
Process and performance

Isolated
problem

Process
weakness

Protective Barrier

The same
problem

Antipattern

Refactored
solution

Refactoring
guide

Healthy

enterprise

The same
problem

The same
problem

Solve antipatterns by finding a problem, establishing a
pattern, fixing the problem, and distributing the solution. Fix
the broken process to deploy a protective barrier. Read
about it in section 1.3.2, page 11.

 Firewall

Firewall

Internet

Data

Fast fail-safe
legacy app

configuration

Fast fail-safe
database

configuration

Web app
server

Web app
server

Web app
server

Web
server

Web
server

Standby Sprayer

Web
server

Deploy high performance Internet
applications with redundant
sprayers and parallel services.
Read about it in section 10.1,
page 284.

Triangle design pattern and related antipatterns

Servlet

Command

Client
HTML

JSP

Use the triangle design pattern to partition
the user interface and model. Unlike MVC
application, Java Internet applications have
an upstream and downstream view. Read
about it in chapter 3.

10 KB Servlet

Submit

Among the most common antipatterns is the
magic servlet. In this bitter pill, a Submit button
triggers a massive servlet, with no logical
delineation of responsibilities. Read about it in
section 3.2, page 59.

Command

JSP
if (command.x = a){

else if (command.x = b){

}

Servlet

Client
HTML

HTML for a

HTML for b

Compound JSPs process too many decisions in
the JSP. Decision logic should be pushed into
the controller. Read about them in section 4.3,
page 88.

JSP

Servlet

Client
HTML

Command

Sometimes, utilities, model logic, or view logic
can creep into Fat commands. In this
antipattern, performance and maintenance
costs suffer. Read about them in section 4.5,
page 102.

Bitter Java
BRUCE TATE

M A N N I N G

Greenwich
(74° w. long.)

 For Maggie

For electronic information and ordering of this and other Manning books,
go to www.manning.com. The publisher offers discounts on this book
when ordered in quantity. For more information, please contact:

Special Sales Department
Manning Publications Co.
209 Bruce Park Avenue Fax: (203) 661-9018
Greenwich, CT 06830 email: orders@manning.com

©2002 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without
prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books they publish printed on acid-free paper, and we exert our best efforts to that end.

Manning Publications Co. Copyeditor: Liz Welch
209 Bruce Park Avenue Typesetter: Tony Roberts
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 1-930110-43-X

Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 – VHG – 05 04 03 02

contents

foreword xv
preface xvii
acknowledgments xxi
about this book xxiii
about the cover illustration xxvii

PART 1 THE BASICS .. 1

1 Bitter tales 3
1.1 A Java development free fall 4

Antipatterns in life 6
1.2 Using design patterns accentuates the positive 7

Design patterns online 8
UML provides a language for patterns 9

1.3 Antipatterns teach from the negative 9
Some well-known antipatterns 10 � Antipatterns in
practice 11 � Antipattern resources 12

1.4 Antipattern ideas are not new 13
Learning from the industry 14 � Detective work 15
Refactoring antipatterns 17
v

vi CONTENTS
1.5 Why Bitter Java? 17
The Bitter Java approach 18 � Bitter Java tools 18
The Bitter Java organization 19 � The Bitter Java
audience 21

1.6 Looking ahead 21

2 The bitter landscape 23
2.1 Fertile grounds for antipatterns 24

The benefits of layering 24
Layering can work against us 26

2.2 Internet technologies 28
Internet topologies affect our applications 28
Enterprise layers add security and overhead 29
Standards enable the Internet and add layers 31
TCP and IP provide low-level communications 32
HTTP provides application-level transport 33
HTML and XML 34
Mini-antipattern: Too Many Web Page Items 35

2.3 Object technologies and antipatterns 37
Encapsulation helps to isolate change 38 � Inheritance
enables packaging of common behavior 38
Polymorphism enables flexible reuse 39
Mini-antipatterns: Excessive Layering 39
Setting the stage for Java 42

2.4 Java technologies solve antipatterns 42

2.5 Major problems with the waterfall 44
Iterative methodologies 45
Mini-antipatterns: Incomplete Process Transitions 45
Programming horizons: Extreme programming 46

2.6 A quick survey of the bitter landscape 48

2.7 Antipatterns in this chapter 48

CONTENTS vii
PART 2 SERVER-SIDE JAVA ANTIPATTERNS 51

3 Bitter servlets 53
3.1 Getting off on the wrong foot 54

An early antipattern: The Magic Pushbutton 54
Building with Model-View-Controller 56 � Failing to
separate model and view 56 � Breaking out
the model 58

3.2 Antipattern: The Magic Servlet 59
Can we use servlets as the model? 60 � Stumbling into
the Magic Servlet trap 62 � Causes of the Magic
Servlet 66

3.3 Solution: Refactor using commands 67
Break out the model 67 � Wrapping the model with
command objects 68 � Separating the model logic 69
Separating the return trip 74 � Using a JSP for the
return trip 77

3.4 Summary 79

3.5 Antipattern in this chapter 79

4 Bitter JSPs 81
4.1 Getting only halfway home 82

Recognizing the danger signs 82
4.2 Antipattern: Monolithic JSPs 84

This program lacks model-view separation 84
Solution: Refactor to Model-View-Controller 86

4.3 Antipattern: Compound JSPs 88
Should we combine multiple JSPs? 88 � An example
combining two interfaces 89 � Solution: Split
the JSP 94 � Making decisions in the
controller servlet 94

viii CONTENTS
4.4 Mini-antipatterns: Coarse and Fine Commands 98
Too many commands in a group 99 � Solution:
Refactor to appropriate granularity 99 � Tips for
granularity 101

4.5 Mini-antipattern: Fat Commands 102

4.6 Reviewing the JSP antipatterns 102

4.7 Antipatterns in this chapter 103

5 Bitter cache management 107
5.1 We need caches! 108

5.2 Antipattern: The Cacheless Cow 109
Bitter BBS with no cache 110 � Building the model,
view, and controller for ShowBoard 112 � Building
the model, view, and controller for ShowThread 115
Building the model, view and controller for
AddPost 119 � Performance problems 125

5.3 Solution: Cache 125
Solution 1: Use a hardware cache 126 � Solution 2:
Cache commands 126 � Adding a cache to our
BBS 128 � Possible enhancements to cached
commands 133

5.4 Cache-related mini-antipatterns 135
Concurrent access to static cache 135
The ever-growing cache 136

5.5 Antipattern: Synchronized Read/Write
Bottlenecks 136
Collisions between readers can hurt performance 137
Read/write locks allow correct shared access 138

5.6 Cooking the Cacheless Cow 140

5.7 Antipatterns in this chapter 140

CONTENTS ix
6 Bitter memories 143
6.1 Understanding memory leaks and antipatterns 144

Managing memory 145 � Understanding garbage
collection 146 � Reference counting 146
Reachable objects 148

6.2 Trading C++ for Java 149
Circumstances that cause Java memory leaks 149
Finding Java leaks 150

6.3 Antipattern: Lapsed Listeners Leak 151
Examining some dangerous practices 152
Solution 1: Explicitly remove the listeners 155
Solution 2: Shorten the life cycle of the anchor 155
Solution 3: Weaken the reference 156
Reference objects simplify memory management 156

6.4 Antipattern: The Leak Collection 157
Causing trouble with caches and session state 158
Solution 1: Search for common warning signs 159
Solution 2: Aggressively pair adds with removes 160
Solution 3: Use soft references for caches 160
Solution 4: Use collections with weak references 161
Solution 5: Use finally 161

6.5 Shooting memory leaks 161
Make sure there is a leak 161 � Determine that the
leak should be fixed 162 � Isolate the problem 163
Determine the source and fix the problem 164
Protect against the problem for the future 165

6.6 Mini-Antipatterns: Little Hogs 166
String manipulation 166 � Collections 167
Inheritance chains 168

6.7 Summary 168

6.8 Antipatterns in this chapter 169

x CONTENTS
7 Bitter connections and coupling 171
7.1 Making connections 172

7.2 Antipattern: Connection Thrashing 172
Creating and terminating with every access 174
Solution: Reuse connections with a pool 174
Refactoring our BBS to add pooled connections 177
Using getPooledConnection 179
Using the J2EE connector architecture 180

7.3 Antipattern: Split Cleaners 181
Exceptions can lead to Split Cleaners 183
Solution: Pair connection with cleanup, in finally 184

7.4 Antipattern: Hardwired Connections 185
The communications buffer 186 � Premature
binding 189 � Solution 1: Decouple with XML
messages 189 � Solution 2: Delay binding with
web services 191

7.5 Mini-antipatterns for XML misuse 192
XML’s Golden Hammers 193
XML’s bitter transitions 193

7.6 Mini-antipatterns: Rigid XML 194
Name collisions 195 � Rigid constructs 197
Restrictive variable-content containers 199
XML versioning 201

7.7 Summary: Sweetening bitter connections 202

7.8 Antipatterns in this chapter 203

8 Bitter beans 207
8.1 A brief Enterprise JavaBeans review 208

The component-based distributed architecture 208
Types of EJBs 209

8.2 Bitter BBS with EJBs 210
Elements of an EJB application 211 � Building the
remote interface 213 � Creating the home
interface 215 � Implementing the bean class 216

CONTENTS xi
Defining the primary key 221 � Creating a
deployment descriptor 222 � Using the model 224

8.3 Antipattern: Round-tripping 225
Computing the cost of a distributed deployment 226
Chatty interfaces 227 � Solution: Group together
round-trips with a facade 228 � Roots of round-
tripping 229 � Refactoring the BBS
with a facade 230

8.4 Antipattern: Square Bean in a Round Hole 237
Mini-antipattern: Bean-Managed Joins 237
Solution: Views, mappers, bean-managed joins 238
Mini-antipattern: Entity Beans for Lightweight
Functions 238 � Mini-antipattern: Entities for Read
Only 240 � Mini-antipattern: Entity Beans for Write
but Not Read 240 � Troublesome scrollable lists 240
Overall solution: Pick the right bean for the job 241

8.5 Mini-antipattern: Everything Is an EJB 242

8.6 EJBs and caching 243
Implementing a cache with a facade 243

8.7 Smoothing out the bitter beans 244

8.8 Antipatterns in this chapter 245

PART 3 THE BIG PICTURE249

9 Bitter hygiene 251
9.1 Why study programming hygiene? 252

Extreme programming requires good hygiene 252
Coding standards protect against antipatterns 253

9.2 Mini-antipatterns: Unreadable code 255
Names matter 255 � Standards for names 256
Braces and indentation 260 � Comments 261
Tabs vs. spaces 264 � Editors 265

9.3 Mini-antipatterns: Organization and visibility 266

xii CONTENTS
9.4 Mini-antipatterns: Structure 269
Basic object-oriented philosophy 270 � Low-level
design considerations 270 � Exceptions 272

9.5 Mini-antipatterns: Leaks and performance 273

9.6 Conventions for testing 274

9.7 Building a good style guide 276
Buy, borrow, or steal? 276
A sample style guide from Contextual, Inc. 277

9.8 Summary of coding standards 280

10 Bitter scalability 283
10.1 Good topologies for performance 284

Layering hardware in homogeneous groups 286
Other topology variations 289

10.2 Antipattern: Performance Afterthoughts 289
Developing without performance planning 290
Some real-world examples 291
Solution: Plan for performance! 292

10.3 Antipattern: Round-tripping 295
Solution: Cache and Facade 295

10.4 Antipattern: Bad Workload Management 298
Solution: Workload Management 299
True load balancing 301

10.5 Antipattern: Chaotic Session Management 302
Solution 1: Dispatching with session affinity 302
Solution 2: Using a distributed state management
service 303 � Using custom session bean
solutions 303 � Using custom entity bean
solutions 304

10.6 Antipattern: Thrash-tuning 304
Solution: Use sound performance methodologies 305

10.7 Taming the performance beast 307

10.8 Antipatterns in this chapter 307

CONTENTS xiii
11 Sweet parting thoughts 311
11.1 Antipatterns help us on many levels 312

Antipatterns ignite careers 313 � Understanding
antipatterns improves programs 313
Understanding antipatterns makes you a better
programmer 314

11.2 Integrating antipatterns with process 315

11.3 Next steps, last steps 317

A Cross-references of antipatterns 319

bibliography 329
index 333

foreword
It is the rare computer-science book that truly captivates me. Sometimes, it’s the
raw power of the writer’s deep intellect and mastery, as with Guy Steele’s Com-
mon LISP: The Language, which I remember reading straight through while lying
on a sunny Hawaiian beach. Some would certainly chuckle at such “geekiness”—
and maybe they are right to do so—but for me, each of Steele’s successive chap-
ters awoke a hunger to understand more and more. I couldn’t put it down.

 Then there’s the seeming fairy tale packed with amazing revelation after reve-
lation. A book that simultaneously forces you to suspend reality, yet hammers
you in the cerebellum with the deep-but-fleeting truths you’ve been desperately
seeking, truths you know you should have already recognized but have somehow
missed. Tom DeMarco’s The Deadline: A Novel About Project Management was
such a book. I couldn’t put it down.

 Bruce Tate has, with Bitter Java, created another of these rare, captivating
works. As with DeMarco’s Morovian kidnapping, Bruce’s personal “extreme
sports” kayaking, mountain biking, and hot-air ballooning adventures carried me
from “hydraulic” point to point, paddling as fast as I could to get to the next
pattern or point. As with Steele, I couldn’t wait for the next successive insight—
and as with DeMarco, I just couldn’t put Bitter Java down.

 My advice? Don’t start reading this book unless you can drop everything else
on your schedule for the rest of the day. If it’s late in the day, I feel for you,
because you’re going to be very tired tomorrow. If you’re on a sunny Hawaiian
beach, you’d better use SPF 99. There’s no escaping it.
xv

xvi FOREWORD
 Bitter Java was a thrill for me, and I fully expect it will be for you too. If you
develop software or work with those who do, you’ll relate to chapter after chap-
ter. I fully expect to be quoting Bruce in my next design review. Bitter Java is
simply loaded with the wisdom and experience any good software engineer seeks.
I found chapter 9’s Java coding standards worthy of being its own publication—
one that I sincerely wish all Java programmers would read and heed.

 As Bruce’s analogies clearly express, software engineering is very much like
running dangerous rivers, and even though it’s not necessarily as life-threatening
as your standard class IV+ hydraulic, failure can be just as catastrophic to your
livelihood and that of those you lead. So I recommend that you study this excel-
lent guidebook very carefully. Bruce has packed it solid with the clearly written,
fun-to-read, hard-earned wisdom of a true white-water master.

 Prepare yourself well so you can maximize the thrill of the ride and live to do
it again—and don’t drop your paddle unless you’ve got your “hands Eskimo
roll” down pat!

 Have fun!

 Hays W. “Skip” McCormick III
 Coauthor of AntiPatterns: Refactoring Software,

Architectures, and Projects in Crisis

preface
In the summer, Texas rivers are dry. To find white water, kayakers have to follow
the storms. One summer day in 1996, a partner and I left Austin at 8 P.M. to
drive into the teeth of a huge thunderstorm and to follow it to the Cossatot
River in Arkansas. When we arrived, the bad weather had played a cruel joke,
swinging right around the river. Exhausted and disappointed, we pitched our
tent on the bank of the river. We heard no raindrops that night.

 In the morning, groggy and still disappointed, I stepped out of the tent and
almost tripped … right into the river. The Cossatot, notorious for rapid flooding,
had gotten 6 inches of rain in 2 hours a scant 10 miles upstream. Now we were
facing the prospect of running a river that was too high. We decided to save the
difficult white water for the following morning and run the easier sections
upstream. The meandering, beginner-level Class I creek had become a Class III
cauldron of turbulence. It took us just 20 minutes to complete what the guide-
books called a “4-hour run.” The “intermediate” section downstream was even
worse: a Class IV flume of exploding violence. After extensive scouting, we took
turns standing on the bank with a safety rope while the other worked the section.
We then parked our kayaks at the tents and hiked down to check out the
advanced section. To our surprise, dozens of locals on lounge chairs relaxed on
the banks. They faced what is normally a series of Class IV waterfalls now com-
pletely hidden beneath a maelstrom of mayhem. We had never seen more than a
handful of spectators before. They were there to see the local hotdogs crash and
xvii

xviii PREFACE
burn. Surprised by the scene, my buddy and I each sat on a boulder to watch the
action ourselves.

 Fast-forward to 2000. I leave a comfortable and successful career at IBM to
join a startup called allmystuff, Inc. The economy is beginning to falter, but the
company has just received funding while other Austin startups are biting the
dust. This startup’s business model does not depend on now dwindling advertis-
ing revenues, and the talent on allmystuff ’s team is amazing. When I join the
company, it has $10 million in the bank and customers and technology that indi-
cate a likelihood of success. I have seen many of my friends leave IBM for less
money and security, but plenty of adventure. I reason that I can always go back
in a pinch. In the approaching darkness, I head out into the storm.

 As the Austin reporters gleefully chronicle the demise of the once high-flying
Austin startups one by one, allmystuff too begins to struggle. We work insane
hours to deploy solutions for our few customers. In spite of our strong record for
quality, the waning economy eventually catches up to us too. The venture capi-
talists opt to close down and restart with a new concept better suited to a reced-
ing economy. Despite the harshness of the events, I learned more during that
time than any other in my career.

 Like the locals on the bank of the Cossatot, most of us cannot resist a story
when it involves real excitement and adventure, and even danger. Whether we are
viewing a well-honed Greek tragedy or the latest pop-culture offering like the
Survivor television series, we cannot get enough. Programmers are no different.
We love what we call merc talk, mercenaries chatting about the latest battle’s
adventures, for many of the same reasons. Some of my most vivid memories of
work are from around the ping-pong table at allmystuff. We talked about what
prompted the brutal hours we were working. We talked about management phi-
losophy, whether the code base was getting out of control, and whether XML
with specialized viewers would give us a simpler solution than our increasingly
complex JSP model. We talked about whether our graphic designer could handle
the mapping of her user interfaces onto increasingly complex Java commands, in
light of our increasingly delayed schedules. The enthusiasm generated by these
conversations is what had prompted me to leave a safe career for a pay cut, inse-
curity, and a whisper of a hope at millions. And these experiences make me more
valuable as a programmer, as a manager, and as an architect.

 In a context I no longer remember, previous IBM Chairman John Akers once
said that there were too many people “hanging around the water cooler.” I
remember that we were outraged. He didn’t get it. Around a water cooler, or

PREFACE xix
bar, or ping-pong table is where you will hear the stuff that makes or breaks a
project—or a company. This, the programmer’s mythology, must be nurtured
and fed, for it is the stuff of life. I attempt to capture some of it in Bitter Java.

 Turning time back again to before allmystuff, I am speaking at a conference.
The title of my presentation is “Bitter Java.” During the conference I meet a
well-respected Java programmer who is one of the inventors of JSP. He tells me
he’s been in Pamplona and has run with the bulls. He was even gored. He pro-
ceeds to explain his bull-running strategy. My mind resists. Of all the people in
Pamplona that day, he should be the last to tell me about how to avoid getting
gored. I might as well consult O. J. Simpson about marital relations. Tens of
thousands of crazed, adrenaline junkies run every year, and only a handful ever
gets gored. But gradually my mind focuses: if I were to run, he might well be just
the person I’d want to talk to. I would want to know how he planned his run,
how he executed that plan, and what went wrong. That’s information I could
use. As it turns out, the gored programmer is the vice president of engineering at
allmystuff, and he recruits me to help start his services organization. Back to my
presentation, although it might put the allmystuff job at risk, I decide to use the
Pamplona story to start my talk. It captures the fundamental concepts of Bitter
Java perfectly. If it helps avoid a subtle trap or process pitfall, a story about fail-
ure can be worth 10 stories about success. The story catches the audience’s
attention, and ... I get the job anyway.

 Like many programmers, I love extreme sports. We boaters are drawn to trag-
edy and sometimes play dangerous games. A well-known cautionary kayaking
rule by author William Neely is that the time spent staring at a nasty hydraulic is
directly proportional to the amount of time you’ll spend getting trashed in it.
Said another way, if that hole looks nasty enough to eat you, it probably will.
Kayakers have a good strategy for describing a run down a river. The guidebooks
will point out a route and the dangerous spots outside and along the route. A
guidebook might say, “Next, you will see a boulder in midcurrent. Go left.
Should you blunder to the right, the Terminator hydraulic will certainly show
you the error of your ways.” I learned long ago that even if you don’t know a
river intimately, you will want to know its trouble spots. I want to know if a rock
is undercut, and if that undercut is likely to trap me. I want to know where to
punch that riverwide hydraulic, or how to miss the rocks on the bottom of the
waterfall. I want to know if anyone has ever died on the river and how it hap-
pened. With enough information, I can usually avoid the hazards with skill or
even by walking around them on the bank with my boat firmly on my shoulder.

xx PREFACE
 The programmer in me wants to do the same. I need to understand where
applications and projects fail. I need to know if I am making too many communi-
cations over that interface, and the techniques that can steer me through that
turbulent spot. I need to understand where a technology is likely to break and if
it is likely to scale.

 It is my conviction that in order to be successful, our software development
culture must embrace failure and learn from it. I have yet to see an example of an
organization that systematically learns from its mistakes and is diligent at captur-
ing the reasons behind the modification of a flawed design pattern or process in a
regular, systematic way. I have seen a lot of code and not all of it was sweet. I
have learned to love bitter Java. I hope you will too.

acknowledgments
Bitter Java as a concept began three years ago, as a one-hour presentation.
Braden Flowers helped shape the early message, and I am immensely grateful to
him for that. The Bitter Java website followed two years later. Though the ideas
have percolated (ahem) for some time, the Manning staff, many reviewers, some
friends, other authors, and I formed a cohesive virtual team, spanning three con-
tinents, that was able to produce this book on a tighter timeframe and with bet-
ter quality than I ever thought possible. Though I must try to mention all of you
individually by name, the many contributions and insights that I have received
make doing so impossible.

 Having written two other technical books, I was shocked and delighted by
the world-class support Manning provided. I thank Marjan Bace twice: first for
your patient guidance and insistence on excellence at every step in the process,
and second for your gentle hand in guiding my style and shaping my craft. Your
skill with the written word inspires the artist in me, and your understanding of
people—your customers, your competitors, and your authors—impresses me
beyond words.

 Special thanks go to Ted Kennedy, who provided outstanding, professional
reviews that challenged me, but who also supported me when I needed it the
most. Thanks to all of those who spent countless hours reviewing the book: Jon
Eaves, John Crabtree, John Mitchell, Steve Clafin, Sean Koontz, Max Loukianov,
Greg Wadley, Tim Sawyer, Braden Flowers, Ted Neward, Eric Baker, Jon Skeet,
and especially Juan Jimenez, who would make a fine editor. Your compliments
xxi

xxii ACKNOWLEDGMENTS
were of incalculable worth, and your criticisms, both harsh and kind, helped me
to shape a better book. I want each of you to know that though I did not incorpo-
rate all comments, I carefully considered each one individually, and there were
thousands. I hope that I will be able to do the same for each of you someday.

 My thanks also go to the production team: Liz Welch for your kindness, effi-
ciency, and superb editing skill (especially your insistence on clarity and consis-
tency); Susan Capparelle, Helen Trimes, and Mary Piergies for your competent
and timely skill in managing and promoting this project; Dan Barthel for sup-
porting the project and “discovering” Braden and me; Leslie Haimes for a beau-
tiful cover; Bruce Murray and Chris Hillman for outstanding technical support;
Lee Fitzpatrick for signing the checks as the team kept shifting; and Tony Rob-
erts for your craftsmanship in shaping the look of the book.

 Thanks to all who contributed ideas and content to this book: Brian Dainton
and the team at Contextual for contributing your style guide; Tony Leung for the
sample code from Plugging Memory Leaks; Amandeep Singh for the read/write
lock code; and Mike Conner for use of the diagrams in Scaling Up E-business
Applications with Caching. Thanks also to Mike Conner for shaping the team that
sharpened “the Triangle”—the core design pattern in Bitter Java. Thanks to
Mark Wells for pointing me toward the read/write lock idea. Special thanks go to
Skip McCormick III, both for starting the antipatterns ball rolling and for writing
a foreword that captures my imagination and the spirit of the book. And once
again, thank you, Braden Flowers, for contributing the EJB examples.

 2001 was a difficult year for the nation, the high-tech industry, and my family.
Through it all, Maggie, you were by my side, supporting, inspiring, and encour-
aging me. You were editor, gopher, scheduler, encourager, and especially friend.
I thank you, and my love for you grows always.

about this book
The study and application of antipatterns is one of the next frontiers of pro-
gramming. In Bitter Java we explore the topic with personal narrative and spe-
cific examples. There is a lot of code, and I refactor a common example many
times to improve the performance and readability until the final examples are
decidedly sweeter.

How the book is organized
This book contains 11 chapters, 3 sections, and an appendix. Additional details
about the book’s organization and structure can be found in chapter 1,
section 1.5. Here is an overview.

 Part 1 covers the foundations of design patterns, antipatterns and standards
supporting Internet server-side development.

� Chapter 1 compares antipatterns to other industries that use similar con-
cepts. For example, the medical industry uses preventative care (design
patterns) and cures (fixes), but the best doctors diagnose the root causes
like weight or stress (antipatterns). I also explain in more depth the organi-
zation of this book.

� Chapter 2 covers the base Internet standards, plus Java, plus a little pro-
cess: all of the things that you’ll need for server-side Java. It’s not a com-
prehensive tutorial, but it might let you know where you need more study.

xxiii

xxiv ABOUT THIS BOOK
Part 2 covers server-side antipatterns in detail. In it, I start with a poor bulletin
board application, and refactor it to solve individual antipatterns.

� Chapter 3 introduces the basic server-side antipatterns, and defines the
Triangle design pattern common at allmystuff (now Contextual) and
IBM. The core antipattern is the Magic Servlet: a servlet that tries to do
all of the work.

� Chapter 4 covers the antipatterns from Java Server Pages. Since JSP has a
tag language, this chapter has a decidedly different feel.

� Chapter 5 makes a case for caching by showing that caching at multiple
levels of an enterprise can improve performance by an order of magnitude.

� Chapter 6 identifies the Java problems that lead to memory leaks, and dis-
cusses troubleshooting techniques.

� Chapter 7 deals with antipatterns related to connecting two systems. Con-
nection thrashing anchors the discussion of tightly coupled systems, and
XML with Web Services form the foundation for loosely coupled systems.

� Chapter 8 introduces EJBs. I lay out the fundamentals, and draw a bitter
design that breaks out the model component of the bulletin board applica-
tion as EJB entity beans.

Part 3 covers the higher level details outside of the context of the bulletin board
example.

� Chapter 9 addresses programming hygiene. It includes a real coding stan-
dards guideline from Contextual, and has many suggestions to make code
more readable and understandable.

� Chapter 10 lays out performance antipatterns, from implementation to
process to tuning. I also discuss deployment architectures for scalability.

� Chapter 11 sums it all up, and shows how you can apply antipatterns to
your project, your career, and your enterprise.

The three tables in the appendix cross-reference antipatterns by name, scale, and
symptom.

ABOUT THIS BOOK xxv
How to use the book
I suggest initially reading or skimming the chapters sequentially to get an overall
feel for antipatterns, then returning to specific chapters and examples for refer-
ence material.

 If you still need help or have questions for the authors, please read about the
unique online resources described below.

Who should read this book?
Bitter Java is for the intermediate server-side Java programmer or architect, but
others will benefit as well. Beginning programmers will appreciate the clear,
understandable language, and the philosophy of striving to understand antipat-
terns. Advanced programmers will find some new antipatterns for XML, and will
also benefit from a new angle of pattern study.

 Your quest for Bitter Java need not end when you’ve read this book from
cover to cover. No book stands alone, and you should make good use of the
many online resources and books listed in chapter 1, as well as the online
resources at http://www.manning.com and http://www.bitterjava.com. There also
is a bibliography at the end of the book with sources listed by subject.

 While the Java is bitter, I hope that we have helped to make your reading
experience smooth and sweet.

Source code
The book contains extensive source code examples, most of which are server-side
examples based on servlets. The book also contains EJB programming examples
by Braden Flowers.

 Source code examples are available online at http://www.bitterjava.com or
from the publisher’s website http://www.manning.com/tate.

Typographical conventions
Italic typeface is used to introduce new terms and to define personal narratives.
These extreme sports stories have a brief opening at the beginning of a chapter,
and a moral within the body of the chapter that illustrates a key antipattern
concept.

 Courier typeface is used to denote code samples, as well as elements and
attributes, method names, classes, interfaces, and other identifiers. Bold face

xxvi ABOUT THIS BOOK
Courier identifies important sections of code that are discussed within the chap-
ter text.

 Code annotations accompany many segments of code. Certain annotations
are marked with chronologically ordered bullets such as b. These annotations
have further explanations that follow the code .

 Code line continuations are indented.

Online resources
Two outstanding Internet resources are at your fingertips:

� Manning’s Author Online provides private forums for all book owners.
You can reach Manning’s Bitter Java forum by pointing your browser to
http://www.manning.com/tate. Follow the directions to subscribe and
access the forum.

� The Bitter Java website at http://www.bitterjava.com provides open forums
for Java antipatterns and sample programs. Through these forums you can
take part in general antipatterns discussions and even analyze specific topics
from the book. Shortly after Bitter Java is released, you’ll be able to down-
load the programming examples. And don’t forget to register for the Bitter
Java email newsletter, which is published every other month, or whenever I
have enough interesting information for one. Back issues are also available.

Feel free to use either resource to ask questions, make comments about Bitter
Java, and receive help from other readers and authors. We have formed the infra-
structure for an online community. The rest is up to you.

about the cover illustration
The figure on the cover of Bitter Java is an Azanaghi Arab, whose people lived
for centuries in the northernmost sections of present-day Mauritania. The details
of his life and position are for us lost in historical fog, and the artist has further
added to the mystery of the man by not showing us his face. The illustration is
taken from a Spanish compendium of regional dress customs first published in
Madrid in 1799. The book’s title page states:

 Coleccion general de los Trages que usan actualmente todas las Nacio-
nas del Mundo desubierto, dibujados y grabados con la mayor exacti-
tud por R.M.V.A.R. Obra muy util y en special para los que tienen la
del viajero universal

 Which we translate, as literally as possible, thus:
 General collection of costumes currently used in the nations of the
known world, designed and printed with great exactitude by
R.M.V.A.R. This work is very useful especially for those who hold them-
selves to be universal travelers

Although nothing is known of the designers, engravers, and workers who col-
ored this illustration by hand, the “exactitude” of their execution is evident in
this drawing. The mysterious Azanaghi Arab is just one of many figures in this
colorful collection. Their diversity speaks vividly of the uniqueness and individu-
ality of the world’s cultures and regions just 200 years ago. This was a time when
the dress codes of two regions separated by a few dozen miles identified people
uniquely as belonging to one or the other. The collection brings to life the sense
xxvii

xxviii ABOUT THE COVER ILLUSTRATION
of isolation and distance of that period—and of every other historic period
except our own hyperkinetic present.

 Dress codes have changed since then, and the diversity by region, so rich at
the time, has faded away. It is now often hard to tell the inhabitant of one conti-
nent from another. Perhaps, trying to view it optimistically, we have traded a cul-
tural and visual diversity for a more varied personal life. Or a more varied and
interesting intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and the fun of the
computer business with book covers based on the rich diversity of regional life of
two centuries ago‚ brought back to life by the pictures from this collection.

Part 1

The basics

In 1993, I made my first descent down a Class IV river: the Cossatot River in
Arkansas. To prepare, I first spent many hours on easier Class II rivers in Texas
with experienced paddlers. I was learning the common vocabulary and the repeti-
tive motions that I would need to survive in a new kayaking community. Though
the rivers were easy, those enjoyable hours prepared me for the challenges to come.

Chapters 1 and 2 lay the foundation for patterns, antipatterns, and server-side
Java programming. In chapter 1, we discuss the impact that design patterns
have had on modern programming, and we make the argument that antipat-
terns are a necessary and complementary topic of study. We provide some tips
for detective work, exploring ways to establish patterns of repeated Java prob-
lems. In chapter 2, we discuss the current landscape of server-side Java pro-
gramming, from the basic Internet standards and languages to the
improvements in methodology, with a twist. Along the way, we will look for
the nooks and crannies that are likely hiding places for antipatterns and the
process improvements that help us combat them.

1Bitter tales
This chapter covers
� A programming horror story
� Techniques for finding and fixing antipatterns
� Examples of antipatterns in other industries
3

4

On a cold day in Eastern Tennessee, my kayak is perched precariously atop a
waterfall known as State Line Falls. The fall has a nasty reputation among kay-
akers. One of our team is walking this one. He was injured and shaken up last
year at the same spot. This time around he wants no part of it.

 From the top, there is no clue of the danger that lurks around the bend, but
we know. We have been thinking ahead to this rapid for several days. We have
read about what I cannot yet see. Five truck-sized boulders guard four slots. The
water rushes through the slots and plunges to the bottom of the fall. I will see the
entire waterfall only seconds before I go over it. Most of the water lands on boul-
ders barely covered by two feet of water. Three of the four slots are reputed to be too
violent and dangerous for your mother-in-law. Through the fourth, the river rips
into the narrows and picks up speed. It drops sharply over the lip and crashes onto
the jagged rocks 16 feet below. I am a programmer by trade, a father of two, and
a kayaker of intermediate skill. I have no business going over a Class V waterfall
described in guidebooks as “marginal.” But here I am, looking for the land-
marks. I pick my slot, sweep left, and brace for the soft landing—or the crash. I
am in free fall.

1.1 A Java development free fall

The sales team was strong. They got all the right sponsors, lined them up, and
marched them into the executive’s office. They all said the same thing. The
development cycle times were outrageous. Each project was longer than the
last, and the best project overshot deadlines by 85 percent. It did not take the
CIO long to add up the numbers. The cost overruns ran well into seven figures.

 The answer was Java. The lead rep presented a fat notebook showing refer-
ences from everywhere: the press, the news, and three major competitors. The
proposed tools won awards and added to the outrageous productivity claims
promised by even the most conservative vendors. They never cited the down-
side or training requirements. In early 1996, hardly anyone did. The sales
team brought in the big gun: a proof-of-concept team that quickly hammered
out an amazingly robust prototype in a short time. The lead rep had practiced
the close many times, but in this case, the deal was already sealed. She was able
to get even more of the budget than she expected. After all, a product and lan-
guage this easy and this similar to C++ should not require much training, so
she got most of that allocated budget too.

 But a year and a half later, the lead programmer was sitting behind a desk
in the middle of the night while the sales rep celebrated her third National Cir-
cle sales award in Hawaii. In truth, the programmer seemed genuinely happy

A Java development free fall 5
to be there. He knew that he was in over his head, and he needed help badly.
He could see that clearly now. When the project started, the programming
team had just enough time to learn the syntax of the new language. They had
been using an object-oriented language for four years without ever producing
an object-oriented design. Their methodology called for one large develop-
ment cycle, which provided very little time to find all of the mistakes—and
even less time to recover. The insane argument at the time was that there was
no time for more than one iteration.

 As a member of the audit team dispatched to help the customer pick up the
pieces, I was there to interview the programmer. My team had composed a
checklist of likely culprits: poor performance, obscure designs, and process
problems. We had written the same report many times, saving our customers
hundreds of thousands of dollars, but the interviews always provided addi-
tional weight and credibility to back up our assertions.

 “Is your user interface pure HTML, then?” I asked.
 “Yeah,” the programmer replied. “We tried applets, but that train crashed

and burned. We couldn’t deal with the multiple firewalls, and our IT depart-
ment didn’t think they would be able to keep up with the different browser
and JVM configurations.”

 “So, where is the code that prints the returning HTML?”
 He winced and said, “Do you really want to go near that thing?” In truth, I

didn’t want any part of it. I had done this long enough to know that this baby
would be too ugly for a mother to love, but this painful process would yield
one of the keys to the kingdom. As we reviewed the code, we confirmed that
this was an instance of what I now call the Magic Servlet antipattern, featured
in chapter 3. The printout consisted of 30 pages of code, and 26 were all in a
single service method. The problem wasn’t so much a bad design as a lack of
any design at all. We took a few notes and read a few more pages. While my
partner searched for the code fragment that processed the return trip, I looked
for the database code. After all, I had written a database performance book, and
many of the semiretired database problems were surfacing anew in Java code.

 “Is this the only place that you connect to the database?” I asked.
 “No,” he answered. “We actually connect six different times: to validate

the form, to get the claim, to get the customer, to handle error recovery, to
submit the claim, and to submit the customer.” I suppressed a triumphant
smile and again reviewed the code. Connection pooling is often neglected but
incredibly powerful. In chapter 7, the Connection Thrashing antipattern
shows how a method can spend up to half of its time managing connections,
repeating work that can usually be done once.

6 CHAPTER 1

Bitter tales
 I also jotted down a note that the units of work should be managed in the
database and not the application. I noticed that the database code was sprin-
kled throughout, making it difficult to change this beast without the impact
rippling throughout the system. I was starting to understand the depth of the
problem. Even though most of these audits were the same, at some point they
all hit me in the face like a cold glass of water.

 Over the next four hours, we read code and drew diagrams. We found that
the same policy would be fetched from 4 to 11 times, depending on the usage
scenario. (The caching antipatterns at this customer and others prompted dis-
cussions in chapter 5, where you’ll learn about the caching and serialization
techniques that can make a huge difference.) We drew interaction diagrams of
the sticky stuff and identified major interfaces. We then used these diagrams to
find iteration over major interface boundaries and to identify general chatty
communications that could be simplified or shifted.

 We left the customer a detailed report and provided services to rework the
problem areas. We supplied a list of courses for the programmers and sug-
gested getting a consulting mentor to solidify the development process. When
all was said and done, the application was completed ahead of the revised
schedule and the performance improved tenfold. This story actually combines
three different customer engagements, each uglier than this one. I changed
some details to protect the names of the guilty, but the basic scenario has been
repeated many times over the course of my career. I find problems and provide
templates for the solutions. While most of my peers have focused on design
patterns, I find myself engaged with antipatterns.

1.1.1 Antipatterns in life
On the Watauga River, with all of the expectations and buildup, the run through
State Line is ultimately anticlimactic. I land with a soft “poof” well right of the
major turbulence. The entire run takes less than 20 seconds. Even so, I recognize
this moment as a major accomplishment.

How could a journeyman kayaker successfully navigate such a dangerous
rapid? How could I convince myself that I would succeed in light of so many
other failures? I’d learned from the success and failure of those who went
before me. The real extremists were those that hit rock after rock, breaking
limbs and equipment, while learning the safest route through the rapid. I see a
striking similarity between navigating rivers and writing code. To make it
through State Line Falls, I simply did three things:

Using design patterns accentuates the positive 7
� I learned to use the tools and techniques of the experts. As a programmer, I
attend many conferences to learn about best practices, and to find the
new frameworks and tools that are likely to make a difference on my
projects.

� I did what the experts did. I learned the easiest line and practiced it in my
mind. We can do the same thing as programmers, by using design pat-
terns detailing successful blueprints to difficult architectural problems.

� I learned from the mistakes before me. The first time down a rapid, it’s
usually not enough to take a good plan and plunge on through, torpe-
does be damned. Good plans can go bad, and it’s important to know
how to react when they do. As a programmer, I do the same thing. I am
a huge fan of “merc talk,” or the stories told around the table in the caf-
eteria about the latest beast of a program. This is the realm of the
antipattern.

When I was told how to run State Line Falls, I asked what-if questions. What
should my precise angle be? How can I recover if I drift off that angle? How far
left is too far? What’s likely to happen if I miss my line and flip? I got answers
from locals who had watched hundreds of people go down this rapid with
varying degrees of success. The answers to these questions gave me a mental
picture of what usually happened, what could go wrong, and what places or
behaviors to avoid at all cost. With this knowledge, I got the confidence that it
took to run the rapid. I was using design patterns and antipatterns.

1.2 Using design patterns accentuates the positive

Design patterns are solutions to recurring problems in a given context. A
good example is the Model-View-Controller design pattern introduced in
chapter 3. It presents a generic solution to the separation of the user interface
from the business logic in an application. A good design pattern should repre-
sent a solution that has been successfully deployed several times. At State Line
Falls, when I read about the successful line in guidebooks and watched experi-
enced kayakers run the rapid, I was essentially using design patterns. As a pro-
grammer, I use them for many reasons:

� Proven design patterns mitigate risk. By using a proven blueprint to a
solution, I increase my own odds of success.

� Design patterns save time and energy. I can effectively use the time and
effort of others to solve difficult problems.

8 CHAPTER 1

Bitter tales
� Design patterns improve my skill and understanding. Through the use of
design patterns, I can improve my knowledge about a domain and find
new ways to represent complex models.

Embracing design patterns means changing the way we code. It means joining
communities where design patterns are shared. It means doing research
instead of plowing blindly into a solution. Many good sources are available.

Books
This is a sampling of books from the Java design pattern community and the
definitive source for design patterns (Design Patterns: Elements of Reusable
Object-Oriented Software). As of this writing, five or more are under develop-
ment, so this list will doubtlessly be incomplete. Amazon (http://www.ama-
zon.com) is a good source for finding what’s out there.

� Design Patterns: Elements of Reusable Object-Oriented Software, by Erich
Gamma, Richard Helm, Ralph Johnson, and John Vlissides (The Gang
of Four)

� Refactoring: Improving the Design of Existing Code, by Martin Fowler,
Kent Beck (contributor), John Brant (contributor), William Opdyke,
and Don Roberts

� Core J2EE Patterns, by John Crupi, Dan Malks, and Deepak Alur
� Concurrent Programming in Java: Design Principles and Patterns, by

Doug Lea
� Patterns in Java, Volume 3: A Catalog of Enterprise Design Patterns

Illustrated with UML, by Mark Grand
� Data Structures and Algorithms with Object-Oriented Design Patterns in

Java, by Bruno R. Preiss
� Java Design Patterns: A Tutorial, by James William Cooper

1.2.1 Design patterns online
Manning Publications has a series of author forums for discussion. These
authors discuss server-side architectures, Java programming techniques, Java
Server Pages (JSPs), Extensible Markup Language (XML), and servlets. The
author of this book also has an online community to discuss Java antipatterns.

Manning authors

� Manning author forums: http://www.manning.com/authoronline.html
� Java antipatterns: http://www.bitterjava.com

Antipatterns teach from the negative 9
Java vendors

� IBM: http://www-106.ibm.com/developerworks/patterns/
� Sun: http://java.sun.com/j2ee/blueprints/

1.2.2 UML provides a language for patterns
The design pattern community has exploded in recent years partially because
there is now a near universal language that can be used to express patterns.
Unified Modeling Language (UML) brings together under one umbrella sev-
eral of the tools supporting object-oriented development. Concepts such as
scenarios (use cases), class interactions (class diagrams), object interface inter-
action (sequence diagrams), and object state (state diagrams) can all be cap-
tured in UML. Though this subject is beyond the scope of this book, there are
many good UML books, tools, and resources as well.

