type
you want using a conversion method. Here's a method, getInt (), that converts input
into type int and returns it:

public int getInt() throws IOException
{
String s = getString();
return Integer.parselnt(s);

}

The parseInt () method of class Tnteger converts the string to type int. A similar
routine, parseLong (), can be used to convert type 1ong.

For simplicity, we don't show any error-checking in the input routines in the example
programs. The user must type appropriate input or an exception will occur. With the code
shown here the exception will cause the program to terminate. In a serious program you
should analyze the input string before attempting to convert it, and also catch any
exceptions and process them appropriately.

Inputting Floating-Point Numbers

Types float and double can be handled in somewhat the same way as integers, but
the conversion process is more complex. Here's how you read a number of type double:

public int getDouble () throws IOException

{

String s = getString();

Double aDub = Double.valueOf (s);
return aDub.doubleValue() ;

}

The string is first converted to an object of type Double (uppercase D), which is a
"wrapper" class for type double. A method of Double called doublevalue () then
converts the object to type double.

For type float, there's an equivalent Float class, which has equivalent value0Of () and
floatValue () methods.

Java Library Data Structures

The Java java.util package contains data structures, such as vector (an extensible
array), Stack, Dictionary, and Hashtable. In this book we'll largely ignore these
built-in classes. We're interested in teaching fundamentals, not in the details of a
particular data-structure implementation.

However, such class libraries, whether those that come with Java or others available from
third-party developers, can offer a rich source of versatile, debugged storage classes. This
book should equip you with the knowledge you'll need to know what sort of data structure
you need and the fundamentals of how it works. Then you can decide whether you should
write your own classes or use pre-written library classes. If you use a class library, you'll
know which classes you need and whether a particular implementation works in your

_27 -

situation.
Summary
» A data structure is the organization of data in a computer's memory or in a disk file.
» The correct choice of data structure allows major improvements in program efficiency.
+ Examples of data structures are arrays, stacks, and linked lists.
» An algorithm is a procedure for carrying out a particular task.
* In Java, an algorithm is usually implemented by a class method.

* Many of the data structures and algorithms described in this book are most often used
to build databases.

+ Some data structures are used as programmer's tools: they help execute an algorithm.

» Other data structures model real-world situations, such as telephone lines running
between cities.

» A database is a unit of data storage comprising many similar records.
» A record often represents a real-world object, such as an employee or a car part.

» Arecord is divided into fields. Each field stores one characteristic of the object
described by the record.

* Akey is afield in a record that's used to carry out some operation on the data. For
example, personnel records might be sorted by a LastName field.

* A database can be searched for all records whose key field has a certain value. This
value is called a search key.

Summary
» A data structure is the organization of data in a computer's memory or in a disk file.
» The correct choice of data structure allows major improvements in program efficiency.
+ Examples of data structures are arrays, stacks, and linked lists.
* An algorithm is a procedure for carrying out a particular task.
* In Java, an algorithm is usually implemented by a class method.

» Many of the data structures and algorithms described in this book are most often used
to build databases.

» Some data structures are used as programmer's tools: they help execute an algorithm.

» Other data structures model real-world situations, such as telephone lines running
between cities.

-28 -

+ A database is a unit of data storage comprising many similar records.
» A record often represents a real-world object, such as an employee or a car part.

» Arecord is divided into fields. Each field stores one characteristic of the object
described by the record.

* Akey is afield in a record that's used to carry out some operation on the data. For
example, personnel records might be sorted by a LastName field.

» A database can be searched for all records whose key field has a certain value. This
value is called a search key.

The Array Workshop Applet

Suppose that you're coaching a kids-league baseball team and you want to keep track of
which players are present at the practice field. What you need is an attendance-
monitoring program for your laptop; a program that maintains a database of the players
who have shown up for practice. You can use a simple data structure to hold this data.
There are several actions you would like to be able to perform:

» Insert a player into the data structure when the player arrives at the field.

» Check to see if a particular player is present by searching for his or her number in the
structure.

» Delete a player from the data structure when the player goes home.

These three operations will be the fundamental ones in most of the data storage
structures we'll study in this book.

In this book we'll often begin the discussion of a particular data structure by
demonstrating it with a Workshop applet. This will give you a feeling for what the
structure and its algorithms do, before we launch into a detailed discussion and
demonstrate actual example code. The Workshop applet called Array shows how an
array can be used to implement insertion, searching, and deletion. Start up this applet, as
described in Appendix A, with

C:appletviewer Array.html

Figure 2.1 shows what you'll see. There's an array with 20 elements, 10 of which have
data items in them. You can think of these items as representing your baseball players.
Imagine that each player has been issued a team shirt with the player's number on the
back. To make things visually interesting, the shirts come in a wide variety of colors. You
can see each player's number and shirt color in the array.

-29.

[ERApeiet Winmes Anag. class
Appisl

o | 6] | | D] T e |

dppiel starind

Figure 2.1: The Array Workshop applet

This applet demonstrates the three fundamental procedures mentioned above:
» The Ins button inserts a new data item.

» The Find button searches for specified data item.

» The Del button deletes a specified data item.

Using the New button, you can create a new array of a size you specify. You can fill this
array with as many data items as you want using the Fill button. Fill creates a set of items
and randomly assigns them numbers and colors. The numbers are in the range 0 to 999.
You can't create an array of more than 60 cells, and you can't, of course, fill more data
items than there are array cells.

Also, when you create a new array, you'll need to decide whether duplicate items will be
allowed; we'll return to this question in a moment. The default value is no duplicates and
the No Dups radio button is selected to indicate this.

Insertion

Start with the default arrangement of 20 cells and 10 data items and the No Dups button
checked. You insert a baseball player's number into the array when the player arrives at
the practice field, having been dropped off by a parent. To insert a new item, press the
Ins button once. You'll be prompted to enter the value of the item:

Enter key of item to insert

Type a number, say 678, into the text field in the upper-right corner of the applet. (Yes, it
is hard to get three digits on the back of a kid's shirt.) Press Ins again and the applet will
confirm your choice:

Will insert item with key 678

A final press of the button will cause a data item, consisting of this value and a random
color, to appear in the first empty cell in the array. The prompt will say something like:

Inserted item with key 678 at index 10

Each button press in a Workshop applet corresponds to a step that an algorithm carries
out. The more steps required, the longer the algorithm takes. In the Array Workshop
applet the insertion process is very fast, requiring only a single step. This is because a

-30 -

new item is always inserted in the first vacant cell in the array, and the algorithm knows
where this is because it knows how many items are already in the array. The new item is
simply inserted in the next available space. Searching and deletion, however, are not so
fast.

In no-duplicates mode you're on your honor not to insert an item with the same key as an
existing item. If you do, the applet displays an error message, but it won't prevent the
insertion. The assumption is that you won't make this mistake.

Searching

Click the Find button. You'll be prompted for the key number of the person you're looking
for. Pick a number that appears on an item somewhere in the middle of the array. Type in
the number and repeatedly press the Find button. At each button press, one step in the
algorithm is carried out. You'll see the red arrow start at cell 0 and move methodically
down the cells, examining a new one each time you push the button. The index number
in the message

Checking next cell, index = 2
will change as you go along. When you reach the specified item, you'll see the message
Have found item with key 505

or whatever key value you typed in. Assuming duplicates are not allowed, the search will
terminate as soon as an item with the specified key value is found.

If you have selected a key number that is not in the array, the applet will examine every
occupied cell in the array before telling you that it can't find that item.

Notice that (again assuming duplicates are not allowed) the search algorithm must look
through an average of half the data items to find a specified item. ltems close to the
beginning of the array will be found sooner, and those toward the end will be found later.
If N is the number of items, then the average number of steps needed to find an item is
N/2. In the worst-case scenario, the specified item is in the last occupied cell, and N
steps will be required to find it.

As we noted, the time an algorithm takes to execute is proportional to the number of
steps, so searching takes much longer on the average (N/2 steps) than insertion (one
step).

Deletion

To delete an item you must first find it. After you type in the number of the item to be
deleted, repeated button presses will cause the arrow to move, step by step, down the
array until the item is located. The next button press deletes the item and the cell
becomes empty. (Strictly speaking, this step isn't necessary because we're going to copy
over this cell anyway, but deleting the item makes it clearer what's happening.)

Implicit in the deletion algorithm is the assumption that holes are not allowed in the array.
A hole is one or more empty cells that have filled cells above them (at higher index
numbers). If holes are allowed, all the algorithms become more complicated because
they must check to see if a cell is empty before examining its contents. Also, the
algorithms become less efficient because they must waste time looking at unoccupied
cells. For these reasons, occupied cells must be arranged contiguously: no holes
allowed.

Therefore, after locating the specified item and deleting it, the applet must shift the
contents of each subsequent cell down one space to fill in the hole. Figure 2.2 shows an

231 -

example.

ket i be
dhdetnd

Contents
shifted
clovam

Figure2.2: Deleting an item

If the item in cell 5 (38, in the figure) is deleted, then the item in 6 would shift into 5, the
item in 7 would shift into 6, and so on to the last occupied cell. During the deletion
process, once the item is located, the applet will shift down the contents of the higher-
indexed cells as you continue to press the Del button.

A deletion requires (assuming no duplicates are allowed) searching through an average
of N/2 elements, and then moving the remaining elements (an average of N/2 moves) to
fill up the resulting hole. This is N steps in all.

The Duplicates Issue

When you design a data storage structure, you need to decide whether items with
duplicate keys will be allowed. If you're talking about a personnel file and the key is an
employee number, then duplicates don't make much sense; there's no point in assigning
the same number to two employees. On the other hand, if the key value is last names,
then there's a distinct possibility several employees will have the same key value, so
duplicates should be allowed.

Of course, for the baseball players, duplicate numbers should not be allowed. It would be
hard to keep track of the players if more than one wore the same number.

The Array Workshop applet lets you select either option. When you use New to create a
new array, you're prompted to specify both its size and whether duplicates are permitted.
Use the radio buttons Dups OK or No Dups to make this selection.

If you're writing a data storage program in which duplicates are not allowed, you may
need to guard against human error during an insertion by checking all the data items in
the array to ensure that none of them already has the same key value as the item being
inserted. This is inefficient, however, and increases the number of steps required for an
insertion from one to N. For this reason, our applet does not perform this check.

Searching with Duplicates

Allowing duplicates complicates the search algorithm, as we noted. Even if it finds a
match, it must continue looking for possible additional matches until the last occupied
cell. At least this is one approach; you could also stop after the first match. It depends on
whether the question is "Find me everyone with blue eyes" or "Find me someone with
blue eyes."

When the Dups OK button is selected, the applet takes the first approach, finding all
items matching the search key. This always requires N steps, because the algorithm
must go all the way to the last occupied cell.

-32-

Insertion with Duplicates

Insertion is the same with duplicates allowed as when they're not: a single step inserts
the new item. But remember, if duplicates are not allowed, and there's a possibility the
user will attempt to input the same key twice, you may need to check every existing item
before doing an insertion.

Deletion with Duplicates

Deletion may be more complicated when duplicates are allowed, depending on exactly
how "deletion" is defined. If it means to delete only the first item with a specified value,
then, on the average, only N/2 comparisons and N/2 moves are necessary. This is the
same as when no duplicates are allowed.

But if deletion means to delete every item with a specified key value, then the same
operation may require multiple deletions. This will require checking N cells and (probably)
moving more than N/2 cells. The average depends on how the duplicates are distributed
throughout the array.

The applet assumes this second meaning and deletes multiple items with the same key.
This is complicated, because each time an item is deleted, subsequent items must be
shifted farther. For example, if three items are deleted, then items beyond the last
deletion will need to be shifted three spaces. To see how this works, set the applet to
Dups OK and insert three or four items with the same key. Then try deleting them.

Table 2.1 shows the average number of comparisons and moves for the three
operations, first where no duplicates are allowed and then where they are allowed. N is
the number of items in the array. Inserting a new item counts as one move.

You can explore these possibilities with the Array Workshop applet.

Table 2.1: Duplicates OK Versus No Duplicates

No Duplicates Duplicates OK

Search N/2 comparisons N comparisons

Insertion No comparisons, one move No comparisons, one move

Deletion N/2 comparisons, N/2 N comparisons, more than
moves N/2 moves

The difference between N and N/2 is not usually considered very significant, except when
fine-tuning a program. Of more importance, as we'll discuss toward the end of this
chapter, is whether an operation takes one step, N steps, log(N) steps, or N e2 steps.

Not Too Swift

One of the significant things to notice when using the Array applet is the slow and
methodical nature of the algorithms. With the exception of insertion, the algorithms involve
stepping through some or all of the cells in the array. Different data structures offer much

-33 .

faster (but more complex) algorithms. We'll see one, the binary search on an ordered array,
later in this chapter, and others throughout this book.

The Basics of Arrays in Java

The preceding section showed graphically the primary algorithms used for arrays. Now
we'll see how to write programs to carry out these algorithms, but we first want to cover a
few of the fundamentals of arrays in Java.

If you're a Java expert, you can skip ahead to the next section, but even C and C++
programmers should stick around. Arrays in Java use syntax similar to that in C and C++
(and not that different from other languages), but there are nevertheless some unique
aspects to the Java approach.

Creating an Array

As we noted in_Chapter 1, there are two kinds of data in Java: primitive types (such as
int and double), and objects. In many programming languages (even object-oriented
ones like C++) arrays are a primitive type, but in Java they're treated as objects.
Accordingly you must use the new operator to create an array:

int[] intArray; // defines a reference to an array
intArray = new int[100]; // creates the array, and
// sets intArray to refer to it

or the equivalent single-statement approach:
int[] intArray = new int[100];

The [] operator is the sign to the compiler we're naming an array object and not an
ordinary variable. You can also use an alternative syntax for this operator, placing it after
the name instead of the type:

int intArray([] = new int[100]; // alternative syntax

However, placing the [] after the int makes it clear that the [] is part of the type, not
the name.

Because an array is an object, its name—intArray in the code above—is a reference
to an array; it's not the array itself. The array is stored at an address elsewhere in
memory, and intArray holds only this address.

Arrays have a 1length field, which you can use to find the size, in bytes, of an array:

int arraylength = intArray.length; // find array length

Remember that this is the total number of bytes occupied by the array, not the number of
data items you have placed in it. As in most programming languages, you can't change
the size of an array after it's been created.

Accessing Array Elements

Array elements are accessed using square brackets. This is similar to how other
languages work:

-34 -

temp = intArray([3]; // get contents of fourth element of array
intArray[7] = 66; // insert 66 into the eighth cell

Remember that in Java, as in C and C++, the first element is numbered 0, so that the
indices in an array of 10 elements run from 0 to 9.

If you use an index that's less than 0 or greater than the size of the array less 1, you'll get
the "Array Index Out of Bounds" runtime error. This is an improvement on C and C++,
which don't check for out-of-bounds indices, thus causing many program bugs.

Initialization

Unless you specify otherwise, an array of integers is automatically initialized to 0 when
it's created. Unlike C++, this is true even of arrays defined within a method (function). If
you create an array of objects, like this:

autoData[] carArray = new autoDatal[4000];

then, until they're given explicit values, the array elements contain the special null
object. If you attempt to access an array element that contains nul1, you'll get the
runtime error "Null Pointer Assignment." The moral is to make sure you assign something
to an element before attempting to access it.

You can initialize an array of a primitive type to something besides 0 using this syntax:
int[] intArray = { O, 3, 6, 9, 12, 15, 18, 21, 24, 27 };

Perhaps surprisingly, this single statement takes the place of both the reference
declaration and the use of new to create the array. The numbers within the curly braces
are called the initialization list. The size of the array is determined by the number of
values in this list.

An Array Example

Let's look at some example programs that show how an array can be used. We'll start
with an old-fashioned procedural version, and then show the equivalent objectoriented
approach. Listing 2.1 shows the old-fashioned version, called array.java.

Listing 2.1 array.java

// array.java
// demonstrates Java arrays
// to run this program: C>java ArrayApp
import java.io.*; // for I/0
[/77777777777777777/7777777777777/77777777777777777777777777777777
class ArrayApp

{

public static void main(String[] args) throws IOException

{

int[] arr; // reference

arr = new int[100]; // make array

int nElems = 0; // number of items

int j; // loop counter

int searchKey; // key of item to search for

-35-

arr[0] = 77; // insert 10 items
arr[1l] = 99;
arr([2] = 44;
arr[3] = 55;
arr[4] = 22;
arr[5] = 88;
arr[6] = 11;
arr[7] = 00;
arr[8] = 66;
arr[9] = 33;
nElems = 10; // now 10 items in array
/m e
for (§=0; j<nElems; Jj++) // display items
System.out.print (arr[j] + " ");
System.out.println("");
e
searchKey = 66; // find item with key 66
for (j=0; j<nElems; 7j++) // for each element,
if (arr[j] == searchKey) // found item?
break; // yes, exit before end
if (j == nElems) // at the end?
System.out.println("Can't find " + searchKey); // yes
else
System.out.println ("Found " + searchKey); // no
et e
searchKey = 55; // delete item with key 55
for (j=0; j<nElems; j++) // look for it
if (arr[j] == searchKey)
break;
for (int k=j; k<nElems; k++) // move higher ones
down
arr[k] = arr[k+1];
nElems--; // decrement size
e
for (j=0; j<nElems; Jj++) // display items
System.out.print (arr([j] + " ");
System.out.println("");

} // end main|()
} // end class ArrayApp

In this program, we create an array called arr, place 10 data items (kids' numbers) in it,
search for the item with value 66 (the shortstop, Louisa), display all the items,remove the
item with value 55 (Freddy, who had a dentist appointment), and then display the
remaining nine items. The output of the program looks like this:

-36 -

77 99 44 55 22 88 11 0 66 33
Found 66
77 99 44 22 88 11 0 66 33

The data we're storing in this array is type int. We've chosen a primitive type to simplify
the coding. Generally the items stored in a data structure consist of several fields, so they
are represented by objects rather than primitive types. We'll see an example of this
toward the end of this chapter.

Insertion
Inserting an item into the array is easy; we use the normal array syntax
arr[0] = 77;

We also keep track of how many items we've inserted into the array with the nElems
variable.

Searching

The searchKey variable holds the value we're looking for. To search for an item, we
step through the array, comparing searchKey with each element. If the loop variable -
reaches the last occupied cell with no match being found, then the value isn't in the array.
Appropriate messages are displayed: "Found 66" or "Can't find 27."

Deletion

Deletion begins with a search for the specified item. For simplicity we assume (perhaps
rashly) that the item is present. When we find it, we move all the items with higher index
values down one element to fill in the "hole" left by the deleted element, and we
decrement nElems. In a real program, we'd also take appropriate action if the item to be
deleted could not be found.

Display

Displaying all the elements is straightforward: we step through the array, accessing each
one with arr [j] and displaying it.

Program Organization

The organization of array. java leaves something to be desired. There is only one
class, ArrayApp, and this class has only one method, main (). The program is
essentially an old-fashioned procedural program. Let's see if we can make it easier to
understand (among other benefits) by making it more object-oriented.

We're going to provide a gradual introduction to an object-oriented approach, using two
steps. In the first, we'll separate the data storage structure (the array) from the rest of the
program. This remaining part of the program will become a user of the structure. In the
second step, we'll improve the communication between the storage structure and its user.

Dividing a Program into Classes

The array.java program essentially consisted of one big method. We can reap many
benefits by dividing the program into classes. What classes? The data storage structure
itself is one candidate, and the part of the program that uses this data structure is

-37 -

another. By dividing the program into these two classes we can clarify the functionality of
the program, making it easier to design and understand (and in real programs to modify
and maintain).

In array.java we used an array as a data storage structure, but we treated it simply as
a language element. Now we'll encapsulate the array in a class, called LowArray. We'll
also provide class methods by which objects of other classes (the LowArrayApp class in
this case) can access the array. These methods allow communication between
LowArray and LowArrayApp.

Our first design of the LowArray class won't be entirely successful, but it will
demonstrate the need for a better approach. The lowArray.java program in Listing 2.2
shows how it looks.

Listing 2.2 The lowArray.java Program

// lowArray.java

// demonstrates array class with low-level interface

// to run this program: C>java LowArrayApp

import java.io.*; // for I/0

LI 7 i i i i i i 7777777777 7777707777777777777777777777

class LowArray

{

private doublel[] a; // ref to array a

public LowArray(int size) // constructor

{

a = new double[size];

// put element into array
public void setElem(int index, double value)

{
al[index] = wvalue;

}

public double getElem(int index) // get element from array
{

return al[index];

}

} // end class LowArray
LI P i i i i 777777777 7777777777777777777777

class LowArrayApp
{

public static void main(String[] args)

{

LowArray arr; // reference

arr = new LowArray(100); // create LowArray object
int nElems = 0; // number of items in array
int j; // loop variable
arr.setElem (0, 77); // insert 10 items

arr.setElem(1l, 99);

-38 -

arr.setElem (2, 44);
arr.setElem (3, 55);
arr.setElem (4, 22);
arr.setElem(5, 88);
arr.setElem(6, 11);
arr.setElem(7, 00);
arr.setElem (8, 66);
arr.setElem (9, 33);
nElems = 10; // now 10 items in array
et
for (§=0; j<nElems; Jj++) // display items
System.out.print (arr.getElem(j) + " ");
System.out.println("");
/e
int searchKey = 26; // search for data item
for (j=0; j<nElems; j++) // for each element,
if (arr.getElem(j) == searchKey) // found item?
break;
if(j == nElems) // no
System.out.println("Can't find " + searchKey);
else // yes
System.out.println ("Found " + searchKey);
e
// delete value 55
for (j=0; j<nElems; 7j++) // look for it
if (arr.getElem(j) == 55)
break;
for (int k=j; k<nElems; k++) // move higher ones
down
arr.setElem(k, arr.getElem(k+1l));
nElems--; // decrement size
/e
for (§7=0; j<nElems; Jj++) // display items
System.out.print (arr.getElem(j) + " ");
System.out.println("");

} // end main|()
} // end class LowArrayApp

The output from this program is similar to that from array. java, except that we try to
find a non-existent key value (26) before deleting the item with the key value 55:

77 99 44 55 22 88 11 0 66 33
Can't find 26

77 99 44 22 88 11 0 66 33

-39

Classes LowArray and LowArrayApp

In lowArray. java, we essentially wrap the class LowArray around an ordinary Java
array. The array is hidden from the outside world inside the class; it's private, so only
LowArray class methods can access it. There are three LowArray methods:
setElem () and getElem (), which insert and retrieve an element, respectively; and a
constructor, which creates an empty array of a specified size.

Another class, LowArrayApp, creates an object of the LowArray class and uses it to
store and manipulate data. Think of LowArray as a tool, and LowArrayApp as a user of
the tool. We've divided the program into two classes with clearly defined roles. This is a
valuable first step in making a program object-oriented.

A class used to store data objects, as is LowArray in the lowArray. java program, is
sometimes called a container class. Typically, a container class not only stores the data but
provides methods for accessing the data, and perhaps also sorting it and performing other
complex actions on it.

Class Interfaces

We've seen how a program can be divided into separate classes. How do these classes
interact with each other? Communication between classes, and the division of
responsibility between them, are important aspects of object-oriented programming.

This is especially true when a class may have many different users. Typically a class can
be used over and over by different users (or the same user) for different purposes. For
example, it's possible that someone might use the LowArray class in some other
program to store the serial numbers of their traveler's checks. The class can handle this
just as well as it can store the numbers of baseball players.

If a class is used by many different programmers, the class should be designed so that
it's easy to use. The way that a class user relates to the class is called the class interface.
Because class fields are typically private, when we talk about the interface we usually
mean the class methods: what they do and what their arguments are. It's by calling these
methods that a class user interacts with an object of the class. One of the important
advantages conferred by object-oriented programming is that a class interface can be
designed to be as convenient and efficient as possible. Figure 2.3 is a fanciful
interpretation of the LowArray interface.

Not So Convenient

The interface to the LowArray class in lowArray.java is not particularly convenient.
The methods setElem () and getElem () operate on a low conceptual level, performing
exactly the same tasks as the [] operator in an ordinary Java array. The class user,
represented by the main () method in the LowArrayApp class, ends up having to carry
out the same low-level operations it did in the non-class version of an array in the
array.java program. The only difference was that it related to setElem () and
getElem () instead of the [] operator. It's not clear that this is an improvement.

- 40 -

Private Data

I ice

Figure 2.3: The LowArray interface

Also notice that there's no convenient way to display the contents of the array. Somewhat
crudely, the LowArrayApp class simply uses a for loop and the getElem () method for
this purpose. We could avoid repeated code by writing a separate method for
lowArrayApp that it could call to display the array contents, but is it really the
responsibility of the 1owArrayApp class to provide this method?

Thus lowArray.java demonstrates how you can divide a program into classes, but it
really doesn't buy us too much in practical terms. Let's see how to redistribute
responsibilities between the classes to obtain more of the advantages of OOP.

Who's Responsible for What?

Inthe lowArray.java program, the main () routine in the LowArrayApp class, the
user of the data storage structure must keep track of the indices to the array. For some
users of an array who need random access to array elements and don't mind keeping
track of the index numbers, this arrangement might make sense. For example, sorting an
array, as we'll see in the_next chapter, can make efficient use of this direct "hands-on"
approach.

However, in a typical program the user of the data storage device won't find access to the
array indices to be helpful or relevant. In the Cardfile program in Chapter 1, for example,
if the card data were stored in an array, and you wanted to insert a new card, it would be
easier not to have to worry about exactly where in the array it is going

to go.

The highArray. java Example

Our next example program shows an improved interface for the storage structure class,
called HighArray. Using this interface, the class user (the HighArrayapp class) no
longer needs to think about index numbers. The setElem () and getElem () methods
are gone, replaced by insert (), find (), and delete (). These new methods don't
require an index number as an argument, because the class takes responsibility for
handling index numbers. The user of the class (HighArrayApp) is free to concentrate
on the what instead of the how: what's going to be inserted, deleted, and accessed,
instead of exactly how these activities are carried out.

Figure 2.4 shows the HighArray interface and Listing 2.3 shows the highArray.java
program.

-4] -

FTIEEE LRalL

35* o
<
L

pighprriLt

.
Imerince

Figure 2.4: The HighArray interface

Listing 2.3 The highArray.java Program

// highArray.java
// demonstrates array class with high-level interface
// to run this program: C>java HighArrayApp
import java.io.*; // for I/0
JIT17777 7777777777777 7777777777777 777777777777777777777777777777
class HighArray
{

private double[] a; // ref to array a
private int nElems; // number of data items
/e
public HighArray (int max) // constructor
{
a = new double[max]; // create the array
nElems = 0; // no items yet
}
/mm e
public boolean find(double searchKey)
{ // find specified value
int j;
for (3j=0; j<nElems; J++) // for each element,
if(a[j] == searchKey) // found item?
break; // exit loop before end
if (7 == nElems) // gone to end?
return false; // yes, can't find it
else
return true; // no, found it

} // end find()

public void insert (double value) // put element into array

{

a[nElems] = value; // insert it

-42 -

nElems++;

// increment size

public boolean delete (double value)

{

int j;
for (j=0; j<nElems; j++)
if(value == al[j])
break;

if (j==nElems)
return false;
else

{

for (int k=j; k<nElems; k++)
alk] = alk+1];
nElems--;
return true;
}
} // end delete()
/)= m
public void display ()
{
for (int j=0; j<nElems; j++)
System.out.print(al[j] + "
System.out.println("");

} // end class HighArray

// look for it

//

can't find it
// found it
//

move higher ones down

decrement size

//

displays array contents

// for each element,

")y; // display it

L1117 77 7007777777077 7 777707777777 77077777777777777777777777777777

class HighArrayApp
{

public static void main (String[]

{

int maxSize

100;

HighArray arr;

arr

new HighArray (maxSize);
arr.insert
arr.insert
arr.i
arr.
arr.insert
arr.insert
arr.insert

arr.insert

args)

//
//
//

array size
reference to array
create the array

//

insert 10 items

-43 -

arr.insert (66) ;

arr.insert (33);
arr.display () ; // display items

int searchKey = 35; // search for item
if (arr.find(searchKey))

System.out.println ("Found " + searchKey);
else

System.out.println("Can't find " + searchKey);

arr.delete (00) ; // delete 3 items
arr.delete (55);
arr.delete (99);

arr.display(); // display items again
} // end main/()

} // end class HighArrayApp

The HighArray class is now wrapped around the array. Inmain (), we create an array
of this class and carry out almost the same operations as in the 1owArray.java
program: we insert 10 items, search for an item—one that isn't there—and display the
array contents. Because it's so easy, we delete three items (0, 55, and 99) instead of
one, and finally display the contents again. Here's the output:

77 99 44 55 22 88 11 0 66 33
Can't find 35
77 44 22 88 11 66 33

Notice how short and simple main () is. The details that had to be handled by main () in
lowArray.java are now handled by HighArray class methods.

In the HighArray class, the £ind () method looks through the array for the item whose
key value was passed to it as an argument. It returns true or false, depending on whether
it finds the item or not.

The insert () method places a new data item in the next available space in the array. A
field called nE1ems keeps track of the number of array cells that are actually filled with
data items. The main () method no longer needs to worry about how many items are in
the array.

The delete () method searches for the element whose key value was passed to it as an
argument, and when it finds it, shifts all the elements in higher index cells down one cell,
thus writing over the deleted value; it then decrements nElems.

We've also included a display () method, which displays all the values stored in the
array.

The User's Life Made Easier

In lowArray.java, the code in main () to search for an item took eight lines; in
highArray. java, it takes only one. The class user, the HighArrayApp class, need
not worry about index numbers or any other array details. Amazingly, the class user does
not even need to know what kind of data structure the HighArray class is using to store

_44 -

the data. The structure is hidden behind the interface. In fact, in the next section, we'll
see the same interface used with a somewhat different data structure.

Abstraction

The process of separating the how from the what—how an operation is performed inside a
class, as opposed to what's visible to the class user—is called abstraction. Abstraction
is an important aspect of software engineering. By abstracting class functionality we make
it easier to design a program, because we don't need to think about implementation details
at too early a stage in the design process.

The Ordered Workshop Applet

Imagine an array in which the data items are arranged in order of ascending key values;
that is, with the smallest value at index 0, and each cell holding a value larger than the
cell below. Such an array is called an ordered array.

When we insert an item into this array, the correct location must be found for the
insertion: just above a smaller value and just below a larger one. Then all the larger
values must be moved up to make room.

Why would we want to arrange data in order? One advantage is that we can speed up
search times dramatically using a binary search.

Start the Ordered Workshop applet. You'll see an array; it's similar to the one in the Array
Workshop applet, but the data is ordered. Figure 2.5 shows how this looks.

In the ordered array we've chosen to not allow duplicates. As we saw earlier, this speeds
up searching somewhat but slows down insertion.

[Appsbet Viewat: Didered_chars

Fppisl

o | | o | | Dat] T b [T

™ Wy

Appiet cisbad

Figure 2.5: The Ordered Workshop applet

Linear Search

Two search algorithms are available for the Ordered Workshop applet: linear and binary.
Linear search is the default. Linear searches operate in much the same way as the
searches in the unordered array in the Array applet: the red arrow steps along, looking for
a match. The difference is that in the ordered array, the search quits if an item with a
larger key is found.

Try this out. Make sure the Linear radio button is selected. Then use the Find button to
search for a non-existent value that, if it were present, would fit somewhere in the middle
of the array. In Figure 2.5, this might be 400. You'll see that the search terminates when
the first item larger than 400 is reached, it's 427 in the figure. The algorithm knows there's

- 45 -

no point looking further.

Try out the Ins and Del buttons as well. Use Ins to insert an item with a key value that will
go somewhere in the middle of the existing items. You'll see that insertion requires
moving all the items with larger key values larger than the item being inserted.

Use the Del button to delete an item from the middle of the array. Deletion works much
the same as it did in the Array applet, shifting items with higher index numbers down to fill
in the hole left by the deletion. In the ordered array, however, the deletion algorithm can
quit partway through if it doesn't find the item, just as the search routine can.

Binary Search

The payoff for using an ordered array comes when we use a binary search. This kind of
search is much faster than a linear search, especially for large arrays.

The Guess-a-Number Game

Binary search uses the same approach you did as a kid (if you were smart) to guess a
number in the well-known children's guessing game. In this game, a friend asks you to
guess a number she's thinking of between 1 and 100. When you guess a number, she'll
tell you one of three things: your guess is larger than the number she's thinking of, it's
smaller, or you guessed correctly.

To find the number in the fewest guesses, you should always start by guessing 50. If she
says your guess is too low, you deduce the number is between 51 and 100, so your next
guess should be 75 (halfway between 51 and 100). If she says it's too high, you deduce
the number is between 1 and 49, so your next guess should be 25.

Each guess allows you to divide the range of possible values in half. Finally, the range is
only one number long, and that's the answer.

Notice how few guesses are required to find the number. If you used a linear search,
guessing first 1, then 2, then 3, and so on, it would take you, on the average, 50 guesses
to find the number. In a binary search each guess divides the range of possible values in
half, so the number of quesses required is far fewer. Table 2.2 shows a game session
when the number to be guessed is 33.

Table 2.2: Guessing a Number

Range of Possible

Step Number Number Guessed Result Values
]
0 1-100

1 50 Too high 1-49

2 25 Too low 26-49

3 37 Too high 26-36

4 31 Too low 32-36

- 46 -

5 34 Too high 32-33
6 32 Too low 33-33

7 33 Correct

The correct number is identified in only seven guesses. This is the maximum. You might
get lucky and guess the number before you've worked your way all the way down to a
range of one. This would happen if the number to be guessed was 50, for example, or 34.

Binary Search in the Ordered Workshop Applet

To perform a binary search with the Ordered Workshop applet, you must use the New
button to create a new array. After the first press you'll be asked to specify the size of the
array (maximum 60) and which kind of searching scheme you want: linear or binary.
Choose binary by clicking the Binary radio button. After the array is created, use the Fill
button to fill it with data items. When prompted, type the amount (not more than the size
of the array). A few more presses fills in all the items.

Once the array is filled, pick one of the values in the array and see how the Find button
can be used to locate it. After a few preliminary presses, you'll see the red arrow pointing
to the algorithm's current guess, and you'll see the range shown by a vertical blue line
adjacent to the appropriate cells. Figure 2.6 depicts the situation when the range is the
entire array.

At each press of the Find button the range is halved and a new guess is chosen in the
middle of the range. Figure 2.7 shows the next step in the process.

Even with a maximum array size of 60 items, a half-dozen button presses suffices to
locate any item.

Try using the binary search with different array sizes. Can you figure out how many steps
are necessary before you run the applet? We'll return to this question in the last section
of this chapter.

Notice that the insertion and deletion operations also employ the binary search (when it's
selected). The place where an item should be inserted is found with a binary search, as is
an item to be deleted. In this applet, items with duplicate keys are not permitted.

anlnl Yierwnt: Dhidlerad class

A=t

" Linmm

|] |] 0] L e

£

HEdE

Applet clated

Figure 2.6: Initial range in binary search

-47 -

=8 Appiet Wismes ledarnd clase

fuppied
Hom | Fil| ins | Find | Dl O bmmm e [55
& Hnsy
Chacking indax 22, rangn = 15tn 33
L1} 36
1% En
2 an
2 n B
4| =2
5
& 582
T
B
LI
0450
m
dppiel starind

Figure 2.7: Range in step 2 of binary search

Java Code for an Ordered Array

Let's examine some Java code that implements an ordered array. We'll use the
OrdArray class to encapsulate the array and its algorithms. The heart of this class is the
find () method, which uses a binary search to locate a specified data item. We'll
examine this method in detail before showing the complete program.

Binary Search with the £ind () Method

The find () method searches for a specified item by repeatedly dividing in half the
range of array elements to be considered. Here's how this method looks:

public int find(double searchKey)
{

int lowerBound

0;
int upperBound = nElems-1;
int curln;

while (true)

{

curIn = (lowerBound + upperBound) / 2;
if (a[curIn]==searchKey)
return curln; // found it
else if (lowerBound > upperBound)
return nElems; // can't find it
else // divide range

{
if (alcurIn] < searchKey)
lowerBound = curIn + 1; // it's in upper half
else
upperBound = curIn - 1; // it's in lower half
} // end else divide range
} // end while

} // end find()

The method begins by setting the 1owerBound and upperBound variables to the first
and last occupied cells in the array. This specifies the range where the item we're looking
for, searchKey, may be found. Then, within the while loop, the current index, curiIn,

- 48 -

is set to the middle of this range.

If we're lucky, curIn may already be pointing to the desired item, so we first check if this
is true. If it is, we've found the item so we return with its index, curIn.

Each time through the loop we divide the range in half. Eventually it will get so small it
can't be divided any more. We check for this in the next statement: If 1owerBound is
greater than upperBound, the range has ceased to exist. (When 1lowerBound equals
upperBound the range is one and we need one more pass through the loop.) We can't
continue the search without a valid range, but we haven't found the desired item, so we
return nElems, the total number of items. This isn't a valid index, because the last filled
cellin the array is nElems—-1. The class user interprets this value to mean that the item
wasn't found.

If curIn is not pointing at the desired item, and the range is still big enough, then we're
ready to divide the range in half. We compare the value at the current index, a [curIn],
which is in the middle of the range, with the value to be found, searchkey.

If searchKey is larger, then we know we should look in the upper half of the range.
Accordingly, we move lowerBound up to curIn.

Actually we move it one cell beyond curIn, because we've already checked curin itself
at the beginning of the loop.

If searchKey is smaller than a[curIn], we know we should look in the lower half of the
range. So we move upperBound down to one cell below curIn. Figure 2.8 shows how
the range is altered in these two situations.

lowerBoumd owrin uppeerflound

v v

w

I B upperBoind : : howmBound uppeaDommsd
omln i cxln

* YT v ¥,

& &

i g il Mew range if
search ev-af ciala| searchE ry==al curln]

Figure 2.8: Dividing the range in a binary search

The OrdArray Class

In general, the orderedArray.java program is similar to highArray. java. The main
difference is that £ind () uses a binary search, as we've seen.

We could have used a binary search to locate the position where a new item will be
inserted. This involves a variation on the £ind () routine, but for simplicity we retain the
linear search in insert (). The speed penalty may not be important because, as we've
seen, an average of half the items must be moved anyway when an insertion is
performed, so insertion will not be very fast even if we locate the item with a binary
search. However, for the last ounce of speed, you could change the initial part of
insert () to a binary search (as is done in the Ordered Workshop applet). Similarly, the
delete () method could call find () to figure out the location of the item to be deleted.

- 49 -

The OrdArray class includes a new size () method, which returns the number of data
items currently in the array. This is helpful for the class user, main (), when it calls
find (). If £ind () returns nElems, which main () can discover with size (), then the
search was unsuccessful. Listing 2.4 shows the complete listing for the

orderedArray.java program.

Listing 2.4 The orderedArray.java Program

// orderedArray.java
// demonstrates ordered array class

// to run this program: C>java OrderedApp

import java.io.*; //

for I/0

L1177 0007777770777 777707777777 777777777 777777777777777777777777

class OrdArray

{

private double[] a; //
private int nElems; //
[/ mmm e
public OrdArray (int max) //
{
a = new double[max]; //
nElems = 0;
}
[/ mmm e

public int size()
{ return nElems; }

public int find(double searchKey)

int lowerBound = 0;
nElems-1;

int upperBound

int curlIn;

while (true)

{

ref to array a
number of data items

constructor

create array

curIn = (lowerBound + upperBound) / 2;
if (a[curIn]==searchKey)
return curln; // found it else

if (lowerBound > upperBound)
return nElems;

else
{
if (alcurIn] < searchKey)
lowerBound = curIn + 1;
else
upperBound = curlIn - 1;

} // end else divide range

} // end while

-50 -

// can't find it
// divide range

// it's in upper half

// it's in lower half

} // end find()

public void insert (double value)

{

int j;

for (3j=0; j<nElems; j++) //
if(al[j] > value) //

break;

for (int k=nElems; k>j; k--) //
alk] = alk-1];

alj]l = value; //

nElems++; //

} // end insert ()

public boolean delete (double value)

{
int j = find(value);
if (j==nElems) //

return false;

else //
{
for (int k=j; k<nElems; k++) //
alk] = alk+1];
nElems--; //
return true;
}
} // end delete()
J =
public void display() //
{
for (int j=0; j<nElems; j++)
System.out.print(al[j] + "™ ");

System.out.println("");

} // end class OrdArray

put element into array

find where it goes

(linear search)

move higher ones up

insert it

increment size

can't find it

found it

move higher ones down

decrement size

displays array contents

// for each element,
// display it

L1177 77 7007777777070 7777777777777 777777777 7777777777777777777777

class OrderedApp
{

public static void main(Stringl]

{

int maxSize = 100; //
//

//

OrdArray arr;

arr = new OrdArray (maxSize);

-51 -

args)

array size
reference to array

create the array

arr.insert ; // insert 10 items
arr.insert
arr.insert
arr.insert

arr.insert

(77
(99
(44
(55
(22
arr.insert (88
arr.insert (11
arr.insert (00
arr.insert (66

(33

arr.insert

int searchKey = 55; // search for item
if(arr.find(searchKey) != arr.size())
System.out.println ("Found " + searchKey);
else
System.out.println("Can't find " + searchKey);

arr.display () ; // display items

arr.delete (00); // delete 3 items
arr.delete (55);
arr.delete (99);

arr.display () ; // display items again
} // end main ()

} // end class OrderedApp

Advantages of Ordered Arrays

What have we gained by using an ordered array? The major advantage is that search
times are much faster than in an unordered array. The disadvantage is that insertion
takes longer, because all the data items with a higher key value must be moved up to
make room. Deletions are slow in both ordered and unordered arrays, because items
must be moved down to fill the hole left by the deleted item.

Ordered arrays are therefore useful in situations in which searches are frequent, but
insertions and deletions are not. An ordered array might be appropriate for a database of
company employees, for example. Hiring new employees and laying off existing ones
would probably be infrequent occurrences compared with accessing an existing
employee's record for information or updating it to reflect changes in salary, address, and
S0 on.

A retail store inventory, on the other hand, would not be a good candidate for an ordered
array because the frequent insertions and deletions, as items arrived in the store and were
sold, would run slowly.

Logarithms

In this section we'll explain how logarithms are used to calculate the number of steps
necessary in a binary search. If you're a math major, you can probably skip this section. If
math makes you break out in a rash, you can also skip it, except for taking a long, hard
look at Table 2.3.

-5

We've seen that a binary search provides a significant speed increase over a linear
search. In the number guessing game, with a range from 1 to 100, it takes a maximum of
seven guesses to identify any number using a binary search; just as in an array of 100
records, it takes seven comparisons to find a record with a specified key value. How
about other ranges? Table 2.3 shows some representative ranges and the number of
comparisons needed for a binary search.

Table 2.3: Comparisons needed in Binary Search

ange Comparisons Needed
]

10 4

100 7

1,000 10

10,000 14

100,000 17

1,000,000 20

10,000,000 24

100,000,000 27

1,000,000,000 30

Notice the differences between binary search times and linear search times. For very
small numbers of items, the difference isn't dramatic. Searching 10 items would take an
average of five comparisons with a linear search (N/2), and a maximum of four
comparisons with a binary search. But the more items there are, the bigger the
difference. With 100 items, there are 50 comparisons in a linear search, but only seven in
a binary search. For 1,000 items, the numbers are 500 versus 10, and for 1,000,000
items, they're 500,000 versus 20. We can conclude that for all but very small arrays, the
binary search is greatly superior.

The Equation

You can verify the results of Table 2.3 by repeatedly dividing a range (from the first
column) in half until it's too small to divide further. The number of divisions this process
requires is the number of comparisons shown in the second column.

Repeatedly dividing the range by two is an algorithmic approach to finding the number of
comparisons. You might wonder if you could also find the number using a simple
equation. Of course, there is such an equation and it's worth exploring here because it
pops up from time to time in the study of data structures. This formula involves
logarithms. (Don't panic yet.)

-53 -

The numbers in Table 2.3 leave out some interesting data. They don't answer questions
like, "What is the exact size of the maximum range that can be searched in five steps?"
To solve this, we must create a similar table, but one that starts at the beginning, with a
range of one, and works up from there by multiplying the range by two each time. Table
2.4 shows how this looks for the first ten steps.

Table 2.4: Powers of Two

Step s, Same as log2(r) Ranger Range Expressed as Power of 2 (2°)
]

0 1 2"
1 2 2!
2 4 2
3 8 2}
4 16 2!
5 32 2°
6 64 2°
7 128 2’
8 256 28
9 512 2°
10 1024 210

For our original problem with a range of 100, we can see that six steps doesn't produce a
range quite big enough (64), while seven steps covers it handily (128). Thus, the seven
steps that are shown for 100 items in Table 2.3 are correct, as are the 10 steps for a
range of 1000.

Doubling the range each time creates a series that's the same as raising two to a power,
as shown in the third column of Table 2.4. We can express this as a formula. If s
represents steps (the number of times you multiply by two—that is, the power to which
two is raised) and r represents the range, then the equation is

If you know s, the number of steps, this tells you r, the range. For example, if s is 6, the
range is 26, or 64.

The Opposite of Raising Two to a Power

-54 -

But our original question was the opposite: given the range, we want to know how many
comparisons it will take to complete a search. That is, given r, we want an equation that
gives us s.

Raising something to a power is the inverse of a logarithm. Here's the formula we want,
expressed with a logarithm:

s = logz2(r)

This says that the number of steps (comparisons) is equal to the logarithm to the base 2
of the range. What's a logarithm? The base-2 logarithm of a number r is the number of
times you must multiply two by itself to get r. In Table 2.4, we show that the numbers in
the first column, s, are equal to log2(r).

How do you find the logarithm of a number without doing a lot of dividing? Pocket
calculators and most computer languages have a log function. This is usually log to the
base 10, but you can convert easily to base 2 by multiplying by 3.322. For example,
log10(100) = 2, so log2(100) = 2 times 3.322, or 6.644. Rounded up to the whole number
7, this is what appears in the column to the right of 100 in Table 2.4.