Books

� UML Distilled: A Brief Guide to the Standard Object Modeling Language,
by Martin Fowler and Kendall Scott

� Enterprise Java with UML, by C. T. Arrington
� The Unified Modeling Language User Guide, by Grady Booch, et al.

Tools

� Rational: http://www.rational.com
� Resource center at Rational: http://www.rational.com/uml/index.jsp
� TogetherJ from Together Software: http://www.togethersoft.com

1.3 Antipatterns teach from the negative

AntiPatterns: Refactoring Software, Architectures, and Projects in Crisis by
William J. Brown, et al., is an outstanding book dedicated to the study of
antipatterns. The antipattern templates that follow each chapter in this book
come from Brown’s text. In it, the authors describe an antipattern as “a liter-
ary form that describes a commonly occurring solution to a problem that gen-
erates decidedly negative consequences.” The words that caught my attention
are commonly occurring solution and decidedly negative consequences. Many
others have presented some of the negative examples in this book as the right
way to do things. Some, like the Magic Servlet, are forms of programs pub-
lished in tutorials, created by wizards, or captured in frameworks. As for

10 CHAPTER 1

Bitter tales
negative consequences, anyone who has followed software engineering closely
knows that a high percentage of software projects fail. The AntiPatterns text
cites that five of six software projects are considered unsuccessful. Java
projects are not immune. Earlier this weekend, I heard about a canceled Java
project using servlets and JSPs at a Fortune 100 company that will be replaced
with a new project using CICS and C++!

 Some of the madness in our industry is caused by outright malice. Some
vendors sell software that they know isn’t ready or doesn’t work. Some man-
agers resist change and sabotage projects. Some coworkers take shortcuts that
they know they will not have to repair. Most of the time, though, it is simple
ignorance, apathy, or laziness that gets in the way. We simply do not take the
time to learn about common antipatterns. Ignorant of software engineering
history or the exponentially increasing cost of fixing a bug as the development
cycle progresses, we might kid ourselves into thinking we’ll take a shortcut
now and fix it later.

1.3.1 Some well-known antipatterns
As programmers, we will run across many antipatterns completely unrelated to
Java. For the most part, we will not go into too many of them, but here are a
few examples to whet your appetite:

� Cute shortcuts. We’ve all seen code that optimizes white space. Some
programmers think that the winner is the one who can fit the most on a
line. My question is, “Who is the loser?”

� Optimization at the expense of readability. This one is for the crack pro-
grammers who want you to know it. In most cases, readability in gen-
eral is far more important than optimization. For the other cases,
aggressive comments keep things clear.

� Cut-and-paste programming. This practice is probably responsible for
spreading more bugs than any other. While it is easy to move working
code with cut and paste, it is difficult to copy the entire context. In
addition, copies of code are rarely tested as strenuously as the originals.
In practice, cut-and-paste programs must be tested more strenuously
than the originals.

� Using the wrong algorithm for the job. Just about every programmer has
written a bubble sort and even applied it inappropriately. We can all find a
shell sort if pressed, and if we understand algorithm analysis theory, we
know that a bubble sort is processed in O(n2) time, and a simple shell sort
is processed in O(nlog(n)) time, which is much shorter for longer lists.

Antipatterns teach from the negative 11
� Using the wrong class for the job. In object-oriented languages, we’ve got
to choose between classes like tables and arrays that have similar func-
tion but different characteristics. If our algorithm calls for random
access of a collection, using a b-tree or hash table will be much faster
than an array. If we’re going to frequently index or enumerate the col-
lection, an array is faster.

1.3.2 Antipatterns in practice
The study and application of antipatterns is one of the next frontiers of pro-
gramming. Antipatterns attempt to determine what mistakes are frequently
made, why they are made, and what fixes to the process can prevent them.
The practice is straightforward, if tedious. The benefits are tremendous. The
trick to the study of antipatterns is to:

1 Find a problem. This might be a bug, a poor-performing algorithm, or
unreadable method.

2 Establish a pattern of failure. Quality control is a highly specialized
and valued profession in manufacturing circles. A good quality engi-
neer can take a process and find systemic failures that can cost mil-
lions. Software process can create systemic failure, too. The Y2K bug
was a systemic failure of a very simple bug that was created and copied
across enterprises hundreds of millions of times. Sometimes, the pat-
tern will be related to a technology. Most often, process problems
involve people, including communications and personalities.

3 Refactor the errant code. We must of course refactor the code that is
broken. Where possible, we should use established design patterns.

4 Publish the solution. The refactoring step is obvious but should be
taken a bit further than most are willing to go. We should also teach
others how to recognize and refactor the antipattern. Publishing the
antipattern is as important as publishing the related solution. Together,
they form a refactoring guide that identifies the problem and solves it.

5 Identify process weaknesses. Sometimes, frameworks or tools encourage
misuse. Other times, external pressures such as deadlines may encour-
age shortcuts. We must remember that a process must ultimately be
workable by imperfect humans. In many cases, education may be the
solution.

6 Fix the process. This is the most difficult, and most rewarding, step.
We effectively build a barrier between our healthy enterprise and the

12 CHAPTER 1

Bitter tales
disease. Here, we take a hard look at what’s broken. In simple cases,
we fix the problem. In more extreme cases, we might need to estab-
lish a risk/reward analysis and win sponsorship to fix the problem.

Figure 1.1 illustrates the antipattern process.

1.3.3 Antipattern resources
The antipattern community is gathering momentum, looking for things that
break in a methodical way and capturing those experiences. Some engines

Isolated
problem

Process
weakness

Protective Barrier

B

C

D

E

F

G

The same
problem

Antipattern

Refactored
solution

Refactoring
guide

Healthy

enterprise

The same
problem

The same
problem

Figure 1.1 The antipattern process involves finding a problem B, establishing a pattern and
publishing an antipattern C, refactoring the solution D, building a guide so that the problem can
be resolved and fixed en masse E, identifying process weaknesses F, and building a barrier
between the healthy enterprise and the antipattern G.

Antipattern ideas are not new 13
use pattern recognition to find bugs from software source code. Many pro-
grammers are starting to publish bug patterns for common programming
mistakes. The http://www.bitterjava.com site has some links to Eric Allen’s
series “Bug Patterns.”

 The design pattern community also has a counterpart: the antipattern
community. This group is interested in learning from common experience and
capturing that knowledge in a uniform, methodical way.

 AntiPatterns: Refactoring Software, Architectures, and Projects in Crisis
brings these concepts together better than any other source I have seen. With
Brady Flowers, who contributed the Enterprise JavaBeans (EJB) examples for
this book, I had started to do bitter Java sessions at conferences before we
found AntiPatterns. When we found it, we immediately fell in love with the
ideas expressed in this book. Most of the book’s antipatterns went beyond
theory and explained the cultural conditions prompting a problem. The book
is extraordinarily useful to programmers who strive for excellence. We hope to
take these concepts into the Java community to continue the momentum that
AntiPatterns has created. We will go beyond generic antipatterns and dive
into those that are most prevalent to the Java community. These are some
online resources for antipatterns:

� The authors have an online source for Java antipatterns. You can find it
at http://www.bitterjava.com. On the site, we will attempt to provide
you with articles, discussion boards, and useful links.

� The http://www.antipatterns.com site has articles, events, and message
boards.

1.4 Antipattern ideas are not new

Should developers spend more time on the study of antipatterns or design pat-
terns? I will answer this with another true adventure story. Throughout the
better part of this past century, mountain climbers across the world had an ulti-
mate goal: to scale Mt. Everest, the highest summit in the world. Over time,
mountaineers tried many different approaches that would allow political pas-
sage to the mountain, solid expedition logistics, and the best chances for suc-
cess. Two routes go through Tibet. George Mallory was an early British
mountain climber, famous for saying he climbed Everest “Because it is there.”
He made his attempts on the north face, over terrain called the North Col.
The other northern route was considered much too dangerous for early moun-
taineers. Edmund Hillary, who became the first to climb Everest, eventually

14 CHAPTER 1

Bitter tales
succeeded on the southern face, through Nepal. That route is called the South
Col route. After the first ascent, expeditions climbed this dangerous mountain
with greater regularity and greater margins of safety. They began to unlock the
secrets of operating at high altitude and to find where the inevitable danger
spots were likely to be. They began to understand when the summer monsoons
directed the jet stream away from Everest to provide a window of acceptable
weather. They learned to leave their tents at midnight so that they would not
be trapped on the summit in the afternoon, when the weather frequently dete-
riorated. They were using design patterns.

 Inevitably, people started to guide trips up the mountain with increasing
success. Many debated that some of the paid clients did not have the appropri-
ate skills to be on the mountain and would not be able to handle themselves in
the event of an emergency. These criticisms turned out to be prophetic. Two
expeditions led by the strongest guides in the world got trapped at the top of
Everest through a series of poor decisions and bad luck. An afternoon storm
killed many of them, including three of the six guides and several of the cli-
ents. Jon Krakauer made this incident famous in the book Into Thin Air. The
design patterns were able to get them to the top but were unable to get them
safely back down. Good application of climbing antipatterns, like avoiding the
top of the mountain at dangerous times and holding fast to a prescribed turn-
around time, could have made the difference.

1.4.1 Learning from the industry
In many real-world situations, the principles of design patterns and antipat-
terns are combined. In heath care, aggressive preventive care (design patterns)
is combined with systematic diagnostics of health-related issues (antipatterns).
In manufacturing, quality certification programs like ISO 9000 (design pat-
terns) are combined with aggressive process analysis, problem identification,
and continuous improvement (antipatterns). Road signs are combined to point
out good driving behaviors like “Pass on left” and hazards like “Watch for fall-
ing rock.” In many other fields, the two practices go hand in hand. Software
engineers should try to combine these two approaches.

 A powerful movement in the quality industry, from the late ’70s through
the ’80s, sought to involve front-line assembly workers in the quality process.
These teams were tightly integrated with quality professionals. The teams,
sometimes with light-handed management direction, would identify problems
and contribute a block of time weekly toward solutions to those problems. My
father, Robert G. Tate, Jr., became so attached to this process that he left a
high-level position at Dover Elevators to pursue a consulting career installing

Antipattern ideas are not new 15
“quality circles” around the world. He found that something magical hap-
pened with the involvement of the actual blue-collar plant floor. The relation-
ships changed. Management, quality control, and the product builders began
to work together. The process was remarkably simple:

� Quality circles would form for the purpose of solving quality problems.
� Participants would become involved in the identification and solution of

quality problems.
� Management would empower them to deal with quality problems

directly.
� Participants were educated to perform these tasks.

Many of the quality groups showed staggering returns. Other programs, such
as Zero Defects, also thrived. Awards and accreditations, like Malcolm Bald-
rige and ISO 9000, gathered steam. The United States again discovered the
value of quality.

 In a very real sense, this book represents the same ideas that we see in
other areas and places them in the context of Java application development.
We are taking responsibility for bringing quality code to the desk of the com-
mon programmer. We want to identify places where our assembly line is bro-
ken. We want to spot holes in process and procedure that can cripple our
customers or even ourselves down the road. We want to know when major sys-
tematic problems, like the routinely late turnaround times on Everest, occur.
We then want to systematically solve them and save others from repeating our
mistakes. Most of this book deals with antipatterns that are already well
entrenched in Java programs, processes, and programmers. We should now
talk briefly about the discovery process.

1.4.2 Detective work
Experienced, conscientious programmers find most antipatterns. While teaching
the instincts of a detective may be difficult, I can provide some rules of thumb
from my consulting experience. These tips represent the places and methods
that I use to find antipatterns hiding in a customer’s process, or my own.

Bug databases contain a bounty of wealth
Most organizations already track quality metrics in the form of bug databases.
We can look to establish patterns based on keyword searches and spot checks.
Are we seeing a pattern of memory leaks? If so, misconceptions or frameworks
could be a source of bad behavior. Are the change lists for view-related main-
tenance particularly long? If so, this could point to tight coupling. Are certain

16 CHAPTER 1

Bitter tales
objects or methods particularly vulnerable to bugs? If so, they might be refac-
toring targets.

Early performance checks can point out design flaws
Sanity checks for performance early in a process can point to design flaws.
Some of these might be isolated incidents. Some, even at an early stage, are
likely to be common enough to warrant special attention. Internet applications
are particularly vulnerable to communication overhead. Several of the antipat-
terns in this book deal with round-tripping, or making many communications
do a relatively isolated task. Sloppy programming, including many of the issues
in chapter 9, can also cause performance problems, especially in tight loops.

Frequent code inspections and mentors help
Beginners and early intermediates can be a common source of antipatterns.
Pairing them with more experienced programmers and architects for code
reviews and mentoring can head off many bad practices before they start. At
allmystuff, the engineering department did a nice job of mentoring the solu-
tions development staff, which typically consisted of weaker developers with
better customer skills. Even a five-minute code inspection can reveal a surpris-
ing amount of information. Are the methods too long? Is the style readable
and coherent? Are the variable names appropriately used? Does the program-
mer value her intelligence above readability?

End users are unusually perceptive
Later in my career, I began to appreciate the impact of end-user involvement at
all stages of development. I found that end users can be brutally honest, when
we allow them to be. When I began to truly listen to feedback, I could tell very
early if my team would need to bear down or change direction. Too often, we
ask for the questions and listen only if we hear what we want or expect.

Outsiders can use interviews
The most powerful tool for someone outside a development organization is
the interview. People are put off when we try to propose answers without ask-
ing questions. Getting them to open up in an interview is usually not difficult
but may occasionally be troublesome. When we are digging for trouble, peo-
ple are much more perceptive if they perceive that we are helping to solve
problems and not looking for someone to blame. Interviews are most useful if
we can script at least a set of high-level questions, as well as anticipate some
low-level questions.

Why Bitter Java? 17
Establishing a pattern
By itself, a problem is only a bug. We should already have processes and proce-
dures for identifying and fixing bugs. Indeed, many of my father’s customers
had adequate measures for detecting and removing bad products from the
line. The problems with these reactive approaches are twofold. First, we will
never find all of the bugs. Second, if we do not fix the machinery or the pro-
cess, we will create more bugs! After we have established a pattern, we need to
elevate it from bug to antipattern.

1.4.3 Refactoring antipatterns
After we find a problem and establish a pattern, our strategy calls for refactor-
ing it to form a better solution and process. Here, we are overlapping the
realms of design patterns and antipattern. My intuition is that this combina-
tion is part of what is missing in the software quality industry. The combina-
tion of design patterns and antipatterns is practical and powerful. Poor
solutions can be identified through antipatterns and redesigned into more
proven and practical alternatives using design patterns. The process of contin-
ually improving code through restructuring for clarity or flexibility and the
elimination of redundant or unused code is called refactoring.

 Many experts advocate the rule “If it isn’t broke, don’t fix it.” In the realm
of software development, following this rule can be very expensive, especially
at the beginning of a program’s life cycle. The average line of code will be
changed, modified, converted, and read many times over its lifetime. It is folly
to view a refactoring exercise as time wasted without considering the tremen-
dous savings over time. Instead, refactoring should be viewed as an investment
that will pay whenever code is maintained, converted, read, enhanced, or oth-
erwise modified. Therefore, refactoring is a cornerstone of this book.

1.5 Why Bitter Java?

In the Java community, the study and promotion of design patterns, or blue-
prints for proven solutions, has become well established and robust. The same
is not true of the antipattern. As an architect and consultant, I have seen an
amazing sameness to the mistakes that our customers tend to make. While the
problem of the month may change slightly in a different domain or setting, the
patterns of poor design, culture, and even technology stay remarkably consis-
tent from one engagement to the next. I strongly believe that the study of anti-
patterns inherently changes the way we look at the software process. It keeps us

18 CHAPTER 1

Bitter tales
observant. It makes us communicate. It helps us to step beyond our daily grind
to make the fundamental process changes that are required to be successful.

 Most of the antipatterns in Bitter Java have a relatively limited focus com-
pared to the more general antipatterns in the AntiPatterns text. Each is
applied to the server-side programming domain, which is popular right now
and young enough to have a whole new set of common mistakes. Our hope is
that this book will continue the evolution of the study of antipatterns and
bring it into the Java community.

1.5.1 The Bitter Java approach
Bitter Java will take a set of examples, all related to a simple Internet message
board, and redesign them over many chapters. Each iteration will point out a
common antipattern and present a refactored, or redesigned, solution that
solves the problem. In many cases, there may still be problems in the refac-
tored solution. In most cases, these problems are addressed in later chapters.
The others are left as an exercise for the reader. Regardless, the focus of the
antipattern is to refactor a single problematic element.

 The focus of Bitter Java is on server-side programming. The base architec-
ture uses common server-side standards of servlets, JSPs, Java connectors, and
EJBs. Where possible, the solutions are not limited to any vendor, though EJB
implementations are currently platform specific.

1.5.2 Bitter Java tools
Based on my experience, I have chosen VisualAge for Java, WebSphere, and
DB2 because the software and support are readily available to the authors. All
of the implementations stress open Java designs and software architectures.
Free, open alternatives to our software include:

� The home page for Java, with pages for base toolkits and specifications
for J2EE extensions, can all be found at http://java.sun.com.

� A free servlet container, for the execution of servlets and JSPs either in a
stand-alone mode or with a web ser ver, can be found at http://
jakarta.apache.org/tomcat/.

� A free web server can be found at http://apache.org.

 BEA Systems’ WebLogic also supports all of the classes and constructs used
in this book, though they have been tested only on the original toolset. We do
use the IBM database drivers (and I feel that the native database driver is
almost always the best option), but we do not use the IBM-specific framework
for databeans or servlet extensions, opting for the open counterparts instead.

Why Bitter Java? 19
1.5.3 The Bitter Java organization
Bitter Java presents some background information in chapters 1 and 2, and
subsequent chapters present a series of antipatterns. The patterns are collected
into themes. Chapters 3 and 4 focus on a design pattern called Model-View-
Controller, and an associated Java design pattern called the Triangle. Chapters
5 and 6 concentrate on optimizing memory and caching. Chapters 7 and 8
concentrate on EJBs and connections. Chapters 9 and 10 address program-
ming hygiene and good performance through scalability. The chapters are
organized in the following manner:

� Background material for the chapter.
� A basic description of the antipattern, including some of the root causes

and problems.
� Sample code illustrating the use of an antipattern.
� One or more refactored solutions.
� Sample code illustrating the refactored solution.
� A summary containing the highlights of the chapter.
� A list of all antipatterns covered in the chapter.

Antipatterns and templates
Each antipattern is presented twice: once in the main text, and once in tem-
plate form at the end of each chapter. The templates that we have chosen, both
within the chapters and at the end of most chapters, are based on the templates
suggested in the AntiPatterns book. Those in the chapter text choose a mini-
malist organization with the keyword antipattern followed by its name in a
heading, followed by some background material. Finally, we present a refac-
tored solution following the solution keyword. At the end of each chapter is a
more formal template, following the conventions in AntiPatterns. In this way,
we make this initial contribution to the initial collection of Java antipatterns.

 If you are looking for particular technologies or techniques, this is where
to find them:

20 CHAPTER 1

Bitter tales
For the programming examples, http://www.manning.com/tate/ has the com-
plete code for all of the examples, as well as forums for discussing the topics of
the book. The code in the book will be in the Courier style:

code = new Style("courier");

Where possible, long programs will have embedded text to describe the code.
In other places, there may be in-line code that looks like this. Most of the
programming samples are based on VisualAge for Java, version 4, and Web-
Sphere Studio version 4. Most Java examples are based on JSP 1.1 and on
Java 1.2. We’ll tell you if the version is different. Some of the code examples
for the antipatterns are for instructional purposes only and are not running
programs. We have compiled and tried all of the good programming exam-
ples. They work.

Table 1.1 The technologies and techniques in Bitter Java are presented in an order that suits the
ongoing refactoring of a set of examples. This table can help you navigate to particular concepts
that might interest you.

Technologies Chapter

JSP design and composition 3, 4

Servlet design and composition 3, 4

JDBC, database programming 3, 4, 5, 6, 7

Connections framework 7

XML antipatterns 7

Web services 7

EJBs 8

Caching 5

Model-view-controller 3, 4

Performance antipatterns, tuning, and analysis 10

Antipatterns and the development process 1, 2, 11

Connection pooling 6

Coding standards and programming hygiene 9

Looking ahead 21
1.5.4 The Bitter Java audience
Bitter Java is not written like a traditional technical manual or textbook. To
keep things lively, we will mix in real-life adventure stories at the beginning of
each chapter, with a programming moral later in the chapter. We hope that the
style will engage many, and it might put off a few. If you are a reader who likes
to cut to the chase, you will probably want to skip to chapter 3, and you may
even want to skip the story at the front of each chapter. If you are looking for a
dry reference with little extraneous content, this book is probably not for you.

 The skill level for bitter Java is intermediate. If you have all of the latest Java
design pattern books and have bookmarks for all of the key design pattern
communities, this book is probably not for you. If you do not yet know Java,
then you will want to try some introductory books and then come back to this
one. If, like most Java programmers, you are an intermediate who could use
some advice about some common Java pitfalls, then this book is for you. Those
who have converted to Java from a simpler language, a scripting language, or a
procedural language like C may find this book especially compelling.

 Finally, Bitter Java is intended to be at a slightly lower level of abstraction
than project management books, or the first AntiPatterns text. We intend to
introduce code and designs that do not work and to refactor them. From
these, we will show the low-level impact of process flaws, a failure to educate,
and shortcuts. From this standpoint, architects and programmers will find
appropriate messages, but they may find following the examples challenging.
Project managers may also find some compelling thoughts, though the pro-
gramming content may be slightly advanced. For both of these communities,
antipattern summaries are listed at the end of each chapter in a concise tem-
plate based on those in the original AntiPatterns text.

1.6 Looking ahead

Bitter Java is about programming war stories. Books like The Mythical Man
Month, by Fredrick P. Brooks, have left an indelible impression in the minds of
a whole generation of programmers. We aim to do for Java programmers what
Brooks did for project managers. Bitter Java is about the quest for imperfec-
tion. We are not looking for isolated examples. We are looking for problems in
process and culture, demonstrated by technically flawed designs. We are set-
ting out to find the repeated mistakes that have bite. We are recording some of
the useful mythology of the Java programmer.

22 CHAPTER 1

Bitter tales
 In the next chapter, we will focus on the current landscape of the industry
and why it is so ripe for antipatterns. Next, we will look at basic server-side
designs and some antipatterns that plague them. Then, we will focus on com-
mon problems with resources and communication. Finally, we will look at
advanced antipatterns related to enterprise Java deployments. So, settle down
with this cup of bitter Java. We hope that when you’re done, your next cup
will be a smoother, more satisfying brew.

2The bitter landscape
This chapter covers
� Standards supporting server-side programming
� Early antipatterns plaguing Java programmers
� The emergence of extreme programming

practices
23

24
With four kayaks on top of the jeep, two local guides, a close friend, and I are driv-
ing up the Piedra River in Colorado. The river is pristine and intensely beauti-
ful. Its steep gradient and the huge water volume remind us of the formidable
reputation it has among kayakers, but I feel confident. We have asked our guides
to take us to the easy section. We drop off our car and put in.

 I follow our local guide closely. The plan is to blow through the first few less
technical rapids without scouting and then head downstream. I paddle around a
river bend and, as I take in the sight and sound, my stomach tightens. The river
explodes around me. I am not moving nearly fast enough—and I haven’t scouted.
As I plunge over the waterfall, I realize I have no chance. I flip quickly, miss my
roll, and I am now struggling to pull out of my kayak in the middle of a Class
IV+ rapid.

2.1 Fertile grounds for antipatterns

Over the last decade, open Internet standards supported by components and
frameworks have relieved us of the burden of writing complex communication
layers. After a couple of decades of struggling with memory management and
multiple inheritance in C and C++, programming environments like Java have
allowed us to concentrate on the application more than the programming lan-
guage. Traditional struggles with distributed communication, database pro-
gramming, and inadequate object packaging are now handled by EJBs and
even Common Object Request Broker Architecture (CORBA), which hides
much of the complexity of these problems.

 This rich and fertile soil has made it easier for us to grow increasingly
sophisticated applications. But rich soil is fertile for weeds, too. With the
increased power of frameworks comes the danger of increased laziness. New
layers can also add complexity and heavier processing burdens.

 Antipatterns love to hide, and we generally give them plenty of opportu-
nity to do so. In this chapter, we will review the basic building blocks of
server-side Java. We will explore its landscape and, along the way, expose many
of the crevices that conceal antipatterns. We will also lay a common founda-
tion so we can begin the discussion of Java antipatterns with a shared perspec-
tive and terminology.

2.1.1 The benefits of layering
Modern programming systems organize increasingly complex ideas by build-
ing increasingly complex and abstract services using layers. Early computers
did not layer services at all. Programs were necessarily small because hardware

Fertile grounds for antipatterns 25
systems and software organization could not support large software projects.
Twenty-five years ago when we wrote our first Basic programs, they typically
went through very few layers: the program, the Basic interpreter, Basic ser-
vices, and thin hardware-support layers. The Basic and hardware-support lay-
ers were burned onto read-only remory (ROM). Of course, we did not get any
of the benefits of a dynamic operating system, either.

 Over time, operating systems and languages have increased layering, mask-
ing complexity and improving productivity. Today, a simple “Hello, World”
servlet could go through many layers, networks, and computers. Figure 2.1
on the next page shows some of them, along with the supporting Internet
standards. On the client, the HTML presentation layer renders the user inter-
face. HTTP provides a standard messaging protocol that in turn is layered over
standard communication and addressing protocols, such as Transmission Con-
trol Protocol (TCP) and Internet Protocol (IP). A domain name service (DNS)
server provides a software layer to resolve the name to a formal IP address.
The server has TCP and IP layers for communication, HTTP layers to receive a
client request and process static content, a Java virtual machine (JVM) that
supports the Java programming language, and a servlet container that pro-
cesses the servlet. It would not be unusual for a simple Hello, World servlet,
called through a proxy server or firewall, to touch hundreds of hardware and
software layers.

 The architect for each layer made assumptions that work in your favor.
Imagine a casual Internet programmer who uses the Microsoft software devel-
opment tools (Visual Basic, Access, and FrontPage) to create a simple website
for his home business over a weekend or two. Consider the complexity of the
possible application:

� Through HTML and extensions, he may give it a sophisticated graphical
user interface (GUI). For this, he may use some complex structures such
as tables, layers, prebuilt components, and even multimedia.

� The site could directly communicate with other user interfaces through
links, even when the programmer knows little about the environment
supporting them.

� He could link it to a database without any programming, and even link
it to other applications on the desktop.

Compared to programs written just 10 years ago, this application is amazingly
sophisticated thanks to the supporting layers. Microsoft architects correctly
assumed that home developers are willing to trade performance for ease of

26 CHAPTER 2

The bitter landscape
use. Similarly, the architects of the Internet assumed that we are willing to
trade some of the power of each native platform for a least common denomi-
nator that allows open interoperability.

2.1.2 Layering can work against us
Students of antipatterns also know that an architect’s assumptions can work
against them. A website you create using Access, Visual Basic, and FrontPage
can be ramped up quickly, but consider the disadvantages:

� Maintenance is likely to be a challenge.
� The site will be difficult to scale and extend.
� You must deal with serious security risks.
� The site’s architecture may render it slow and unstable.

Name resolution (DNS)

Client

Server

Resource requests (HTTP)

Java service (servlets)

Programming language (Java)

Communication (TCP and IP)

Communication (TCP and IP)

Hypertext transfer (HTTP)

Presentation (HTML)

DNS

Figure 2.1 Here are some of the layers an Internet application typically uses. On the client, the
browsers encapsulate layers for communication, message transfer, and presentation. Name
resolution is handled through DNS, and the server contains layers for communication, messaging,
and application program support.

Fertile grounds for antipatterns 27
� The site’s lack of support for important standards, sensible within a
homogeneous environment, makes it difficult to integrate with the rest
of the enterprise.

 The original layer architect’s assumptions in this case are working against us.
Many of the antipatterns in this book have their roots in this conflict between
initial development simplicity and subsequent needs for scalability, extensibil-
ity, and performance. Initial assumptions can lead to shortcuts that burn you
badly as your project evolves. I spent the first four years of my consulting
career picking up broken glass from this type of scenario. In many instances, a
customer takes a simplistic, oversold technology; builds a system in a short
time without a concrete design; and pushes it broadly into production. I recall
chatting on a plane with executives of an airline reservation system. Just
before, one of our salespeople tried to sell a version of Basic as the best tool to
build the next generation of one of the largest reservation systems in the
world! These executives got a good chuckle, but many will take the bait. The
lure of simplicity makes them believe outrageous sales claims: the simplistic
environment is just as robust and scalable as any other environment. The trick
to success is to ask relevant questions like these:

� What does each layer bring to the table? We should understand the
value of each additional layer, and ask the vendors to provide references
and prove their worth.

� What is the cost? We need to be insistent about establishing cost. The
lure of something for nothing can often cloud the judgment of the most
sensible. Java technologies are no different. EJBs have often been over-
sold, and to customers who have little or no chance for success.

� Under what circumstances are those layers likely to break? What is our
risk? In essence, we want to find the traps. This book explores some
likely traps surrounding server-side Java. In this overview, as we build
up the various layers of the Internet, we will also notice the types of
nooks and crannies that conceal other traps.

� What can we do to protect ourselves from the trap, and how can we
extricate ourselves once we’ve fallen in?

� Finally, we want to establish our risk mitigation. This is the realm of the
antipattern.

28 CHAPTER 2

The bitter landscape
2.2 Internet technologies

The technology that has probably shaped Java programming more than any
other is the Internet. This huge, loose collection of disparate systems is con-
nected by broadly adopted open standards. These standards form a large part of
the foundation for Java servlets that are used heavily in this book. The Internet
standards technologies are far from spectacular. Faster, more flexible, and more
reliable communication protocols than TCP exist. The power of markup lan-
guages like Standard Generalized Markup Language (SGML) dwarfs the stan-
dard Internet markup language, HTML. HTTP is simple and unsophisticated.
The Internet works because the open standards are simple, widely adopted with
just enough flexibility and power to allow meaningful development.

 To find out more about a standard, the ultimate source is the RFC. The
standards board that has oversight responsibilities for the engineering of the
Internet is the Internet Engineering Task Force (IETF). A party submits a
standard on a form called a request for comments (RFC). When an RFC is
adopted, it becomes the standard. The process works like this:

� The IETF forms a committee that drafts a document (the RFC).
� Interested parties review the RFC and make comments.
� If the reviews warrant change, the comments are incorporated into the

RFC.
� When debate is closed, the final version of the RFC becomes the stan-

dard and no further comments or changes are permitted.
� From that point forward, changes occur through subsequent RFCs,

which can enhance, clarify, or even supersede previous RFCs.

Unlike proprietary standards, RFCs for all Internet standards are at our finger-
tips. They can be found at the IETF website: http://ietf.org/rfc.html. Problems
can be debated in a formal and open forum. If our understanding is ever
muddy or unclear, we should go right to the source of the standard: the RFC.

2.2.1 Internet topologies affect our applications
Let’s examine the composition of the Internet with an eye toward the places
that antipatterns may develop. The nodes of the Internet interoperate through
a defined set of standard networking protocols. Since most organizations and
corporations have security concerns, attaching all computers directly to the
Internet is not practical. Instead, several layers are used for protection, as
shown in figure 2.2.

Internet technologies 29
2.2.2 Enterprise layers add security and overhead
Most enterprises use firewalls and proxies to shield them from basic security
problems. A firewall is simply a machine placed between the Internet and the
HTTP servers of a corporation so that hackers cannot attack directly. Most
modern architectures call for two firewalls, placed on either side of the web
servers, to create an area called the DMZ (demilitarized zone). The DMZ
defines an area between the internal intranet and the external Internet. The
Internet includes both benevolent customers and malevolent hackers. The
DMZ provides a necessary compromise: access is open enough for meaningful
communication and security is tight enough to protect assets. Each firewall
enables different protocols, so hackers must coordinate two different types of
attacks to reach the systems on the private intranet. The systems in the DMZ
are more vulnerable to attack but are perfectly situated to provide access to
corporate resources from the public Internet so that effective commerce can
take place.

Modem

ISP

Firewall

DNS
Mail

News

Firewall

DMZ

Host

Public Internet

“Last mile”

Home

Web and app
servers

Routers,
bridges,

etc.

Internet service
provider

Figure 2.2 The Internet can have many layers between clients and their ultimate destination.
The enterprise layers are typically broken into two zones, separated by firewalls, called the DMZ.
The web server, and sometimes the web application server, resides in the DMZ.

30 CHAPTER 2

The bitter landscape
 Figure 2.2 shows the communication hops that a typical customer-to-
business HTML page request might take. The request goes from the browser
to a modem. There, the modem connects over a phone or cable network to
the Internet service provider (ISP). This area, called the last mile, is seen as
the last major obstacle to widely available high-speed connections. The ISP
provides such services as domain name lookup and mail and news servers, and
it provides an entry point to the Internet. Once the request is on the Inter-
net, it could take any number of steps before it reaches its ultimate destina-
tion. The request then must make its way through a number of hops in the
intranet. In this case, we have a firewall, a combined web and application
server, another firewall, and a host.

 As firewalls are added for security, sprayers and caches are added for perfor-
mance. Sprayers take a single Universal Resource Locator (URL) and map it
onto many different web servers. The sprayer may allocate requests using
sophisticated load balancing, or it may opt to simply serve them round-robin,
allowing a distribution of work across many servers. Caches are boxes that
store frequently accessed, static items like images, web pages, or multimedia
files. Since these files are not likely to change, a hardware cache can resolve
many requests before they even reach the web server, resulting in better
throughput and faster response times.

 While sprayers, firewalls, and caches serve inbound traffic, proxies are
machines that protect outbound traffic. A proxy will make requests on the
outside Internet on behalf of a browser. The proxy gives users inside a firewall
secure access to the Internet, based on corporate policies.

 These hardware layers serve us well, but they also add length to the com-
munication path between our customers and our server-side code. The added
firewalls might also conspire to foil us, if we are not careful.

Objects in the mirror appear closer than they are
The additional path length is completely transparent to us, so it is easy to
assume that our users are closer to our applications than they might physically
be. Many of us are accustomed to controlling the network between our clients
and servers. With the Internet, that is simply not the case. Assumptions that
our communications are near instantaneous can be disastrous. We must make
every communication count. Many of our antipatterns in the book are due to
making too many round-trip communications.

Internet technologies 31
 In late 1998, my Java proof-of-concept team designed an application that
was to be deployed in a Canadian government organization and used by
Canadian citizens. We treated round-trip communications like gold because
the quality of the Canadian phone system is not uniformly as strong as the
U.S. counterparts. In some cases, we could not even expect a 14.4 connec-
tion. Our deployment succeeded, where our competition failed, with fewer
programmers, less advanced technology, and less support for the latest stan-
dards because our solution made fewer round-trip communications.

The security policy of the firewalls is out of our control
If we are building server-side code and our customer is a corporate customer,
then we must deal with one or more firewalls on each side of the communica-
tion. In most cases, we do not fully control the security policy of the firewalls
on both sides of the communication. Therefore, we must make sure that our
applications use only the most basic communication protocols and standards.

 In early 1996, my Java proof-of-concept team was asked to build a proto-
type of a Java application for a city government to show legal cases to govern-
ment employees. We were told that the applications and users would all be
within the same firewall. Due to complex user-interface requirements, we built
a sophisticated applet with lots of bells and whistles. We connected directly to
the database with Java Database Connectivity (JDBC). (After all, it was only a
prototype.) Our project was a huge success.

 We were later called back to the customer to fix a few bugs in our proto-
type. The customer had a consultant come in and deploy the prototype with
very few changes. The application was so successful that many outside the city
legal department wanted to see it and use it. Though we had recommended
against deploying this application in its prototype state for this reason, we
wound up fixing it because an executive played a round of golf with our cus-
tomer. My team never again assumed that we controlled the deployment
topology or security policy of a firewall. Let’s explore the open standards that
are fair game for our deployments.

2.2.3 Standards enable the Internet and add layers
If hardware has powered the Internet, software has united it. Though there
are tens of thousands of disparate hardware platforms doing the grunt work,
standards have allowed them to work together with remarkable cohesion. Post
Office Protocol (POP3) and SMTP are standards for email. Emerging stan-
dards like Wireless Markup Language (WML) serve pervasive computing. Sev-
eral standards are particularly important to us; for example, TCP and IP are

32 CHAPTER 2

The bitter landscape
networking protocols that are the Internet standard; HTTP is a protocol used
to transfer documents; HTML is a tag language specifically used for docu-
ments; XML is an emerging markup language for giving structure and mean-
ing to generic data. Table 2.1 lists the standards that will form the foundation
for the Java server-side standards.

2.2.4 TCP and IP provide low-level communications
TCP/IP is a combination of two standards. TCP is used to provide message
transmission. That means it provides these services:

� Data will get from the source to the destination, or an error will be
reported.

� The data will reach the destination in the right order.
� The data will reach the destination without duplication.

TCP establishes a connection and disconnection protocol and a data-transfer
protocol. Attached to each message is a TCP header of 20 bytes or so that con-
tains the source address, destination address, sequence, acknowledgment
number, size, and a checksum for reliability.

 IP specifies a header, an address, and a routing protocol, among other things.
An IP header contains source, destination, size, and reliability information.

 IP addresses are like mailboxes, and they uniquely identify every logical site
on the Internet. Four numbers, separated by dots, represent an IP address. If
you are currently online, on most systems you can find your dotted address by

Table 2.1 The standards that enable the Internet. They will insulate our server-side Java applica-
tions from the details of low-level message transfer, data presentation, and parsing.

Standard Meaning Purpose

TCP Transmission Control Protocol System layer for reliable message transmission pro-
tocol.

IP Internet Protocol System layer for distributed addressing and routing
protocol.

HTTP Hypertext Transfer Protocol Application layer for data transfer.

HTML Hypertext Markup Language Tag language used to add structure and meaning to
documents for presentation. It has evolved to
include increasing application content.

XML Extensible Markup Language Tag language used to add structure and meaning to
generic data.

Internet technologies 33
typing “ping localhost” in a command window. This address is unique to your
system and can be reached by any point on the Internet. Some IP addresses are
static; some are issued dynamically. A DNS takes a friendly name and translates
it to a valid IP address, which allows us to type (and remember) names like
http://www.bitterjava.com.

 IP routing is handled hop-to-hop. A node delivering an IP message does
not need to know how to get to the ultimate destination. It only needs to
know the address of the next hop. A message being delivered from bruce.bit-
terjava.com to braden.austin.oberon.com might be delivered to bitter-
java.com, then oberon.com, then aust in.oberon.com, and f inal ly
braden.austin.oberon.com. The IP message has a timeout built in that pre-
vents infinite looping in the delivery process. If a message eventually times
out, it is discarded and the source is notified so that the message can be
retransmitted. Each node has a routing table, which contains the rules for
individual message dispatch.

 Given these standards, we have the primitives necessary to create distrib-
uted applications. Since we can now assume that other Internet servers also
adhere to these standards, we can build additional application layers that
will enable increasing levels of cooperation. Following are some applica-
tion-level standards.

2.2.5 HTTP provides application-level transport
TCP and IP are basically at the network and transport layers. HTTP, the proto-
col that browsers use to transfer web pages, moves up to the application layer.
It does not specify a connection, instead it uses TCP/IP for networking services.

 In its simplest form, HTTP is a client/server protocol. In reality, HTTP has
matured to a library-level transport given its popular use for tunneling all
sorts of application-specific protocols. For example, HTTPS can be used to
send secure messages. The base HTTP protocol shields the application devel-
oper from the complexities of basic client/server communication. The client
specifies a resource in the form of a URL. The URL specifies the protocol, a
domain name, and a path. Once the URL is specified, a TCP session is estab-
lished, and the client can issue commands. The most common commands are
GET and POST.

 A GET request is used to request server documents. When the client issues
a GET, the server then sends back a content message consisting of status,
header, and data. The Multipurpose Internet Mail Extension (MIME), the
type standard, determines how the browser will display the data. Common
types are text/html for formatted text, text/plain for plain text, and image/

34 CHAPTER 2

The bitter landscape
jpeg or image/gif for other images. MIME types also exist for XML, multime-
dia, and applications.

 A POST request instructs the server to execute an application to process a
block of information. A POST request can be issued within HTML to send
user-specified form data to the server for processing. The server then pro-
cesses the request and sends back a response, as in the GET. The traditional
method for processing the request is the Common Gateway Interface (CGI)
command. CGI simply starts a program on the server on behalf of the client.
This architecture can result in poor performance, because each request starts
a process, makes any required enterprise connections, processes the request,
takes down the connection, and then kills the process—an extraordinarily
cycle-expensive process. A significant advance over CGI, and the application
architecture for Java that we will use in this book, is called a servlet. A Java
servlet is a Java program that stays resident after use. Chapter 3 will begin to
describe some antipatterns of servlet architectures.

2.2.6 HTML and XML
We have been working our way up the food chain to progressively higher level
layers. HTML was originally created as a standard way to format documents
for display, but it has grown to be rich enough to build basic application user
interfaces. Though there are many extensions and versions, its user interfaces
can be flexible, portable, scalable, and efficient. HTML consists of plain text,
marked up with tags. Known as metadata, or data about data, these tags
define how HTML documents are interpreted and rendered.

 Where HTML tags attach a structure and meaning to documents, XML
attaches structure and meaning to generic data. With XML, standard types can
be built to do many different things. Hundreds of XML standards already
exist. XML types can be used in a number of ways. XML documents can be
translated with Extensible Stylesheet Language (XSL). This translation tech-
nology can generate HTML from XML for easy presentation; it can even repur-
pose data, or translate content from one XML form to another. Within an
application, the Document Object Model (DOM) interface can be used to
parse even the most complex XML documents. You can find additional infor-
mation about XML, including the base specifications, at http://www.xml.org.
Numerous other great websites and books on XML are available as well.

Internet layers solve client/server problems
Each successive Internet standard forms an increasingly abstract software
layer. The combination that is the Internet has shown incredible power and

Internet technologies 35
promise. It solves many of the antipatterns that were introduced with client/
server technology:

� Where client/server standards were proprietary, these standards are
open. The increased abstraction layers make it possible for disparate sys-
tems to communicate with ease.

� The standards make it easy to deploy applications. Since the HTML user
interfaces are lightweight and delivered automatically, the client-side
administration burden is reduced significantly. Though visions of enter-
prisewide thin clients have still not materialized as expected, Internet
systems still significantly reduce the pain of administration.