In any case, the point here isn't to calculate logarithms. It's more important to understand
the relationship between a number and its logarithm. Look again at Table 2.3, which
compares the number of items and the number of steps needed to find a particular item.
Every time you multiply the number of items (the range) by a factor of 10, you add only
three or four steps (actually 3.322, before rounding off to whole numbers) to the number
needed to find a particular element. This is because, as a number grows larger, its
logarithm doesn't grow nearly as fast. We'll compare this logarithmic growth rate with that
of other mathematical functions when we talk about Big O notation later in this chapter.

Storing Objects

In the Java examples we've shown so far, we've stored primitive variables of type
double in our data structures. This simplifies the program examples, but it's not repre
sentative of how you use data storage structures in the real world. Usually, the data items
(records) you want to store are combinations of many fields. For a personnel record, you
would store last name, first name, age, Social Security number, and so forth. For a stamp
collection, you'd store the name of the country that issued the stamp, its catalog number,
condition, current value, and so on.

In our next Java example, we'll show how objects, rather than variables of primitive types,
can be stored.

The Person Class

In Java, a data record is usually represented by a class object. Let's examine a typical
class used for storing personnel data. Here's the code for the Person class:

class Person

{

private String lastName;
private String firstName;
private int age;

public Person(String last, String first, int a)
{ // constructor

-55-

lastName = last;
firstName = first;
age = a;

public void displayPerson ()
{

System.out.print (" Last name: " + lastName);
System.out.print (", First name: " + firstName);
System.out.println (", Age: " + age);
}
= e
public String getLast () // get last name

{ return lastName; }
} // end class Person

We show only three variables in this class, for a person's last name, first name, and age.
Of course, records for most applications would contain many additional fields.

A constructor enables a new Person object to be created and its fields initialized. The
displayPerson () method displays a Person object's data, and the getLast ()
method returns the Person's last name; this is the key field used for searches.

The classDataArray. java Program

The program that makes use of the Person class is similar to the highArray.java
program that stored items of type double. Only a few changes are necessary to adapt
that program to handle Person objects. Here are the major ones:

* The type of the array a is changed to Person.

* The key field (the last name) is now a String object, so comparisons require the
equals () method rather than the == operator. The getLast () method of Person
obtains the last name of a Person object, and equals () does the comparison:

if(a[j].getLast() .equals (searchName)) // found item?

* The insert () method creates a new Person object and inserts it in the array,
instead of inserting a double value.

The main () method has been modified slightly, mostly to handle the increased quantity
of output. We still insert 10 items, display them, search for one, delete three items, and
display them all again. Here's the listing for classbataArray.java:

// classDataArray.java

// data items as class objects

// to run this program: C>java ClassDataApp

import java.io.*; // for I/0

L1717 777777777777777/7777777777777/7777777777777/7777777777777777777
class Person

{

- 56 -

private String lastName;
private String firstName;

private int age;

public Person(String last, String first, int a)
{ // constructor

lastName = last;
firstName = first;

age = a;

public void displayPerson ()
{

System.out.print (" Last name: " + lastName);
System.out.print (", First name: " + firstName);
System.out.println (", Age: " + age);
}
e
public String getLast () // get last name

{ return lastName; }
} // end class Person

L1177 77 7007777777070 7777777777777 777777777 7777777777777777777777

class ClassDataArray

{

private Personl] a; // reference to array
private int nElems; // number of data items
/e
public ClassDataArray (int max) // constructor
{
a = new Person[max]; // create the array
nElems = 0; // no items yet
}
[
public Person find(String searchName)
{ // find specified value
int j;
for(j=0; j<nElems; j++) // for each element,
if(al[j].getlLast () .equals(searchName)) // found
item?
break; // exit loop before
end
if(j == nElems) // gone to end?
return null; // yes, can't find it

-57 -

else
return al[j]; // no, found it

} // end find()

// put Person into array
public void insert(String last, String first, int age)
{

a[nElems] = new Person(last, first, age);
nElems++; // 1increment size

array

/m e
public boolean delete(String searchName)
{ // delete Person from
int j;
for (j=0; j<nElems; j++) // look for it
if(alj].getlLast () .equals (searchName))
break;
if (j==nElems) // can't find it
return false;
else // found it
{
for (int k=j; k<nElems; k++) // shift down
alk] = alk+1];
nElems--; // decrement size
return true;
}
} // end delete()
/e
public void displayA() // displays array contents
{
for (int j=0; j<nElems; Jj++) // for each element,
al[j].displayPerson(); // display it
}
[

} // end class ClassDataArray

LTI r i i i 77777770 777777777707777777777777777777777

class ClassDataApp

{

public static void main(String[] args)
{
int maxSize = 100; // array size
ClassDataArray arr; // reference to array
arr = new ClassDataArray(maxSize); // create the array

-58 -

// insert 10 items
arr.insert ("Evans", "Patty", 24);
arr.insert ("Smith", "Lorraine", 37);
"Yee", "Tom", 43);
"Adams", "Henry", 63);
"Hashimoto", "Sato", 21);

(

(

arr.insert (

(

(
arr.insert ("Stimson", "Henry", 29);

(

(

(

(

arr.insert
arr.insert
arr.insert ("Velasquez", "Jose", 72);
arr.insert ("Lamarque", "Henry", 54);
arr.insert ("Vang", "Minh", 22);
arr.insert ("Creswell", "Lucinda", 18);

arr.displayA(); // display items

String searchKey = "Stimson"; // search for item
Person found;
found=arr.find (searchKey) ;
if (found != null)
{
System.out.print ("Found ") ;
found.displayPerson () ;
}
else
System.out.println("Can't find " + searchKey);

System.out.println ("Deleting Smith, Yee, and Creswell");
arr.delete ("Smith") ; // delete 3 items
arr.delete ("Yee");

arr.delete ("Creswell");

arr.displayA(); // display items again
} // end main|()

} // end class ClassDatalApp
Here's the output of this program:

Last name: Evans, First name: Patty, Age: 24

Last name: Smith, First name: Lorraine, Age: 37

Last name: Yee, First name: Tom, Age: 43

Last name: Adams, First name: Henry, Age: 63

Last name: Hashimoto, First name: Sato, Age: 21

Last name: Stimson, First name: Henry, Age: 29

Last name: Velasquez, First name: Jose, Age: 72

Last name: Lamarque, First name: Henry, Age: 54

Last name: Vang, First name: Minh, Age: 22

Last name: Creswell, First name: Lucinda, Age: 18
Found Last name: Stimson, First name: Henry, Age: 29
Deleting Smith, Yee, and Creswell

Last name: Evans, First name: Patty, Age: 24

Last name: Adams, First name: Henry, Age: 63

Last name: Hashimoto, First name: Sato, Age: 21

-59 -

Last name: Stimson, First name: Henry, Age: 29
Last name: Velasquez, First name: Jose, Age: 72
Last name: Lamarque, First name: Henry, Age: 54

Last name: Vang, First name: Minh, Age: 22

This program shows that class objects can be handled by data storage structures in much
the same way as primitive types. (Note that a serious program using the last name as a key
would need to account for duplicate last names, which would complicate the programming
as discussed earlier.)

Big O Notation

Automobiles are divided by size into several categories: subcompacts, compacts,
midsize, and so on. These categories provide a quick idea what size car you're talking
about, without needing to mention actual dimensions. Similarly, it's useful to have a
shorthand way to say how efficient a computer algorithm is. In computer science, this
rough measure is called Big O notation.

You might think that in comparing algorithms you would say things like "Algorithm A is
twice as fast as algorithm B," but in fact this sort of statement isn't too meaningful. Why
not? Because the proportion can change radically as the number of items changes.
Perhaps you increase the number of items by 50%, and now A is three times as fast as
B. Or you have half as many items, and A and B are now equal. What you need is a
comparison that's related to the number of items. Let's see how this looks for the
algorithms we've seen so far.

Insertion in an Unordered Array: Constant

Insertion into an unordered array is the only algorithm we've seen that doesn't depend on
how many items are in the array. The new item is always placed in the next available
position, at a[nElems], and nElems is then incremented. This requires the same
amount of time no matter how big N—the number of items in the array—is. We can say
that the time, T, to insert an item into an unsorted array is a constant K:

T =K

In a real situation, the actual time (in microseconds or whatever) required by the insertion
is related to the speed of the microprocessor, how efficiently the compiler has generated
the program code, and other factors. The constant K in the equation above is used to
account for all such factors. To find out what K is in a real situation, you need to measure
how long an insertion took. (Software exists for this very purpose.) K would then be equal
to that time.

Linear Search: Proportional to N

We've seen that, in a linear search of items in an array, the number of comparisons that
must be made to find a specified item is, on the average, half of the total number of
items. Thus, if N is the total number of items, the search time T is proportional to half of
N:

T=K*N /2

As with insertions, discovering the value of K in this equation would require timing a
search for some (probably large) value of N, and then using the resulting value of T to
calculate K. Once you knew K, then you could calculate T for any other value of N.

- 60 -

For a handier formula, we could lump the 2 into the K. Our new K is equal to the old K
divided by 2. Now we have

This says that average linear search times are proportional to the size of the array. If an
array is twice as big, it will take twice as long to search.

Binary Search: Proportional to log(N)
Similarly, we can concoct a formula relating T and N for a binary search:
T = K * log2(N)

As we saw earlier, the time is proportional to the base 2 logarithm of N. Actually, because
any logarithm is related to any other logarithm by a constant (3.322 to go from base 2 to
base 10), we can lump this constant into K as well. Then we don't need to specify the
base:

T =K * log(N)

Don't Need the Constant

Big O notation looks like these formulas, but it dispenses with the constant K. When
comparing algorithms you don't really care about the particular microprocessor chip or
compiler; all you want to compare is how T changes for different values of N, not what the
actual numbers are. Therefore, the constant isn't needed.

Big O notation uses the uppercase letter O, which you can think of as meaning "order of."
In Big O notation, we would say that a linear search takes O(N) time, and a binary search
takes O(log N) time. Insertion into an unordered array takes O(1), or constant time.
(That's the numeral 1 in the parentheses.)

Table 2.5: Running times in Big O Notation

Algorithm Running Time in Big O Notation

Linear search O(N)
Binary search O(log N)
Insertion in unordered array O(1)
Insertion in ordered array O(N)
Deletion in unordered array O(N)
Deletion in ordered array O(N)

-61 -

Figure 2.9: Graph of Big O times

Table 2.5 summarizes the running times of the algorithms we've discussed so far.

Figure 2.9 graphs some Big O relationships between time and number of items. Based
on this graph, we might rate the various Big O values (very subjectively) like this: O(1) is
excellent, O(log N) is good, O(N) is fair, and O(N e2) is poor. O(N e2) occurs in the
bubble sort and also in certain graph algorithms that we'll look at later in this book.

The idea in Big O notation isn't to give an actual figure for running time, but to convey
how the running times are affected by the number of items. This is the most meaningful
way to compare algorithms, except perhaps actually measuring running times in a real
installation.

Why Not Use Arrays for Everything?

They seem to get the job done, so why not use arrays for all data storage? We've already
seen some of their disadvantages. In an unordered array you can insert items quickly, in
O(1) time, but searching takes slow O(N) time. In an ordered array you can search
quickly, in O(logN) time, but insertion takes O(N) time. For both kinds of arrays, deletion
takes O(N) time, because half the items (on the average) must be moved to fill in the
hole.

It would be nice if there were data structures that could do everything—insertion,
deletion, and searching—quickly, ideally in O(1) time, but if not that, then in O(logN) time.
In the chapters ahead, we'll see how closely this ideal can be approached, and the price
that must be paid in complexity.

Another problem with arrays is that their size is fixed when the array is first created with
new. Usually when the program first starts, you don't know exactly how many items will
be placed in the array later on, so you guess how big it should be. If your guess is too
large, you'll waste memory by having cells in the array that are never filled. If your guess
is too small, you'll overflow the array, causing at best a message to the program's user,
and at worst a program crash.

Other data structures are more flexible and can expand to hold the number of items
inserted in them. The linked list, discussed in Chapter 5, "Linked Lists," is such a
structure.

We should mention that Java includes a class called vector that acts much like an array
but is expandable. This added capability comes at the expense of some loss of efficiency.

-62 -

You might want to try creating your own vector class. If the class user is about to overflow
the internal array in this class, the insertion algorithm creates a new array of larger size,
copies the old array contents to the new array, and then inserts the new item. All this would
be invisible to the class user.

Summary

* Arrays in Java are objects, created with the new operator.

» Unordered arrays offer fast insertion but slow searching and deletion.

» Wrapping an array in a class protects the array from being inadvertently altered.

» A class interface comprises the methods (and occasionally fields) that the class user
can access.

» A class interface can be designed to make things simple for the class user.
* A binary search can be applied to an ordered array.

* The logarithm to the base B of a number A is (roughly) the number of times you can
divide A by B before the result is less than 1.

» Linear searches require time proportional to the number of items in an array.
» Binary searches require time proportional to the logarithm of the number of items.

» Big O notation provides a convenient way to compare the speed of algorithms.

* An algorithm that runs in O(1) time is the best, O(log N) is good, O(N) is fair, and O(Nz)
is pretty bad.

Chapter 3: Simple Sorting

Overview

As soon as you create a significant database, you'll probably think of reasons to sort it in
various ways. You need to arrange names in alphabetical order, students by grade,
customers by zip code, home sales by price, cities in order of increasing population,
countries by GNP, stars by magnitude, and so on.

Sorting data may also be a preliminary step to searching it. As we saw in the_last chapter,
a binary search, which can be applied only to sorted data, is much faster than a linear
search.

Because sorting is so important and potentially so time-consuming, it has been the
subject of extensive research in computer science, and some very sophisticated methods
have been developed. In this chapter we'll look at three of the simpler algorithms: the
bubble sort, the selection sort, and the insertion sort. Each is demonstrated with its own
Workshop applet. In Chapter 7, "Advanced Sorting," we'll look at more sophisticated
approaches: Shellsort and quicksort.

The techniques described in this chapter, while unsophisticated and comparatively slow,
are nevertheless worth examining. Besides being easier to understand, they are actually
better in some circumstances than the more sophisticated algorithms. The insertion sort,

-63 -

for example, is preferable to quicksort for small files and for almost-sorted files. In fact, an
insertion sort is commonly used as a part of a quicksort implementation.

The example programs in this chapter build on the array classes we developed in the last
chapter. The sorting algorithms are implemented as methods of similar array classes.

Be sure to try out the Workshop applets included in this chapter. They are more effective in
explaining how the sorting algorithms work than prose and static pictures could ever be.

How Would You Do It?

Imagine that your kids-league baseball team (mentioned in_Chapter 1, "Overview,") is
lined up on the field, as shown in Figure 3.1. The regulation nine players, plus an extra,
have shown up for practice. You want to arrange the players in order of increasing height
(with the shortest player on the left), for the team picture. How would you go about this
sorting process?

As a human being, you have advantages over a computer program. You can see all the
kids at once, and you can pick out the tallest kid almost instantly; you don't need to
laboriously measure and compare everyone. Also, the kids don't need to occupy
particular places. They can jostle each other, push each other a little to make room, and
stand behind or in front of each other. After some ad hoc rearranging, you would have no
trouble in lining up all the kids, as shown in_Figure 3.2.

A computer program isn't able to glance over the data in this way. It can only compare
two players at once, because that's how the comparison operators work. This tunnel
vision on the part of algorithms will be a recurring theme. Things may seem simple to us
humans, but the algorithm can't see the big picture and must, therefore, concentrate on
the details and follow some simple rules.

The three algorithms in this chapter all involve two steps, executed over and over until
the data is sorted:

1. Compare two items.
2. Swap two items or copy one item.

However, each algorithm handles the details in a different way.

ihidtitd

Figure 3.1: The unordered baseball team

- 64 -

witt et

Figure 3.2: The ordered baseball team

Bubble Sort

The bubble sort is notoriously slow, but it's conceptually the simplest of the sorting
algorithms, and for that reason is a good beginning for our exploration of sorting
techniques.

Bubble-Sorting the Baseball Players

Imagine that you're nearsighted (like a computer program) so that you can see only two
of the baseball players at the same time, if they're next to each other and if you stand
very close to them. Given this impediment, how would you sort them? Let's assume there
are N players, and the positions they're standing in are numbered from 0 on the left to N—
1 on the right.

The bubble sort routine works like this. You start at the left end of the line and compare
the two kids in positions 0 and 1. If the one on the left (in 0) is taller, you swap them. If
the one on the right is taller, you don't do anything. Then you move over one position and
compare the kids in positions 1 and 2. Again, if the one on the left is taller, you swap
them. This is shown in Figure 3.3.

Here are the rules you're following:

1. Compare two players.

2. If the one on the left is taller, swap them.
3. Move one position right.

You continue down the line this way until you reach the right end. You have by no means
finished sorting the kids, but you do know that the tallest kid is on the right. This must be
true, because as soon as you encounter the tallest kid, you'll end up swapping him every
time you compare two kids, until eventually he (or she) will reach the right end of the line.
This is why it's called the bubble sort: as the algorithm progresses, the biggest items
"bubble up" to the top end of the array. Figure 3.4 shows the baseball players at the end
of the first pass.

- 65 -

tlie it
ittt
f
f

it
(T

Figure 3.3: Bubble sort: beginning of first pass

L L

Figure 3.4: Bubble sort: end of first pass

After this first pass through all the data, you've made N-1 comparisons and somewhere
between 0 and N-1 swaps, depending on the initial arrangement of the players. The item
at the end of the array is sorted and won't be moved again.

Now you go back and start another pass from the left end of the line. Again you go
toward the right, comparing and swapping when appropriate. However, this time you can
stop one player short of the end of the line, at position N-2, because you know the last
position, at N—1, already contains the tallest player. This rule could be stated as:

4. When you reach the first sorted player, start over at the left end of the line.

You continue this process until all the players are in order. This is all much harder to
describe than it is to demonstrate, so let's watch the bubbleSort Workshop applet at
work.

The bubbleSort Workshop Applet

Start the bubbleSort Workshop applet. You'll see something that looks like a bar graph,
with the bar heights randomly arranged, as shown in Figure 3.5.

The Run Button

This is a two-speed graph: you can either let it run by itself or you can single-step through
the process. To get a quick idea of what happens, click the Run button. The algorithm will
bubble sort the bars. When it finishes, in 10 seconds or so, the bars will be sorted, as

- 66 -

shown in Figure 3.6.

[A Viewe - bubibleSost sloss _________ [Hlx] 3|

ppiet

weash e RS I

Figure 3.5: The bubbleSort Workshop applet

=1 A ppint Viewsr: bubbleSmt class

ppiet

I e |])

11| II |

&'ﬂﬂﬂﬂﬂ
[p—

reztan

Applel stated

Figure 3.6: After the bubble sort

The New Button

To do another sort, press the New button. New creates a new set of bars and initializes
the sorting routine. Repeated presses of New toggle between two arrangements of bars:
a random order as shown in Figure 3.5, and an inverse ordering where the bars are
sorted backward. This inverse ordering provides an extra challenge for many sorting
algorithms.

The Step Button

The real payoff for using the bubbleSort Workshop applet comes when you single-step
through a sort. You'll be able to see exactly how the algorithm carries out each step.

Start by creating a new randomly arranged graph with New. You'll see three arrows
pointing at different bars. Two arrows, labeled inner and inner+1, are side-by-side on
the left. Another arrow, outer, starts on the far right. (The names are chosen to
correspond to the inner and outer loop variables in the nested loops used in the
algorithm.)

Click once on the Step button. You'll see the inner and the inner+1 arrows move
together one position to the right, swapping the bars if it's appropriate. These arrows

correspond to the two players you compared, and possibly swapped, in the baseball
scenario.

-67 -

A message under the arrows tells you whether the contents of inner and inner+1 will
be swapped, but you know this just from comparing the bars: if the taller one is on the
left, they'll be swapped. Messages at the top of the graph tell you how many swaps and
comparisons have been carried out so far. (A complete sort of 10 bars requires 45
comparisons and, on the average, about 22 swaps.)

Continue pressing Step. Each time inner and inner+1 finish going all the way from 0
to outer, the outer pointer moves one position to the left. At all times during the sorting
process, all the bars to the right of outer are sorted; those to the left of (and at) outer
are not.

The Size Button

The Size button toggles between 10 bars and 100 bars. Figure 3.7 shows what the 100
random bars look like.

You probably don't want to single-step through the sorting process for 100 bars unless
you're unusually patient. Press Run instead, and watch how the blue inner and
inner+1 pointers seem to find the tallest unsorted bar and carry it down the row to the
right, inserting it just to the left of the sorted bars.

Figure 3.8 shows the situation partway through the sorting process. The bars to the right
of the red (longest) arrow are sorted. The bars to the left are beginning to look sorted, but
much work remains to be done.

If you started a sort with Run and the arrows are whizzing around, you can freeze the
process at any point by pressing the Step button. You can then single-step to watch the
details of the operation, or press Run again to return to high-speed mode.

[A Viewe - bubibleSost sloss _________ [Hlx] 3|

ppiet

weash e RS I

M |l ‘| i

Applel iatel

Figure 3.7: The bubbleSort applet with 100 bars

[Ao iewer- bubbietost cos Sl 1|

dppbet

FUA IS e Men | S| v un St

il

Applel ilated.

- 68 -

Figure 3.8: 100 partly sorted bars

The Draw Button

Sometimes while running the sorting algorithm at full speed, the computer takes time off
to perform some other task. This can result in some bars not being drawn. If this
happens, you can press the Draw button to redraw all the bars. Doing so pauses the run,
so you'll need to press the Run button again to continue.

You can press Draw at any time there seems to be a glitch in the display.

Java Code for a Bubble Sort

In the bubbleSort. java program, shown in Listing 3.1, a class called ArrayBub
encapsulates an array a [], which holds variables of type double.

In a more serious program, the data would probably consist of objects, but we use a
primitive type for simplicity. (We'll see how objects are sorted in the ocbjectSort.java
program in the last section of this chapter.) Also, to reduce the size of the listing, we don't
show find () and delete () methods with the ArrayBub class, although they would
normally be part of a such a class.

Listing 3.1 The bubbleSort.java Program

// bubbleSort.java
// demonstrates bubble sort
// to run this program: C>Jjava BubbleSortApp

class ArrayBub

{

private doublel[] a; // ref to array a
private int nElems; // number of data items
[mm e e e
public ArrayBub (int max) // constructor
{
a = new double[max]; // create the array
nElems = 0; // no items yet
}
[e e e
public void insert (double value) // put element into array
{
a[nElems] = value; // insert it
nElems++; // increment size
}
[/ mmmmm e
public void display () // displays array contents

{

-69 -

for (int j=0; j<nElems; j++) // for each element,
System.out.print(al[j] + " "); // display it
System.out.println("");

public void bubbleSort ()
{

int out, in;

for (out=nElems-1; out>1; out--) // outer loop
(backward)
for (in=0; in<out; in++) // inner loop (forward)
if(alin] > al[in+l1l]) // out of order?
swap (in, in+1); // swap them

} // end bubbleSort ()

private void swap(int one, int two)

{

double temp = al[one];
alone] = al[two];
altwo] = temp;

} // end class ArrayBub

LI PP 7 r i i 7777777777 7777707777777777777777777777
class BubbleSortApp

{

public static void main(String[] args)

{

int maxSize = 100; // array size
ArrayBub arr; // reference to array
arr = new ArrayBub (maxSize); // create the array
arr.insert (77); // insert 10 items
arr.insert (99) ;

arr.insert (44);

arr.insert (55);

arr.insert (22);

arr.insert (88) ;

arr.insert (11);

arr.insert (00) ;

arr.insert (66) ;

arr.insert (33);

arr.display () ; // display items
arr.bubbleSort () ; // bubble sort them
arr.display () ; // display them again

-70 -

}// end main/()
} // end class BubbleSortApp

The constructor and the insert () and display () methods of this class are similar to
those we've seen before. However, there's a new method: bubbleSort (). When this
method is invoked from main (), the contents of the array are rearranged into sorted
order.

The main () routine inserts 10 items into the array in random order, displays the array,
calls bubbleSort () to sortit, and then displays it again. Here's the output:

77 99 44 55 22 88 11 0 66 33
0 11 22 33 44 55 66 77 88 99

The bubbleSort () method is only four lines long. Here it is, extracted from the listing:

public void bubbleSort ()
{

int out, in;

for (out=nElems-1; out>1; out--) // outer loop (backward)
for (in=0; in<out; in++) // inner loop (forward)
if(alin] > al[in+l1l]) // out of order?
swap (in, in+1); // swap them

} // end bubbleSort ()

The idea is to put the smallest item at the beginning of the array (index 0) and the largest
item at the end (index nElems-1). The loop counter out in the outer for loop starts at
the end of the array, at nElems-1, and decrements itself each time through the loop. The
items at indices greater than out are always completely sorted. The out variable moves
left after each pass by in so that items that are already sorted are no longer involved in
the algorithm.

The inner loop counter in starts at the beginning of the array and increments itself each
cycle of the inner loop, exiting when it reaches out. Within the inner loop, the two array
cells pointed to by in and in+1 are compared and swapped if the one in in is larger
than the one in in+1.

For clarity, we use a separate swap () method to carry out the swap. It simply exchanges
the two values in the two array cells, using a temporary variable to hold the value of the
first cell while the first cell takes on the value in the second, then setting the second cell
to the temporary value. Actually, using a separate swap () method may not be a good
idea in practice, because the function call adds a small amount of overhead. If you're
writing your own sorting routine, you may prefer to put the swap instructions in line to
gain a slight increase in speed.

Invariants

In many algorithms there are conditions that remain unchanged as the algorithm
proceeds. These conditions are called invariants. Recognizing invariants can be useful in
understanding the algorithm. In certain situations they may also be helpful in debugging;
you can repeatedly check that the invariant is true, and signal an error if it isn't.

In the bubbleSort.java program, the invariant is that the data items to the right of
outer are sorted. This remains true throughout the running of the algorithm. (On the first

-71 -

pass, nothing has been sorted yet, and there are no items to the right of cuter because
it starts on the rightmost element.)

Efficiency of the Bubble Sort

As you can see by watching the Workshop applet with 10 bars, the inner and inner+1
arrows make 9 comparisons on the first pass, 8 on the second, and so on, down to 1
comparison on the last pass. For 10 items this is

9+8+7+6+5+4+3+2+1=45

In general, where N is the number of items in the array, there are N—1 comparisons on
the first pass, N-2 on the second, and so on. The formula for the sum of such a series is

(N=1) + (N=2) + (N=3) + ... + 1 = N*(N=1)/2
N*(N—1)/2 is 45 when N is 10.

Thus the algorithm makes about N%/2 comparisons (ignoring the —1, which doesn't make
much difference, especially if N is large).

There are fewer swaps than there are comparisons, because two bars are swapped only
if they need to be. If the data is random, a swap is necessary about half the time, so there

will be about N*/4 swaps. (Although in the worst case, with the initial data inversely
sorted, a swap is necessary with every comparison.)

Both swaps and comparisons are proportional to N”. Because constants don't count in

Big O notation, we can ignore the 2 and the 4 and say that the bubble sort runs in O(N2)
time. This is slow, as you can verify by running the Workshop applet with 100 bars.

Whenever you see nested loops such as those in the bubble sort and the other sorting

algorithms in this chapter, you can suspect that an algorithm runs in O(Nz) time. The outer
loop executes N times, and the inner loop executes N (or perhaps N divided by some
constant) times for each cycle of the outer loop. This means you're doing something

approximately N*N or N? times.

Selection Sort

The selection sort improves on the bubble sort by reducing the number of swaps
necessary from O(NZ) to O(N). Unfortunately, the number of comparisons remains O(Nz).
However, the selection sort can still offer a significant improvement for large records that
must be physically moved around in memory, causing the swap time to be much more
important than the comparison time. (Typically this isn't the case in Java, where
references are moved around, not entire objects.)

Selection sort on the Baseball Players

Let's consider the baseball players again. In the selection sort, you can no longer
compare only players standing next to each other. Thus you'll need to remember a
certain player's height; you can use a notebook to write it down. A magenta-colored towel
will also come in handy.

A Brief Description

What's involved is making a pass through all the players and picking (or selecting, hence
the name of the sort) the shortest one. This shortest player is then swapped with the

-T2 -

player on the left end of the line, at position 0. Now the leftmost player is sorted, and
won't need to be moved again. Notice that in this algorithm the sorted players accumulate
on the left (lower indices), while in the bubble sort they accumulated on the right.

The next time you pass down the row of players, you start at position 1, and, finding the
minimum, swap with position 1. This continues until all the players are sorted.

A More Detailed Description

In more detail, start at the left end of the line of players. Record the leftmost player's
height in your notebook and throw the magenta towel on the ground in front of this
person. Then compare the height of the next player to the right with the height in your
notebook. If this player is shorter, cross out the height of the first player, and record the
second player's height instead. Also move the towel, placing it in front of this new
"shortest" (for the time being) player. Continue down the row, comparing each player with
the minimum. Change the minimum value in your notebook, and move the towel,
whenever you find a shorter player. When you're done, the magenta towel will be in front
of the shortest player.

Swap this shortest player with the player on the left end of the line. You've now sorted
one player. You've made N—1 comparisons, but only one swap.

On the next pass, you do exactly the same thing, except that you can completely ignore
the player on the left, because this player has already been sorted. Thus the algorithm
starts the second pass at position 1 instead of 0. With each succeeding pass, one more
player is sorted and placed on the left, and one less player needs to be considered when
finding the new minimum. Figure 3.9 shows how this looks for the first three passes.

The selectSort Workshop Applet

To see how the selection sort looks in action, try out the selectSort Workshop applet. The
buttons operate the same way as those in the bubbleSort applet. Use New to create a
new array of 10 randomly arranged bars. The red arrow called outer starts on the left; it
points to the leftmost unsorted bar. Gradually it will move right as more bars are added to
the sorted group on its left.

The magenta min arrow also starts out pointing to the leftmost bar; it will move to record
the shortest bar found so far. (The magenta min arrow corresponds to the towel in the
baseball analogy.) The blue inner arrow marks the bar currently being compared with
the minimum.

As you repeatedly press Step, inner moves from left to right, examining each bar in turn
and comparing it with the bar pointed to by min. If the inner bar is shorter, min jumps
over to this new, shorter bar. When inner reaches the right end of the graph, min points
to the shortest of the unsorted bars. This bar is then swapped with outer, the leftmost
unsorted bar.

Figure 3.10 shows the situation midway through a sort. The bars to the left of outer are
sorted, and inner has scanned from outer to the right end, looking for the shortest bar.
The min arrow has recorded the position of this bar, which will be swapped with cuter.

Use the Size button to switch to 100 bars, and sort a random arrangement. You'll see
how the magenta min arrow hangs out with a perspective minimum value for a while, and
then jumps to a new one when the blue inner arrow finds a smaller candidate. The red
outer arrow moves slowly but inexorably to the right, as the sorted bars accumulate to
its left.

-73 -

it
linftit
t}hiﬁ

wittfift

Figure 3.9: Selection sort on baseball players

|
t
it
t

[Si Azplet Viswer: sobectSmilclaax [_ 1] =]
Fclel

Copaiges -3 Mow| Siwe | Biew] Aum| Stwp |

Searching bor minmum
Applel slailed

Figure 3.10: The selectSort Workshop appletred

Java Code for Selection Sort

The listing for the selectSort.java program is similar to that for bubbleSort.java,
except that the container class is called Arraysel instead of ArrayBub, and the

bubbleSort () method has been replaced by selectSort (). Here's how this method
looks:

public void selectionSort()

{

int out, in, min;

for (out=0; out<nElems-1; out++) // outer loop
{
min = out; // minimum
for (in=out+l; in<nElems; in++) // inner loop

if(al[in] < a[min]) // if min greater,
min = 1in; // we have a new min
swap (out, min); // swap them

} // end for (outer)
} // end selectionSort ()

-74 -

The outer loop, with loop variable out, starts at the beginning of the array (index 0) and
proceeds toward higher indices. The inner loop, with loop variable in, begins at out and
likewise proceeds to the right.

At each new position of in, the elements a[in] and a [min] are compared. If a[in] is
smaller, then min is given the value of in. At the end of the inner loop, min points to the
minimum value, and the array elements pointed to by out and min are swapped. Listing
3.2 shows the complete selectSort.java program.

Listing 3.2 The selectSort.java Program

// selectSort.java
// demonstrates selection sort
// to run this program: C>java SelectSortApp

class ArraySel

{

private doublel[] a; // ref to array a
private int nElems; // number of data items
e
public ArraySel (int max) // constructor
{
a = new double[max]; // create the array
nElems = 0; // no items yet
}
/mm e
public void insert (double value) // put element into array
{
a[nElems] = value; // insert it
nElems++; // increment size
}
et e
public void display () // displays array contents
{
for (int j=0; j<nElems; j++) // for each element,
System.out.print(a[j] + "™ "); // display it
System.out.println("");
}

public void selectionSort ()

{

int out, in, min;

for (out=0; out<nElems-1; out++) // outer loop

{

=75 -

min = out; // minimum
for (in=out+l; in<nElems; in++) // inner loop
if(a[in] < a[min]) // if min greater,
min = in; // we have a new min

swap (out, min); // swap them

} // end for (outer)

} // end selectionSort ()
[/ mmmmm e
private void swap(int one, int two)

{

double temp = alone];
alone] = al[two];
altwo] = temp;

} // end class ArraySel

LTI TTTT TP r i i i 7777777 777777777707777777777777777777777

class SelectSortApp
{
public static void main(String(]
{
int maxSize = 100;
ArraySel arr;
arr = new ArraySel (maxSize);
arr.insert
arr.insert
arr.insert
arr.insert
arr.i
arr.insert
arr.insert
arr.insert
arr.insert
arr.insert

arr.display();

arr.selectionSort () ;
arr.display();
}// end main ()

} // end class SelectSortApp

args)
// array size
// reference to array

// create the array

// insert 10 items

// display items

// selection-sort them

// display them again

-76 -

The output from selectSort. java is identical to that from bubbleSort. java:

77 99 44 55 22 88 11 0 66 33
0 11 22 33 44 55 66 77 88 99

Invariant

In the selectSort.java program, the data items with indices less than or equal to
outer are always sorted.

Efficiency of the Selection Sort

The selection sort performs the same number of comparisons as the bubble sort: N*(N—
1)/2. For 10 data items, this is 45 comparisons. However, 10 items require fewer than 10
swaps. With 100 items, 4,950 comparisons are required, but fewer than 100 swaps. For
large values of N, the comparison times will dominate, so we would have to say that the
selection sort runs in O(Nz) time, just as the bubble sort did. However, it is unquestionably
faster because there are so few swaps. For smaller values of N, it may in fact be
considerably faster, especially if the swap times are much larger than the comparison
times.

Insertion Sort

In most cases the insertion sort is the best of the elementary sorts described in this

chapter. It still executes in O(Nz) time, but it's about twice as fast as the bubble sort and
somewhat faster than the selection sort in normal situations. It's also not too complex,
although it's slightly more involved than the bubble and selection sorts. It's often used as
the final stage of more sophisticated sorts, such as quicksort.

Insertion sort on the Baseball Players

Start with your baseball players lined up in random order. (They wanted to play a game,
but clearly there's no time for that.) It's easier to think about the insertion sort if we begin
in the middle of the process, when the team is half sorted.

Partial Sorting

At this point there's an imaginary marker somewhere in the middle of the line. (Maybe
you throw a red T-shirt on the ground in front of a player.) The players to the left of this
marker are partially sorted. This means that they are sorted among themselves; each one
is taller than the person to his left. However, they aren't necessarily in their final positions,
because they may still need to be moved when previously unsorted players are inserted
between them.

Note that partial sorting did not take place in the bubble sort and selection sort. In these
algorithms a group of data items was completely sorted at any given time; in the insertion
sort a group of items is only partially sorted.

The Marked Player

The player where the marker is, whom we'll call the "marked" player, and all the players
on her right, are as yet unsorted. This is shown in Figure 3.11.a.

What we're going to do is insert the marked player in the appropriate place in the
(partially) sorted group. However, to do this, we'll need to shift some of the sorted players
to the right to make room. To provide a space for this shift, we take the marked player out
of line. (In the program this data item is stored in a temporary variable.) This is shown in

=77 -

Figure 3.11.b.

Now we shift the sorted players to make room. The tallest sorted player moves into the
marked player's spot, the next-tallest player into the tallest player's spot, and so on.

When does this shifting process stop? Imagine that you and the marked player are
walking down the line to the left. At each position you shift another player to the right, but
you also compare the marked player with the player about to be shifted. The shifting
process stops when you've shifted the last player that's taller than the marked player. The
last shift opens up the space where the marked player, when inserted, will be in sorted
order. This is shown in Figure 3.11.c.

mﬂthﬂ

Miasiml pheym

en i.l.u-l

nﬂ“ 1]

b Empty samn

Il-h.-"\.llnﬂpl.l'-

mmm

¥ [
e — T oo Warked™ plape

Ienrmsny Samuci

Figure 3.11: The insertion sort on baseball players

Now the partially sorted group is one player bigger, and the unsorted group is one player
smaller. The marker T-shirt is moved one space to the right, so it's again in front of the
leftmost unsorted player. This process is repeated until all the unsorted players have
been inserted (hence the name insertion sort) into the appropriate place in the partially
sorted group.

The insertSort Workshop Applet

Use the insertSort Workshop applet to demonstrate the insertion sort. Unlike the other
sorting applets, it's probably more instructive to begin with 100 random bars rather than
10.

Sorting 100 Bars

Change to 100 bars with the Size button, and click Run to watch the bars sort themselves
before your very eyes. You'll see that the short red outer arrow marks the dividing line
between the partially sorted bars to the left and the unsorted bars to the right. The blue
inner arrow keeps starting from outer and zipping to the left, looking for the proper
place to insert the marked bar. Figure 3.12 shows how this looks when about half the
bars are partially sorted.

The marked bar is stored in the temporary variable pointed to by the magenta arrow at
the right end of the graph, but the contents of this variable are replaced so often it's hard
to see what's there (unless you slow down to single-step mode).

Sorting 10 Bars

-78 -

To get down to the details, use Size to switch to 10 bars. (If necessary, use New to make
sure they're in random order.)

At the beginning, inner and outer point to the second bar from the left (array index 1),
and the first message is Will copy outer to temp. This will make room for the shift.
(There's no arrow for inner-1, but of course it's always one bar to the left of inner.)

Click the Step button. The bar at outer will be copied to temp. A copy means that there
are now two bars with the same height and color shown on the graph. This is slightly
misleading, because in a real Java program there are actually two references pointing to
the same object, not two identical objects. However, showing two identical bars is meant
to convey the idea of copying the reference.

Ei;-pkl.'-'l:uu:r maniSart clars

Foclel

o T wy M| Sien | [Braw| Aun| St |

‘I|H il M

Apgled slailed

Figure 3.12: The insertSort Workshop applet with 100 bars

What happens next depends on whether the first two bars are already in order (smaller
on the left). If they are, you'll see Have compared inner-1 and temp, no copy
necessary.

If the first two bars are not in order, the message is Have compared inner-1 and
temp, will copy inner-1 to inner. This is the shift that's necessary to make
room for the value in temp to be reinserted. There's only one such shift on this first pass;
more shifts will be necessary on subsequent passes. The situation is shown in Figure
3.1.

On the next click, you'll see the copy take place from inner-1 to inner. Also, the
inner arrow moves one space left. The new message is Now inner is 0, so no
copy necessary. The shifting process is complete.

No matter which of the first two bars was shorter, the next click will show you will copy
temp to inner. This will happen, but if the first two bars were initially in order, you
won't be able to tell a copy was performed, because temp and inner hold the same bar.
Copying data over the top of the same data may seem inefficient, but the algorithm runs
faster if it doesn't check for this possibility, which happens comparatively infrequently.

Now the first two bars are partially sorted (sorted with respect to each other), and the
outer arrow moves one space right, to the third bar (index 2). The process repeats, with
the Will copy outer to temp message. On this pass through the sorted data, there
may be no shifts, one shift, or two shifts, depending on where the third bar fits among the
first two.

Continue to single-step the sorting process. Again, it's easier to see what's happening
after the process has run long enough to provide some sorted bars on the left. Then you
can see how just enough shifts take place to make room for the reinsertion of the bar

-79 -

from temp into its proper place.

[=4 Applist Viewer: insmiSoi. clase [_ O] =]

.llnﬂ
et o W] siw| vow | Pun |)

Hnruwllpllﬂ—n1 arad bmp
‘Wil copy mnms-1 io mne

Applel atated

Figure 3.13: The insertSort Workshop applet with 10 bars

Java Code for Insertion Sort

Here's the method that carries out the insertion sort, extracted from the
insertSort.java program:

public void insertionSort ()

{

int in, out;

for (out=1; out<nElems; out++) // out is dividing line
{
double temp = alout]; // remove marked item
in = out; // start shifts at out

while (in>0 && a[in-1] >= temp) // until one is smaller,

alin] = alin-11; // shift item right,
-—in; // go left one position
}

alin] = temp; // insert marked item

} // end for
} // end insertionSort ()

In the outer for loop, out starts at 1 and moves right. It marks the leftmost unsorted
data. In the inner while loop, in starts at out and moves left, until either temp is
smaller than the array element there, or it can't go left any further. Each pass through the
while loop shifts another sorted element one space right.

It may be hard to see the relation between the steps in the Workshop applet and the
code, so_Figure 3.14 is a flow diagram of the insertionSort () method, with the
corresponding messages from the insertSort Workshop applet. Listing 3.3 shows the
complete insertSort.java program.

Listing 3.3 The insertSort.java Program

// insertSort.Jjava
// demonstrates insertion sort

- 80 -

// to run this program: C>java InsertSortApp

class ArrayIns

{

private doublel[] a; // ref to array a
private int nElems; // number of data items
e
public ArrayIns (int max) // constructor
{
a = new double[max]; // create the array
nElems = 0; // no items yet
}
/m e
public void insert (double value) // put element into array
{
a[nElems] = value; // insert it
nElems++; // increment size
}
et
public void display () // displays array contents
{
for (int j=0; j<nElems; j++) // for each element,
System.out.print(al[j] + "™ "); // display it
System.out.println("");
}
et e
public void insertionSort ()
{
int in, out;
for (out=1; out<nElems; out++) // out is dividing line
{
double temp = alout]; // remove marked item
in = out; // start shifts at out
while (in>0 && al[in-1] >= temp) // until one is
smaller,
{
alin] = al[in-1]; // shift item right,
--in; // go left one position
}
alin] = temp; // insert marked item
} // end for
} // end insertionSort ()
/m e

} // end class Arraylns

L1177 77 7007777777070 7 7777777777777 7777777777777 77777777777777777

class InsertSortApp
{

public static void main(Stringl]

{

int maxSize

100;

ArrayIns arr;

arr

new ArrayIns (maxSize);

arr.
arr.i
arr.i
arr.i
arr.i
arr.i
arr.i
arr.i
arr.i
arr.i

arr.display();

arr.insertionSort () ;
arr.display();
} // end main ()

} // end class InsertSortApp

//
//
//

//

//

//

//

args)

array size
reference to array

create the array

insert 10 items

display items

insertion-sort them

display them again

Here's the output from the insertSort.java program; it's the same as that from the

other programs in this chapter:

77 99 44 55 22 88 11 0 66 33
0 11 22 33 44 55 66 77 88 99

1 IR

-82.-

s

o, .
T

Wit | = ajinan -]

Figure 3.14: Flow diagram for insertSort ()

Invariants in the Insertion Sort

At the end of each pass, following the insertion of the item from temp, the data items with
smaller indices than outer are partially sorted.

Efficiency of the Insertion Sort

How many comparisons and copies does this algorithm require? On the first pass, it
compares a maximum of one item. On the second pass, it's a maximum of two items, and
so on, up to a maximum of N—1 comparisons on the last pass. This is

1+2+3+ .. +N=1=NN=1)2

However, because on each pass an average of only half of the maximum number of
items are actually compared before the insertion point is found, we can divide by 2, which
gives:

N*(N—1)/4

The number of copies is approximately the same as the number of comparisons.
However, a copy isn't as time-consuming as a swap, so for random data this algorithm
runs twice as fast as the bubble sort and faster than the selection sort.

In any case, like the other sort routines in this chapter, the insertion sort runs in O(NZ)
time for random data.

For data that is already sorted or almost sorted, the insertion sort does much better.
When data is in order, the condition in the while loop is never true, so it becomes a
simple statement in the outer loop, which executes N—1 times. In this case the algorithm
runs in O(N) time. If the data is almost sorted, insertion sort runs in almost O(N) time,
which makes it a simple and efficient way to order a file that is only slightly out of order.

However, for data arranged in inverse sorted order, every possible comparison and shift is
carried out, so the insertion sort runs no faster than the bubble sort. You can check this
using the reverse-sorted data option (toggled with New) in the insertSort Workshop applet.

Sorting Objects
For simplicity we've applied the sorting algorithms we've looked at thus far to a primitive

-83 -

data type: double. However, sorting routines will more likely be applied to objects than
primitive types. Accordingly, we show a Java program, cbjectSort.java, that sorts an
array of Person objects (last seen in the classDataArray. java program in_Chapter
2).

Java Code for Sorting Objects

The algorithm used is the insertion sort from the last section. The Person objects are
sorted on lastName; this is the key field. The ocbjectSort.java program is shown in
Listing 3.4.

Listing 3.4 The objectSort.java Program

// objectSort.java
// demonstrates sorting objects (uses insertion sort)
// to run this program: C>java ObjectSortApp
LI PP r i i i i 777777777 77777070777777777777777777777
class Person
{
private String lastName;
private String firstName;
private int age;

[
public Person (String last, String first, int a)

{ // constructor

lastName = last;

firstName = first;

age = a;

public void displayPerson ()
{

System.out.print (" Last name: " + lastName);
System.out.print (", First name: " + firstName);
System.out.println (", Age: " + age);
}
e
public String getLast () // get last name

{ return lastName; }
} // end class Person

L1777 7007777777070 7777777777 7777777777777777777777777777777777

class ArrayInOb
{

private Personl] a; // ref to array a
private int nElems; // number of data items

-84 -

public ArrayInOb (int max) // constructor
{
a = new Person[max]; // create the array
nElems = 0; // no items yet

// put person into array
public void insert(String last, String first, int age)

{

a[nElems] = new Person(last, first, age);
nElems++; // increment size
}
[mm e
public void display() // displays array contents
{
for (int j=0; j<nElems; j++) // for each element,
alj].displayPerson() ; // display it
System.out.println("");
}
[/ mmmmm e
public void insertionSort ()
{
int in, out;
for (out=1; out<nElems; out++) // out is dividing line
{
Person temp = alout]; // remove marked person
in = out; // start shifting at out
while (1n>0 && // until smaller one
found,
alin-1].getlLast () .compareTo (temp.getLast ())>0)
{
alin] = al[in-1]; // shift item to the right
--in; // go left one position
}
alin] = temp; // insert marked item
} // end for
} // end insertionSort ()
[e

} // end class ArrayInOb

LTI TTTT T r i i i i 777770 7777777770707777777777777777777777

-85-

class ObjectSortApp
{

public static void main(Stringl]

{

int maxSize =

args)

100;
ArrayInOb arr;

arr = new ArrayInOb (maxSize); // create
arr.insert ("Evans", "Patty", 24);
arr.insert ("Smith", "Doc", 59);
arr.insert ("Smith", "Lorraine", 37);
arr.insert ("Smith", "Paul", 37);
arr.insert ("Yee", "Tom", 43);
arr.insert ("Hashimoto", "Sato", 21);
arr.insert ("Stimson", "Henry", 29);
arr.insert ("Velasquez", "Jose", 72);
arr.insert ("Vang", "Minh", 22);
arr.insert ("Creswell", "Lucinda", 18);
System.out.println ("Before sorting:");

arr.display();
arr.insertionSort () ;
System.out.println ("After sorting:");
arr.display();
} // end main()

} // end class ObjectSortApp

Here's the output of this program:

Before sorting:

// array size
// reference to array

the array

// display items

// insertion-sort them

// display them again

Last name: Evans, First name: Patty, Age: 24

Last name: Smith, First name: Doc, Age: 59

Last name: Smith, First name: Lorraine, Age: 37

Last name: Smith, First name: Paul, Age: 37

Last name: Yee, First name: Tom, Age: 43

Last name: Hashimoto, First name: Sato, Age: 21

Last name: Stimson, First name: Henry, Age: 29

Last name: Velasquez, First name: Jose, Age: 72

Last name: Vang, First name: Minh, Age: 22

Last name: Creswell, First name: Lucinda, Age: 18
After sorting:

Last name: Creswell, First name: Lucinda, Age: 18

Last name: Evans, First name: Patty, Age: 24

Last name: Hashimoto, First name: Sato, Age: 21

Last name: Smith, First name: Doc, Age: 59

Last name: Smith, First name: Lorraine, Age: 37

Last name: Smith, First name: Paul, Age: 37

Last name: Stimson, First name: Henry, Age: 29

Last name: Vang, First name: Minh, Age: 22

- 86 -

Last name: Velasquez, First name: Jose, Age: 72
Last name: Yee, First name: Tom, Age: 43

Lexicographical Comparisons
The insertionSort () method is similar to that in insertSort. java, but it has been
adapted to compare the 1astName key values of records rather than the value of a

primitive type.

We use the compareTo () method of the String class to perform the comparisons in
the insertionSort () method. Here's the expression that uses it:

al[in-1].getlast () .compareTo (temp.getlLast()) > 0

The compareTo () method returns different integer values depending on the
lexicographical (that is, alphabetical) ordering of the st ring for which it's invoked and
the string passed to it as an argument, as shown in Table 3.1.

Table 3.1: Operation of the compareTo() method

s2.compareTo(s1) Return Value

s1<s2 <0
s1 equals s2 0
s1>s2 >0

For example, if s1 is "cat" and s2 is "dog", the function will return a number less than
0. In the program this method is used to compare the last name of a[in-1] with the
last name of temp.

Stability

Sometimes it matters what happens to data items that happen to have equal keys. For
example, you may have employee data arranged alphabetically by last names. (That is,
the last names were used as key values in the sort.) Now you want to sort the data by zip
code, but you want all the items with the same zip code to continue to be sorted by last
names. You want the algorithm to sort only what needs to be sorted, and leave
everything else in its original order. Some sorting algorithms retain this secondary
ordering; they're said to be stable.

All the algorithms in this chapter are stable. For example, notice the output of the
objectSort.java program. There are three persons with the last name of Smith. Initially
the order is Doc Smith, Lorraine Smith, and Paul Smith. After the sort, this ordering is
preserved, despite the fact that the various Smith objects have been moved to new
locations.

Comparing the Simple Sorts

-87 -

There's probably no point in using the bubble sort unless you don't have your algorithm
book handy. The bubble sort is so simple you can write it from memory. Even so, it's
practical only if the amount of data is small. (For a discussion of what "small" means, see
Chapter 15, "When to Use What.")

The selection sort minimizes the number of swaps, but the number of comparisons is still
high. It might be useful when the amount of data is small and swapping data items is very
time-consuming compared with comparing them.

The insertion sort is the most versatile of the three and is the best bet in most situations,
assuming the amount of data is small or the data is almost sorted. For larger amounts of
data, quicksort is generally considered the fastest approach; we'll examine quicksort in

Chapter 7.

We've compared the sorting algorithms in terms of speed. Another consideration for any
algorithm is how much memory space it needs. All three of the algorithms in this chapter
carry out their sort in place, meaning that, beside the initial array, very little extra memory
is required. All the sorts require an extra variable to store an item temporarily while it's
being swapped.

You can recompile the example programs, such as bubbleSort. java, to sort larger

amounts of data. By timing them for larger sorts, you can get an idea of the differences
between them and how long it takes to sort different amounts of data on your particular
system.

Summary
+ The sorting algorithms in this chapter all assume an array as a data storage structure.

» Sorting involves comparing the keys of data items in the array and moving the items
(actually references to the items) around until they're in sorted order.

* All the algorithms in this chapter execute in O(Nz) time. Nevertheless, some can be
substantially faster than others.

* Aninvariant is a condition that remains unchanged while an algorithm runs.

The bubble sort is the least efficient, but the simplest, sort.

* The insertion sort is the most commonly used of the O(N2) sorts described in this
chapter.

» A sortis stable if the order of elements with the same key is retained.

» None of the sorts in- this chapter require more than a single temporary variable in
addition to the original array.

Part Il

Chapter List

Chapter Stacks and Queues
4.

Chapter Linked Lists

- 88 -

5:

Chapter Recursion
6:

Chapter 4: Stacks and Queues

Overview

In this chapter we'll examine three data storage structures: the stack, the queue, and the
priority queue. We'll begin by discussing how these structures differ from arrays; then we'll
examine each one in turn. In the |ast section, we'll look at an operation in which the stack
plays a significant role: parsing arithmetic expressions.

A Different Kind of Structure

There are significant differences between the data structures and algorithms we've seen
in previous chapters and those we'll look at now. We'll discuss three of these differences
before we examine the new structures in detail.

Programmer's Tools

The array—the data storage structure we've been examining thus far—as well as many
other structures we'll encounter later in this book (linked lists, trees, and so on), are
appropriate for the kind of data you might find in a database application. They're typically
used for personnel records, inventories, financial data, and so on; data that corresponds
to real-world objects or activities. These structures facilitate access to data: they make it
easy to insert, delete, and search for particular items.

The structures and algorithms we'll examine in this chapter, on the other hand, are more
often used as programmer's tools. They're primarily conceptual aids rather than full-
fledged data storage devices. Their lifetime is typically shorter than that of the database-
type structures. They are created and used to carry out a particular task during the
operation of a program; when the task is completed, they're discarded.

Restricted Access

In an array, any item can be accessed, either immediately—if its index number is
known—or by searching through a sequence of cells until it's found. In the data structures
in this chapter, however, access is restricted: only one item can be read or removed at a
given time.

The interface of these structures is designed to enforce this restricted access. Access to
other items is (in theory) not allowed.

More Abstract

Stacks, queues, and priority queues are more abstract entities than arrays and many
other data storage structures. They're defined primarily by their interface: the permissible
operations that can be carried out on them. The underlying mechanism used to
implement them is typically not visible to their user.

For example, the underlying mechanism for a stack can be an array, as shown in this
chapter, or it can be a linked list. The underlying mechanism for a priority queue can be an
array or a special kind of tree called a heap. We'll return to the topic of one data structure
being implemented by another when we discuss Abstract Data Types (ADTs) in Chapter 5,
"Linked Lists."

-89 -

Stacks

A stack allows access to only one data item: the last item inserted. If you remove this
item, then you can access the next-to-last item inserted, and so on. This is a useful
capability in many programming situations. In this section, we'll see how a stack can be
used to check whether parentheses, braces, and brackets are balanced in a computer
program source file. At the end of this chapter, we'll see a stack playing a vital role in
parsing (analyzing) arithmetic expressions such as 3*(4+5).

A stack is also a handy aid for algorithms applied to certain complex data structures. In
Chapter 8, "Binary Trees," we'll see it used to help traverse the nodes of a tree. In
Chapter 13, "Graphs," we'll apply it to searching the vertices of a graph (a technique that
can be used to find your way out of a maze).

Most microprocessors use a stack-based architecture. When a method is called, its
return address and arguments are pushed onto a stack, and when it returns they're
popped off. The stack operations are built into the microprocessor.

Some older pocket calculators used a stack-based architecture. Instead of entering
arithmetic expressions using parentheses, you pushed intermediate results onto a stack.
We'll learn more about this approach when we discuss parsing arithmetic expressions in
the last section in this chapter.

The Postal Analogy

To understand the idea of a stack, consider an analogy provided by the U. S. Postal
Service. Many people, when they get their mail, toss it onto a stack on the hall table or
into an "in" basket at work. Then, when they have a spare moment, they process the
accumulated mail from the top down. First they open the letter on the top of the stack and
take appropriate action—paying the bill, throwing it away, or whatever. When the first
letter has been disposed of, they examine the next letter down, which is now the top of
the stack, and deal with that. Eventually they work their way down to the letter on the
bottom of the stack (which is now the top). Figure 4.1 shows a stack of mail.

This "do the top one first" approach works all right as long as you can easily process all
the mail in a reasonable time. If you can't, there's the danger that letters on the bottom of
the stack won't be examined for months, and the bills they contain will become overdue.

Of course, many people don't rigorously follow this top-to-bottom approach. They may,
for example, take the mail off the bottom of the stack, so as to process the oldest letter
first. Or they might shuffle through the mail before they begin processing it and put
higher-priority letters on top. In these cases, their mail system is no longer a stack in the
computer-science sense of the word. If they take letters off the bottom, it's a queue; and if
they prioritize it, it's a priority queue. We'll look at these possibilities later.

-90 -

Tha= letier
poocessed (st
&
y
-

Ji

Hewly ierved
Tetzers placed
o top of
sk

Figure 4.1: A stack of letters

Another stack analogy is the tasks you perform during a typical workday. You're busy on
a long-term project (A), but you're interrupted by a coworker asking you for temporary
help with another project (B). While you're working on B, someone in accounting stops by
for a meeting about travel expenses (C), and during this meeting you get an emergency
call from someone in sales and spend a few minutes troubleshooting a bulky product (D).
When you're done with call D, you resume meeting C; when you're done with C, you
resume project B, and when you're done with B you can (finally!) get back to project A.
Lower priority projects are "stacked up" waiting for you to return to them.

Placing a data item on the top of the stack is called pushing it. Removing it from the top
of the stack is called popping it. These are the primary stack operations. A stack is said to
be a Last-In-First-Out (LIFO) storage mechanism, because the last item inserted is the
first one to be removed.

The Stack Workshop Applet

Let's use the Stack Workshop applet to get an idea how stacks work. When you start up
the applet, you'll see four buttons: New, Push, Pop, and Peek, as shown in Figure 4.2.

The Stack Workshop applet is based on an array, so you'll see an array of data items.
Although it's based on an array, a stack restricts access, so you can't access it as you
would an array. In fact, the concept of a stack and the underlying data structure used to
implement it are quite separate. As we noted earlier, stacks can also be implemented by
other kinds of storage structures, such as linked lists.

[F28 ket Wi
e

Slack clavi

Mo | Pt | Prp] ok | Wb [

Prean ang batlon

Mpplet ated

Figure 4.2: The Stack Workshop applet

-91 -

New

The stack in the Workshop applet starts off with four data items already inserted. If you
want to start with an empty stack, the New button creates a new stack with no items. The
next three buttons carry out the significant stack operations.

Push

To insert a data item on the stack, use the button labeled Push. After the first press of
this button, you'll be prompted to enter the key value of the item to be pushed. After
typing it into the text field, a few more presses will insert the item on the top of the stack.

A red arrow always points to the top of the stack; that is, the last item inserted. Notice
how, during the insertion process, one step (button press) increments (moves up) the
Top arrow, and the next step actually inserts the data item into the cell. If you reversed
the order, you'd overwrite the existing item at Top. When writing the code to implement a
stack, it's important to keep in mind the order in which these two steps are executed.

If the stack is full and you try to push another item, you'll get the Can't insert:
stack is full message. (Theoretically, an ADT stack doesn't become full, but the
array implementing it does.)

Pop

To remove a data item from the top of the stack, use the Pop button. The value popped
appears in the Number text field; this corresponds to a pop () routine returning a value.

Again, notice the two steps involved: first the item is removed from the cell pointed to by
Top; then Top is decremented to point to the highest occupied cell. This is the reverse of
the sequence used in the push operation.

The pop operation shows an item actually being removed from the array, and the cell
color becoming gray to show the item has been removed. This is a bit misleading, in that
deleted items actually remain in the array until written over by new data. However, they
cannot be accessed once the Top marker drops below their position, so conceptually
they are gone, as the applet shows.

When you've popped the last item off the stack, the Top arrow points to —1, below the
lowest cell. This indicates that the stack is empty. If the stack is empty and you try to pop
an item, you'll getthe Can't pop: stack is empty message.

Peek

Push and pop are the two primary stack operations. However, it's sometimes useful to be
able to read the value from the top of the stack without removing it. The peek operation
does this. By pushing the Peek button a few times, you'll see the value of the item at Top
copied to the Number text field, but the item is not removed from the stack, which
remains unchanged.

Notice that you can only peek at the top item. By design, all the other items are invisible
to the stack user.

Stack Size

Stacks are typically small, temporary data structures, which is why we've shown a stack
of only 10 cells. Of course, stacks in real programs may need a bit more room than this,
but it's surprising how small a stack needs to be. A very long arithmetic expression, for

-9) .-

example, can be parsed with a stack of only a dozen or so cells.

Java Code for a Stack

Let's examine a program, Stack. java, that implements a stack using a class called
StackX. Listing 4.1 contains this class and a short main () routine to exercise it.

Listing 4.1 The Stack.java Program

// Stack.java
// demonstrates stacks
// to run this program: C>java StackApp
import java.io.*; // for I/0
L7717 777777777777777/7777777777777/77777777777777777777777777777777
class StackX
{

private int maxSize; // size of stack array
private double[] stackArray;
private int top; // top of stack
/=
public StackX(int s) // constructor
{
maxSize = s; // set array size
stackArray = new double[maxSize]; // create array
top = -1; // no items yet
}

public void push(double j) // put item on top of stack
{

stackArray[++top] = J; // increment top, insert item
}
/e
public double pop () // take item from top of stack
{
return stackArray[top--]; // access item, decrement top
}
e
public double peek() // peek at top of stack
{
return stackArray[top];
}
e
public boolean isEmpty () // true if stack is empty

{

-03 .

return (top == -1);

public boolean isFull () // true if stack is full
{

return (top == maxSize-1);

} // end class StackX
J/1177 7777777777777 777777777777777777777/777777777777777777777777

class StackApp

{

public static void main (String[] args)
{
StackX theStack = new StackX(10); // make new stack
theStack.push (20) ; // push items onto stack
theStack.push (40
theStack.push (60
theStack.push (80

)
)
).
)

Iz

’

while(!theStack.isEmpty ()) // until it's empty,
{ // delete item from

stack
double value = theStack.pop();

System.out.print (value) ; // display it
System.out.print (" ");
} // end while

System.out.println("");

} // end main/()

} // end class StackApp

The main () method in the StackApp class creates a stack that can hold 10 items,
pushes 4 items onto the stack, and then displays all the items by popping them off the
stack until it's empty. Here's the output:

80 60 40 20

Notice how the order of the data is reversed. Because the last item pushed is the first one
popped; the 80 appears first in the output.

This version of the stackx class holds data elements of type double. As noted in the
last chapter, you can change this to any other type, including object types.

StackX Class Methods

The constructor creates a new stack of a size specified in its argument. The fields of the
stack comprise a variable to hold its maximum size (the size of the array), the array itself,
and a variable top, which stores the index of the item on the top of the stack. (Note that

-94 -

we need to specify a stack size only because the stack is implemented using an array. If
it had been implemented using a linked list, for example, the size specification would be
unnecessary.)

The push () method increments top so it points to the space just above the previous
top, and stores a data item there. Notice that top is incremented before the item is
inserted.

The pop () method returns the value at top and then decrements top. This effectively
removes the item from the stack; it's inaccessible, although the value remains in the array
(until another item is pushed into the cell).

The peek () method simply returns the value at top, without changing the stack.

The isEmpty () and isFull () methods return true if the stack is empty or full,
respectively. The top variable is at —1 if the stack is empty and maxSize-1 if the stack
is full.

Figure 4.3 shows how the stack class methods work.

Figure 4.3: Operation of the Stackx class methods

Error Handling

There are different philosophies about how to handle stack errors. What happens if you
try to push an item onto a stack that's already full, or pop an item from a stack that's
empty?

We've left the responsibility for handling such errors up to the class user. The user should
always check to be sure the stack is not full before inserting an item:

if('theStack.isFull())
insert (item) ;
else
System.out.print ("Can't insert, stack is full");

In the interest of simplicity, we've left this code out of the main () routine (and anyway, in
this simple program, we know the stack isn't full because it has just been initialized). We
do include the check for an empty stack when main () calls pop ().

-95.

Many stack classes check for these errors internally, in the push () and pop () methods.
This is the preferred approach. In Java, a good solution for a stack class that discovers
such errors is to throw an exception, which can then be caught and processed by the
class user.

Stack Example 1: Reversing a Word

For our first example of using a stack, we'll examine a very simple task: reversing a word.
When you run the program, it asks you to type in a word. When you press Enter, it
displays the word with the letters in reverse order.

A stack is used to reverse the letters. First the characters are extracted one by one from
the input string and pushed onto the stack. Then they're popped off the stack and
displayed. Because of its last-in-first-out characteristic, the stack reverses the order of the

characters. Listing 4.2 shows the code for the reverse. java program.
Listing 4.2 The reverse.java Program

// reverse.java
// stack used to reverse a string
// to run this program: C>java ReverselApp
import java.io.*; // for I/0
[T 7777777777777 7 7777777777777 77777777777777777777777777777
class StackX
{
private int maxSize;
private char[] stackArray;
private int top;

/==
public StackX(int max) // constructor
{
maxSize = max;
stackArray = new char[maxSize];
top = -1;
}

public void push(char j) // put item on top of stack
{

stackArray[++top] = J;

}
e
public char pop () // take item from top of stack

{
return stackArray[top--];
}
et
public char peek() // peek at top of stack

-906 -

{

return stackArray[top];

public boolean isEmpty () // true if stack is empty
{

return (top == -1);

} // end class StackX

[ITTTTTTI TP i i i 77777770 777777777707777777777777777777777

class Reverser

{

private String input; // input string
private String output; // output string
/mm e
public Reverser (String in) // constructor
{ input = in; }
/e
public String doRev () // reverse the string
{
int stackSize = input.length(); // get max stack size
StackX theStack = new StackX(stackSize); // make stack
for (int j=0; j<input.length(); J++)
{
char ch = input.charAt(j); // get a char from
input
theStack.push (ch) ; // push it
}
output = "";
while(!'theStack.isEmpty ())
{
char ch = theStack.pop(); // pop a char,
output = output + ch; // append to output
}
return output;
} // end doRev ()
et

} // end class Reverser

L1177 0007777770077 7777707777777 777777777 777777777777777777777777

-97 -

class ReverseApp
{
public static void main(String[] args) throws IOException
{
String input, output;
while (true)
{
System.out.print ("Enter a string: ");
System.out.flush();

input = getString(); // read a string from
kbd

if (input.equals("")) // quit if [Enter]

break;
// make a Reverser

Reverser theReverser = new Reverser (input);

output = theReverser.doRev(); // use it

System.out.println ("Reversed: " + output);

} // end while

} // end main|()

e

public static String getString() throws IOException
{
InputStreamReader isr = new InputStreamReader (System.in);
BufferedReader br = new BufferedReader (isr);
String s = br.readLine();

return s;

} // end class ReverseApp

We've created a class Reverser to handle the reversing of the input string. Its key
component is the method doRev (), which carries out the reversal, using a stack. The
stack is created within doRev (), which sizes it according to the length of the input string.

Inmain () we get a string from the user, create a Reverser object with this string as an
argument to the constructor, call this object's doRev () method, and display the return
value, which is the reversed string. Here's some sample interaction with the program:

Enter a string: part
Reversed: trap
Enter a string:

Stack Example 2: Delimiter Matching

One common use for stacks is to parse certain kinds of text strings. Typically the strings
are lines of code in a computer language, and the programs parsing them are compilers.

To give the flavor of what's involved, we'll show a program that checks the delimiters in a
line of text typed by the user. This text doesn't need to be a line of real Java code

- 08 -

(although it could be) but it should use delimiters the same way Java does. The delimiters
are the braces '{'and'}’, brackets '['and']’, and parentheses '(‘'and')’. Each opening or left
delimiter should be matched by a closing or right delimiter; that is, every {' should be
followed by a matching '} and so on. Also, opening delimiters that occur later in the string
should be closed before those occurring earlier. Examples:

c[d] // correct
a{blcld}e // correct
a{b(cld}e // not correct;] doesn't match (

alb{c}dle} // not correct; nothing matches final }
a{b(c) // not correct; Nothing matches opening {

Opening Delimiters on the Stack

The program works by reading characters from the string one at a time and placing
opening delimiters, when it finds them, on a stack. When it reads a closing delimiter from
the input, it pops the opening delimiter from the top of the stack and attempts to match it
with the closing delimiter. If they're not the same type (there's an opening brace but a
closing parenthesis, for example), then an error has occurred. Also, if there is no opening
delimiter on the stack to match a closing one, or if a delimiter has not been matched, an
error has occurred. A delimiter that hasn't been matched is discovered because it
remains on the stack after all the characters in the string have been read.

Let's see what happens on the stack for a typical correct string:
a{b(c[dle) f}

Table 4.1 shows how the stack looks as each character is read from this string. The stack
contents are shown in the second column. The entries in this column show the stack
contents, reading from the bottom of the stack on the left to the top on the right.

As it's read, each opening delimiter is placed on the stack. Each closing delimiter read
from the input is matched with the opening delimiter popped from the top of the stack. If
they form a pair, all is well. Nondelimiter characters are not inserted on the stack; they're
ignored.

Table 4.1: Stack contents in delimiter matching

Character Read
Stack Contents

> ||

{ {
B {
({(
C {(

-99 .

E {(
) {
F {
}

This approach works because pairs of delimiters that are opened last should be closed
first. This matches the last-in-first-out property of the stack.

Java Code for brackets. java

The code for the parsing program, brackets. java, is shown in Listing 4.3. We've
placed check (), the method that does the parsing, in a class called BracketChecker.

Listing 4.3 The brackets.java Program

// brackets.java
// stacks used to check matching brackets
// to run this program: C>Jjava BracketsApp
import java.io.*; // for I/0
L1177 777777 7777777777 77
class StackX
{
private int maxSize;
private char[] stackArray;

private int top;

[mm e
public StackX(int s) // constructor
{
maxSize = s;
stackArray = new char[maxSize];
top = -1;
}
[mm e

public void push(char j) // put item on top of stack

{
stackArray[++top] = J;

public char pop () // take item from top of stack
{

return stackArray[top--1;

/e
public char peek() // peek at top of stack
{
return stackArray[top];
}
/e
public boolean isEmpty () // true if stack is empty
{
return (top == -1);
}

} // end class StackX

L1117 77 7007777777077 7 777707777777 77077777777777777777777777777777

class BracketChecker

{

private String input; // input string
/e
public BracketChecker (String in) // constructor
{ input = in; }

public void check ()

{

int stackSize = input.length(); // get max stack
size

StackX theStack = new StackX(stackSize); // make stack

for (int j=0; j<input.length(); Jj++) // get chars in turn
{
char ch = input.charAt(j); // get char
switch (ch)
{

case '{': // opening symbols
case '[':
case '(':
theStack.push (ch) ; // push them
break;
case '} ': // closing symbols

- 101 -

case ']':

case '")':
if(!theStack.isEmpty ()) // 1f stack not
empty,
{
char chx = theStack.pop(); // pop and check
if((ch=='}" && chx!="{") ||
(ch=="1" && chx!="[") ||
(ch==")" && chx!='("))
System.out.println ("Error: "+ch+" at "+7j);
}
else // prematurely empty
System.out.println ("Error: "+ch+" at "+7j);
break;
default: // no action on other characters
break;

} // end switch
} // end for
// at this point, all characters have been processed
if(!'theStack.isEmpty())
System.out.println ("Error: missing right delimiter");
} // end check()

} // end class BracketChecker

[ITTTTTTT T r i i 7 i 777 7777777777777777777777777777777777

class BracketsApp
{
public static void main(String[] args) throws IOException
{
String input;
while (true)
{
System.out.print (
"Enter string containing delimiters: ");
System.out.flush();

input = getString(); // read a string from kbd
if (input.equals("")) // quit if [Enter]
break;

// make a BracketChecker
BracketChecker theChecker = new BracketChecker (input) ;
theChecker.check () ; // check brackets
} // end while
} // end main|()

public static String getString() throws IOException
{

InputStreamReader isr = new InputStreamReader (System.in);

-102 -

BufferedReader br = new BufferedReader (isr);
String s = br.readLine();

return s;

} // end class BracketsApp

The check () routine makes use of the StackX class from the last program. Notice how
easy it is to reuse this class. All the code you need is in one place. This is one of the
payoffs for object-oriented programming.

The main () routine in the BracketsApp class repeatedly reads a line of text from the
user, creates a BracketChecker object with this text string as an argument, and then
calls the check () method for this BracketChecker object. If it finds any errors, the
check () method displays them; otherwise, the syntax of the delimiters is correct.

If it can, the check () method reports the character number where it discovered the error
(starting at 0 on the left), and the incorrect character it found there. For example, for the
input string

af{b(cld}e
the output from check () will be

Error:] at 5

The Stack as a Conceptual Aid

Notice how convenient the stack is in the brackets. java program. You could have set
up an array to do what the stack does, but you would have had to worry about keeping
track of an index to the most recently added character, as well as other bookkeeping
tasks. The stack is conceptually easier to use. By providing limited access to its contents,
using the push () and pop () methods, the stack has made your program easier to
understand and less error prone. (Carpenters will also tell you it's safer to use the right
tool for the job.)

Efficiency of Stacks

Items can be both pushed and popped from the stack implemented in the StackX class in
constant O(1) time. That is, the time is not dependent on how many items are in the stack,
and is therefore very quick. No comparisons or moves are necessary.

Queues

The word queue is British for line (the kind you wait in). In Britain, to "queue up" means to
getin line. In computer science a queue is a data structure that is similar to a stack,
except that in a queue the first item inserted is the first to be removed (FIFO), while in a
stack, as we've seen, the last item inserted is the first to be removed (LIFO). A queue
works like the line at the movies: the first person to join the rear of the line is the first
person to reach the front of the line and buy a ticket. The last person to line up is the last
person to buy a ticket (or—if the show is sold out—to fail to buy a ticket). Figure 4.4
shows how this looks.

- 103 -

Peaple jan the
qusur 4l e e

i1

Figure 4.4: A queue of people

Peigle leavs the
e ok the froat

i1

Queues are used as a programmer's tool as stacks are. We'll see an example where a
queue helps search a graph in_Chapter 13. They're also used to model real-world
situations such as people waiting in line at a bank, airplanes waiting to take off, or data
packets waiting to be transmitted over the Internet.

There are various queues quietly doing their job in your computer's (or the network's)
operating system. There's a printer queue where print jobs wait for the printer to be
available. A queue also stores keystroke data as you type at the keyboard. This way, if
you're using a word processor but the computer is briefly doing something else when you
hit a key, the keystroke won't be lost; it waits in the queue until the word processor has
time to read it. Using a queue guarantees the keystrokes stay in order until they can be
processed.

The Queue Workshop Applet

Start up the Queue Workshop applet. You'll see a queue with four items preinstalled, as
shown in Figure 4.5.

This applet demonstrates a queue based on an array. This is a common approach,
although linked lists are also commonly used to implement queues.

The two basic queue operations are inserting an item, which is placed at the rear of the
queue, and removing an item, which is taken from the front of the queue. This is similar to
a person joining the rear of a line of movie-goers, and, having arrived at the front of the
line and purchased a ticket, removing themselves from the front of the line.

The terms for insertion and removal in a stack are fairly standard; everyone says push
and pop. Standardization hasn't progressed this far with queues. Insert is also called put
or add or enque, while remove may be called delete

[ER Apial Viessr Quemm clace [_1E]=]
Seopiel

M| o | B Pk | ot [

Preax ang bullus

Applet ated

Figure 4.5: The Queue Workshop applet

-104 -

The rear of the queue, where items are inserted, is also called the back or tail or end. The
front, where items are removed, may also be called the head. We'll use the terms insert,
remove, front, and rear.

Insert

By repeatedly pressing the Ins button in the Queue Workshop applet, you can insert a
new item. After the first press, you're prompted to enter a key value for a new item into
the Number text field; this should be a number from 0 to 999. Subsequent presses will
insert an item with this key at the rear of the queue and increment the Rear arrow so it
points to the new item.

Remove

Similarly, you can remove the item at the front of the queue using the Rem button. The
person is removed, the person's value is stored in the Number field (corresponding to the
remove () method returning a value) and the Front arrow is incremented. In the applet,
the cell that held the deleted item is grayed to show it's gone. In a normal
implementation, it would remain in memory but would not be accessible because Front
had moved past it. The insert and remove operations are shown in Figure 4.6.

Unlike the situation in a stack, the items in a queue don't always extend all the way down
to index 0 in the array. Once some items are removed, Front will point at a cell with a
higher index, as shown in Figure 4.7.

® " +
E s

= o 4 Frow

- u— Froni Pl
— - -

¥
o

Toowa it rewband rom o s

Figure 4.6: Operation of the Queue class methods

Notice that in this figure Front lies below Rear in the array; that is, Front has a lower
index. As we'll see in a moment, this isn't always true.

Peek

We show one other queue operation, peek. This finds the value of the item at the front of
the queue without removing the item. (Like insert and remove, peek when applied to a
queue is also called by a variety of other names.) If you press the Peek button, you'll see
the value at Front transferred to the Number box. The queue is unchanged.

- 105 -

Enmgiy cels

Figure 4.7: A queue with some items removed

This peek () method returns the value at the front of the queue. Some queue
implementations have a rearPeek () and a frontPeek () method, but usually you
want to know what you're about to remove, not what you just inserted.

New

If you want to start with an empty queue, you can use the New button to create one.

Empty and Full

If you try to remove an item when there are no more items in the queue, you'll get the
Can't remove, queue is empty error message. If you try to insert an item when all
the cells are already occupied, you'll getthe Can't insert, queue is full
message.

A Circular Queue

When you insert a new item in the queue in the Workshop applet, the Front arrow moves
upward, toward higher numbers in the array. When you remove an item, Rear also
moves upward. Try these operations with the Workshop applet to convince yourself it's
true. You may find the arrangement counter-intuitive, because the people in a line at the
movies all move forward, toward the front, when a person leaves the line. We could move
all the items in a queue whenever we deleted one, but that wouldn't be very efficient.
Instead we keep all the items in the same place and move the front and rear of the
queue.

The trouble with this arrangement is that pretty soon the rear of the queue is at the end of
the array (the highest index). Even if there are empty cells at the beginning of the array,
because you've removed them with Rem, you still can't insert a new item because Rear
can't go any further. Or can it? This situation is shown in Figure 4.8.

Wrapping Around

To avoid the problem of not being able to insert more items into the queue even when it's
not full, the Front and Rear arrows wrap around to the beginning of the array. The result
is a circular queue (sometimes called a ring buffer).

You can see how wraparound works with the Workshop applet. Insert enough items to
bring the Rear arrow to the top of the array (index 9). Remove some items from the front
of the array. Now, insert another item. You'll see the Rear arrow wrap around from index
9 to index 0; the new item will be inserted there. This is shown in Figure 4.9.

- 106 -

Insert a few more items. The Rear arrow moves upward as you'd expect. Notice that
once Rear has wrapped around, it's now below Front, the reverse of the original
arrangement. You can call this a broken sequence: the items in the queue are in two
different sequences in the array.

Delete enough items so that the Front arrow also wraps around. Now you're back to the
original arrangement, with Front below Rear. The items are in a single contiguous
sequence.

MaeBize- | —

Figure 4.8: Rear arrow at the end of the array

MarxSre-| —* L] "
B 2l
k)
E -]
5 1
+ E: 1]
E] 12 4— Frigi
1
o L +— Fear

Figure 4.9: Rear arrow wraps around

Java Code for a Queue

The queue. java program features a Queue class with insert (), remove (), peek (),
isFull (), isEmpty (), and size () methods.

The main () program creates a queue of five cells, inserts four items, removes three
items, and inserts four more. The sixth insertion invokes the wraparound feature. All the
items are then removed and displayed. The output looks like this:

40 50 60 70 80

- 107 -

Listing 4.4 shows the Queue. java program.
Listing 4.4 The Queue.java Program

// Queue.java
// demonstrates queue
// to run this program: C>java QueuelApp

import java.io.*;

// for I/O

L1177 77 7007777777070 7777777777777 777777777 7777777777777777777777

class Queue

{

private int maxSize;
int[]

int front;

private queArray;

private
private int rear;

private int nItems;

//

public Queue (int s)
{

maxSize

Sy

= new int[maxSize];
0;
_1;

0;

queArray

front

rear

public void insert (int j) // put i

{

if (rear == maxSize-1) //
rear = -1;
queArray[++rear] = j; //
insert
nltems++; //

[/ e
public int remove () // take
{
int temp = queArray[front++]; //
if (front == maxSize) //
front = 0;
nItems--; //
return temp;
}
[/

public int peekFront ()
{

- 108 -

constructor

tem at rear of queue

deal with wraparound

increment rear and

one more item

item from front of queue

get value and incr front
deal with wraparound

one less item

at front of queue

return queArray[front];

[e e e
public boolean isEmpty () // true if queue is empty
{
return (nItems==0);
}
[mm e
public boolean isFull () // true if queue is full
{
return (nItems==maxSize);
}
[mm e
public int size() // number of items in queue
{
return nltems;
}

} // end class Queue

L1177 77 7007777777077 7 7777707777777 777777777 7777777777777777777777

class QueueApp

{

public static void main(String[] args)

{

Queue theQueue = new Queue(5); // queue holds 5 items

theQueue.insert (10) ; // insert 4 items

theQueue.insert (20) ;

theQueue.insert (30);

theQueue.insert (40) ;

theQueue.remove () ; // remove 3 items

theQueue.remove () ; // (10, 20, 30)

theQueue.remove () ;

theQueue.insert (50) ; // insert 4 more items

theQueue.insert (60) ; // (wraps around)

theQueue.insert (70) ;

theQueue.insert (80) ;

while (!'theQueue.isEmpty()) // remove and display
{ // all items

int n = theQueue.remove () ; // (40, 50, 60, 70, 80)
System.out.print (n);

- 109 -

System.out.print (" ");

}
System.out.println("");
} // end main()

} // end class QueueApp

We've chosen an approach in which Queue class fields include not only front and
rear, but also the number of items currently in the queue: nItems. Some queue
implementations don't use this field; we'll show this alternative later.

The insert () Method

The insert () method assumes that the queue is not full. We don't show itin main (),
but normally you should only call insert () after calling isFull () and getting a return
value of false. (It's usually preferable to place the check for fullness in the insert ()
routine, and cause an exception to be thrown if an attempt was made to insert into a full
queue.)

Normally, insertion involves incrementing rear and inserting at the cell rear now points
to. However, if rear is at the top of the array, at maxSize-1, then it must wrap around to
the bottom of the array before the insertion takes place. This is done by setting rear to —
1, so when the increment occurs rear will become 0, the bottom of the array. Finally
nItemns is incremented.

The remove () Method

The remove () method assumes that the queue is not empty. You should call
isEmpty () to ensure this is true before calling remove (), or build this error-checking
into remove ().

Removal always starts by obtaining the value at front and then incrementing front.
However, if this puts front beyond the end of the array, it must then be wrapped around
to 0. The return value is stored temporarily while this possibility is checked. Finally,
nItemnms is decremented.

The peek () Method

The peek () method is straightforward: it returns the value at front. Some
implementations allow peeking at the rear of the array as well; such routines are called
something like peekFront () and peekRear () or just front () and rear ().

The isEmpty (), isFull (), and size () Methods

The isEmpty (), isFull (), and size () methods all rely on the nItems field,
respectively checking if it's 0, if it's maxSize, or returning its value.

Implementation Without an Item Count

The inclusion of the field nItems in the Queue class imposes a slight overhead on the
insert () and remove () methods in that they must respectively increment and
decrement this variable. This may not seem like an excessive penalty, but if you're
dealing with huge numbers of insertions and deletions, it might influence performance.

Accordingly, some implementations of queues do without an item count and rely on the
front and rear fields to figure out whether the queue is empty or full and how many

- 110 -

items are in it. When this is done, the isEmpty (), isFull (), and size () routines
become surprisingly complicated because the sequence of items may be either broken or
contiguous, as we've seen.

Also, a strange problem arises. The front and rear pointers assume certain positions
when the queue is full, but they can assume these exact same positions when the queue
is empty. The queue can then appear to be full and empty at the same time.

This problem can be solved by making the array one cell larger than the maximum
number of items that will be placed in it. Listing 4.5 shows a Queue class that implements
this no-count approach. This class uses the no-count implementation.

Listing 4.5 The Queue Class Without nitems

class Queue
{
private int maxSize;
private int[] queArray;
private int front;

private int rear;

e
public Queue (int s) // constructor
{
maxSize = s+1; // array is 1 cell larger
queArray = new int[maxSize]; // than requested
front = 0;
rear = -1;

}
/e
public void insert (int 7J) // put item at rear of queue

{
if (rear == maxSize-1)
rear = -1;
queArray[++rear] = J;
}
/e
public int remove () // take item from front of gqueue
{
int temp = queArray[front++];
if (front == maxSize)
front = 0;
return temp;
}
/m e

public int peek/() // peek at front of queue
{

return queArray[front];

- 111 -

public boolean isEmpty () // true if queue is empty
{
return (rear+l==front || (front+maxSize-l==rear));
}
T
public boolean isFull () // true if queue is full
{
return (rear+2==front || (front+maxSize-2==rear));
}
T
public int size () // (assumes queue not empty)
{
if (rear >= front) // contiguous sequence
return rear-front+l;
else // broken sequence
return (maxSize-front) + (rear+l);
}
et

} // end class Queue

Notice the complexity of the 1sFull (), isEmpty (), and size () methods. This no-
count approach is seldom needed in practice, so we'll refrain from discussing it in detail.

Efficiency of Queues

As with a stack, items can be inserted and removed from a queue in O(1) time.

Deques

A deque is a double-ended queue. You can insert items at either end and delete them
from either end. The methods might be called insertLeft () and insertRight (),
and removeLeft () and removeRight ().

If you restrict yourself to insertLeft () and removeLeft () (or their equivalents on
the right), then the deque acts like a stack. If you restrict yourself to insertLeft () and

removeRight () (or the opposite pair), then it acts like a queue.

A deque provides a more versatile data structure than either a stack or a queue, and is
sometimes used in container class libraries to serve both purposes. However, it's not used
as often as stacks and queues, so we won't explore it further here.

Priority Queues
A priority queue is a more specialized data structure than a stack or a queue. However,

-112 -

it's a useful tool in a surprising number of situations. Like an ordinary queue, a priority
queue has a front and a rear, and items are removed from the front. However, in a priority
queue, items are ordered by key value, so that the item with the lowest key (or in some
implementations the highest key) is always at the front. Items are inserted in the proper
position to maintain the order.

Here's how the mail sorting analogy applies to a priority queue. Every time the postman
hands you a letter, you insert it into your pile of pending letters according to its priority. If
it must be answered immediately (the phone company is about to disconnect your
modem line), it goes on top, while if it can wait for a leisurely answer (a letter from your
Aunt Mabel), it goes on the bottom.

When you have time to answer your mail, you start by taking the letter off the top (the
front of the queue), thus ensuring that the most important letters are answered first. This
is shown in Figure 4.10.

Like stacks and queues, priority queues are often used as programmer's tools. We'll see
one used in finding something called a minimum spanning tree for a graph, in Chapter
14, "Weighted Graphs."

Il urpzay Heiere e

Leneroa g it e

e
processad.,
§
r - r

L gl bemets ane
areerted Rrar

Figure 4.10: Letters in a priority queue

Also, like ordinary queues, priority queues are used in various ways in certain computer
systems. In a preemptive multitasking operating system, for example, programs may be
placed in a priority queue so the highest-priority program is the next one to receive a
time-slice that allows it to execute.

In many situations you want access to the item with the lowest key value (which might
represent the cheapest or shortest way to do something). Thus the item with the smallest
key has the highest priority. Somewhat arbitrarily, we'll assume that's the case in this
discussion, although there are other situations in which the highest key has the highest
priority.

Besides providing quick access to the item with the smallest key, you also want a priority
queue to provide fairly quick insertion. For this reason, priority queues are, as we noted
earlier, often implemented with a data structure called a heap. We'll look at heaps in
Chapter 12. In this chapter, we'll show a priority queue implemented by a simple array.
This implementation suffers from slow insertion, but it's simpler and is appropriate when
the number of items isn't high or insertion speed isn't critical.

The PriorityQ Workshop Applet

-113 -

The PriorityQ Workshop applet implements a priority queue with an array, in which the
items are kept in sorted order. It's an ascending-priority queue, in which the item with the
smallest key has the highest priority and is accessed with remove () . (If the highest-key
item were accessed, it would be a descending-priority queue.)

The minimum-key item is always at the top (highest index) in the array, and the largest
item is always at index 0. Figure 4.11 shows the arrangement when the applet is started.
Initially there are five items in the queue.

[kel Vierwet: Pranityll class MEE
Apsel
Mem | Inz | Aem | Pesk Nusbar |
Fress any bulten
a
B
[
!
5
& | 133 |d= Foomt
O Bl
2 133
1 43
0| B&F|f—HAem
Ayplel vlatol

Figure 4.11: The PriorityQ Workshop applet

Insert

Try inserting an item. You'll be prompted to type the new item's key value into the
Number field. Choose a number that will be inserted somewhere in the middle of the
values already in the queue. For example, in Figure 4.11 you might choose 300. Then, as
you repeatedly press Ins, you'll see that the items with smaller keys are shifted up to
make room. A black arrow shows which item is being shifted. Once the appropriate
position is found, the new item is inserted into the newly created space.

Notice that there's no wraparound in this implementation of the priority queue. Insertion is
slow of necessity because the proper in-order position must be found, but deletion is fast.
A wraparound implementation wouldn't improve the situation. Note too that the Rear
arrow never moves; it always points to index 0 at the bottom of the array.

Delete

The item to be removed is always at the top of the array, so removal is quick and easy;
the item is removed and the Front arrow moves down to point to the new top of the array.
No comparisons or shifting are necessary.

In the PriorityQ Workshop applet, we show Front and Rear arrows to provide a
comparison with an ordinary queue, but they're not really necessary. The algorithms
know that the front of the queue is always at the top of the array at nItems-1, and they
insert items in order, not at the rear. Figure 4.12 shows the operation of the PriorityQ
class methods.

Peek and New

You can peek at the minimum item (find its value without removing it) with the Peek
button, and you can create a new, empty, priority queue with the New button.

Other Implementation Possibilities

-114 -

The implementation shown in the PriorityQ Workshop applet isn't very efficient for
insertion, which involves moving an average of half the items.

Another approach, which also uses an array, makes no attempt to keep the items in
sorted order. New items are simply inserted at the top of the array. This makes insertion
very quick, but unfortunately it makes deletion slow, because the smallest item must be
searched for. This requires examining all the items and shifting half of them, on the
average, down to fill in the hole. Generally, the quick-deletion approach shown in the
Workshop applet is preferred.

For small numbers of items, or situations where speed isn't critical, implementing a
priority queue with an array is satisfactory. For larger numbers of items, or when speed is
critical, the heap is a better choice.

T ma s o ol priarity qusss

Figure 4.12: Operation of the PriorityQ class methods

Java Code for a Priority Queue

The Java code for a simple array-based priority queue is shown in Listing 4.6.
Listing 4.6 The priorityQ.java Program

// priorityQ.java

// demonstrates priority queue

// to run this program: C>java PriorityQApp
import java.io.*; // for I/0

[ITTTTTT TP r i i i 77777770 77777777777777777777777777777777

class PriorityQ

{

// array in sorted order, from max at 0 to min at size-1
private int maxSize;

private double[] queArray;

private int nItems;

public PriorityQ(int s) // constructor

{

- 115 -

maxSize = s;
queArray = new double[maxSize];
nltems = 0;

public void insert (double item) // insert item

{

int J;
if (nItems==0) // if no items,
queArray[nlItems++] = item; // insert at O
else // 1if any items,
{
for (j=nItems-1; j>=0; j—--) // start at end,
{
if(item > queArray[]]) // 1f new item
larger,
queArray[j+1] = queArray([j]l; // shift upward
else // if smaller,
break; // done shifting
} // end for
queArray[j+1] = item; // insert it
nltems++;

} // end else (nItems > 0)
} // end insert()

/m e
public double remove () // remove minimum item
{ return queArray[--nItems]; }
/m e
public double peekMin () // peek at minimum item
{ return queArray[nItems-1]; }
/m e
public boolean isEmpty () // true if queue is empty
{ return (nItems==0); }
/m e
public boolean isFull () // true if queue is full
{ return (nItems == maxSize); }
/m e

} // end class PriorityQ

LTI TTTT TP r i i i 7777777 777777777707777777777777777777777

class PriorityQApp
{

public static void main(String[] args) throws IOException

{
PriorityQ thePQ = new PriorityQ(5);

- 116 -

thePQ.insert (30)
thePQ.insert (50)
thePQ.insert (10) ;
thePQ.insert (40)
thePQ.insert (20)

while(!'thePQ.isEmpty())
{

double item = thePQ.remove () ;

System.out.print (item + " "); // 10, 20, 30, 40, 50
} // end while
System.out.println("");

} // end main/()

} // end class PriorityQApp

Inmain () we insert five items in random order and then remove and display them. The
smallest item is always removed first, so the output is

10, 20, 30, 40, 50

The insert () method checks if there are any items; if not, it inserts one at index 0.
Otherwise, it starts at the top of the array and shifts existing items upward until it finds the
place where the new item should go. Then it inserts it and increments nItems. Note that
if there's any chance the priority queue is full you should check for this possibility with
isFull () before using insert ().