� The standards make it easier to develop common client user interfaces.
Supporting many different client types is inherently expensive. The
Internet’s thin-client model can ease that burden significantly.

Few deny the impact of open Internet standards on modern application devel-
opment. We need to understand that there is a cost. Our user interfaces are
not going to be as sophisticated as the client/server counterparts. Distributed
networks are also not going to be as fast as local networks. If we are not pay-
ing attention, the top-level abstractions can easily hide the amount of work
that must be done to move data. We can easily be complacent and neglect to
take into account the cost of round-trip communications.

2.2.7 Mini-antipattern: Too Many Web Page Items
Throughout this book, we will discuss explicit antipatterns, but also what we
call “mini-antipatterns”—small but common problems. The first antipattern is
an example dealing with the cost of Internet communications. Though each
Internet layer is incredibly efficient, we can easily underestimate communica-
tion costs. We have already seen that the path of an Internet request can be
deceptively long, including many Internet hops and layers. With the growing
sophistication of the artwork and dynamic content on many pages, the num-
ber of communications can exacerbate the problem. Let’s take a look at a sim-
ple page and one with more complex graphics. Page Detailer is a tool that
shows the load times of all the individual HTTP items on a screen. Figure 2.3
shows a page deta i l of the s imple introduct ion page for http : / /
www.yahoo.com. The page is deceptively simple and loads extremely quickly.
For this entire page, despite the dynamic nature of the content, only three
graphics and five distinct items loaded. The entire site loaded in half a second.

36 CHAPTER 2

The bitter landscape
Figure 2.3 This page detail shows the power of simple page design. The bars represent the total
time required to load the various objects on the Yahoo! site.

Figure 2.4 This page detail shows the cost of building a more sophisticated page. True, the
Amazon site loaded in a quick 5 seconds, but on a client with a high-speed modem. Together,
these sites illustrate the power of simple web pages with few objects.

Object technologies and antipatterns 37
 By contrast, figure 2.4 shows the Page Detailer output for http://
www.amazon.com. There were 10 times the number of items, and the load
time was roughly 10 times as long. Though this test does not prove that the
longer load times are due to the higher number of graphics, the circumstantial
evidence is interesting. Since each of these objects will trigger a separate HTTP
GET, there is a distinct performance penalty, and though small graphics are
blocked by many browsers in groups of four and should load quickly, the
effects are cumulative. For a Java programmer, the lesson is clear: a Java Inter-
net application can be only as good as its supporting architectures and page
designs. Reducing the number of web objects can reduce the load time, espe-
cially when transactions are very short or resources are constrained.

 We have seen the basic building blocks that will support Java server-side
programming. As we move up the food chain, we begin to discuss the applica-
tions that incorporate these layers. We will now briefly examine the organiza-
tional principles of Java through object orientation. We will consider the
traditional view that the supporting layers can help us, and we will also look at
some ways those layers can work against us.

2.3 Object technologies and antipatterns

Although object-oriented programming (OOP) requires a different methodol-
ogy and thought process than its procedural predecessor, the fundamental
concepts are few and simple. In structured programming, one divides data
into data structures and programs into functions. If a procedure or function is
too complex, it is decomposed into several simpler procedures. Complex
problems are decomposed into smaller and smaller units until each is of a
manageable size. Figure 2.5 shows the typical organization of a structured

Functions Data

Figure 2.5 Structured programming calls for the separate creation and maintenance of major
data structures and programs. Taking larger procedures and decomposing them into smaller
ones control complexity but can make maintenance problematic. The famous Y2K bug thrived
under conditions of structured programming.

38 CHAPTER 2

The bitter landscape
program. Procedures are in a hierarchy and data exists in data structures. In
most cases, data and applications are managed by very different subsystems.

2.3.1 Encapsulation helps to isolate change
A basic idea of object tech-
nology is that things that
belong together are packaged
together. We encapsulate
basic building blocks with
both functions and variables
that belong together, as in
figure 2.6. The building
blocks are the same, but the
organization is different. In
this way, we can package data
together with the functions
that manipulate it. This organization is much more like the way that we think,
and leads to more maintainable and elegant designs.

 A class is a template where attribute types and methods are defined. It is a
complex data type. In this case, the data type not only defines the data, but
also the things that can be done to the data. We call the variables attributes
and the functions methods. For example, a tax-form object may have data for
the customer and the individual line items, and a method to calculate the
form. It might also have methods to create and destroy the form and valida-
tion methods. A class is like a cookie cutter, and an object is like the cookie.
To create an object, a program instantiates a class. For a class called Author,
we might have objects for Tate and Hemingway.

2.3.2 Inheritance enables packaging of common behavior
Inheritance captures real-world relationships, allowing packaging of common
behavior without cut and paste. Inheritance is one of the primary ways that we
can customize frameworks for reuse. An inherited class keeps the interface and
features of its parent, and can override the methods to provide new behaviors,
or add new instance variables. For example, an Author class could inherit from
Person. The designers for the Author class could concentrate on building in
functionality related to being an author—say a list of published books. All of
the functionality in Person—such as the name, birth date, address, and phone
number—could be inherited. Combined with good encapsulated component
design, inheritance is another tool for reuse, and also provides better reliability.

Data
(Attributes)

Functions
(Methods)

Figure 2.6 Encapsulation packages methods and the
data structures that they use together. This packaging
scheme allows implementation hiding, which in turn
leads to formal interfaces that improve maintenance by
containing major changes to smaller areas.

Object technologies and antipatterns 39
When we reuse a piece of code, we tap the developers who built it, as well as
the testers, technical writers, and users who have used the original.

 But inheritance is not a panacea. Deep inheritance trees are complex to
read and use, and they can hide some unpredictable behaviors. Using
inheritance as a shortcut can cause serious trouble. If a sales department, for
example, wants special extensions of the corporate customer class, a tempta-
tion is to create a SalesCustomer class. If other departments follow suit, we
will rapidly lose the ability to create real-world subclasses of the Customer
class. Still, it is another tool in our bag of tricks that can elegantly capture
powerful, real-world relationships.

2.3.3 Polymorphism enables flexible reuse
With inheritance, many different forms of an object can use the same type of
interface. A real-world appliance is a good example of polymorphism. Many
forms of an appliance do different things through the same interface. Every
electrical appliance has the same interface with the wall—a plug. Though
appliances can have dramatically different functions, the builders of a house
need to install a single kind of interface—the electric outlet. Polymorphism
works the same way.

 A good example is the desktop document. To print it, we simply drag and
drop it on a printer object. The desktop documents are like polymorphic
appliances because we can have many different forms of documents with dif-
ferent behaviors and the same interface. The printer object is like the power
outlet. Whether the object is a spreadsheet, document, or graphic, though the
logic to print is different, we print it with the same gesture. The interface is
the same, even though the implementation may be dramatically different. The
printer object does not need to know that a document is a spreadsheet. It can
simply execute a generic print method specified in a standard interface, and let
the specific print method do the specialized job. In this way, application pro-
grammers are able to tap the functionality of specialized documents through a
standard interface.

2.3.4 Mini-antipatterns: Excessive Layering
I successfully exit my boat just as my body is sucked over yet another waterfall.
After a protracted swim through three rapids with drops, jagged trees, and boul-
ders, I am lucky to escape unscathed.

 The guides misunderstood our request for an easy section. Up to that day, their
“advanced” section was a new, expert-level Class V run that had not yet made it
into guidebooks. Though the easy section in the guidebooks had no rapids harder

40 CHAPTER 2

The bitter landscape
than intermediate Class III, their “easy” section started with a Class IV+ 8-foot
twisting waterfall.

 Object technology, and associated iterative methodologies, have been the
most significant, and oversold, development improvements since structured
programming. While many see dramatic improvement in development cycle
times, others fall short of expectations. The journey into the unknown domain
of objects can quickly turn for the worse. As with my trip down the Piedra
River, you can suddenly find your plans working out badly. In the kayaking
community, I easily qualify as conservative. I do extensive research on every-
thing that I run. I scout anything bigger than a ripple. I set safety and carry
rescue gear. On the Piedra we had not communicated clearly with our well-
meaning guides. Against my better judgment, we had not scouted the river
and failed to see the real danger. We did not stop to ask critical questions of
the experts.

 Often when we are being sold a new technology, external forces get in the
way. Others promote the new run as easier than Basic, more flexible than C++,
and faster than Assembler. We can get the Class V thrill with Class III risk.
Our eagerness and job pressures drive us to look for shortcuts. We may not
get the appropriate education or leadership, and may not even know that we
are in way over our heads until we are swept over that 8-foot fall and left swirl-
ing in the river.

 Object-oriented systems add layers to shield us from complexity. We have
seen that necessary additional layers add value at a cost. Extraordinarily com-
plex frameworks can be built with relatively easy reuse. Each layer has the
potential to have an interface simpler than the last. If we ignore the cost of
each added layer, we can get into trouble quickly. If a system design has too
many layers through excessive wrapping, deep inheritance, or poor design,
performance problems can grow exponentially. Code can also grow too deep
to maintain. It is easy for increasing complexity to be hidden until we integrate
at the end of a project, only after huge investments have already been made.

 In seven years as a systems programmer at IBM and in another five years as
a consultant, I saw this happen many times to experienced and talented teams.
Some problems are notorious for attracting solutions that are elegant but slow.
These are a few examples I participated in:

� In the early and mid-1990s, graphical frameworks were such a problem.
I was a member of one of 20 or 30 teams throughout the industry that
were racing to build an object-oriented user interface framework. We
placed general wrappers around Windows and OS/2 graphical objects.

Object technologies and antipatterns 41
When we did so, we lost many of the specialized optimizations that the
graphical framework designers built in, such as event filtering and
repainting. The original Java architecture for user interfaces, the
Abstract Window Toolkit (AWT) library, also had this problem. It was
easy to produce heavily layered user interfaces. All of the inheritance lay-
ers and the generalized event management without adequate filtering
made it easy for one user event to generate thousands of messages with
simple gestures like resizing. The term “event storm” was coined to
describe this common antipattern.

� Early versions of a fully object-oriented operating system called Tali-
gent also suffered from the over-layered user interface antipattern. I
worked alongside many of the brightest minds in the industry in a
department responsible for porting Taligent to other operating sys-
tems. The fundamental premise of the operating system was that every-
thing was an object, from semaphores to file handles. This came at a
price, but it was one that we thought that we could manage. As Apple
and IBM worked to merge IBM’s microkernel architecture with Apple’s
critical user-interface technology and operating system abstractions,
scope grew and fundamental assumptions also changed. We would
work to integrate massively complex systems at the last hour. The
debugging process was much faster than I would have thought possi-
ble, but the thing was s-l-o-w. There were simply too many layers for
the operating system or supporting hardware. We had not even layered
on user applications yet.

� In the mid- to late 1990s, early persistence frameworks, which allowed a
network of objects to be transparently saved to a database, were also
perilous. Many customers rolled their own. Very few were successful.
The reasons were twofold. First, the frameworks, implemented on rela-
tional databases, could not take advantage of many of the features of the
database engines for sorts, stored procedures, or complex queries.
When these functions were handled at the application layer, the perfor-
mance was hideous. Second, the frameworks were usually very complex,
adding many layers to the most basic of object models. When complex
and heavily layered object models are defined, even the most robust
architectures can break down.

Not all of these projects had happy endings. Some of the time, simplifica-
tion with faster hardware and better designs were able to take up the slack
and save us. Occasionally, we never recovered. When you’re developing
complex object-oriented designs, you must build layers for simplicity and

42 CHAPTER 2

The bitter landscape
modular design. You should also control the proliferation of layers to
essential well-defined abstractions for the sake of performance. Integration
testing throughout the lifecycle helps you identify where the bottlenecks
and excessive layering are likely to occur so that you can spot problem areas
early enough to make design changes and set early expectations.

2.3.5 Setting the stage for Java
Over time, C++ established object technology in systems labs and even in tra-
ditional information technology shops across the world, and newer languages
began to include object-oriented features. In early 1996, CORBA was floun-
dering with both leading vendors, IBM and Iona, struggling to reach a critical
mass for their products and Microsoft struggling with DCOM, an alternative
architecture. Object technologies had established an effective beachhead, but
application programmers were lashing out at C++ and Microsoft development
environments and operating systems were under increasing criticism. Java and
Netscape were about to take the world by storm. Hydrogen, meet oxygen.

2.4 Java technologies solve antipatterns

In early 1995, Sun built a proprietary browser with a language allowing tiny
applications, called applets, to be distributed like web pages. In late 1996, with
help from Sun, Netscape built the Java language and applet architecture into its
popular browser. The Internet was beginning to explode and suddenly
Netscape, and thus Java, were everywhere. It’s not a perfect language by any
stretch. Its types are an awkward blend of primitives and true classes. It is still
controlled by Sun instead of an open standards board. And the Java community
still bickers about where to take the language and major extensions like J2EE.

 But Java is right for the time. The C++ syntax, though awkward at times,
provides an instant community of programmers hungry for a cleaner and
higher level language. The Internet foundations positioned Java early on as
the premiere language for web class applications. One of the key factors to Java’s
success is its resolution of problems and antipatterns common in other languages!
The C++ and Smalltalk communities both had significant challenges that Java
addressed, at least partially. Here are some of the major problems that pro-
grammers of other languages encountered:

� Pointer arithmetic in C and C++, leading to instability and inherently
poor security. C++ and C instructions could be used to write to just
about any memory in the computer, including maliciously or in error. If
a block copy went one byte too far, it was likely stomping on someone

Java technologies solve antipatterns 43
else’s data. Java placed necessary constraints around pointer use for sig-
nificant gains in security and stability.

� Poor memory management in C++. Java is a “garbage-collected” lan-
guage, which means that the memory management is much more auto-
matic. Where each object in C++ must be explicitly allocated and freed,
Java objects can be automatically removed from memory when the last
reference to them is removed. Chapter 6 will show us that we still have
to pay cursory attention to Java memory management, but the issues
are much less complex and absorb much less time.

� Problematic multiple inheritance. C++ programmers had a difficult time
with multiple inheritance, or inheritance from more than one parent.
For example, a person could be a customer and also a father. When
frameworks got complicated, programmers had a difficult time deter-
mining which methods were inherited from which parent. Many a mas-
ters thesis was written on the C++ diamond inheritance problem, an
artifact of C++ multiple inheritance. Java addresses this problem by
allowing only single inheritance. Interfaces can still be used to imple-
ment classes with more than one characteristic.

� Runtime type errors in Smalltalk. Java is strongly typed, so programs
have fewer instances of runtime type errors. The compiler can catch
many instances of type collisions.

� Frustration with the proliferation of compiler directives. Includes, defines,
and typedefs were convenient at times but difficult to manage. In C++,
cascading include files were very difficult to maintain, understand, and
debug. Java forbids include files, and it does not have compiler directives.

Though Java has its own set of problems, it did address some significant com-
plaints of C++ and Smalltalk programmers. It is a fine example of the industry
looking at the antipatterns of a technology and then solving them with an
improved technology. Languages and standards layers can play a role in anti-
pattern development. Frequently, the development process will play a larger
role in the antipattern life cycle.

 Java allows us to take significant steps forward from its predecessors. The
capabilities of the language and libraries are improving rapidly. But a language
in itself is only a tool. It cannot protect us from major antipatterns. The meth-
odologies and procedures that we define to employ the tool have a much
larger bearing on success or failure.

44 CHAPTER 2

The bitter landscape
2.5 Major problems with the waterfall

Java eases many C++ complexities, such as multiple inheritance and memory
management. We have a good start, but the process that we use to build applica-
tions is as important as the basic building blocks. In this review, we will briefly
explore the impact of methodologies on antipatterns. Traditional application
development, called the waterfall development methodology, can allow complex
and large projects to be attacked but falls short as requirements get more
dynamic (figure 2.7). In general, the waterfall methodology can also provide
safe harbor for antipatterns:

� The process resists change in general, especially new requirements. This
resistance to change leads to fertile grounds for antipatterns, because we
have fewer opportunities to refactor.

Figure 2.7 Jimmy Vick over the Sinks. This photograph shows a literal interpretation of major
problems with a waterfall. In kayaking, cascades are tough because each dramatic drop can take
a paddler further off of his line, eventually dooming the run. Programming schedules can be
doomed when fixed in a sequence, slipping further with every major step in the cycle.

Major problems with the waterfall 45
� The waterfall process can delay high-risk elements (such as integration)
until late in the cycle, when it may be too late to recover. Antipatterns
can thrive in such an environment. Quality control is back-loaded, and
antipatterns found near the end of the cycle might never get fixed
because of political pressures and expense.

� The process forces complex one-time translations between major docu-
ments, with no built-in accountability. For example, it is difficult to be
sure that a program matches the original requirements. It is also difficult
to determine where a functional requirement maps onto an end user’s
requirement. This characteristic is called traceability. Process-related
antipatterns can thrive because of the relative lack of accountability.

2.5.1 Iterative methodologies
Iterative methodologies improve this process by providing short cycles with
increased accountability throughout each cycle. We can adapt to change and
address key risk elements early. Iterative methodologies help to thwart antipat-
terns by doing the following:

� Iterative methodologies provide more opportunities to refactor, usually
after each cycle. We then have an antidote for antipatterns that are
discovered.

� Deliverables, called artifacts, trace end-user requirements from the
beginning throughout the entire process after each iteration. This trace-
ability improves accountability and quality. In such an environment,
process antipatterns are more easily exposed and addressed.

� One of the cornerstones of a good development process is to build in
increasing value as the cycle matures. With an iterative process, it is much
easier to do so. Managers can define functional releases from a very early
stage, with extra functionality delivered throughout the process that
builds in additional use cases with each successive iteration. Reducing
scheduling pressures by accurate sizing can also help code quality.

2.5.2 Mini-antipatterns: Incomplete Process Transitions
Many projects never see the full benefits of object-oriented technologies and
related methodologies. They fail to make an effective transition from the tradi-
tional waterfall process. Here are some common mistakes:

� Poorly defined iterations. It is easy to look at an iterative methodology
and incorrectly infer that the process is unstructured. Many project
managers do not attempt to set a comfortable rhythm of release cycles.

46 CHAPTER 2

The bitter landscape
In these cases, it is tough for a team to develop a set of repeatable prac-
tices that work for the team.

� Poorly defined stopping points. I visited customers in the mid-1990s that
are probably still iterating on a single release. It is important to specify a
set of metrics that define the completion of a project or a phase. Usually,
the iteration units include a finite set of use cases, with some flexibility
to remove or insert additional cases as time permits. The flexibility must
be constrained by the business environment, though. Sometimes, differ-
ent phases of the process are overemphasized. For example, too many
iterations over the requirements and design without a clearly defined
exit strategy led to the term analysis paralysis.

� Overmanagement of the artifact set. Object-oriented tools and processes
can produce a staggering amount of paper if left unchecked. When
working at a startup, we were trying to get our cycle time down to six
weeks. As we were building the Client Services organization, two man-
agers with mostly procedural process experience produced a process that
would require a staggering 30 artifacts! Each artifact must contribute to
the delivery of a quality product to the customer. Additional artifacts
should be added only to the extent that they patch holes in the existing
development process and lead to better efficiency or quality.

� Poor teams or inadequate education. Most projects that succeed do so
because of good teams with strong knowledge. Investments in the qual-
ity of the team, especially when teams are new to object technologies,
cannot be overemphasized. In addition, it never ceases to amaze me
that many extremely strong teams have completely inadequate hiring
processes. Investments in consulting to shore up the interview process
or good recruiting companies usually provide outstanding returns.

Effective education and leadership can go a long way toward steering clear of
many of these problems. In fact, many organizations seed small projects with
high-powered consultants who serve as mentors to jump-start a project.
Hands-on training under effective leadership can be an extremely strong edu-
cational method.

2.5.3 Programming horizons: Extreme programming
Some recent refinements to iterative development have shown promise under
the label of extreme programming. Kent Beck introduced this methodology in
a book called eXtreme Programming eXplained. This refined process uses a
collection of simple rules and practices to form a disciplined and team-

Major problems with the waterfall 47
oriented approach to software development. The process is described in
detail at http://www.extremeprogramming.org. Most of the rules are bor-
rowed from other processes. My intuition is that the methodology will prove
to be highly effective at combating antipatterns. Here are some of the key
rules of extreme programming:

� Choose simple solutions. Extreme programming advocates the simplest
solution that will work, because of the ease of development and mainte-
nance. Simple solutions are much less likely to create antipatterns, or to
hide the ones that already exist.

� Ensure that the customers are on site. Throughout the programming cycle,
end users should be available to provide guidance, insight, and opinions.

� Write user stories. These serve the same purpose as the use case. They are
a few sentences of text, written by the users.

� Divide larger projects into measured, planned, small releases. Smaller
cycles result in user feedback, diminished risk, and adaptability to
change. Small cycles also allow antipatterns to be found and refactored
sooner, through more frequent code examination at every cycle.

� Refactor early and often. Refactoring involves redesigning solutions in
order to improve readability or design and remove redundancy or
unused code. Extreme programming operates under the philosophy that
refactoring is a wise investment. Refactoring helps eliminate antipatterns.

� Program in pairs. This practice seems wasteful but has tremendous
power. Pair programming improves quality and reduces tunnel vision.
Antipatterns are more likely to be spotted with an extra set of eyes.

� Code test cases before the rest of the system. This practice helps to flesh out
the requirements and ensures that new classes will meet specifications.

� Do not use overtime. This is probably one of the most useful—and least
used—ideas in extreme programming. Overtime increases available
hours and reduces clear thinking, with predictable results.

Extreme programming also introduces other practices that are not outlined
here. The methodology is garnering strong momentum among developers. I
used many extreme programming practices at allmystuff and endorse them
heartily. Such excitement and promise from a new methodology that actually
simplifies the development process is promising, and many of the practices
build a culture of teamwork and merciless refactoring that can thwart antipat-
terns before they start.

48 CHAPTER 2

The bitter landscape
2.6 A quick survey of the bitter landscape

To study Java antipatterns, we must begin with an understanding of the over-
all landscape: the standards TCP, IP, HTTP, HTML, and XML. The perfor-
mance of communications on the Internet has improved dramatically, but
complex interfaces with too many objects can hinder good performance
before any application code even enters the picture.

 Object technologies that form the basis for the Java programming model
make it easier to design and build applications. Encapsulation allows effective
packaging, inheritance allows meaningful reuse, and polymorphism allows
many forms of the same thing to share the same interface. Object layering is
the foundation for good design, but excessive layering will hamper perfor-
mance and readability.

 Programming methodology also plays a significant role in Java antipat-
terns. Traditional methodologies such as the waterfall process allow complex
projects but do not adapt to change or late-breaking requirements. Iterative
development, through multiple cycles that iterate over requirements, allows
better adoption of change and vastly superior risk management, but object-
oriented processes are not bulletproof. Programming processes are still
improving, and extreme programming shows promise. By adopting practices
that have worked under many circumstances, the process is improving the reli-
ability and efficiency of teams today.

 This summarizes chapter 2. Part 2 continues with a series of chapters that
iteratively improve a poor programming example. Chapters 3 and 4 will intro-
duce model/view/controller concepts and related antipatterns in the new con-
text of servlet designs. Chapters 5 and 6 will demonstrate effective memory use
and caching techniques. Chapters 7 and 8 will focus on EJBs and connection
models. Chapters 9 and 10 will deal with the bigger picture, addressing scalabil-
ity and programming hygiene.

2.7 Antipatterns in this chapter

These are the templates for the antipatterns that appear in this chapter. They
provide an excellent summary format and form the basis of the cross-refer-
ences in appendix A.

Too Many Web Page Items
RELATED ANTIPATTERNS: Round-tripping. This antipattern is one form
of the Round-tripping antipattern, found in chapter 8.

Antipatterns in this chapter 49
DESCRIPTION: Many web designers have no concept of the costs associated
with loading web page items such as graphics or animations. Since items
have incremental load costs, too many objects can doom performance.
MOST FREQUENT SCALE: Enterprise. Most enterprises operate from a
standard template with a common look and feel.
REFACTORED SOLUTION NAME: Eliminate Extraneous Objects.
REFACTORED SOLUTION TYPE: Software.

REFACTORED SOLUTION DESCRIPTION: Often, the number of web page
objects can be reduced through careful user interface design.
TYPICAL CAUSES: This antipattern can occur when graphics are used in
place of text, when image is valued over performance and performance is
not a priority.
ANECDOTAL EVIDENCE: “This site looks cool, but it is dog slow.” “We
have burned up 8 seconds, and we have not even loaded the servlet yet.”
SYMPTOMS, CONSEQUENCES: Poor performance.
ALTERNATIVE SOLUTIONS: Faster connections and better deployment
hardware or architecture.

Excessive Layering
DESCRIPTION: Object-oriented systems are easy to layer with excessive
complexity that is not required to adequately describe the relationships
and behavior in the model. The complexity of the software can easily out-
pace the capabilities of the hardware platform.
MOST FREQUENT SCALE: Application.

REFACTORED SOLUTION NAME: Refactor; Integrate Early and Often.
REFACTORED SOLUTION TYPE: Software.
REFACTORED SOLUTION DESCRIPTION: Layers can be combined or elimi-
nated based on the requirements of the system.
TYPICAL CAUSES: This antipattern can occur when inexperienced develop-
ers design solutions, or when communication between teams is inade-
quate, such as in geographically distributed groups.
ANECDOTAL EVIDENCE: “I sure hope that this integration works. We
don’t have time to recover if it doesn’t.” “Do you really need 18 levels of
inheritance in customer?”
SYMPTOMS, CONSEQUENCES: Poor performance, poor readability.

50 CHAPTER 2

The bitter landscape
Incomplete Process Transition
RELATED ANTIPATTERNS: Analysis paralysis. New teams without complete
education or experienced leadership can overanalyze solutions to the point
of stagnation.
DESCRIPTION: Many never enjoy the full benefits of object-oriented tech-
nologies and iterative processes because they fail to make a full transition
to the new development process.
MOST FREQUENT SCALE: Application or enterprise.
REFACTORED SOLUTION NAME: Education, Leadership.

REFACTORED SOLUTION TYPE: Process.
REFACTORED SOLUTION DESCRIPTION: Obtain additional education, be
certain that sufficient experience and leadership is on the staff, and make
sure that each document contributes to bottom-line quality. Exercise care
when managing the iterations.
TYPICAL CAUSES: A company or organization might be interested in the
benefits of object technologies but unwilling to pay the price.
ANECDOTAL EVIDENCE: “We seem to be chasing our tails.” “I just don’t
get it.”

SYMPTOMS, CONSEQUENCES: Teams iterate over a problem well beyond
the schedule constraints, especially in the analysis phase (called analysis
paralysis). Projects run over budget as frequently as before. Neutral or
negative quality results are also indicators. Maintenance times are not
shortened.

Part 2

Server-side
Java antipatterns

When my party of three ran our first Class IV river, we found that many of
the paddling methods that had worked for us in the past were no longer sufficient.
When we ran a series of waterfalls called Five Falls, a few of us went over the first
rapid backward. One person flipped and had to swim ashore. Another flipped and
was rescued mere feet away from the start of the most dangerous rapid on the
river. We quickly learned to scout, ask questions, and understand where the trou-
blesome spots were likely to be. We needed to dive into the details.

In Part 2, we introduce common Java-based antipatterns in detail. We demon-
strate the problems through poor Java examples. Variations of our ongoing
application, a bulletin board system, are used throughout the book. We will
iteratively improve it in chapters 3 through 8. We will attack antipatterns
related to basic model-view separation, caching, memory management, con-
nections, and EJBs.

 As we dive into the details, we will see two central themes: resource man-
agement and organization. Server-side Java programmers must come to terms
with efficient management of connections, memory, files, and threads. Signifi-
cant portions of whole books have been written on this subject. Noted author
and Java guru John D. Mitchell warns that “the lack of clear thinking and
design in dealing with resources in Java is the crux issue for server-side Java
folks.” Indeed, several of the chapters focus on a single resource or technique
for resource optimization. Chapter 6 (on memory management) and

52 PART 2

Server-side Java antipatterns
chapter 7 (on connection management and coupling) are especially poignant
examples. Organization is undeniably the other dominant theme. Chapters 3
and 4 deal with a model-view-controller organization that will improve main-
tenance and readability.

 You should be aware of several assumptions I make as I build the examples
in the book:

� In many cases, examples are bitter by design. Our approach is to refac-
tor the same base program in order to resolve one problem at a time.
Many known problems are not solved until late in the text. Obviously,
code in this book should not unthinkingly be pasted into production
environments.

� Most of the programming examples are complete rather than discussed
through code fragments. Because they place at your fingertips all of the
details that you need to follow the conversation, I hope that under-
standing the argument in this part will be easier.

� The exception management in the examples is intentionally sparse. This
keeps them brief and helps us maintain our focus on the bitter lessons
being taught.

� You can download the code from this part at your convenience from
http://www.bitterjava.com.

Chapters 3 and 4 will discuss a modern version of the Model-View-Controller
design pattern; chapter 5 will improve the performance of that design through
caching; chapter 6 will address Java memory management; chapter 7 will deal
with connections and coupling; and chapter 8 will deal with EJBs. In truth, I
could have organized the book differently. I settled on this structure because it
provided a logical refactoring of a single application through successive steps
that flowed freely and smoothly. The initial examples build a bulletin board
system. A cache improves the performance, and memory-management tech-
niques help manage the cache. Connection pooling provides a cache of sorts
for database connections. We finally look at how this project might be done
with a bitter EJB implementation. While this organization provides a free-
flowing book, it may be admittedly more awkward as a reference text. Such
are the day-to-day compromises of a starving author.

 And now, let’s roll up our sleeves and attack the bitter business at hand.

3Bitter servlets
This chapter covers
� The common Magic Servlet antipattern
� A step-by-step refactoring guide for Magic

Servlets
� A core design pattern called the Triangle for

server-side programming
53

54
It is springtime, and the hills are uncharacteristically green. I am mountain bik-
ing near my home in Austin. I take a fairly remote trail winding through the
rocky Bear Creek pass. It traverses the steep slopes beautifully, alternately sliding
on and off the ridges to provide many technical climbs and screaming descents. I
am winded as I arrive at a particularly technical climb on the Outback trail. I
have not ridden for a long while. Most Outback climbs are not risky because it is
hard to gather dangerous speed. Hills with very steep ledges are usually too diffi-
cult to climb, but this one has teeth. It has enough rocks and ledges to make
abruptly stepping off the bike on this steep terrain an adventure, as my shins
remind me.

 There are few good and many bad places to dismount, with cracks that can
snap ankles or knees. Mentally rehearsing my dismount at a demanding ledge
around a blind switchback that I seldom conquer, my mind wanders off the trail.
As I begin to round the tight bend at the bottom to start the climb, my body slips
backward, my front wheel lifts off the ground, my weight abruptly shifts forward,
and my back wheel spins out. I have lost momentum and am still depressingly close
to the bottom. I step off my bike and start to walk it toward the top.

 At the top of the hill, barely visible between the cracks, on a large, flat rock is a
huge rattlesnake. It is not in a defensive posture, so there is no rattle and no other
hint to its presence. The snake occupies the very flat rock that I would have landed
on had things gone as in my rehearsed dismount. It seems that my poor condition-
ing and technique today conspired to save me. I shudder, and continue to climb.

3.1 Getting off on the wrong foot

The basic gateway into most standards-compliant server-side Java applications
is the servlet: a simple wrapper around a service, implemented in Java and
reached through HTTP. This chapter lays out the most basic antipattern
involving the first layer of server-side Java: the Magic Servlet. Projects bun-
gling this first basic step have little hope for success. After examining the roots
of this antipattern, we will lay out the design, the symptoms, and the problems
of the Magic Servlet antipattern. Then, through a series of refactoring steps,
we will transform this antipattern to the Triangle, a design pattern based on
Model-View-Controller.

3.1.1 An early antipattern: The Magic Pushbutton
First, we should discuss an early version of an old antipattern. I encountered
the Magic Pushbutton in many of my early consulting engagements. (Stewart
Nickolas, a well-respected software architect, coined the phrase.) After I

Getting off on the wrong foot 55
started searching for the antipattern, I found what looked like the same
wretched application at many different places and different circumstances. It
didn’t matter what industry. It didn’t matter what language was used for the
implementation, though Visual Basic was the most common. The problem
was more common to inexperienced programmers, but hard-core program-
mers were not immune. It was the simplest of antipatterns: an unstructured
application consisting of a single, monolithic procedure fired by a user inter-
face event. In a nutshell, this problem is a lack of decomposition. A simple
example is an 11 KB application with 10 KB hanging off a pushbutton, as in
figure 3.1. Many readers recognize this antipattern even before further
description. This pushbutton is “magic” because it does most of the work for
the application within a single function. These applications make me think of a
fat plumber in tight Spandex. The proportions are comical and the results can
be disastrous. The applications are obviously ugly and difficult to maintain,
but the root cause or the refactored solution is not always obvious.

The Magic Pushbutton can actually be traced to the graphical tools that broke
onto the programming scene in the early 1990s. The tools ushered in drag-
and-drop programming. Like the ancient trading clipper ships that carried rats
with new diseases hidden among the treasures they bore, these tools brought a
new kind of antipattern. If you bring up an old copy of Visual Basic, it’s easy
to see why. The program, and many others like it, first presents a screen that
allows the development of the user interface. The programmer can rapidly
prototype the user interface and then attach the necessary logic. The sublimi-
nal message is clear: “Go ahead and start. You’re building a program, not a
house. You don’t need a foundation. With this new tool, you will have plenty
of time to design what you need down the road.” For some applications, this
approach works because the back end is already defined. The back end might
take the form of components built by someone else, stored procedures, or
existing transactions. For these applications, the view and model are cleanly
separated.

10 KB Script

OK

Figure 3.1
The Magic Pushbutton consists of a block of code hanging off a
pushbutton and represents event-driven programming at its worst. It
was most prevalent in the mid-1990s when Visual Basic, PowerBuilder,
and similar languages were at their strongest.

56 CHAPTER 3

Bitter servlets
 If the back-end logic is not well defined, then the application can easily
adopt the user interface as the design. The programming scripts, in the form
of basic functions, are attached to user interface events at key places. The big-
gest event, like a Submit or OK pushbutton, usually attracts the most code,
much like the jam side of a piece of toast attracts the floor. The Submit func-
tion becomes the focal point of the application and, without the appropriate
organization, grows like an unmanageable blob.

3.1.2 Building with Model-View-Controller
Of course, the right way to design this type of application is by using one of
the most famous and earliest design patterns: Model-View-Controller. This
common design pattern has become a staple of modern programming. It is
mentioned in the introductory chapters describing the utility of design pat-
terns in the design pattern bible, Design Patterns, by the Gang of Four. It has
been refined and updated in such places as Core J2EE Patterns, by Deepak
Alur, et al., and the Jakarta Struts framework. It has served as the foundation
for frameworks in Java, C, C++, Smalltalk, LISP, and many others. In this
chapter, we will introduce a variation called the Triangle pattern. With this
pattern, the model is the business logic that drives the application. The user
interfaces, called views, then present various aspects of the model. The interac-
tion of the user and other input/output streams are managed with the control-
ler. This design pattern is shown in figure 3.2.

3.1.3 Failing to separate model and view
Listing 3.1 is a program, written by a novice, that fails to use Model-View-
Controller. This baby is admittedly too ugly for even a mother to love, but
Java like this is more common than any of us would like to admit, especially in

View

Model

Controller

Figure 3.2 Model-View-Controller is a design pattern that advocates clear separation of the
user interface, or view, and the business logic, or model. The controller helps to manage input
and output. The advantages are widely recognized as easier maintenance, improved flexibility,
and more readable code.

Getting off on the wrong foot 57
script-driven visual development environments. Listing 3.1 is an attempt at a
bank account program.

import java.util.*;
import java.text.*;

public class BitterAccount {

 public String balance;
 public String fieldValue;
 public int radioButtons;
 public float balanceNumber; o Model logic

public BitterAccount() {
 balance="0";
 }

public String buttonPressed() {
 radioButtons = userInterface.getRadioState();
 if (radioButtons == 1) {
 fieldValue = userInterface.getEntryField();
 balanceNumber = balanceNumber + o Model logic
 Float.valueOf(fieldValue.trim()).floatValue();

 balance = Float.toString(balanceNumber);
 return balance;
 } else if (radioButtons == 2) {
 fieldValue = userInterface.getEntryField();
 balanceNumber = balanceNumber – o Model logic
 Float.valueOf(fieldValue.trim()).floatValue();

 balance = Float.toString(balanceNumber);
 return balance;
 } else if (radioButtons == 3) { o View logic
 return balance; o Model logic
 }
 }

}

This application is the logic for a simple ATM program. It takes the amount in
an entry field and debits or credits the account appropriately, based on the
state of a radio button. Notice that no attempt has been made to break out the
business logic (the account) and the user interface. In fact, the model and view
are so tightly intertwined that, in many places, both the model and view are

Listing 3.1 A bank account without Model-View-Controller

o View logic

o View logic

o View and
model logic

o Model logic

o View logic

o View and
model logic

o Model logic

58 CHAPTER 3

Bitter servlets
serviced with a single line of code. It is ugly now, and enhancements—such as
checking for an overdrawn state, adding a customer name and number, and
attaching this program to a database or transaction—will keep the snowball
rolling. Adding on the functionality of the account number verification will
just exacerbate the problem.

3.1.4 Breaking out the model
Now, consider the first refactoring step in listing 3.2, the alternative:

This bank account program is the model portion for the same application as listing 3.1, refac-
tored to the Model-View-Controller design pattern.
public class Account {

 private float balance;

 public Account(float openingBalance) {
 setBalance(openingBalance);
 }

 public void setBalance(float amount) {
 this.balance=amount;
 }

 public float(get.balance) {
 return this.balance
 }

 public float debit(float amount) {
 setBalance(this.balance-amount);
 return (this.balance);
 }

 public float credit(float amount) {
 setBalance(this.balance+amount);
 return (this.balance);
 }

}

The revised program is much simpler. It is the model for the application. The
name of the class is a real business object. The methods represent real business
actions. We can do things that we would expect to do to an account, like debit
and credit and check the balance. The logic that handles events for the user
interface and marshals the data to the user interface does not belong with the
model. We would add a controller object to handle these functions.

Listing 3.2 The Model-View-Controller design pattern

o Model logic

Antipattern: The Magic Servlet 59
 Notice the clarity of the model. It is infinitely more readable. As we have
come to expect, we can answer questions about extending the model much
more easily in the second example. Where could we add an overdrawn condi-
tion to the first example? What about the second? How would we credit inter-
est in the first example? What about the second? With our first antipattern, we
will review the same problem with a similar solution.

3.2 Antipattern: The Magic Servlet

Now we come to the most common server-side Java antipattern. The root of
this antipattern is a poor understanding and application of the principles of
Model-View-Controller. With this design pattern, our fundamental goal is to
establish a firm separation between the data model and the view, called model-
view separation. Both the model and the view must be implemented without
assuming anything about implementation details of the other. The controller
helps establish the connection between the two so that neither the view nor
the model must know about the internal details of the other.

 We have seen the model-view-controller architecture applied many times
with client/server architectures. When we split architecture between client and
server, a common assumption that is usually not far from the truth is that the
model-view separation follows without much additional effort. On the client
side, we have view logic. On the server side, we have the model. The control-
ler is usually split between the two, with most of the implementation on the
server and in supporting software. Most client-server user interfaces are highly
interactive, so the model and view interface is not dramatically different from a
localized implementation. In fact, it is easy to become lazy and assume that
model-view separation will naturally fall along the client-server boundary.

 We can get into serious trouble when we apply the same loose understand-
ing to servlet programming. Let’s think back to my ride up the trail in the
Texas hill country. We have an easily visible danger and a hidden one. Because
we are using servlets, the lines between the client and server are clearly articu-
lated, are they not? The client, which represents the view, is simply the HTML
user interface. The servlet represents the model, and the software layers of our
chosen architecture will handle the tasks usually managed by the controller. As
we bike up this trail, our eyes are clearly on the rocks of the trail: the separa-
tion between the HTML view and the servlet.

 We are about to be bitten by the hidden rattler. Unlike many interactive cli-
ent-server user interfaces, HTML has more of a batch-oriented architecture.
From the HTML code on the client, we will send an upstream HTTP POST to

60 CHAPTER 3

Bitter servlets
submit a request, and wait for the response. When that request is complete, the
server will send back a different downstream user interface. We must also apply
sound model-view separation to this downstream interface! Unfortunately, many
programmers usually focus on the cleanly separated upstream HTML view,
missing the generated downstream interface. The servlet becomes a tangled
mass of model and downstream view. This is where the rattlesnake is hiding.

3.2.1 Can we use servlets as the model?
We now have a clear evolution from the Magic Pushbutton antipattern to
present implementations. Instead of hanging an interactive 10 KB script off a
pushbutton, we hang a 10 KB servlet off a Submit button, with all of the code
in a single service method, as in figure 3.3. To review, a servlet is a server-side,
long-running Java program that conforms to an open application program-
ming interface (API). Servlets provide a server-side interface to a service.
When we click a Submit button on an HTML page, if the back end is written
in Java, we are likely calling some form of a servlet first. Servlets take advan-
tage of the HTTP GET and POST interfaces. The user invokes the servlet
through one of these commands.

 The typical servlet runs and prints some HTML that is returned to the client
when the request is complete. The heart of the antipattern is here, with the
downstream user interface. Figure 3.4 shows the architecture for a servlet and a
request for a servlet on most commercial web application server architectures.

 Listing 3.3 is an example of a servlet that prints “Hello, World” to the user.

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class HelloWorld extends HttpServlet
{
 public void doGet(HttpServletRequest req,

Listing 3.3 “Hello, World,” the traditional first Java server-side program

10 KB Servlet

Submit

Figure 3.3
The Magic Servlet is perhaps the most common server-side Java
antipattern. Programmers assume that the separation between HTML
and Java servlet code represents a clean separation between user
interface and business logic. For many reasons, such is not the case.

B helloWorld class

C HTTP GET interface

Antipattern: The Magic Servlet 61
 HttpServletResponse res)
 throws ServletException, IOException
 {
 res.setContentType("text/html");
 PrintWriter out=res.getWriter();
 out.println("Hello World");
 out.close();
 }

}

B This servlet inherits from HTTPServlet, which is the standard communication
between the client and server for this class of application.

C This program is triggered by an HTTP GET request. The other common HTTP
command is POST. Many times, both GETs and POSTs are sent to a common
method. These examples consolidate them in a method called performTask.