The front and rear fields aren't necessary as they were in the Queue class, because,
as we noted, front is always at nItems-1 and rear is always at 0.

The remove () method is simplicity itself: it decrements nTtems and returns the item
from the top of the array. The peekMin () method is similar, except it doesn't decrement
nItems. The isEmpty () and isFull () methods check if nTtems is 0 or maxSize,
respectively.

Efficiency of Priority Queues

In the priority-queue implementation we show here, insertion runs in O(N) time, while
deletion takes O(1) time. We'll see how to improve insertion time with heaps in Chapter
12.

Parsing Arithmetic Expressions

So far in this chapter, we've introduced three different data storage structures. Let's shift
gears now and focus on an important application for one of these structures. This
application is parsing (that is, analyzing) arithmetic expressions like 2+3 or 2*(3+4) or
((2+4)*7)+3*(9-5), and the storage structure it uses is the stack. In the brackets.java
program, we saw how a stack could be used to check whether delimiters were formatted
correctly. Stacks are used in a similar, although more complicated, way for parsing
arithmetic expressions.

In some sense this section should be considered optional. It's not a prerequisite to the
rest of the book, and writing code to parse arithmetic expressions is probably not
something you need to do every day, unless you are a compiler writer or are designing

- 117 -

pocket calculators. Also, the coding details are more complex than any we've seen so far.
However, it's educational to see this important use of stacks, and the issues raised are
interesting in their own right.

As it turns out, it's fairly difficult, at least for a computer algorithm, to evaluate an
arithmetic expression directly. It's easier for the algorithm to use a two-step process:

1. Transform the arithmetic expression into a different format, called postfix notation.
2. Evaluate the postfix expression.

Step 1 is a bit involved, but step 2 is easy. In any case, this two-step approach results in
a simpler algorithm than trying to parse the arithmetic expression directly. Of course, for a
human it's easier to parse the ordinary arithmetic expression. We'll return to the
difference between the human and computer approaches in a moment.

Before we delve into the details of steps 1 and 2, we'll introduce postfix notation.

Postfix Notation

Everyday arithmetic expressions are written with an operator (+, —, *, or /) placed
between two operands (numbers, or symbols that stand for numbers). This is called infix
notation, because the operator is written inside the operands. Thus we say 2+2 and 4/7,
or, using letters to stand for numbers, A+B and A/B.

In postfix notation (which is also called Reverse Polish Notation, or RPN, because it was
invented by a Polish mathematician), the operator follows the two operands. Thus A+B
becomes AB+, and A/B becomes AB/. More complex infix expressions can likewise be
translated into postfix notation, as shown in Table 4.2. We'll explain how the postfix
expressions are generated in a moment.

Table 4.2: Infix and postfix expressions

Infix Postfix
]

A+B-C AB+C—

A*B/C AB*C/

A+B*C ABC*+

A*B+C AB*C+

A*(B+C) ABC+*

A*B+C*D AB*CD*+

(A+B)*(C-D) AB+CD-*

((A+B)*C)-D AB+C*D-

- 118 -

A+B*(C-D/(E+F)) ABCDEF+/—*+

Some computer languages also have an operator for raising a quantity to a power
(typically the * character), but we'll ignore that possibility in this discussion.

Besides infix and postfix, there's also a prefix notation, in which the operator is written
before the operands: +AB instead of AB+. This is functionally similar to postfix but seldom
used.

Translating Infix to Postfix

The next several pages are devoted to explaining how to translate an expression from
infix notation into postfix. This is a fairly involved algorithm, so don't worry if every detail
isn't clear at first. If you get bogged down, you may want to skip ahead to the section,
"Evaluating Postfix Expressions." In understanding how to create a postfix expression, it
may be helpful to see how a postfix expression is evaluated; for example, how the value
14 is extracted from the expression 234+*, which is the postfix equivalent of 2*(3+4).
(Notice that in this discussion, for ease of writing, we restrict ourselves to expressions
with single-digit numbers, although these expressions may evaluate to multidigit
numbers.)

How Humans Evaluate Infix

How do you translate infix to postfix? Let's examine a slightly easier question first: how
does a human evaluate a normal infix expression? Although, as we stated earlier, this is
difficult for a computer, we humans do it fairly easily because of countless hours in Mr.
Klemmer's math class. It's not hard for us to find the answer to 3+4+5, or 3*(4+5). By
analyzing how we do this, we can achieve some insight into the translation of such
expressions into postfix.

Roughly speaking, when you "solve" an arithmetic expression, you follow rules something
like this:

1. You read from left to right. (At least we'll assume this is true. Sometimes people skip
ahead, but for purposes of this discussion, you should assume you must read
methodically, starting at the left.)

2. When you've read enough to evaluate two operands and an operator, you do the
calculation and substitute the answer for these two operands and operator. (You may
also need to solve other pending operations on the left, as we'll see later.)

3. This process is continued—going from left to right and evaluating when possible—
until the end of the expression.

In Tables 4.3, 4.4, and 4.5 we're going to show three examples of how simple infix
expressions are evaluated. Later, in Tables 4.6, 4.7, and 4.8, we'll see how closely these
evaluations mirror the process of translating infix to postfix.

To evaluate 3+4-5, you would carry out the steps shown in Table 4.3.
Table 4.3: Evaluating 3+4-5

Item Read Expression Parsed So Comments
Far

-119 -

3 3
+ 3+
4 3+4
- 7 When you see the —, you can evaluate
3+4.
7—
5 7-5
End 2 When you reach the end of the

expression, you can evaluate 7-5.

You can't evaluate the 3+4 until you see what operator follows the 4. Ifit's a * or / you
need to wait before applying the + sign until you've evaluated the * or /.

However, in this example the operator following the 4 is a —, which has the same
precedence as a +, so when you see the — you know you can evaluate 3+4, which is 7.
The 7 then replaces the 3+4. You can evaluate the 7-5 when you arrive at the end of the
expression.

Figure 4.13 shows how this looks in more detail. Notice how you go from left to right
reading items from the input, and then, when you have enough information, you go from
right to left, recalling previously examined input and evaluating each operand-operator-
operand combination.

Because of precedence relationships, it's a bit more complicated to evaluate 3+4*5, as
shown in Table 4.4.

Table 4.4: Evaluating 3+4*5

Item Read Expression Parsed So Far Comments

3 3

+ 3+

4 3+4

* 3+4* Can't evaluate 3+4, because * is

higher precedence than +.

5 3+4*5 When you see the 5, you can
evaluate 4*5.

- 120 -

3+20

End 23 When you see the end of the
expression, you can evaluate 3+20.

Here you can't add the 3 until you know the result of 4*5. Why not? Because
multiplication has a higher precedence than addition. In fact, both * and / have a higher
precedence than + and —, so all multiplications and divisions must be carried out before
any additions or subtractions (unless parentheses dictate otherwise; see the next

example).

[017%]) mead i

Figure 4.13: Evaluating 3+4*5

Often you can evaluate as you go from left to right, as in the last example. However, you
need to be sure, when you come to an operand-operator-operand combination like A+B,
that the operator on the right side of the B isn't one with a higher precedence than the +.
If it does have a higher precedence, as in this example, you can't do the addition yet.
However, once you've read the 5, the multiplication can be carried out because it has the
highest priority; it doesn't matter if a * or / follows the 5. However, you still can't do the
addition until you've found out what's beyond the 5. When you find there's nothing
beyond the 5 but the end of the expression, you can go ahead and do the addition.
Figure 4.14 shows this process.

Parentheses can by used to override the normal precedence of operators. Table 4.5

shows how you would evaluate 3*(4+5). Without the parentheses you'd do the
multiplication first; with them you do the addition first.

- 121 -

([0 Reat
e End
1 %2 Iel
A
raeT "
- a8 R - ATY Bac
EI:]....IHI Wy aff f::}l‘ {1} \I..‘l'\l.-n.
I e the e 30
1]
() recad

Figure 4.14: Evaluating 3*(4+5)

Table 4.5: Evaluating 3*(4+5)

Item Read Expression Parsed So Far Comments

]

3 3

* g+

(3%(

4 3*(4 Can't evaluate 3*4 because of
parentheses.

+ 3*(4+

5 3*(4+5 Can't evaluate 4+5 yet.

) 3*(4+5) When you see the ') you can

evaluate 4+5.

3*9 When you've evaluated 4+5, you
can evaluate 3*9.

27

End Nothing left to evaluate.

Here we can't evaluate anything until we've reached the closing parenthesis.
Multiplication has a higher or equal precedence compared to the other operators, so
ordinarily we could carry out 3*4 as soon as we see the 4. However, parentheses have

-122 -

an even higher precedence than * and /. Accordingly, we must evaluate anything in
parentheses before using the result as an operand in any other calculation. The closing
parenthesis tells us we can go ahead and do the addition. We find that 4+5 is 9, and
once we know this, we can evaluate 3*9 to obtain 27. Reaching the end of the expression
is an anticlimax because there's nothing left to evaluate. The process is shown in Figure
4.15.

As we've seen, in evaluating an infix arithmetic expression, you go both forward and
backward through the expression. You go forward (left to right) reading operands and
operators. When you have enough information to apply an operator, you go backward,
recalling two operands and an operator and carrying out the arithmetic.

Sometimes you must defer applying operators if they're followed by higher precedence
operators or by parentheses. When this happens you must apply the later, higher-
precedence, operator first; then go backward (to the left) and apply earlier operators.

e w ~ . _
Read Bl M Bl
{::l'l.:' I"“:]-u-l' C"']-l.-l
T
"'-I d
O trses Domewt Cncat
e N
:IP___.:_
& L h "
7 Evabate §6) Becall 5} Recal {4) Recad
- e * L]
[ThE - |
‘.:I e ord
1
3 ord
®

Figure 4.15: Evaluating 3*(4+5)

We could write an algorithm to carry out this kind of evaluation directly. However, as we
noted, it's actually easier to translate into postfix notation first.

How Humans Translate Infix to Postfix

To translate infix to postfix notation, you follow a similar set of rules to those for
evaluating infix. However, there are a few small changes. You don't do any arithmetic.
The idea is not to evaluate the infix expression, but to rearrange the operators and
operands into a different format: postfix notation. The resulting postfix expression will be
evaluated later.

As before, you read the infix from left to right, looking at each character in turn. As you go
along, you copy these operands and operators to the postfix output string. The trick is
knowing when to copy what.

If the character in the infix string is an operand, you copy it immediately to the postfix
string. That is, if you see an A in the infix, you write an A to the postfix. There's never any
delay: you copy the operands as you get to them, no matter how long you must wait to
copy their associated operators.

Knowing when to copy an operator is more complicated, but it's the same as the rule for
evaluating infix expressions. Whenever you could have used the operator to evaluate
part of the infix expression (if you were evaluating instead of translating to postfix), you
instead copy it to the postfix string.

-123 -

Table 4.6 shows how A+B—C is translated into postfix notation.

Table 4.6: Translating A+B-C into postfix

Character Read from Infix Expression Postfix Expression Comments

Infix Expression Parsed So Far Written So Far

A A A

+ A+ A

B A+B AB

- A+B- AB+ When you
see the —,
you can copy
the + to the

postfix string.
Cc A+B-C AB+C

End A+B-C AB+C— When you
reach the
end of the
expression,
you can copy
the —.

Notice the similarity of this table to Table 4.3, which showed the evaluation of the infix
expression 3+4-5. At each point where you would have done an evaluation in the earlier
table, you instead simply write an operator to the postfix output.

Table 4.7 shows the translation of A+B*C to postfix. This is similar to Table 4.4, which
covered the evaluation of 3+4*5.

Table 4.7: Translating A+B*C to postfix

Character Read from Infix Expression Postfix Expression Comments
Infix Expression Parsed So Far Written So Far

A A A

+ A+ A

B A+B AB

-124 -

* A+B* AB Can't copy the
+, because * is
higher
precedence
than +.

C A+B*C ABC When you see
the C, you can
copy the *.

A+B*C ABC*

End A+B*C ABC*+ When you see
the end of the
expression,
you can copy
the +.

As the final example, Table 4.8 shows how A*(B+C) is translated to postfix. This is similar
to evaluating 3*(4+5) in Table 4.5. You can't write any postfix operators until you see the
closing parenthesis in the input.

Table 4.8: Translating 3*(4+5) into postfix

Character Read from Infix Expression Postfix Expression Comments

Infix Expression Parsed So Far Written So Far

A A A

* A* A

(AX(A

B A*(B AB Can't copy *
because of

parenthesis.

+ A*(B+ AB

C A*(B+C ABC Can't copy the
+ yet.

) A*(B+C) ABC+ When you see
the) you can
copy the +.

A*(B+C) ABC+* When you've
copied the +,
you can copy
the™.

- 125 -

End A*(B+C) ABC+* Nothing left to

copy.

As in the numerical evaluation process, you go both forward and backward through the
infix expression to complete the translation to postfix. You can't write an operator to the
output (postfix) string if it's followed by a higher-precedence operator or a left
parenthesis. If it is, the higher precedence operator, or the operator in parentheses, must
be written to the postfix before the lower priority operator.

Saving Operators on a Stack

You'll notice in both Table 4.7 and Table 4.8 that the order of the operators is reversed
going from infix to postfix. Because the first operator can't be copied to the output until
the second one has been copied, the operators were output to the postfix string in the
opposite order they were read from the infix string. A longer example may make this
clearer. Table 4.9 shows the translation to postfix of the infix expression A+B*(C-D). We
include a column for stack contents, which we'll explain in a moment.

Table 4.9: Translating A+B*(C-D) to postfix

Character Read from Infix Expression Postfix Expression Stack

Infix Expression Parsed So Far Written So Far Contents

]

A A A

+ A+ A +

B A+B AB +

* A+B* AB +*

(A+B*(AB +*(

C A+B*(C ABC +*(

- A+B*(C— ABC +*(—

D A+B*(C-D ABCD +*(—

) A+B*(C-D) ABCD- +*(
A+B*(C-D) ABCD- +(
A+B*(C-D) ABCD- +*
A+B*(C-D) ABCD-* +
A+B*(C-D) ABCD—*+

- 126 -

Here we see the order of the operands is +*— in the original infix expression, but the
reverse order, —*+, in the final postfix expression. This happens because * has higher
precedence than +, and —, because it's in parentheses, has higher precedence than *.

This order reversal suggests a stack might be a good place to store the operators while
we're waiting to use them. The last column in Table 4.9 shows the stack contents at
various stages in the translation process.

Popping items from the stack allows you to, in a sense, go backward (right to left) through
the input string. You're not really examining the entire input string, only the operators and
parentheses. These were pushed on the stack when reading the input, so now you can
recall them in reverse order by popping them off the stack.

The operands (A, B, and so on) appear in the same order in infix and postfix, so you can
write each one to the output as soon as you encounter it; they don't need to be stored on
a stack.

Translation Rules

Let's make the rules for infix-to-postfix translation more explicit. You read items from the
infix input string and take the actions shown in Table 4.10. These actions are described in
pseudocode, a blend of Java and English.

In this table, the < and >= symbols refer to the operator precedence relationship, not

numerical values. The opThis operator has just been read from the infix input, while the
opTop operator has just been popped off the stack.

Table 4.10: Translation rules

Item Read from Input(Infix) Action

Operand Write it to output (postfix)

Open parenthesis (Push it on stack

Close parenthesis) While stack not empty, repeat the following:
Pop an item,

If item is not (, write it to output
Quit loop if item is (

Operator (opThis) If stack empty,
Push opThis

Otherwise,

- 127 -

No more items

While stack not empty, repeat:

Pop an item,

If itemis (, pushit, or

If item is an operator (opTop), and

If opTop < opThis, push opTop, or

If opTop >= opThis, output opTop

Quit loop if opTop < opThis oritemis (

Push opThis
While stack not empty,

Pop item, output it.

It may take some work to convince yourself that these rules work. Tables 4.11, 4.12, and
4.13 show how the rules apply to three sample infix expressions. These are similar to
Tables 4.6, 4.7, and 4.8, except that the relevant rules for each step have been added.
Try creating similar tables by starting with other simple infix expressions and using the
rules to translate some of them to postfix.

Table 4.11: Translation Rules Applied to A+B-C

Character Read

from Infix

A

Infix Parsed
So Far

A+

A+B

A+B-

A+B-

Postfix
Written So Far

AB

AB

AB+

- 128 -

Rule

Write operand
to output.

If stack empty,
push opThis.

Write operand
to output.

Stack not
empty, so pop
item.

opThis is —,
opTop is +,
opTop>=opThis,
SO output opTop.

End

A+B-

A+B-C

A+B-C

AB+

AB+C

AB+C-

Table 4.12: Translation rules applied to A+B*C

Character Read
from Infix

A

End

Infix Parsed
So Far

A+B

A+B*

A+B*

A+B*

A+B*C

A+B*C

A+B*C

Postfix
Written So Far

AB

AB

AB

AB

ABC

ABC*

ABC*+

- 129 -

- Then push

opThis.

- Write operand

to output.

Pop leftover
item, output it.

Stack Rule
Contents

Write operand
to postfix.

+ If stack empty,
push opThis.

+ Write operand
to output.

+ Stack not
empty, so pop
opTop.

+ opThis is ¥,

opTop is +
opTop<opThis,
SO push opTop.

+* Then push
opThis.

+* Write operand
to output.

+ Pop leftover

item, output it.

Pop leftover
item, output it.

Table 4.13: Translation Rules Applied to A*(B+C)

Character Read Infix Parsed Postfix Stack Rule

from Infix So Far Written So Far Contents

A A A Write operand
to postfix.

* A* A * If stack empty,
push opThis.

(A*(A *(Push (on
stack.

B A*(B AB *(Write operand
to postfix.

+ A*(B+ AB * Stack not
empty, so pop
item.

A*(B+ AB *(It's (, so push
it.

A*(B+ AB *(+ Then push
opThis.

C A*(B+C ABC *(+ Write operand
to postfix.

) A*(B+C) ABC+ *(Pop item,
write to
output.

A*(B+C) ABC+ * Quit popping if
(.
End A*(B+C) ABC+* Pop leftover

item, output it.

Java Code to Convert Infix to Postfix

Listing 4.7 shows the infix.java program, which uses the rules of Table 4.10 to
translate an infix expression to a postfix expression.

Listing 4.7 The infix.java Program

// infix.java

// converts infix arithmetic expressions to postfix
// to run this program: C>java InfixApp

import java.io.*; // for I/0

- 130 -

[T 7777777777777 7 7777777777777 77777777777777777777777777777
class StackX

{

private int maxSize;

private char[] stackArray;

private int top;

/e
public StackX(int s) // constructor
{
maxSize = s;
stackArray = new char[maxSize];
top = -1;
}
/e
public void push(char j) // put item on top of stack
{ stackArray[++top] = J; }
e
public char pop() // take item from top of stack
{ return stackArray[top--1; }
et
public char peek() // peek at top of stack
{ return stackArray[top]; }
et
public boolean isEmpty() // true if stack is empty
{ return (top == -1); }
et
public int size() // return size
{ return top+l; }
/m e
public char peekN(int n) // return item at index n
{ return stackArray([n]; }

public void displayStack(String s)

{

System.out.print (s);

System.out.print ("Stack (bottom-->top): ");

for (int j=0; j<size(); J++)
{
System.out.print (peekN(j));
System.out.print (' ');

-131 -

}
System.out.println("");

} // end class StackX
(1777777777777 77/77777777

// infix to postfix conversion
{
private StackX theStack;
private String input;
private String output = "";

/e
public InToPost (String in) // constructor
{
input = in;
int stackSize = input.length();
theStack = new StackX (stackSize);
}

public String doTrans () // do translation to postfix

{

for (int j=0; j<input.length(); J++)
{
char ch = input.charAt(j);
theStack.displayStack ("For "+ch+" "); // *diagnostic*
switch (ch)

{

case '+': // it's + or -

case '-':
gotOper (ch, 1); // go pop operators
break; // (precedence 1)

case '*': // it's * or /

case '/':
gotOper (ch, 2); // go pop operators
break; // (precedence 2)

case ' (': // it's a left paren
theStack.push (ch) ; // push it
break;

case ") ': // it's a right paren
gotParen (ch) ; // go pop operators
break;

default: // must be an operand

output = output + ch; // write it to output
break;
} // end switch

-132 -

} // end for
while(!theStack.isEmpty ())
{

theStack.displayStack ("While ");
output + theStack.popl();

output =
}
theStack.displayStack ("End
return output;
} // end doTrans ()

")

// pop remaining opers

// *diagnostic*
// write to output

// *diagnostic*
// return postfix

int precl)
// got operator from

// if it's a ' ('

l(l

// restore

// it's an operator

// precedence of new op

// find new op prec

// if prec of new op

//
// save newly-popped op

than prec of old

// prec of new not less
// than prec of old

// push new operator

// got right paren from

// if popped ' ('
// we're done

e
public void gotOper (char opThis,
{
input
while(!'theStack.isEmpty ())
{
char opTop = theStack.pop():;
if (opTop == ' (')
{
theStack.push (opTop) ;
break;
}
else
{
int prec2;
if (opTop=='"+"' || opTop=='-")
prec2 = 1;
else
prec2 = 2;
if (prec2 < precl)
less
{
theStack.push (opTop) ;
break;
}
else
output = output + opTop;
} // end else (it's an operator)
} // end while
theStack.push (opThis) ;
} // end gotOp ()
e
public void gotParen (char ch)
{
input
while(!'theStack.isEmpty ())
{
char chx = theStack.pop();
if(chx == "(')
break;

- 133 -

else // 1f popped operator
output = output + chx; // output it
} // end while
}// end popOps ()

} // end class InToPost

L1177 0777777770777 777 707777777 777777777777777777777777777777777

class InfixApp
{
public static void main(String[] args) throws IOException
{
String input, output;
while (true)

{

System.out.print ("Enter infix: ");
System.out.flush();
input = getString(); // read a string from kbd
if (input.equals("")) // quit if [Enter]
break;

// make a translator
InToPost theTrans = new InToPost (input);
output = theTrans.doTrans(); // do the translation
System.out.println ("Postfix is " + output + '\n');
} // end while
} // end main|()

public static String getString() throws IOException
{

InputStreamReader isr = new InputStreamReader (System.in);
BufferedReader br = new BufferedReader (isr);
String s = br.readLine();

return s;

} // end class InfixApp

The main () routine in the InfixApp class asks the user to enter an infix expression.

The input is read with the readString () utility method. The program creates an
InToPost object, initialized with the input string. Then it calls the doTrans () method
for this object to perform the translation. This method returns the postfix output string,

which is displayed.

The doTrans () method uses a switch statement to handle the various translation

rules shown in Table 4.10. It calls the gotOper () method when it reads an operator and
the gotParen () method when it reads a closing parenthesis ')'. These methods

-134 -

implement the second two rules in the table, which are more complex than other rules.

We've included a displayStack () method to display the entire contents of the stack in
the stackX class. In theory, this isn't playing by the rules; you're only supposed to
access the item at the top. However, as a diagnostic aid it's useful to see the contents of
the stack at each stage of the translation. Here's some sample interaction with
infix.java:

Enter infix: Input=A* (B+C
For A Stack
For * Stack

-D/ (E+F)
bottom-->top
bottom-->top

) =
) :
) :
) :
bottom-->top) : *
) :
) :
) :
) :

(
(
For (Stack (bottom-->top *
For B Stack ((
For + Stack (bottom-->top *
For C Stack (bottom-->top o+
For) Stack (bottom-->top * (4
(

*

For - Stack (bottom-->top
For D Stack (bottom-->top): -

Parsing Arithmetic ExpressionsFor / Stack (bottom-->top): -
For (Stack (bottom-->top): - /

While Stack (bottom-->top
End Stack (bottom-->top
Postfix is ABCH+*DEF+/-

For E Stack (bottom-->top): - / (
For + Stack (bottom-->top): - / (
For F Stack (bottom-->top): - / (+
For) Stack (bottom-->top): - / (+
While Stack (bottom-->top): - /
()
)

The output shows where the displayStack () method was called (from the for loop,
the while loop, or at the end of the program) and within the for loop, what character
has just been read from the input string.

You can use single-digit numbers like 3 and 7 instead of symbols like A and B. They're all
just characters to the program. For example:

Enter infix: Input=2+3*4
For 2 Stack (bottom-->top
For + Stack (bottom-->top
For 3 Stack (bottom-->top
For * Stack (bottom-->top
For 4 Stack (bottom-->top
While Stack (bottom-->top
While Stack (

End Stack (bottom-->top

Postfix is 234*+

+ 4+ 4+ 4+ o+
*

)
)
)
) 2
) :
)
)
)

Of course, in the postfix output, the 234 means the separate numbers 2, 3, and 4.

The infix.java program doesn't check the input for errors. If you type an incorrect infix
expression, the program will provide erroneous output or crash and burn.

Experiment with this program. Start with some simple infix expressions, and see if you
can predict what the postfix will be. Then run the program to verify your answer. Pretty
soon, you'll be a postfix guru, much sought-after at cocktail parties.

- 135 -

Evaluating Postfix Expressions

As you can seg, it's not trivial to convert infix expressions to postfix expressions. Is all this
trouble really necessary? Yes, the payoff comes when you evaluate a postfix expression.
Before we show how simple the algorithm is, let's examine how a human might carry out
such an evaluation.

How Humans Evaluate Postfix

Figure 4.16 shows how a human can evaluate a postfix expression using visual
inspection and a pencil.

Start with the first operator on the left, and draw a circle around it and the two operands
to its immediate left. Then apply the operator to these two operands—performing the
actual arithmetic—and write down the result inside the circle. In the figure, evaluating 4+5
gives 9.

Figure 4.16: Visual approach to postfix evaluation of 345+*612+/-

Now go to the next operator to the right, and draw a circle around it, the circle you
already drew, and the operand to the left of that. Apply the operator to the previous circle
and the new operand, and write the result in the new circle. Here 3*9 gives 27. Continue
this process until all the operators have been applied: 1+2 is 3, and 6/3 is 2. The answer
is the result in the largest circle: 27-2 is 25.

Rules for Postfix Evaluation

How do we write a program to reproduce this evaluation process? As you can see, each
time you come to an operator, you apply it to the last two operands you've seen. This
suggests that it might be appropriate to store the operands on a stack. (This is the
opposite of the infix to postfix translation algorithm, where operators were stored on the
stack.) You can use the rules shown in Table 4.14 to evaluate postfix expressions.

Table 4.14: Evaluating a postfix expression

Item Read from Postfix Expression Action

Operand Push it onto the stack.

Operator Pop the top two operands from the stack,
and apply the operator to them. Push the
result.

- 136 -

When you're finished, pop the stack to obtain the answer. That's all there is to it. This
process is the computer equivalent of the human circle-drawing approach of Figure 4.16.

Java Code to Evaluate Postfix Expressions

In the infix-to-postfix translation, we used symbols (A, B, and so on) to stand for numbers.
This worked because we weren't performing arithmetic operations on the operands, but
merely rewriting them in a different format.

Now we want to evaluate a postfix expression, which means carrying out the arithmetic
and obtaining an answer. Thus the input must consist of actual numbers. To simplify the
coding we've restricted the input to single-digit numbers.

Our program evaluates a postfix expression and outputs the result. Remember numbers
are restricted to one digit. Here's some simple interaction:

Enter postfix: 57+

5 Stack (bottom-->top):

7 Stack (bottom-->top): 5

+ Stack (bottom-->top): 5 7
Evaluates to 12

You enter digits and operators, with no spaces. The program finds the numerical
equivalent. Although the input is restricted to single-digit numbers, the results are not; it
doesn't matter if something evaluates to numbers greater than 9. As in the infix.java
program, we use the displayStack () method to show the stack contents at each step.
Listing 4.8 shows the postfix.java program.

Listing 4.8 The postfix.java Program

// postfix.java
// parses postfix arithmetic expressions
// to run this program: C>java PostfixApp
import java.io.*; // for I/0
L1717 7777777 777777777777 777777777/7777777777777/7777777777777777777
class StackX
{
private int maxSize;
private int[] stackArray;
private int top;

[mm e
public StackX(int size) // constructor
{
maxSize = size;
stackArray = new int[maxSize];
top = -1;
}
[mm e
public void push (int 3J) // put item on top of stack

- 137 -

et
public int pop () // take item from top of stack
{ return stackArray[top--1; }
/m e e
public int peek() // peek at top of stack
{ return stackArray([top]; }
/m e
public boolean isEmpty () // true if stack is empty
{ return (top == -1); }
/m e
public boolean isFull () // true if stack is full
{ return (top == maxSize-1); }
/m e -
public int size () // return size
{ return top+l; }
/m e -
public int peekN(int n) // peek at index n
{ return stackArray[n]; }

public void displayStack(String s)

{

System.out.print(s);

System.out.print ("Stack (bottom-->top): ");

for (int j=0; j<size(); Jj++)
{
System.out.print (peekN(j))
System.out.print (' ');

}
System.out.println("");

} // end class StackX
L7770 77777777777777777777777777/7777777777777/7777777777777777777
class ParsePost

{
private StackX theStack;

- 138 -

private String input;

public ParsePost (String s)
{ input = s; }

public int doParse ()
{
theStack = new StackX(20); // make new stack
char ch;
int j;

int numl, num2, interAns;

for (§7=0; j<input.length(); j++) // for each char,
{
ch = input.charAt (j); // read from input
theStack.displayStack (""+ch+"™ "); // *diagnostic*
if(ch >= '0' && ch <= '9") // i1f it's a number
theStack.push((int) (ch-'0"')); // push it
else // it's an operator
{
num2 = theStack.pop(); // pop operands
numl = theStack.pop();
switch (ch) // do arithmetic
{
case '+':
interAns = numl + num2;
break;
case '-':
interAns = numl - num2;
break;
case '*':
interAns = numl * num2;
break;
case '/':
interAns = numl / num2;
break;
default:
interAns = 0;
} // end switch
theStack.push (interAns) ; // push result

} // end else
} // end for
interAns = theStack.pop(); // get answer
return interAns;
} // end doParse()
} // end class ParsePost

L1177 77 7007777777070 7777777777777 777777777 7777777777777777777777

- 139 -

class PostfixApp
{

public static void main(String[] args) throws IOException

{
String input;
int output;

while (true)

{

System.out.print ("Enter postfix: ");
System.out.flush{();
input = getString(); // read a string from kbd
if(input.equals("")) // quit if [Enter]

break;

// make a parser
ParsePost aParser = new ParsePost (input);
output = aParser.doParse(); // do the evaluation
System.out.println ("Evaluates to " + output);
} // end while
} // end main /()

public static String getString() throws IOException
{
InputStreamReader isr = new InputStreamReader (System.in);
BufferedReader br = new BufferedReader (isr);
String s = br.readLine();

return s;

} // end class PostfixApp

The main () method in the Post fixApp class gets the postfix string from the user and
then creates a ParsePost object, initialized with this string. It then calls the doParse ()
method of ParsePost to carry out the evaluation.

The doParse () method reads through the input string, character by character. If the
character is a digit, it's pushed onto the stack. If it's an operator, it's applied immediately
to the two operators on the top of the stack. (These operators are guaranteed to be on
the stack already, because the input string is in postfix notation.)

The result of the arithmetic operation is pushed onto the stack. Once the last character
(which must be an operator) is read and applied, the stack contains only one item, which
is the answer to the entire expression.

Here's some interaction with more complex input: the postfix expression 345+*612+/—,
which we showed a human evaluating in_Figure 4.16. This corresponds to the infix
3*(4+5)-6/(1+2). (We saw an equivalent translation using letters instead of numbers in
the last section: A*(B+C)-D/(E+F) in infix is ABC+*DEF+/- in postfix.) Here's how the
postfix is evaluated by the postfix.java program:

- 140 -

Enter postfix: 345+*612+/-
3 Stack (bottom-->top):

4 Stack (bottom-->top) 3

5 Stack (bottom-->top): 3 4

+ Stack (bottom-->top) 345

* Stack (bottom-->top) 39

6 Stack (bottom-->top): 27

1 Stack (bottom-->top): 27 6

2 Stack (bottom-->top) 27 6 1

+ Stack (bottom-->top): 27 6 1 2
/ Stack (bottom-->top): 27 6 3

- Stack (bottom-->top): 27 2

Evaluates to 25

As with the last program, postfix.java doesn't check for input errors. If you type in a
postfix expression that doesn't make sense, results are unpredictable.

Experiment with the program. Trying different postfix expressions and seeing how they're
evaluated will give you an understanding of the process faster than reading about it.

Summary

» Stacks, queues, and priority queues are data structures usually used to simplify certain
programming operations.

* In these data structures, only one data item can be accessed.
+ A stack allows access to the last item inserted.

» The important stack operations are pushing (inserting) an item onto the top of the
stack and popping (removing) the item that's on the top.

* A queue allows access to the first item that was inserted.

+ The important queue operations are inserting an item at the rear of the queue and
removing the item from the front of the queue.

+ A queue can be implemented as a circular queue, which is based on an array in which
the indices wrap around from the end of the array to the beginning.

+ A priority queue allows access to the smallest (or sometimes the largest) item.

» The important priority queue operations are inserting an item in sorted order and
removing the item with the smallest key.

» These data structures can be implemented with arrays or with other mechanisms such
as linked lists.

» Ordinary arithmetic expressions are written in infix notation, so-called because the
operator is written between the two operands.

* In postfix notation, the operator follows the two operands.

+ Arithmetic expressions are typically evaluated by translating them to postfix notation
and then evaluating the postfix expression.

141 -

» A stack is a useful tool both for translating an infix to a postfix expression and for
evaluating a postfix expression.

Chapter 5: Linked Lists

Overview

In Chapter 2, "Arrays," we saw that arrays had certain disadvantages as data storage
structures. In an unordered array, searching is slow, whereas in an ordered array,
insertion is slow. In both kinds of arrays deletion is slow. Also, the size of an array can't
be changed after it's created.

In this chapter we'll look at a data storage structure that solves some of these problems:
the linked list. Linked lists are probably the second most commonly used general-purpose
storage structures after arrays.

The linked list is a versatile mechanism suitable for use in many kinds of general-purpose
databases. It can also replace an array as the basis for other storage structures such as
stacks and queues. In fact, you can use a linked list in many cases where you use an
array (unless you need frequent random access to individual items using an index).

Linked lists aren't the solution to all data storage problems, but they are surprisingly
versatile and conceptually simpler than some other popular structures such as trees.
We'll investigate their strengths and weaknesses as we go along.

In this chapter we'll look at simple linked lists, double-ended lists, sorted lists, doubly linked
lists, and lists with iterators (an approach to random access to list elements). We'll also
examine the idea of Abstract Data Types (ADTs) and see how stacks and queues can be
viewed as ADTs and how they can be implemented as linked lists instead of arrays.

Links

In a linked list, each data item is embedded in a link. A link is an object of a class called
something like Link. Because there are many similar links in a list, it makes sense to use
a separate class for them, distinct from the linked list itself. Each link object contains a
reference (usually called next) to the next link in the list. A field in the list itself contains a
reference to the first link. This is shown in Figure 5.1.

Here's part of the definition of a class Link. It contains some data and a reference to the
next link.

class Link

{

public int iData; // data
public double dbata; // data
public Link next; // reference to next link

This kind of class definition is sometimes called self-referential because it contains a
field—called next in this case—of the same type as itself.

We show only two data items in the link: an int and a double. In a typical application
there would be many more. A personnel record, for example, might have name, address,
Social Security number, title, salary, and many other fields. Often an object of a class that
contains this data is used instead of the items:

142 -

class Link

{
public inventoryItem iI; // object holding data
public Link next; // reference to next link

Lankesd Last

e

Figure 5.1: Links in a list

References and Basic Types

It's easy to get confused about references in the context of linked lists, so let's review
how they work.

It may seem odd that you can put a field of type L.ink inside the class definition of this
same type. Wouldn't the compiler be confused? How can it figure out how big to make a
Link object if a link contains a link and the compiler doesn't already know how big a
Link object is?

The answer is that a Link object doesn't really contain another Link object, although it
may look like it does. The next field of type Link is only a reference to another link, not
an object.

A reference is a number that refers to an object. It's the object's address in the
computer's memory, but you don't need to know its value; you just treat it as a magic
number that tells you where the object is. In a given computer/operating system, all
references, no matter what they refer to, are the same size. Thus it's no problem for the
compiler to figure out how big this field should be, and thereby construct an entire Link
object.

Note that in Java, primitive types like int and double are stored quite differently than
objects. Fields containing primitive types do not contain references, but actual numerical
values like 7 or 3.14159. A variable definition like

double salary = 65000.00;

creates a space in memory and puts the number 65000.00 into this space. However, a
reference to an object, like

Link aLink = somelink;

puts a reference to an object of type Link, called someLink, into aLink. The
someLink object isn't moved, or even created, by this statement; it must have been
created before. To create an object you must always use new:

Link somelLink = new Link();

143 -

Even the someLink field doesn't hold an object, it's still just a reference. The object is
somewhere else in memory, as shown in Figure 5.2.

Other languages, like C++, handle objects quite differently than Java. In C++ a field like
Link next;

actually contains an object of type Link. You can't write a self-referential class definition
in C++ (although you can put a pointer to a Link in class Link; a pointer is similar to a
reference). C++ programmers should keep in mind how Java handles objects; it may be
counter intuitive.

aLink

samel.ink

Figure 5.2: Objects and references in memory

Relationship, Not Position

Let's examine one of the major ways in which linked lists differ from arrays. In an array
each item occupies a particular position. This position can be directly accessed using an
index number. It's like a row of houses: you can find a particular house using its address.

In a list the only way to find a particular element is to follow along the chain of elements. It's
more like human relations. Maybe you ask Harry where Bob is. Harry doesn't know, but he
thinks Jane might know, so you go and ask Jane. Jane saw Bob leave the office with Sally,
so you call Sally's cell phone. She dropped Bob off at Peter's office, so...but you get the
idea. You can't access a data item directly; you must use relationships between the items
to locate it. You start with the first item, go to the second, then the third, until you find what
you're looking for.

The LinkList Workshop Applet

The LinkList Workshop applet provides three list operations. You can insert a new data
item, search for a data item with a specified key, and delete a data item with a specified
key. These operations are the same ones we explored in the Array Workshop applet in
Chapter 2; they're suitable for a general-purpose database application.

Figure 5.3 shows how the LinkList Workshop applet looks when it's started up. Initially
there are 13 links on the list.

144 -

Beimet oo Liobisicless A
Al

()] [D] [P e e [

Piid & bilten

I?—-—-@—-[-—-I-—-[--IE]

A58 28 176 ShLE 17

Figure 5.3: The LinkList Workshop applet

Insert

If you think 13 is an unlucky number, you can insert a new link. Click on the Ins button,
and you'll be prompted to enter a key value between 0 and 999. Subsequent presses will
generate a link with this data in it, as shown in Figure 5.4.

In this version of a linked list, new links are always inserted at the beginning of the list.
This is the simplest approach, although it's also possible to insert links anywhere in the
list, as we'll see later.

A final press on Ins will redraw the list so the newly inserted link lines up with the other
links. This redrawing doesn't represent anything happening in the program itself, it just
makes the display look neater.

Find

The Find button allows you find a link with a specified key value. When prompted, type in
the value of an existing link, preferably one somewhere in the middle of the list. As you
continue to press the button, you'll see the red arrow move along the list, looking for the
link. A message informs you when it finds it. If you type a nonexistent key value, the
arrow will search all the way to the end of the list before reporting that the item can't be
found.

[S szl Wamer l.Lnl clag ;] [
; dpplet
& Uncosted
|
Hew | bnz | Fnd | [l pa— Enloi russher 60D
. beamited pmaon; well rede ot

Im ma—l——

.'“T-"

Apphet slanied

Figure 5.4: A new link being inserted

Delete

You can also delete a key with a specified value. Type in the value of an existing link, and

- 145 -

repeatedly press Del. Again the arrow will move along the list, looking for the link. When it
finds it, it simply removes it and connects the arrow from the previous link straight across
to the following link. This is how links are removed: the reference to the preceding link is
changed to point to the following link.

A final keypress redraws the picture, but again this just provides evenly spaced links for

aesthetic reasons; the length of the arrows doesn't correspond to anything in the
program.

Unsorted and Sorted

The LinkList Workshop applet can create both unsorted and sorted lists. Unsorted is the
default. We'll show how to use the applet for sorted lists when we discuss them later in this
chapter.

A Simple Linked List

Ouir first example program, 1inkList.java, demonstrates a simple linked list. The only
operations allowed in this version of a list are

» Inserting an item at the beginning of the list
» Deleting the item at the beginning of the list
+ lterating through the list to display its contents

These operations are fairly easy to carry out, so we'll start with them. (As we'll see later,
these operations are also all you need to use a linked list as the basis for a stack.)

Before we get to the complete 1inkList.java program, we'll look at some important
parts of the Link and LinkList classes.

The Link Class
You've already seen the data part of the Link class. Here's the complete class definition:

class Link

{

public int iData; // data item
public double dData; // data item
public Link next; // next link in list

public Link(int id, double dd) // constructor

iData = id; // initialize data
dData = dd; // ('next' is automatically
} // set to null)

public void displayLink() // display ourself

{
System.out.print ("{" + iData + ", " + dData + "} ");

- 146 -

} // end class Link

In addition to the data, there's a constructor and a method, displayLink (), that
displays the link's data in the format {22, 33.9}. Object purists would probably object
to naming this method displayLink (), arguing that it should be simply display ().
This would be in the spirit of polymorphism, but it makes the listing somewhat harder to
understand when you see a statement like

current.display();

and you've forgotten whether current is a Link object, a LinkList object, or
something else.

The constructor initializes the data. There's no need to initialize the next field, because
it's automatically set to nul1 when it's created. (Although it could be set to null
explicitly, for clarity.) The null value means it doesn't refer to anything, which is the
situation until the link is connected to other links.

We've made the storage type of the Link fields (iData and so on) public. If they were
private we would need to provide public methods to access them, which would require
extra code, thus making the listing longer and harder to read. Ideally, for security we
would probably want to restrict L.ink-object access to methods of the LinkList class.
However, without an inheritance relationship between these classes, that's not very
convenient. We could use the default access specifier (no keyword) to give the data
package access (access restricted to classes in the same directory) but that has no effect
in these demo programs, which only occupy one directory anyway. The public specifier
at least makes it clear that this data isn't private.

The LinkList Class

The LinkList class contains only one data item: a reference to the first link on the list.
This reference is called first. It's the only permanent information the list maintains
about the location of any of the links. It finds the other links by following the chain of
references from first, using each link's next field.

class LinkList

{

private Link first; // ref to first link on list
/) T e
public void LinkList () // constructor
{
first = null; // no items on list yet
}
/) T
public boolean isEmpty () // true if list is empty

{

return (first==null);

}

147 -

// other methods go here

The constructor for LinkList sets first to null. This isn't really necessary because
as we noted, references are set to null automatically when they're created. However,
the explicit constructor makes it clear that this is how first begins.

When first has the value null, we know there are no items on the list. If there were
any items, £irst would contain a reference to the first one. The i sEmpty () method
uses this fact to determine whether the list is empty.

The insertFirst () Method

The insertFirst () method of LinkList inserts a new link at the beginning of the list.
This is the easiest place to insert a link, because first already points to the first link. To
insert the new link, we need only set the next field in the newly created link to point to
the old first link, and then change first so it points to the newly created link. This is
shown in_Figure 5.5.

In insertFirst () we begin by creating the new link using the data passed as
arguments. Then we change the link references as we just noted.

// insert at start of list
public void insertFirst(int id, double dd)
{ // make new link
Link newLink = new Link (id, dd);
newLink.next = first; // newLink --> old first
first = newlLink; // first --> newLink

The arrows —-> in the comments in the last two statements mean that a link (or the
first field) connects to the next (downstream) link. (In doubly linked lists we'll see
upstream connections as well, symbolized by <-- arrows.) Compare these two
statements with_Figure 5.5. Make sure you understand how the statements cause the
links to be changed, as shown in the figure. This kind of reference-manipulation is the
heart of linked list algorithms.

The deleteFirst () Method

The deleteFirst () method is the reverse of insertFirst (). It disconnects the first
link by rerouting first to point to the second link. This second link is found by looking at
the next field in the first link.

public Link deleteFirst() // delete first item
{ // (assumes list not empty)
Link temp = first; // save reference to link
first = first.next; // delete it: first-->o0ld next
return temp; // return deleted link

- 148 -

Fra - = - e = =

Al

DT T TRp Ry

Figure 5.5: Inserting a new link

The second statement is all you need to remove the first link from the list. We choose to
also return the link, for the convenience of the user of the linked list, so we save itin
temp before deleting it, and return the value of temp. Figure 5.6 shows how first is
rerouted to delete the object.

In C++ and similar languages, you would need to worry about deleting the link itself after
it was disconnected from the list. It's in memory somewhere, but now nothing refers to it.
What will become of it? In Java, the garbage collection process will destroy it at some
point in the future; it's not your responsibility.

fest L - E

&) AHer Dulrbon

Figure 5.6: Deleting a link

Notice that the deleteFirst () method assumes the list is not empty. Before calling it,
your program should verify this with the i sEmpty () method.

The displayList () Method

To display the list, you start at £irst and follow the chain of references from link to link.
A variable current points to (or technically refers to) each link in turn. It starts off
pointing to £irst, which holds a reference to the first link. The statement

current = current.next;

- 149 -

changes current to point to the next link, because that's what's in the next field in
each link. Here's the entire displayList () method:

public void displayList ()
{
System.out.print ("List (first-->last): ");
Link current = first; // start at beginning of list
while (current != null) // until end of list,
{
current.displayLink() ; // print data
current = current.next; // move to next link
}
System.out.println("");

The end of the list is indicated by the next field in the last link pointing to nul1 rather
than another link. How did this field get to be nu11? It started that way when the link was
created and was never given any other value because it was always at the end of the list.
The while loop uses this condition to terminate itself when it reaches the end of the list.
Figure 5.7 shows how current steps along the list.

At each link, the displayList () method calls the displayLink () method to display
the data in the link.

The 1linkList. java Program

Listing 5.1 shows the complete 1inkList.java program. You've already seen all the
components except the main () routine.

arn ot

wEefore amrenl = curerd resd

auTend

Figure 5.7: Stepping along the list

Listing 5.1 The linkList.java Program

// linkList.java

// demonstrates linked list

// to run this program: C>Jjava LinkListApp

[T 7777777777777 7 7777777777777 77777777777777777777777777777

class Link

- 150 -

{

public int iData; // data item (key)
public double dData; // data item

public Link next; // next link in list

public Link(int id, double dd) // constructor

iData = id; // initialize data
dData = dd; // ('next' is automatically
} // set to null)
/) mm e
public void displayLink() // display ourself
{
System.out.print ("{" + iData + ", " + dData + "} ");

}
} // end class Link

LTI TTTT TP r i i i 7777777 777777777707777777777777777777777

class LinkList

{

private Link first; // ref to first link on list
/) T -
public LinkList () // constructor
{
first = null; // no items on list yet
}
F A R
public boolean isEmpty () // true if list is empty

{

return (first==null);

/) mm e o
// insert at start of list
public void insertFirst (int id, double dd)
{ // make new link
Link newLink = new Link (id, dd);
newLink.next = first; // newLink --> old first
first = newlLink; // first --> newLink
}

- 151 -

public Link deleteFirst() // delete first item

{ // (assumes list not empty)

Link temp = first; // save reference to link

first = first.next; // delete it: first-->old
next

return temp; // return deleted link

}

public void displayList ()
{
System.out.print ("List (first-->last): ");
Link current = first; // start at beginning of list
while (current != null) // until end of list,

{
current.displayLink() ; // print data
current = current.next; // move to next link

}
System.out.println("");

} // end class LinkList

L1177 77 7007777777070 7 7777777777777 7777777777777 77777777777777777

class LinkListApp
{

public static void main(String[] args)

{

LinkList thelist = new LinkList(); // make new list
thelist.insertFirst (22, 2.99); // insert four items
thelist.insertFirst (44, 4.99);

thelist.insertFirst (66, 6.99);

thelist.insertFirst (88, 8.99);

thelList.displayList(); // display list
while (!thelList.isEmpty()) // until it's empty,

{
Link aLink = thelist.deleteFirst(); // delete link

System.out.print ("Deleted ") ; // display it
alink.displayLink () ;
System.out.println("");
}
thelList.displayList(); // display list
} // end main ()

} // end class LinkListApp

- 152 -

Inmain () we create a new list, insert four new links into it with insertFirst (), and
display it. Then, in the while loop, we remove the items one by one with
deleteFirst () until the listis empty. The empty list is then displayed. Here's the
output from 1inkList.java:

List (first-->last): {88, 8.99} {66, 6.99} {44, 4.99} {22,
2.99}
Deleted {88, 8.99}

Deleted {66, 6.99}
Deleted {44, 4.99}
Deleted {22, 2.99}
List (first-->last):

Finding and Deleting Specified Links

Our next example program adds methods to search a linked list for a data item with a
specified key value, and to delete an item with a specified key value. These, along with
insertion at the start of the list, are the same operations carried out by the LinkList
Workshop applet. The complete 1inkList2.java program is shown in Listing 5.2.

Listing 5.2 The linkList2.java Program

// linkList2.java

// demonstrates linked list

// to run this program: C>java LinkList2App

[T 7777777777777 777777 7777777777 777777777777777777777777777
class Link

{

public int iData; // data item (key)
public double dData; // data item
public Link next; // next link in list

public Link(int id, double dd) // constructor
{
iData = id;
dData dd;

public void displayLink() // display ourself

{
System.out.print ("{" + iData + ", " + dData + "} ");

}
} // end class Link

LTI TTTT T r i i i i 777770 7777777770707777777777777777777777

class LinkList

{

private Link first; // ref to first link on list

- 153 -

public LinkList () // constructor

{
first = null; // no links on list yet

/) T
public void insertFirst(int id, double dd)
{ // make new link
Link newLink = new Link (id, dd);
newLink.next = first; // 1t points to old first
link
first = newlLink; // now first points to this
}
/) T
public Link find(int key) // find link with given key
{ // (assumes non-empty list)
Link current = first; // start at 'first'
while (current.iData != key) // while no match,
{
if (current.next == null) // if end of list,
return null; // didn't find it
else // not end of list,
current = current.next; // go to next link
}
return current; // found it
}
/) T
public Link delete (int key) // delete link with given key
{ // (assumes non-empty list)
Link current = first; // search for link
Link previous = first;
while (current.iData != key)
{
if (current.next == null)
return null; // didn't find it
else
{
previous = current; // go to next link
current = current.next;
}
} // found it
if (current == first) // if first link,
first = first.next; // change first
else // otherwise,
previous.next = current.next; // bypass it

return current;

-154 -

public void displayList() // display the list
{
System.out.print ("List (first-->last): ");
Link current = first; // start at beginning of list
while (current != null) // until end of list,

{
current.displayLink() ; // print data
current = current.next; // move to next link

}
System.out.println("");

} // end class LinkList

L1177 0707777770777 777 7707777777 777777777777777777777777777777777

class LinkList2App
{

public static void main (String[] args)

{

LinkList thelist = new LinkList(); // make list
thelist.insertFirst (22, 2.99); // insert 4 items
thelList.insertFirst (44, 4.99);
thelist.insertFirst (66, 6.99);

thelList.insertFirst (88, 8.99);

thelList.displayList(); // display list
Link £ = thelist.find (44); // find item

if(£ != null)

System.out.println ("Found link with key " + f.iData);
else

System.out.println("Can't find link");

Link d = thelist.delete (66); // delete item
if(d !'= null)
System.out.println ("Deleted link with key " +

d.iData);
else

System.out.println("Can't delete 1link");
thelList.displayList(); // display list
} // end main/()

} // end class LinkList2App

The main () routine makes a list, inserts four items, and displays the resulting list. It then
searches for the item with key 44, deletes the item with key 66, and displays the list

- 155 -

again. Here's the output:

List (first-->last): {88, 8.99} {66, 6.99} {44, 4.99} {22,
2.99}

Found link with key 44

Deleted link with key 66

List (first-->last): {88, 8.99} {44, 4.99} {22, 2.99}

The £ind () Method

The £ind () method works much like the displayList () method seen in the last
program. The reference current initially points to first, and then steps its way along
the links by setting itself repeatedly to current.next. At each link, find () checks if
that link's key is the one it's looking for. If it is, it returns with a reference to that link. If it
reaches the end of the list without finding the desired link, it returns null.

The delete () Method

The delete () method is similar to £ind () in the way it searches for the link to be
deleted. However, it needs to maintain a reference not only to the current link (current),
but to the link preceding the current link (previous). This is because, if it deletes the
current link, it must connect the preceding link to the following link, as shown in Figure
5.8. The only way to tell where the preceding link is, is to maintain a reference to it.

At each cycle through the while loop, just before current is setto current.next,
previous is setto current. This keeps it pointing at the link preceding current.

To delete the current link once it's found, the next field of the previous link is set to the
next link. A special case arises if the current link is the first link because the first link is
pointed to by the LinkList's first field and not by another link. In this case the link is
deleted by changing first to pointto first.next, as we saw in the last program with
the deleteFirst () method. Here's the code that covers these two possibilities:

// found it

if (current == first) // if first link,
first = first.next; // change first
else // otherwise,
previous.next = current.next; // bypass link
Other Methods

We've seen methods to insert and delete items at the start of a list and to find a specified
item and delete a specified item. You can imagine other useful list methods. For example,
an insertAfter () method could find a link with a specified key value and insert a new
link following it. We'll see such a method when we talk about list iterators at the end of
this chapter.

- 156 -

Firsi Hem T R T M 7 Hem

Figure 5.8: Deleting a specified link

Double-Ended Lists

A double-ended list is similar to an ordinary linked list, but it has one additional feature: a
reference to the last link as well as to the first. Figure 5.9 shows what this looks like.

Figure 5.9: A double-ended list

The reference to the last link permits you to insert a new link directly at the end of the list
as well as at the beginning. Of course you can insert a new link at the end of an ordinary
single-ended list by iterating through the entire list until you reach the end, but this is
inefficient.

Access to the end of the list as well as the beginning makes the double-ended list
suitable for certain situations that a single-ended list can't handle efficiently. One such
situation is implementing a queue; we'll see how this works in the next section.

Listing 5.3 contains the firstLastList.java program, which demonstrates a double-
ended list. (Incidentally, don't confuse the double-ended list with the doubly linked list,
which we'll explore later in this chapter.)

Listing 5.3 The firstLastList.java Program

// firstlLastList.java
// demonstrates list with first and last references
// to run this program: C>java FirstLastApp
L1170 77 7777707777777 777777777777 777777777777777777777777777777
class Link
{
public double dData; // data item
public Link next; // next link in list

public Link (double d) // constructor
{ dbata = d; }

public void displayLink() // display this link
{ System.out.print (dData + " "); }

} // end class Link

L1177 7000777777077 7 777707777777 7777777777077777777777777777777777

class FirstLastList

{

private Link first; // ref to first link
private Link last; // ref to last link
/) T
public FirstLastList() // constructor
{
first = null; // no links on list yet
last = null;
}
/) T
public boolean isEmpty () // true if no links
{ return first==null; }
/) T

public void insertFirst (double dd) // insert at front of
list
{

Link newLink = new Link (dd); // make new link
if(isEmpty ()) // if empty list,

last = newLink; // newLink <-- last
newlLink.next = first; // newLink --> old first
first = newlLink; // first --> newlLink

public void insertLast (double dd) // insert at end of list
{

Link newLink = new Link(dd); // make new link
if(isEmpty ()) // if empty list,

first = newlLink; // first --> newlLink
else

last.next = newlLink; // old last --> newLink

- 158 -

last = newlLink; // newlLink <-- last

[mmm e
public double deleteFirst() // delete first link
{ // (assumes non-empty
list)
double temp = first.dData; // save the data
if (first.next == null) // 1if only one item
last = null; // null <-- last
first = first.next; // first --> old next
return temp;
}
[mmm e

public void displayList ()
{
System.out.print ("List (first-->last): ");

Link current = first; // start at beginning
while (current != null) // until end of list,
{
current.displayLink() ; // print data
current = current.next; // move to next link

}
System.out.println("");

} // end class FirstlLastList

L1177 77 7007777777070 7 7777777777777 77777777 7777777777777777777777

class FirstLastApp
{

public static void main(String[] args)
{ // make a new list
FirstLastList thelist = new FirstLastList();

thelist.insertFirst (22); // insert at front
thelist.insertFirst (44);
thelist.insertFirst (66) ;
thelist.insertLast (11); // insert at rear
thelist.insertLast (33);
thelist.insertLast (55);

thelList.displayList(); // display the list

thelList.deleteFirst () ; // delete first two items
thelist.deleteFirst();

- 159 -

theList.displayList(); // display again
} // end main /()

} // end class FirstLastApp

For simplicity, in this program we've reduced the number of data items in each link from
two to one. This makes it easier to display the link contents. (Remember that in a serious
program there would be many more data items, or a reference to another object
containing many data items.)

This program inserts three items at the front of the list, inserts three more at the end, and
displays the resulting list. It then deletes the first two items and displays the list again.
Here's the output:

List (first-->last): 66 44 22 11 33 55
List (first-->last): 22 11 33 55

Notice how repeated insertions at the front of the list reverse the order of the items, while
repeated insertions at the end preserve the order.

The double-ended list class is called the FirstLastList. As discussed, it has two data
items, first and last, which point to the first item and the last item in the list. If there is
only one item in the list, then both £irst and last point to it, and if there are no items,
they are both nul1l.

The class has a new method, insertLast (), that inserts a new item at the end of the
list. This involves modifying 1ast.next to point to the new link, and then changing last
to point to the new link, as shown in Figure 5.10.

bl AFnriraarior & —

sk |

Figure 5.10: Insertion at the end of a list

The insertion and deletion routines are similar to those in a single-ended list. However,
both insertion routines must watch out for the special case when the list is empty prior to
the insertion. That is, if 1sEmpty () is true, then insertFirst () mustset last to the
new link, and insertLast () must set first to the new link.

If inserting at the beginning with insertFirst (), first is set to point to the new link,
although when inserting at the end with insertLast (), last is set to point to the new
link. Deleting from the start of the list is also a special case if it's the last item on the list:
last must be set to point to null in this case.

- 160 -

Unfortunately, making a list double-ended doesn't help you to delete the last link, because
there is still no reference to the next-to-last link, whose next field would need to be
changed to null if the last link were deleted. To conveniently delete the last link, you
would need a doubly linked list, which we'll look at soon. (Of course, you could also
traverse the entire list to find the last link, but that's not very efficient.)

Linked-List Efficiency

Insertion and deletion at the beginning of a linked list are very fast. They involve changing
only one or two references, which takes O(1) time.

Finding, deleting, or insertion next to a specific item requires searching through, on the
average, half the items in the list. This requires O(N) comparisons. An array is also O(N)
for these operations, but the linked list is nevertheless faster because nothing needs to
be moved when an item is inserted or deleted. The increased efficiency can be
significant, especially if a copy takes much longer than a comparison.

Of course, another important advantage of linked lists over arrays is that the linked list uses
exactly as much memory as it needs, and can expand to fill all of the available memory.
The size of an array is fixed when it's created; this usually leads to inefficiency because the
array is too large, or to running out of room because the array is too small. Vectors, which
are expandable arrays, may solve this problem to some extent, but they usually expand in
fixed-sized increments (such as doubling the size of the array whenever it's about to
overflow). This is still not as efficient a use of memory as a linked list.

Abstract Data Types

In this section we'll shift gears and discuss a topic that's more general than linked lists:
Abstract Data Types (ADTs). What is an ADT? Roughly speaking, it's a way of looking at
a data structure: focusing on what it does, and ignoring how it does it.

Stacks and queues are examples of ADTs. We've already seen that both stacks and
queues can be implemented using arrays. Before we return to a discussion of ADTs, let's
see how stacks and queues can be implemented using linked lists. This will demonstrate
the "abstract" nature of stacks and queues: how they can be considered separately from
their implementation.

A Stack Implemented by a Linked List

When we created a stack in the |last chapter, we used an ordinary Java array to hold the
stack's data. The stack's push () and pop () operations were actually carried out by
array operations such as

arr[++top] = data;
and
data = arr[top—--1;
which insert data into, and take it out of, an array.

We can also use a linked list to hold a stack's data. In this case the push () and pop ()
operations would be carried out by operations like

thelist.insertFirst (data)

- 161 -

and

data = thelist.deleteFirst ()

The user of the stack class calls push () and pop () to insert and delete items, without
knowing, or needing to know, whether the stack is implemented as an array or as a linked
list. Listing 5.4 shows how a stack class called LinkStack can be implemented using
the LinkList class instead of an array. (Object purists would argue that the name
LinkStack should be simply Stack, because users of this class shouldn't need to know
that it's implemented as a list.)

Listing 5.4 The linkStack() Program

// linkStack.java
// demonstrates a stack implemented as a list

// to run this program: C>java LinkStackApp

import java.io.*; // for I/0

JIT177777 7777777777777 77
class Link

{

public double dData; // data item
public Link next; // next link in list

/) T
public Link (double dd) // constructor

{ dbata = dd; }

public void displayLink() // display ourself
{ System.out.print(dData + " "); }
} // end class Link

L1177 77 7007777777077 7 7777707777777 777777777 7777777777777777777777

class LinkList

{

private Link first; // ref to first item on list
/) T
public LinkList () // constructor
{ first = null; } // no items on list yet
/) T
public boolean isEmpty () // true if list is empty

{ return (first==null); }

public void insertFirst (double dd) // insert at start of
list

- 162 -

{ // make new link
new Link (dd) ;

Link newLink

newlLink.next = first; // newLink --> old first
first = newlLink; // first --> newlink
}
[/ mm e
public double deleteFirst () // delete first item
{ // (assumes list not empty)
Link temp = first; // save reference to link
first = first.next; // delete it: first-->old
next
return temp.dData; // return deleted link
}

public void displayList ()
{
Link current = first; // start at beginning of list
while (current != null) // until end of list,

{
current.displayLink() ; // print data
current = current.next; // move to next link

}
System.out.println("");

} // end class LinkList
[177
class LinkStack

{
private LinkList thelist;

et
public LinkStack() // constructor
{
thelList = new LinkList():;
}
/m e
public void push (double) // put item on top of stack
{
thelist.insertFirst (j);
}
/m e

public double pop () // take item from top of
stack
{
return thelist.deleteFirst();

public boolean isEmpty () // true if stack is empty

{
return (thelList.isEmpty())

public void displayStack()

{
System.out.print ("Stack (top-->bottom): ");
thelist.displayList();

} // end class LinkStack

LI r i i i 77777777 777777777777777777777
class LinkStackApp

{

public static void main(String[] args) throws IOException
{
LinkStack theStack = new LinkStack(); // make stack

theStack.push (20) ; // push items
theStack.push (40) ;

theStack.displayStack() ; // display stack

theStack.push (60) ; // push items
theStack.push (80) ;

theStack.displayStack() ; // display stack

theStack.pop () ; // pop items
theStack.pop () ;

theStack.displayStack() ; // display stack
} // end main/()

} // end class LinkStackApp

The main () routine creates a stack object, pushes two items on it, displays the stack,
pushes two more items, and displays it again. Finally it pops two items and displays the
stack again. Here's the output:

164 -

Stack (top-->bottom): 40 20
Stack (top-->bottom): 80 60 40 20
Stack (top-->bottom): 40 20

Notice the overall organization of this program. The main () routine in the
LinkStackApp class relates only to the LinkStack class. The LinkStack class
relates only to the LinkList class. There's no communication between main () and the
LinkList class.

More specifically, when a statement in main () calls the push () operation in the
LinkStack class, this method in turn calls insertFirst () inthe LinkList class to
sactually insert data. Similarly, pop () calls deleteFirst () to delete an item, and
displayStack() calls displayList () to display the stack. To the class user, writing
code inmain (), there is no difference between using the list-based LinkStack class
and using the array-based stack class from the Stack.java program in_Chapter 4.

A Queue Implemented by a Linked List

Here's a similar example of an ADT implemented with a linked list. Listing 5.5 shows a
queue implemented as a double-ended linked list.

Listing 5.5 The linkQueue() Program

// linkQueue.java

// demonstrates queue implemented as double-ended list

// to run this program: C>java LinkQueueApp

import java.io.*; // for I/0
[177
class Link

{

public double dData; // data item
public Link next; // next link in list
/) mm e
public Link (double d) // constructor
{ dbata = d; }
/) mm e
public void displayLink() // display this link
{ System.out.print (dbData + " "); }
/) mm e

} // end class Link
[177/77777777
class FirstLastList

{

private Link first; // ref to first item
private Link last; // ref to last item

- 165 -

public FirstLastList() // constructor
{

first = null; // no items on list yet
last = null;

public boolean isEmpty () // true if no links
{ return first==null; }

public void insertLast (double dd) // insert at end of list
{

Link newLink = new Link(dd); // make new link
if(isEmpty ()) // if empty list,
first = newlLink; // first --> newLink
else
last.next = newLink; // old last --> newLink
last = newLink; // newLink <-- last
}
/) T
public double deleteFirst() // delete first link
{ // (assumes non-empty
list)
double temp = first.dData;
if (first.next == null) // 1if only one item
last = null; // null <-- last
first = first.next; // first --> old next
return temp;
}
/) T

public void displayList ()
{

Link current = first; // start at beginning
while (current != null) // until end of list,
{
current.displayLink() ; // print data
current = current.next; // move to next link
}
System.out.println("");

} // end class FirstLastList

L1117 77 7007777777077 7 777707777777 77077777777777777777777777777777

- 166 -

class LinkQueue

{
private FirstLastList thelist;

public LinkQueue () // constructor

{

thelist = new FirstLastList(); // make a 2-ended list

public boolean isEmpty () // true if queue is empty

{
return thelist.isEmpty();

public void insert (double) // insert, rear of queue

{
thelList.insertLast (]j);

public double remove () // remove, front of queue

{
return thelist.deleteFirst();

public void displayQueue ()
{
System.out.print ("Queue
thelList.displayList();

(front-->rear): ");

} // end class LinkQueue

L1177 7000777777077 7 777707777777 7777777777077777777777777777777777

class LinkQueueApp

{
public static void main(String[] args) throws IOException

{
LinkQueue theQueue = new LinkQueue () ;

theQueue.insert (20) ; // insert items

theQueue.insert (40) ;

- 167 -

theQueue.displayQueue () ; // display queue

theQueue.insert (60) ; // insert items
theQueue.insert (80) ;

theQueue.displayQueue () ; // display queue

theQueue.remove () ; // remove items

theQueue.remove () ;

theQueue.displayQueue () ; // display queue
} // end main /()

} // end class LinkQueueApp

The program creates a queue, inserts two items, inserts two more items, and removes
two items; following each of these operations the queue is displayed. Here's the output:

Queue (front-->rear): 20 40
Queue (front-->rear): 20 40 60 80
Queue (front-->rear): 60 80

Here the methods insert () and remove () in the LinkQueue class are implemented
by the insertLast () and deleteFirst () methods of the FirstLastList class.
We've substituted a linked list for the array used to implement the queue in the Queue

program of Chapter 4.

The LinkStack and LinkQueue programs emphasize that stacks and queues are
conceptual entities, separate from their implementations. A stack can be implemented
equally well by an array or by a linked list. What's important about a stack is the push ()
and pop () operations and how they're used; it's not the underlying mechanism used to
implement these operations.

When would you use a linked list as opposed to an array as the implementation of a
stack or queue? One consideration is how accurately you can predict the amount of data
the stack or queue will need to hold. If this isn't clear, the linked list gives you more
flexibility than an array. Both are fast, so that's probably not a major consideration.

Data Types and Abstraction

Where does the term Abstract Data Type come from? Let's look at the "data type" part of
it first, and then return to "abstract."

Data Types

The phrase "data type" covers a lot of ground. It was first applied to built-in types such as
int and double. This is probably what you first think of when you hear the term.

When you talk about a primitive type, you're actually referring to two things: a data item
with certain characteristics, and permissible operations on that data. For example, type
int variables in Java can have whole-number values between —2,147,483,648 and
+2,147,483,647, and the operators +, —, *, /, and so on can be applied to them. The data
type's permissible operations are an inseparable part of its identity; understanding the
type means understanding what operations can be performed on it.

With the advent of object-oriented programming, it became possible to create your own

- 168 -

data types using classes. Some of these data types represent numerical quantities that
are used in ways similar to primitive types. You can, for example, define a class for time
(with fields for hours, minutes, seconds), a class for fractions (with numerator and
denominator fields), and a class for extra-long numbers (characters in a string represent
the digits). All these can be added and subtracted like int and double, except that in
Java you must use methods with functional notation like add () and sub () rather than
operators like + and —.

The phrase "data type" seems to fit naturally with such quantity-oriented classes.
However, it is also applied to classes that don't have this quantitative aspect. In fact, any
class represents a data type, in the sense that a class comprises data (fields) and
permissible operations on that data (methods).

By extension, when a data storage structure like a stack or queue is represented by a
class, it too can be referred to as a data type. A stack is different in many ways from an
int, but they are both defined as a certain arrangement of data and a set of operations
on that data.

Abstraction

The word abstract means "considered apart from detailed specifications or
implementation." An abstraction is the essence or important characteristics of something.
The office of President, for example, is an abstraction, considered apart from the
individual who happens to occupy that office. The powers and responsibilities of the office
remain the same, while individual office-holders come and go.

In object-oriented programming, then, an abstract data type is a class considered without
regard to its implementation. It's a description of the data in the class (fields), a list of
operations (methods) that can be carried out on that data, and instructions on how to use
these operations. Specifically excluded are the details of how the methods carry out their
tasks. As a class user, you're told what methods to call, how to call them, and the results
you can expect, but not how they work.

The meaning of abstract data type is further extended when it's applied to data structures
like stacks and queues. As with any class, it means the data and the operations that can
be performed on it, but in this context even the fundamentals of how the data is stored
become invisible to the user. Users not only don't know how the methods work, they also
don't know what structure is used to store the data.

For the stack, the user knows that push () and pop () (and perhaps a few other
methods) exist and how they work. The user doesn't (at least not usually) need to know
how push () and pop () work, or whether data is stored in an array, a linked list, or some
other data structure like a tree.

The Interface
An ADT specification is often called an interface. It's what the class user sees; usually its

public methods. In a stack class, push () and pop () and similar methods form the
interface.

ADT Lists

Now that we know what an abstract data type is, we can mention another one: the list. A
list (sometimes called a linear list) is a group of items arranged in a linear order. That is,
they're lined up in a certain way, like beads on a string or houses on a street. Lists
support certain fundamental operations. You can insert an item, delete an item, and
usually read an item from a specified location (the third item, say).

Don't confuse the ADT list with the linked list we've been discussing in this chapter. A list

- 169 -

is defined by its interface: the specific methods used to interact with it. This interface can
be implemented by various structures, including arrays and linked lists. The list is an
abstraction of such data structures.

ADTs as a Design Tool

The ADT concept is a useful aid in the software design process. If you need to store data,
start by considering the operations that need to be performed on that data. Do you need
access to the last item inserted? The first one? An item with a specified key? An item in a
certain position? Answering such questions leads to the definition of an ADT. Only after
the ADT is completely defined should you worry about the details of how to represent the
data and how to code the methods that access the data.

By decoupling the specification of the ADT from the implementation details, you can
simplify the design process. You also make it easier to change the implementation at
some future time. If the users relate only to the ADT interface, you should be able to
change the implementation without "breaking" the user's code.

Of course, once the ADT has been designed, the underlying data structure must be
carefully chosen to make the specified operations as efficient as possible. If you need
random access to element N, for example, then the linked-list representation isn't so
good because random access isn't an efficient operation for a linked list. You'd be better
off with an array.

It's All Relative

Remember that the ADT concept is only a conceptual tool. Data storage structures are not
divided cleanly into some that are ADTs and some that are used to implement ADTs. A
linked list, for example, doesn't need to be wrapped in a list interface to be useful; it can act
as an ADT on its own, or it can be used to implement another data type such as a queue. A
linked list can be implemented using an array, and an array-type structure can be
implemented using a linked list. What's an ADT and what's a more basic structure must be
determined in a given context.

Sorted Lists

In linked lists we've seen thus far, there was no requirement that data be stored in order.
However, for certain applications it's useful to maintain the data in sorted order within the
list. A list with this characteristic is called a sorted list.

In a sorted list, the items are arranged in sorted order by key value. Deletion is often
limited to the smallest (or the largest) item in the list, which is at the start of the list,
although sometimes find () and delete () methods, which search through the list for
specified links, are used as well.

In general you can use a sorted list in most situations where you use a sorted array. The
advantages of a sorted list over a sorted array are speed of insertion (because elements
don't need to be moved) and the fact that a list can expand to fill available memory, while
an array is limited to a fixed size. However, a sorted list is somewhat more difficult to
implement than a sorted array.

Later we'll look at one application for sorted lists: sorting data. A sorted list can also be

used to implement a priority queue, although a heap (see Chapter 12) is a more common
implementation.

The LinkList WorkShop Applet

The LinkList Workshop applet introduced at the beginning of this chapter demonstrates
sorted as well as unsorted lists. Use the New button to create a new list with about 20

- 170 -

links, and when prompted, click on the Sorted button. The result is a list with data in
sorted order, as shown in Figure 5.11.
[o Viewe. Lisklaiclans K]
Apel
) i] 8] | P G b T

Rew il cogalod: badsl bk = 200

*—E—E—-—_—-IE-'[-]

(24— #34] { 437 [—+] 515
Applel vaned

Figure 5.11: The LinkList Workshop applet with a sorted list

 Rpphsl Viewo: LinkLit class =1 E3
bl

7 Unsosted

)) e | |, e rumber (R
Inaaied persan: well jodrss el

-—*Ii—vlﬁ—-ﬁ-l

L-@]

O = IO B 5

Mpzlet ated

Figure5.12: A newly inserted link

Use the Ins button to insert a new item. Type in a value that will fall somewhere in the
middle of the list. Watch as the algorithm traverses the links, looking for the appropriate
insertion place. When it finds it, it inserts the new link, as shown in Figure 5.12.

With the next press of Ins, the list will be redrawn to regularize its appearance. You can
also find a specified link using the Find button, and delete a specified link using the Del
button.

Java Code to Insert an Item in a Sorted List

To insert an item in a sorted list, the algorithm must first search through the list until it
finds the appropriate place to put the item: this is just before the first item that's larger, as
shown in Figure 5.12.

Once the algorithm finds where to put it, the item can be inserted in the usual way by
changing next in the new link to point to the next link, and changing next in the
previous link to point to the new link. However, there are some special cases to consider:
the link might need to be inserted at the beginning of the list, or it might need to go at the
end. Let's look at the code:

public void insert (double key) // insert in order

{

Link newLink = new Link (key); // make new link

-171 -

Link previous = null; // start at first

Link current = first;
// until end of list,
while (current != null && key > current.dData)
{ // or key > current,
previous = current;
current = current.next; // go to next item
}
if (previous==null) // at beginning of list
first = newlLink; // first --> newlLink
else // not at beginning
previous.next = newLink; // old prev -->
newlLink
newlLink.next = current; // newLink --> old currnt

} // end insert ()

We need to maintain a previous reference as we move along, so we can modify the
previous link's next field to point to the new link. After creating the new link, we prepare
to search for the insertion point by setting current to first in the usual way. We also
set previous to null; this is important because later we'll use this null value to
determine whether we're still at the beginning of the list.

The while loop is similar to those we've used before to search for the insertion point, but
there's an added condition. The loop terminates when the key of the link currently being
examined (current.dData) is no longer smaller than the key of the link being inserted
(key); this is the most usual case, where a key is inserted somewhere in the middle of
the list.

However, the while loop also terminates if current is null. This happens at the end
of the list (the next field of the last element is nul1l), or if the list is empty to begin with
(firstis null).

Once the while loop terminates, we may be at the beginning, the middle, or the end of
the list, or the list may be empty.

If we're at the beginning or the list is empty, previous willbe null; so we set first to
the new link. Otherwise, we're in the middle of the list or at the end, and we set
previous.next to the new link.

In any case we set the new link's next field to current. If we're at the end of the list,
current is null, so the new link's next field is appropriately set to this value.

The sortedList. java Program

The sortedList.java example shown in Listing 5.6 presents a SortedList class
with insert (), remove (), and displayList () methods. Only the insert () routine
is different from its counterpart in nonsorted lists.

Listing 5.6 The sortedList.java Program
// sortedList.java

// demonstrates sorted list
// to run this program: C>Jjava SortedListApp

-172 -

import java.io.*; // for I/0
LI PP r i i i i 777777777 777777777777777777777777777
class Link

{

public double dData; // data item
public Link next; // next link in list
/) mm e o
public Link (double dd) // constructor
{ dbata = dd; }
/) T
public void displayLink () // display this link

{ System.out.print (dData + " "); }
} // end class Link

L1177 0007777770777 777707777777 777777777 777777777777777777777777

class SortedList

{

private Link first; // ref to first item on
list
/) mm e o
public SortedList () // constructor
{ first = null; }
/) mm e o
public boolean isEmpty () // true if no links
{ return (first==null); }
/) mm e o

public void insert (double key) // insert in order

{

Link newLink = new Link (key); // make new link
Link previous = null; // start at first
Link current = first;

// until end of list,

while (current != null && key > current.dData)
{ // or key > current,
previous = current;
current = current.next; // go to next item
}
if (previous==null) // at beginning of list
first = newlLink; // first --> newLink
else // not at beginning
previous.next = newLink; // old prev --> newLink
newlLink.next = current; // newLink --> old currnt

} // end insert ()

-173 -

public Link remove () // return & delete first link
{ // (assumes non-empty list)
Link temp = first; // save first
first = first.next; // delete first
return temp; // return value

public void displayList ()
{
System.out.print ("List (first-->last): ");
Link current = first; // start at beginning of list
while (current != null) // until end of list,
{
current.displayLink() ; // print data
current = current.next; // move to next link
}
System.out.println("");

}
} // end class SortedList

[IT170777 777777777777 777
class SortedListApp

{

public static void main(String[] args)

{ // create new list
SortedList theSortedList = new SortedList () ;
theSortedList.insert (20); // insert 2 items

theSortedList.insert (40);
theSortedList.displayList(); // display list
theSortedList.insert (10) ; // insert 3 more items

theSortedList.insert (30);
theSortedList.insert (50);

theSortedList.displayList(); // display list
theSortedList.remove () ; // remove an item
theSortedList.displayList(); // display list

} // end main /()
} // end class SortedListApp

Inmain () we insert two items with key values 20 and 40. Then we insert three more
items, with values 10, 30, and 50. These are inserted at the beginning of the list, in the
middle, and at the end; showing that the insert () routine correctly handles these
special cases. Finally, we remove one item to show removal is always from the front of

~174 -

the list. After each change the list is displayed. Here's the output from
sortedList.java:

List (first-->last): 20 40
List (first-->last): 10 20 30 40 50
List (first-->last): 20 30 40 50

Efficiency of Sorted Linked Lists

Insertion and deletion of arbitrary items in the sorted linked list require O(N) comparisons
(N/2 on the average) because the appropriate location must be found by stepping
through the list. However, the minimum value can be found, or deleted, in O(1) time
because it's at the beginning of the list. If an application frequently accesses the
minimum item and fast insertion isn't critical, then a sorted linked list is an effective
choice.

List Insertion Sort

A sorted list can be used as a fairly efficient sorting mechanism. Suppose you have an
array of unsorted data items. If you take the items from the array and insert them one by
one into the sorted list, they'll be placed in sorted order automatically. If you then remove
them from the list and put them back in the array, they array will be sorted.

It turns out this is substantially more efficient than the more usual insertion sort within an
array, described in_Chapter 3. This is because fewer copies are necessary. It's still an

O(Nz) process, because inserting each item into the sorted list involves comparing a new
item with an average of half the items already in the list, and there are N items to insert,

resulting in about N%/4 comparisons. However, each item is only copied twice: once from
*

the array to the list, and once from the list to the array. N 2 copies compare favorably

with the insertion sort within an array, where there are about N2 copies.

Listing 5.7 shows the 1istInsertionSort. java program, which starts with an array
of unsorted items of type 1ink, inserts them into a sorted list (using a constructor), and
then removes them and places them back into the array.

Listing 5.7 The listinsertionSort.java Program

// listInsertionSort.java

// demonstrates sorted list used for sorting

// to run this program: C>java ListInsertionSortApp

import java.io.*; // for I/0

L1717 777777777777777/7777777777777/7777777777777/7777777777777777777
class Link

{

public double dData; // data item
public Link next; // next link in list
/) T
public Link (double dd) // constructor
{ dbata = dd; }
/) T

} // end class Link

-175 -

L1777 7007777777070 7 7777777777777 77777777 7777777777777777777777

class SortedList

{

private Link first; // ref to first item on list
/) T
public SortedList () // constructor (no args)
{ first = null; }
/) mm e
public SortedList (Link[] linkArr) // constructor (array as
{ // argument)
first = null;; // initialize list
for (int j=0; j<linkArr.length; j++) // copy array
insert(linkArr([]j]);: // to list
}
/) mm e
public void insert (Link k) // insert, in order
{
Link previous = null; // start at first
Link current = first;
// until end of list,
while (current != null && k.dData > current.dData)
{ // or key > current,
previous = current;
current = current.next; // go to next item
}
if (previous==null) // at beginning of list
first = k; // first --> k
else // not at beginning
previous.next = k; // old prev --> k
k.next = current; // k —-=> old current
} // end insert ()
/) T
public Link remove () // return & delete first link
{ // (assumes non-empty list)
Link temp = first; // save first
first = first.next; // delete first
return temp; // return value
}
/) T

} // end class SortedList

L1177 7000777777077 7 777707777777 7777777777077777777777777777777777

-176 -

class ListInsertionSortApp
{
public static void main(String[] args)
{
int size = 10;
// create array of links
Link[] linkArray = new Link[size];

for(int j=0; j<size; j++) // £ill array with links
{ // random number
int n = (int) (java.lang.Math.random() *99);
Link newlLink = new Link(n); // make link
linkArray[j] = newLink; // put in array
}
// display array contents
System.out.print ("Unsorted array: ");
for (int j=0; j<size; j++)
System.out.print(linkArray[]j].dData + " ");
System.out.println("");

// create new list,
// initialized with array
SortedList theSortedList = new SortedList (linkArray);

for (int j=0; j<size; j++) // links from list to array
linkArray[j] = theSortedList.remove();

// display array contents
System.out.print ("Sorted Array: ");
for (int j=0; j<size; j++)
System.out.print (linkArray[j].dData + " ");
System.out.println("");
} // end main /()

} // end class ListInsertionSortApp

This program displays the values in the array before the sorting operation, and again
afterward. Here's some sample output:

Unsorted array: 59 69 41 56 84 15 86 81 37 35
Sorted array: 15 35 37 41 56 59 69 81 84 86

The output will be different each time because the initial values are generated randomly.

A new constructor for SortedList takes an array of Link objects as an argument and
inserts the entire contents of this array into the newly created list. This helps make things
easier for the client (the main () routine).

We've also made a change to the insert () routine in this program. It now accepts a
Link object as an argument, rather than a double. We do this so we can store Link
objects in the array and insert them directly into the list. In the sortedList.java
program, it was more convenient to have the insert () routine create each Link object,
using the double value passed as an argument.

-177 -

The downside of the list insertion sort, compared with an array-based insertion sort, is that
it takes somewhat more than twice as much memory: the array and linked list must be in
memory at the same time. However, if you have a sorted linked list class handy, the list
insertion sort is a convenient way to sort arrays that aren't too large.

Doubly Linked Lists

Let's examine another variation on the linked list: the doubly linked list (not to be
confused with the double-ended list). What's the advantage of a doubly linked list? A
potential problem with ordinary linked lists is that it's difficult to traverse backward along
the list. A statement like

current=current.next

steps conveniently to the next link, but there's no corresponding way to go to the previous
link. Depending on the application, this could pose problems.

For example, imagine a text editor in which a linked list is used to store the text. Each text
line on the screen is stored as a String object embedded in a link. When the editor's
user moves the cursor downward on the screen, the program steps to the next link to
manipulate or display the new line. But what happens if the user moves the cursor
upward? In an ordinary linked list, you'd need to return current (or its equivalent) to the
start of the list and then step all the way down again to the new current link. This isn't
very efficient. You want to make a single step upward.

The doubly linked list provides this capability. It allows you to traverse backward as well
as forward through the list. The secret is that each link has two references to other links
instead of one. The first is to the next link, as in ordinary lists. The second is to the
previous link. This is shown in Figure 5.13.

The beginning of the specification for the Link class in a doubly linked list looks like this:

class Link

{

public double dbData; // data item
public Link next; // next link in list
public link previous; // previous link in list

Figure 5.13: A doubly linked list

The downside of doubly linked lists is that every time you insert or delete a link you must
deal with four links instead of two: two attachments to the previous link and two
attachments to the following one. Also, of course, each link is a little bigger because of
the extra reference.

A doubly linked list doesn't necessarily need to be a double-ended list (keeping a

-178 -

reference to the last element on the list) but doing so is useful, so we'll include it in our
example.

We'll show the complete listing for the doublyLinked.java program soon, but first let's
examine some of the methods in its doublyLinkedList class.

Traversal

Two display methods demonstrate traversal of a doubly linked list. The
displayForward () method is the same as the displayList () method we've seen
in ordinary linked lists. The displayBackward () method is similar, but starts at the last
element in the list and proceeds toward the start of the list, going to each element's
previous field. This code fragment shows how this works:

Link current = last; // start at end
while (current != null) // until start of list,
current = current.previous; // move to previous link

Incidentally, some people take the view that, because you can go either way equally
easily on a doubly linked list, there is no preferred direction and therefore terms like
previous and next are inappropriate. If you prefer, you can substitute direction-neutral
terms such as 1eft and right.

T el

Figure 5.14: Insertion at the beginning

Insertion

We've included several insertion routines in the DoublyLinkedList class. The
insertFirst () method inserts at the beginning of the list, insertLast () inserts at
the end, and insertAfter () inserts following an element with a specified key.

Unless the list is empty, the insertFirst () routine changes the previous field in the
old first link to point to the new link, and changes the next field in the new link to point
to the old first link. Finally it sets first to point to the new link. This is shown in Figure
5.14.

If the list is empty, then the 1ast field must be changed instead of the first.previous
field. Here's the code:

if (isEmpty ()) // 1if empty list,

-179 -

last = newlLink; // newLink <-- last

else

first.previous = newLink; // newLink <-- old first
newLink.next = first; // newLink --> old first
first = newLink; // first --> newLink

The insertLast () method is the same process applied to the end of the list; it's a
mirror image of insertFirst ().

The insertAfter () method inserts a new link following the link with a specified key
value. It's a bit more complicated because four connections must be made. First the link
with the specified key value must be found. This is handled the same way as the find ()
routine in the 1inkList2 program earlier in this chapter. Then, assuming we're not at
the end of the list, two connections must be made between the new link and the next link,
and two more between current and the new link. This is shown in Figure 5.15.

Figure 5.15: Insertion at an arbitrary location

If the new link will be inserted at the end of the list, then its next field must point to nul1,
and last must point to the new link. Here's the insertAfter () code that deals with
the links:

if (current==last) // 1f last link,
{
newLink.next = null; // newLink --> null
last = newLink; // newLink <-- last
}
else // not last link,
{
newLink.next = current.next; // newlLink --> old next
// newLink <-- old next
current.next.previous = newlLink;
}
newLink.previous = current; // old current <-- newLink
current.next = newLink; // old current --> newLink

Perhaps you're unfamiliar with the use of two dot operators in the same expression. It's a
natural extension of a single dot operator. The expression

- 180 -

current.next.previous

means the previous field of the link referred to by the next field in the link current.

Deletion

There are three deletion routines: deleteFirst (), deletelast (), and

deleteKey (). The first two are fairly straightforward. In deleteKey (), the key being
deleted is current. Assuming the link to be deleted is neither the first nor the last one in
the list, then the next field of current.previous (the link before the one being
deleted) is set to point to current . next (the link following the one being deleted), and
the previous field of current.next is set to pointto current.previous. This
disconnects the current link from the list. Figure 5.16 shows how this disconnection looks,
and the following two statements carry it out:

Fou ey el pareELac

- Pl

Figure 5.16: Deleting an arbitrary link

current.previous.next = current.next;

current.next.previous = current.previous;

Special cases arise if the link to be deleted is either the first or last in the list, because
first or last must be set to point to the next or the previous link. Here's the code from
deleteKey () for dealing with link connections:

if (current==first) // first item?
first = current.next; // first --> old next
else // not first
// old previous --> old next
current.previous.next = current.next;
if (current==last) // last item?
last = current.previous; // old previous <-- last
else // not last

// old previous <-- old next

current.next.previous = current.previous;

The doublyLinked. java Program

Listing 5.8 shows the complete doublyLinked. java program, which includes all the
routines just discussed.

Listing 5.8 The doublyLinked.java Program

- 181 -

// doublyLinked.java

// demonstrates a doubly-linked list

// to run this program: C>java DoublyLinkedApp

L1117 7777777777777 777

class Link

{

public double dData; // data item
public Link next; // next link in list
public Link previous; // previous link in list
/) T
public Link (double d) // constructor
{ dbata = d; }
/) mm e
public void displayLink() // display this link
{ System.out.print (dbData + " "); }
/) mm e

} // end class Link

L1177 77 7007777777070 7 7777777777777 77777777 7777777777777777777777

class DoublyLinkedList
{

private Link first; // ref to first item
private Link last; // ref to last item
/) T
public DoublyLinkedList () // constructor
{
first = null; // no items on list yet
last = null;
}
/) T
public boolean isEmpty () // true if no links
{ return first==null; }

public void insertFirst (double dd) // insert at front of
list
{

Link newLink = new Link(dd); // make new link
if(isEmpty ()) // if empty list,
last = newlLink; // newLink <-- last
else
first.previous = newLink; // newLink <-- old first
newLink.next = first; // newLink --> old first

- 182 -

first = newLink; // first --> newLink

public void insertLast (double dd) // insert at end of list
{

Link newlLink = new Link (dd); // make new link
if(isEmpty ()) // if empty list,
first = newlLink; // first --> newLink
else
{
last.next = newlLink; // old last --> newLink
newlLink.previous = last; // old last <-- newLink
}
last = newlLink; // newLink <-- last
}
/) T
public Link deleteFirst () // delete first link
{ // (assumes non-empty
list)
Link temp = first;
if (first.next == null) // if only one item
last = null; // null <-- last
else
first.next.previous = null; // null <-- old next
first = first.next; // first --> old next
return temp;
}
/) T
public Link deleteLast () // delete last link
{ // (assumes non-empty
list)
Link temp = last;
if (first.next == null) // if only one item
first = null; // first --> null
else
last.previous.next = null; // old previous --> null
last = last.previous; // old previous <-- last
return temp;
}
/) mm e
// insert dd just after
key
public boolean insertAfter (double key, double dd)
{ // (assumes non-empty
list)
Link current = first; // start at beginning
while (current.dData != key) // until match is found,

- 183 -

{

current = current.next; //
if (current == null)
return false; //
}
Link newLink = new Link (dd); //
if (current==last) //
{
newLink.next = null; //
last = newlLink; //
}
else //

{

newlLink.next = current.next;

move to next link

didn't find it

make new link

if last 1link,

newLink --> null

newLink <-- last

not last link,

// newLink --> old next

// newlLink <-- old next

old current <-- newlLink

current.next.previous = newlLink;
}
newLink.previous = current; //
current.next = newLink; //

return true; //
}
[/ e
public Link deleteKey (double key) //
key
{ //
list)
Link current = first; //
while (current.dData != key) //
{
current = current.next; //
if (current == null)
return null; //
}
if (current==first) //
first = current.next; //
else //
//
next
current.previous.next =
if (current==last) //
last = current.previous; //
else //
//
next
current.next.previous =
return current; //
}

184 -

old current --> newlLink

found it, did insertion

delete item w/ given
(assumes non-empty

start at beginning
until match is found,

move to next link

didn't find it

found it; first item?