Client

Server

Web app server

Servlet

Web server

HTML

Browser

Hardware

System software

Program artifact

B

C g

D

E

F

Figure 3.4 B The user makes a request for a servlet. C The browser does an HTTP POST.
D The web server passes the request through to the application server, possibly installed as a
web server plug-in. E The application server invokes the servlet. F The servlet executes and
prints out an HTML page that G is returned to the user.

D Print writer prints HTML responses
E Printing response for the end user

62 CHAPTER 3

Bitter servlets
D The servlet gets a writer, which prints output that will be returned to the user.

E The writer is used to print HTML text that is returned to the user.

3.2.2 Stumbling into the Magic Servlet trap
In better designs, the servlet is only an interface point between the server-side
logic and the user interface. Unfortunately, the monolithic, do-everything
server script is still the design of choice for a surprising number of Internet
sites. It’s not always a servlet. This antipattern can take the form of a CGI
script, or an Oracle PL/SQL stored procedure, or an ActiveX request. In its
worst, and arguably most frequent, form, this servlet may handle the parsing
of the arguments, the back-end database connections, and the printing of the
resulting HTML page. The similarities to the Magic Pushbutton antipattern
that I started presenting to clients in 1990 are striking.

 The program which follows is an example of a do-everything Java program
taken from a real-world consulting engagement. It is based on an administra-
tive program used to print all of the pages in a bulletin board. This example is
actually much cleaner than the Perl program that it replaced. It has been
stripped down to the basics for clarity, and the recognizable features have been
changed for readability (and to protect the guilty). The servlet logic is com-
pletely separated from the input HTML (which is not shown here), but the
silent viper is hiding within.

package bbs;

// Imports

import COM.ibm.db2.*;
import java.sql.*;
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

These lines simply import the libraries that we will need. We have imported
the libraries for JDBC, Java utilities, Java servlets, and our database driver. This
sample uses DB2 drivers. Generic JDBC drivers are available as well, but may
have a slight performance penalty.

public class PostList
 extends javax.servlet.http.HttpServlet
 implements Serializable {

 /**
 * Process incoming requests for information
 *
 * @param request encapsulates the request to the servlet

Antipattern: The Magic Servlet 63
 * @param response encapsulates the response from the servlet
 */

This is the class definition. We have elected to inherit from the most com-
mon servlet type, or HTTPServlet. We get a request object and a response
object. These represent the initial request and the page that we will send
back as a response.

 public void performTask(
 HttpServletRequest request,
 HttpServletResponse response) {

Listing 3.4 shows the meat of the workhorse method. This is the proverbial
10 KB script. The performTask method consolidates all of the different paths
into the servlet to process the request. These may take the form of HTTP GETs
or POSTs. In this method, we can begin to see where we start to break down
architecturally. We are printing the HTML response page directly from this
method. These print statements are sprinkled throughout the method, along
with database requests and a little error processing.

 try {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 out.println(
 "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD "
 + "HTML 4.0 Transitional//EN\">\n"
 + "<HTML>\n"
 + "<HEAD><TITLE>Message Board</TITLE></HEAD>\n"
 + "<BODY>\n");

 Class.forName("COM.ibm.db2.jdbc.app.DB2Driver")
 .newInstance();
 Connection con = null;

 String url = "jdbc:db2:board";

 con = DriverManager.getConnection(url);

 Statement stmt = con.createStatement();
 ResultSet rs =
 stmt.executeQuery("SELECT subject, author, board" +
 " from posts");

 out.println("<h1>Message board posts</h1>");
 out.println("<TABLE border=\"1\">");
 out.println("<TD>subject</TD>\n");
 out.println("<TD>author</TD>\n");
 out.println("<TD>board</TD>\n");

Listing 3.4 We hopelessly tangle the model and return-trip view

B View logic

C View
logic

D Model
logic

E Model
logic

F Model
logic

G View
logic

64 CHAPTER 3

Bitter servlets
 while (rs.next()) {
 out.println("<TR>");
 String subject = rs.getString(1);
 String author = rs.getString(2);
 String board = rs.getString(3);

 out.println("<TD>" + subject + "</TD>\n"
 out.println("<TD>" + author + "</TD>\n");
 out.println("<TD>" + board + "</TD>\n");
 out.println("</TR>");
 }

 rs.close(); I Model and view logic
 stmt.close();
 connection.close();
 out.println("</TABLE>");
 out.println("</body>");
 } catch (Throwable theException) {
 }

 }

B The response writer is traditional view logic that establishes the result set and gets
a writer to create the output result.

C This print statement contains traditional view logic that prints the HTML header
to the output set.

D This database connection initialization is traditional model logic that initializes the
class that establishes the connection to the database. Note that the database logic is
right up against the view logic.

E In this traditional model logic, we establish the connection initialized earlier.

F Here we have more traditional model logic that runs the query and gets a result set.

G Once again, we switch back to view logic that prints table headings to the output
result.

H Here, things actually get worse! We first start a result set, then print our HTML
table headings, and then start to iterate through the result set.

I This model and view logic cleans up.

 To continue with the listing, we will process the methods required to process
the HTTP GET:

 public void doGet(
 HttpServletRequest request,

H Model and
view logic

H Model and
view logic

I Model and
view logic

Antipattern: The Magic Servlet 65
 HttpServletResponse response)
 throws javax.servlet.ServletException, IOException {
 performTask(request, response);
 }
}

This method actually gets the HTTP request, which comes in the form of an
HTTP GET. The method simply passes the request through to performTask,
which we use as a consolidated service method.

 The sample program returns a list of all posts on all bulletin boards. For
our purposes, I stop there. The unabridged program was much longer. It also
had to validate the input parameters; handle constraints for the post search;
check for error conditions; manage user preferences like font, color, and view-
ing style; and count and process replies. The actual Perl script that formed the
basis for the JSP rewrite was over 20 pages long! Table 3.1 shows the problems
with this approach; a more detailed description follows.

� No separation of concerns. To efficiently maintain this system, your user
interface design has to be maintained by your programmer. Ideally, we’d
like the graphics designers to be working in an HTML editor and the
programmer to be working in some programming environment. Since
the HTML page only exists in the form of print statements in code, it’s
difficult for a graphics designer to edit effectively. It has been my experi-
ence that as a rule, great designers don’t program well. Programmers
usually can’t design, and they generally know that they can’t design.
Unless you’re building a team of one, it is usually more cost effective to
split the workload between these groups. A clean delineation between

Table 3.1 Common problems caused by the Magic Servlet. Most of these are project killers.

Problem Discussion

No separation of
concerns

The user interface and model are usually maintained by different people,
but the view and model are integrated too tightly.

Difficult maintenance Isolated changes in the model or view easily ripple out to force signifi-
cant changes in other parts of the system.

Poor reliability Since changes cannot be isolated, one change can break other parts of
the system.

Little reuse Because the application is not structured, there are no logical units for
reuse beside the entire application. Instead, reuse will be limited to cut-
and-paste programming.

66 CHAPTER 3

Bitter servlets
the responsibilities of programmer and graphics designer is referred to
as separation of concerns.

� Difficult maintenance. One result of this design is that making a change
in the business process is difficult without a corresponding change in
the code that returns the HTML to the client, the code that reads from
the business model, the error-handling code, and the data-marshaling
code. Bugs in both the presentation and the business logic must be
maintained from the same place in the same way, even though the most
efficient methods for each are very different.

� Poor reliability. This design makes it hard to spot bugs and easy to inject
them. As a rule, the brain does a much better job grasping smaller
scripts and scripts with a much more limited purpose.

� Little reuse. Because there are no business objects and no user interface
templates, the most common reuse mechanism in this environment is
cut and paste, which leads to dual maintenance and the proliferation of
bugs throughout the system. In most organizations, cut-and-paste pro-
gramming is responsible for more bugs than the next two problems
combined. Y2K might be the best example. In this Y2K joke, the con-
sultant says, “I have good news and bad news. The good news is that
you only have three Y2K bugs. The bad news is that they have been pro-
liferated through your enterprise 250,000 times.” Cut and paste kills.

3.2.3 Causes of the Magic Servlet
The Magic Servlet can be found just about anywhere these days. The domi-
nant feature is the encapsulation of model, view, and controller in a single
method. This antipattern takes many forms. None of the intermediate refac-
toring steps that we will take goes quite far enough. Table 3.2 shows the
causes of the Magic Servlet.

 A servlet architecture can easily become the dominant organization for a
program. The servlet alone is not enough. For all but the simplest applica-
tions, the servlet should only be the controller, and it should marshal view and
model logic. Discipline is the best weapon against the Magic Ser vlet
antipattern. Clear and concise design on each project doesn’t cost time—it
saves time. If you do find yourself looking down the barrel of a 10 KB servlet,
don’t panic. Refactor.

Solution: Refactor using commands 67
3.3 Solution: Refactor using commands

In the late 1990s, an IBM team led by Dr. Mike Conner did significant and
powerful research on design patterns that could ease the adoption of Internet
standards such as servlets and Java. This team was a key early collaborator for
the creation of JSP and was also instrumental in the production of the early
EJB specifications. To my knowledge, they were among the first to recognize
the power of this family of design patterns. Many of those ideas are captured
simply and effectively in a practical book called Design and Implement Serv-
lets, JSPs and EJBs for WebSphere. Though it is written with WebSphere in
mind, the concepts commute to other platforms as well. Similar models, like
Model 2 in the Jakarta Struts framework, also support this type of model-
view-controller separation.

 The hard part of antipatterns is often recognizing them. Once we’ve iden-
tified an antipattern, we can take steps to refactor it or apply an existing design
pattern. In this section, we will refactor our bulletin board listing servlet. Each
step will get us closer to a Model-View-Controller design pattern. Settling for
any of the intermediate steps of our refactored solution is not wise. The pro-
cess should be followed all of the way to the model-view-controller conclu-
sion. Our solution will deviate slightly, but the finished product will be easily
recognizable as a model-view-controller architecture.

3.3.1 Break out the model
The 10 KB servlet is performing several functions that can be cleanly separated:

Table 3.2 The problems that cause the Magic Servlet. The most common causes are poor experi-
ence and porting. Perl is a particularly common port leading to this antipattern, exacerbated by
many poor conversion guides on the Internet and other places showing how to do straight ports
without redesign.

Cause Description

Inexperience Inexperienced Java programmers will use the design patterns that they
have used the most. Programmers from scripting or procedural back-
grounds are risks.

Perl rewrites Most Perl programs are not well organized, and porting guides on the Inter-
net do not preach restructuring the applications.

General porting Porting a bad design to Java will lead to a Java program with a bad design.

Poor tools Good design is easier with better tools. Some wizards create poorly struc-
tured code.

68 CHAPTER 3

Bitter servlets
� It is serving as the model for the program. The business logic is entirely
or partially included in the servlet.

� It is serving as the controller for the program. It is handling the input
form.

� It is performing the validation of the input data.

As we mentioned earlier, this design makes it difficult to make changes in busi-
ness process without corresponding changes in the code that returns the
HTML to the server, the code that reads from the business model, the error-
handling code, and the code that marshals data between the user interface and
the business logic. Changes in the returning HTML are code changes instead
of simple editor changes. Validation and marshaling changes are similarly
intrusive.

 Figure 3.5 shows how we should begin to refactor this solution. We should
break out the model for the program into a distinct component. Fortunately,
several design patterns exist that do just that. We could create an object model
to handle the back-end logic. We could package the components of this model
as EJBs, a solution explored in chapter 8. Or, we could explore a command
object instead.

3.3.2 Wrapping the model with command objects
Several design patterns place a thin wrapper of code around the business logic,
or model, for convenience. The Facade design pattern in chapter 8 is essen-
tially a thin wrapper with a different interface. The Jakarta Struts framework
uses a similar wrapping concept, called actions. A third alternative is the Com-
mand design pattern, which has been around since the early days of Smalltalk.
Internet search engines provide a wealth of information about commands.

8 KB Servlet

Submit

Command

Figure 3.5
Breaking out the command is the first step in refactoring the Magic
Servlet. The Command is a design pattern that allows clean wrapping of
the business logic, or model. Later steps will break out the return-trip
view.

Solution: Refactor using commands 69
 Commands are convenient because the implementation behind the com-
mand layer does not matter. The interface is the same whether the command
is accessing a full object-oriented model, a legacy COBOL application, messag-
ing-oriented middleware, a transaction, or a database, as in our example. A
command is a thin layer around the model, sometimes called the command
bean. The command bean’s interface consists of a series of sets representing
input parameters, a validation to check the input parameters, an execute to
access some aspect of the business model, and a series of gets to access the
results of the execution. The command architecture does not make any
assumptions about the structure of the model, giving the command bean
many advantages:

� It can be tooled or generated by a wizard. Many tools already generate
command beans, and a simple generator for them is easy to create.

� A generic command can be subclassed to encapsulate remote procedure
calls (RPC). The APIs for commands and RPCs are remarkably similar.

� It is a convenient architecture for encapsulating undo/redo architec-
tures. With the simple addition of an undo method, commands can be
saved and undone or redone.

� It can package multiple requests to save round trips.
� The interface is always the same, making our code much easier to main-

tain and read.

Think of the command bean as a simple interface to an RPC. The interface sets
a series of input parameters for the execution of the call. Then, the command
validates the request, executes it, and returns the results. The results are
achieved through a series of gets.

3.3.3 Separating the model logic
The following program shows a command object that returns the database
records from a table called posts. The basic form of a command is a set of
set methods for input parameters, an optional initialize method, and an
execute method, as well as a series of get methods for output parameters.
You may include additional private methods to handle such tasks as database
connections, but the basic form for all commands is the same.

package bbs;

import java.io.*;
import java.sql.*;
import COM.ibm.db2.*;
import java.util.*;

70 CHAPTER 3

Bitter servlets
For the commands, we have removed the imports for javax.servlet.* and
javax.servlet.http.*. The servlet will house the controller, and command
objects are used only for the model:

/**
 * PostListCommand
 * This class returns all posts from a database.
 * There are no input parameters. There is one output parameter.
*/
public class PostListCommand {

 // Field indexes for command properties
 private static final int SUBJECT_COLUMN = 1;
 private static final int AUTHOR_COLUMN = 2;
 private static final int BOARD_COLUMN = 3;
 protected Vector author = new Vector();
 protected Vector subject = new Vector();
 protected Vector board = new Vector();

 // SQL result set
 protected ResultSet result;
 protected Connection connection = null;

Now, we move on to the instance variables. Commands will frequently have
private instance variables that mirror the state of the underlying model. In this
case, since we copy an entire database result set into vectors instead of using
the result sets directly, we have instance variables that map our model abstrac-
tion nicely. We have some implementation artifacts as well: the column vari-
ables map onto database columns, and we have declared our JDBC result set
and connection here.

 Listing 3.5 shows the primary methods in the command architecture: ini-
tialize and execute. In our case, they wrap simple database logic. They can
also be used to provide a simple wrapper around a complex object-oriented
model. With execute and init methods, we can begin to see the benefits of
this design pattern. This entire execute method is dedicated to the execution
of our query. Contrast this with the previous example where we were also
printing the HTML result set. We have begun to break the tight coupling
between user interface and model.

Solution: Refactor using commands 71
 public void initialize() B Initialize connects and validates.
 throws IOException, DataException {

 try {
 Class.forName ("COM.ibm.db2.jdbc.app.DB2Driver")
 .newInstance();
 String url = "jdbc:db2:board";
 connection = DriverManager.getConnection (url);
 } catch (Throwable theException) {
 theException.printStackTrace();
 }
 }

 public void execute() D Execute fires the business logic.
 throws
 IOException,
 DataException {

 try {
 Statement statement = connection.createStatement();
 result =
 statement.executeQuery("SELECT subject, author, board" +
 " from posts");
 while (result.next()) {
 subject.addElement(result.getString(SUBJECT_COLUMN));
 author.addElement(result.getString(AUTHOR_COLUMN));
 board.addElement(result.getString(BOARD_COLUMN));
 }
 result.close();
 statement.close();
 connection.close();
 } catch (Throwable theException) {
 theException.printStackTrace();
 }

 }

B The initialize method is used to establish connections and handle early valida-
tion of input parameters. Our command simply establishes the connection.

C For our example, we have no input parameters to validate, so we simply get our
database connection. In chapter 8, we will discuss connection pooling, which can
yield a significant performance boost.

Listing 3.5 Wrapping the model logic with commands

C Establish a
connection.

E
Execute
query
and get
results.

72 CHAPTER 3

Bitter servlets
D The execute method is next. The generic trigger to the command, this method is
used to fire business logic that will execute a query, fire a message or transaction, or
perform any kind of local or remote activity.

E For this program, we simply set the query, execute it, and retrieve the results into
our vector instance variables. The logic could not be simpler. In chapter 8, we dis-
cuss ways to distribute commands with stateless session EJBs.

Some command patterns tend to combine the initialize and execute meth-
ods into a single execute method. I tend to keep them separated because it
gives me additional flexibility. I can add some validation here to make sure that
my command was set up properly. This validation is especially important when
I am counting on user input to populate my commands.

 public String getAuthor(int index)
 throws
 IndexOutOfBoundsException,
 ArrayIndexOutOfBoundsException {
 return (String) author.elementAt(index);
 }

 public String getBoard(int index)
 throws
 IndexOutOfBoundsException,
 ArrayIndexOutOfBoundsException {
 return (String) board.elementAt(index);
 }

 public String getSubject(int index)
 throws
 IndexOutOfBoundsException,
 ArrayIndexOutOfBoundsException {
 return (String) subject.elementAt(index);
 ;
 }

 public int getSize() {
 return author.size();
 }
}

These methods are at the heart of the command API. You can think of them as
input and output parameters for an RPC. Before the execute method, a series
of set methods are called. Then, initialize and execute are called. After the
execute method, a series of get methods are called.

 I created this class manually, but it could have easily been created from a
wizard. Outstanding characteristics are the generic interface and simplicity,
which makes them easily adapted to development tools. The standard design

Solution: Refactor using commands 73
pattern allows the other elements of the architecture to handle commands
generically. In short, we let the computer do the work.

 The interface for a command does conform to a well-known design pat-
tern. There are getters for output parameters, setters for input parameters, an
initialize method, and an execute method. Some architectures choose not
to implement an initialize method, and some use a method called prepare-
ToCommit. Given a list of parameters, it is easy to create a wizard or super class
to build the base commands. The commands can then be invoked and
accessed by other servlets.

 In this example, I have left the Structured Query Language (SQL) in the
commands, but it would be just as easy to express this architecture with state-
less session beans wrapping an EJB. The difference between the business
model in this example and the one in the previous servlet is tremendous. In
our case, the wizard will probably maintain the command beans. Changes in
the user interface will no longer affect the model.

 Our servlet is getting much simpler, too. Here is the performTask method
for the servlet that calls our command:

 public void performTask(
 HttpServletRequest request,
 HttpServletResponse response) {

 try {
 PostListCommand postList = new PostListCommand();
 postList.initialize();
 postList.execute();

performTask is getting smaller. First, we need to allocate our PostListCommand
object, which is performing our database access. Then, we initialize and load it:

 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 out.println(
 "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD "
 + "HTML 4.0 Transitional//EN\">\n"
 + "<HTML>\n"
 + "<HEAD><TITLE>Message Board</TITLE></HEAD>\n"
 + "<BODY>\n");

 // display the commands results
 out.println("<h1>Message board posts</h1>");
 out.println("<TABLE border=\"1\">");
 out.println("<TD>subject</TD>\n");
 out.println("<TD>author</TD>\n");
 out.println("<TD>board</TD>\n");

 for (int i=0; i<postList.getSize(); i++) {

74 CHAPTER 3

Bitter servlets
 out.println("<TR>");
 String subject = postList.getSubject(i);
 String author = postList.getAuthor(i);
 String board = postList.getBoard(i);

 out.println("<TD>" + subject + "</TD>\n");
 out.println("<TD>" + author + "</TD>\n");
 out.println("<TD>" + board + "</TD>\n");
 out.println("</TR>");
 }

Notice the loop that generates our dynamic content. The database origins of
our data are no longer visible at all. The Command pattern has effectively iso-
lated the model so that the implementation can change unencumbered.

 out.println("</TABLE>");
 out.println("</BODY>");
 } catch (Throwable theException) {
 theException.printStackTrace();
 }
 }
}

The remainder of the method simply closes our HTML constructs and
catches the exception. Overall, this example is simpler and more direct than
its counterpart.

 Now, our program has a basic model, an HTML view on the client, and a
servlet that has some “view” logic in the form of print statements, as well as
some “controller” logic that takes a request, invokes our command, and gets
the result. To clean up our implementation, we need to take the print state-
ments out of the servlet. We will do this with a mechanism known as the JSP.

3.3.4 Separating the return trip
At this point, we will deviate slightly from the traditional model-view-control-
ler architectures. Internet-related user interfaces are batch oriented. Model-
view-controller user interfaces are interactive. We have two distinct communi-
cations in our model: the initial request and the return trip. Because we
dynamically build our return page, it needs to be explicitly represented in our
architecture. This is exactly what we have done in figure 3.6.

 To continue to refactor this solution, we will next break out the return trip.
This portion of code builds the HTML page that is returned to the user. To do
this, we are going to use a JSP.

 A JSP is a server-side derivative of HTML. JSPs allow Java code and pointers
to dynamic content to be added to a server-side page, in addition to all of the

Solution: Refactor using commands 75
existing HTML tags. The JSP is then compiled and executed on the server. The
output of the executed JSP is a page of HTML. This HTML page is then
returned to the client.

 This architecture offers many advantages:
� JSPs allow dynamic content. Since HTML scripts like JavaScript execute on

the client, dynamic content that exists on the server is not available. Since
the JSP is compiled and run on the server, it is not limited like JavaScript.

� Separation of concerns. JSPs can be created and maintained in an editor.
Many editors explicitly accept JSP tags and extensions. Almost all HTML
editors allow HTML tags to be passed through. Using this design, a
graphics designer can be deployed to build web pages even if dynamic
content is involved with a minimum amount of scripting.

� JSPs can be used to isolate the view from the controller and the model. This
advantage is academic, but since it applies to one of the oldest and most
studied design pattern in modern history, it cannot be ignored. Years of
practical experience have shown that the Model-View-Controller design
pattern has improved readability, increased reliability, and reduced the
disadvantages of change.

� JSPs are an open standard. Unlike many techniques for creating dynamic
content, JSPs are based on collaborative standards. All of the techniques
in this book are compatible with JSP designs. JSPs permit connection
pooling, are compiled to long-running servlets, and handle dynamic
content without the need of a full applet on the client.

Servlet

Command

Client
HTML

JSP

Figure 3.6 The completed Triangle design pattern. This is a modified form of Model-View-
Controller. Because this technology is batch oriented, we have two views. The Client HTML is
the input view, and the JSP is the output view.

76 CHAPTER 3

Bitter servlets
� JSPs support tooling and generators. Because they are based on open stan-
dards and serve a large marketplace, many programming tools support
the JSP model. The interface is standard, which means it is easy to create
a JSP from HTML editors. Generators or tools can generate the command
bean templates and interaction controller templates. Many wizards create
command, JSP, and interaction controller templates. Some of the exam-
ples in this book were created with wizards and simplified. allmystuff cre-
ated a proprietary framework to automatically generate this triangle.

Figure 3.7 shows a request for a JSP on typical commercial web application
servers. We will assume that the JSP has not yet been compiled, and that the
web application server is deployed as a web server plug-in.

Client

Server

Web app server

Hardware

System software

Program artifact

Compiler

HTML

Web server

d

f

JSP
e

g

i

BrowserB

h

Servlet

C

Figure 3.7 B The user requests a JSP. C The browser issues a GET or POST. D The web
server passes the JSP request through to the application server, probably installed as a plug-
in. E The web application server begins to process the JSP. F The first time a JSP request is
made, the JSP is compiled. G The compiled JSP is a servlet. Text lines are compiled into print
statements, and Java code is passed through. H The web application server executes the JSP,
producing an HTML page, which I is returned to the user.

Solution: Refactor using commands 77
3.3.5 Using a JSP for the return trip
Here are the new elements to our refactored solution. First, let’s take a look at
the performTask method in our servlet, which is now a true controller. It is
much simpler. A controller’s job in Smalltalk is to handle the input and output
streams. Our controller is doing exactly that:

public void performTask(
 HttpServletRequest request,
 HttpServletResponse response) {

 try {
 PostListCommand postList = new PostListCommand();

Here, we are using the class loader to instantiate our bean. This bean will be
accessed by our JSP to print the results of the command’s query that we’ll exe-
cute next:

 postList.initialize();
 postList.execute();

 request.setAttribute("PostListCommand", postList);

 ServletContext servletContext = getServletContext();
 RequestDispatcher dispatcher =
 servletContext.getRequestDispatcher("/JSP/PostListResults.jsp");
 dispatcher.forward(request, response);
 } catch (Throwable exception) {
 exception.printStackTrace();
 }
}

These lines load the target JSP, which will use our executed command to print
the result set. They do three significant things. First, they put a reference to
our bean where our JSP can find it. Next, they get a dispatcher from the serv-
let context, which is used to call our JSP request page. Finally, they call the tar-
get result set JSP. (For a more robust application, we’d have pages for expected
error conditions as well.) We then catch our exceptions and go home.

 Listing 3.6 contains the return trip, in the form of a JSP. Note that there is
no Java inline, except for a small amount to place dynamic content and to cre-
ate our table. That is intentional. For a good separation of concerns, we want
as little Java as possible.

78 CHAPTER 3

Bitter servlets
<HTML>

<HEAD>
<TITLE>Message Board Posts</TITLE>
</HEAD>

<H1>All Messages</H1>
<P>
<jsp:useBean id="postListCommand" class="bbs.PostListCommand"

scope="request"></jsp:useBean>

<TABLE border="1">

<TR>
 <TD>Subject</TD>
 <TD>Author</TD>
 <TD>Board</TD>
</TR>
 <% for (int _i=0; _i < postListCommand.getSize(); _i++) { %>
 <TR> <TD><%=postListCommand.getSubject(_i) %></TD>
 <TD><%=postListCommand.getAuthor(_i) %></TD>
 <TD><%=postListCommand.getBoard(_i) %></TD>
 </TR>
 <% } %>
</TABLE>
<P>
</BODY>

</HTML>

This program is almost pure HTML, with very few exceptions. One JSP tag
references the bean, and five process the loop that prints the table rows. That’s
it. A good web designer would have no problem writing the short looping
code, and the programmer needs to know next to nothing about the web page
designs. The JSP will be compiled to servlet form and will look very similar to
our BreakOutCommand servlet.

 With this last change, we have refactored our original solution to adapt it to
the Triangle design pattern. The solution closely resembles the reliable model-
view-controller architecture, with a full interaction controller, a command that
wraps the model, an HTML page for the input view, and a JSP page for the out-
put view. We will be able to change our model and view independently.

Listing 3.6 Wrapping the model logic with commands

o JSPs mix HTML
with inline Java
content.

The <jsp:usebean>
tag identifies beans

we pass in.

o

 The <% %> tags
bracket Java code.

o

Antipattern in this chapter 79
3.4 Summary

In this chapter, we have explored a relic from the bio labs of the past in which
a single 10 KB script is attached to the Magic Pushbutton. Alas, the disease has
escaped again. These days, a 10 KB servlet is attached to the magic Submit
pushbutton. We have the antibiotic to kill this bug. We have applied the old
Model-View-Controller command pattern to this new technology to form the
Triangle. This design pattern uses HTML as the incoming view, which calls a
servlet called the interaction controller to get incoming requests, call the cor-
responding models, and return pages. The interaction controller calls the com-
mand bean or stateless session bean to access the model, and returns one of
several JSP pages as the outgoing view. This design pattern greatly simplifies
maintenance for Java server-side programs, and it provides the foundation for
J2EE architectures.

3.5 Antipattern in this chapter

This is the template for the antipattern that appears in this chapter. It provides
an excellent summary format and forms the basis of the cross-references in
appendix A.

The Magic Servlet
RELATED ANTIPATTERNS: Spaghetti Code, Monolithic Servlet. This anti-
pattern is the servlet-based version of Spaghetti Code. The JSP version of
this antipattern is the Monolithic Servlet.
DESCRIPTION: The Magic Servlet is a Java servlet that does all of the work
itself. The servlet has elements of model, view, and controller. Servlets
created in this form should be approached with extreme prejudice: they
are simply evil.
MOST FREQUENT SCALE: Application to enterprise. In most cases, this
antipattern will be developed in more than one application, because one
application is used as a template for others.
REFACTORED SOLUTION NAME: The Triangle.

SOLUTION ALSO KNOWN AS: Model 2, Modified Model-View-Controller.
REFACTORED SOLUTION TYPE: Software.
REFACTORED SOLUTION DESCRIPTION: The solution for this problem is a
version of Model-View-Controller known as the Triangle design pattern.
Because web applications are batch oriented instead of interactive, we

80 CHAPTER 3

Bitter servlets
must modify Model-View-Controller to deal with upstream and down-
stream user interfaces. The upstream user interface is served as HTML. We
break out model logic as a command (or see the alternative below) and
the return-trip logic as a JSP. We service each with a servlet, called our
controller.
TYPICAL CAUSES: This antipattern is usually caused when a programmer
assumes that programming with servlets and HTML automatically separates
the model and view. Another common cause are ports of poorly written
scripting programs from Perl or ColdFusion. The bad design comes along
with the code.

ANECDOTAL EVIDENCE: “Servlets are neat because they force us to sepa-
rate the model and view.” “I found this table on the Internet that shows
me how to port Perl applications.” “This servlet is a beast.”

SYMPTOMS, CONSEQUENCES: Code is difficult to maintain, difficult to
refactor, prone to errors, and difficult to read. Cycle times are longer.
Applications are prone to round-tripping. Extensions such as distribution
and adaptation of undo/redo models take longer than they should.
ALTERNATIVE SOLUTIONS: Many versions of command design patterns
exist, dating back to early Smalltalk programming. These are some popu-
lar alternatives:

� In Jakarta Struts, actions essentially follow the Command pattern.
� Stateless-session beans can be used to wrap model logic if the com-

mand needs to be distributed.
� Distributed commands have been used successfully since the mid-

1980s within the Smalltalk community, and again in many CORBA
communities.

4Bitter JSP
s

This chapter covers
� Variations of the Magic Servlet antipattern
� JSP design antipatterns
� Command bean antipatterns
81

82
When you’re flying at 1,000 feet, suburban Dallas looks surprisingly different.
Even at that altitude, you can hear the sounds of the City. It is early. Hot-air bal-
loonists favor the windless hours right at sunrise. This is my second ride, and the
morning is calm and beautiful. The pilot, Dee Crabtree, and I plan strategy with
our chase crew by radio. We are now directly over our target, but the competition
guidelines clearly state that we must drop our marker from below 100 feet to score.
Just for kicks, we drop it anyway. We watch in horror as the streamer stretches out
sideways, indicating screaming ground winds we cannot see. We need to land-now.

The City looms near, with high-rises, airports, and power lines. We swoop down,
scanning for a landing zone among the ever denser artifacts and trees. The
ground is flashing by much too quickly. Out of nowhere appears a perfect field
with no live-stock. We drop so fast my stomach is in my throat. As the ground
rushes toward us I pray that Dee will know how to save us. As he yells his instruc-
tions, I crouch down in the bottom of the basket and wedge myself between the pro-
pane tanks, preparing for impact.

4.1 Getting only halfway home

After making many smart choices on the front end of a project, many a pro-
grammer stumbles on one of the secondary antipatterns we’ll describe in this
chapter. In some cases—for instance, with Compound JSPs—the problems are
relatively minor, with mild consequences, and you can easily refactor. But
occasionally, the antipatterns grow in severity over time and block you from
enjoying many of the advantages of the base Triangle design pattern. In each
case, we can soften our landings with some advanced knowledge about our
landing zone—the intricacies of the design patterns that we employ. In this
chapter, we will explore some danger signs and then work through several
antipatterns and their refactored solutions.

4.1.1 Recognizing the danger signs
A common class of Internet development environments uses various tag lan-
guages to create server-side Internet applications. ColdFusion and ActiveX are
classic examples. These programs are popular because they capture the spirit of
HTML scripting, a familiar and efficient choice for many users. These applica-
tions encourage robust user interfaces, because the server-side scripting envi-
ronments are similar to HTML tools. However, danger lurks here. Many
applications using these technologies have the same characteristics of the
Magic Servlet, with a massive server-side tag-language script instead of a Java
servlet. Table 4.1 shows some of the key disadvantages to such a design.

Getting only halfway home 83
Lacking a clean delineation between model, view, and controller, we simply
have another version of the antipattern created in chapter 3. Intuitively, this
antipattern “feels” slightly different; you’re dealing with a tag language rather
than procedural or object-oriented development. In general, environments
based primarily on server-side tag languages will tend to break down as
entropy increases over time because they don’t have a rich enough language to
express a clean model-view-controller architecture. These are the symptoms:
the efficiency of the environment begins to slip. The return page becomes
progressively more difficult to edit. Since the coupling between the user inter-
face and model is tight and difficult to break, it grows increasingly complex
with each revision and cannot be refactored easily.

 User interface redesigns take much longer than expected. Again, tight cou-
pling forces too much model and controller logic into the view. Redesigning
such logic is difficult, and attempts to refactor to a more scalable architecture
fail. New programmers resist using the scalable architecture. This happens
because the toolset expresses tagged user interfaces well but is more limited
for true object-oriented development. Most programmers under these cir-
cumstances will try to stay in the most efficient realm, which in this case is the
tagged user interface development environment.

Table 4.1 Here are some of the disadvantages of tag-language development on the server when
it is used as a replacement for the model-view-controller architecture.

Characteristic Disadvantage

Model logic is tightly coupled with
view.

Extension and maintenance are difficult because changes
cannot be isolated to the model or view.

Model logic is handled in a tag
language or script.

Many times, a language like Java is superior to tag lan-
guages for models, because high-level languages are more
flexible and robust for this task. Tag languages are better
suited for the interface.

Concerns are not separated. Programmers must be good designers and designers must
be good programmers, leading to more expensive staffing.

Communications are proprietary. After the initial implementation, choices for model imple-
mentation architectures are limited.

Tags are proprietary. Choices for the user interface development are limited,
because the proprietary tags make basic HTML editor inte-
gration difficult.

84 CHAPTER 4

Bitter JSPs
4.2 Antipattern: Monolithic JSPs

Faced with such a daunting list of problems, a programmer may choose to
rewrite a poorly designed, pure tag-language application using a more robust
development language, such as JSPs. The temptation to build the same flawed
architecture with the new technology can be overwhelming. After all, the JSP
specification includes a tag language. This antipattern is not limited to applica-
tion rewrites. The community of Java programmers has diverse roots, and
some are bound to come from tag-language backgrounds. Given this experi-
ence base, writing programs in this style seems natural.

 Even if we don’t have a tag-language background and are armed with the
proper knowledge, sometimes we just get lazy. If we plan to build a JSP by
hand, then making one scripted JSP page with no method or class definitions
and inline print statements is easier than taking the time to build a command
bean, an interaction controller, and a JSP. However, keep in mind that the
extra effort will be paid back with interest over time. Maintenance and user
interface design are dramatically improved with a clean separation of concerns.

4.2.1 This program lacks model-view separation
Let’s revisit our bulletin board example from chapter 3. This time, I’ve refac-
tored it in the wrong direction in order to show the prototypical monolithic
JSP. The antipattern is similar, but the “feel” of the application is different. In
this case, it is easy to see the flow of the user interface. The model, however, is
poorly defined and awkward. The tag-language environment simply does not
allow the model’s design to be cleanly partitioned in the way pure Java would.
Consider the program in listing 4.1. This antipattern is really just another ver-
sion of the Magic Servlet, but many programmers who would never even
think of building something so ugly will choose to build monolithic JSPs with
no reservations. I found three different JSP tutorials on the Internet that basi-
cally taught this model!

<%@ page import="java.sql.*" %> B Model specific initialization
<%

 // instance variables for connection
 ResultSet result;
 Connection connection = null;
 Statement statement = null;
 String url = "jdbc:db2:board";

%>

Listing 4.1 An example of the Monolithic JSP

Antipattern: Monolithic JSPs 85
<HTML> C View specific HTML

<HEAD>
<TITLE>Message Board Posts</TITLE>
</HEAD>

<BODY BGCOLOR=#C0C0C0>

<H1>All Messages</H1>
<P>

<TABLE border="1">

<TR>
 <TD>Subject</TD>
 <TD>Author</TD>
 <TD>Board</TD>
</TR>

<% D Model specific database access

 // Establish a connection
 try {
 Class.forName ("COM.ibm.db2.jdbc.app.DB2Driver").newInstance();

 // connect with default id/password
 connection = DriverManager.getConnection (url);

 // set and execute SQL statement
 statement = connection.createStatement();
 result = statement.executeQuery
 ("SELECT subject, author, board from posts");

 // print the results
 // retrieve data from the database and print on the result page

 while (result.next()) {
 out.println("<TR> <TD>" + result.getString(1) + "</TD>");
 out.println("<TD>" + result.getString(2) + "</TD>");
 out.println("<TD>" + result.getString(1) + "</TD></TR>");
 }
 result.close();
 statement.close();
 connection.close();
 } catch (Throwable theException) {
 out.println("Connection or output print failed.");
 }

%>
</TABLE> E View specific HTML
<P>
</BODY>

</HTML>

86 CHAPTER 4

Bitter JSPs
B In this program, we will switch back and forth between model and view logic. This
block of code, enclosed within the <% %> brackets, contains the initialization for
the model language. It declares the variables and imports that will be used to han-
dle the database logic.

C We switch to view logic. This is HTML-tagged text, and it handles the formatting
of the entire page, up to the table headers.

D We switch, once again, back to the model language. Each switch is distracting to
the overall flow of the application. This model logic is Java code that prints the
individual rows of the table.

E With one final switch back to view logic, we clean up by closing the table, body,
and HTML sections.

This application is only marginally better than the initial Magic Servlet. It has
many of the same troublesome characteristics, including poor separation of
concerns and difficult maintenance. Many readers of this book will open the
third chapter, skim it, and see “… some irrelevant text … Magic Servlet … still
more irrelevant text … solution: refactor … blah, blah, blah … JSP.” A JSP, by
itself, is not a complete architecture; it is merely one of many tools in our bag
of tricks that can be used to craft a complete architecture. We must also define
how it interacts with the rest of the application and how external data is incor-
porated, and we must determine the scope of its responsibility.

4.2.2 Solution: Refactor to Model-View-Controller
It should be fairly obvious by now that the refactored solution is the refac-
tored solution from the previous chapter. In general, this procedure can be
used to methodically refactor these beasts:

Steps to refactor a monolithic JSP
A poorly structured JSP is every bit as damaging as a servlet without good structure.
These steps can be used to refactor the solution.

1 Create a template for a controller object. This should be a generic
HTTPServlet, with the performTask similar to the one in listing 3.4.

2 Identify all major areas that build dynamic content. These will be the
commands. Create a command template for each major area of
dynamic content.

3 Within the JSP, for each command, create a bean tag in the JSP, within
the body, that looks like this:

Antipattern: Monolithic JSPs 87
<jsp:useBean id="beanName" class="package.beanClass"
scope="request"></jsp:useBean>

In most of my examples, the bean name and the class name are the
same.

4 Identify the required attributes for each command. These will usually
be defined as database fields, transaction fields, or something similar.
You must define set methods for fields used to update the model and
get methods for fields used to display the model. Create attributes in
the commands as required and implement them.

5 Identify the core logic that will initialize and trigger the model’s
update or query. Move these Java statements to the model’s initial-
ize and execute methods, as in listing 3.4.

6 In the controller object, instantiate the command. This can either be
done with a basic constructor (command = new CommandClass()), or if
the class object needs special consideration, use the code that follows.
Assume your command’s variable name is command and that your com-
mand’s class is of type CommandClass:

 CommandClass command =
 (packagePath.CommandClass) java.beans.Beans.instantiate(
 getClass().getClassLoader(),
 "packagePath.CommandClass");

7 Then, initialize and execute the command:

 command.initialize();
 command.execute();

 request.setAttribute("YourCommand", command);

8 Forward the response object to the JSP with the following call:

 ServletContext servletContext = getServletContext ();
 RequestDispatcher dispatcher =
 servletContext.getRequestDispatcher("theJSPResultsPage");
 dispatcher.forward(request, response);

9 Replace the code that prints dynamic content in the original JSP with
command bean references instead, as in the JSP in listing 3.4.

Using this method, we can take a monolithic JSP and refactor it to the coveted
Triangle design pattern. In general, we are stripping out the code into three
pieces: the JSP (encapsulating the return-trip view), the command (encapsulat-
ing the model), and the servlet (encapsulating the controller). For teams

88 CHAPTER 4

Bitter JSPs
building many user interfaces, it may help to build a sample and a template
that can be used for these types of user interfaces.

4.3 Antipattern: Compound JSPs

The basket is swinging wildly. Dee delicately brushes against a bush to dampen the
swinging, and then slams us down. The bone-jarring impact throws Dee forward
into the tanks. Ribs crack. With Dee’s instructions, I am able to pull a rope that
lowers the balloon’s top panel, letting the hot air escape and bringing us finally to
a standstill. We cannot believe that the riskiness of the operation was so well hid-
den from us at higher altitudes. We lick our wounds and wait for the ground crew
to come and help pick up the pieces.

The Monolithic JSP is not the only JSP antipattern you could encounter. In
the next antipattern, we have a model-view-controller-compliant architecture
that falls short in other ways. On my fateful balloon trip, the calm air at higher
altitudes lured us into a false sense of security. Only when we closely examined
conditions at lower altitudes did we fully appreciate our danger. Confidence in
the Triangle design pattern can also lure us into complacency. Choosing a
higher level design does not mean you no longer have to worry about prop-
erly implementing the architecture. Closer to the ground-level details, we
must also be alert to danger. In this antipattern, we will examine one such
detail: should we force decisions into the JSP or the controller? Consider a case
where the results of a command execution will determine which page, or page
fragment, is returned to the user. The logical place for such a check might
seem to be the JSP, as in figure 4.1.

4.3.1 Should we combine multiple JSPs?
This antipattern is known as the Compound JSP, in which a single JSP is used
to return one of many result sets, leading to too much logic in our JSP. Severe
error conditions and routine errors, such as not-found errors and validation-
failed conditions, are common places to find this antipattern. Table 4.2 shows
the problems with the Compound JSP approach.

 In general, although Compound JSPs may be slightly easier to create, they
make maintenance, reuse, design through common tools, and project
management much more difficult. As antipatterns go, this one has relatively
minor side effects. Still, the ease of refactoring and the ease of doing it right
the first time make this an attractive refactoring target.

Antipattern: Compound JSPs 89
4.3.2 An example combining two interfaces
In the following example, we have a Compound JSP that stems from an error
condition. We will take our bulletin board example and modify it to return
only the posts for a user-specified board. We will need to add an input HTML
form so that the user can enter the name of the board, modify the command to

Table 4.2 Problems created by combining multiple user interfaces in a single JSP, called the
Compound JSP antipattern.

Problems with Compound
JSPs

Description

No separation of concerns Combining code and HTML script makes it necessary to find peo-
ple with programming and designing skill. This is expensive and
difficult.

Poor reuse It is harder to reuse a compound view with built-in control logic.

Harder use of tools Tools handle single-user interface screens better than multiple
screens.

Lack of common error treat-
ments

Users like common error windows and treatments. This design
makes it more difficult to include these.

Command

JSP
if (command.x = a){

else if (command.x = b){

}

Servlet

Client
HTML

HTML for a

HTML for b

Figure 4.1 One solution to handling multiple conditions for a servlet is to process the decision
in the JSP. The result is the antipattern called the Compound JSP. Some problems are poor
separation of concerns and limited reuse.

90 CHAPTER 4

Bitter JSPs
set (rather than get) the board attribute, and add a check so that if the user
specifies the name of a board with no posts, he or she can make another choice.

 First, the input form:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">

<HTML>
<BODY>
 <FORM METHOD="post" ACTION="/servlet/bbs.CompoundJSPController">
 <P>Please complete the form.</P>
 <P>board

 <INPUT TYPE="text" NAME="board" ID="board" SIZE="20"
 MAXLENGTH="20">
 </P>
 <INPUT TYPE="hidden" NAME="mlname" ID="mlname" VALUE="HTML">
 <P>
 <INPUT TYPE="submit" NAME="Submit" ID="Submit" VALUE="Submit">

 <INPUT TYPE="reset" NAME="Reset" ID="Reset" VALUE="Reset">

 </P>
 </FORM>
</BODY>
</HTML>

There is no magic here. This input form will collect a board name and invoke
our controller. The “action” tag specifies our interaction controller. In this
case, it will be invoked with an HTTP POST that will call our doPost method
instead of the doGet method from our previous example. Next, we have our
interaction controller:

package bbs;

// Imports
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

// Import for commands used by this class
import bbs.CompoundJSPCommand;

We will import the command for this example. We are using the Triangle
design pattern outlined in chapter 3.

public class CompoundJSPController
 extends javax.servlet.http.HttpServlet
 implements Serializable {

Antipattern: Compound JSPs 91
 /**
 * DoPost
 * Pass post requests through to performTask
 */
 public void doPost(
 HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 performTask(request, response);
 }

This example is initiated from an input form, which calls doPost instead of
doGet as in our previous example. We simply pass the response and result
through to the performTask method.

/**
* Process incoming requests for information
*
* @param request encapsulates the request to the servlet
* @param response encapsulates the response from the servlet
*/
public void performTask(
 HttpServletRequest request,
 HttpServletResponse response) {

 try {
 String board=request.getParameter("board");
 CompoundJSPCommand postList = new CompoundJSPCommand();
 postList.setBoard(board);
 postList.initialize();
 postList.execute();

Here, we parse the single input parameter provided by the form, and follow
our design pattern by issuing sets, initialize, execute, and gets (in our
controller and our JSP output page):

 request.setAttribute("CompoundJSPCommand", postList);

 ServletContext servletContext = getServletContext ();
 RequestDispatcher dispatcher =
 servletContext.getRequestDispatcher("/JSP/CompoundJSPResults.jsp");
 dispatcher.forward(request, response);

 } catch (Throwable theException) {
 theException.printStackTrace();
 }
}

 /**
 * DoGet
 * Pass get requests through to performTask
 */

92 CHAPTER 4

Bitter JSPs
 public void doGet(
 HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 performTask(request, response);
 }
}

The rest of the controller is just like our previous examples. Our command
bean has changed slightly. Our board attribute is a single string instead of a
vector, with a new set method and a revised get:

 protected String board = null;

 public String getBoard() {
 return board;
 }

The execute must change to reflect the modified query and the revised
attribute type. Only the differences are shown here:

public void execute() {

...

 result =
 statement.executeQuery(
 "SELECT subject, author, board from posts where board = '"
 + getBoard() + "'");
 while (result.next()) {
 subject.addElement(result.getString(SUBJECT_COLUMN));
 author.addElement(result.getString(AUTHOR_COLUMN));
 }
...

So far, this balloon is flying smoothly. We have addressed our separation of
concerns and stayed true to our base design pattern. Listing 4.2 contains the
revised JSP. Unfortunately, we are in for a hard landing. This response set is
just like our last, with an additional page for a not-found condition.

<HTML>

<jsp:useBean id="CompoundJSPCommand" class="bbs.CompoundJSPCommand"
scope="request"></jsp:useBean>

<% if (CompoundJSPCommand.getSize() == 0) { %> B Decision 1
<HEAD>
<TITLE>Choose another board! </TITLE>
</HEAD>
<p>

Listing 4.2 The compound JSP processes decisions in the JSP

Antipattern: Compound JSPs 93
There were no posts for board <%=CompoundJSPCommand.getBoard()%>

<BODY BGCOLOR=#C0C0C0>
 <FORM METHOD="post" ACTION="/servlet/bbs.CompoundJSPController">
<P>Please complete the form.</P>
<P>board

 <INPUT TYPE="text" NAME="board" ID="board" SIZE="20" MAXLENGTH="20" >
</P>
<INPUT TYPE="hidden" NAME="mlname" ID="mlname" VALUE="HTML">
<P>
 <INPUT TYPE="submit" NAME="Submit" ID="Submit" VALUE="Submit">

 <INPUT TYPE="reset" NAME="Reset" ID="Reset" VALUE="Reset">

</P>
</FORM>
<% } else { %> C Decision 2

<HEAD>
<TITLE>Message Board Posts</TITLE>
</HEAD>

<BODY BGCOLOR=#C0C0C0>
<H1>All Messages</H1>
<P>

<p>
Board: <%=CompoundJSPCommand.getBoard()%>
<TABLE border="1">

<TR>
 <TD>Subject</TD>
 <TD>Author</TD>
</TR>
 <% for (int _i=0; _i < CompoundJSPCommand.getSize(); _i++) { %>
 <TR> <TD><%=CompoundJSPCommand.getSubject(_i) %></TD>
 <TD><%=CompoundJSPCommand.getAuthor(_i) %></TD>
 </TR>
 <% } %>
</TABLE>
<P>
<% } %>

</BODY>

</HTML>

94 CHAPTER 4

Bitter JSPs
B This section handles the classic not-found condition. We drop into Java to make a
decision and specify which interface to present.

C This section handles the mainline condition. The conditional logic is very distract-
ing to the mainline processing.

The readability is diminished. None of the HTML editors that I used liked the
structure. My intuition says that many designers would not have a problem
understanding our structure, but each additional enhancement would con-
tinue to break down our separation of concerns. In general, Java code in a JSP
should be used only for:

� Accessing commands
� Basic looping
� Handling simple cosmetic output conditions, like adding an “s” to

make words plural

That’s it. If you need convincing, find a ColdFusion shop that has had to
maintain a complex site for two years. You’ll be scared straight. I was.

4.3.3 Solution: Split the JSP
In our revised solution, we’ll split the Compound JSP into two files and move
the decision point into the controller. Our command will not change.
Figure 4.2 shows a solution that improves readability, preserves our separation
of concerns, and is infinitely more toolable (easily supported by development
products and tools).

4.3.4 Making decisions in the controller servlet
In our updated example, the command does not change. Listing 4.3 contains
the updated method in our controller. The last seven lines now process the
decision that was previously handled in our JSP. We lose very little readability,
in spite of the additional complexity.

public void performTask(
 HttpServletRequest request,
 HttpServletResponse response) {

 try {
 String board=request.getParameter ("board");
 CompoundJSPCommand postList = new CompoundJSPCommand();
 postList.setBoard(board);

Listing 4.3 Decisions are moved to the controller servlet

Antipattern: Compound JSPs 95
 postList.initialize();
 postList.execute();

 request.setAttribute("CompoundJSPCommand", postList);

 ServletContext servletContext = getServletContext ();

 String resultsPage;
 if (postList.getSize() > 0) {
 resultsPage = "/JSP/BoardResults.jsp"; B Decision 1

 } else {
 resultsPage = "/JSP/NotFoundResults.jsp"; C Decision 2
 }
 RequestDispatcher dispatcher =

 servletContext.getRequestDispatcher (resultsPage);

 dispatcher.forward(request, response);
 } catch (Throwable theException) {
 theException.printStackTrace();
 }

}

B The first decision processes the expected case. Note that in the same section of
code we are able to determine what triggered the condition and the actions that
can occur.

Servlet

if (command.x = a){

else if (command.x = b){

call JSP a;

call JSP b;

Command

Client
HTML

JSP a

JSP b

Figure 4.2 It is better to process decisions in the controller servlet than within the JSP.
Simplicity and better tool integration are goals of JSP design.

96 CHAPTER 4

Bitter JSPs
C The next decision processes the not-found condition. We do not want to dedicate
too much screen real estate to conditions outside our main processing. We
conveniently transfer execution to a dedicated exception processor: Not-

FoundResults.jsp.

Next, we’ll have two JSPs instead of one. Each is infinitely more readable than
listing 4.2. First, the expected case, returning all posts for a board:

<HTML>

<jsp:useBean id="CompoundJSPCommand" class="bbs.CompoundJSPCommand"
scope="request"></jsp:useBean>

<HEAD>
<TITLE>Message Board Posts</TITLE>
</HEAD>

<BODY BGCOLOR=#C0C0C0>
<H1>All Messages</H1>
<P>

<p>
Board: <%=CompoundJSPCommand.getBoard()%>
<TABLE border="1">

<TR>
 <TD>Subject</TD>
 <TD>Author</TD>
</TR>
 <% for (int _i=0; _i < CompoundJSPCommand.getSize(); _i++) { %>
 <TR> <TD><%=CompoundJSPCommand.getSubject(_i) %></TD>
 <TD><%=CompoundJSPCommand.getAuthor(_i) %></TD>
 </TR>
 <% } %>
</TABLE>
<P>
</BODY>
</HTML>

Next, the JSP for the not-found condition:

<HTML>

<jsp:useBean id="CompoundJSPCommand" class="bbs.CompoundJSPCommand"
scope="request"></jsp:useBean>

<HEAD>
<TITLE>Choose another board! </TITLE>
</HEAD>
<p>
There were no posts for board <%=CompoundJSPCommand.getBoard()%>

<BODY BGCOLOR=#C0C0C0>

Antipattern: Compound JSPs 97
 <FORM METHOD="post" ACTION="/servlet/bbs.CompoundJSPController">
<P>Please complete the form.</P>
<P>board

 <INPUT TYPE="text" NAME="board" ID="board" SIZE="20" MAXLENGTH="20" >
</P>
<INPUT TYPE="hidden" NAME="mlname" ID="mlname" VALUE="HTML">
<P>
 <INPUT TYPE="submit" NAME="Submit" ID="Submit" VALUE="Submit">

 <INPUT TYPE="reset" NAME="Reset" ID="Reset" VALUE="Reset">

</P>
</FORM>

</BODY>
</HTML>

Aside from the board name, this page could have been pure HTML, but it’s
returned as a JSP. Especially for error conditions that typically don’t have a
significant performance impact, it often makes sense to bite the bullet and
deliver them as JSPs even when HTML would suffice to keep the overall code
more readable and the tooling more uniform. Many development shops opt
for a uniform delivery of JSPs. Those that do usually precompile them.

 Our refactoring steps for Compound JSPs are straightforward:

Steps to refactor compound JSPs
Compound JSPs have too much decision logic. While the problems caused are relatively
minor, the simplicity of refactoring can make them an effective target. To refactor,
move the decision logic to the controller.

1 We broke the JSPs into distinct pages, with no more Java in each than
necessary.

2 We moved the decision point into the controller.

3 We located the decision after the execution of our commands and
before dispatching the result.

4 We dispatched the result to the appropriate JSP.

If the Compound JSP is simple and based on decisions made at the command
level, the refactoring in this case should be painless. This example took 10
minutes to refactor and another 10 minutes to test.

98 CHAPTER 4

Bitter JSPs
4.4 Mini-antipatterns: Coarse and Fine Commands

One of the primary benefits of commands is the convenient organization of
model interface points that they can provide. Commands make an easy point
of reuse for applications. With them, we can wrap a variety of different tech-
nologies. allmystuff used commands as the exclusive interface points to its
EJB-based architecture. Its API literally consisted of a set of commands.

 New users of the Command design pattern frequently struggle with the
appropriate granularity for commands. It’s not surprising—partitioning a
model into commands takes experience. If command granularity is too coarse,
no reuse is possible; if it’s too fine, some benefits, such as a reduction in
round-tripping (see chapter 8), are diminished.

 Consider an auto insurance application. Figure 4.3 shows a user interface
for the display of information on the customer and policy.

 As usual, we will implement the Triangle pattern. We can decide to divide
the commands in several different ways.

Figure 4.3 This is a simplified user interface for a display of information on a
customer’s insurance policy. The user interface will allow us to make several possible
choices regarding command granularity.

Mini-antipatterns: Coarse and Fine Commands 99
4.4.1 Too many commands in a group
The most common mistake made in choosing command granularity is to
package all the fields on a page in a single command, regardless of the organi-
zation of the data on the page. For our example, we could choose to use a
single command to collect all of the information in the insurance policy along
with some additional customer-level data. In practice, that decision might not
be all bad, if the expectation is that all of the customer information will be
needed every time a policy is retrieved. In our case, let’s suppose that we know
that our policy data will need to be retrieved independently. This decomposi-
tion, called page-level granularity, would be too coarse. The problems with
page-level command granularity include:

� Reuse is damaged. To reuse a command (which is essentially a wrapper
around a model), our units must be based on granularities that make
sense for the model, not the user interface.

� User interface redesigns are more difficult, because the command layer is
organized around the user interface. The command layer loses much of
its promise. Instead, if our commands are grouped logically, we can
expect them to be applicable across many different solutions.

� Commands are not in logical units for other purposes, such as undo/redo.
In a user interface, it would not make sense to “Undo customer and
policy change.” (This is applicable only to update commands.) Logical
groupings would allow better packaging for undo/redo functions.

 Essentially, though our application’s model and view are physically decou-
pled, we have built a logical coupling based on our granularity decision. In the
next section, we will explore the characteristics of a better grouping.

4.4.2 Solution: Refactor to appropriate granularity
So far, the examples in this book have used a single command per page. That’s
due to the simplicity of the examples that we have chosen. Multiple com-
mands per controller and output page are relatively common and can be good
designs, especially when user interfaces get complex. Figure 4.4 shows this
architecture with our latest example, refactored.

 In most cases, refactoring this antipattern is straightforward. We’ll borrow
a couple of ideas from relational database theory. Here are the steps for refac-
toring coarse commands.

100 CHAPTER 4

Bitter JSPs
Steps to refactor coarse or fine commands
Coarse commands place too much code in a single command, impairing reuse. Fine
commands place too little code in each command, forcing too many round-trip com-
munications, harming performance.

1 First, identify the correct granularity for the command set. Optimally,
the fields that logically belong together and that will usually be used as
a unit should be coupled in a single command.

2 Create a new set of command templates for each new command in the
refactored scheme.

3 Move the appropriate execute and initialize methods from the old
command to each of the new ones for the new organization. Move
applicable instance variables and access methods for the new com-
mand granularity. Delete unused code.

4 Identify primary key relationships for the new model. For example,
though customer-name is customer data, it is necessary to establish a
relationship between a customer and an auto policy. Using key rela-
tionships, it is possible to reduce the size of a command because it is
not necessary to have all of the related fields of a related command.

Granularities can also be too fine. In our example, field-level granularity
would be too fine. This antipattern is common for the automation of a com-
mand framework. The three easiest ways to automate commands are based on

JSP

Policy

Policy
command

Servlet
Client
HTML

Customer

Customer
command

Figure 4.4 This version of the Coarse Command antipattern has been refactored. Commands of
page-level granularity can be factored into logical groups, yielding better readability and reuse at
a slight performance cost.

Mini-antipatterns: Coarse and Fine Commands 101
a model object, model fields, and pages. In general, object level is best but
may not be coarse enough.

4.4.3 Tips for granularity
When we’re deciding how to partition a set of commands, we must consider a
number of clues. We should start by looking at the entities and attributes in
our model. For an object-oriented application, this exercise is relatively simple.
If the model is data driven, it may be more complex, especially if the database
tables are not normalized to interesting entities and relationships. Transaction
and messaging models may be similarly difficult.

 After identifying the entities and attributes, we should look for groupings
that appear to be natural, intuitive, and logical. We should also examine usage
in our current interface and determine what entities are being used. What are
the usage patterns? Are there natural groupings? If we have any use cases avail-
able, they may also suggest groupings. Who are the users of the system? Will
our command layer be exposed as an API? If so, how are interfaces in our
domain usually organized? Finally, based on domain knowledge, we should
anticipate how the commands are likely to be used.

 The answers to all of these questions can be used to partition the com-
mand set. The first iteration is not necessarily set in stone. In the early stages
of development, refactoring is easy. Several rules of thumb are helpful:

� If logical groupings and usage patterns conflict, choose the logical
grouping. Also, look harder because sometimes entities are related in
unusual ways.

� If a group of commands are used both individually and together, pack-
age them individually.

� It is okay to use a command that returns slightly more than you need. If
you find yourself using a small fraction of the fields in a command on a
regular basis, then it’s time to refactor.

� If the same combination of logically similar commands is used fre-
quently, consider refactoring to combine the group.

� Read good code. Find a mentor whom you trust, and read that person’s
code. Even if the code does not explicitly use the command pattern,
many of the concepts of good object-oriented design translate.

102 CHAPTER 4

Bitter JSPs
4.5 Mini-antipattern: Fat Commands

In our Java “flights,” we must pay attention to other low-altitude details. One
of these is the composition of our command layer. The command architecture
is powerful because the small, lightweight command is easy to code and main-
tain. Those characteristics make it a convenient place to tack on additional
model logic. If the model is a legacy database or transaction code, we might
not have an alternative. If a fully functional object model powers the com-
mand, it pays to carefully consider alternatives before attaching extra function-
ality to the command layer. Otherwise, functionality will leak into increasingly
bloated commands, and that increasing layer will become more difficult to
manage, as in figure 4.5.

It is also possible for commands to take more of a controller role in some situ-
ations. Some architectures provide a JSP and command layer, without the ben-
efit of an interaction controller. When this occurs, the command will often
take on the role of the controller. Problems with this approach include a
tighter coupling than necessary between the user interface and model and
more complex JSPs, both of which reduce readability and increase the com-
plexity of user interface revision.

4.6 Reviewing the JSP antipatterns

In this chapter, we have taken the Triangle design pattern and worked
through some antipatterns that plague it. Most of these patterns deal with
keeping the roles of the base model-view-controller architecture sound. The
JSP layer should only include user interface scripting, and as little Java as it
takes to include the dynamic content. The controller should be used exclu-
sively to control the information flow between client and server. The

JSP

Servlet

Client
HTML

Command

Figure 4.5
The Fat Command antipattern occurs when functionality
belonging in the model, JSP, or servlet creeps into the
command. The design pattern is indistinguishable from a
proper Model-View-Controller pattern, but code
belonging in the controller, JSP, or model sneaks into the
command.

Antipatterns in this chapter 103
command layer should serve as a thin and efficient layer around the model,
and should not be used as a substitute for the model.

 Java can still be bitter, and when it is, you know the steps to take to refac-
tor the antipattern variations of the Triangle. The next chapter will begin a
series of refactoring steps that will make our bulletin board more scalable and
efficient. We will look at the approaches and impact of caching on applications
that use dynamic content.

4.7 Antipatterns in this chapter

These are the templates for the antipatterns that appear in this chapter. They
provide an excellent summary format and form the basis of the cross-refer-
ences in appendix A.

Monolithic JSPs
ALSO KNOWN AS: The Magic Pushbutton, the Magic JSP. The Magic
Pushbutton and Spaghetti Code are generic forms of this antipattern.

RELATED ANTIPATTERNS: The Magic Servlet.
DESCRIPTION: Like the Monolithic Servlet, the Monolithic JSPs antipat-
tern shows a complete absence of any trace of model-view-controller sepa-
ration. In this case, all of the code is in a tag language.
MOST FREQUENT SCALE: Application.
REFACTORED SOLUTION NAME: The Triangle.

SOLUTION ALSO KNOWN AS: Model 2, Modified Model-View-Controller.
REFACTORED SOLUTION TYPE: Software.
REFACTORED SOLUTION DESCRIPTION: The solution for this problem is a
version of Model-View-Controller known as the Triangle design pattern.
Since web applications are batch oriented instead of interactive, we must
modify Model-View-Controller to deal with upstream and downstream
user interfaces. The upstream user interface is served as HTML. We break
out model logic as a command (or see the alternative solutions below) and
the return-trip logic as a JSP. We service each with a servlet, called the con-
troller.
TYPICAL CAUSES: Many of these come from tag-language development
environment rewrites (like ColdFusion), or first-time creations from those
who have tag-language experience and little else.
ANECDOTAL EVIDENCE: “That is one big JSP.” “Don’t get too close to it.”

104 CHAPTER 4

Bitter JSPs
SYMPTOMS, CONSEQUENCES: View redesigns, no matter how small, ripple
into other places of the JSP and into other parts of the system. The code is
very difficult to read.
ALTERNATIVE SOLUTIONS: Many versions of command design patterns
exist, dating back to early Smalltalk programming. These are some popu-
lar alternatives:

� The Jakarta Struts framework is similar to this design pattern. The
actions are essentially a command treatment.

� Stateless session beans can be used to wrap model logic if the com-
mand needs to be distributed.

� Distributed commands have been used successfully since the mid-
1980s within the Smalltalk community, and again in many CORBA
communities.

Compound JSPs
DESCRIPTION: When a command’s execution can lead to one of many
pages being returned to the user, sometimes a programmer will express
this decision logic in a JSP.
MOST FREQUENT SCALE: Application.

REFACTORED SOLUTION NAME: Push decision-making into controllers.
REFACTORED SOLUTION TYPE: Software.
REFACTORED SOLUTION DESCRIPTION: The solution is to split the JSP
along the decision lines and branch to separate JSPs in the interaction
controller.
ROOT CAUSES: Ignorance.

SYMPTOMS, CONSEQUENCES: The primary consequence is poor separa-
tion of concerns. JSP code that is difficult to read because of too much
Java can be a symptom of this problem. More than one HTML body or
head tags can be symptomatic of this problem as well. Tools will not
always view Compound JSPs well.

Coarse or Fine Commands
DESCRIPTION: Commands can be divided too coarsely or finely for opti-
mal performance, readability, or reuse.
MOST FREQUENT SCALE: Application.
REFACTORED SOLUTION NAME: Optimal command granularity.

Antipatterns in this chapter 105
REFACTORED SOLUTION TYPE: Software.

REFACTORED SOLUTION DESCRIPTION: Command granularity should be
based on the model, not the view. Commands should contain fields that
are logically grouped and frequently used as a unit by clients of the
command.
TYPICAL CAUSES: New programmers tend to make command granularity
match the user interface so that there is one command for every page,
defeating reuse. Lazy programmers might make a command for each
method in a model, defeating the purpose of logical grouping.
SYMPTOMS, CONSEQUENCES: If the granularity is too coarse, commands
must be created for every user interface regardless of which model parts
are being reused. User interface redesigns significantly change the com-
mand architecture. If the granularity is too fine, commands are always
used in the same groups, and the solution is susceptible to the Round-
tripping antipattern.

Fat Commands
DESCRIPTION: Functionality that belongs in the model or controller can
creep into the command layer.
MOST FREQUENT SCALE: Application.
REFACTORED SOLUTION NAME: Model-based commands.

REFACTORED SOLUTION TYPE: Software.
REFACTORED SOLUTION DESCRIPTION: Commands should contain only a
thin wrapper around the model. The command layer is not the place for
general-purpose utilities or view logic.
TYPICAL CAUSES: The command layer is lightweight, and it’s easy to
implement and use. Consequently, lazy or ignorant programmers might
use this layer as the default dumping ground for new functionalities.
SYMPTOMS, CONSEQUENCES: The base command methods contain public
methods beyond get, set, init, and execute. Command layers signifi-
cantly change with every model revision. The command layer looks like a
utility collection. The design is difficult to read.

5Bitter cach
managemen
e
t

This chapter covers
� Strategies for implementing a cache
� Antipatterns related to caching
� Descriptions of products that cache

108
On a business trip, a friend and I make a side visit to Salt Lake City, to work in
some downhill skiing. Three weeks before, I had sprained my ankle but it’s start-
ing to recover. The high ski boots, I am thinking, will brace my ankle enough to
avoid pain. We wake up to 8 inches of fresh powder and not a cloud in sight. My
ankle throbs, but I know those ski boots are stiffer than any plaster cast. I am con-
vinced the ankle will be fine. As we try on our boots mine feel like ... well ... like
they might just hold my ankle together if I can endure the gathering pain. I crank
them still tighter.

 One look down the slopes shatters my illusions. Ed Elze, my ski partner, is a
member of a volunteer ski patrol at home, while I’ve recently graduated from
reckless beginner to aggressive intermediate. Most skiers love new snow. I learned
to ski in poor conditions and powder scares me to death. I let Ed, and the reassur-
ing firmness of my boots, convince me that turns in powder will be easier to make
if we’re skiing in steeper terrain. Without waiting for objections, he speeds down
an unmarked, isolated canyon. I follow. At least no one will hear me scream.

5.1 We need caches!

A surprising number of system cycles are burned doing work that just does not
need to be done. Most Internet sites that deploy database engines make
expensive connections and close them instead of reusing them. Implementa-
tions might rely on several small communications when one would do the
trick. At the core of this chapter are cache-related antipatterns. In general, a
cache is a solution to this basic problem: we are spending most of our process-
ing time fetching data that we’ve already retrieved recently. We’ll refactor our
bulletin board system (BBS) servlet by creating a cache to hold that data in
temporary storage.

 Keep in mind that cache management introduces its own set of problems,
however. Table 5.1 describes some of those issues.

 In this chapter, I rely heavily on an article titled “Scaling Up E-business
Applications with Caching,” by Mike Conner, George Copeland, and Greg
Flurry (you can read it at http://www6.software.ibm.com/devtools/news0800/
art7.htm). The authors created a design for the Command design pattern
defined in chapter 3. Their ideas about the command cache helped me to
organize many of my thoughts in this chapter. Within the article, in three fig-
ures, Dr. Conner illustrates the impact of an aggressive cache strategy on sys-
tem performance. He presents three scenarios; I have condensed the two
extremes and projected the impact of a command cache. Figure 5.1 shows Dr.
Conner’s first example. As you can see, nearly all of the requests make it far

Antipattern: The Cacheless Cow 109
into our infrastructure. For common usage patterns, many of these requests
may be unnecessary, because most of the requests are probably for data that
has recently been retrieved.

Caching solutions for static content are well developed. Caching proxy servers
can dramatically reduce load times near the client. Various nodes on the Inter-
net network already cache. Edge servers, such as firewalls and hardware
caches, are extremely efficient at serving static content, and they can handle
most requests before they even reach our web and application server layers.
Today’s web servers also have strong caching extensions built in, but most
caching servers so far have been dedicated to static content. Dynamic content
also shows potential for caching.

5.2 Antipattern: The Cacheless Cow

Figure 5.2 shows the same example, with aggressive caching throughout the
network. In addition to Dr. Conner’s original assumptions, I’ve accounted for
a 70 percent hit rate in our command cache. This number is fairly conservative
for our message board application. Even so, the results are dramatic. Each
layer makes a significant impact on the overall system performance. As we
explained earlier, because several of the requests are for repeated content,
most of the work that many applications do is unnecessary.

 After I started my consulting company, I worked with a customer that
served an extremely popular bulletin board. As is typical, hundreds of posts

Table 5.1 Caching has important benefits but requires an understanding of key issues for
successful implementation. To cache Java applications, you must solve some or all of these basic
problems.

Issue Description

When should we cache? Decision points are based on the operation cost, volatility
of data store, access patterns of the data store, and size
of data store.

How do we manage updated data? Incorrect data must be invalidated and updated appropri-
ately.

How do we manage old data? Sometimes, stale data is acceptable, but often a strategy
is required to flush it over time.

How do we manage concurrent
access to our cache?

Concurrent access can be protected with synchronized
methods, but this may be too restrictive.

110 CHAPTER 5

Bitter cache management
were read for each one created. The board’s software was powered by
wwwthreads, a Perl script–based message board package. wwwthreads is sub-
stantially more robust than most message board packages, and it can be
attached to a database, instead of simply reading flat files. However, the pack-
age has at least one significant limitation: individual messages are not cached.
(My customer’s entire database would fit in memory!) Ninety percent of all of
the communications between the database server and the application server
were repeated message retrievals, and nearly all of that was overhead.

5.2.1 Bitter BBS with no cache
For the Cacheless Cow antipattern, we will continue to develop our message
board. As with all of the “before” programming examples in this book, this
one will have problems:

� It will have no cache.

Application provider’s site

% requests flowing through to each layer

10
units

Layer + comm
cost for

1 req

Average cost

Total: 1+1+5+7+7=21

Layer: 100%*1=1 100%*1=1 100%*5=5 70%*10=7 70%*10=7

B
ac

k-
en

d
 s

er
ve

rs

A
p

p
 s

er
ve

rs

W
eb

 s
er

ve
rs

E
d

g
e

se
rv

er
s

In
te

rn
et

10
units

5
units

1
unit

1
unit

100% 100% 100% 70%70%

C
lie

n
t

Figure 5.1 With this architecture, we show the total costs of each communication round-trip.
The back-end calls are weighted more heavily because requests for front-end static content
are inherently cheaper. Toward the right, content becomes more dynamic. We can assume
that some requests will fail or be satisfied by the static web servers.

Antipattern: The Cacheless Cow 111
� It will have a memory leak in the cache (which may be acceptable if the
database size is small).

� It will not clean connections in a finally block.
� It will not pool connections.

In the spirit of our continuous refactoring, these issues will all be addressed in
successive refactoring steps. This example shows only one possible problem
where a cache would make an extreme difference in performance. In our
bulletin board, the content is dynamic, because the posts will change as peo-
ple respond and the lists will change as new posts are added. This characteris-
tic makes caching much more problematic than the caching of static content.
The base web server’s cache cannot handle dynamic data. Regardless, we
expect to serve the same post many times between updates, which will place a
significant drain on performance. E-commerce catalogs, content-publishing

Application provider’s site

% requests flowing through to each layer

10
units

Layer + comm
cost for

1 req

Average cost

Total: 1+.5+1.5+1+.3=4.3

Layer: 100%*1=1 50%*1=.5 30%*5=1.5 10%*10=1 3%*10=.3

B
ac

k-
en

d
 s

er
ve

rs

A
p

p
 s

er
ve

rs

W
eb

 s
er

ve
rs

E
d

g
e

se
rv

er
s

In
te

rn
et

10
units

5
units

1
unit

1
unit

100% 50% 30% 3%10%

C
lie

n
t

Figure 5.2 Aggressive caching can result in improved performance on an e-business
architecture, and will also significantly decrease the workload of nodes that are protected by
earlier caches. This architecture implements caches at many different points, and the Internet
has some built-in caches that we never see.

112 CHAPTER 5

Bitter cache management
systems, and high-volume stock tickers are similar, because the ratio of reads
to writes is very high.

 For this and the more advanced topics in this book, we’ll need a more
robust application. We’ll revise our example from chapter 4 to make a primi-
tive message board. The style and structure is taken from the combination of
two different consulting engagements. (They volunteered source code on the
condition of anonymity.) I have already applied our Triangle design pattern.

 Our message board will have a variety of discussion topics called boards.
Each board will have threads, which are top-level discussions of the topics
around a central theme. These threads will have a series of attached messages
called replies. Both threads and replies are called posts, and they are stored in
the same database table. Chapter 8 explains how to refactor this solution to
form a persistent object model for this application.

BBS requirements
To build this application, we’ll need the following enhancements:

� Display a list of top-level posts for our bulletin board. The subjects should
be displayed as links so that when they are clicked, the replies to the post
can be viewed. This list should include a link that can be used to post
another main thread.

� Display a full thread. The thread should consist of a top-level post and
all of the replies to the post.

� Display a form to add a post. The same form can be used to add both
kinds of posts: top-level threads and low-level posts.

We’ll provide the entire example to allow you to keep all of the code at your
fingertips, and to serve as a refactoring foundation for the other examples in
this book. If you’d like to skip ahead, see the section “Performance Prob-
lems,” later in this chapter.

5.2.2 Building the model, view, and controller for ShowBoard
We’ll have a triangle pattern for a board, thread, and post. ShowBoard is the
prefix that we’ll put in front of the controller, command, and JSP for the
triangle that shows the contents of a message board. Where possible, we’ll
show only the refactored changes between the solution in chapter 4 and our
new solution.

Antipattern: The Cacheless Cow 113
The model wrapper for ShowBoard
First, let’s examine the changes to PostListCommand and PostListController.
We renamed the class to ShowBoardCommand because it is now limited to a sin-
gle board. Here are the changes:

private static final int NUMBER_COLUMN = 4;
protected Vector number = new Vector();
public String getNumber(int index)
 throws
 IndexOutOfBoundsException,
 ArrayIndexOutOfBoundsException {
 return (String) number.elementAt(index);
}

The command now supports getNumber so that the post number can be used
when we make the subject line linkable. In our database and in most bulletin
boards, the post.number attribute is the key on the table posts, meaning that it
alone is enough to uniquely identify a database row. To list all replies, we’ll
look for all posts with the parent set to this number. To simplify the imple-
mentation, we’ll pass this number field through in the link URL.

 In execute, here are the changes (in bold):

result =
 statement.executeQuery(
 "SELECT subject, author, board, number from posts where board = '"
 + getBoard() + "' and parent=0");
while (result.next()) {
 subject.addElement(result.getString(SUBJECT_COLUMN));
 author.addElement(result.getString(AUTHOR_COLUMN));
 number.addElement(result.getString(NUMBER_COLUMN));
}

Our query is slightly different, because we are searching on a single board and
looking only for the top-level posts where there is no parent (parent=0). We
also had to add the code to populate the number vector. The rest of the com-
mand is the same.

The controller for ShowBoard
The controller is very similar. We changed only the names of the controller,
the command, and the return JSP. Here is the meat of performTask:

String board=request.getParameter ("board");
ShowBoardCommand postList = new ShowBoardCommand();
postList.setBoard(board);
postList.initialize();
postList.execute();

request.setAttribute("ShowBoardCommand", postList);

114 CHAPTER 5

Bitter cache management
ServletContext servletContext = getServletContext ();
RequestDispatcher dispatcher=null;
if (postList.getSize()>0) {
 dispatcher=
 servletContext.getRequestDispatcher(
 "/JSP/ShowBoardResults.jsp");
} else {
 dispatcher = servletContext.getRequestDispatcher("/JSP/

NotFoundResults.jsp");
}
dispatcher.forward(request, response);

We can begin to see the benefits of chapter 4’s refactored solution. Though
we changed the class names in this example to make it easier for us (and you)
to manage the many examples in the book, we probably wouldn’t change
them in a real-world revision. The model-view-controller architecture has
effectively insulated different parts of the application from major change.
We’re adding significant new functionality, and yet the solution continues to
flow easily.

The JSP for ShowBoard
Next, we’ll look at the primary revisions in our JSP. We renamed PostList-
Results.jsp to ShowBoardResults.jsp:

<TABLE border="1">

 <TR>
 <TD>Subject</TD>
 <TD>Author</TD>
 <TD>Number</TD>
 </TR>
 <% for (int i=0; i < ShowBoardCommand.getSize(); i++) { %>
 <TR> <TD>
 <A href=bbs.ShowThreadController?
 parent=<%=ShowBoardCommand.getNumber(_i) %>>
 <%=ShowBoardCommand.getSubject(_i) %></TD>
 <TD><%=ShowBoardCommand.getAuthor(_i) %></TD>
 <TD><%=ShowBoardCommand.getNumber(_i) %></TD>
 </TR>

 <% } %>
</TABLE>
<A href="../JSP/reply.jsp?parent=0&
board=<%=ShowBoardCommand.getBoard()%>" >
 Post a top level message

We added a table column for the post number and a link for replies, and we
linked the subject line to ShowThreadController, which retrieves a thread and

Antipattern: The Cacheless Cow 115
all of its replies. This new link also passes through the parent so that the user
will not need to type it.

5.2.3 Building the model, view, and controller for ShowThread
For our purposes, a board displays a collection of threads, and a thread dis-
plays a collection of posts. This controller will serve a list of posts. In the next
listings, we establish a controller, command, and JSP triangle to show a thread.
This triangle, given a parent ID, will display a post and all of its replies.

The model wrapper for ShowThread
First, here is the command:

package bbs;

import java.io.*;
import java.sql.*;
import COM.ibm.db2.*;
import java.util.*;

public class ShowThreadCommand {

 private static final int SUBJECT_COLUMN = 1;
 private static final int AUTHOR_COLUMN = 2;
 private static final int BOARD_COLUMN = 3;
 private static final int POSTTEXT_COLUMN = 4;
 private static final int NUMBER_COLUMN = 5;

The imports are the same as postList. We have column definitions for all of
our main database columns so that we can descriptively refer to each of the
columns in the select statement:

 protected Vector author = new Vector();
 protected Vector subject = new Vector();
 protected Vector board = new Vector();
 private Vector postText = new Vector();
 private String parent = "0";

 private String query = null;
 protected ResultSet result;
 protected Connection connection = null;

 public String getAuthor(int index) {
 return (String) author.elementAt(index);
 }

 public String getBoard(int index) {
 return (String) board.elementAt(index);
 }

 public String getParent() {
 return parent;

116 CHAPTER 5

Bitter cache management
 }

 public String getPostText(int index) {
 return (String) postText.elementAt(index);
 }

 public String getQuery() {
 return query;
 }

 public int getSize() {
 return author.size();
 }

 public String getSubject(int index) {
 return (String) subject.elementAt(index);
 }

 public void setParent(String newParent) {
 parent = newParent;
 }

These are the attributes for our command, along with the get and set meth-
ods. Since we’ll have a different value for every row, we’ll allocate a vector to
store the results.

 public void initialize()
 throws IOException, com.ibm.db.DataException {

 try {
 Class.forName ("COM.ibm.db2.jdbc.app.DB2Driver").newInstance();

 String url = "jdbc:db2:board";

 // connect with default id/password
 connection = DriverManager.getConnection (url);

 } catch (Throwable theException) {
 theException.printStackTrace();
 }
 }

As with the other commands, we initialize our database connection. In chap-
ter 7, we’ll pool these connections for performance.

 public void execute ()
 throws
 SQLException,
 IOException,
 DataException {

 query =
 "select subject, author, board, postData, number "
 + "from posts where (number = "
 + getParent()

Antipattern: The Cacheless Cow 117
 + ") or"
 + " (parent = "
 + getParent()
 + ") order by number";

In this query, we’ll retrieve the top-level thread and the replies. To do so, we’ll
retrieve a row from the database if the number of the specified top-level
thread, called parent, is equal to the number of the primary post (number =
getParent()) or the parent (parent = getParent ()). This is how we repre-
sent a top-level discussion, or thread:

 Statement statement = connection.createStatement();
 result = statement.executeQuery(query);
 while (result.next()) {
 subject.addElement(result.getString(SUBJECT_COLUMN));
 author.addElement(result.getString(AUTHOR_COLUMN));
 board.addElement(result.getString(BOARD_COLUMN));
 postText.addElement(result.getString(POSTTEXT_COLUMN));
 }
 result.close();
 statement.close();
 connection.close();
 }
}

We then execute the query. Next, we populate our attributes with a pass
through the result sets. Finally, we clean up.

The controller for ShowThread
Our ShowThreadController is nearly identical to ShowBoardController. To
save space, once again, we’ll show only the interesting performTask method:

public void performTask(
 HttpServletRequest request,
 HttpServletResponse response) {

 try {
 String parent=request.getParameter ("parent");
 ShowThreadCommand fullThread = new ShowThreadCommand();
 fullThread.setParent(parent);
 fullThread.initialize();
 fullThread.execute();

In this case, we’re showing all of the posts related to a thread. We want to set
the top-level parent, which is passed into this method as a URL parameter. We
then use our established protocol of create, set, initialize, and execute:

 request.setAttribute("ShowThreadCommand", fullThread);

 ServletContext servletContext = getServletContext ();

118 CHAPTER 5

Bitter cache management
 RequestDispatcher dispatcher=null;
 if (fullThread.getSize()>0) {
 dispatcher = servletContext.getRequestDispatcher("/JSP/

ShowThreadResults.jsp");
 } else {
 dispatcher = servletContext.getRequestDispatcher("/JSP/

messageNotFound.jsp");
 }
 dispatcher.forward(request, response);

We then dispatch to the JSP, which will display the results:

 } catch (Throwable theException) {
 try {
 java.io.PrintWriter out = response.getWriter();
 out.println("<HTML>");
 out.println("<BODY BGCOLOR=#C0C0C0>");
 out.println("<H2>Exception Occurred</H2>");
 out.println(theException);
 out.println("</BODY></HTML>");
 } catch (Throwable exception) {
 theException.printStackTrace();
 }
 }
}

Finally, we clean up and catch our exceptions.

The view for ShowThread
This is ShowThreadResults.jsp, which displays the results:

<HTML>

<jsp:useBean id="ShowThreadCommand" class="bbs.ShowThreadCommand"
scope="request"></jsp:useBean>

<HEAD>
<TITLE>Message Board Posts</TITLE>
</HEAD>

<BODY BGCOLOR=#C0C0C0>
<H1>All Messages</H1>
<P>

<h3>
Board: <%=ShowThreadCommand.getBoard(0)%></h3>

<TABLE border="1">

<TR>
 <TD>Subject</TD>
 <TD>Author</TD>
 <TD>Post Text</TD>

Antipattern: The Cacheless Cow 119
</TR>
 <% for (int _i=0; _i < ShowThreadCommand.getSize(); _i++) { %>
 <TR> <TD><%=ShowThreadCommand.getSubject(_i) %></TD>
 <TD><%=ShowThreadCommand.getAuthor(_i) %></TD>
 <TD><%=ShowThreadCommand.getPostText(_i) %></TD>
 </TR>
 <% } %>
</TABLE>
<P>
<A href="../JSP/reply.jsp?parent=<%=ShowThreadCommand.getParent() %>&
board=<%=ShowThreadCommand.getBoard(0) %>&
subject=<%=ShowThreadCommand.getSubject(0)%>" >
Post a reply to this message
</BODY>
</HTML>

This JSP is nearly identical to ShowBoardResults.jsp. We also provide a link to
reply.jsp. To maintain the conversation state, we pass parameters for the
board and subject.