--> 0ld next
not first

first

old previous --> old

current.next;

last item?

old previous <-- last
not last
old previous <-- old

current.previous;

return value

public void displayForward()

{
System.out.print ("List (first-->last): ");

Link current = first; // start at beginning

while (current != null) // until end of list,
{
current.displayLink () ; // display data
current = current.next; // move to next link
}

System.out.println("");

public void displayBackward ()
{

System.out.print ("List (last-->first): ");

Link current = last; // start at end

while (current != null) // until start of list,
{
current.displayLink() ; // display data
current = current.previous; // move to previous link
}

System.out.println("");

} // end class DoublyLinkedList
L1177 700777 77770777777 777

class DoublyLinkedApp
{
public static void main (String[] args)
{ // make a new list
DoublyLinkedList theList = new DoublyLinkedList () ;

thelList.insertFirst (22); // insert at front
thelist.insertFirst (44);
thelist.insertFirst (66);

thelList.insertLast (11); // insert at rear
thelist.insertLast (33);
thelList.insertLast (55);

thelList.displayForward() ; // display list forward
theList.displayBackward() ; // display list backward
thelist.deleteFirst () ; // delete first item
thelList.deletelast () ; // delete last item
theList.deleteKey (11); // delete item with key 11

- 185 -

theList.displayForward() ; // display list forward

thelList.insertAfter (22, 77); // insert 77 after 22
thelist.insertAfter (33, 88); // insert 88 after 33

thelist.displayForward() ; // display list forward
}// end main/()

} // end class DoublyLinkedApp

Inmain () we insert some items at the beginning of the list and at the end, display the
items going both forward and backward, delete the first and last items and the item with
key 11, display the list again (forward only), insert two items using the insertAfter ()
method, and display the list again. Here's the output:

List (first-->last): 66 44 22 11 33 55
List (last-->first): 55 33 11 22 44 66
List (first-->last): 44 22 33

List (first-->last): 44 22 77 33 88

The deletion methods and the insertAfter () method assume that the list isn't empty.
Although for simplicity we don't show itin main (), isEmpty () should be used to verify
that there's something in the list before attempting such insertions and deletions.

Doubly Linked List as Basis for Deques

A doubly linked list can be used as the basis for a deque, mentioned in the last chapter. In
a deque you can insert and delete at either end, and the doubly linked list provides this
capability.

Iterators

We've seen how it's possible for the user of a list to find a link with a given key using a
find () method. The method starts at the beginning of the list and examines each link
until it finds one matching the search key. Other operations we've looked at, such as
deleting a specified link or inserting before or after a specified link, also involve searching
through the list to find the specified link. However, these methods don't give the user any
control over the traversal to the specified item.

Suppose you wanted to traverse a list, performing some operation on certain links. For
example, imagine a personnel file stored as a linked list. You might want to increase the
wages of all employees who were being paid minimum wage, without affecting
employees already above the minimum. Or suppose that in a list of mail-order customers,
you decided to delete all customers who had not ordered anything in six months.

In an array, such operations are easy because you can use an array index to keep track
of your position. You can operate on one item, then increment the index to point to the
next item, and see if that item is a suitable candidate for the operation. However, in a
linked list, the links don't have fixed index numbers. How can we provide a list's user with
something analogous to an array index? You could repeatedly use find () to look for
appropriate items in a list, but this requires many comparisons to find each link. It's far
more efficient to step from link to link, checking if each one meets certain criteria and
performing the appropriate operation if it does.

A Reference in the List Itself?

- 186 -

As users of a list class, what we need is access to a reference that can point to any
arbitrary link. This allows us to examine or modify the link. We should be able to
increment the reference so we can traverse along the list, looking at each link in turn, and
we should be able to access the link pointed to by the reference.

Assuming we create such a reference, where will it be installed? One possibility is to use
a field in the list itself, called current or something similar. You could access a link
using current, and increment current to move to the next link.

One trouble with this approach is that you might need more than one such reference, just
as you often use several array indices at the same time. How many would be
appropriate? There's no way to know how many the user might need. Thus it seems
easier to allow the user to create as many such references as necessary. To make this
possible in an object-oriented language, it's natural to embed each reference in a class
object. (This can't be the same as the list class, because there's only one list object.)

An lterator Class

Objects containing references to items in data structures, used to traverse data
structures, are commonly called iterators (or sometimes, as in certain Java classes,
enumerators). Here's a preliminary idea of how they look:

class ListIterator ()

{

private Link current;

The current field contains a reference to the link the iterator currently points to. (The
term "points" as used here doesn't refer to pointers in C++; we're using it in its generic
sense.)

To use such an iterator, the user might create a list and then create an iterator object
associated with the list. Actually, as it turns out, it's easier to let the list create the iterator,
so it can pass the iterator certain information, such as a reference to its first field. Thus
we add a getIterator () method to the list class; this method returns a suitable
iterator object to the user. Here's some abbreviated code in main () that shows how the
class user would invoke an iterator:

public static void main(...)

{
LinkList thelist = new LinkList(); // make list
ListIterator iterl = thelList.getIterator(); // make iter

Link aLink = iterl.getCurrent(); // access link at
iterator
iterl.nextLink () ; // move iter to next link

Once we've made the iterator object, we can use it to access the link it points to, or
increment it so it points to the next link, as shown in the second two statements. We call
the iterator object iterl to emphasize that you could make more iterators (iter2 and
so on) the same way.

The iterator always points to some link in the list. It's associated with the list, but it's not
the same as the list. Figure 5.17 shows two iterators pointing to links in a list.

- 187 -

Figure 5.17: List iterators

Additional Iterator Features

We've seen several programs where the use of a previous field made it simpler to
perform certain operations, such as deleting a link from an arbitrary location. Such a field
is also useful in an iterator.

Also, it may be that the iterator will need to change the value of the list's £irst field; for
example, if an item is inserted or deleted at the beginning of the list. If the iterator is an
object of a separate class, how can it access a private field, such as first, in the list?
One solution is for the list to pass a reference to itself to the iterator when it creates it.
This reference is stored in a field in the iterator.

The list must then provide public methods that allow the iterator to change first. These
are LinkList methods getFirst () and setFirst (). (The weakness of this
approach is that these methods allow anyone to change first, which introduces an
element of risk.)

Here's a revised (although still incomplete) iterator class that incorporates these
additional fields, along with reset () and nextLink () methods:

class ListIterator()

{

private Link current; // reference to current link
private Link previous; // reference to previous link
private LinkList ourList; // reference to "parent" list
public void reset () // set to start of list

{

current = ourlist.getFirst(); // current --> first

previous = null; // previous --> null

}
public void nextLink () // go to next link

{

previous = current; // set previous to this

current = current.next; // set this to next

}

- 188 -

We might note, for you old-time C++ programmers, that in C++ the connection between
the iterator and the list is typically provided by making the iterator class a friend of the list
class. However, Java has no friend classes, which are controversial in any case because
they are a chink in the armor of data hiding.

Iterator Methods

Additional methods can make the iterator a flexible and powerful class. All operations
previously performed by the class that involve iterating through the list, like
insertAfter (), are more naturally performed by the iterator. In our example the
iterator includes the following methods:

* reset () Sets iterator to the start of the list

* nextLink () Moves iterator to next link

* getCurrent () Returns the link at iterator

* tEnd() Returns true if iterator is at end of list

* insertAfter () Insertsa new link after iterator

* insertBefore () Inserts a new link before iterator
* deleteCurrent () Deletes the link at the iterator

The user can position the iterator using reset () and nextLink (), check if it's at the
end of the list with atEnd (), and perform the other operations shown.

Deciding which tasks should be carried out by an iterator and which by the list itself is not
always easy. An insertBefore () method works best in the iterator, but an
insertFirst () routine that always inserts at the beginning of the list might be more
appropriate in the list class. We've kept a displayList () routine in the list, but this

operation could also be handled with getCurrent () and nextLink () calls to the
iterator.

The interIterator. java Program

The interIterator.java program includes an interactive interface that permits the
user to control the iterator directly. Once you've started the program, you can perform the
following actions by typing the appropriate letter:

» s Show the list contents

* r Reset the iterator to the start of the list
* n Go to the next link

* g Get the contents of the current link

* b Insert before the current link

- 189 -

* a Insert a new link after the current link

* d Delete the current link

Listing 5.9 shows the complete interIterator.java program.
Listing 5.9 The interlterator.java Program

// interIterator.java

// demonstrates iterators on a linked list

// to run this program: C>java InterIterApp

import java.io.*; // for I/0

II117777 7777777777777 77777777 77777777777777777777777777777777777

class Link

{

public double dData; // data item
public Link next; // next link in list

[e e e
public Link (double dd) // constructor

{ dbata = dd; }

public void displayLink () // display ourself
{ System.out.print (dData + " "); }
} // end class Link

L1777 0707777770777 777 707777777 7777777777077777777777777777777777

class LinkList

{

private Link first; // ref to first item on list
/) T
public LinkList () // constructor
{ first = null; } // no items on list yet
/) T
public Link getFirst () // get value of first

{ return first; }

public void setFirst (Link f) // set first to new link
{ first = £; }

- 190 -

public boolean isEmpty () // true if list is empty

{ return first==null; }

/) T
public ListIterator getIterator () // return iterator
{
return new ListIterator(this); // initialized with
} // this list
/) T
public void displayList ()
{
Link current = first; // start at beginning of list
while (current != null) // until end of list,
{
current.displayLink() ; // print data
current = current.next; // move to next link
}
System.out.println("");
}

} // end class LinkList

L1117 77 7007777777077 7 777770777777 77777777777777777777777777777777

class ListIterator

{

private Link current; // current link
private Link previous; // previous link
private LinkList ourList; // our linked list

public ListIterator (LinkList list) // constructor
{

ourList = list;
reset () ;
}
et
public void reset () // start at 'first'
{
current = ourlList.getFirst();
previous = null;
}
e
public boolean atEnd() // true if last link

- 191 -

{ return (current.next==null); }

public void nextLink () // go to next link

{

previous = current;
current = current.next;
}
e
public Link getCurrent () // get current link

{ return current; }

public void insertAfter (double dd) // insert after
{ // current link

Link newlLink = new Link(dd);

if(ourList.isEmpty()) // empty list
{
ourlList.setFirst (newLink) ;

current = newlLink;

}
else // not empty

{

newLink.next

current.next;

current.next newLink;
nextLink () ; // point to new link

public void insertBefore (double dd) // insert before
{ // current link

Link newLink = new Link(dd);

if (previous == null) // beginning of list
{ // (or empty list)
newlLink.next = ourList.getFirst();

ourlList.setFirst (newlLink) ;

reset () ;
}

else // not beginning
{
newlLink.next = previous.next;
previous.next = newlLink;
current = newLink;

}

-192 -

public double deleteCurrent() // delete item at current
{
double value = current.dData;
if (previous == null) // beginning of list

{

ourlList.setFirst (current.next);

reset () ;
}
else // not beginning
{
previous.next = current.next;
if (atEnd())
reset () ;
else
current = current.next;

}

return value;

} // end class ListIterator
(1777777777777 77/77777777

class InterIterApp
{
public static void main(String[] args) throws IOException
{
LinkList theList = new LinkList(); // new list
ListIterator iterl = thelList.getIterator(); // new iter

double value;

iterl.insertAfter (20); // insert items
iterl.insertAfter (40);

iterl.insertAfter (80);

iterl.insertBefore (60);

while (true)

{

System.out.print ("Enter first letter of show, reset,
System.out.print ("next, get, before, after, delete:

System.out.flush();
int choice = getChar(); // get user's option
switch (choice)

{

case 's': // show list
if(!'thelist.isEmpty ())
thelist.displayList();

-193 -

else
System.out.println ("List is empty");
break;
case 'r': // reset (to first)
iterl.reset () ;

break;
case 'n': // advance to next
item
if('thelist.isEmpty() && !iterl.atEnd())
iterl.nextLink () ;
else
System.out.println("Can't go to next link");
break;
case 'g': // get current item
if(!thelist.isEmpty ())
{
value = iterl.getCurrent () .dData;
System.out.println ("Returned " + wvalue);
}
else
System.out.println("List is empty");
break;
case 'b': // insert before
current
System.out.print ("Enter value to insert: ");
System.out.flush{();
value = getInt();
iterl.insertBefore (value);
break;
case 'a': // insert after
current
System.out.print ("Enter value to insert: ");
System.out.flush();
value = getInt();
iterl.insertAfter (value);
break;
case 'd': // delete current item
if(!'thelist.isEmpty ())
{
value = iterl.deleteCurrent();
System.out.println ("Deleted " + value);
}
else
System.out.println("Can't delete");
break;
default:
System.out.println("Invalid entry");
} // end switch
} // end while
} // end main ()
/=

public static String getString() throws IOException

-194 -

{

InputStreamReader isr = new InputStreamReader (System.in);
BufferedReader br = new BufferedReader (isr);
String s = br.readLine();

return s;

public static int getChar () throws IOException
{
String s = getString();
return s.charAt(0);

public static int getInt () throws IOException
{
String s = getString();
return Integer.parselnt(s);
}// end getInt/()

} // end class InterIterApp

The main () routine inserts four items into the list, using an iterator and its
insertAfter () method. Then it waits for the user to interact with it. In the following
sample interaction, the user displays the list, resets the iterator to the beginning, goes
forward two links, gets the current link's key value (which is 60), inserts 100 before this,
inserts 7 after the 100, and displays the list again.

Enter first letter of

show, reset, next, get, before, after, delete: s
20 40 60 80
Enter first letter of

show, reset, next, get, before, after, delete: r
Enter first letter of

show, reset, next, get, before, after, delete: n
Enter first letter of

show, reset, next, get, before, after, delete: n
Enter first letter of

show, reset, next, get, before, after, delete: g
Returned 60
Enter first letter of

show, reset, next, get, before, after, delete: b
Enter value to insert: 100
Enter first letter of

show, reset, next, get, before, after, delete: a
Enter value to insert: 7
Enter first letter of

show, reset, next, get, before, after, delete: s

- 195 -

20 40 100 7 60 80

Experimenting with the interIterator.java program will give you a feeling for how
the iterator moves along the links and how it can insert and delete links anywhere in the
list.

Where Does It Point?

One of the design issues in an iterator class is deciding where the iterator should point
following various operations.

When you delete an item with deleteCurrent (), should the iterator end up pointing to
the next item, to the previous item, or back at the beginning of the list? It's convenient to
keep it in the vicinity of the deleted item, because the chances are the class user will be
carrying out other operations there. However, you can't move it to the previous item
because there's no way to reset the list's previous field to the previous item. (You'd
need a doubly linked list for that.) Our solution is to move the iterator to the link following
the deleted link. If we've just deleted the item at the end of the list, the iterator is set to
the beginning of the list.

Following calls to insertBefore () and insertAfter (), we return with current
pointing to the newly inserted item.

The atEnd () Method

There's another question about the atEnd () method. It could return true when the
iterator points to the last valid link in the list, or it could return true when the iterator
points past the last link (and is thus not pointing to a valid link).

With the first approach, a loop condition used to iterate through the list becomes awkward
because you need to perform an operation on the last link before checking whether it is
the last link (and terminating the loop if it is).

However, the second approach doesn't allow you to find out you're at the end of the list
until it's too late to do anything with the last link. (You couldn't look for the last link and
then delete it, for example.) This is because when atEnd () became true, the iterator
would no longer point to the last link (or indeed any valid link), and you can't "back up”
the iterator in a singly linked list.

We take the first approach. This way the iterator always points to a valid link, although
you must be careful when writing a loop that iterates through the list, as we'll see next.

Iterative Operations

As we noted, an iterator allows you to traverse the list, performing operations on certain
data items. Here's a code fragment that displays the list contents, using an iterator
instead of the list's displayList () method:

iterl.reset () ; // start at first
double value = iterl.getCurrent () .dData; // display link

System.out.println(value + " ");

while(!iterl.atEnd()) // until end,
{
iterl.nextLink () ; // go to next
link,

double value = iterl.getCurrent().dData; // display it
System.out.println(value + " ");

- 196 -

Although not shown here, you should check with i sEmpty () to be sure the list is not
empty before calling getCurrent ().

The following code shows how you could delete all items with keys that are multiples of 3.
We show only the revised main () routine; everything else is the same as in
interIterator.java.

class InterIterApp
{
public static void main(String[] args) throws IOException
{
LinkList thelist = new LinkList(); // new list
ListIterator iterl = thelList.getIterator(); // new iter
iterl.insertAfter (21); // insert links
iterl.insertAfter (40
iterl.insertAfter(SO)
iterl.insertAfter (7);
iterl.insertAfter (45

thelList.displayList(); // display list
iterl.reset(); // start at first link
Link aLink = iterl.getCurrent(); // get it
if (alink.dData % 3 == 0) // 1f divisible by 3,
iterl.deleteCurrent () ; // delete it
while(!iterl.atEnd()) // until end of list,
{
iterl.nextLink(); // go to next link
alink = iterl.getCurrent(); // get link
if (alink.dData % 3 == 0) // if divisible by 3,
iterl.deleteCurrent(); // delete it
}
thelList.displayList(); // display list

} // end main()
} // end class InterlterApp

We insert five links and display the list. Then we iterate through the list, deleting those
links with keys divisible by 3, and display the list again. Here's the output:

21 40 30 7 45
40 7

Again, although this code doesn't show it, it's important to check whether the list is empty
before calling deleteCurrent ().

Other Methods

-197 -

One could create other useful methods for the ListIterator class. For example, a
find () method would return an item with a specified key value, as we've seen when
find () is alist method. A replace () method could replace items that had certain key
values with other items.

Because it's a singly linked list, you can only iterate along it in the forward direction. If a
doubly linked list were used, you could go either way, allowing operations such as deletion
from the end of the list, just as with noniterator. This would probably be a convenience in
some applications.

Summary
* Alinked list consists of one 1inkedList object and a number of 1ink objects.

* The 1inkedList object contains a reference, often called first, to the first link in
the list.

* Each 1ink object contains data and a reference, often called next, to the next link in
the list.

* A next value of null signals the end of the list.

* Inserting an item at the beginning of a linked list involves changing the new link's next
field to point to the old first link, and changing first to point to the new item.

* Deleting an item at the beginning of a list involves setting first to point to
first.next.

» To traverse a linked list, you start at £irst; then go from link to link, using each link's
next field to find the next link.

» Alink with a specified key value can be found by traversing the list. Once found, an
item can be displayed, deleted, or operated on in other ways.

* A new link can be inserted before or after a link with a specified key value, following a
traversal to find this link.

* A double-ended list maintains a pointer to the last link in the list, often called last, as
well as to the first.

» A double-ended list allows insertion at the end of the list.

* An Abstract Data Type (ADT) is a data-storage class considered without reference to
its implementation.

+ Stacks and queues are ADTs. They can be implemented using either arrays or linked
lists.

* In a sorted linked list, the links are arranged in order of ascending (or sometimes
descending) key value.

* Insertion in a sorted list takes O(N) time because the correct insertion point must be
found. Deletion of the smallest link takes O(1) time.

* In a doubly linked list, each link contains a reference to the previous link as well as the
next link.

- 198 -

* A doubly linked list permits backward traversal and deletion from the end of the list.

» Aniterator is a reference, encapsulated in a class object, that points to a link in an
associated list.

+ lterator methods allow the user to move the iterator along the list and access the link
currently pointed to.

» An iterator can be used to traverse through a list, performing some operation on
selected links (or all links).

Summary
* Alinked list consists of one 1inkedList object and a number of 1ink objects.

* The linkedList object contains a reference, often called first, to the first link in
the list.

* Each 1ink object contains data and a reference, often called next, to the next link in
the list.

* A next value of null signals the end of the list.

* Inserting an item at the beginning of a linked list involves changing the new link's next
field to point to the old first link, and changing first to point to the new item.

* Deleting an item at the beginning of a list involves setting £irst to point to
first.next.

* To traverse a linked list, you start at £irst; then go from link to link, using each link's
next field to find the next link.

» Alink with a specified key value can be found by traversing the list. Once found, an
item can be displayed, deleted, or operated on in other ways.

* A new link can be inserted before or after a link with a specified key value, following a
traversal to find this link.

» A double-ended list maintains a pointer to the last link in the list, often called last, as
well as to the first.

* A double-ended list allows insertion at the end of the list.

* An Abstract Data Type (ADT) is a data-storage class considered without reference to
its implementation.

» Stacks and queues are ADTs. They can be implemented using either arrays or linked
lists.

* In a sorted linked list, the links are arranged in order of ascending (or sometimes
descending) key value.

+ Insertion in a sorted list takes O(N) time because the correct insertion point must be
found. Deletion of the smallest link takes O(1) time.

* In a doubly linked list, each link contains a reference to the previous link as well as the
next link.

- 199 -

» A doubly linked list permits backward traversal and deletion from the end of the list.

» An iterator is a reference, encapsulated in a class object, that points to a link in an
associated list.

+ Iterator methods allow the user to move the iterator along the list and access the link
currently pointed to.

» An iterator can be used to traverse through a list, performing some operation on
selected links (or all links).

Triangular Numbers

It's said that the Pythagorians, a band of mathematicians in ancient Greece who worked
under Pythagoras (of Pythagorian theorem fame), felt a mystical connection with the
series of numbers 1, 3, 6, 10, 15, 21, ... (where the ... means the series continues
indefinitely). Can you find the next member of this series?

The nth term in the series is obtained by adding n to the previous term. Thus the second
term is found by adding 2 to the first term (which is 1), giving 3. The third term is 3 added
to the second term (which is 3), giving 6, and so on. The numbers in this series are called
triangular numbers because they can be visualized as a triangular arrangements of
objects, shown as little squares in Figure 6.1.

Finding the nth Term Using a Loop

Suppose you wanted to find the value of some arbitrary nth term in the series; say the
fourth term (whose value is 10). How would you calculate it? Looking at Figure 6.2, you
might decide that the value of any term can be obtained by adding up all the vertical
columns of squares.

In the fourth term, the first column has four little squares, the second column has three,
and so on. Adding 4+3+2+1 gives 10.

2
@ a0
@ @O Do
a 2@ oo maoo
2
@ a0
@ @0 200
Qo S aa00
aoo @aooaa SELEEE
Q0aa OQOooo@ Oooooo
aQaQ20 aoaoa

Q9 Oooaoaag

Figure 6.1: The triangular numbers

- 200 -

im this column
im this colunn
i this Colusm
i Ahis colusnn

Figure 6.2: Triangular number as columns

The following triangle () method uses this column-based technique to find a triangular
number. It sums all the columns, from a height of n to a height of 1.

int triangle (int n)
{
int total = 0;

while(n > 0) // until n is 1

{
total = total + n; // add n (column height) to total
--n; // decrement column height

}

return total;

The method cycles around the loop n times, adding n to total the first time, n-1 the
second time, and so on down to 1, quitting the loop when n becomes 0.

Finding the nth Term Using Recursion

The loop approach may seem straightforward, but there's another way to look at this
problem. The value of the nth term can be thought of as the sum of only two things,
instead of a whole series. These are

1. The first (tallest) column, which has the value n.
2. The sum of all the remaining columns.

This is shown in Figure 6.3.

@
QQ

-

-BEEE 0
E0E-

i I e maining colamng

4 an the (et codamin
Tial: 101

Figure 6.3: Triangular number as column plus triangle

-201 -

Finding the Remaining Columns

If we knew about a method that found the sum of all the remaining columns, then we
could write our triangle () method, which returns the value of the nth triangular
number, like this:

int triangle(int n)
{

return(n + sumRemainingColumns(n)); // (incomplete
version)

}

But what have we gained here? It looks like it's just as hard to write the
sumRemainingColumns () method as to write the triangle () method in the first
place.

Notice in Figure 6.3, however, that the sum of all the remaining columns for term n is the
same as the sum of all the columns for term n-1. Thus, if we knew about a method that
summed all the columns for term n, we could call it with an argument of n-1 to find the
sum of all the remaining columns for term n:

int triangle (int n)
{

return(n + sumAllColumns(n-1)); // (incomplete version)

But when you think about it, the sumA1l1Columns () method is doing exactly the same
thing the triangle () method is doing: summing all the columns for some number n
passed as an argument. So why not use the triangle () method itself, instead of some
other method? That would look like this:

int triangle (int n)
{

return(n + triangle(n-1)); // (incomplete version)

It may seem amazing that a method can call itself, but why shouldn't it be able to? A
method call is (among other things) a transfer of control to the start of the method. This
transfer of control can take place from within the method as well as from outside.

Passing the Buck

All this may seem like passing the buck. Someone tells me to find the 9th triangular
number. | know this is 9 plus the 8th triangular number, so | call Harry and ask him to find
the 8th triangular number. When | hear back from him, I'll add 9 to whatever he tells me,
and that will be the answer.

Harry knows the 8th triangular number is 8 plus the 7th triangular number, so he calls
Sally and asks her to find the 7th triangular number. This process continues with each
person passing the buck to another one.

-202 -

Where does this buck-passing end? Someone at some point must be able to figure out
an answer that doesn't involve asking another person to help them. If this didn't happen,
there would be an infinite chain of people asking other people questions; a sort of
arithmetic Ponzi scheme that would never end. In the case of triangle (), this would
mean the method calling itself over and over in an infinite series that would paralyze the
program.

The Buck Stops Here

To prevent an infinite regress, the person who is asked to find the first triangular number
of the series, when n is 1, must know, without asking anyone else, that the answer is 1.
There are no smaller numbers to ask anyone about, there's nothing left to add to
anything else, so the buck stops there. We can express this by adding a condition to the
triangle () method

int triangle (int n)
{
if (n==1)
return 1;
else
return(n + triangle(n-1));

The condition that leads to a recursive method returning without making another
recursive call is referred to as the base case. It's critical that every recursive method have
a base case to prevent infinite recursion and the consequent demise of the program.

The triangle. java Program

Does recursion actually work? If you run the triangle.java program, you'll see that it
does. Enter a value for the term number, n, and the program will display the value of the
corresponding triangular number. Listing 6.1 shows the triangle. java program.

Listing 6.1 The triangle.java Program

// triangle.java
// evaluates triangular numbers
// to run this program: C>java TriangleApp
import java.io.*; // for I/0
LI P07 r i i 7777777777 777777777777777777777777777
class TriangleApp
{

static int theNumber;

public static void main(String[] args) throws IOException
{
System.out.print ("Enter a number: ");
System.out.flush();
theNumber = getInt();
int theAnswer = triangle (theNumber);
System.out.println ("Triangle="+theAnswer) ;
} // end main /()

public static int triangle(int n)
{
if (n==1)
return 1;
else
return(n + triangle(n-1));

public static String getString() throws IOException
{

InputStreamReader isr = new InputStreamReader (System.in);
BufferedReader br = new BufferedReader (isr);
String s = br.readLine();

return s;

public static int getInt () throws IOException

{
String s = getString();
return Integer.parselnt(s);

} // end class TriangleApp

The main () routine prompts the user for a value for n, calls triangle (), and displays
the return value. The triangle () method calls itself repeatedly to do all the work.

Here's some sample output:

Enter a number: 1000
Triangle = 500500

Incidentally, if you're skeptical of the results returned from triangle (), you can check
them by using the following formula:

nth triangular number = (n e2+n) /2

What's Really Happening?

Let's modify the triangle () method to provide an insight into what's happening when it
executes. We'll insert some output statements to keep track of the arguments and return
values:

public static int triangle(int n)

{

System.out.println ("Entering: n=" + n);
if (n==1)

{

204 -

System.out.println ("Returning 1");
return 1;
}

else
{
int temp = n + triangle(n-1);
System.out.println ("Returning " + temp);
return temp;

}

Here's the interaction when this method is substituted for the earlier triangle ()
method and the user enters 5:

Enter a number: 5

Entering:
Entering:
Entering:
Entering:
Entering:

n
n
n
n
n

Returning 1

Returning 3

Returning 6

Returning 1

1

Returning
Triangle = 15

Each time the triangle () method calls itself, its argument, which starts at 5, is
reduced by 1. The method plunges down into itself again and again until its argument is
reduced to 1. Then it returns. This triggers an entire series of returns. The method rises
back up, phoenixlike, out of the discarded versions of itself. Each time it returns, it adds
the value of n it was called with to the return value from the method it called.

The return values recapitulate the series of triangular numbers, until the answer is
returned to main () . Figure 6.4 shows how each invocation of the triangle () method
can be imagined as being "inside" the previous one.

Notice that, just before the innermost version returns a 1, there are actually five different
incarnations of triangle () in existence at the same time. The outer one was passed
the argument 5; the inner one was passed the argument 1.

- 205 -

Figure 6.4: The recursive triangle () method

Characteristics of Recursive Methods

Although it's short, the triangle () method possesses the key features common to all
recursive routines:

* |t calls itself.
* When it calls itself, it does so to solve a smaller problem.

» There's some version of the problem that is simple enough that the routine can solve
it, and return, without calling itself.

In each successive call of a recursive method to itself, the argument becomes smaller (or
perhaps a range described by multiple arguments becomes smaller), reflecting the fact
that the problem has become "smaller" or easier. When the argument or range reaches a
certain minimum size, a condition is triggered and the method returns without calling
itself.

Is Recursion Efficient?

Calling a method involves certain overhead. Control must be transferred from the location
of the call to the beginning of the method. In addition, the arguments to the method, and
the address to which the method should return, must be pushed onto an internal stack so
that the method can access the argument values and know where to return.

In the case of the triangle () method, it's probable that, as a result of this overhead,
the while loop approach executes more quickly than the recursive approach. The
penalty may not be significant, but if there are a large number of method calls as a result
of a recursive method, it might be desirable to eliminate the recursion. We'll talk about
this more at the end of this chapter.

Another inefficiency is that memory is used to store all the intermediate arguments and

- 206 -

return values on the system's internal stack. This may cause problems if there is a large
amount of data, leading to stack overflow.

Recursion is usually used because it simplifies a problem conceptually, not because it's
inherently more efficient.

Mathematical Induction

Recursion is the programming equivalent of mathematical induction. Mathematical
induction is a way of defining something in terms of itself. (The term is also used to
describe a related approach to proving theorems.) Using induction, we could define the
triangular numbers mathematically by saying

if n=1

tri(n) = n + tri(n-1) if n>1

Defining something in terms of itself may seem circular, but in fact it's perfectly valid
(provided there's a base case).

Factorials

Factorials are similar in concept to triangular numbers, except that multiplication is used
instead of addition. The triangular number corresponding to n is found by adding n to the
triangular number of n—1, while the factorial of n is found by multiplying n by the factorial
of n—1. That is, the fifth triangular number is 5+4+3+2+1, while the factorial of 5 is
5*4*3*2*1, which equals 120. Table 6.1 shows the factorials of the first 10 numbers.

Table 6.1: Factorials

Number Calculation Factorial

0 by definition 1

1 1*1 1

2 2*1 2

3 3*2 6

4 4*6 24

5 5*24 120

6 6*120 720

7 7*720 5,040
8 8 * 5,040 40,320

-207 -

9 9*40,320 362,880

The factorial of 0 is defined to be 1. Factorial numbers grow large very rapidly, as you
can see.

A recursive method similar to triangle () can be used to calculate factorials. It looks
like this:

int factorial (int n)
{
if (n==0)
return 1;
else
return (n * factorial (n-1));

There are only two differences between factorial () and triangle (). First,
factorial () uses an * instead of a + in the expression

n * factorial (n-1)

Second, the base condition occurs when n is 0, not 1. Here's some sample interaction
when this method is used in a program similarto triangle.java:

Enter a number: 6
Factorial =720

Figure 6.5 shows how the various incarnations of factorial () call themselves when
initially entered with n=4.

Calculating factorials is the classic demonstration of recursion, although factorials aren't
as easy to visualize as triangular numbers.

Various other numerological entities lend themselves to calculation using recursion in a
similar way, such as finding the greatest common denominator of two numbers (which is
used to reduce a fraction to lowest terms), raising a number to a power, and so on.
Again, while these calculations are interesting for demonstrating recursion, they probably
wouldn't be used in practice because a loop-based approach is more efficient.

- 208 -

Figure 6.5: The recursive factorial () method

Anagrams

Here's a different kind of situation in which recursion provides a neat solution to a
problem. Suppose you want to list all the anagrams of a specified word; that is, all
possible letter combinations (whether they make a real English word or not) that can be
made from the letters of the original word. We'll call this anagramming a word.
Anagramming cat, for example, would produce

e cat
e cta
e atc
e act
e tca
e tac

Try anagramming some words yourself. You'll find that the number of possibilities is the
factorial of the number of letters. For 3 letters there are 6 possible words, for 4 letters
there are 24 words, for 5 letters 120 words, and so on. (This assumes that all letters are
distinct; if there are multiple instances of the same letter, there will be fewer possible
words.)

How would you write a program to anagram a word? Here's one approach. Assume the
word has n letters.

1. Anagram the rightmost n—1 letters.
2. Rotate all n letters.
3. Repeat these steps n times.

To rotate the word means to shift all the letters one position left, except for the leftmost
letter, which "rotates" back to the right, as shown in Figure 6.6.

-209 -

Rotating the word n times gives each letter a chance to begin the word. While the
selected letter occupies this first position, all the other letters are then anagrammed
(arranged in every possible position). For cat, which has only 3 letters, rotating the
remaining 2 letters simply switches them. The sequence is shown in Table 6.2.

Temp Waorl

Y- (Tl
) (T
K W h..l

o Mlonaos,
s Jonann

.

Figure 6.6: Rotating a word

Table 6.2: Anagramming the word cat

Word Display Word? First Letter Remaining Action
Letters

]
cat Yes c at Rotate at
cta Yes c Ta Rotate ta
cat No c at Rotate cat
atc Yes a Tc Rotate tc
act Yes a ct Rotate ct
atc No a Tc Rotate atc
tca Yes t ca Rotate ca
tac Yes t ac Rotate ac
tca No t ca Rotate tca
cat No c at Done

Notice that we must rotate back to the starting point with two letters before performing a
3-letter rotation. This leads to sequences like cat, cta, cat. The redundant combinations
aren't displayed.

-210 -

How do we anagram the rightmost n—1 letters? By calling ourselves. The recursive
doAnagram () method takes the size of the word to be anagrammed as its only
parameter. This word is understood to be the rightmost n letters of the complete word.
Each time doAnagram () calls itself, it does so with a word one letter smaller than

before, as shown in Figure 6.7.

The base case occurs when the size of the word to be anagrammed is only one letter.
There's no way to rearrange one letter, so the method returns immediately. Otherwise, it
anagrams all but the first letter of the word it was given and then rotates the entire word.
These two actions are performed n times, where n is the size of the word. Here's the

recursive routine doAnagram () :

public static void doAnagram(int newSize)

{

if (newSize == 1) //
return; //
for (int j=0; j<newSize; j++) //
{
doAnagram (newSize-1) ; //
if (newSize==2) //
displayWord() ; //
rotate (newSize) ; //

}

if too small,
go no further
for each position,

anagram remaining
if innermost,
display it

rotate word

Each time the doAnagram () method calls itself, the size of the word is one letter
smaller, and the starting position is one cell further to the right, as shown in Figure 6.8.

Figure 6.7: The recursive doAnagram() method

@ 1 r &
" Level 4 neEwiize = |
; prsien = %
Lewel 1 newsee =1
| I pasicion = 2
Lgivegd 3 newlize = 3
posiian = 1
Lswel 1 newSioe = 4
mition = i

-211 -

Figure 6.8: Smaller and smaller words

Listing 6.2 shows the complete anagram. java program. The main () routine gets a
word from the user, inserts it into a character array so it can be dealt with conveniently,
and then calls doAnagram ().

Listing 6.2 The anagram.java Program

// anagram.java
// creates anagrams
// to run this program: C>java AnagramApp
import java.io.*; // for I/0
LI PP r i i i 7777777777 777777777777777777777777777
class AnagramApp
{
static int size;
static int count;
static char[] arrChar = new char[100];

public static void main(String[] args) throws IOException
{
System.out.print ("Enter a word: "); // get word
System.out.flush();
String input = getString();

size = input.length(); // find its size

count = 0;

for (int j=0; j<size; j++) // put it in array
arrChar[j] = input.charAt(j);

doAnagram(size) ; // anagram it

} // end main/()

public static void doAnagram(int newSize)

{

if (newSize == 1) // i1f too small,
return; // go no further

for (int j=0; j<newSize; j++) // for each

position,
{
doAnagram(newSize-1); // anagram remaining
if (newSize==2) // i1f innermost,
displayWord() ; // display it

rotate (newSize) ; // rotate word

// rotate left all chars from position to end
public static void rotate(int newSize)

{

-212 -

int j;

int position = size - newSize;
char temp = arrChar[position]; // save first letter
for (j=position+l; Jj<size; j++) // shift others left
arrChar[j-1] = arrChar[j];
arrChar[j-1] = temp; // put first on
right
}
/mm e

public static void displayWord()
{
if (count < 99)

System.out.print (" ");
if (count < 9)

System.out.print (" ");
System.out.print (++count + " ");
for (int 3=0; j<size; Jj++)

System.out.print (arrChar[j]);
System.out.print (" ")
System.out.flush{();
if (count%$e == 0)

System.out.println("");

public static String getString() throws IOException
{

InputStreamReader isr = new InputStreamReader (System.in);

BufferedReader br = new BufferedReader (isr);
String s = br.readLine();

return s;

} // end class AnagramApp

The rotate () method rotates the word one position left as described earlier. The
displayWord () method displays the entire word and adds a count to make it easy to
see how many words have been displayed. Here's some sample interaction with the

program:

Enter a word: cats

1 cats 2 cast 3 ctsa 4 ctas 5 csat
7 atsc 8 atcs 9 asct 10 astc 11 acts
13 tsca 14 tsac 15 tcas 16 tcsa 17 tasc
19 scat 20 scta 21 satc 22 sact 23 stca

(Is it only coincidence that scat is an anagram of cats?) You can use the program to
anagram 5-letter or even 6-letter words. However, because the factorial of 6 is 720, this

may generate more words than you want to know about.

-213 -

Anagrams

Here's a different kind of situation in which recursion provides a neat solution to a
problem. Suppose you want to list all the anagrams of a specified word; that is, all
possible letter combinations (whether they make a real English word or not) that can be
made from the letters of the original word. We'll call this anagramming a word.
Anagramming cat, for example, would produce

e cat
e cta
e atc
e act
e tca
e tac

Try anagramming some words yourself. You'll find that the number of possibilities is the
factorial of the number of letters. For 3 letters there are 6 possible words, for 4 letters
there are 24 words, for 5 letters 120 words, and so on. (This assumes that all letters are
distinct; if there are multiple instances of the same letter, there will be fewer possible
words.)

How would you write a program to anagram a word? Here's one approach. Assume the
word has n letters.

1. Anagram the rightmost n—1 letters.
2. Rotate all n letters.
3. Repeat these steps n times.

To rotate the word means to shift all the letters one position left, except for the leftmost
letter, which "rotates" back to the right, as shown in Figure 6.6.

Rotating the word n times gives each letter a chance to begin the word. While the
selected letter occupies this first position, all the other letters are then anagrammed

(arranged in every possible position). For cat, which has only 3 letters, rotating the
remaining 2 letters simply switches them. The sequence is shown in Table 6.2.

Temp Waorl

- (LLEEE
) (T
K W h..l

n Jonoos
0 (s
'Y

Figure 6.6: Rotating a word

2214 -

Table 6.2: Anagramming the word cat

Word Display Word? First Letter Remaining Action
Letters

]
cat Yes c at Rotate at
cta Yes c Ta Rotate ta
cat No c at Rotate cat
atc Yes a Tc Rotate tc
act Yes a ct Rotate ct
atc No a Tc Rotate atc
tca Yes t ca Rotate ca
tac Yes t ac Rotate ac
tca No t ca Rotate tca
cat No c at Done

Notice that we must rotate back to the starting point with two letters before performing a
3-letter rotation. This leads to sequences like cat, cta, cat. The redundant combinations
aren't displayed.

How do we anagram the rightmost n—1 letters? By calling ourselves. The recursive
doAnagram () method takes the size of the word to be anagrammed as its only
parameter. This word is understood to be the rightmost n letters of the complete word.
Each time doAnagram () calls itself, it does so with a word one letter smaller than
before, as shown in Figure 6.7.

The base case occurs when the size of the word to be anagrammed is only one letter.
There's no way to rearrange one letter, so the method returns immediately. Otherwise, it
anagrams all but the first letter of the word it was given and then rotates the entire word.
These two actions are performed n times, where n is the size of the word. Here's the
recursive routine doAnagram () :

public static void doAnagram(int newSize)

{

if (newSize == 1) // if too small,
return; // go no further

for (int j=0; j<newSize; j++) // for each position,
{
doAnagram (newSize-1) ; // anagram remaining

-215 -

if (newSize==2) // if innermost,
displayWord() ; // display it
rotate (newSize) ; // rotate word

}

Each time the doAnagram () method calls itself, the size of the word is one letter
smaller, and the starting position is one cell further to the right, as shown in Figure 6.8.

Figure 6.7: The recursive doAnagram () method

' Level 4 newsine = |
peosilEn = %
Level 3 newSeee = 2
position = 2

Liswed 2 newSize = 1

posicemn = |

| Lewel 1 newSioe = 4
position =)

Figure 6.8: Smaller and smaller words

Listing 6.2 shows the complete anagram. java program. The main () routine gets a
word from the user, inserts it into a character array so it can be dealt with conveniently,
and then calls doAnagram () .

Listing 6.2 The anagram.java Program

// anagram.java
// creates anagrams
// to run this program: C>java AnagramApp
import java.io.*; // for I/0
L1170 77 7777777777777 777777777777 777777777777777777777777777777
class AnagramApp
{

static int size;

-216 -

static int count;
static char[] arrChar = new char[100];

public static void main(String[] args) throws IOException
{
System.out.print ("Enter a word: "); // get word
System.out.flush();
String input = getString();

size = input.length(); // find its size

count = 0;

for (int j=0; j<size; j++) // put it in array
arrChar[j] = input.charAt(j);

doAnagram (size) ; // anagram it

} // end main ()

public static void doAnagram(int newSize)

{

if (newSize == 1) // 1f too small,
return; // go no further

for (int j=0; j<newSize; j++) // for each

position,
{
doAnagram (newSize-1) ; // anagram remaining
if (newSize==2) // if innermost,
displayWord () ; // display it

rotate (newSize) ; // rotate word

// rotate left all chars from position to end
public static void rotate(int newSize)

{

int 3j;
int position = size - newSize;
char temp = arrChar[position]; // save first letter
for (j=position+l; Jj<size; j++) // shift others left
arrChar[j-1] = arrChar([j];
arrChar[j-1] = temp; // put first on
right
}
[

public static void displayWord()
{
if (count < 99)
System.out.print (" ");
if (count < 9)
System.out.print (" ");
System.out.print (++count + " ");

-217 -

for (int 3=0; j<size; Jj++)
System.out.print (arrChar[j]);

System.out.print (" ")

System.out.flush();

if (count%6 == 0)
System.out.println("");

public static String getString() throws IOException
{
InputStreamReader isr = new InputStreamReader (System.in);
BufferedReader br = new BufferedReader (isr);
String s = br.readLine();

return s;

} // end class AnagramApp

The rotate () method rotates the word one position left as described earlier. The
displayWord () method displays the entire word and adds a count to make it easy to
see how many words have been displayed. Here's some sample interaction with the
program:

Enter a word: cats

1 cats 2 cast 3 ctsa 4 ctas 5 csat 6 csta
7 atsc 8 atcs 9 asct 10 astc 11 acts 12 acst
13 tsca 14 tsac 15 tcas 16 tcsa 17 tasc 18 tacs
19 scat 20 scta 21 satc 22 sact 23 stca 24 stac

(Is it only coincidence that scat is an anagram of cats?) You can use the program to
anagram 5-letter or even 6-letter words. However, because the factorial of 6 is 720, this
may generate more words than you want to know about.

The Towers of Hanoi

The Towers of Hanoi is an ancient puzzle consisting of a number of disks placed on three
columns, as shown in_Figure 6.10.

The disks all have different diameters and holes in the middle so they will fit over the
columns. All the disks start out on column A. The object of the puzzle is to transfer all the
disks from column A to column C. Only one disk can be moved at a time, and no disk can
be placed on a disk that's smaller than itself.

There's an ancient myth that somewhere in India, in a remote temple, monks labor day
and night to transfer 64 golden disks from one of three diamond-studded towers to
another. When they are finished, the world will end. Any alarm you may feel, however,
will be dispelled when you see how long it takes to solve the puzzle for far fewer than 64
disks.

The Towers Workshop Applet

-218 -

Start up the Towers Workshop applet. You can attempt to solve the puzzle yourself by
using the mouse to drag the topmost disk to another tower. Figure 6.11 shows how this
looks after several moves have been made.

There are three ways to use the workshop applet.

* You can attempt to solve the puzzle manually, by dragging the disks from tower to
tower.

* You can repeatedly press the Step button to watch the algorithm solve the puzzle. At
each step in the solution, a message is displayed, telling you what the algorithm is
doing.

* You can press the Run button and watch the algorithm solve the puzzle with no
intervention on your part; the disks zip back and forth between the posts.

=

r
|/I
.

ok

Figure 6.10: The Towers of Hanoi

Saglel
] st | oo

Maved dak 4 bem A o T

L1l

Applet taited

Figure 6.11: The Towers Workshop applet

To restart the puzzle, type in the number of disks you want to use, from 1 to 10, and
press New twice. (After the first time, you're asked to verify that restarting is what you
want to do.) The specified number of disks will be arranged on tower A. Once you drag a
disk with the mouse, you can't use Step or Run; you must start over with New. However,
you can switch to manual in the middle of stepping or running, and you can switch to
Step when you're running, and Run when you're stepping.

Try solving the puzzle manually with a small number of disks, say 3 or 4. Work up to
higher numbers. The applet gives you the opportunity to learn intuitively how the problem
is solved.

-219 -

Moving Subtrees

Let's call the initial tree-shaped (or pyramid-shaped) arrangement of disks on tower A a
tree. As you experiment with the applet, you'll begin to notice that smaller tree-shaped
stacks of disks are generated as part of the solution process. Let's call these smaller
trees, containing fewer than the total number of disks, subtrees. For example, if you're
trying to transfer 4 disks, you'll find that one of the intermediate steps involves a subtree
of 3 disks on tower B, as shown in Figure 6.12.

These subtrees form many times in the solution of the puzzle. This is because the
creation of a subtree is the only way to transfer a larger disk from one tower to another:
all the smaller disks must be placed on an intermediate tower, where they naturally form
a subtree.

Figure 6.12: A subtree on tower B

Here's a rule of thumb that may help when you try to solve the puzzle manually. If the
subtree you're trying to move has an odd number of disks, start by moving the topmost
disk directly to the tower where you want the subtree to go. If you're trying to move a
subtree with an even number of disks, start by moving the topmost disk to the
intermediate tower.

The Recursive Algorithm

The solution to the Towers of Hanoi puzzle can be expressed recursively using the notion
of subtrees. Suppose you want to move all the disks from a source tower (call it S) to a
destination tower (call it D). You have an intermediate tower available (call it I). Assume
there are n disks on tower S. Here's the algorithm:

1. Move the subtree consisting of the top n—1 disks from S to I.
2. Move the remaining (largest) disk from S to D.
3. Move the subtree from | to D.

When you begin, the source tower is A, the intermediate tower is B, and the destination
tower is C._Figure 6.13 shows the three steps for this situation.

First, the subtree consisting of disks 1, 2, and 3 is moved to the intermediate tower B.
Then the largest disk, 4, is moved to tower C. Then the subtree is moved from B to C.

Of course, this doesn't solve the problem of how to move the subtree consisting of disks
1, 2, and 3 to tower B, because you can't move a subtree all at once; you must move it
one disk at a time. Moving the 3-disk subtree is not so easy. However, it's easier than
moving 4 disks.

As it turns out, moving 3 disks from A to the destination tower B can be done with the
same 3 steps as moving 4 disks. That is, move the subtree consisting of the top 2 disks
from tower A to intermediate tower C; then move disk 3 from A to B. Then move the
subtree back from C to B.

- 220 -

How do you move a subtree of two disks from A to C? Move the subtree consisting of
only one disk (1) from A to B. This is the base case: when you're moving only one disk,
you just move it; there's nothing else to do. Then move the larger disk (2) from A to C,
and replace the subtree (disk 1) on it.

Al K Move smbiree
el

Figure 6.13: Recursive solution to Towers puzzle

The towers. java Program

The towers.java program solves the Towers of Hanoi puzzle using this recursive
approach. It communicates the moves by displaying them; this requires much less code
than displaying the towers. It's up to the human reading the list to actually carry out the
moves.

The code is simplicity itself. The main () routine makes a single call to the recursive

method doTowers (). This method then calls itself recursively until the puzzle is solved.
In this version, shown in Listing 6.4, there are initially only 3 disks, but you can recompile
the program with any number.

Listing 6.4 The towers. java Program

// towers.java

// evaluates triangular numbers

// to run this program: C>java TowersApp
import java.io.*; // for I/0

L1177 0007777770777 777707777777 77777777 77077777777777777777777777

class TowersApp

{

static int nDisks = 3;

public static void main(String[] args)
{

doTowers (nDisks, 'A', 'B', 'C');

public static void doTowers (int topN,
char from, char inter, char to)

-221 -

{
if (topN==1)
System.out.println("Disk 1 from " + from + " to "+

to);

else
{
doTowers (topN-1, from, to, inter); // from-->inter
System.out.println("Disk " + topN +

" from " + from + " to "+ to);

doTowers (topN-1, inter, from, to); // inter-->to
}

}

/e

} // end class TowersApp

Remember that 3 disks are moved from A to C. Here's the output from the program:

Disk 1 from A to C
Disk 2 from A to B
Disk 1 from C to B
Disk 3 from A to C
Disk 1 from B to A
Disk 2 from B to C
Disk 1 from A to C

The arguments to doTowers () are the number of disks to be moved, and the source
(from), intermediate (inter), and destination (to) towers to be used. The number of
disks decreases by 1 each time the method calls itself. The source, intermediate, and
destination towers also change.

Here is the output with additional notations that show when the method is entered and
when it returns, its arguments, and whether a disk is moved because it's the base case (a
subtree consisting of only one disk) or because it's the remaining bottom disk after a
subtree has been moved.

Enter (3 disks): s=A, i=B, d=C
Enter (2 disks): s=A, i=C, d=B
Enter (1 disk): s=A, i=B, d=C
Base case: move disk 1 from A to C
Return (1 disk)
Move bottom disk 2 from A to B

Enter (1 disk): s=C, i=A, d=B
Base case: move disk 1 from C to B
Return (1 disk)
Return (2 disks)
Move bottom disk 3 from A to C
Enter (2 disks): s=B, i=A, d=C
Enter (1 disk): s=B, i=C, d=A
Base case: move disk 1 from B to A
Return (1 disk)

-222 -

Move bottom disk 2 from B to C
Enter (1 disk): s=A, i=B, d=C
Base case: move disk 1 from A to C
Return (1 disk)
Return (2 disks)
Return (3 disks)

If you study this output along with the source code for doTower (), it should become clear
exactly how the method works. It's amazing that such a small amount of code can solve
such a seemingly complicated problem.

Mergesort

Our final example of recursion is the mergesort. This is a much more efficient sorting
technique than those we saw in_Chapter 3, "Simple Sorting," at least in terms of speed.
While the bubble, insertion, and selection sorts take O(Nz) time, the mergesort is
O(N*logN). The graph in Figure 2.9 (in Chapter 2) shows how much faster this is. For
example, if N (the number of items to be sorted) is 10,000, then N is 100,000,000, while
N*logN is only 40,000. If sorting this many items required 40 seconds with the mergesort,
it would take almost 28 hours for the insertion sort.

The mergesort is also fairly easy to implement. It's conceptually easier than quicksort and
the Shell short, which we'll encounter in the next chapter.

The downside of the mergesort is that it requires an additional array in memory, equal in
size to the one being sorted. If your original array barely fits in memory, the mergesort
won't work. However, if you have enough space, it's a good choice.

Merging Two Sorted Arrays

The heart of the mergesort algorithm is the merging of two already sorted arrays. Merging
two sorted arrays A and B creates a third array, C, that contains all the elements of A and
B, also arranged in sorted order. We'll examine the merging process first; later we'll see
how it's used in sorting.

Imagine two sorted arrays. They don't need to be the same size. Let's say array A has 4
elements and array B has 6. They will be merged into an array C that starts with 10
empty cells. Figure 6.14 shows how this looks.

In the figure, the circled numbers indicate the order in which elements are transferred
from A and B to C. Table 6.3 shows the comparisons necessary to determine which
element will be copied. The steps in the table correspond to the steps in the figure.
Following each comparison, the smaller element is copied to A.

-223 -

-, L]

o o b la e
SRR B

Al Before Menee

bl Alter Merge

Figure 6.14: Merging two arrays

Table 6.3: Merging Operations

Step Comparison (If Any) Copy

1

Compare 23 and 7

Copy 7fromBto C

2 Compare 23 and 14 Copy 14 from B to C
3 Compare 23 and 39 Copy 23 from Ato C
4 Compare 39 and 47 Copy 39 fromBto C
5 Compare 55 and 47 Copy 47 from Ato C
6 Compare 55 and 81 Copy 55 fromB to C
7 Compare 62 and 81 Copy 62 from B to C
8 Compare 74 and 81 Copy 74 from B to C
9 Copy 81 fromAto C
10 Copy 95 from Ato C

Notice that, because B is empty following step 8, no more comparisons are necessary; all

the remaining elements are simply copied from A into C.

Listing 6.5 shows a Java program that carries out the merge shown in Figure 6.14 and

Table 6.3.

2224 -

Listing 6.5 The merge.java Program

// merge.java
// demonstrates merging two arrays into a third
// to run this program: C>java MergeApp
I 7777777777777 7777777777777 77777777777777777777777777777
class MergeApp
{
public static void main (String[] args)
{
int[] arrayA = {23, 47, 81, 95};
{7, 14, 39, 55, 62, 74};
new int[10];

int[] arrayB

int[] arrayC

merge (arrayA, 4, arrayB, 6, arrayC);
display(arrayC, 10);
} // end main()

/e
// merge A and B into C
public static void merge(int[] arrayA, int sizeAh,
int[] arrayB, int sizeB,
int[] arrayC)
{
int aDex=0, bDex=0, cDex=0;
while (aDex < sizeA && bDex < sizeB) // neither array
empty
if (arrayA[aDex] < arrayB[bDex])
arrayC[cDex++] = arrayAl[aDex++];
else
arrayC[cDex++] = arrayB[bDex++];
while (aDex < sizel) // arrayB is empty,
arrayC[cDex++] = arrayAl[aDex++]; // but arrayA isn't
while (bDex < sizeB) // arrayA is empty,
arrayC[cDex++] = arrayB[bDex++]; // but arrayB isn't
} // end merge ()
/e
// display array
public static void display(int[] theArray, int size)
{
for (int j=0; j<size; J++)
System.out.print (theArray[j] + " ");
System.out.println("");
}
[

} // end class MergeApp

Inmain () the arrays arrayA, arrayB, and arrayC are created; then the merge ()
method is called to merge arraya and arrayB into arrayC, and the resulting contents
of arrayC are displayed. Here's the output:

7 14 23 39 47 55 62 74 81 95

The merge () method has three while loops. The first steps along both arraya and
arrayB, comparing elements and copying the smaller of the two into arrayC.

The second while loop deals with the situation when all the elements have been
transferred out of arrayB, but arrayA still has remaining elements. (This is what
happens in the example, where 81 and 95 remain in arrayAa.) The loop simply copies
the remaining elements from arraya into arraycC.

The third loop handles the similar situation when all the elements have been transferred
out of arrayA but arrayB still has remaining elements; they are copied to arrayC.

Sorting by Merging

The idea in the mergesort is to divide an array in half, sort each half, and then use the
merge () method to merge the two halves into a single sorted array. How do you sort
each half? This chapter is about recursion, so you probably already know the answer:
You divide the half into two quarters, sort each of the quarters, and merge them to make
a sorted half.

Similarly, each pair of 8ths is merged to make a sorted quarter, each pair of 16ths is
merged to make a sorted 8th, and so on. You divide the array again and again until you
reach a subarray with only one element. This is the base case; it's assumed an array with
one element is already sorted.

We've seen that generally something is reduced in size each time a recursive method
calls itself, and built back up again each time the method returns. In mergeSort () the
range is divided in half each time this method calls itself, and each time it returns it
merges two smaller ranges into a larger one.

As mergeSort () returns from finding 2 arrays of 1 element each, it merges them into a
sorted array of 2 elements. Each pair of resulting 2-element arrays is then merged into a
4-element array. This process continues with larger and larger arrays until the entire
array is sorted. This is easiest to see when the original array size is a power of 2, as
shown in Figure 6.15.

- 226 -

-«

b

BREERICEE

Figure 6.15: Merging larger and larger arrays

First, in the bottom half of the array, range 0-0 and range 1-1 are merged into range 0-1.
Of course, 0-0 and 1-1 aren't really ranges; they're only one element, so they are base
cases. Similarly, 2-2 and 3-3 are merged into 2-3. Then ranges 0-1 and 2-3 are merged
0-3.

In the top half of the array, 4-4 and 5-5 are merged into 4-5, 6-6 and 7-7 are merged into
6-7, and 4-5 and 6-7 are merged into 4-7. Finally the top half, 0-3, and the bottom half, 4-
7, are merged into the complete array, 0-7, which is now sorted.

When the array size is not a power of 2, arrays of different sizes must be merged. For
example, Figure 6.16 shows the situation in which the array size is 12. Here an array of
size 2 must be merged with an array of size 1 to form an array of size 3.

gEBROOmEE)
[T
o7
o 5[
UDEDCn

L] _;l:l]:-_:u -q!jia_:_ﬁlgl

Figure 6.16: Array size not a power of 2

First the 1-element ranges 0-0 and 1-1 are merged into the 2-element range 0-1. Then
range 0-1 is merged with the 1-element range 2-2. This creates a 3-element range 0-2.
It's merged with the 3-element range 3-5. The process continues until the array is sorted.

Notice that in mergesort we don't merge two separate arrays into a third one, as we

-227 -

demonstrated in the merge . java program. Instead, we merge parts of a single array
into itself.

You may wonder where all these subarrays are located in memory. In the algorithm, a
workspace array of the same size as the original array is created. The subarrays are
stored in sections of the workspace array. This means that subarrays in the original array
are copied to appropriate places in the workspace array. After each merge, the
workspace array is copied back into the original array.

The MERGESORT Workshop Applet

All this is easier to appreciate when you see it happening before your very eyes. Start up
the mergeSort Workshop applet. Repeatedly pressing the Step button will execute
mergeSort step by step. Figure 6.17 shows what it looks like after the first three presses.

[Ao Viewer: moneSost clons Ml Ei|

Appkst

ey IS S A

o 3 34 IIII|||
|

LT
up s
mid
Wil aml lovesr half 05
Appkl et

Figure 6.17: The mergeSort Workshop applet

The Lower and Upper arrows show the range currently being considered by the
algorithm, and the Mid arrow shows the middle part of the range. The range starts as the
entire array and then is halved each time the mergeSort () method calls itself. When
the range is one element, mergeSort () returns immediately; that's the base case.
Otherwise, the two subarrays are merged. The applet provides messages, such as
Entering mergeSort: 0-5, to tell you what it's doing and the range it's operating on.

Many steps involve the mergeSort () method calling itself or returning. Comparisons
and copies are performed only during the merge process, when you'll see messages
such as Merged 0-0 and 1-1 into workspace. You can't see the merge
happening, because the workspace isn't shown. However, you can see the result when
the appropriate section of the workspace is copied back into the original (visible) array:
The bars in the specified range will appear in sorted order.

First, the first 2 bars will be sorted, then the first 3 bars, then the 2 bars in the range 3-4,
then the 3 bars in the range 3-5, then the 6 bars in the range 0-5, and so on,
corresponding to the sequence shown in Figure 6.16. Eventually all the bars will be
sorted.

You can cause the algorithm to run continuously by pressing the Run button. You can
stop this process at any time by pressing Step, single-step as many times as you want,
and resume running by pressing Run again.

As in the other sorting Workshop applets, pressing New resets the array with a new
group of unsorted bars and toggles between random and inverse arrangements. The
Size button toggles between 12 bars and 100 bars.

It's especially instructive to watch the algorithm run with 100 inversely sorted bars. The

-228 -

resulting patterns show clearly how each range is sorted individually and merged with its
other half, and how the ranges grow larger and larger.

The mergeSort. java Program

In a moment we'll look at the entire mergeSort. java program. First, let's focus on the
method that carries out the mergesort. Here it is:

private void recMergeSort (double[] workSpace, int lowerBound,
int upperBound)

{

if (lowerBound == upperBound) // if range is 1,
return; // no use sorting
else
{ // find midpoint
int mid = (lowerBound+upperBound) / 2;

// sort low half
recMergeSort (workSpace, lowerBound, mid);

// sort high half
recMergeSort (workSpace, mid+1l, upperBound);

// merge them
merge (workSpace, lowerBound, mid+1l, upperBound) ;
} // end else

} // end recMergeSort

As you can see, beside the base case, there are only four statements in this method.
One computes the midpoint, there are two recursive calls to recMergeSort () (one for
each half of the array), and finally a call to merge () to merge the two sorted halves. The
base case occurs when the range contains only one element
(lowerBound==upperBound) and results in an immediate return.

In the mergeSort.java program, the mergeSort () method is the one actually seen
by the class user. It creates the array workSpace [], and then calls the recursive routine
recMergeSort () to carry out the sort. The creation of the workspace array is handled
inmergeSort () because doing itin recMergeSort () would cause the array to be
created anew with each recursive call, an inefficiency.

The merge () method in the previous merge. java program operated on three separate
arrays: two source arrays and a destination array. The merge () routine in the
mergeSort.java program operates on a single array: the theArray member of the
DArray class. The arguments to this merge () method are the starting point of the low-
half subarray, the starting point of the high-half subarray, and the upper bound of the
high-half subarray. The method calculates the sizes of the subarrays based on this
information.

Listing 6.6 shows the complete mergeSort. java program. This program uses a variant
of the array classes from Chapter 2, adding the mergeSort () and recMergeSort ()
methods to the DArray class. The main () routine creates an array, inserts 12 items,
displays the array, sorts the items with mergeSort (), and displays the array again.

Listing 6.6 The mergeSort.java Program

// mergeSort.java

// demonstrates recursive mergesort

-229 -

// to run this program: C>java MergeSortApp

import java.io.*; // for I/0

[T 7777777777777 7777777777777 77777777777777777777777777777
class DArray

{

private double[] theArray; // ref to array theArray
private int nElems; // number of data items

[
public DArray(int max) // constructor

{

theArray = new double[max]; // create array

nElems = 0;

}
/e
public void insert (double value) // put element into array

{

theArray[nElems] = value; // insert it

nElems++; // increment size

}

/mm e
public void display () // displays array contents

{

for (int j=0; j<nElems; Jj++) // for each element,

System.out.print (theArray[j] + " "); // display it

System.out.println("");

[e e
public void mergeSort () // called by main/()
{ // provides workspace
double[] workSpace = new double[nElems];

recMergeSort (workSpace, 0, nElems-1);

private void recMergeSort (double[] workSpace, int

lowerBound,
int upperBound)

{

if (lowerBound == upperBound) // if range is 1,
return; // no use sorting
else
{ // find midpoint
int mid = (lowerBound+upperBound) / 2;

// sort low half

recMergeSort (workSpace, lowerBound, mid);

-230 -

// sort high half
recMergeSort (workSpace, mid+1l, upperBound) ;
// merge them
merge (workSpace, lowerBound, mid+l, upperBound);
} // end else
} // end recMergeSort

private void merge (double[] workSpace, int lowPtr,
int highPtr, int upperBound)
{
int j = 0; // workspace index
int lowerBound = lowPtr;
int mid = highPtr-1;
int n = upperBound-lowerBound+1; // # of items

while (lowPtr <= mid && highPtr <= upperBound)
if (theArray[lowPtr] < theArray[highPtr])

workSpace[Jj++] = theArray[lowPtr++];
else
workSpace[j++] = theArray[highPtr++];

while (lowPtr <= mid)
workSpace[j++] = theArray[lowPtr++];

while (highPtr <= upperBound)
workSpace[j++] = theArray[highPtr++];

for (j=0; j<n; J++)
theArray[lowerBound+j] = workSpace[j];
} // end merge ()

} // end class DArray

[ITTTTTT TP r i i i 7777777 777777777707777777777777777777777

class MergeSortApp
{

public static void main(String[] args)

{

int maxSize = 100; // array size
DArray arr; // reference to array
arr = new DArray(maxSize); // create the array

arr.insert ; // insert items

arr.insert

arr.insert

(6
(2
arr.insert (3
(7
arr.insert (1

(8

arr.insert

-231 -

arr.insert

arr.insert

arr.insert

(
(
arr.insert (
(
arr.insert (
(

arr.insert

arr.display () ; // display items
arr.mergeSort () ; // mergesort the array
arr.display(); // display items again

} // end main/()
} // end class MergeSortApp

The output from the program is simply the display of the unsorted and sorted arrays:

64 21 33 70 12 85 44 3 99 0 108 36
0 3 12 21 33 36 44 64 70 85 99 108

If we put additional statements in the recMergeSort () method, we could generate a
running commentary on what the program does during a sort. The following output shows
how this might look for the 4-item array {64, 21, 33, 70}. (You can think of this as the
lower half of the array in Figure 6.15.)

Entering 0-3
Will sort low half of 0-3
Entering 0-1
Will sort low half of 0-1
Entering 0-0
Base-Case Return 0-0
Will sort high half of 0-1
Entering 1-1
Base-Case Return 1-1
Will merge halves into 0-1
Return 0-1 theArray=21 64 33 70
Will sort high half of 0-3
Entering 2-3
Will sort low half of 2-3
Entering 2-2
Base-Case Return 2-2
Will sort high half of 2-3
Entering 3-3
Base-Case Return 3-3
Will merge halves into 2-3
Return 2-3 theArray=21 64 33 70
Will merge halves into 0-3

Return 0-3 theArray=21 33 64 70

This is roughly the same content as would be generated by the mergeSort Workshop
applet if it could sort 4 items. Study of this output, and comparison with the code for

-232 -

recMergeSort () and Figure 6.15, will reveal the details of the sorting process.

Efficiency of the Mergesort

As we noted, the mergesort runs in O(N*logN) time. How do we know this? Let's see how
we can figure out the number of times a data item must be copied, and the number of
times it must be compared with another data item, during the course of the algorithm. We
assume that copying and comparing are the most time-consuming operations; that the
recursive calls and returns don't add much overhead.

Number of Copies

Consider Figure 6.15. Each cell below the top line represents an element copied from the
array into the workspace.

Adding up all the cells in Figure 6.15 (the 7 numbered steps) shows there are 24 copies
necessary to sort 8 items. Log28 is 3, so 8*log28 equals 24. This shows that, for the case
of 8 items, the number of copies is proportional to N*log2N.

Another way to look at this is that, to sort 8 items requires 3 levels, each of which
involves 8 copies. A level means all copies into the same size subarray. In the first level,
there are 4 2-element subarrays; in the second level, there are 2 4-element subarrays;
and in the third level, there is 1 8-element subarray. Each level has 8 elements, so again
there are 3*8 or 24 copies.

In_Figure 6.15, by considering only half the graph, you can see that 8 copies are
necessary for an array of 4 items (steps 1, 2, and 3), and 2 copies are necessary for 2
items. Similar calculations provide the number of copies necessary for larger arrays.
Table 6.4 summarizes this information.

Table 6.4: Number of Operations When N is a Power of 2

N log2N Number of Copies into Total Copies Comparisons
Workspace (N*log2N) Max (Min)

2 1 2 4 1(1)

4 2 8 16 5 (4)

8 3 24 48 17 (12)
16 4 64 128 49 (32)
32 5 160 320 129 (80)
64 6 384 768 321 (192)
128 7 896 1792 769 (448)

Actually, the items are not only copied into the workspace, they're also copied back into

-233 -

the original array. This doubles the number of copies, as shown in the Total Copies
column. The final column of Table 6.4 shows comparisons, which we'll return to in a
moment.

It's harder to calculate the number of copies and comparisons when N is not a multiple of
2, but these numbers fall between those that are a power of 2. For 12 items, there are 88
total copies, and for 100 items, 1344 total copies.

Number of Comparisons

In the mergesort algorithm, the number of comparisons is always somewhat less than the
number of copies. How much less? Assuming the number of items is a power of 2, for
each individual merging operation, the maximum number of comparisons is always one
less than the number of items being merged, and the minimum is half the number of
items being merged. You can see why this is true in Figure 6.18, which shows two
possibilities when trying to merge 2 arrays of 4 items each.

e 8 @ o 1123

4 = oM
i R T]
: 4 £1-55

.,_' B ow & S5.a3

A f1-T
faono R

a1 Winrslcase Necmars

il Y 1. 1233
& .

& M55

T %49

b 47-55

a-ad A

hi Besl-case Soenaiio

Figure 6.18: Maximum and minimum comparisons

In the first case, the items interleave, and 7 comparisons must be made to merge them.
In the second case, all the items in one array are smaller than all the items in the other,
so only 4 comparisons must be made.

There are many merges for each sort, so we must add the comparisons for each one.
Referring to Figure 6.15, you can see that 7 merge operations are required to sort 8
items. The number of items being merged and the resulting number of comparisons is
shown in Table 6.5.

Table 6.5: Comparisons Involved in Sorting 8 Items

Step Number 1 2 3 4 5 6 7 Totals

Number of items 2 2 4 2 2 4 8 24
being merged(N)

Maximum 1 1 3 1 1 3 7 17
comparisons(N-1)

Minimum 1 1 2 1 1 2 4 12

2234 -

comparisons(N/2)

For each merge, the maximum number of comparisons is one less than the number of
items. Adding these figures for all the merges gives us a total of 17.

The minimum number of comparisons is always half the number of items being merged,
and adding these figures for all the merges results in 12 comparisons. Similar arithmetic
results in the Comparisons columns for Table 6.4. The actual number of comparisons to
sort a specific array depends on how the data is arranged; but it will be somewhere
between the maximum and minimum values.

Eliminating Recursion

Some algorithms lend themselves to a recursive approach, some don't. As we've seen,
the recursive triangle () and factorial () methods can be implemented more
efficiently using a simple loop. However, various divide-and-conquer algorithms, such as
mergesort, work very well as a recursive routine.

Often an algorithm is easy to conceptualize as a recursive method, but in practice the
recursive approach proves to be inefficient. In such cases, it's useful to transform the
recursive approach into a nonrecursive approach. Such a transformation can often make
use of a stack.

Recursion and Stacks

There is a close relationship between recursion and stacks. In fact, most compilers
implement recursion by using stacks. As we noted, when a method is called, they push
the arguments to the method and the return address (where control will go when the
method returns) on the stack, and then transfer control to the method. When the method
returns, they pop these values off the stack. The arguments disappear, and control
returns to the return address.

Simulating a Recursive Method

In this section we'll demonstrate how any recursive solution can be transformed into a
stack-based solution. Remember the recursive triangle () method from the first
section in this chapter? Here it is again:

int triangle (int n)
{
if (n==1)
return 1;
else
return(n + triangle(n-1));

We're going to break this algorithm down into its individual operations, making each
operation one case in a switch statement. (You can perform a similar decomposition
using goto statements in C++ and some other languages, but Java doesn't support
goto.)

The switch statement is enclosed in a method called step (). Each call to step ()
causes one case section within the switch to be executed. Calling step () repeatedly
will eventually execute all the code in the algorithm.

-235-

The triangle () method we just saw performs two kinds of operations. First, it carries
out the arithmetic necessary to compute triangular numbers. This involves checking if n is
1, and adding n to the results of previous recursive calls. However, triangle () also
performs the operations necessary to manage the method itself. These involve transfer of
control, argument access, and the return address. These operations are not visible by
looking at the code; they're built into all methods. Here, roughly speaking, is what
happens during a call to a method:

+ When a method is called, its arguments and the return address are pushed onto a
stack.

* A method can access its arguments by peeking at the top of the stack.

* When a method is about to return, it peeks at the stack to obtain the return address,
and then pops both this address and its arguments off the stack and discards them.

The stackTriangle. java program contains three classes: Params, StackX, and
StackTriangleApp. The Params class encapsulates the return address and the
method's argument, n; objects of this class are pushed onto the stack. The StackX class
is similar to those in other chapters, except that it holds objects of class Params. The
StackTriangleApp class contains four methods: main (), recTriangle (), step(),
and the usual getInt () method for numerical input.

The main () routine asks the user for a number, calls the recTriangle () method to
calculate the triangular number corresponding to n, and displays the result.

The recTriangle () method creates a StackX object and initializes codePart to 1. It
then settles into a while loop where it repeatedly calls step () . It won't exit from the
loop until step () returns true by reaching case 6, its exit point. The step () method is
basically a large switch statement in which each case corresponds to a section of code
in the original triangle () method. Listing 6.7 shows the stackTriangle.java
program.

Listing 6.7 The stackTriangle.java Program

// stackTriangle.java
// evaluates triangular numbers, stack replaces recursion
// to run this program: C>java StackTriangleApp
import java.io.*; // for I/0
JIT177777 7777777777777 77
class Params // parameters to save on stack
{
public int n;
public int codePart;

public Params (int nn, int ra)

{
n=nn;
returnAddress = ra;

}

} // end class Params

L1177 77 7007777777077 7 7777707777777 777777777 7777777777777777777777

-236 -

class StackX
{

private int maxSize; // size of stack array
private Params|[] stackArray;
private int top; // top of stack
et
public StackX(int s) // constructor
{
maxSize = s; // set array size
stackArray = new Params[maxSize]; // create array
top = -1; // no items yet
}
/m e
public void push(Params p) // put item on top of stack
{
stackArray[++top] = p; // increment top, insert item
}
/mm e
public Params pop () // take item from top of stack
{
return stackArray[top--]1; // access item, decrement top
}
/m e -
public Params peek () // peek at top of stack
{
return stackArray[top];
}
/m e -

} // end class StackX

L1177 7000777777077 7 777707777777 7777777777077777777777777777777777

class StackTriangleApp
{

static int theNumber;
static int theAnswer;
static StackX theStack;
static int codePart;
static Params theseParams;

public static void main(String[] args) throws IOException

{

System.out.print ("Enter a number: ");

System.out.flush{();

-237 -

theNumber = getInt();
triangle();
System.out.println ("Triangle="+theAnswer) ;

} // end main()

public static void recTriangle ()

{

theStack = new StackX (50);
codePart = 1;
while(step() == false) // call step() until it's true

// null statement

public static boolean step()
{
switch (codePart)

{

case 1: // initial call
theseParams = new Params (theNumber, 6);
theStack.push (theseParams) ;
codePart = 2;

break;
case 2: // method entry
theseParams = theStack.peek();
if (theseParams.n == 1) // test
{
theAnswer = 1;

codePart = 5; // exit
}

else
codePart = 3; // recursive call
break;
case 3: // method call
Params newParams = new Params (theseParams.n - 1,

theStack.push (newParams) ;
codePart = 2; // go enter method

break;
case 4: // calculation

theseParams = theStack.peek();
theAnswer = theAnswer + theseParams.n;
codePart = 5;

break;
case 5: // method exit

theseParams = theStack.peek();
codePart = theseParams.returnAddress; // (4 or 6)
theStack.pop();

break;
case 6: // return point

return true;
} // end switch

-238 -

return false; // all but 7
} // end triangle

public static String getString() throws IOException
{
InputStreamReader isr = new InputStreamReader (System.in);
BufferedReader br = new BufferedReader (isr);
String s = br.readLine();

return s;

public static int getInt () throws IOException
{
String s = getString();
return Integer.parselnt(s);

} // end class StackTriangleApp

This program calculates triangular numbers, just as the triangle. java program at the
beginning of the chapter did. Here's some sample output:

Enter a number: 100
Triangle=5050

Figure 6.19 shows how the sections of code in each case relate to the various parts of
the algorithm.

=

Bor e wanmcn

el |
T

@
S

ax
l

[
| view o

Cam k| Call Bl I

Figure 6.19: The cases and the step () method

The program simulates a method, but it has no name in the listing because it isn't a real

-239 -

Java method. Let's call this simulated method simMeth (). The initial call to simMeth ()
(at case 1) pushes the value entered by the user and a return value of 6 onto the stack
and moves to the entry point of simMeth () (case 2).

At its entry (case 2), simMeth () tests whether its argument is 1. It accesses the
argument by peeking at the top of the stack. If the argument is 1, this is the base case
and control goes to simMeth ()'s exit (case 5). If not, it calls itself recursively (case 3).
This recursive call consists of pushing n-1 and a return address of 4 onto the stack, and
going to the method entry at case 2.

On the return from the recursive call, simMeth () adds its argument n to the value
returned from the call. Finally it exits (case 5). When it exits, it pops the last Params
object off the stack; this information is no longer needed.

The return address given in the initial call was 6, so case 6 is where control goes when
the method returns. This code returns true to let the while loop in recTriangle ()
know that the loop is over.

Note that in this description of simMeth () 's operation we use terms like argument,
recursive call, and return address to mean simulations of these features, not the normal
Java versions.

If you inserted some output statements in each case to see what simMeth () was doing,
you could arrange for output like this:

Enter a number: 4

case 1. theAnswer=0 Stack:

case 2. theAnswer=0 Stack: (4, 6)

case 3. theAnswer=0 Stack: (4, 6)

case 2. theAnswer=0 Stack: (4, 6) (3, 4)

case 3. theAnswer=0 Stack: (4, 6) (3, 4)

case 2. theAnswer=0 Stack: (4, 6) (3, 4) (2, 4)

case 3. theAnswer=0 Stack: (4, 6) (3, 4) (2, 4)

case 2. theAnswer=0 Stack: (4, 6) (3, 4) (2, 4) (1,)
case 5. theAnswer=1 Stack: (4, 6) (3, 4) (2, 4) (1,)
case 4. theAnswer=1 Stack: (4, 6) (3, 4) (2, 4)

case 5. theAnswer=3 Stack: (4, 6) (3, 4) (2, 4)

case 4. theAnswer=3 Stack: (4, 6) (3, 4)

case 5. theAnswer=6 Stack: (4, 6) (3, 4)

case 4. theAnswer=6 Stack: (4, 6)

case 5. theAnswer=10 Stack: (4, 6)

~

case 6. theAnswer=10 Stack:
Triangle=10

The case number shows what section of code is being executed. The contents of the
stack (consisting of Params objects containing n followed by a return address) are also
shown. The simMeth () method is entered 4 times (case 2) and returns 4 times (case 5).
It's only when it starts returning that theAnswer begins to accumulate the results of the
calculations.

What Does This Prove?

In stackTriangle.java we have a program that more or less systematically
transforms a program that uses recursion into a program that uses a stack. This suggests
that such a transformation is possible for any program that uses recursion, and in fact this
is the case.

- 240 -

With some additional work, you can systematically refine the code we show here,
simplifying it and even eliminating the switch statement entirely to make the code more
efficient.

In practice, however, it's usually more practical to rethink the algorithm from the
beginning, using a stack-based approach instead of a recursive approach. Listing 6.8
shows what happens when we do that with the triangle () method.

Listing 6.8 The stackTriangle2.java Program

// stackTriangle2.java
// evaluates triangular numbers, stack replaces recursion
// to run this program: C>java StackTriangle2App
import java.io.*; // for I/0
[IT177777 7777777777777 77
class StackX
{

private int maxSize; // size of stack array
private int[] stackArray;
private int top; // top of stack
/mm e
public StackX(int s) // constructor
{
maxSize = s;
stackArray = new int[maxSize];
top = -1;
}
/m e
public void push (int p) // put item on top of stack
{ stackArray[++top] = p; }
/e
public int pop () // take item from top of stack
{ return stackArrayl[top—--1; }
/e
public int peek/() // peek at top of stack
{ return stackArray[top]; }
e
public boolean isEmpty () // true if stack is empty
{ return (top == -1); }

} // end class StackX

241 -

L1777 7007777777070 7 7777777777777 77777777 7777777777777777777777

class StackTriangle2App
{
static int theNumber;
static int theAnswer;
static StackX theStack;

public static void main(String[] args) throws IOException
{
System.out.print ("Enter a number: ");
System.out.flush();
theNumber = getInt();
stackTriangle () ;
System.out.println ("Triangle="+theAnswer) ;

} // end main()

public static void stackTriangle ()

{

theStack = new StackX (10000) ; // make a stack
theAnswer = 0; // initialize answer
while (theNumber > 0) // until n is 1,
{
theStack.push (theNumber) ; // push value
-—theNumber; // decrement value
}
while(!theStack.isEmpty ()) // until stack empty,
{
int newN = theStack.pop(); // pop value,
theAnswer += newN; // add to answer

public static String getString() throws IOException
{

InputStreamReader isr = new InputStreamReader (System.in);
BufferedReader br = new BufferedReader (isr);
String s = br.readLine();

return s;

public static int getInt () throws IOException

{
String s = getString();
return Integer.parselnt(s);

}

2242 -

} // end class StackTriangle2App

Here two short while loops in the stackTriangle () method substitute for the entire
step () method of the stackTriangle.java program. Of course, in this program you
can see by inspection that you can eliminate the stack entirely and use a simple loop.
However, in more complicated algorithms the stack must remain.

Often you'll need to experiment to see whether a recursive method, a stack-based
approach, or a simple loop is the most efficient (or practical) way to handle a particular
situation.

Part Il

Chapter List

Chapter Advanced Sorting
7:

Chapter Binary Trees
8:

Chapter Red-Black Trees
9:

Chapter 7: Advanced Sorting

Overview

We discussed simple sorting in_Chapter 3. The sorts described there—the bubble,
selection, and insertion sorts—are easy to implement but are rather slow. In Chapter 6
we described the mergesort. It runs much faster than the simple sorts, but requires twice
as much space as the original array; this is often a serious drawback.

This chapter covers two advanced approaches to sorting: Shellsort and quicksort. These
sorts both operate much faster than the simple sorts; the Shellsort in about O(N*(IogN)z)
time, and quicksort in O(N*logN) time, which is the fastest time for general-purpose sorts.
Neither of these sorts requires a large amount of extra space, as mergesort does. The
Shellsort is almost as easy to implement as mergesort, while quicksort is the fastest of all
the general-purpose sorts.

We'll examine the Shellsort first. Quicksort is based on the idea of partitioning, so we'll then
examine partitioning separately, before examining quicksort itself.

Shellsort

The Shellsort is named for Donald L. Shell, the computer scientist who discovered it in
1959. It's based on the insertion sort but adds a new feature that dramatically improves
the insertion sort's performance.

The Shellsort is good for medium-sized arrays, perhaps up to a few thousand items,
depending on the particular implementation. (However, see the cautionary notes in
Chapter 15 about how much data can be handled by a particular algorithm.) It's not quite

243 -

as fast as quicksort and other O(N*logN) sorts, so it's not optimum for very large files.
However, it's much faster than the O(NZ) sorts like the selection sort and the insertion
sort, and it's very easy to implement: the code is short and simple.

The worst-case performance is not significantly worse than the average performance.
(We'll see later in this chapter that the worst-case performance for quicksort can be much
worse unless precautions are taken.) Some experts (see Sedgewick in the bibliography)
recommend starting with a Shellsort for almost any sorting project, and only changing to
a more advanced sort, like quicksort, if Shellsort proves too slow in practice.

Insertion Sort: Too Many Copies

Because Shellsort is based on the insertion sort, you might want to review the relevant
section of Chapter 3. Recall that partway through the insertion sort the items to the left of
a marker are internally sorted (sorted among themselves) and items to the right are not.
The algorithm removes the item at the marker and stores it in a temporary variable. Then,
beginning with the item to the left of the newly vacated cell, it shifts the sorted items right
one cell at a time, until the item in the temporary variable can be reinserted in sorted
order.

Here's the problem with the insertion sort. Suppose a small item is on the far right, where
the large items should be. To move this small item to its proper place on the left, all the

intervening items (between where it is and where it should be) must be shifted one space
right. This is close to N copies, just for one item. Not all the items must be moved a full N
spaces, but the average item must be moved N/2 spaces, which takes N times N/2 shifts

for a total of N %/2 copies. Thus the performance of insertion sort is O(Nz).

This performance could be improved if we could somehow move a smaller item many
spaces to the left without shifting all the intermediate items individually.

N-Sorting

The Shellsort achieves these large shifts by insertion-sorting widely spaced elements.
Once these are sorted, it sorts somewhat less widely spaced elements, and so on. The
spacing between elements for these sorts is called the increment and is traditionally
represented by the letter h. Figure 7.1 shows the first step in the process of sorting a 10-
element array with an increment of 4. Here the elements 0, 4, and 8 are sorted.

&

Sored

Figure 7.1: 4-sorting 0, 4, and 8

Once 0, 4, and 8 are sorted, the algorithm shifts over one cell and sorts 1, 5, and 9. This
process continues until all the elements have been 4-sorted, which means that all items
spaced 4 cells apart are sorted among themselves. The process is shown (using a more

244 -

compact visual metaphor) in Figure 7.2.

DEOEDOD DD
ODODODDGED

B 1 2 3 4 % B T B B

L] [T oo ey

|..-|-|"||:-!|+ln!
ﬂ-l..:;.ll-.i i_;?|ﬁ

I8 I I I B EE
LI

L] 1 1 3 i § 11 T

Figure 7.2: A complete 4-sort

After the complete 4-sort, the array can be thought of as comprising four subarrays:
(0,4,8), (1,5,9), (2,6), and (3,7), each of which is completely sorted. These subarrays are
interleaved, but otherwise independent.

Notice that, in this particular example, at the end of the 4-sort no item is more than 2 cells
from where it would be if the array were completely sorted. This is what is meant by an
array being "almost" sorted and is the secret of the Shellsort. By creating interleaved,
internally sorted sets of items, we minimize the amount of work that must be done to
complete the sort.

Now, as we noted in Chapter 3, the insertion sort is very efficient when operating on an
array that's almost sorted. If it only needs to move items one or two cells to sort the file, it
can operate in almost O(N) time. Thus after the array has been 4-sorted, we can 1-sort it
using the ordinary insertion sort. The combination of the 4-sort and the 1-sort is much
faster than simply applying the ordinary insertion sort without the preliminary 4-sort.

Diminishing Gaps
We've shown an initial interval—or gap—of 4 cells for sorting a 10-cell array. For larger

arrays the gap should start out much larger. The interval is then repeatedly reduced until
it becomes 1.

For instance, an array of 1,000 items might be 364-sorted, then 121-sorted, then 40-
sorted, then 13-sorted, then 4-sorted, and finally 1-sorted. The sequence of numbers
used to generate the intervals (in this example 364, 121, 40, 13, 4, 1) is called the interval
sequence or gap sequence. The particular interval sequence shown here, attributed to
Knuth (see the bibliography), is a popular one. In reversed form, starting from 1, it's
generated by the recursive expression

h = 3*h + 1

where the initial value of h is 1. The first two columns of Table 7.1 show how this formula
generates the sequence.

Table 7.1: Knuth's Interval Sequence

- 245 -

h 3*h + 1 (h=1)13

1 4

4 13 1
13 40 4
40 121 13
121 364 40
364 1093 121
1093 3280 364

There are other approaches to generating the interval sequence; we'll return to this issue
later. First, we'll explore how the Shellsort works using Knuth's sequence.

In the sorting algorithm, the sequence-generating formula is first used in a short loop to
figure out the initial gap. A value of 1 is used for the first value of h, and the h=h*3+1
formula is applied to generate the sequence 1, 4, 13, 40, 121, 364, and so on. This
process ends when the gap is larger than the array. For a 1,000-element array, the 7th
number in the sequence, 1093, is too large. Thus we begin the sorting process with the
6th-largest number, creating a 364-sort. Then, each time through the outer loop of the
sorting routine, we reduce the interval using the inverse of the formula previously given:

h = (h-1) / 3

This is shown in the third column of Table 7.1. This inverse formula generates the
reverse sequence 364, 121, 40, 13, 4, 1. Starting with 364, each of these numbers is
used to n-sort the array. When the array has been 1-sorted, the algorithm is done.

The ShellSort Workshop Applet

You can use the Shellsort Workshop applet to see how this sort works. Figure 7.3 shows
the applet after all the bars have been 4-sorted, just as the 1-sort begins.

i.mlﬂ.'ll'r:lnnl ahellS wil. claax

Lokl

r o n
slsbt tamp
L

nmar-h
A-zmting mray, Wil copy oulm 1o leng:
b=

Appint shartnd

- 246 -

Figure 7.3: The Shellsort Workshop applet

As you single-step through the algorithm, you'll notice that the explanation we gave in the
last section is slightly simplified. The sequence for the 4-sort is not actually (0,4,8),
(1,5,9), (2,6), and (3,7). Instead the first two elements of each group of three are sorted
first, then the first two elements of the second group, and so on. Once the first two
elements of all the groups are sorted, the algorithm returns and sorts three-element
groups. The actual sequence is (0,4), (1,5), (2,6), (3,7), (0,4,8), (1,5,9).

It might seem more obvious for the algorithm to 4-sort each complete subarray first: (0,4),
(0,4,8), (1,5), (1,5,9), (2,6), (3,7), but the algorithm handles the array indices more
efficiently using the first scheme.

The Shellsort is actually not very efficient with only 10 items, making almost as many
swaps and comparisons as the insertion sort. However, with 100 bars the improvement
becomes significant.

It's instructive to run the Workshop applet starting with 100 inversely sorted bars.
(Remember that, as in Chapter 3, the first press of New creates a random sequence of
bars, while the second press creates an inversely sorted sequence.) Figure 7.4 shows
how this looks after the first pass, when the array has been completely 40-sorted. Figure
7.5 shows the situation after the next pass, when it is 13-sorted. With each new value of
h, the array becomes more nearly sorted.

(S Applel Wimmer. shelliot dazs [O] =]
Fpplel

Lo o gy e | Siee | [Taw| Ren | stem |

HHM“H‘JH |

h=All

Applet slaned

Figure 7.4: After the 40-sort

Eﬂ;ﬂkl Yewer shellf ot dass [_ 1] =]
Fpclel

e e yaq M| S| Diam| Aun| St |

n“lM'”'““l_ |

h=13

Apple slailed

Figure 7.5: After the 13-sort

247 -

Why is the Shellsort so much faster than the insertion sort, on which it's based? When h
is large, the number of items per pass is small, and items move long distances. This is
very efficient. As h grows smaller, the number of items per pass increases, but the items
are already closer together, which is more efficient for the insertion sort. It's the
combination of these trends that makes the Shellsort so effective.

Notice that later sorts (small values of h) don't undo the work of earlier sorts (large values
of h). An array that has been 40-sorted remains 40-sorted after a 13-sort, for example. If
this wasn't so the Shellsort couldn't work.

Java Code for the ShellSort

The Java code for the Shellsort is scarcely more complicated than for the insertion sort.
Starting with the insertion sort, you substitute h for 1 in appropriate places and add the
formula to generate the interval sequence. We've made shellsSort () a method in the
ArraySh class, a version of the array classes from Chapter 2. Listing 7.1 shows the
complete shellSort.java program.