5.2.4 Building the model, view and controller for AddPost
The final elements of our message board are the input form called reply.jsp
and the AddPostCommand and AddPostController that we use to add a post.

The AddPost input view
Here is the input form reply.jsp:

 <HTML>
 <HEAD>
 <META HTTP-EQUIV="Content-Type" content="text/html>
 </HEAD>
<BODY>
 <FORM METHOD="post" ACTION="/servlet/bbs.AddPostController">
 <P>Please enter your post.</P>
 <P>
 <table>
 <tr>
 <td> Board: </td>
 <td> <%=request.getParameter ("board") %></td></tr>
 <tr>
 <td> Subject: </td>
 <td><INPUT TYPE="text" NAME="subject"
 value="<%=request.getParameter ("subject") %>" ID="subject"
 SIZE="50" MAXLENGTH="50" ></td></tr>

In this case, we are using the value parameter to prepopulate the subject field.
This technique demonstrates the power of the JSP. We are easily parsing the
input parameters without any complex code.

120 CHAPTER 5

Bitter cache management
 <tr><td> Author: </td>
 <td><INPUT TYPE="text" NAME="author" ID="author"
 SIZE="20" MAXLENGTH="20" ></td></tr>
 <tr><td> Post text: </td>
 <td><textarea cols="50" rows="5" wrap="soft"
 name="postText"></textarea></td>
 </tr>
 <table>
 <INPUT TYPE="hidden" NAME="parent"
 value="<%=request.getParameter ("parent") %>" ID="parent" >
 <INPUT TYPE="hidden" NAME="board"
 value="<%=request.getParameter ("board") %>" ID="board" >
<INPUT TYPE="submit" NAME="Submit" ID="Submit" VALUE="Submit">
 <INPUT TYPE="reset" NAME="Reset" ID="Reset" VALUE="Reset">
</P>
</FORM>
</BODY>
</HTML>

In this example, we could have easily used HTML instead of this JSP page. We
opted to use a JSP to assist with handling prepopulation of the form with
input parameters. We were also able to dynamically create the text that showed
the board. However, we have no controller or command, because this JSP data
does not need any input from command beans.

The model for AddPost
The following classes will take the user’s responses on the reply.jsp form and
add them to the database. If we’re successful, instead of returning a new JSP
we’ll return the user to the ShowBoardResults.jsp view via ShowBoardCon-
troller. Here is the AddPostCommand:

package bbs;

import java.io.*;
import java.sql.*;
import COM.ibm.db2.*;
import java.util.*;

public class AddPostCommand {

Here are the usual imports that we use in the rest of our commands:

 private String author = null;
 private String subject = null;
 private String board = null;
 private String parent = "0";
 private String postText = null;
 private ResultSet result;
 private Connection connection = null;
 private String query = null;

Antipattern: The Cacheless Cow 121
 public String getAuthor() {
 return (String) author;
 }

 public String getBoard() {
 return (String) board;
 }

 public String getParent() {
 return parent;
 }

 public String getPostText() {
 return postText;
 }

 public String getQuery() {
 return query;
 }

 public String getSubject() {
 return (String) subject;
 }

 public void setAuthor(String newAuthor) {
 author = newAuthor;
 }

 public void setBoard(String newBoard) {
 board = newBoard;
 }

 public void setParent(String newParent) {
 parent = newParent;
 }

 public void setPostText(String newPostText) {
 postText = newPostText;
 }

 public void setSubject(String newSubject) {
 subject = newSubject;
 }

Listing 5.1 contains the attributes and the get and set methods. This list is
fairly long, because we have an attribute for every database field.

122 CHAPTER 5

Bitter cache management
 public void initialize()
 throws
 AddPostValidationException,
 IOException,
 DataException {

 try {

 if (getAuthor() == null) {
 throw new AddPostValidationException(
 "Author field is required.");
 }
 if (getSubject() == null) {
 throw new AddPostValidationException(
 "The Subject field is required.");
 }
 if (getPostText() == null) {
 throw new AddPostValidationException(
 "The post is empty.");
 }
 if (getBoard() == null) {
 throw new AddPostValidationException(
 "The board is not valid.");
 }
 Class.forName("COM.ibm.db2.jdbc.app.DB2Driver").newInstance();

 String url = "jdbc:db2:board";

 // connect with default id/password
 connection = DriverManager.getConnection(url);

 } catch (Throwable theException) {
 theException.printStackTrace();
 }

 }

In this initialize, we introduce validation. Here, we raise our own exception,
called AddPostValidationException. If at all possible, we should keep from
throwing a bare exception. This new exception serves as a collection point for
information about the error condition. It also clearly communicates the prob-
lem with the exception name. The code annotations show the four points
where we check the required fields, and if they haven’t been set, we throw a
specialized exception. In a more advanced implementation, our controller
would use the information in the exception and populate a bean that could be
used by our standard error JSP.

Listing 5.1 Validation is a good reason to separate execute and initialize

o Validate author

o Validate subject

o Validate postText

o Validate board

Antipattern: The Cacheless Cow 123
 After the validation, we connect to the database and then clean up:

 public void execute()
 throws
 IOException,
 DataException {

 try {
 query =
 "INSERT INTO POSTS values ('"
 + getSubject()
 + "', (select max(number) from posts) + 1, '"
 + getAuthor()
 + "', '"
 + getPostText()
 + "', current timestamp, "
 + getParent()
 + ", '"
 + getBoard()

 + "')";

In our execute method, we add a record to the database. The logic is notice-
ably simpler than usual because we have already done the validation of the ele-
ments and we catch the database exceptions elsewhere.

 Statement statement = connection.createStatement();
 result = statement.executeQuery(query);
 result.close();
 connection.close();
 statement.close();
 } catch (Throwable theException) {
 theException.printStackTrace();
 }

 }

}

We then execute the query, clean up, and catch exceptions.

The controller for AddPost
AddPostController is similar to the other commands, with a new twist: We
will dispatch an existing servlet instead of a new JSP. As usual, we’ll focus on
the action in performTask:

 public void performTask(
 HttpServletRequest request,
 HttpServletResponse response) {

 try {
 String board = request.getParameter ("board");

124 CHAPTER 5

Bitter cache management
 String subject = request.getParameter ("subject");
 String author = request.getParameter ("author");
 String postText = request.getParameter ("postText");
 String parent = request.getParameter ("parent");
 AddPostCommand addPost = new AddPostCommand();

 try {
 addPost.setBoard(board);
 addPost.setSubject(subject);
 addPost.setAuthor(author);
 addPost.setPostText(postText);
 addPost.setParent(parent);
 addPost.initialize();

We are putting our add and initialize methods into their own try/catch
loop. This design will allow us to catch the exceptions that we raised for vali-
dation failures. In a more robust architecture, we’d create a bean from the
data in our custom exception and return an appropriate error JSP.

 } catch (Throwable Exception) {
 try {
 ServletContext servletContext = getServletContext ();
 RequestDispatcher dispatcher =
 servletContext.getRequestDispatcher("/JSP/AddPostError.jsp");
 dispatcher.forward(request, response);
 return;
 } catch (Throwable exception) {
 exception.printStackTrace();
 }

 }
 addPost.execute();
 request.setAttribute("AddPostCommand", addPost);

 ServletContext servletContext = getServletContext ();
 RequestDispatcher dispatcher =
 servletContext.getRequestDispatcher("/servlet/

bbs.ShowBoardController");
 dispatcher.forward(request, response);

In this case, no dynamic data is to be displayed beyond success or failure. For
the success case, users would probably prefer to continue browsing the board
from the ShowBoard view. Therefore, through our controller, we simply dis-
patch the user to ShowBoardController. Our request object already has the
requisite board parameter set, so there is no need to re-create one.

 } catch (Throwable theException) {
 try {
 java.io.PrintWriter out = response.getWriter();
 out.println("<HTML>");
 out.println("<HEAD><TITLE>Post List Controller</TITLE></HEAD>");

Solution: Cache 125
 out.println("<BODY BGCOLOR=#C0C0C0>");
 out.println("<H2>Exception Occurred</H2>");
 out.println(theException);
 out.println("</BODY></HTML>");
 } catch (Throwable exception) {
 theException.printStackTrace();
 }
 }
 }

The rest of the method catches our exceptions.

5.2.5 Performance problems
This solution has a critical flaw: Most of the cycles will be wasted fetching the
same values. With caching, the customer realized an improvement from an
average of 19 seconds to a subsecond average response time. This is not at all
unusual. Notice the communication between our command object layer and
the database. This communication represents most of the expense for the sys-
tem. In this case, we’ve seen that five distinct communications, or round-trips,
are necessary out of 20. Because a message board can usually fit entirely in
memory, our application is especially sensitive to caching. Without a cache, it
wouldn’t be unusual for us to fetch a post hundreds of times, even though the
value remains unchanged. For real-world high-volume Internet applications,
cache solutions can be considerably faster.

5.3 Solution: Cache

With a sick feeling, I gaze down the near vertical trail. I then look down at my
magic boots, but they’re covered in snow. I make my first turn with no problem
and start to relax. Halfway through the second turn, as I brace to finish round-
ing it off, my magic boots abandon me. I am pointed directly downhill, and I pick
up too much speed before falling spectacularly, but softly, in the fresh powder. My
poles and skis have abandoned me at various places along the trail. With great
effort, I dig through the snow, gather my gear, and start down the hill once more.
Turn. Brace. Poof. Yard sale. After collecting my gear—and what is left of my
dignity—I try again. I crash again. My normally calm demeanor shattered, I let
out a long string of profanities. When certain geologic conditions exist, echoes
carry surprisingly well. I am certain that mine carry to all of the amused Utah
residents around the easy slope that skirt my canyon.

I’ve never had a more acute sense of embarrassment than I did on that moun-
tain slope in Utah. After I was back in the ski lodge and thinking more clearly,

126 CHAPTER 5

Bitter cache management
I decided that my biggest mistake was making the trip in the first place.
Sometimes, the best antidote for a bad trip is not to go in the first place. Poor-
performing Java applications can make an incredible number of needless
communication trips. Simply caching posts as we retrieve them will help us
tremendously. Next up, we’ll look at ways we can apply caching solutions to
our problem.

5.3.1 Solution 1: Use a hardware cache
The first part of our refactored solution, called a caching proxy, deals with the
static content and is completely independent of Java. This solution is a piece of
inexpensive hardware placed between the web server and the clients, as shown
in figure 5.2 on page 112. Because most of the HTTP requests are for images,
they can be serviced without even consulting the server.

 For taxed HTTP servers, this solution can make a tremendous difference.
Each graphic, animation, or sound is retrieved independently. Good browsers
optimize by grouping these requests in blocks of four, but caching the con-
tent in a proxy can insulate a majority of the requests from ever reaching a
web server.

5.3.2 Solution 2: Cache commands
In general, a cache is simply a rapidly accessible place to store data that is
expensive to retrieve. PCs generally have hardware caches on video cards so
that the video processors have immediate access to video data. Most operating
systems have disk caches for storing frequently accessed disk records (which is
one of the reasons you have to shut down the Windows operating system
instead of just turning it off). The data in these examples is fairly fluid, so we
should be able to come up with a scheme for caching the commands that fetch
our dynamic data.

 In this example, we’ll build a command cache. For simplicity, our example
will build a hash table into our command layer. That way, our controllers
won’t need to change at all. In practice, it may be far more cost effective to
build a single, systemwide command cache. Many vendors are already working
on these types of technologies.

 Instead of creating a new command from the class object each time, the
controller will ask the cache manager for a command. If a command is in the
cache, we’ll return it to the requesting instance. In this case, there’s no need
to initialize or execute the command, because the get attributes are already
populated. If the command isn’t in the cache, the cache manager will create a

Solution: Cache 127
new one as before, following the set, initialize, and execute protocol to pre-
pare the command for use by the controller and JSP layers.

 In general, in order for a cache strategy to be useful, our application should
have several properties:

� Our solution should have a logical partitioning of cacheable units.
Examples are URLs, documents, policies, customers, and pages. The
command gives us an ideal partitioning of cacheable units.

� The units should have a value that’s stable enough to make the cache
worthwhile. We want to have a relatively high probability of finding
data in the cache. Several factors come into play, including:
� The volatility of the data. Higher volatility means that we are less

likely to use the data before it changes. In such cases, we’ll need a
very high access frequency to make the cache worthwhile, but these
cases do exist (for example, a popular stock price).

� The size of the database. If a database is very large, it may be difficult
to cache enough data to have repeat requests, unless the requests are
not uniformly distributed.

� The distribution of data requests. If a database is too large, a uniform
distribution will inhibit caching.

� The size of the cache. If we can cache more data, we have a higher like-
lihood of a hit for any individual request.

� The frequency of access. If the data volatility is high and the frequency
is low, a cache strategy may not be appropriate. If the database is very
large, the resources for the cache are constrained, and the distribu-
tion of requests is spread uniformly across the data, then the cache
would probably not provide meaningful benefit. In most cases,
though, a cache can add exceptional value.

There should be a convenient way to handle cache data that has changed
(referred to as stale cache data). One solution is to simply expire cache data
after a certain period of time. We may instead explicitly invalidate cached data
through the commands that change the data. Alternatively, we may use a pub-
lish/subscribe pattern to automatically notify the cache when a change occurs.
Table 5.2 shows three requirements for caching to make sense.

128 CHAPTER 5

Bitter cache management
Our example has cacheable units. Our database is small and the distribution
far from uniform, because the most interesting posts will be viewed most fre-
quently. It’s likely that our entire database will fit in memory. Our invalidation
is also simple; so far, we write posts to the database in only one place. For us, a
cache makes sense.

5.3.3 Adding a cache to our BBS
In this example, we’ll add a cache object for the ShowBoardCommand and
ShowThreadCommand classes. We’ll call them BoardCacheCommand and Thread-
CacheCommand, respectively. The techniques for each are identical, so we’ll
show only the BoardCacheCommand in listing 5.2.

package bbs;

import java.io.*;

import java.util.*;

import bbs.AddPostValidationException;

import bbs.ShowBoardCommand;

public class BoardCacheCommand {

 protected String board = null; C Cache key field

Table 5.2 If data can be partitioned into cacheable units, values are reasonably stable, and
detecting change and age is practical, then caching is a viable enhancement.

Requirement Description

Data must have cacheable units. The application must have a partitioning that lends
itself well to caching. A partition of elements that
are close to the same size and practical to store are
keys for effective caching.

Values must be stable. If a value does not stay stable long enough to be
read more than once for the expected case, a cache
is not practical. For example, a stock value may not
be considered stable for a pool of 10 users who use
a ticker occasionally, but it might be stable enough
for thousands of interested traders on a single
server.

Detecting change and age must be
practical.

We need a convenient way to handle critical data
changes that must be detectable, or some reason-
able definition of what constitutes stale data.

Listing 5.2 The BBS example with an added cache

B Imports

Solution: Cache 129
 public boolean cached = false; D Instructional field, true for cache hits

 protected ShowBoardCommand boardCommand = null;
 private static java.util.Hashtable boardCache = null;

 public void initialize ()
 throws
 IOException,
 DataException {

 synchronized(boardCache) {
 if (boardCache == null) {
 boardCache = new Hashtable();
 }
 }
 }

 public void invalidate(String key) {
 synchronized(boardCache) {
 getBoardCache().remove(key);
 }
 }

 public void execute ()
 throws
 IOException,
 DataException {
 synchronized(boardCache) { J Synchronized to protect static cache
 try {
 // Cached is an instructional flag to show whether a
 // value was fetched from the cache.
 cached = true;
 Hashtable cache = getBoardCache();
 if (cache == null) {
 throw new Exception();
 }
 boardCommand = (ShowBoardCommand) cache.get(getBoard());
 if (boardCommand == null) {
 boardCommand = new ShowBoardCommand();
 boardCommand.setBoard(getBoard());
 boardCommand.initialize();
 boardCommand.execute();
 cache.put(getBoard(), boardCommand);

 cached = false;
 }
 } catch (Throwable theException) {
 theException.printStackTrace();
 }
 }

 public String getAuthor(int index)
 throws
 IndexOutOfBoundsException,

E This is the cache.
Note static.

F Initialize is
lighter than
usual.

G Synchronization
controls access.

H Invalidate
handles changed
data.

I Execute will try
cache first.

Cache missed, so
fire a command.

1)

1! Most getters
pass through.

130 CHAPTER 5

Bitter cache management
 ArrayIndexOutOfBoundsException {
 return getBoardCommand().getAuthor(index);
 }

 public String getBoard() {
 return board;
 }

 protected static Hashtable getBoardCache() {
 return boardCache;
 }

 ShowBoardCommand getBoardCommand() {
 return boardCommand;
 }
 public boolean getCached() {
 return cached;
 }

 public String getNumber(int index)
 throws
 IndexOutOfBoundsException,
 ArrayIndexOutOfBoundsException {
 return getBoardCommand().getNumber(index);
 }

 public int getSize() {
 return getBoardCommand().getSize();
 }

 public String getSubject(int index)
 throws
 IndexOutOfBoundsException,
 ArrayIndexOutOfBoundsException {
 return getBoardCommand().getSubject(index);
 }

 public void setBoard(String name) {
 board = name;
 }

 void setBoardCommand(ShowBoardCommand newBoardCommand) {
 boardCommand = newBoardCommand;
 }

}

B These imports get our usual Java utility classes and a couple of others. We’ll use
this command to actually create a ShowBoardCommand or retrieve it from our class.
We’ll also include a validation step to ensure that the key fields entered by the con-
troller are valid.

1@ Cache key is
held locally.

Solution: Cache 131
C board is the unique identifier that we’ll use for a key field in this example. Con-
ceptually, we’ll have a hash table entry for every board. Each hash table entry is an
executed command that has the whole list of boards.

D cached is a variable that will tell us whether the command was retrieved from the
cache, and we can display that status on the JSP. Of course, in practice, this
attribute is not necessary.

E Danger! boardCache is declared as a static attribute. That means only one copy
exists, attached to the class object. Whenever we access this attribute, we must do
so in synchronized code, which means that only one method can use our hash
table at a time. Later in the chapter, we’ll introduce read-write locks, which will
provide more concurrent access without the loss of thread safety.

F Next, we have the initialize method. We initialize and validate, as usual. We are
slimmed down somewhat, because the database connections and validation are
handled in the sister command.

G The first time any object uses the hash table, it will need to be initialized, but only
the first time because it is a static variable.

H Next is the invalidate method. This method is used whenever the board’s list of
posts can change. In our case, we’ll need to call invalidate whenever we add a
new top-level post.

I Next is the execute method. We fire the logic wrapped by the command, as usual.

J This code section is synchronized because it writes to the hash table. If a command
with our key is in the hash table, then we’ve just about completed this execute
method. Compare that with the intialize and execute methods in the previous
edition of ShowBoardCommand, which validated the input parameters, connected to
a database, executed a query, and fetched the results of the query to populate the
input variables. The system was also working hard, with several round-trip com-
munications to the database server, an expensive database connection, and plenty
of expensive string manipulation.

1) We check to see if we found the requested board in the cache, also called a cache
hit. If not, we simply create the command, process the sets, initialize, and execute,
just like before. We’ve added a layer of complexity in front of our regular com-
mand in case our cache doesn’t get a hit. Remember that this case is the exception.
For most applications, hits of 90 percent or more in the cache are not out of the
ordinary. For our bulletin board example, the entire message board might fit into
memory, so we can probably expect to see much higher hit rates. As long as our

132 CHAPTER 5

Bitter cache management
system stays up, we’ll retrieve a row once for every new post or update, per server,
resulting in tremendous savings.

1! These are our get and set methods. The value of encapsulating them is clear: We
won’t have to change the interface for the command even though we’ve changed
the implementation of our instance variables. For the most part, for the interface
attributes for ShowBoardCommand we simply pass through to the get and set
methods of the imbedded commands.

1@ Because board is the key, we have that one on hand and pass it back directly.

Continuing with the next part of our program, we need to modify AddPost-
Command to invalidate the appropriate cache when a new post is added. Here
are the changes, which are added to the execute method in our new class,
called FastAddPostCommand:

 query =
 "INSERT INTO POSTS values ('"
 + getSubject()
 + "', (select max(number) from posts) + 1, '"
 + getAuthor()
 + "', '"
 + getPostText()
 + "', current timestamp, "
 + getParent()
 + ", '"
 + getBoard()
 + "')";

 Statement statement = connection.createStatement();
 result = statement.executeQuery(query);
 result.close();
 statement.close();
 connection.close();

The query and its execution remain unchanged:

 // If it's a top-level post, we must invalidate the board cache
 // because the board list will be different.
 if(getParent()=="0") {
 BoardCacheCommand boardCache = new BoardCacheCommand();
 boardCache.invalidate(getBoard());
 } else {
 // otherwise, we must invalidate the thread cache
 // because the message content has changed.
 ThreadCacheCommand threadCache = new ThreadCacheCommand();
 threadCache.invalidate(getParent());
 }

Solution: Cache 133
We then check to see if we’re adding a top-level post or a reply to an existing
thread. If it is a top-level thread, we need to invalidate the cache for board-
Cache. If it’s a reply to a thread, we have to invalidate the cache for the thread.
In either case, we won’t write the new value to the cache until it’s fetched
again. The slight performance penalty is more than compensated for by the
improvement in readability.

 The usage of these commands is identical; only the name of the command
is different. Here, we show the revised controller statements in our new con-
troller, FastShowBoardController:

 String board=request.getParameter ("board");
 BoardCacheCommand postList = new BoardCacheCommand();
 postList.setBoard(board);
 postList.initialize();
 postList.execute();

The changes in FastShowThreadController are identical.

5.3.4 Possible enhancements to cached commands
In “Scaling Up E-business Applications with Caching,” the authors define a
dynamic cache manager. This section describes some natural extensions to our
cache example. The following list represents the enhancements that we’d
likely want to make for a robust cache manager:

� Refactor. First, the generic command methods should be promoted to
an interface. This would give us flexibility in initializing and executing
our commands.

� Extend our commands to have a generic key attribute.
� Add a time stamp and timeout to our commands, to allow us to period-

ically expire old cache items.
� Record the key values for any command dependencies that we might

have (to use in invalidation schemes).
� Generalize the cache management functions in BoardCacheCommand and

ThreadCacheCommand to a general CommandCache class. This class would
handle caching of systemwide commands and invalidation.

� Establish various levels of validation and the protocols that application
developers might use to support them. Some elements would be fully
automatic, such as a timeout mechanism. Some would be more
advanced—an automatic notification scheme, for example. Some would
be simple but tedious and bug prone, such as the manual invalidation
scheme we used in this example.

134 CHAPTER 5

Bitter cache management
� Cache JSP fragments, so that dynamic pages could be built once and
retrieved intact.

Products that cache full servlets
Some servlets generate pages that change only every 15 minutes or so. With
supporting software, these can be cached much like static pages. Caucho’s
Resin, which has a very fast servlet container, caches servlets and JSPs in this
way. To do so, the page sets up a caching header, which marks the page as
cacheable and sets the appropriate parameters for timeout and the like. BEA
Systems and IBM have similar solutions.

 Keep in mind that with these products, you’re addressing only the first
and most basic type of JSP caching. You should also consider solutions that
cache dynamic content at various points of the architecture and various levels
of granularity.

Caching JSP fragments
There are many solutions calling for complex user interfaces to compose
dynamic web pages from smaller JSPs called fragments. If a given fragment is
based on a command or similar construct and the command can be cached, it
may make more sense to cache the HTML generated from the compiled and
executed JSP fragment. This practice is known as JSP fragment caching. The
cache is maintained the same way: through the keys generated from the com-
bination of input parameters from the command object. Instead of caching
the output parameters, we cache the executed JSP. IBM has submitted a
request (JSR 126) to the Java Community Process to propose a uniform
implementation of JSP fragment caching.

Buying a full cache manager
It would require too many pages for us to build all of the previously suggested
enhancements into our example. We should point out that many vendors are
working on robust cache managers for command frameworks similar to this
one. For example, BEA has an alliance with TimesTen, who builds FrontTier, a
dynamic data cache for WebLogic. IBM’s edge server has a cache that stores
dynamic JSP fragments. The capability to cache JSP fragments offers a signifi-
cant performance boost; it eliminates communication and processing by the
web server and web application server layers for a cache hit, even for dynamic
content.

 By the time this book is published, it’s likely that most of the major web
application server vendors will have some form of dynamic cache. Still, you

Cache-related mini-antipatterns 135
can use the techniques in this chapter wherever round-tripping is a concern
and the back-end services lend themselves to caching architectures.

Vignette’s fast portal solutions
Vignette takes caching a step further: it offers highly personalized content-
management solutions for the development of portals and other Internet soft-
ware. With the Vignette system, templates (using JSPs and JSP fragments)
make it possible to publish dynamic content. The architecture performs well,
partially because of a good caching solution. A template manager helps to
maintain a template cache and flushes an entry whenever a template is added,
deleted, or modified. An additional manager, the Docroot Manager, works
with the web server to ensure that outdated files are completely purged from
the server’s document root. This combination makes it easy for the web server
and application server to work together and maintain an efficient and effective
cache, with little management overhead for the user. You can read more about
these content-management solutions at http://www.vignette.com.

5.4 Cache-related mini-antipatterns

By far the biggest problem related to caches is the failure to use one where
appropriate. We should be aware of a few additional issues as we implement
caches. Within Java, two common antipatterns are related to concurrent pro-
gramming. In addition, we need to carefully manage our memory: we
should have a firm strategy for removing stale elements from the cache, and
for capping the size, or at least doing some garbage collection if memory
becomes constrained.

5.4.1 Concurrent access to static cache
Trying to access static class-level variables concurrently is a common problem.
We must synchronize access to these variables in order to make them thread-
safe. You can’t have more than one instance writing to the hash table at the
same time and expect correct results. Note that synchronizing on the method
level won’t work unless the method is static, because although there could be
several commands, there’s only one hash table. Synchronizing at the method
level will merely prevent several threads in the same instance from using the
same method concurrently. The synchronize keyword will lock only a single
object. Since all of the execute methods in our command objects could try to
concurrently access our boardCache object, we need to lock it with a critical
section. By synchronizing on the boardCache object, we ensure that all threads

136 CHAPTER 5

Bitter cache management
accessing it need to first obtain a lock. We effectively lock the critical resource
instead of the methods accessing it.

5.4.2 The ever-growing cache
If we were to implement this solution in front of a database with significant
size, our cache would steadily grow until we ran out of memory; we simply
have no mechanism for cleaning the cache. A surprising number of commer-
cial applications have this characteristic. Here are some strategies for cleaning
the cache periodically:

� For caches of user-related data, either cache user data in the session or
flush the session data when sessions expire. Since most web servers allow
for notification when a session expires, you can use this event to clean
up a command cache as well as session data.

� Time stamp elements of the cache. When a cached item is accessed,
update the time stamp. Use a maximum-limit-exceeded exception to
trigger a garbage-collection process. This process iterates through the
cache, expiring a specified number of the oldest items.

� Instead of an event-driven garbage collector, have a timed garbage col-
lector that periodically expires elements in the cache. This approach also
requires the addition of a time stamp to cached entries.

5.5 Antipattern: Synchronized Read/Write Bottlenecks

Mark Wells, a former vice president of engineering at Agillion, suggested this
antipattern. In the previous example, our synchronization scheme required us
to lock the hash table objects for every hash table access. This lock is necessary
so that the results of the execution are correct, even if there are multiple
threads. Consider the following class:

class counter {
public static Integer count=0;
public void count() {
 Integer temp = count;
 temp = temp + 1;
 count = temp;
}

Table 5.3 shows a possible timeline for the program with two threads of exe-
cution. Two threads are running the same program.

Antipattern: Synchronized Read/Write Bottlenecks 137
We can protect execution from simultaneous access by adding the synchro-
nized keyword to the method:

public synchronized void count() {

For synchronized code, when a thread enters a method it locks the instance’s
object so that other threads of the same instance cannot enter the method at
the same time. Here’s the key: The Java synchronized keyword locks on the
object level. For Listing 5.2, a synchronized method would not have been
strong enough, because many commands could exist and write to the hash
table at the same time. Therefore, we must lock the cache object.

5.5.1 Collisions between readers can hurt performance
For cache applications, you should have far more reads from the cache than
writes to the cache. If this were not true, you’d be adding overhead without
getting much value. You don’t need to protect simultaneous reads from the
cache, because reads are not destructive. However, a writer and a reader using
the cache at the same time would possibly generate unpredictable results. The
problem is that writing applications need exclusive access, so to keep the read-
ing applications out, both readers and writers must obtain a lock. Because the
locks are exclusive, readers are also reduced to sequential access. This is a clas-
sic case of the Read/Write Bottleneck antipattern.

 Consider a bathroom that’s located between two important rooms of a
house. It should be acceptable for many people to walk through the bath-
room, as long as no one is using it. Once someone is using the bathroom,
those passing through must clear out and the doors on either side must be

Table 5.3 Executing parallel threads can have many different results. This shows the possible
results of executing our program with inadequate protection. While we should increment our
counter twice, we come out with a total of one.

Value
of count

Value
of temp

Thread 1 Thread 2

0 0 Integer temp = count;

0 1 temp = temp + 1

0 0 Integer temp = count;

0 1 temp = temp + 1

1 1 count = temp

1? 1 count = temp

138 CHAPTER 5

Bitter cache management
locked. The readers share the bathroom, passing through concurrently. Writ-
ers use the bathroom exclusively. We should not force people simply passing
through to wait, but that’s precisely what our sample application does. We
allow only one user of the bathroom, analogous to our cache objects, to pass
through at any given time, regardless of the use. I’m reasonably certain that I
have seen bathroom lines at many parties that indicated use of this algorithm.
If the read/write ratio is very high, then the penalty can be significant.

5.5.2 Read/write locks allow correct shared access
Database systems solve this problem with a multilevel locking system. In this
case, obtaining a read lock on a database object allows multiple users to read
the same data. A write lock is not compatible with a read lock. An application
requesting a write lock must wait for all readers to clear. Java has no native
support for read/write locks, but creating an object to provide this functional-
ity is straightforward. To see how a read/write lock works, we present an
example provided by Amandeep Singh, from a self-published article titled
“Implementing Read-Write Locks in Java”:

class RWLock
{
 private int givenLocks;
 private int waitingWriters;
 private int waitingReaders;
 private Object mutex;
 :
 :
 public void getReadLock()
 {
 synchronized(mutex)
 {
 while((givenLocks == -1) ||
 (waitingWriters != 0))
 {
 mutex.wait();
 }

 givenLocks++;

 }
 }

This method is used to request the read lock. It locks our common object,
mutex, to control access to the internal variables. If writers are waiting or if
writers have a lock, they’re allowed to clear before the lock is granted. given-
Locks has a value of –1 when a writer has the lock:

Antipattern: Synchronized Read/Write Bottlenecks 139
 public void getWriteLock()
 {
 synchronized(mutex)
 {
 waitingWriters++;

 while(givenLocks != 0)
 {
 mutex.wait();
 }

 waitingWriters--;
 givenLocks = -1;
 }
 }

When requesting a write lock, a thread signals that it is waiting by increment-
ing the waitingWriters variable, waits until no more readers are holding the
lock, and then takes a lock by setting givenLocks to –1 and decrements wait-
ingWriters to signal that it is no longer waiting:

 public void releaseLock();
 {
 synchronized(mutex)
 {

 if(givenLocks == 0)
 return;

 if(givenLocks == -1)
 givenLocks = 0;
 else
 givenLocks--;

 mutex.notifyAll();
 }
 }

}

To release a lock, the protocol is followed in reverse. To use this lock, an appli-
cation must:

� Create a lock for each critical resource to be protected.
� Request the lock for read before reading from the resource.
� Release the lock for read after reading from the resource.
� Request the lock for write before writing to the resource.
� Release the lock for write after writing to the resource.

140 CHAPTER 5

Bitter cache management
The application will allow shared reads but will require exclusive writes. In our
case, the application would have significantly higher throughput for most
caching applications. Relational databases have proven the utility of robust
read/write locks for years. Caching is an example where throughput can be sig-
nificantly improved through the implementation of a read/write lock.

 As always, a much better solution than rolling your own is to use a pre-
packaged, respected utility. Many other resources exist for good concurrent
programming in Java. Among the best is a book called Concurrent Program-
ming in Java: Design Principles and Practices. In it, author Doug Lea describes
locking considerations and other techniques for ensuring correctness. His
website, http://g.oswego.edu/dl/, also includes util.concurrent, a well-
respected collection of utilities for concurrent programming.

5.6 Cooking the Cacheless Cow

This chapter has shown that caching can add a substantial boost to perfor-
mance when applications meet certain criteria. Real-world architectures have
implemented caches on every level, from low-level hardware to operating sys-
tems, networks, and distributed applications. We also know that many applica-
tions neglect this important potential performance boost. The Command
design pattern provides a convenient point to add a cache. This chapter has
presented an unsophisticated cache solution, but many frameworks will build in
command caches over time. Many of the applications that do cache unnecessar-
ily limit throughput by falling into the trap laid by the Synchronized Read/
Write Bottleneck antipattern or other mini-antipatterns defined in this chapter.

5.7 Antipatterns in this chapter

These are the templates for the antipatterns that appear in this chapter. They
provide an excellent summary format and form the basis of the cross-refer-
ences in appendix A.

The Cacheless Cow
RELATED ANTIPATTERNS: Round-tripping. Poor caching strategies usu-
ally lead to round-tripping and poor performance.
DESCRIPTION: Caches can be used to provide a significant performance
boost with very little effort, but many developers neglect this basic
enhancement. Most Internet applications take advantage of hardware and

Antipatterns in this chapter 141
web servers for caching of static content, but caching of dynamic content
takes more time.
MOST FREQUENT SCALE: Application.
EXCEPTIONS: Some applications are not caching candidates. If there’s no
way to know when cache data is invalid, a cached solution won’t work. If
most data elements change too frequently, caches won’t be effective. If a
database is large and the cached data set is too diffuse, the cache won’t be
effective.
REFACTORED SOLUTION NAME: Dynamic Command Cache.
SOLUTION ALSO KNOWN AS: Model 2, Modified Model-View-Controller.

REFACTORED SOLUTION TYPE: Software or technology. Caches can be
bought or built.
REFACTORED SOLUTION DESCRIPTION: Cache dynamic content where
possible. The Command design pattern and its relatives provide a conve-
nient interface point for a cache. Most major web application server ven-
dors have developed or are working on dynamic caching solutions, and
rolling your own is well worth the effort when the prepackaged solutions
do not fit.
TYPICAL CAUSES: Ignorance of the power of caching is the biggest culprit.
Designing a data model without caching solutions in mind is another.
ANECDOTAL EVIDENCE: “The individual pieces seem to be working, but
the application still seems slow.”

SYMPTOMS, CONSEQUENCES: Applications suffering from this antipattern
do a job many more times than is necessary. They can range anywhere
from slug-slow to slug-slime-slow, depending on the read/write ratio and
other factors.
SOLUTION ALTERNATIVES: Commercial versions of command caches
exist. Sometimes, data that would otherwise be cached can be stored in
the session state, at the application, session, or at page level.

Synchronized Read/Write Bottleneck
DESCRIPTION: The Java programming language locks on the object level
for synchronization, but does not distinguish between readers and writers.
This locking mechanism is too restrictive for applications such as databases
and caches.
MOST FREQUENT SCALE: Microarchitecture.

142 CHAPTER 5

Bitter cache management
REFACTORED SOLUTION NAME: Read/Write Locks.

REFACTORED SOLUTION TYPE: Software.
REFACTORED SOLUTION DESCRIPTION: Instead of synchronizing on
methods or objects, use a read/write lock. As of the publishing date, Java
had not yet included a read/write lock, but many examples exist in litera-
ture and on the Internet.
ROOT CAUSES: Ignorance. Java does not yet include a read/write lock, and
information about this solution is not widely distributed.
SYMPTOMS, CONSEQUENCES: This antipattern must usually be detected
by inspection, but occasionally a web application server can bog down
without fully using available CPU resources.
SOLUTION ALTERNATIVES: A second solution for this problem is called
Copy-on-Write. This solution involves creating a copy of a cache item,
locking the copy, writing to the copy, and then deleting the original.
Readers in this scenario do not lock.

6Bitter memorie
s

This chapter covers
� A Java memory-management primer
� Memory-related antipatterns
� Techniques for troubleshooting memory leaks
143

144
Kayakers and canoeists are not quite mortal enemies, but there’s a healthy rivalry
between them. As a child I canoed, but I made the switch to kayaks attracted by
their stability, speed, and grace. I am now on an extended trip with three other
kayakers--and one canoeist. The canoeist, Randy Barnes, and I spar verbally at
every opportunity. I comment on his strong swimming skills, regretting that a
canoe is so difficult to roll. Randy wonders aloud why I need the security blanket
of a two-blade paddle when a canoeist can make do with a short, single blade.
Our first day is spent on the Little River, a tight, technical run in the Smokey
Mountains. I secretly marvel as Randy takes his canoe down a violent Class V
rapid called the Sinks. I decide to walk around it; for me, the margin of safety is
too slim. With outstanding control and incredible skill, Randy maneuvers his 12-
foot canoe into places I have trouble taking my 7-foot kayak.

We are now running a Class IV+ rapid known as the Elbow. It’s an extremely
tight flume of water—in places just four feet wide. Bent tightly at two points, the
Elbow drops nearly 20 feet down a 40-degree fall. Three kayakers at the bottom
watch, stunned, as Randy’s canoe hits the side of the chute, then the riverbed. The
canoe tumbles all the way to the end of the run. Coughing up river water, Randy
emerges as the kayakers jeer. Looking over the rapid as I prepare for my run, I
remain silent.

6.1 Understanding memory leaks and antipatterns

In this chapter, we’ll begin to explore antipatterns related to memory leaks.
Some of you might think that memory-management discussions should be left
to JVM vendors. Technically, a Java memory leak occurs when an object can-
not be reached and it’s not freed through an automatic process known as gar-
bage collection. In this sense, the virtual machine vendors, rather than
application programmers, should be the ones to concern themselves with
memory leaks. However, we’ll use the term memory leak in a much broader
sense. For our purposes, an object that’s not garbage-collected after it’s no
longer of use to an application is a memory leak. Some of you might consider
this usage inaccurate, because Java is working precisely as it is designed. I
chose the term memory leak because it best describes the behavior of the
applications that suffer from these antipatterns: memory that we no longer
need is not returned to the memory heap and will continue to “leak” away
until we explicitly trace the source and fix the problem.

 First, we’ll examine memory management for other languages, such as C++.
We’ll also examine several garbage-collection techniques and identify the ones
most JVMs use. In some places, we need to help the garbage collector to do its

Understanding memory leaks and antipatterns 145
job. To that end, we’ll present a series of antipatterns involving memory leaks.
Finally, we’ll look at tools and techniques that will help us solve memory leaks.

6.1.1 Managing memory
In any object-oriented language, each variable, regardless of scope, must be
allocated. In most cases, memory can come from three primary sources: regis-
ters, the stack, and the heap. The compiler (or interpreter) closely manages
registers and the stack, so we’ll focus on the heap. We can think of the heap as
a mailbox with different-sized slots. A compiler or interpreter will have a
memory manager, analogous to a postmaster, to manage these slots. Imple-
mentations of memory managers can vary widely, from single runtime entities
to static libraries. It’s the manager’s job to configure the size of the slots, allo-
cate them as needed, and reclaim them for later use. For some low-level lan-
guages, like C++, the manager is a very thin layer. The programmer is
responsible for explicitly requesting a block of memory (with new or malloc)
and explicitly freeing the block (with free) when it’s no longer required. C++
also forces the programmer to track individual addresses of memory blocks
through pointers. This implementation makes C++ very flexible, but also
tedious and problematic. Table 6.1 shows some of the bugs that a C++ pro-
grammer might encounter. We’ll focus on the dangling pointer and the mem-
ory leak, because both are realized differently in Java.

Table 6.1 Problems encountered while managing memory in C++. The third column shows the
types of program failure that you can expect.

Name Description Failure Symptoms

Memory leaks Memory is allocated.
Memory is not freed.

This is the classic memory leak. The pro-
gram grows indefinitely, slows as free mem-
ory runs out, and eventually fails with an
allocation error.

Free errors Memory is freed with no
allocation.

The program fails with a free error.

Dangling pointers Memory is freed, but the
pointers not updated.

As lists, trees, or other structures are tra-
versed, the program crashes with unpredict-
able results.

Invalid pointer; lost
pointer

Pointers to valid memory
addresses are overwritten.

The program crashes.

146 CHAPTER 6

Bitter memories
Recall that Java implements a different strategy. Java applications request
objects, and the interpreter allocates the memory for the object. Because Java
handles allocation for the programmer and all variables are represented as
higher level objects, the Java programmer doesn’t need to bother with pointer
arithmetic. In fact, pointer arithmetic was explicitly avoided in the Java design
to increase the stability and security of the language. Memory is not explicitly
freed. Instead, Java handles deallocation of memory through a process called
garbage collection.

6.1.2 Understanding garbage collection
Heaps are usually managed as a linked list or with a reference table pointing to
blocks of memory. An allocated block is marked in the table or taken out of
the chain. With allocation, a suitable block is found, subdivided, marked, and
returned to the requesting application. To prevent fragmenting, some mem-
ory managers periodically coalesce memory or combine contiguous blocks
into one big block. Automatic allocation of memory isn’t difficult. The size of
the memory block and the block usage are known in advance. The memory
manager simply goes to the heap and walks through the free blocks until a
block of sufficient size is found.

 Garbage collection is the act of periodically finding unused memory and
returning it to the heap. Doing it well is much more difficult than allocation.
The garbage collector cannot reliably guess the programmer’s intent, so it
must use some other means to identify memory blocks to free. We’ll discuss
two important garbage-detection techniques: reference counting and
unreachable nodes.

6.1.3 Reference counting
Early garbage collectors used a technique called reference counting. With this
algorithm, each object has a counter. When an object is allocated or used, the
associated counter is incremented. When the object is no longer referenced, it
is freed. The garbage collector can periodically sweep through all allocated
objects and free any objects with a reference counter of 0.

 In figure 6.1, the circles represent allocated objects in the form of a
directed graph, or a group of interconnected objects. Connections between
objects are called edges. In our case, the edges are directed because an object
that explicitly references another provides direction for our arrows. Our
graph’s objects are labeled with a name and reference count in parentheses.
The objects above the line are in use, and the objects below the line are no
longer in use.

Understanding memory leaks and antipatterns 147
 The problem with reference-counting garbage collection is that it cannot
detect cycles, or objects that reference each other, though they might not be in
use by any other object. In fact, we couldn’t use the objects below the line if
we wanted to, because we no longer have a reference. In our example, objects
E and F would be freed, but D and G would not. D and G have positive refer-
ence counts, though we cannot possibly use them. This short program dem-
onstrates an object that would be freed, and one that would not:

public class LinkedList o Linked list class
 {
 public LinkedList next = null;

 }
.
.
public someMethod () {
 LinkedList a = new LinkedList();
 LinkedList b = new LinkedList();
 a.link = b;
 b.link = a;
 a = null;
 b = null;
}
.

.

Listing 6.1 Demonstrating a circular reference

root

In use

Not
in use

Label:
object name (ref count)

Figure 6.1 Some garbage collectors manage memory by counting references. Here, the objects
with a reference count of 0 will be identified by the garbage collector and freed. Notice that
objects D and G are not in use but will not be freed, due to a circular reference.

o
Allocate A/B.
A/B reference counters = 1.

o
A/B reference B/A.
A/B reference counters = 2.

o Remove references to A/B.
A/B reference counters = 1.

148 CHAPTER 6

Bitter memories
This program does nothing, but it illustrates the anatomy of a memory leak
for programs that use reference counting for garbage collection. Many pro-
grammers believe that circular references can lead to memory leaks in Java,
but Java garbage collectors no longer use reference counting. (Some C++
frameworks do still use reference counting for garbage collection, which
might account for some of the confusion on the subject.)

6.1.4 Reachable objects
Java garbage collectors use another technique, called reachable objects, to
determine whether an object is in use. The garbage collector periodically trav-
els the directed graph of allocated objects, attempting to visit every node by
following valid references. If an object can be reached, it is marked, and the
rest are freed. With this two-pass approach, sometimes called a mark-and-
sweep algorithm, circular references are handled appropriately: They are freed
only if they aren’t reachable, effectively handling the problems shown in
figure 6.2 and listing 6.1.

root

D is needed to
be reachable.

Removing D’s
refs will make
E unreachable.

Removing
F’s refs will
make F
unreachable.

Figure 6.2 Java performs garbage collection by determining whether a node is reachable. An
object cannot be garbage-collected if it is reachable. You can break reachability (D, F) by
dereferencing an object or an object in the reference chain until it is no longer reachable (E).

Trading C++ for Java 149
6.2 Trading C++ for Java

Running through the Elbow after Randy, I’m glad to be in my tiny kayak. I am
not expecting a problem making the S-turn, nor do I expect to hang up on the bot-
tom. The two-blade paddle will help me brace on either side for stability. I need
only make the initial critical turn, get into the flume, and brace. From that point
on the turbulent water will steer me down the flume as it has the three kayakers
before me. As I reach the initial turn, my front end hits turbulence—as I
expected—but then skips over the water that I’d counted on to turn my boat. Out
of control, I hit the same rocky outcropping as Randy. The mistakes are different,
but the result is the same.

When I decided to eschew C++ and learn Java, I’d been frustrated with the
amount of time required to handle tedious matters unrelated to my business
problem. As a team leader, I’d spent hours tracking down dangling pointers,
memory leaks, and off-by-one errors. C++ felt like a long, awkward canoe.

 When I moved to Java, I felt invulnerable in my new “kayak.” I marveled
in condescending glee at the things that Java handled for free, while my C++
friends struggled with memory-management issues. Then, I encountered my
first Java memory leak, and I discovered that my tools and skills were not
adequate. I hadn’t known that Java memory leaks could even exist, let alone
how to find them. It took me a week to solve my first Java memory leak. My
memory-management days weren’t behind me, after all.

6.2.1 Circumstances that cause Java memory leaks
Though garbage collection in Java is sophisticated, certain patterns can still
cause memory leaks. An object’s transition through states from allocated to
freed is known as its life cycle. From a garbage-collection standpoint, an object
goes from being unallocated, to allocated, to live, to unused, to garbage-col-
lected. A live object is one that is being actively used by a program. Java mem-
ory leaks tend to occur when a reachable object with a long life cycle has a
reference to an object with a shorter life cycle. In short, memory leaks are
objects that are reachable, but not live. Figure 6.2 shows two ways that gar-
bage collection can occur:

� All references to an object by all reachable objects must be removed. In
figure 6.2, F has references from object C, which must be removed for
F to be collected.

� All references to another object, needed for an object to be reachable,
must be removed. In figure 6.2, references from B and C to D will

150 CHAPTER 6

Bitter memories
make object E unreachable, and will be collected on the next garbage-
collection pass.

Eventually, chains are garbage-collected as they fall out of use. However, if
object B or C has a long life cycle, then objects D and E will remain reach-
able unless the references to D are explicitly broken. If the programmer no
longer intends to use D and E, we have a classic Java memory leak. Most of
the memory leaks in this chapter will deal with some type of anchor with a
very long life cycle that references unused objects, such as collections, sin-
gletons, and listeners. If nothing is done to remove the reference, we’ll have
a memory leak.

6.2.2 Finding Java leaks
Java leaks can be especially difficult to find. For the most part, Java applica-
tions are at a higher level than C++ applications. We Java programmers are not
well versed with the low-level tools and techniques that complex memory
problems demand. Factors that contribute to the dilemma of finding and
troubleshooting memory leaks in Java include:

� Simply watching memory by using a monitor, like the Windows Task Man-
ager, is not sufficient. Garbage-collection scheduling varies, and memory
is not freed until garbage collection is scheduled.

� Under certain circumstances, the Java garbage collector is not executed at
all. Some garbage collectors are activated only when memory use
reaches a certain threshold. In those instances, if tests do not model
real-world usage scenarios closely, you could easily miss memory leaks
or incorrectly assume leaks exist.

� References are in clusters, so the impact of leaks is greater. In Java, each
block of memory is not explicitly freed. If you forget to remove a critical
reference to a single object, it may reference many other objects. A Java
interface developed with the Swing component library can have refer-
ences to dozens or even hundreds of child classes. Further, since the
classes also have back pointers, references to a child class can make an
entire user interface tree reachable.

� More than one reference might be causing the leak. Because all references
must be broken to make a class unreachable and eligible for garbage col-
lection, breaking a single reference might not be enough. A correct fix
may not have the desired impact if multiple bugs exist.

Antipattern: Lapsed Listeners Leak 151
� The symptoms are not as dramatic or immediate as those in C++. In C++,
a reference is not correctly updated, the result is often a crash due to a
dangling pointer. In Java, the symptoms are not immediate, so generat-
ing failure test cases is not as easy.

This chapter will help you recognize some common types of memory leaks
before they become problems. Coding conventions make it easier for you to
account for key references that must be explicitly removed to achieve effective
memory management. Now that we’ve reviewed memory management and
seen some basic patterns that could lead to Java memory leaks, let’s examine
some specific antipatterns.

6.3 Antipattern: Lapsed Listeners Leak

The Lapsed Listener Leak is a common antipattern given its name by Ethan
Henry and Ed Lycklama in an article titled “How Do You Plug Java Memory
Leaks?” One design pattern with the potential for memory leaks is the Event
Listener design pattern, which is used to establish interest in an event without
forcing broadcast messaging. Objects request notification of an event by regis-
tering a listener or method that will be called if the event occurs. Java uses this
design pattern in several places; three are interesting for the purposes of this
antipattern. First, the Java user interface framework (called the AWT library)
uses this design pattern for notification of actions. Second, generic JavaBeans
can use an interface called PropertyChangeListener to establish notification for
a changing property. Third, the Java Swing component library uses the Model-
View-Controller design pattern. The model is registered with a user interface
component, and the user interface is notified when the model changes.

 Three factors make event-notification design patterns ripe for memory leaks:
� The event registry can be a collection with a long life cycle. A user inter-

face component that is registered cannot be garbage collected until it is
removed or the root registry object (or anchor) is garbage collected. If
the anchor has a long life cycle, garbage collection may not occur at all.

� The symptoms for failing to remove the notification are initially
benign. The benign symptoms make it easy for the leak to get through
initial tests.

� Many visual programming frameworks, Swing programming samples,
and wizards do not remove listeners. Whether these samples are created
with a development environment or through cut and paste, memory
leaks are not expected from these sources.

152 CHAPTER 6

Bitter memories
6.3.1 Examining some dangerous practices
The program shown in listing 6.2 was created with VisualAge for Java. It’s a
simple applet called TestView. Notice that the development environment reg-
istered a method to handle the button action without a corresponding
remove method.

package memory;

public class TestView extends java.applet.Applet {

class IvjEventHandler implements java.awt.event.ActionListener {
 public void actionPerformed(java.awt.event.ActionEvent e) {
 if (e.getSource() == TestView.this.getTest())
 connEtoM1(e);
 };
 };
 IvjEventHandler ivjEventHandler = new IvjEventHandler();
 private java.awt.Button ivjTest = null;
 private java.awt.TextField ivjTextField = null;
 public TestView() {
 super();
 }

 private void connEtoM1(java.awt.event.ActionEvent arg1) {
 try {
 getTextField().setText("After");
 } catch (java.lang.Throwable ivjExc) {
 handleException(ivjExc);
 }
 }

 private java.awt.Button getTest() {
 if (ivjTest == null) {
 try {
 ivjTest = new java.awt.Button();
 ivjTest.setName("Test");
 ivjTest.setBounds(117, 166, 56, 23);
 ivjTest.setLabel("Test");
 } catch (java.lang.Throwable ivjExc) {
 handleException(ivjExc);
 }
 }
 return ivjTest;
 }

 private java.awt.TextField getTextField() {
 if (ivjTextField == null) {
 try {

Listing 6.2 Dangerously registering an action without a corresponding remove

o
Trigger
for an
event

o Event
handler
class

o Method is
fired when
the event
handler
gets called.

Antipattern: Lapsed Listeners Leak 153
 ivjTextField = new java.awt.TextField();
 ivjTextField.setName("TextField");
 ivjTextField.setText("Before");
 ivjTextField.setBounds(118, 100, 60, 29);
 } catch (java.lang.Throwable ivjExc) {
 handleException(ivjExc);
 }
 }
 return ivjTextField;
 }

 private void handleException(java.lang.Throwable exception) {
 exception.printStackTrace(System.out);
 }

 public void init() {
 try {
 super.init();
 setName("TestView");
 setLayout(null);
 setSize(426, 240);
 add(getTest(), getTest().getName());
 add(getTextField(), getTextField().getName());
 initConnections();
 } catch (java.lang.Throwable ivjExc) {
 handleException(ivjExc);
 }
 }

 private void initConnections() throws Exception {
 getTest().addActionListener(ivjEventHandler);
 }

}

In this case, VisualAge for Java has created event registrations with no corre-
sponding remove methods. The application does not have a memory leak,
because our registration class has a limited life cycle. However, we do have the
foundation for one. If this code is reused with cut and paste, or if the life cycle
of our registry changes, we’ll have a leak.

 How might the life cycle change? Suppose an application has a long-lived
main window with many transient subwindows that are created and
destroyed. Events registered to the class will prevent garbage collection of the
child windows.

 Another common implementation for object-oriented classes that can be
shared is the singleton. With this design pattern, a single, shared object is cre-
ated, typically with a long life cycle, and is used by many objects. Objects that

o Event is
registered here.
Danger!

154 CHAPTER 6

Bitter memories
need to use the singleton get an instance. Consider the program shown in
listing 6.3, which was taken from “Plugging Memory Leaks,” by Tony K.T.
Leung. (Some cosmetic changes have been made for easier annotation.)

import java.beans.*;

public class Test
{
 public static void main(String[] args)
 {
 C c = new C();
 c = null;
 System.gc();
 }

class C implements PropertyChangeListener
{
 private D d_ = null;

 public C ()
 {
 d_ = D.getInstance();
 d_.addPropertyChangeListener(this);
 }

 public void propertyChange(PropertyChangeEvent evt){}

}

class D
{
 private static D singleton_ = null;
 private PropertyChangeSupport listeners_ =
 new PropertyChangeSupport(this);

 private D(){}

 public static D getInstance()
 {
 if (singleton_ == null)
 singleton_ = new D();
 return singleton_;
 }

 public void addPropertyChangeListener(
 PropertyChangeListener listener)
 {
 listeners_.addPropertyChangeListener(listener);
 }

 public void removePropertyChangeListener(

Listing 6.3 Leaking memory through registering to a singleton

o References C, removes
reference, and then
runs gc, suggesting
garbage collection.

o
A singleton, with a
different life cycle from C.

o
This reference will prevent
garbage collection.

o
Static instance
variable; getInstance
method. Singleton!

o

Method registers the
event (but there is no
remove). Singleton!

Antipattern: Lapsed Listeners Leak 155
 PropertyChangeListener listener)
 {
 listeners_.removePropertyChangeListener(listener);
 }

}

In this case, class C is registering a propertyChanged method with a static lis-
tener. Since D is a singleton (and has a long life cycle), it will remain reach-
able. Though the reference to C is removed in main, we have a memory leak.
We can solve this solution in one of three ways.

6.3.2 Solution 1: Explicitly remove the listeners
You can solve this problem by explicitly removing listeners whenever you add
them. With the graphical components, the places for removing listeners are
well defined. The Frame and Dialog classes in the Java AWT library fire the
dispose() method when the associated window is destroyed. Classes that add
listeners and inherit from Frame or Dialog will also want to override the dis-
pose() method and add a call to remove the event listener. For subclasses of
components, cleanup can occur when the component is removed from the
parent’s container. This action fires the removeNotify method, which can be
subclassed for the addition of the proper cleanup code. For property change
listeners, the call is removePropertyChangeListener; for event listeners, the
call is removeActionListener.

 For other classes like the one in listing 6.3, there’s no logical place. Since
finalize is triggered by garbage collection and we’re trying to remove refer-
ences that will inhibit garbage collection, we have to invent a method and call
it when we’ve finished using the class. It’s better to place this code in close
proximity to the code that registers the event listener. Both the add and the
associated remove methods should be commented.

 Finally, it’s important to periodically verify that addSomeKindOfListener
calls are paired with the associated removeSomeKindOfListener calls. If both
lines are in close proximity, verification is simple. If not, the calls can be paired
with a text search, like grep.

6.3.3 Solution 2: Shorten the life cycle of the anchor
One way to ensure that a listener will be garbage collected is to make sure that
the listener registry can be garbage collected. Listing 6.2 does not have a
memory leak because the registry is a short-lived component. This is usually
not the best solution by itself, because it leaves addActionListener calls

156 CHAPTER 6

Bitter memories
without the matching removeActionListener calls, which means the program
is vulnerable to future memory leaks. It also takes a singleton class and
changes it to a regular object, which must be instantiated for each use. The
singleton may have been initially created to conserve system resources.

6.3.4 Solution 3: Weaken the reference
With the introduction of version 1.2, Java offers additional types of refer-
ences that can be used to solve this problem. In addition to the standard
object reference, Java has specialized reference objects that can work with the
garbage collector in special circumstances. There are three types: weak, soft,
and phantom references. For this solution, we need weak references. To the
garbage collector, an object that can be reached only by using a weak refer-
ence is called weakly reachable and is a candidate for garbage collection. In
figure 6.3, objects C and D are weakly reachable. Weak references can be
placed in collections with longer life cycles, in situations that might normally
inhibit garbage collection. Because objects can be garbage collected, the null
condition should always be checked whenever you’re accessing an object
through a weak reference.

6.3.5 Reference objects simplify memory management
Each solution has its advantages and disadvantages. Weak references provide a
generic solution that’s suitable for frameworks and tools, like visual program-
ming environments, but it isn’t as clean a solution as explicitly removing each

root

C and D
are weakly
reachable.

References: Strong
 Weak

Figure 6.3 Weak references can be used to assist the garbage collector. An object is weakly
reachable if it can be reached only through a weak reference. Weakly reachable objects are
candidates for garbage collection.

Antipattern: The Leak Collection 157
listener that’s added. On the other hand, weak references do add to our bag of
tricks for memory management. Table 6.2 shows the strengths and weak-
nesses of each solution.

6.4 Antipattern: The Leak Collection

The root of the Lapsed Listener antipattern is a collection with a long life
cycle that has object references inserted but not removed. The references pro-
hibit effective garbage collection because they make the referenced object
reachable. The Leak Collection is a general case of the Lapsed Listener anti-
pattern. Whenever we have a collection with a long life cycle that has the
potential to contain objects that aren’t removed, we have the possibility of a
memory leak. Figure 6.4 shows the basic antipattern.

 In essence, an application (A) allocates an object (B) with a short life cycle,
registers the object in a collection (C) having a relatively long life cycle, and
then removes the reference to object B. If the collection has a long life cycle—
as many shared collections do—and if the object isn’t removed from the col-
lection before the reference is garbage collected, we’ll have a memory leak.

 Many different design patterns and problem domains call for singleton col-
lections. Here are a few:

� Caches: A singleton hash table is the implementation of choice for a
cache. When a cache doesn’t have a policy to expire old entries, we have
the potential for a leak.

Table 6.2 These are the solutions to the Lapsed Listener antipattern. Each circumstance is
unique, and each solution has pros and cons that must be considered.

Solution Strengths Weaknesses

Balancing removes and adds The design is clean, readable,
and intuitive. Implementing
graphical components is
straightforward.

The placement of the remove is
not always intuitive, especially
for objects that are not compo-
nents.

Shorten the anchor’s life cycle The solution can be very easy
to implement and is easy to
tool.

The solution is vulnerable to
bugs, resulting in memory
leaks.

Weak references This is the most generic solu-
tion, and is also very easy to
tool.

The code for weak references
is not as intuitive and readable
as direct references.

158 CHAPTER 6

Bitter memories
� Session state: A well-publicized Tomcat bug turned out not to be a
bug at all, but a session-management problem. By default, session
management was turned on, and many didn’t know it. In certain cir-
cumstances, the session dictionary grew until memory was gone. In
general, session state is a good place to find a memory leak.

� User interfaces: Most modern user interfaces are collections of windows
and components. Many times, these potentially massive collections have
persistent anchors. Some common places to find singleton anchors
might be print support, font management, and interapplication commu-
nication. Whenever a user interface is attached to an anchor with a long
life cycle, leak conditions are present.

� EJB containers: An EJB container is essentially a smart singleton collec-
tion of EJBs.

6.4.1 Causing trouble with caches and session state
Two specialized uses of collection classes are especially troublesome. Session
state captures the conversation context between the client and the server.
Because HTTP is a stateless protocol, the infrastructure or the application must
manage conversation details. The duration of Internet conversations varies
wildly among consecutive communications from a given client, so the

dereference
B

life cycle
for B

life cycle
for C

Collection
creator C

Collection
C

Leaked
object B

Object A

new B

init B

register B

new
collection

Figure 6.4 In the Leak Collection antipattern, an object with a short life cycle is registered in a
collection with a long life cycle. Here we’ve shown a UML sequence diagram of such a memory
leak. In this case, object B will be a memory leak, because the reference in collection C won’t
allow the garbage collector to free it.

Antipattern: The Leak Collection 159
management of session state is particularly difficult. Currently, standard speci-
fications for the various servlet protocols deal with expiration of session state
through timeout. When a session is established, a timeout is specified. When
the timeout expires, the conversation expires as well. Excessive timeout
lengths can cause memory to be exhausted, while too short a timeout can
cause frustrating user experiences.

 A similar problem involves the cache. In many cases, a cache can exhaust
memory if the data set is large and older data is not removed periodically. If
the cache is allowed to grow unabated, memory will eventually be exhausted.
With only minor changes, we can easily ensure that cache memory can be
neatly managed.

6.4.2 Solution 1: Search for common warning signs
Collections can serve many different purposes and can be involved in many
different types of leaks, but you can recognize common threads. Table 6.3
describes the common warning signs, along with the appropriate actions.

Table 6.3 Memory leaks are common in applications with certain characteristics.

Warning Sign Description Action

Mismatched life cycles Whenever an object with a long life
cycle references an object with a
short life cycle, there is leak
potential.

Examine objects with long life
cycles. Try to make sure refer-
ences to transient objects are
removed.

Mismatched add/remove
for shared collections

Whenever a shared collection exists,
adds without deletes may provide ref-
erences that prohibit garbage collec-
tions.

Make sure that any add has a
corresponding delete or weak
reference that allows garbage
collection.

Singletons and static
objects

Static objects and singletons have
long life cycles, and have the poten-
tial for memory leaks.

Examine static objects and sin-
gletons to make sure that refer-
ences to transient objects are
removed and commented.

“May” conditions for
registrations

Whenever a registration to a
collection is voluntary (“may” versus
“must”), absence of strict attention
can lead to a memory leak.

Watch voluntary registrations
especially closely, or weaken
the references to allow garbage
collection.

APIs that hide collections Whenever an API hides an addition to
a collection, it is possible that the
associated remove will be missed.

Comment APIs that hide
collections, and make sure that
responsibilities are clear, or
weaken the references to allow
garbage collection.

160 CHAPTER 6

Bitter memories
The main indications that conditions are common for a leak are mismatched
add/remove pairs, mismatched life cycles, and other kinds of anchors with
longer life cycles. Singletons and static classes can often provide safe harbor
for memory leaks.

6.4.3 Solution 2: Aggressively pair adds with removes
To effectively deal with collection-based memory leaks, you might have to
change your programming hygiene. Consider collection management with all
CRUD operators: Create, Read, Update, and Delete. Any time you add a row
to a collection, you need to add the corresponding remove. In fact, you
should do both at the same time so you don’t forget. Further, if possible,
ensure that the pairs are in close proximity in the code. In addition, you can
tag the pairs with a comment or with the name of the collection so that you
can easily use strategies to look for pairings when you have to refactor or deal
with a memory leak. Then, you can use tools such as GREP to scan the program
and look for pairs. In some cases, proximity may not be an option, like the use
of a cache. For these collections, you can use a different utility to periodically
prune the cache to remove elements that have timed out. In these cases, dif-
ferent strategies will be required.

6.4.4 Solution 3: Use soft references for caches
Though inconsistent implementation diminishes their value, caches (and ses-
sion state managers, a special case of the cache) are collections that demand a
different approach. We’d like the cache to use all available memory, and be
freed only when the system needs the additional resources. Fortunately, Java
soft references provide a mechanism that can do exactly that. An object is said
to be softly reachable if it can be reached only through use of a soft reference.
The Java 1.3 specification says that softly reachable objects can be freed at the
garbage collector’s discretion with two caveats:

� The garbage collector will attempt to free soft references before throw-
ing an out-of-memory exception.

� The garbage collector should attempt to free soft references in least
recently used order.

These properties make soft references ideal for the implementation of caches.
In practice, some garbage collectors treat soft references like weak references,
diminishing their value in caches. Clearly the intent of the soft reference is for
use in such applications as memory-sensitive caches. While the JVMs should
attempt to free soft references in the least recently used order, many do not.

Shooting memory leaks 161
6.4.5 Solution 4: Use collections with weak references
The Java 1.2+ specifications build in some collections that implement weaker
references. WeakHashMap is a class that implements a hash table with weak ref-
erences. Objects referenced solely from this hash table are weakly reachable.
This type of collection is ideal for the optional registration of objects, and for
applications where it’s difficult to pair add/remove method calls managing the
items in the hash table.

6.4.6 Solution 5: Use finally
Even when the calls are placed appropriately, exceptions can prevent the
proper cleanup from ever occurring. Important cleanup should be placed in
finally blocks. The Java finally block is executed after all code in a method,
including exception management, is processed. finally will guarantee that a
necessary block of code is executed, and is especially useful for cleanup.

6.5 Shooting memory leaks

These antipatterns can be used to identify existing leaks through inspection,
but what techniques can help you troubleshoot applications with existing
memory leaks? C++ programmers use spectacularly cumbersome tools and
techniques to solve memory-related problems. For the most part, Java pro-
grammers prefer to stay above the fray. Sometimes, however, we aren’t so for-
tunate. In this section, we’ll look at the strategies that can help. The basic
steps to finding memory leaks are determining whether a problem exists, iso-
lating the problem, repairing the problem, and protecting against the problem
in the future.

6.5.1 Make sure there is a leak
Much is left to the discretion of garbage collectors. In some cases, garbage
collection can occur relatively frequently. In other cases, it may not run at all.
Many of the faster JVMs try to limit the number of times that garbage collec-
tion is run. Some JVMs execute garbage collection only when memory
resources are close to exhausted. In such cases, an application can appear to
leak. Watching available memory on a simple memory monitor is not enough.
A good strategy is to take memory snapshots before and after suggesting gar-
bage collection with a call to System.gc. (This method call should seldom or
never be used in production code.) Many tools can force garbage collection.

 Tools are available to help you analyze memory leaks. A few are J-Insight
(from alphaWorks), J-Probe (from Sitraka Software), and OptimizeIt (from

162 CHAPTER 6

Bitter memories
Intuitive Systems). A well-behaved application should show a usage pattern
that builds to peaks and then has distinct valleys. With similar types of activi-
ties, the valley floors should be consistent. The peaks represent normal object
allocation over time. The valleys represent memory use just after garbage
collection. If the valley floor continually creeps up between garbage-collection
cycles, that’s a sign of a possible memory leak. Figure 6.5 shows the graph of a
classic memory leak. The GCs denote garbage collection at each of the peaks.
The dotted line shows a slowly increasing amount of memory not garbage
collected.

 Sometimes, the symptoms of a production memory leak are clear. Of
course, a java.lang.OutOfMemoryError is a clear sign of a leak, but the excep-
tion is not always generated before a more catastrophic system error occurs.
Other symptoms may also point to a memory leak. In many cases, a leak will
cause a relatively smooth decline with progressively worsening performance.
As the system begins to swap or page more, the system performance will
degenerate rapidly until the application fails or the system crashes. Low mem-
ory can cause many different types of failures, such as an inability to connect
to a database or open a file, even though the root cause is lack of memory.

6.5.2 Determine that the leak should be fixed
Fixing memory leaks can be expensive. In some cases, we should push leak
fixes lower on the priority chain, and maybe not even bother to do them. If
an application’s in-memory life span is relatively short, it may not make sense
to patch all memory leaks, because garbage collection may never be run. If
memory leaks and total memory usage is small, memory leaks may not be a

time

al
lo

ca
te

d
 m

em
o

ry

GC GC GC

Figure 6.5 This is the classic resource chart of a memory leak. The solid black line shows actual
memory use. The broken line projects reachable memory objects. The peaks and valleys are
caused by garbage collection. The slowly rising valleys are characteristic of memory leaks.

Shooting memory leaks 163
concern. Table 6.4 offers some guidance as to whether memory leaks should
be fixed at all.

You should be especially vigilant about fixing leaks in two instances: when an
application runs 24x7, and when code is a target for reuse. Leaks in either cir-
cumstance should nearly always be plugged. In any case, to prevent the spread
of bugs through cut and paste, if a leak exists and you don’t fix it, then you
should at least document it.

6.5.3 Isolate the problem
Once you’ve determined there is a leak, and that the leak should be fixed, you
need to isolate a test case that creates the problem. Effective testing can be
much more productive than the use of low-level memory debuggers, so it’s
important to make the test case as narrow as possible. Unfortunately, that isn’t
always possible. The complexity of user scenarios and the degree of coupling
between elements of the application will collectively determine how effectively

Table 6.4 In some circumstances, fixing a memory leak may not be worth the effort. This table
shows common memory leak characteristics, and provides a guideline for whether the fix will be
worthwhile.

Application
Characteristic

Fix Memory
Leak?

Comments

Short application life cycle. Seldom Garbage collection may never be run.

Very small footprint. Seldom The leak should be fixed only if the application
has a long enough life for the cumulative leaks
to be a problem.

Fixing hurts code readability. Sometimes Readability is not the overriding concern,
but may discourage fixing a leak in some
circumstances.

Footprint is large. Often The leak should be fixed if the application life
cycle is long or if resources are likely to become
a problem.

Fix is very easy. Yes A memory leak is a bug. If the fix has been iden-
tified and has no other side effects, it should be
fixed.

Code runs 24x7. Yes The leak will eventually become a problem.

Code is a target for reuse. Yes Regardless of other characteristics, if the code
is a reuse target, it should be fixed

164 CHAPTER 6

Bitter memories
a memory leak can be isolated through scenarios. After you’ve isolated a leak,
add the test to the application’s regression test suite.

6.5.4 Determine the source and fix the problem
Once you’ve generated the narrowest possible test case, the next step is to
determine the source of the problem. Without a doubt, this is the most diffi-
cult part of the process. These strategies may help:

Use good tools
You must have effective tools to be able to track memory leaks in Java. You
need tools that let you:

� Trigger garbage collection on demand.
� Examine the size of the heap collectively over time.
� Examine the contents of the heap, including objects on the heap.
� Determine the references to an object (that prevent garbage collection).

Inspect code by hand
Many times, you can locate memory leaks by looking in the likely places. With
close attention to collections, listeners, singletons, and long life cycles in gen-
eral, you can spot many possible leaks. Further, searching tools can aid manual
inspection. Simply counting the number of adds and removes to a problematic
collection using GREP or an editor can help you identify an imbalance that may
lead to a leak.

Force garbage collection between repeated test cases
Most good profiling tools can force garbage collections. In this way, a code
segment can be repeatedly exercised, garbage collection run, and the heap
examined for growth. With the profiler’s snapshot of the heap (graphs of
allocated space versus free space over time work well), you can make the test
case narrower.

Use object reference graphs when the search is sufficiently narrow
Most good profilers will show the references from an object on the heap.
Since you’re looking for reachable objects not garbage collected, profiling is a
powerful tool when combined with garbage collection on demand. When you
find a reachable object that should have been garbage collected, you can fol-
low the reference chain to find the culprit.

Shooting memory leaks 165
Iterate
When you find a problem, fix it and start over. Patching one leak can solve
others as well. Many leaks are interrelated—sometimes in surprising ways—
and you’ll find it much easier to fix links one at a time than to try to solve
them all with a single pass.

 Fixing leaks usually turns out to be relatively easy after you’ve identified a
problem. You must make the object unreachable by using one of the tech-
niques described in this chapter. These techniques can make an object
unreachable, and thus a candidate for garbage collection:

Fixing Java application memory leaks
When an object with a long life cycle maintains a reference to an object with a short
life cycle, we have the potential for a memory leak. These possible fixes remove refer-
ences to make an object unreachable and eligible for garbage collection.

� Remove the object reference directly by setting it to another value.
� Remove an object from a collection.
� Weaken the references using Java reference objects.
� Shorten the life cycle of the referent.
� Shorten the life cycle of the object.
� Remove the object from the code.
� Refactor the code.

6.5.5 Protect against the problem for the future
When coding problems occur, you should examine the cause. If the problem is
an isolated case of programming error, no further action may be necessary.
These steps will help keep the problem from occurring in the future:

� Add to the test suite to make sure that the new case is covered. This will
ensure that if the problem crops up again through poor change control
or cut and paste, it will be found.

� If the problem has occurred in the past, an antipattern should be docu-
mented and shared.

� If the antipattern or solution lends new significant insight, it should be
published at some level. Publishing paths can be as focused as emails to
peers or presentations in department meetings, and as broad as writing a
book or speaking at a conference.

Antipatterns work best when we establish a pattern, solve a problem in a gen-
eral way, and disseminate the wisdom.

166 CHAPTER 6

Bitter memories
6.6 Mini-Antipatterns: Little Hogs

One little hog cannot eat much, but many little ones can have devastating
appetites. This chapter title may have led you to expect a whole chapter on
dealing with strings and the little things that a programmer can do to save a
few bytes here and there. This section is the last in the chapter because I do
not think that little optimizations should be emphasized, especially in cases
where they can affect performance. There are some places where memory can
become an issue, such as in pervasive environments, very large object trees,
and massive collections of objects. In these extreme cases, it makes sense to
consider the microtechniques, which can collectively yield considerable sav-
ings. In other cases, I do not advocate reckless or careless memory use. I sim-
ply prefer readability to a few bytes of memory savings, and trust that I can
make up the difference by optimizing the most important test cases first. With
that in mind, let’s consider some of the little memory hogs that can add up. In
most cases, performance problems will be found in higher level designs, so
low-level optimizations should be saved for later.

6.6.1 String manipulation
In memory-constrained situations, you should pay close attention to the pro-
liferation of strings. A common offender is the + operator. If we string several
+ operators together to build a string, then each string argument will allocate
an additional object and force more than one copy operation. This can get
expensive, in terms of memory and performance. To clarify, consider the two
following string treatments:

String s = "this code uses plus to break between "+
 "lines but doesn’t result in any extra "+
 "objects as it still counts as a compile-time"+
 "constant";

This string works. The optimizer will allocate one StringBuffer, build the
string up there, and then turn it into a single string. The following is much
more dangerous:

String x = "Hello ";
x += name;
x += ", your birthday is ";
x += birthday;

This fragment will take significantly longer to execute, because in this case,
each individual string will be allocated and copied. It does have a memory
impact, although it is negligible. The bigger impact is the cumulative time that

Mini-Antipatterns: Little Hogs 167
it takes to reallocate and copy each individual string. In Java, this antipattern
frequently occurs within loops that build queries, process parameters, or build
XML documents. Instead, you should use a single StringBuffer and append
each successive string into the buffer. Alternatively, you can keep the string
together:

String x = "Hello " +
 name +
 ", your birthday is " +
 birthday;

In this way, you let the optimizer do the work for you. It will allocate a single
string buffer to process the entire string, saving memory and plenty of CPU
cycles.

6.6.2 Collections
We have seen that collections can have a dramatic impact on memory, because
they tend to be used to manage objects in large numbers. Collections can
affect memory in other ways as well. For example, large multidimensional
arrays can consume staggering resources. Collection choice can also affect
memory and performance.

Collections and allocation
Different Java types handle memory resources differently. Arrays allocate
memory when they’re created. Other collection types, such as sets, vectors,
hash tables, and lists, allocate memory when items are added. Many times,
preallocation is a good thing. If you know that you’ll be allocating an explicit
number of objects, that you’ll be accessing the collection randomly or exclu-
sively by a numerical index, and you know precisely when the resource will be
used, then an array could be a good choice. Other times, preallocation can
cause you to make incorrect assumptions or allocate much more memory than
you are likely to use. Beginners frequently prefer arrays to more robust collec-
tions. If you know that you’ll be adding a variable number of objects through-
out the life cycle of the collection, or that access will be random by some other
key, then a hash table may be a better choice.

Collections and access patterns
The type of access will also have an impact on the collection choice. If you
must frequently access by a key other than an index, then a hash table, dictio-
nary, or b-tree may be a better data structure than an array. If the order does
not matter, a set may be a better choice. The key for success is to pick an

168 CHAPTER 6

Bitter memories
abstraction that fits the collection type. If the size is fixed and you need to fre-
quently enumerate the collection, an array could be the best choice.

Arrays
Because arrays can have a significant effect on memory, they warrant special
consideration. These tips can help:

� If you have many collections with widely varied size, consider another
collection that allocates dynamically.

� Delay initialization (and thus allocation) until the automatic variable is
needed.

� If the array is sparse, it should be declared appropriately. You shouldn’t
create methods (such as accessors) that you don’t plan to use.

6.6.3 Inheritance chains
We have all seen excruciatingly complex object hierarchies with inheritance
chains that reach all the way to China. Similarly, just as databases can be nor-
malized too far, object-oriented design can be taken to extremes beyond any-
thing that can practically perform. If you aren’t in a memory-constrained
environment, let common sense be your guide. On the other hand, as inherit-
ance chains get longer, the memory cost is higher. If memory is a serious con-
cern and other avenues have been exhausted, reducing the length of
inheritance chains can save some valuable memory. This practice should never
compromise reuse, design principles, or readability, but when considering
whether to add one more subclass, you’ll find that memory can be a tiebreaker.

6.7 Summary

Let’s clean up this chapter by reviewing what we have covered and presenting
our antipattern templates. We began by discussing memory-management phi-
losophies of C++ and Java. We presented the old and new strategies of garbage
collection, and showed that Java garbage collection is based on a concept
called reachable objects. We then showed that even Java is prone to memory
leaks, and we described general symptoms and specific antipatterns called
Lapsed Listeners, Leak Collections, and Little Hogs. Finally, we examined
common strategies that you can use to shoot down memory leaks, and looked
at some “little hogs” that can make a big cumulative impact.

Antipatterns in this chapter 169
6.8 Antipatterns in this chapter

These are the templates for the antipatterns that appear in this chapter. They
provide an excellent summary format and form the basis of the cross-refer-
ences in appendix A.

Lapsed Listeners
DESCRIPTION: The Publish/Subscribe design pattern requires applications
or classes with an interest in an event to register. The Lapsed Listener is
one form of memory leak where an event listener is registered without
being removed. If the life cycle of the listener registry is long, then a
memory leak will occur.
RELATED ANTIPATTERNS: The Leak Collection. The Lapsed Listener is a
special case of the more general Leak Collection.
MOST FREQUENT SCALE: Application.
REFACTORED SOLUTION NAME: Weak References, or Pairing Register
with Remove.
REFACTORED SOLUTION TYPE: Software.
REFACTORED SOLUTION DESCRIPTION: One solution to this problem is
to explicitly remove the listener. For clarity, register and remove listeners
in add/remove pairs. If this cannot be done in the same method, the two
methods should be in close proximity. Another solution is to weaken the
reference with Java weak reference objects.
TYPICAL CAUSES: Programming hygiene is a common cause. When regis-
trations are not placed in close proximity to removes, it is easy to neglect
the remove, because the symptoms are delayed.
ANECDOTAL EVIDENCE: “I didn’t know you could have a memory leak in
Java.” “The system gets slower and slower, and then it hangs or traps.”

SYMPTOMS, CONSEQUENCES: Some objects are not garbage collected,
even though their primary user is. This leak will cause the system to slow
over its life cycle, until it’s terminated or eventually dies.

SOLUTION ALTERNATIVES: Remove the reference appropriately or
shorten the life cycle of the registry. Adding a listener without a weak ref-
erence or a corresponding remove is possible if the life cycle of the registry
is short, but this is vulnerable to changes in life cycle and cut and paste.

170 CHAPTER 6

Bitter memories
Leak Collections
DESCRIPTION: If a collection has a long life cycle, it can have long-lived
references that are never removed. These will prevent large blocks of
memory from being freed.
MOST FREQUENT SCALE: Application.
REFACTORED SOLUTION NAME: Weak References, or Pairing Add with
Remove.
REFACTORED SOLUTION TYPE: Software.
REFACTORED SOLUTION DESCRIPTION: One solution to this problem is
to explicitly remove the reference from the collection. For clarity, add and
remove objects in pairs. If this cannot be done in the same method, the
two methods should be in close proximity. Another solution is to weaken
the reference with Java weak reference objects.
TYPICAL CAUSES: Programming hygiene is a common cause. When adds
are not placed in close proximity to removes, it is easy to neglect to
remove, because the symptoms are delayed.
ANECDOTAL EVIDENCE: “I didn’t know you could have a memory leak in
Java.” “The system gets slower and slower, and then it hangs or traps.”

SYMPTOMS, CONSEQUENCES: Some objects are not garbage collected,
even though their primary user is. This leak will cause the system to slow
over its life cycle, until it’s terminated or eventually dies.

SOLUTION ALTERNATIVES: Remove the reference appropriately or
shorten the life cycle of the registry. Adding a listener without a weak ref-
erence or a corresponding remove is possible if the life cycle of the registry
is short, but this is vulnerable to changes in life cycle and cut and paste.

7Bitter connectio
and couplin
ns
g

This chapter covers
� Connection Thrashing and

other connection antipatterns
� Decoupling interfaces with XML

and web services
� XML antipatterns
171

172
Bouncing beside the mountain guide in my SUV, my partner Mike and I notice
that we are awfully close to the cliff next to the dirt road. The 72-year-old guide
trusts neither of us to drive. As I watch him gently guide the vehicle down near-
vertical drops and around turns a scant 3 feet from the cliffs, I am inclined to
agree with him. Every now and then the SUV slides sideways, but he patiently
coaxes it back onto the trail with a feather touch. Other times, he is close to asking
us to get out of the vehicle and help guide it down a particularly slick or steep sec-
tion, but each time he seems just confident enough to continue.

We are here to run the Gunnison River in Colorado—if we ever get there.
After a full hour on the road, I have my doubts. When planning the trip we real-
ized that we’d have to run many river miles, but didn’t fear getting caught by
darkness because the current was swift and the rapids easy. We won’t need to scout
much. On the map the shuttle road looked short and close to the river. Ah,
patience. With luck, we’ll easily finish by nightfall.

When we hired the guide, he noted my 8:00 a.m. start time but suggested 6:00
a.m. instead, “to be safe.” Now I see why. After driving for an hour and a half he
finally stops the SUV and begins to unload our gear—at the top of the canyon. I
look in dismay at the tiny footpath leading to the winding river below.

7.1 Making connections

Most Internet architects see black lines on a white piece of paper and imagine
their characteristics. They ask questions. What is the physical network? What
protocols are established? Is there enough bandwidth? How fast is it? What are
the peak loads? These questions assume that a software connection is already
successfully established. Questions related to creating and terminating a con-
nection are easily dismissed.

 This philosophy is easy to understand; just a few short years ago, most con-
nections were fairly static. Today, however, many solutions call for quick con-
nections, and new frameworks make it easier for you to establish those
connections. In this chapter, we’ll look at some antipatterns related to how
connections are established and terminated. We’ll then examine some technol-
ogies you can use to decouple interfaces between systems.

7.2 Antipattern: Connection Thrashing

Over the years, database performance has been a weak spot among Java devel-
opers. I am not sure why. Perhaps we’re accustomed to working with well-
behaved subsystems that need little or no tuning—file systems, for example.

Antipattern: Connection Thrashing 173
Maybe it’s because the performance of so many of our systems is out of our
control. Or perhaps we simply do not take the time to learn good practices.

 One critical factor that never ceased to amaze my customers was the total
expense of establishing a database connection. As you can see in figure 7.1,
each connection has a fixed cost that must be paid in two different currencies.
The first is time. Many Internet applications feature very quick database trans-
actions, and it isn’t unusual for a system to spend more time establishing com-
munication than processing a given transaction. The second cost is the early
exhaustion of system resources, including memory and file handles. Since each
connection must set aside buffers for communication and database resources,
as well as files for logging, the overhead can become significant in a hurry. For
many architectures, if the number of users is not well defined, it is easy for a
connection to strain the allocated resources on either the database machine or
the web server. To solve this problem, many systems maintain a connection for
a limited amount of time.

 Two problems affect connection performance. First, the total number of
concurrent connections is limited. When a system hits a resource wall due to
a high number of connections, performance will crash or deteriorate rapidly,
as a result of excessive swapping or paging. Second, determining the number
of connections required at peak periods can be difficult, because Internet
application loads are inherently hard to predict. Well before the creation of
the Java development environment, many of my customers had problems
managing individual connections for client/server architectures. Though their
applications had a fixed number of connections and well-defined peak times

T
im

e

Memory

Num
ber

 o
f c

onnec
tio

ns

Figure 7.1 Consider the cost of connections. Each additional connection has fixed costs, in both
units of time and system resources (such as memory). It isn’t unusual for database connections
in an application to take longer than all of the data access combined.