Listing 7.1 The shellSort.java Program

// shellSort.java
// demonstrates shell sort
// to run this program: C>java ShellSortApp

class ArraySh
{

private double[] theArray; // ref to array theArray
private int nElems; // number of data items
/e
public ArraySh (int max) // constructor
{
theArray = new double[max]; // create the array
nElems = 0; // no items yet
}
/m e
public void insert (double value) // put element into array
{
theArray[nElems] = value; // insert it
nElems++; // increment size
}
e
public void display () // displays array contents

{

System.out.print ("A=");

for (int j=0; j<nElems; Jj++) // for each element,
; // display it

won)

System.out.print (theArray[]j] +
System.out.println("");
}

- 248 -

public void shellSort ()
{

int inner, outer;

double temp;

int h = 1; // find initial value of h
while (h <= nElems/3)
h = h*3 + 1; // (1, 4, 13, 40, 121,
.)
while (h>0) // decreasing h, until h=1

{
// h-sort the file

for (outer=h; outer<nElems; outer++)
{
temp = theArray[outer];
inner = outer;
// one subpass (eg 0, 4,

while (inner > h-1 && theArray[inner-h] >= temp)
{
theArray[inner] = theArray[inner-h];
inner -= h;
}
theArray[inner] = temp;
} // end for
h = (h-1) / 3; // decrease h
} // end while (h>0)
} // end shellSort ()

} // end class ArraySh
LI r i i i 77777777 777777777777777777777

class ShellSortApp
{

public static void main(String[] args)

{

int maxSize = 10; // array size
ArraySh arr;
arr = new ArraySh (maxSize); // create the array

for (int j=0; j<maxSize; j++) // fill array with
{ // random numbers
double n = (int) (java.lang.Math.random()*99);
arr.insert (n);
}
arr.display(); // display unsorted array
arr.shellSort(); // shell sort the array

- 249 -

arr.display () ; // display sorted array
} // end main /()

} // end class ShellSortApp

Inmain () we create an object of type Arraysh, capable of holding 10 items, fill it with
random data, display it, Shellsort it, and display it again. Here's some sample output:

A=20 89 6 42 55 59 41 69 75 66
A=6 20 41 42 55 59 66 69 75 89

You can change maxSize to higher numbers, but don't go too high; 10,000 items take a
fraction of a minute to sort.

The Shellsort algorithm, although it's implemented in just a few lines, is not simple to
follow. To see the details of its operation, step through a 10-item sort with the Workshop
applet, comparing the messages generated by the applet with the code in the
shellSort () method

Other Interval Sequences

Picking an interval sequence is a bit of a black art. Our discussion so far used the formula
h=h*3+1 to generate the interval sequence, but other interval sequences have been used
with varying degrees of success. The only absolute requirement is that the diminishing
sequence ends with 1, so the last pass is a normal insertion sort.

In Shell's original paper, he suggested an initial gap of N/2, which was simply divided in
half for each pass. Thus the descending sequence for N=100 is 50, 25, 12, 6, 3, 1. This
approach has the advantage that you don't need to calculate the sequence before the
sort begins to find the initial gap; you just divide N by 2. However, this turns out not to be
the best sequence. Although it's still better than the insertion sort for most data, it

sometimes degenerates to O(Nz) running time, which is no better than the insertion sort.

A better approach is to divide each interval by 2.2 instead of 2. For n=100 this leads to
45, 20, 9, 4, 1. This is considerably better than dividing by 2, as it avoids some worst-
case circumstances that lead to O(N2) behavior. Some extra code is needed to ensure
that the last value in the sequence is 1, no matter what N is. This gives results
comparable to Knuth's sequence shown in the listing.

Another possibility for a descending sequence (from Flamig; see Appendix B, "Further
Reading") is

if(h < 5)
h = 1;
else
h = (5*h-1) / 11;

It's generally considered important that the numbers in the interval sequence are
relatively prime; that is, they have no common divisors except 1. This makes it more likely
that each pass will intermingle all the items sorted on the previous pass. The inefficiency
of Shell's original N/2 sequence is due to its failure to adhere to this rule.

You may be able to invent a gap sequence of your own that does just as well (or possibly
even better) than those shown. Whatever it is, it should be quick to calculate so as not to
slow down the algorithm.

-250 -

Efficiency of the ShellSort

No one so far has been able to analyze the Shellsort's efficiency theoretically, except in
special cases. Based on experiments, there are various estimates, which range from

0(N*?) down to O(N"®).

Table 7.2 shows some of these estimated O() values, compared with the slower insertion
sort and the faster quicksort. The theoretical times corresponding to various values of N
are shown. Note that N ex/y means the yth root of N raised to the x power. Thus if N is
100, N*” is the square root of 100°, which is 1,000. Also, (logN)*> means the log of N,
squared. This is often written log2N, but that's easy to confuse with log2N, the logarithm
to the base 2 of N.

Table 7.2: Estimates of ShellSort Running Time

O() Value Type of 10 Items 100 Iltems 1,000 Items 10,000
Sort Items

N2 Insertion, 100 10,000 1,000,000 100,000,000
etc.
N2 Shellsort 32 1,000 32,000 1,000,000
N*(logN)> Shellsort 10 400 9,000 160,000
N4 Shellsort 18 316 5,600 100,000
N7/6 Shellsort 14 215 3,200 46,000
N*logN Qtuicksort, 10 200 3,000 40,000
etc.

For most data the higher estimates, such as N3/2, are probably more realistic.

Partitioning

Partitioning is the underlying mechanism of quicksort, which we'll explore next, but it's
also a useful operation on its own, so we'll cover it here in its own section.

To partition data is to divide it into two groups, so that all the items with a key value
higher than a specified amount are in one group, and all the items with a lower key value
are in another.

It's easy to imagine situations in which you would want to partition data. Maybe you want
to divide your personnel records into two groups: employees who live within 15 miles of
the office and those who live farther away. Or a school administrator might want to divide
students into those with grade point averages higher and lower than 3.5, so as to know
who deserves to be on the Dean's list.

The Partition Workshop Applet
-251 -

Our Partition Workshop applet demonstrates the partitioning process. Figure 7.6 shows
12 bars before partitioning, and Figure 7.7 shows them again after partitioning.

[Aol iewer- partiion.cioas [l E1|

dppbet

ety = G

'I.\l.lt

Pivol walum iz 104
Appkel itatel

Figure 7.6: Twelve bars before partitioning

[Ao Viewer: patition cisas [l E]|

dpglst

st S I

il e

Pruzz Mew lo secel
Apphel et

Figure 7.7: Twelve bars after partitioning

The horizontal line represents the pivot value. This is the value used to determine into
which of the two groups an item is placed. ltems with a key value less than the pivot
value go in the left part of the array, and those with a greater (or equal) key go in the right
part. (In the section on quicksort, we'll see that the pivot value can be the key value of an
actual data item, called the pivot. For now, it's just a number.)

The arrow labeled partition points to the leftmost item in the right (higher) subarray. This
value is returned from the partitioning method, so it can be used by other methods that
need to know where the division is.

For a more vivid display of the partitioning process, set the Partition Workshop applet to
100 bars and press the Run button. The 1eftScan and rightScan pointers will zip
toward each other, swapping bars as they go. When they meet, the partition is complete.

You can choose any value you want for the pivot value, depending on why you're doing

the partition (such as choosing a grade point average of 3.5). For variety, the Workshop

applet chooses a random number for the pivot value (the horizontal black line) each time
New or Size is pressed, but the value is never too far from the average bar height.

After being partitioned, the data is by no means sorted; it has simply been divided into
two groups. However, it's more sorted than it was before. As we'll see in the next section,
it doesn't take much more trouble to sort it completely.

-252 -

Notice that partitioning is not stable. That is, each group is not in the same order it was
originally. In fact, partitioning tends to reverse the order of some of the data in each

group.

The partition.java Program

How is the partitioning process carried out? Let's look at some sample code. Listing 7.2
shows the partition. java program, which includes the partitionIt () method for
partitioning an array.

Listing 7.2 The partition.java Program

// partition.java

//

demonstrates partitioning an array

// to run this program: C>java PartitionApp
L7717 777777777777777/7777777777777/7777777777777/7777777777777777777

class ArrayPar

{

private double[] theArray; //
private int nElems; //
public ArrayPar (int max) //
{
theArray = new double[max];
nElems = 0;
}
public void insert (double wvalue) //
{
theArray[nElems] = value;
nElems++;
}
public int size() //
{ return nElems; }
public void display () //
{
System.out.print ("A=");
for (int j=0; j<nElems; j++)
System.out.print (theArray[j] +
System.out.println("");
}

ref to array theArray
number of data items

constructor

// create the array
// no items yet

put element into array

// insert it

// increment size

return number of items

displays array contents

// for each element,
" "y; // display it

public int partitionIt(int left, int right, double pivot)
{
int leftPtr = left - 1; // right of first elem
int rightPtr = right + 1; // left of pivot
while (true)

{

while (leftPtr < right && // find bigger item
theArray[++1leftPtr] < pivot)
;7 // (nop)
while (rightPtr > left && // find smaller item
theArray[--rightPtr] > pivot)
;7 // (nop)
if (leftPtr >= rightPtr) // if pointers cross,
break; // partition done
else // not crossed, so
swap (leftPtr, rightPtr); // swap elements
} // end while (true)
return leftPtr; // return partition

} // end partitionIt()

/e
public void swap (int dexl, int dex2) // swap two elements

{
double temp;
temp = theArray[dexl]; // A into temp
theArray[dexl] = theArray[dex2]; // B into A
theArray[dex2] = temp; // temp into B
} // end swap(

} // end class ArrayPar
[T 7777770777777 70777777 77777777777777777777777777777777777

class PartitionApp
{

public static void main(String[] args)

{

int maxSize = 16; // array size
ArrayPar arr; // reference to array
arr = new ArrayPar (maxSize); // create the array

for (int j=0; j<maxSize; j++) // fill array with
{ // random numbers
double n = (int) (java.lang.Math.random()*199);
arr.insert (n);

}
arr.display(); // display unsorted array

double pivot = 99; // pivot value

254 -

System.out.print ("Pivot is " + pivot);
int size = arr.size();

// partition array
int partDex = arr.partitionIt (0, size-1, pivot);

System.out.println (", Partition is at index " + partDex);
arr.display () ; // display sorted array
} // end main ()

} // end class PartitionApp

The main () routine creates an ArrayPar object that holds 16 items of type double.
The pivot value is fixed at 99. The routine inserts 16 random values into ArrayPar,
displays them, partitions them by calling the partitionIt () method, and displays
them again. Here's some sample output:

A=149 192 47 152 159 195 61 66 17 167 118 64 27 80 30 105
Pivot is 99, partition is at index 8
A=30 80 47 27 64 17 61 66 195 167 118 159 152 192 149 105

You can see that the partition is successful: The first eight numbers are all smaller than
the pivot value of 99; the last eight are all larger.

Notice that the partitioning process doesn't necessarily divide the array in half as it does
in this example; that depends on the pivot value and key values of the data. There may
be many more items in one group than in the other.

The Partition Algorithm

The partitioning algorithm works by starting with two pointers, one at each end of the
array. (We use the term pointers to mean indices that point to array elements, not C++
pointers.) The pointer on the left, leftPtr, moves toward the right, and the one of the
right, rightPtr, moves toward the left. Notice that 1eftPtr and rightPtr in the
partition.java program correspond to leftScan and rightScan in the Partition
Workshop applet.

Actually 1eftPtr is initialized to one position to the left of the first cell, and rightPtr to
one position to the right of the last cell, because they will be incremented and
decremented, respectively, before they're used.

Stopping and Swapping

When leftPtr encounters a data item smaller than the pivot value, it keeps going,
because that item is in the right place. However, when it encounters an item larger than
the pivot value, it stops. Similarly, when rightPtr encounters an item larger than the
pivot, it keeps going, but when it finds a smaller item, it also stops. Two inner while
loops, the first for 1leftPtr and the second for rightPtr, control the scanning process.
A pointer stops because its while loop exits. Here's a simplified version of the code that
scans for out-of-place items:

while (theArray[++leftPtr] < pivot) // find bigger item
; // (nop)

while (theArray[--rightPtr] > pivot) // find smaller item
; // (nop)

swap (leftPtr, rightPtr); // swap elements

-255-

The first while loop exits when an item larger than pivot is found; the second loop
exits when an item smaller than pivot is found. When both these loops exit, both
leftPtr and rightPtr point to items that are in the wrong part of the array, so these
items are swapped.

After the swap, the two pointers continue on, again stopping at items that are in the
wrong part of the array and swapping them. All this activity is nested in an outer while
loop, as can be seen in the partitionIt () method in Listing 7.2. When the two
pointers eventually meet, the partitioning process is complete and this outer while loop
exits.

You can watch the pointers in action when you run the Partition Workshop applet with
100 bars. These pointers, represented by blue arrows, start at opposite ends of the array
and move toward each other, stopping and swapping as they go. The bars between them
are unpartitioned; those they've already passed over are partitioned. When they meet,
the entire array is partitioned.

Handling Unusual Data

If we were sure that there was a data item at the right end of the array that was smaller
than the pivot value, and an item at the left end that was larger, the simplified while
loops previously shown would work fine. Unfortunately, the algorithm may be called upon
to partition data that isn't so well organized.

If all the data is smaller than the pivot value, for example, the 1e ftPtr variable will go all
the way across the array, looking in vain for a larger item, and fall off the right end,
creating an array index out of bounds exception. A similar fate will befall
rightPtr if all the data is larger than the pivot value.

To avoid these problems, extra tests must be placed in the while loops to check for the
ends of the array: 1eftPtr<right in the first loop, and rightPtr>left in the second.
This can be seen in context in Listing 7.2.

In the section on_quicksort, we'll see that a clever pivot-selection process can eliminate
these end-of-array tests. Eliminating code from inner loops is always a good idea if you
want to make a program run faster.

Delicate Code
The code in the while loops is rather delicate. For example, you might be tempted to
remove the increment operators from the inner while loops and use them to replace the

nop statements. (Nop refers to a statement consisting only of a semicolon, and means no
operation.) For example, you might try to change this:

while (leftPtr < right && theArray[++leftPtr] < pivot)
; // (nop)

to this:

while (leftPtr < right && theArray[leftPtr] < pivot)
++leftPtr;

and similarly for the other inner while loop. This would make it possible for the initial
values of the pointers to be 1eft and right, which is somewhat clearer than 1eft-1
and right+1.

However, these changes result in the pointers being incremented only when the condition

- 256 -

is satisfied. The pointers must move in any case, so two extra statements within the outer
while loop would be required to bump the pointers. The nop version is the most efficient
solution.

Efficiency of the Partition Algorithm

The partition algorithm runs in O(N) time. It's easy to see this when running the Partition
Workshop applet: the two pointers start at opposite ends of the array and move toward
each other at a more or less constant rate, stopping and swapping as they go. When they
meet, the partition is complete. If there were twice as many items to partition, the pointers
would move at the same rate, but they would have twice as far to go (twice as many
items to compare and swap), so the process would take twice as long. Thus the running
time is proportional to N.

More specifically, for each partition there will be N+1 or N+2 comparisons. Every item will
be encountered and used in a comparison by one or the other of the pointers, leading to
N comparisons, but the pointers overshoot each other before they find out they've
"crossed" or gone beyond each other, so there are one or two extra comparisons before
the partition is complete. The number of comparisons is independent of how the data is
arranged (except for the uncertainty between 1 and 2 extra comparisons at the end of the
scan).

The number of swaps, however, does depend on how the data is arranged. If it's
inversely ordered and the pivot value divides the items in half, then every pair of values
must be swapped, which is N/2 swaps. (Remember in the Partition Workshop applet that
the pivot value is selected randomly, so that the number of swaps for inversely sorted
bars won't always be exactly N/2.)

For random data, there will be fewer than N/2 swaps in a partition, even if the pivot value
is such that half the bars are shorter and half are taller. This is because some bars will
already be in the right place (short bars on the left, tall bars on the right). If the pivot value
is higher (or lower) than most of the bars, there will be even fewer swaps because only
those few bars that are higher (or lower) than the pivot will need to be swapped. On
average, for random data, about half the maximum number of swaps take place.

Although there are fewer swaps than comparisons, they are both proportional to N. Thus
the partitioning process runs in O(N) time. Running the Workshop applet, you can see that
for 12 random bars there are about 3 swaps and 14 comparisons, and for 100 random bars
there are about 25 swaps and 102 comparisons.

Quicksort

Quicksort is undoubtedly the most popular sorting algorithm, and for good reason: in the
majority of situations, it's the fastest, operating in O(N*logN) time. (This is only true for
internal or in-memory sorting; for sorting data in disk files other methods may be better.)
Quicksort was discovered by C.A.R. Hoare in 1962.

To understand quicksort, you should be familiar with the partitioning algorithm described
in the last section. Basically the quicksort algorithm operates by partitioning an array into
two subarrays, and then calling itself to quicksort each of these subarrays. However,
there are some embellishments we can make to this basic scheme. These have to do
with the selection of the pivot and the sorting of small partitions. We'll examine these
refinements after we've looked at a simple version of the main algorithm.

It's difficult to understand what quicksort is doing before you understand how it does it, so
we'll reverse our usual presentation and show the Java code for quicksort before
presenting the quicksort Workshop applet.

The Quicksort Algorithm

-257 -

The code for a basic recursive quicksort method is fairly simple. Here's an example:

public void recQuickSort (int left, int right)
{

if (right-left <= 0) // if size is 1,
return; // it's already sorted
else // size is 2 or larger

{

// partition range
int partition = partitionIt(left, right);
recQuickSort (left, partition-1); // sort left side
recQuickSort (partition+l, right); // sort right side
}

As you can see, there are three basic steps:

1. Partition the array or subarray into left (smaller keys) and right (larger keys) groups.
2. Call ourselves to sort the left group.

3. Call ourselves again to sort the right group.

After a partition, all the items in the left subarray are smaller than all those on the right. If
we then sort the left subarray and sort the right subarray, the entire array will be sorted.
How do we sort these subarrays? By calling ourself.

The arguments to the recQuickSort () method determine the left and right ends of the
array (or subarray) it's supposed to sort. The method first checks whether this array
consists of only one element. If so, the array is by definition already sorted, and the
method returns immediately. This is the base case in the recursion process.

If the array has two or more cells, the algorithm calls the partitionIt () method,
described in the last section, to partition it. This method returns the index number of the
partition: the left element in the right (larger keys) subarray. The partition marks the
boundary between the subarrays. This is shown in Figure 7.8.

Urnpartitioned army

Patstion
Lirft sabearmay Right suharmay
1

[+

|z * W || m | & I
&

Lt |

i "

Left Abreadly Right

Will be sorted donied Will ke somed
by firsl recursive by srcomd pecursive
call g mecChiickSom) call 1o e RilckSom |

Figure 7.8: Recursive calls sort subarrays

-258 -

Once the array is partitioned, recQuickSort () calls itself recursively, once for the left
part of its array, from 1eft to partition-1, and once for the right part, from
partition+1 to right. Note that the data item at the index partition is not included
in either of the recursive calls. Why not? Doesn't it need to be sorted? The explanation
lies in how the pivot value is chosen.

Choosing a Pivot Value

What pivot value should the partitionIt () method use? Here are some relevant
ideas:

» The pivot value should be the key value of an actual data item; this item is called the
pivot.

* You can pick a data item to be the pivot more or less at random. For simplicity, let's
say we always pick the item on the right end of the subarray being partitioned.

+ After the partition, if the pivot is inserted at the boundary between the left and right
subarrays, it will be in its final sorted position.

This last point may sound unlikely, but remember that, because the pivot's key value is
used to partition the array, then following the partition the left subarray holds items
smaller than the pivot, and the right subarray holds items larger. The pivot starts out on
the right, but if it could somehow be placed between these two subarrays, it would be in
the right place; that is, in its final sorted position. Figure 7.9 shows how this looks with a
pivot whose key value is 36.

Uapanihoned srmay

[E] &1 [W n i 1] L ity

Proand il

FIEM =iy

- " - - ~ D

Figure 7.9: The pivot and the subarrays

This figure is somewhat fanciful because you can't actually take an array apart as we've
shown. So how do we move the pivot to its proper place?

We could shift all the items in the right subarray to the right one cell to make room for the
pivot. However, this is inefficient and unnecessary. Remember that all the items in the
right subarray, although they are larger than the pivot, are not yet sorted, so they can be
moved around within the right subarray without affecting anything.

Therefore, to simplify inserting the pivot in its proper place, we can simply swap the pivot
(36) and the left item in the right subarray, which is 63. This places the pivot in its proper
position between the left and right groups. The 63 is switched to the right end, but
because it remains in the right (larger) group, the partitioning is undisturbed. This is
shown in Figure 7.10.

-259 -

Lef subasray Rt sebarrss Pt
1 |

T 1 & ar | o | o4z | & | i

L.eft subarray Right suhsaray

Figure 7.10: Swapping the pivot

Once it's swapped into the partition's locaFiguretion, the pivot is in its final resting place.
All subsequent activity will take place on one side of it or on the other, but the pivot itself
won't be moved (or indeed even accessed) again.

To incorporate the pivot selection process into our recQuickSort () method, let's make
it an overt statement, and send the pivot value to partitionIt () as an argument.
Here's how that looks:

public void recQuickSort (int left, int right)
{

if (right-left <= 0) // if size <= 1,
return; // already sorted
else // size is 2 or larger
{
double pivot = theArray[right]; // rightmost item

// partition range
int partition = partitionIt(left, right, pivot);
recQuickSort (left, partition-1); // sort left side
recQuickSort (partition+1l, right); // sort right side
}

} // end recQuickSort ()

When we use this scheme of choosing the rightmost item in the array as the pivot, we'll
need to modify the partitionIt () method to exclude this rightmost item from the
partitioning process; after all, we already know where it should go after the partitioning
process is complete: at the partition, between the two groups. Also, once the partitioning
process is completed, we need to swap the pivot from the right end into the partition's
location. Listing 7.3 shows the quickSort1.java program, which incorporates these
features.

Listing 7.3 The quickSort1.java Program
// quickSortl.java
// demonstrates simple version of quick sort
// to run this program: C>Jjava QuickSortlApp

L1117 77 7007777777077 7 777707777777 77077777777777777777777777777777

- 260 -

class ArrayIns

{

private double[] theArray; // ref to array theArray
private int nElems; // number of data items
ettt
public ArrayIns (int max) // constructor
{
theArray = new double[max]; // create the array
nElems = 0; // no items yet
}
/m e
public void insert (double value) // put element into array
{
theArray[nElems] = value; // insert it
nElems++; // increment size
}
e
public void display () // displays array contents
{
System.out.print ("A=");
for (int j=0; j<nElems; Jj++) // for each element,
System.out.print (theArray[j] + " "); // display it
System.out.println("");
}
/m e -
public void quickSort ()
{
recQuickSort (0, nElems-1);
}
et

public void recQuickSort (int left, int right)
{

if (right-left <= 0) // 1if size <= 1,
return; // already sorted
else // size is 2 or larger
{
double pivot = theArray[right]; // rightmost item

// partition range
int partition = partitionIt(left, right, pivot);
recQuickSort (left, partition-1); // sort left side
recQuickSort (partition+l, right); // sort right side

}
} // end recQuickSort ()

-261 -

public int partitionIt(int left, int right, double pivot)
{
int leftPtr = left-1; // left (after ++)
int rightPtr = right; // right-1 (after --)
while (true)
{ // find bigger item
while (theArray[++leftPtr] < pivot)
;7 // (nop)
// find smaller item
while (rightPtr > 0 && theArray[--rightPtr] > pivot)

; // (nop)
if (leftPtr >= rightPtr) // if pointers cross,
break; // partition done
else // not crossed, so
swap (leftPtr, rightPtr); // swap elements
} // end while (true)
swap (leftPtr, right); // restore pivot
return leftPtr; // return pivot location

} // end partitionIt ()

/mm e
public void swap (int dexl, int dex2) // swap two elements

{
double temp = theArray([dexl]; // A into temp
theArray[dexl] = theArray[dex2]; // B into A
theArray[dex2] = temp; // temp into B
} // end swap(

/m e

} // end class Arraylns
LI r i i i i i 777 77777777777777777777777777

class QuickSortlApp
{

public static void main(String[] args)

{

int maxSize = 16; // array size
ArrayIns arr;
arr = new ArrayIns (maxSize); // create array

for (int j=0; j<maxSize; j++) // fill array with
{ // random numbers
double n = (int) (java.lang.Math.random()*99);
arr.insert (n);
}

arr.display(); // display items

arr.quickSort () ; // quicksort them

- 262 -

arr.display () ; // display them again
} // end main /()

} // end class QuickSortlApp

The main () routine creates an object of type ArrayIns, inserts 16 random data items
of type double in it, displays it, sorts it with the quicksSort () method, and displays the
results. Here's some typical output:

A=69 0 70 6 38 38 24 56 44 26 73 77 30 45 97 65
A=0 6 24 26 30 38 38 44 45 56 65 69 70 73 77 97

An interesting aspect of the code in the partitionIt () method is that we've been able
to remove the test for the end of the array in the first inner while loop. This test, seen in
the earlier partitionIt () method inthe partition. java program in Listing 7.2,
was

leftPtr < right

It prevented 1eftPtr running off the right end of the array if there was no item there
larger than pivot. Why can we eliminate the test? Because we selected the rightmost
item as the pivot, so 1eftPtr will always stop there. However, the test is still necessary
for rightPtr in the second while loop. (Later we'll see how this test can be eliminated
as well.)

Choosing the rightmost item as the pivot is thus not an entirely arbitrary choice; it speeds
up the code by removing an unnecessary test. Picking the pivot from some other location
would not provide this advantage.

The quickSort1 Workshop Applet

At this point you know enough about the quicksort algorithm to understand the nuances
of the quickSort1 Workshop applet.

The Big Picture

For the big picture, use the Size button to set the applet to sort 100 random bars, and
press the Run button. Following the sorting process, the display will look something like
Figure 7.11.

.'l.ﬂlkl Yo guckhort) clsas
doolel

Combarismms = 741 Wow | Sien | Diom | [Fun| Step |

~

Apple slailed

Figure 7.11: The quickSort1 Workshop applet with 100 bars

-263 -

Watch how the algorithm partitions the array into two parts, then sorts each of these parts
by partitioning it into two parts, and so on, creating smaller and smaller subarrays.

When the sorting process is complete, each dotted line provides a visual record of one of
the sorted subarrays. The horizontal range of the line shows which bars were part of the
subarray, and its vertical position is the pivot value (the height of the pivot). The total
length of all these lines on the display is a measure of how much work the algorithm has
done to sort the array; we'll return to this topic later.

Each dotted line (except the shortest ones) should have a line below it (probably
separated by other, shorter lines) and a line above it that together add up to the same
length as the original line (less one bar). These are the two partitions into which each
subarray is divided.

The Details

For a more detailed examination of quicksort's operation, switch to the 12-bar display in
the quickSort1 applet and step through the sorting process. You'll see how the pivot
value corresponds to the height of the pivot on the right side of the array, how the
algorithm partitions the array, swaps the pivot into the space between the two sorted
groups, sorts the shorter group (using many recursive calls), and then sorts the larger
group.

Figure 7.12 shows all the steps involved in sorting 12 bars. The horizontal brackets under
the arrays show which subarray is being partitioned at each step, and the circled
numbers show the order in which these partitions are created. A pivot being swapped into
place is shown with a dotted arrow. The final position of the pivot is shown as a dotted
cell to emphasize that this cell contains a sorted item that will not be changed thereafter.
Horizontal brackets under single cells (steps 5, 6, 7, 11, and 12) are base case calls to
recQuickSort (); they return immediately.

[1 4

W Lt b L] O

L) n - - *
5

o .-
T — T — =
w o [2w ow e ow [w1
2 [I ol
'__6_._/'"_/"_/
¥

I

in L1 25
|

264 -

b4
AT T LI TTTTreTT
' '
1 e [r oo Pee R o0 |oaio
e -l L. b onakas
L
S T T T T Tt TTeT T
1 1
I 3 ¥ i L1 i Mo e 1 T 10 30
1 — 1

Figure 7.12: The quicksort process

Sometimes, as in steps 4 and 10, the pivot ends up in its original position on the right
side of the array being sorted. In this situation, there is only one subarray remaining to be
sorted; that to the left of the pivot. There is no second subarray to its right.

The different steps in Figure 7.12 occur at different levels of recursion, as shown in Table
7.3. The initial call from main () to recQuickSort () is the first level,

recQuickSort () calling two new instances of itself is the second level, these two
instances calling four more instances is the third level, and so on.

The order in which the partitions are created, corresponding to the step numbers, does
not correspond with depth. It's not the case that all the first-level partitions are done first,
then all the second level ones, and so on. Instead, the left group at every level is handled
before any of the right groups.

Table 7.3: Recursion levels for Figure 7.12

Step Recursion Level
]
1 1

2,8 2

3,7,9,12 3

4,10 4

5,6, 11 5

In theory there should be eight steps in the fourth level and 16 in the fifth level, but in this
small array we run out of items before these steps are necessary.

- 265 -

The number of levels in the table shows that with 12 data items, the machine stack needs
enough space for 5 sets of arguments and return values; one for each recursion level.
This is, as we'll see later, somewhat greater than the logarithm to the base 2 of the
number of items: log2N. The size of the machine stack is determined by your particular
system. Sorting very large numbers of data items using recursive procedures may cause
this stack to overflow, leading to memory errors.

Things to Notice

Here are some details you may notice as you run the quickSort1 Workshop applet.

You might think that a powerful algorithm like quicksort would not be able to handle
subarrays as small as 2 or 3 items. However, this version of the quicksort algorithm is
quite capable of sorting such small subarrays; 1eftScan and rightScan just don't go
very far before they meet. For this reason we don't need to use a different sorting
scheme for small subarrays. (Although, as we'll see later, handling small subarrays
differently may have advantages.)

At the end of each scan, the 1eftScan variable ends up pointing to the partition—that is,
the left element of the right subarray. The pivot is then swapped with the partition to put
the pivot in its proper place, as we've seen. As we noted, in steps 3 and 9 of Figure 7.12,
leftScan ends up pointing to the pivot itself, so the swap has no effect. This may seem
like a wasted swap; you might decide that 1eftScan should stop one bar sooner.
However, it's important that 1eftScan scan all the way to the pivot; otherwise, a swap
would unsort the pivot and the partition.

Be aware that 1eftScan and rightScan startat 1eft-1 and right. This may look
peculiar on the display, especially if 1eft is 0; then 1eftScan will start at —1. Similarly
rightScan initially points to the pivot, which is not included in the partitioning process.
These pointers start outside the subarray being partitioned, because they will be
incremented and decremented respectively before they're used the first time.

The applet shows ranges as numbers in parentheses; for example, (2-5) means the
subarray from index 2 to index 5. The range given in some of the messages may be
negative: from a higher number to a lower one: Array partitioned; left (7-6),
right (8-8), for example. The (8-8) range means a single cell (8), but what does (7—
6) mean? This range isn't real; it simply reflects the values that 1eft and right, the
arguments to recQuickSort (), have when this method is called. Here's the code in
question:

int partition = partitionIt(left, right, pivot);
recQuickSort (left, partition-1); // sort left side
recQuickSort (partition+l, right); // sort right side

If partitionIt () is called with 1eft =7 and right = 8, for example, and happens to
return 7 as the partition, then the range supplied in the first call to recQuickSort () will
be (7-6) and the range to the second will be (8-8). This is normal. The base case in
recQuickSort () is activated by array sizes less than 1 as well as by 1, so it will return
immediately for negative ranges. Negative ranges are not shown in_Figure 7.12, although
they do cause (brief) calls to recQuickSort ().

Degenerates to O(N*) Performance

If you use the quickSort1 Workshop applet to sort 100 inversely sorted bars, you'll see
that the algorithm runs much more slowly and that many more dotted horizontal lines are
generated, indicating more and larger subarrays are being partitioned. What's happening
here?

- 266 -

The problem is in the selection of the pivot. Ideally, the pivot should be the median of the
items being sorted. That is, half the items should be larger than the pivot, and half
smaller. This would result in the array being partitioned into two subarrays of equal size.
Two equal subarrays is the optimum situation for the quicksort algorithm. If it has to sort
one large and one small array, it's less efficient because the larger subarray has to be
subdivided more times.

The worst situation results when a subarray with N elements is divided into one subarray
with 1 element and the other with N—1 elements. (This division into 1 cell and N-1 cells
can also be seen in steps 3 and 9 in Figure 7.12.) If this 1 and N—1 division happens with
every partition, then every element requires a separate partition step. This is in fact what
takes place with inversely sorted data: in all the subarrays, the pivot is the smallest item,
so every partition results in an N—1 element in one subarray and only the pivot in the
other.

To see this unfortunate process in action, step through the quickSort1 Workshop applet
with 12 inversely sorted bars. Notice how many more steps are necessary than with
random data. In this situation the advantage gained by the partitioning process is lost and

the performance of the algorithm degenerates to O(N2).

Besides being slow, there's another potential problem when quicksort operates in O(N2)
time. When the number of partitions increases, the number of recursive function calls
also increases. Every function call takes up room on the machine stack. If there are too
many calls, the machine stack may overflow and paralyze the system.

To summarize: In the quickSort1 applet, we select the rightmost element as the pivot. If
the data is truly random, this isn't too bad a choice, because usually the pivot won't be
too close to either end of the array. However, when the data is sorted or inversely sorted,
choosing the pivot from one end or the other is a bad idea. Can we improve on our
approach to selecting the pivot?

Median of Three Partitioning

Many schemes have been devised for picking a better pivot. The method should be
simple but have a good chance of avoiding the largest or smallest value. Picking an
element at random is simple but—as we've seen—doesn't always result in a good
selection. However, we could examine all the elements and actually calculate which one
was the median. This would be the ideal pivot choice, but the process isn't practical, as it
would take more time than the sort itself.

A compromise solution is to find the median of the first, last, and middle elements of the
array, and use this for the pivot. (The median or middle item is the data item chosen so
that exactly half the other items are smaller and half are larger.) Picking the median of the
first, last, and middle elements is called the median-of-three approach and is shown in
Figure 7.13.

Lt Comer Righn
; | '
| H | K Fad
T W o
Mledian i= 44

Figure 7.13: The median of three

- 267 -

Finding the median of three items is obviously much faster than finding the median of all
the items, and yet it successfully avoids picking the largest or smallest item in cases
where the data is already sorted or inversely sorted. There are probably some
pathological arrangements of data where the median-of-three scheme works poorly, but
normally it's a fast and effective technique for finding the pivot.

Besides picking the pivot more effectively, the median of three approach has an
additional benefit: We can dispense with the rightPtr>1left testin the second inside
while loop, leading to a small increase in the algorithm's speed. How is this possible?

The test can be eliminated because we can use the median-of-three approach to not only
select the pivot, but also to sort the three elements used in the selection process. Figure
7.14 shows how this looks.

Ll Cemer Bt
T v L
- i]
Before saming
Lt Cemer Righa
- v *
= - L3

. . +
Afier sortimg

Teeiiién
plvod

Figure 7.14: Sorting the left, center, and right elements

Once these three elements are sorted, and the median item is selected as the pivot, we
are guaranteed that the element at the left end of the subarray is less than (or equal to)
the pivot, and the element at the right end is greater than (or equal to) the pivot. This
means that the 1eftPtr and rightPtr indices can't step beyond the right or left ends
of the array, respectively, even if we remove the leftPtr>right and rightPtr<left
tests. (The pointer will stop, thinking it needs to swap the item, only to find that it has
crossed the other pointer and the partition is complete.) The values at 1eft and right
act as sentinels to keep 1eftPtr and rightPtr confined to valid array values.

Another small benefit to median-of-three partitioning is that after the left, center, and right
elements are sorted, the partition process doesn't need to examine these elements
again. The partition can begin at left+1 and right-1, because 1eft and right have in
effect already been partitioned. We know that 1eft is in the correct partition because it's
on the left and it's less than the pivot, and right is in the correct place because it's on
the right and it's greater than the pivot.

Thus, median-of-three partitioning not only avoids O(N2) performance for already sorted
data, it also allows us to speed up the inner loops of the partitioning algorithm and reduce
slightly the number of items that must be partitioned.

The quickSort2.java Program

Listing 7.4 shows the quickSort2.java program, which incorporates median-of-three
partitioning. We use a separate method, median0£3 (), to sort the left, center, and right

- 268 -

elements of a subarray. This method returns the value of the pivot, which is then sent to
the partitionIt () method

Listing 7.4 The quickSort2.java Program

// quickSort2.java

// demonstrates quick sort with median-of-three partitioning

// to run this program: C>java QuickSort2App

II117777 7777777777777 7777777 777777777777777777777777777777777777
class ArraylIns

{

private double[] theArray; // ref to array theArray
private int nElems; // number of data items
/e
public ArrayIns (int max) // constructor
{
theArray = new double[max]; // create the array
nElems = 0; // no items yet
}
/m e
public void insert (double value) // put element into array
{
theArray[nElems] = value; // insert it
nElems++; // increment size
}
e
public void display () // displays array contents
{
System.out.print ("A=");
for (int j=0; j<nElems; Jj++) // for each element,
System.out.print (theArray[j] + " "); // display it
System.out.println("");
}
/e
public void quickSort ()
{
recQuickSort (0, nElems-1);
}

public void recQuickSort (int left, int right)

{
int size = right-left+1;
if(size <= 3) // manual sort if small

manualSort (left, right);

- 269 -

else // quicksort if large

{

double median

medianOf3 (left, right);
int partition = partitionIt(left, right, median);
recQuickSort (left, partition-1);
recQuickSort (partition+l, right);
}
} // end recQuickSort ()

public double medianOf3(int left, int right)
{
int center = (left+right)/2;
// order left & center
if(theArray[left] > theArray[center])
swap (left, center);
// order left & right
if (theArray([left] > theArray[right])
swap (left, right);
// order center & right
if (theArray[center] > theArray[right])
swap (center, right);

swap (center, right-1); // put pivot on right
return theArray[right-17]; // return median value
} // end medianOf3()

e
public void swap (int dexl, int dex2) // swap two elements
{
double temp = theArray[dexl]; // A into temp
theArray[dexl] = theArray[dex2]; // B into A
theArray[dex2] = temp; // temp into B
} // end swap (

public int partitionIt(int left, int right, double pivot)
{
int leftPtr = left; // right of first elem
int rightPtr = right - 1; // left of pivot

while (true)

{
while (theArray[++leftPtr] < pivot) // find bigger

; // (nop)
while (theArray[--rightPtr] > pivot) // find smaller
; // (nop)
if (leftPtr >= rightPtr) // if pointers cross,
break; // partition done
else // not crossed, so

-270 -

swap (leftPtr, rightPtr); // swap elements
} // end while (true)

swap (leftPtr, right-1); // restore pivot

//***
return leftPtr; // return pivot location
} // end partitionIt()

public void manualSort (int left, int right)
{
int size = right-left+l;
if(size <= 1)

return; // no sort necessary
if (size == 2)
{ // 2-sort left and right

if (theArray[left] > theArray[right])
swap (left, right);
return;

}

else // size is 3

{ // 3-sort left, center (right-1) &
right
if(theArray[left] > theArray[right-1])
swap (left, right-1); // left, center
if(theArray[left] > theArray[right])
swap (left, right); // left, right
if(theArrayl[right-1] > theArray[right])
swap (right-1, right); // center,
right
}
} // end manualSort ()

} // end class ArrayIns
[T 777777077777 77 0777777777777 77777777777777777777777777777

class QuickSort2App
{
public static void main(String[] args)
{
int maxSize = 16; // array size
ArrayIns arr; // reference to array
arr = new ArraylIns (maxSize); // create the array

for (int j=0; j<maxSize; Jj++) // fill array with
{ // random numbers
double n = (int) (java.lang.Math.random()*99);
arr.insert (n);
}

arr.display(); // display items

arr.quickSort () ; // quicksort them

-271 -

arr.display () ; // display them again
} // end main /()

} // end class QuickSort2App

This program uses another new method, manualSort (), to sort subarrays of 3 or fewer
elements. It returns immediately if the subarray is 1 cell (or less), swaps the cells if
necessary if the range is 2, and sorts 3 cells if the range is 3. The recQuickSort ()
routine can't be used to sort ranges of 2 or 3 because median partitioning requires at
least 4 cells.

The main () routine and the output of quickSort2.java are similar to those of
quickSortl.java.

The quickSort2 Workshop Applet

The quickSort2 Workshop applet demonstrates the quicksort algorithm using median-of-
three partitioning. This applet is similar to the quickSort1 Workshop applet, but starts off
sorting the first, center, and left elements of each subarray and selecting the median of
these as the pivot value. At least, it does this if the array size is greater than 3. If the
subarray is 2 or 3 units, the applet simply sorts it "by hand" without partitioning or
recursive calls.

Notice the dramatic improvement in performance when the applet is used to sort 100
inversely ordered bars. No longer is every subarray partitioned into 1 cell and N-1 cells;
instead, the subarrays are partitioned roughly in half.

Other than this improvement for ordered data, the quickSort2 Workshop applet produces
results similar to quickSort1. It is no faster when sorting random data; it's advantages
become evident only when sorting ordered data.

Handling Small Partitions

If you use the median-of-three partitioning method, it follows that the quicksort algorithm
won't work for partitions of three or fewer items. The number 3 in this case is called a
cutoff point. In the previous examples we sorted subarrays of 2 or 3 items by hand. Is this
the best way?

Using an Insertion Sort for Small Partitions

Another option for dealing with small partitions is to use the insertion sort. When you do
this, you aren't restricted to a cutoff of 3. You can set the cutoff to 10, 20, or any other
number. It's interesting to experiment with different values of the cutoff to see where the
best performance lies. Knuth (see the bibliography) recommends a cutoff of 9. However,
the optimum number depends on your computer, operating system, compiler (or
interpreter), and so on.

The quickSort3. java program, shown in Listing 7.5, uses an insertion sort to handle
subarrays of fewer than 10 cells.

Listing 7.5 The quickSort3.java Program

// quickSort3.java

// demonstrates quick sort; uses insertion sort for cleanup

// to run this program: C>java QuickSort3App

L1177 777777 7777777777 77

class ArrayIns

-272 -

{
private double[] theArray; // ref to array theArray

private int nElems; // number of data items

et
public ArrayIns (int max) // constructor
{
theArray = new double[max]; // create the array
nElems = 0; // no items yet
}

public void insert (double value) // put element into array

{

theArray[nElems] = value; // insert it
nElems++; // increment size
}
e
public void display () // displays array contents
{
System.out.print ("A=");
for (int j=0; j<nElems; j++) // for each element,
System.out.print (theArray[j] + " "); // display it
System.out.println("");
}
[/ mmmmm e
public void quickSort ()
{
recQuickSort (0, nElems-1);
insertionSort (0, nElems-1);
}
[e e
public void recQuickSort (int left, int right)
{
int size = right-left+1;
if (size < 10) // insertion sort 1if
small

insertionSort (left, right);
else // quicksort if large

{
double median = medianOf3 (left, right);

int partition = partitionIt(left, right, median);
recQuickSort (left, partition-1);
recQuickSort (partition+l, right);

}
} // end recQuickSort ()

-273 -

public double medianOf3(int left, int right)
{
int center = (left+right)/2;
// order left & center
if(theArray[left] > theArray|[center])
swap (left, center);
// order left & right
if (theArray[left] > theArray[right])
swap (left, right);
// order center & right
if (theArray[center] > theArray[right])
swap (center, right);

swap (center, right-1); // put pivot on right
return theArray([right-1]; // return median value
} // end medianOf3()

e
public void swap (int dexl, int dex2) // swap two elements
{
double temp = theArray[dexl]; // A into temp
theArray[dexl] = theArray[dex2]; // B into A
theArray[dex2] = temp; // temp into B
} // end swap (
e
public int partitionIt(int left, int right, double pivot)
{
int leftPtr = left; // right of first elem
int rightPtr = right - 1; // left of pivot
while (true)
{
while (theArray[++leftPtr] < pivot) // find bigger
; // (nop)
while (theArray[--rightPtr] > pivot) // find smaller
; // (nop)
if (leftPtr >= rightPtr) // if pointers cross,
break; // partition done
else // not crossed, so
swap (leftPtr, rightPtr); // swap elements
} // end while (true)
swap (leftPtr, right-1); // restore pivot
return leftPtr; // return pivot location
} // end partitionIt()
et

// insertion sort

public void insertionSort (int left, int right)

2274 -

{
int in, out;
// sorted on left of

out
for (out=left+l; out<=right; out++)
{
double temp = theArray[out]; // remove marked item
in = out; // start shifts at out
// until one is smaller,
while (in>left && theArray[in-1] >= temp)
{
theArray[in] = theArray[in-1]; // shift item to
right
-—in; // go left one position
}
theArray[in] = temp; // insert marked item
} // end for
} // end insertionSort ()

} // end class Arraylns

L1117 77 7007777777077 7 777707777777 77077777777777777777777777777777

class QuickSort3App
{
public static void main(String[] args)
{
int maxSize = 16; // array size
ArrayIns arr; // reference to array
arr = new ArraylIns (maxSize); // create the array

for (int j=0; j<maxSize; j++) // fill array with
{ // random numbers
double n = (int) (java.lang.Math.random() *99) ;
arr.insert (n) ;

}

arr.display () ; // display items
arr.quickSort () ; // quicksort them
arr.display () ; // display them again

} // end main /()
} // end class QuickSort3App

Using the insertion sort for small subarrays turns out to be the fastest approach on our
particular installation, but it is not much faster than sorting subarrays of 3 or fewer cells
by hand, as in quickSort2.java. The numbers of comparisons and copies are
reduced substantially in the quicksort phase, but are increased by an almost equal
amount in the insertion sort, so the time savings are not dramatic. However, it's probably
a worthwhile approach if you are trying to squeeze the last ounce of performance out of
quicksort.

Insertion Sort Following Quicksort

-275 -

Another option is to completely quicksort the array without bothering to sort partitions
smaller than the cutoff. When quicksort is finished, the array will be almost sorted. You
then apply the insertion sort to the entire array. The insertion sort is supposed to operate
efficiently on almost-sorted arrays, and this approach is recommended by some experts,
but on our installation it runs very slowly. The insertion sort appears to be happier doing a
lot of small sorts than one big one.

Removing Recursion

Another embellishment recommended by many writers is removing recursion from the
quicksort algorithm. This involves rewriting the algorithm to store deferred subarray
bounds (1eft and right) on a stack, and using a loop instead of recursion to oversee
the partitioning of smaller and smaller subarrays. The idea in doing this is to speed up the
program