174 CHAPTER 7

Bitter connections and coupling
and loads, the problems were significant. In the IBM database lab, we
worked on early connection pools that were deployed at the application level,
and we had some internally developed technical manuals called red books
dedicated to solving the problem. The Internet brings a whole new level of
uncertainty to this planning process. The total number of users is much
harder to predict, and their browsing habits are uncertain.

7.2.1 Creating and terminating with every access
Listing 7.1 shows our ongoing bulletin board example. Though we’ll be
accessing the same database and running the same query with the existing
connection, we create and terminate every connection as needed.

 Class.forName("COM.ibm.db2.jdbc.app.DB2Driver").newInstance();
 String url = "jdbc:db2:board";
 connection = DriverManager.getConnection(url);
 connection.close();

For client/server programs, many times a single program works around this
problem by maintaining an active connection through the entire life cycle of
the application. Internet applications can’t do that, because the potential user
population is much larger. Instead, the programmer often decides to create
and close connections as needed. This is the approach that we’ve chosen for all
of our program examples so far. To improve the process, we’ll limit the num-
ber of connections and reuse them.

7.2.2 Solution: Reuse connections with a pool
Mike and I reluctantly gather our gear and start hauling it down the narrow,
winding trail. Twice we see other parties; for the most part, pack mules effortlessly
carry their loads. I glare at my partner accusingly, but Mike, who has made this
run twice before, just smiles. As a partner-in-crime for more than five years, he
knows how much I hate to shoulder my boat. We continue to wind between the
cliffs, over the fallen trees, and beside the increasingly closer cliffs. When we reach
the bottom of the canyon, I expect to be right at the river. Instead, the trail contin-
ues overland. I feel as if I’ve run a marathon when we finally arrive at the river.
Four hours after leaving the campsite, we put our first paddle in the water.

Listing 7.1 Creating and terminating the connection per invocation

Make the
connection.

o

o Close the connection.

Antipattern: Connection Thrashing 175
After our trip to the Gunnison Gorge, I decided that I liked boating much more
than I liked driving. Hiking and driving took time and energy away from the
river. Once I reached the river, I vowed to try to find runs in the future with less
driving and hiking and more river time. We should be so diligent as program-
mers and attempt to minimize the setup time in favor of providing service. Java
has a connection framework that allows us to do exactly that by offering pooling
and other services. Connection pooling can mean a dramatic difference in per-
formance: Making any connection is an expensive process, and a pool of con-
nections reduces the setup costs by allowing you to reuse a connection.

 How much of the total transaction cost might the connection represent? I
ran a test twice that summed up all the numbers in a database column. I did
this calculation 1,000 consecutive times. With the first test, I reconnected
each time I computed the sum. With the second test, I pooled connections.
The second test took less than half the time that the first example did, as
shown in figure 7.2.

 Figure 7.3 offers another view of the savings. Here we see the database-
related costs of a servlet. We have to process a connection before we can pro-
ceed with the real work, and then we close the connection. If we were to use
connection pooling, after we prime the connection pool all of the work
involved in connecting to a database and closing that connection becomes
unnecessary. In figure 7.3, the black boxes represent redundant work. For the
normal case, we have a penalty that consists of a fixed cost per open connec-
tion (c1) and a cost for the connection close (c2). This penalty will be paid for

8
.6

 s
e

c
o

n
d

s

3
.8

 s
e

c
o

n
d

s

Database test without
connection pooling

Database test with
connection pooling

Figure 7.2
My program computed the total of a database column 1,000
times. The first column shows the results without connection
pooling; the second column shows the impact of sharing the
connection.

176 CHAPTER 7

Bitter connections and coupling
every service. Theoretically, the cost is infinite. We can take a pool of n connec-
tions of cost c and limit our total cost to n*(c1+c2). For a servlet with a theo-
retical infinite lifespan, the connection cost will approach zero over time. In
reality, once our connection pool is primed, we’ll pay only for the manage-
ment of the connection pool.

 We can claim additional benefits. For example, we can restrict the number
of connections in our pool to a reasonable number. Then, we can formulate a
definitive statement about the total connection cost of our system, which
makes it easier to effectively plan the capacity of our system. When we use
approaches like this one, our system performance as measured by throughput

W
or

k

Database Connection

Database Connection Close

Database Servlet Task

W
or

k

W
or

k

W
or

k

W
or

kW
or

k

W
or

k

W
or

k

W
or

k

W
or

k C
lo

se
C

on
ne

ct
W

or
k

}

...

C
on

ne
ct

C
on

ne
ct

C
on

ne
ct

C
on

ne
ct

C
on

ne
ct

C
on

ne
ct

C
on

ne
ct

C
on

ne
ct

C
on

ne
ct

C
on

ne
ct

C
lo

se

C
lo

se

C
lo

seC
lo

se

C
lo

se

C
lo

se

C
lo

seC
lo

se

C
lo

se

C
lo

se

Proposed
Connection
Pool (size 3)

This
can be
reused

Figure 7.3 Servlet-based programs tend to connect and disconnect from a database
repetitively, to control transactions and user context. The black boxes represent the
unnecessary connections—work that can be saved through the use of a connection pool. Note
that connection pooling will continue to pay dividends as long as the servlet runs, after the pool
is primed.

Antipattern: Connection Thrashing 177
becomes much more predictable, because it won’t degenerate rapidly due to
the exhaustion of memory.

 Let’s look at the steps involved in using connection pooling.

Once at initialization

1 Import the appropriate packages. We need the packages for JDBC
access and Java Naming and Directory Interface (JNDI), because data
sources are named objects.

2 Create the naming context. This is a JNDI call to establish a naming
context for the data source.

3 Get a data source. This is a factory object that will be used to create
connections or get them from the connection pool as needed. It is a
JNDI named resource.

Once per connection

1 Get a connection from the data source. This method will actually get a
connection from a pool if an active connection exists; otherwise, it will
create one.

2 Close the connection. This method maintains the connection, but frees
it to the connection pool.

7.2.3 Refactoring our BBS to add pooled connections
The program in listing 7.2 demonstrates how to use connection pooling with
Java 1.2. Most programming environments allow you to use a wizard to create
a database application that pools connections. Our program was taken from a
WebSphere application. The JDBC access can be vendor neutral; the JNDI
access, however, will probably have some vendor-specific libraries, but you
should use the common JNDI interface.

 Here, we see connection pooling in practice. At a high level, we’re creating
a naming context (for the JNDI), a data source, and a factory. The factory is
bound to the data source (a named resource that we can find through the
JNDI). We then use that pair to create a connection.

178 CHAPTER 7

Bitter connections and coupling
protected Connection getPooledConnection(String driver, String URL, String
userID, String password)

 {
 Connection conn = null;

 try
 {
 Hashtable parms = new Hashtable();
 parms.put(Context.INITIAL_CONTEXT_FACTORY,
 CNInitialContextFactory.class.getName());
 Context context = new InitialContext(parms); c Access naming context
 ds = (DataSource)context.lookup(getDataSourceName())
 conn = ds.getConnection(userID, password);
 }
 catch (Throwable t)
 {
 try
 {
 DataSourceFactory factory =
 new DataSourceFactory(); g Create data source factory.
 Attributes attrs = new Attributes();
 attrs.name = getDataSourceName();
 attrs.driver = getDriver();
 attrs.url = getURL();
 attrs.max = 30;
 ds = factory.createJDBCDataSource(attrs);
 try {
 factory.bindDataSource(ds);
 } catch (NamingException namingExc){
 namingExc.printStackTrace();
 }
 conn = ds.getConnection(userID, password);
 }
 catch (Throwable t1)
 {
 t1.printStackTrace();
 }
 }
 return conn;
 }

}

b Our data source will be a named resource, so we need to get a context. The param-
eters to the context constructor are stored in a hash table, which is then passed to
the constructor. We’ll use the context to find the data source that we create in steps
7 and 8.

Listing 7.2 A method that provides a pooled connection

B

Create parameter
list to access
naming system.

d Get data
source factory
object.

e
Get connection
from data source
object.

f Data source not found;
try to build one.

Create a JDBC specific
data source.

h

i Bind the factory
to the data source.

Antipattern: Connection Thrashing 179
c This is the call to the context constructor. The context is part of the JNDI specifi-
cation and represents a group of named-resource pairs. Our named resource will
be the data source.

d Here we use the context, created in steps 1 and 2, to obtain a data source. The data
source is the construct that manages our connection pool. If there is no data source
in the context, the context lookup will fail, and we’ll create a factory object and
data source within the catch statement block beginning at step 5.

e In this step, we use the data source that was obtained from the context to get a
connection. We’ll get an active connection from a pool if one exists; otherwise,
we’ll create one. This connection is then returned to the invoker of this method.

f We are inside the catch loop, which probably means that we’ve failed to get the data
source. We assume that we don’t yet have an instance of the data source factory.

g We create a data source factory.

h The Attributes type is a WebSphere type that encapsulates the attributes to
DataSourceFactory.createJDBCDataSource () per the Java specification. Here,
we create the JDBC data source that will be used to pool our connections.

i We bind the resource. We now have a named resource that we can find through
the context that we created in steps 1 and 2.

This seems like a significant amount of overhead, but notice that we have no
remote communications and no loops. This is a small fraction of the overhead
we’d normally experience for each database connection. Using the connection
is similar, but not identical, to our previous example.

7.2.4 Using getPooledConnection
We now have a method to obtain a pooled connection. This method will be
called from our command beans, within the initialize() methods. We’ll
assume that we’ve broken out the driver, URL, user ID, and password as sepa-
rate attributes with getters and setters. This is how the method is used:

 connection = getPooledConnection(getDriver(),
 getURL(),
 getUserID(),
 getPassword());

 connBean = new DatabaseConnection(connection);

180 CHAPTER 7

Bitter connections and coupling
We can then use connBean as we would any JDBC connection. Many tools can
create command beans automatically, which makes this command architecture
so attractive. A lot of these tools already use connection pooling.

 It is critical, then, that:
� Existing applications already use connection pooling.
� Development wizards, classes, and templates can fully enable database

connection reuse through pooling.

7.2.5 Using the J2EE connector architecture
A database is but one form of an enterprise information system (EIS). Like-
wise, connection pooling through data sources is only one part of the total
package. J2EE defines a transparent architecture for connecting to a generic
EIS. This framework allows a vendor to achieve robust connection support,
with connection pooling, security, and other complex considerations, through
the support of a single specification. Web application server vendors can sup-
port a single interface and gain access to an increasing number of systems.

 Figure 7.4 shows how the connection architecture works. EISs access web
application functions through special adapters, provided by the individual EIS
vendor. This adapter collaborates with the web application server to provide

Web application
server

Application

Transaction
manager

Security
manager

Connection
manager

Enterprise
information

system

Resource
adapter

Figure 7.4 The J2EE common connector architecture uses vendor-provided adapters, operating
through a common interface, to collaborate with the web application servers to provide
transaction integrity, security, and efficient connection management. Connection pooling is
included in the specification.

Antipattern: Split Cleaners 181
specialized services, such as transaction support, security, and connection
management. Applications can then use the EIS interfaces directly or through
common web application server interfaces. With this common connection
framework, the context of a connection can be maintained to achieve unprec-
edented compatibility, transaction support, and interoperation between appli-
cation components.

7.3 Antipattern: Split Cleaners

In chapter 6, several antipatterns involve the conservation of resources. While
the following antipatterns are not specifically memory related, we can see similar
themes. One such antipattern is the Split Cleaner, presented by Eric E. Allen in
an article titled “Diagnosing Java Code: The Split Cleaner Bug Pattern.”
Figure 7.5 shows the scenario. We have an application that has a multistage pro-
cess. Each stage of the process is managed by a different object, or at least in a
different method. Each stage of the process will need access to some connec-
tion. We must create and free the connection somewhere in the application.
One way to solve the problem is to manage the connection inside one or more
of the process stages, passing the connection as a parameter. Consider this little
application. The application needs to compute first the total cost and then the
tax for the items in a shopping cart. To do this, it takes a two-phase process:
adding the total costs in one process, and adding the total tax in another.

ConnectionStage
two

Stage
one

Main
process

do Part 1

do Part 2

connect

clean

Figure 7.5 This is a UML sequence diagram showing the Split Cleaner antipattern. The resource
is allocated and freed in a different place. Future enhancements can easily lose the cleanup for
the connection, creating a bug.

182 CHAPTER 7

Bitter connections and coupling
package splitcleaner;
import java.sql.*;

public class CostProcessor { o The master process controller

 public static void main(java.lang.String[] args) {
 String url = "jdbc:db2:shop";

 try {
 Class.forName ("COM.ibm.db2.jdbc.app.DB2Driver").newInstance();
 Connection con = DriverManager.getConnection (url);
 Adder adder = new Adder();
 float total = adder.addCosts(con); o Calling phase 1
 System.out.println("Total cost: " + total);

 } catch (Exception e) {
 throw new RuntimeException(e.toString());
 }
 }
}

public class Adder {
 public static final int COST_COLUMN = 1;
 public float addCosts(Connection con) {
 float sum = 0;
 float total = 0;
 try {
 Statement stmt = con.createStatement();
 ResultSet rs = stmt.executeQuery("SELECT cost from cart");
 while (rs.next()) {
 float cost = rs.getFloat(Adder.COST_COLUMN);
 sum = sum + cost;
 }
 Taxer taxer = new Taxer();
 total = taxer.addTaxes(con, sum);
 } catch (Throwable theException) {
 theException.printStackTrace();
 }
 return total;
 }
}

public class Taxer {
public final static int COST_COLUMN = 1;

 public float addTaxes(Connection con, float total) {
 float sum = total;
 try {
 Statement stmt = con.createStatement();
 ResultSet rs = stmt.executeQuery("SELECT cost from cart");
 while (rs.next()) {

Listing 7.3 Splitting the initialization and cleanup

o Making the
connection

o
Implementation
for phase 1

o
Implementation
for phase 2

Antipattern: Split Cleaners 183
 float cost = rs.getFloat(Taxer.COST_COLUMN);
 sum = sum + cost * 8 / 100;
 }
 con.close();
 } catch (Throwable theException) {
 theException.printStackTrace();
 }
 return sum;
 }

}

A good clue that this application is poorly designed is that the objects are
named after processes instead of entities. Other forms of the Split Cleaner are
subtler, spreading connection management across different well-formed meth-
ods. When connection management is distributed, it’s easier to lose the con-
nection cleanup and create another kind of leak. For this example, if it was
determined that tax may or may not be charged, then a condition could be
added to the Adder class to add tax only if the condition is met. In this case,
we’d leave an open connection. In fact, as our application grows in complex-
ity, we’ll have to add cleanup to every branch that uses the resource.

7.3.1 Exceptions can lead to Split Cleaners
Another variation of the Split Cleaner is exception processing. In our pro-
grams so far, cleanup has occurred at the end of a command’s execute
method, like this:

public void execute()
 throws
 IOException,
 DataException {

 try {
 // retrieve data from the database
 Statement statement = connection.createStatement();
 result =
 statement.executeQuery("SELECT subject, author, board from posts");
 while (result.next()) {
 subject.addElement(result.getString(SUBJECT_COLUMN));
 author.addElement(result.getString(AUTHOR_COLUMN));
 board.addElement(result.getString(BOARD_COLUMN));
 }
 result.close();
 statement.close();
 connection.close();
 } catch (Throwable theException) {

o Closing the connection
(the split cleaner!)

184 CHAPTER 7

Bitter connections and coupling
 theException.printStackTrace();
 }

 }

If we have an exception situation, the close will fail to be executed. If we’re
forced to process closes in every exception condition, we have a Split Cleaner
pattern, with the same potential for failure.

7.3.2 Solution: Pair connection with cleanup, in finally
This antipattern again calls for refactoring. To solve the problem, we perform
three discrete steps:

1 Refactor the program to have a single entry point and a single exit
point, to make logical slots for cleanup code.

2 Make a finally block for the connection cleanup, in the method
where it is allocated.

3 Release the resources in the finally block.

For listing 7.4, the refactored solution is clear. We simply add a finally block
to main with the appropriate cleanup.

 try {
 Class.forName ("COM.ibm.db2.jdbc.app.DB2Driver").newInstance();
 Connection con = DriverManager.getConnection(url);
 Adder adder = new Adder();
 float total = adder.addCosts(con);
 System.out.println("Total cost: " + total);

 } catch (Exception e) {
 throw new RuntimeException(e.toString());
 }
 finally {
 try {
 con.close();
 } catch (Exception e) {
 throw new RuntimeException(e.toString());
 }

 }

Of course, for this program, the repair is a bit like simply repainting a Gremlin
after a head-on collision with a semi. For our BBS example, we’ve broken our

Listing 7.4 A refactored Split Cleaner, pairing the connection and close

Antipattern: Hardwired Connections 185
service method into two pieces to allow us to separate initialization and valida-
tion from the main line processing. This is a Split Cleaner, but because the
intent of the command architecture is clear and the execute and init methods
can be in close proximity, the design is relatively safe. Nevertheless, we should
continue our refactoring to ensure that our connections are cleaned in the
event of an exception. We do this by moving the cleanup to a finally block:

 public void execute ()
 throws
 IOException,
 DataException {
.
.
.
 } catch (Throwable theException) {
 theException.printStackTrace();
 } finally {
 result.close();
 statement.close();
 connection.close();
 }

In truth, we could be even more defensive. If result.close() or state-
ment.close() throw runtime exceptions, connection.close() doesn’t get
called. Also, if there’s a failure before the result set is built, result will be null.
You should test for a null result before closure.

7.4 Antipattern: Hardwired Connections

The previous examples dealt with tightly coupled connections that are likely to
be found entirely within our own walls. When we’re sharing a business-to-
business connection, we should pay careful attention to the coupling between
systems. Different types of interfaces should have couplings of different
strengths. Object-oriented languages let us keep the coupling between objects
fairly loose. Direct access through an object’s interface may be sufficient for
many purposes. For the boundary between the model and view, we should
loosen the coupling. In chapters 3 and 4, we did so through a command layer.
The layer between client and server should employ still looser coupling, which
we accomplish through the servlet API over HTTP over TCP/IP.

 When you’re dealing with two disparate systems that cut across organiza-
tional boundaries, you need to be especially careful when designing the inter-
faces. Experience has shown that loosely coupled systems are easier to maintain,
and many decisions that you make can affect the strength of the coupling

186 CHAPTER 7

Bitter connections and coupling
between your systems. The Hardwired Connections antipattern deals with sev-
eral traditional technologies and decisions that may force a tighter coupling
than you’d like. Most connections fall in one of three families:

� The transactional approach. For this one, transactional middleware—like
CICS, Encina, or Tuxedo—is used to execute a process on the target
system. A communications buffer is passed to serve as input or output
parameters. Sometimes, this approach is used to maintain additional
transactional integrity. Other times, the approach is used solely as a dis-
tributed RPC.

� The message-based approach. For this approach, a sender ships a block of
data to a listener, who processes the message and decides how to react.
Messaging-oriented middleware and Internet architectures are examples
of this approach.

� The RPC approach. With this approach, a distributed procedure call is
made, passing parameters through a predefined signature.

7.4.1 The communications buffer
In the past, the centerpiece for all three approaches has been the communica-
tions buffer, a block of data passed between two systems. We’d then map out
specific fields related to our interface. Figure 7.6 shows this strategy for a
credit card transaction. For a transactional system, we have a sender and a ded-
icated listener method that is synchronously fired with the communications
block. For a messaging equivalent, a sender routes the message to a waiting
listening process or thread, much like the HTTP server routes our PUT or GET
to a servlet on a web server. Setting the mechanism aside, we have a very simi-
lar solution. The listener must now parse the communications area, and the
format must be exact. Most interface changes have to occur simultaneously at
the client and server. While this approach has been very common, it is very
tightly coupled.

 A good analogy is management style. Poor managers tend to delegate
poorly. They assign a task, and describe in excruciating detail how that task
must be done. This approach limits flexibility and hinders efficiency by locking
us out of more efficient solutions to the problem. The communications buffer
has many of the same problems. The request is bound to the delivery vehicle,
and the communications area is usually described in details beyond those
required to do the task.

Antipattern: Hardwired Connections 187
For example, consider the communications buffer in figure 7.6. If we were to
switch from five-digit to nine-digit ZIP codes, then both the service requester
and the service provider would have to change their interfaces at the same
time. Added or deleted fields can also lead to problems. If changes occur with-
out the notification of one side or the other, we’ll have a bug. Using a fixed
parameter set through communication-area mapping algorithms or some form
of RPC (including CORBA) can improve the situation somewhat. In this case,
the software can enforce our rigid interface. We’ll catch some of the error con-
ditions, but we’ll still have to deal with the difficulties of coordinating inter-
face changes.

 When this changing interface is between two organizations or even compa-
nies, the consequences can be dramatic. The problems are compounded as
new clients are added to the interface. Here are some possible ways we can
deal with the change, all with significant disadvantages:

Synchronizing schedules
We can try to synchronize schedules. That means that the service provider
must wait until all the clients of the interface can change. This is one of the
many reasons that software development for large organizations is so tedious
and takes so long. Managing interfaces like this can occupy entire departments
for years.

Communications

Buffer
First name

Middle initial

Last name

Street address 1

Street address 2

City

State

Zip

Credit card no.

Expiration date

Service

requester

Service

provider

Communications

buffer

Figure 7.6 When we use a fixed communication area to connect two systems, we tightly couple
the requester and provider. Changes to the interface—for example, an added country or a nine-
digit ZIP code—can render the interface obsolete.

188 CHAPTER 7

Bitter connections and coupling
Creating multiple interfaces
The service provider can support a new interface. This approach works pretty
well for the first change, but it breaks down with multiple changes. Let’s con-
sider first going from a five-digit to a nine-digit ZIP code. We can solve this
problem by adding a second full interface, with a new communications area
that supports the nine-digit ZIP code. We’ll continue to support the old inter-
face. Now, if we also want to add a country code before all of our clients have
adopted the new interface, we have a problem. Depending on the priorities of
our clients, we’ll probably be forced to support multiple versions of each inter-
face. At the worst, we’ll need to support four interfaces instead of one: ver-
sions for the old ZIP with and without the country code, and versions for the
new ZIP with and without the new country code, as in figure 7.7. Because
we’re dealing with only a single interface, it is easy to appreciate how quickly
these combinations can explode.

Figure 7.7 Dealing with tightly coupled interface changes through maintaining old versions can
lead to a proliferation of interfaces. Here, we are going from five- to nine-digit ZIP codes and adding
a country code in independent changes. To satisfy all of our clients, we keep back-level interfaces.

Service

provider

First name

Middle initial

Last name

Street address 1

Street address 2

City

State

Zip

Credit card no.

Expiration date

Communications

buffer

Service

requester

First name

Middle initial

Last name

Street address 1

Street address 2

City

State

Zip

Expiration date

Communications

buffer

Country code

Credit card no.

First name

Middle initial

Last name

Street address 1

Street address 2

City

State

9 digit Zip

Credit card no.

Expiration date

Communications

buffer

First name

Middle initial

Last name

Street address 1

Street address 2

City

State

9 digit Zip

Expiration date

Communications

buffer

Country code

Credit card no.

Service

requester

Service

requester

Service

requester

Antipattern: Hardwired Connections 189
The hybrid approach
Under these circumstances, we might choose a combination of both tech-
niques: synchronization of schedules and multiple interfaces. We block
together a number of changes, and then deal with the complexities of support-
ing a small number of back-level interfaces. This approach gives us some of the
best, and lots of the worst, of both techniques. The pace of improvement is
limited by the need to aggregate and coordinate changes, and the approach
requires supporting back-level interfaces or even custom combinations of old
and new interfaces. Many companies that have used these technologies to
carry out e-commerce deal with the same issues after decades of struggle.
Making such a cumbersome process work is not easy, and many an IT depart-
ment has collapsed under the weight of managing interfaces across organiza-
tions. Fortunately, help is on the horizon.

7.4.2 Premature binding
Another problem with the communication area is early binding. Clients must
decide at an early stage who will be providing the service, and service
providers must find their clients in traditional ways. We make these producer-
consumer business decisions and hardwire our information systems to the
proposed solution. We are then bound to those decisions, whether or not
business conditions change or we face significant consequences.

7.4.3 Solution 1: Decouple with XML messages
Returning to our management analogy, good managers delegate by describing
a task, and not the way the task should be completed. This is the XML
approach: We describe the task in an XML schema and give the description to
both the client and the server. That way, both ends of the transaction have a
degree of freedom. Specification in a neutral, flexible language like XML does
not dictate the actual byte structure of the data block that serves as our new
communication area. Instead, it lends structure and meaning to the data so
that we can make more intelligent processing decisions. XML can help us in
many ways:

� XML lets us deal with tangible business objects with deeply nested rela-
tionships, instead of a disorganized collection of parameters. This
increased organization helps servers understand how to process data,
and gives additional clues to which data sets are valid and which are not.

� Clients and servers both have a better description of the interface, along
with a wider array of deployment choices.

190 CHAPTER 7

Bitter connections and coupling
� XML is rich enough to handle changes in the interface. For example,
adding optional fields has no impact on a client, and the client can take
advantage of the added functionality at its discretion. In addition, some
required fields could be satisfied with default values, which allows the
client to use those fields only when needed.

� XML has a number of technologies that can quickly and efficiently trans-
late one XML schema (or type) to another. This ability makes XML
extremely flexible and efficient.

Not every interface has to be so loosely coupled. Within our applications, we’ll
doubtlessly have many object-to-object method calls, and we may even have
distributed communications through EJBs or other interfaces. For those major
interfaces between major systems that demand a looser coupling, XML is a
good alternative to hardwiring an interface to a static communication area.

 Listing 7.5 features an XML message that we might use instead of the com-
munications area described in figure 7.6. Notice that we are sending a
communications block but that the format is an XML document, instead of a
tightly managed collection of fields.

<creditCardTransaction>
 <customer>
 <firstName>Bruce</lastName>
 <middleInitial>A</middleInitial>
 <lastName>Tate</lastName>
 <address1>1234 McMerican Trail</address1>
 <city>Austin</city>
 <state>Tx</state>
 <zip>78732</zip>
 <country>USA</country>
 </customer>
 <creditCard>
 <creditCardNumber>0u812</creditCardNumber>
 <expirationDate>03/03</expirationDate>
 <amount>3.35</amount>
 </creditCard>

</creditCardTransaction>

The service requester can generate the XML message using a variety of tech-
niques, including custom applications, exports from existing applications, or
translations from existing XML documents. Then, the service provider can
use one of several approaches to process the XML message; for example, the

Listing 7.5 XML message for credit card transactions

Antipattern: Hardwired Connections 191
provider could use one of the XML programmatic APIs. Elements of this mes-
sage can be processed sequentially, so we could probably get by with the Sim-
ple API for XML (SAX). If instead the provider needed to construct the entire
tree to process the elements of the message out of sequence, the provider
would probably need a more robust API, such as the DOM API.

 We also have some flexibility in managing changes in the interface. We can
add processing steps at the client or server to translate between different XML
formats, or even convert to a format that is not XML at all by using Extensible
Stylesheet Language Transformations (XSLT). We could even use XSLT to
translate this message format to a valid communication block for an older
interface. XML, combined with the incredible flexibility and tools at the client
and server sides, lets us decouple important interfaces.

7.4.4 Solution 2: Delay binding with web services
XML allows us to decouple interfaces by adding an abstraction layer and struc-
tural clues to the message. We also have a technology that addresses the prob-
lem of premature binding: web services let us describe our interface as a
service that clients can register and bind. The interesting part of this process
for us is delayed binding.

 Figure 7.8 shows how this works. The provider describes a service in an
XML-based markup language called Web Services Description Language
(WSDL), and publishes the interface in a distributed registry. The requester
can search the registry for a service and then bind to the service. The standard
for the open registration of resources is called Universal Discovery Description
and Integration (UDDI), which specifies a common XML description of an

Publis
h

Find

Bind

Provider

ProviderRequesterRegistry

Figure 7.8 Web services loosen coupling between the provider and the requester by delaying the
binding process. Providers publish their service in a distributed registry. Requesters can then
search the registry for an appropriate service. When one is found, the service is bound between the
requester and provider.

192 CHAPTER 7

Bitter connections and coupling
interface, as well as a method for organizing the full directory of web services.
Web services use XML in many ways. Though the messaging protocol is not
mandated, the common implementations today use Simple Object Access
Protocol (SOAP), an XML-based standard messaging protocol. The message
content is, of course, in XML, and the definition language for services is an
XML derivative.

 The web services architecture, and the open standards that form its foun-
dation, is based on standards that are simple, adequate for the task, and flexi-
ble. Table 7.1 describes the benefits of web services.

7.5 Mini-antipatterns for XML misuse

We have seen that XML can loosen the coupling between two systems, provid-
ing better insulation to change and more independence between the client
and service provider. The key to effective XML interfaces is a good, flexible
schema. Clean XML documents describing a service lead to smoother, more
flexible connections.

 XML is perhaps the most powerful new standard related to the Internet.
Although previous standards provided open implementations for communica-
tion, messaging, presentation, and applications, the missing link was a stan-
dard language that provided structure and meaning to data. However, keep in
mind that XML is subject to misuse. Next up, we’ll look at some antipatterns
related to XML.

Table 7.1 By allowing us to describe our interface as a service that clients can register and
bind, web services provide significant benefits.

Feature Benefit

Loose coupling Reduced maintenance and integration cost.

Late binding Improved flexibility in business process and
implementation.

A comprehensive, open standard One widely available and deployed standard addresses
service encapsulation, binding, invocation, distribution,
and description.

Dynamic and robust technologies Improved flexibility of implementation.

Platform and language neutrality Improved flexibility of deployment, wider vendor support,
and wider market penetration.

Mini-antipatterns for XML misuse 193
7.5.1 XML’s Golden Hammers
The book AntiPatterns described Golden Hammers, a series of good technolo-
gies employed for ill-suited tasks. In a perceptive paper called “XML for Data:
Four Tips for Smart Architecture,” Kevin Williams points out two ways that we
can miscast XML. Let’s take a look. (For more information, you can see this
paper at www-106.ibm.com/developerworks/xml/library/x-xdtips.html.)

XML is not a search engine
XML provides native searching tools, such as XPath. Even so, XML may not be
the best format for data that is subject to extensive searches. XML parsing can
be expensive, especially when we’re frequently searching for relatively small
fragments or complex relationships in data. We must parse an entire XML doc-
ument to perform a reliable search in the proper context. If we intend to
search an XML document regularly, it is best to load the document into a tool
built for that purpose—a database, for example. In his article, Williams points
out that the nature of the document should help you make the right decision.
If the document is text oriented, such as a manuscript, XML provides a good
native format. If the document is data oriented, like an insurance policy, then a
database would probably be the better option.

XML is a poor choice for large-scale summarizing
For complex data reporting and summarizing purposes, relational database
reporting functions are more powerful than those of XML. XML also does not
combine documents into intermediate formats as efficiently. However, some
technologies allow indexed XML, which can provide an effective intermediate
format for communication to a relational database engine. In this way, the two
technologies can be used effectively together.

7.5.2 XML’s bitter transitions
When XML bridges two subsystems controlled by a single organization, keep-
ing the schema current and each part relevant is easy. Using XML documents
across major interfaces presents additional challenges. Table 7.2 shows some
of the areas you must watch. In particular, you should throw away anything
that you are not likely to use, and you should look for data in a structure and
format that it is likely to be used.

194 CHAPTER 7

Bitter connections and coupling
Fortunately, with XML you can quickly translate documents between different
formats. You can combine XSLT with cascading style sheets (CSS) to create a
simple and effective presentation. You can also make adjustments to a docu-
ment over a major interface. It doesn’t matter if the target format is XML or
not; XSLT can easily translate to non-XML targets as well.

7.6 Mini-antipatterns: Rigid XML

XML gives you a degree of freedom, compatibility, and flexibility that isn’t
possible with other languages. You can extend languages and vocabularies that
describe proprietary data. XML lets you forge e-businesses by describing a
transaction rather than dictating the implementation. However, if you box
yourself in by designing rigid, inflexible XML, many of the advantages are lost.

 An excellent resource is a collection of best practices moderated by Roger
L. Costello at http://www.xfront.com/BestPracticesHomepage.html. The
mini-antipatterns in this section are based on the content on that site.

 When you build an interface across a major organizational boundary, you’ll
probably make a significant investment negotiating the XML schema of the

Table 7.2 XML translation technology is simple and effective. Often, translation is eschewed in
favor of expensive application development or manual effort, without regard to performance
considerations.

XML warning signs Potential problems

XML documents are used as shipped. The document may not be in the optimal format
for use as shipped.

Elements, types, and attributes contain formats
and data proprietary to other organizations.

Additional data is expensive to parse and store.
These can all be translated in a single step and
save the application developers significant time.

Applications parse XML data into a model and
immediately restructure it.

XSLT translations are usually easier to code and
maintain than application translations.

Different documents that contain the same data
are created independently.

New applications or manual effort to create a
new format for existing data is much more
expensive than the alternative. Instead, XSLT
translations should be used to repurpose data.

Applications use proprietary parsing technology
to render XML.

When manual parsers are written for XML data,
it may be a sign that someone is reinventing the
wheel. Instead, XML programming extensions
like DOM or SAX should be used, or even the
XSLT scripting alternative.

Mini-antipatterns: Rigid XML 195
transaction messages. The key to taking advantage of this investment is to
build schemas that can be extended so that future negotiations are easier. Let’s
examine some of the practices that can get in the way of extensible schemas.

7.6.1 Name collisions
XML shares a primary goal with object technologies: reuse. When we’re build-
ing a large schema, we’ll often combine parts of existing schemas. Suppose we
own a company that sells mountain bikes. Like many such companies, ours
doesn’t make its own frames. Instead, it buys parts from disparate sources and
assembles the bikes. Let’s say we want to build an XML specification describing
a bike, and we plan to use this specification to communicate with our
distributors and suppliers. We want to use one vendor’s frames and another
vendor’s components. To build the specification, we combine the component
set definitions from an existing standard specification with the frame portion of
a competing specification for an XML bike definition. We round it out with
some custom XML describing our proprietary wheel sets and forks. Figure 7.9
shows our plan for the combined XML document schema. We’ve reused por-
tions of specifications for the frame and component (frame.xsd and comp.xsd)
and combined those with new schemas for the wheel set and front suspension.
We’ve called those new schemas wheel.xsd and fork.xsd. We combine all the
schemas to form a bike specification that meets our needs. The problem is that
XML allows only a single definition for entities, attributes, and type definitions.

 Shortsighted designers might decide to ignore name collisions altogether.
Some organizations, through either ignorance or the belief that namespaces
are cumbersome, decide to control naming collisions with prefixes and longer

bike.xsd

frame.xsd comp.xsd wheels.xsd fork.xsd

Composite

Reused

Proprietary

Figure 7.9 With XML, we can build a new schema out of existing specifications. In this
example, we combine reused schemas for the bike frame and components with proprietary
schemas for wheels and the fork, and come up with an entirely new specification with a fraction
of the total effort.

196 CHAPTER 7

Bitter connections and coupling
variable names. If we accept the premise that control of an XML schema has
some value, we should strive for designs that don’t force us to prepend
variable names with proprietary extensions. A namespace is the XML schema
extension designed to handle this problem.

 In listing 7.6, we first create a namespace. Next, we declare namespaces for
both of our reused schemas (b). Within our composite document (bike.xsd),
we can then import the namespaces (c), and use the types within to create a
type called bike. Let’s assume that both our frame and component companies
use the identifier classification. Usually, these types within the comp.xsd
and frame.xsd would collide, but the namespace will protect us (d).

<xsd:schema xmlns:xsd="our-URL"
 targetNamespace="http://www.bikespace.org"
 xmlns:frame="url-for-frame-namespace"
 xmlns:component="url-for-component-namespace"
 xmlns:wheel="url-for-wheel-namespace"
 xmlns:fork="url-for-fork-namespace" />

 <xsd:import namespace="url-for-frame-namespace"
 schemalocation="frame.xsd" />
 <xsd:import namespace="url-for-component-namespace"
 schemalocation="comp.xsd" />
 <xsd:import namespace="url-for-fork-namespace"
 schemalocation="fork.xsd" />
 <xsd:import namespace="url-for-wheel-namespace"
 schemalocation="wheel.xsd" />

 <xsd:element name="bike">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="frame"
 type="frame:frameType"/>
 <xsd:element name="component"
 type="component:componentType"/>
 <xsd:element name="fork"
 type="fork:forkType"/>
 <xsd:element name="wheel"
 type="wheel:wheelType"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

</xsd:schema>

Listing 7.6 XML namespaces help resolve naming collisions.

B Defining
the
namespace

C Importing the
namespace

d

The types can
share names
without
colliding

Mini-antipatterns: Rigid XML 197
As you can see, the namespace can resolve conflicting names. Many intricacies
make mastering namespaces seem like black magic, but if you can learn to do
so, you can unleash significant power. At design time, you must decide
whether to use exposed versus hidden namespaces, how to set the default
namespace, and how to determine the number of namespaces. Such intricate
issues are beyond the scope of this book. For additional information, consult
the “XML Schema: Best Practices” page at http://www.xfront.com/
BestPracticesHomepage.html.

 Our example hardwires the schema location to the type. In the next sec-
tion, we’ll learn how to make the association between type and the implemen-
tation for a type more dynamic.

7.6.2 Rigid constructs
Some of the time, we want tight control over an XML definition and how it
can be extended. The rest of the time, we should strive for flexibility. Now,
we’ll look at practices that can limit the flexibility in an XML document. None
of these practices are always inherently bad, but they do have the negative
consequence of limiting flexibility.

Hardwiring components to a namespace
Choosing a namespace for a schema unnecessarily binds the schema to that
namespace early in the process. When we do so, we’re also adopting the
semantics of the namespace to our schema. We can delay the binding process
by creating compact nameless schemas and letting the application that uses the
schema map a better namespace onto the schema. Through this delayed bind-
ing, we can choose the best namespace at the application level, thus control-
ling the target application semantics and ensuring flexibility.

Hardwiring a type reference to a type implementation
When we define a type in one document and rigidly fix the type within an
import, we’re constraining the type implementation to the imported specifica-
tion. This implementation is probably one of the most common. The follow-
ing line binds a type to a type implementation:

<xsd:import namespace="http://www.frame.abccorp.com"
 schemalocation="frame.xsd" />
<xsd:element name="frame" type="frame:frameType"/>

We can delay the binding between type and schema location (and thus the
type implementation). We don’t have to specify the schema location; it’s an
optional parameter. Instead, when we create an instance of this document, we

198 CHAPTER 7

Bitter connections and coupling
can specify a type specification for frame_type. We’ll then have a flexible and
powerful schema.

Using static content models
A limited-content model will not allow instance models to extend the types
beyond what is in the schema definition. Consider the definition of a
photograph:

<xsd:element name= "Photograph">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="photographer" type="string" />
 <xsd:element name="subject" type="string" />
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>

In this example, we’ll always be limited to a sequence containing the photog-
rapher and the photograph subject. If we stay with the same schema, we’ll
never be able to extend the photograph element by adding, say, a color or
black-and-white field, a resolution field, or a size field.

 Instead, we can add placeholders to the schema in spots that we are likely
to extend:

<xsd:element name= "Photograph">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="photographer" type="string" />
 <xsd:element name="subject" type="string" />
 <xsd:any namespace="##any" minOccurs="0" />
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>

With the revised schema, we can add any number of new elements or types to
our photograph schema, and the added components can be contained in their
own namespace to avoid collisions.

Element over type
Preferring interfaces over abstract classes is one of the Java programming
hygiene rules we’ll introduce in chapter 9. Abstract classes limit us to a single
inheritance chain and restrict how our code can be extended, while an inter-
face gives us much more flexibility. In XML, we’re often faced with making a
similar decision between types and elements. In a schema, many times ele-
ments are specified, which of course limits flexibility.

Mini-antipatterns: Rigid XML 199
 Instead, we should prefer type definitions to elements. If necessary, we can
always replace the type with an element in another schema document. This
way, we have the ability to choose compatible subtypes or different elements at
a later time. In essence, we’re delaying the binding of a specific element to a
schema. As with Java interfaces, minor exceptions exist, but the general rule is
that in schemas, we should use XML types rather than elements.

7.6.3 Restrictive variable-content containers
Many XML designs call for containers of variable content. A variable-content
container is a collection of components; these components may be of similar
or unrelated types, either simple or complex. Examples include inventory lists,
sales catalogs, and recipes. The XML Schema: Best Practices website describes
four approaches, with varying flexibility

Use an abstract element and substitute an element
With this approach, we declare an abstract element and a substitution group.
In this example, we’re inventorying office furniture, and our inventory list
contains desks and chairs. This is the code:

<xsd:element name= "InventoryList">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="FurnitureItem"
 maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>

<xsd:element name= "Desk"
 substitutionGroup="FurnitureItem"
 type="DeskType" />

<xsd:element name= "Chair"
 substitutionGroup="FurnitureItem"
 type="ChairType" />

This approach is fairly flexible, but it does force us to derive elements of the
inventory from the FurnitureItem’s type. In essence, we’re limiting ourselves
to custom types. We’re also limiting the structure of the derived types to the
base types.

Use choice elements
We can instead implement our schema with an unbounded list of choices. This
is the code for the <choice> approach:

200 CHAPTER 7

Bitter connections and coupling
<xsd:element name= "InventoryList">
 <xsd:complexType>
 <xsd:choice maxOccurs="unbounded" >
 <xsd:element name= "Desk"
 type="DeskType" />
 <xsd:element name= "Chair"
 type="ChairType" />
 </xsd:choice>
 </xsd:complexType>
</xsd:element>

We don’t limit the structure of the choice types because the types are no
longer derived from a common type. Unfortunately, we can no longer extend
our list by adding new elements to our substitution group. With this
approach, we have taken one step forward and one step back.

Use an abstract type and type substitution
A third approach is to define an abstract type within our schema, and then
substitute a type in our instance document. Here is our schema:

<xsd:element name= "InventoryList">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="FurnitureItem"
 type="FurnitureItemType"
 maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>

FurnitureItemType is our abstract type. We can substitute a compatible type—
meaning any type derived from the abstract type—in the instance document.
We have the same extensibility advantages as with the first example, and less
coupling. We can also process the list items over a common interface. How-
ever, we’re still limited to elements that are derived from the same type.

Use a dangling type (not supported yet) or the any construct
With this approach, we’re going to define a type that’s defined in another
namespace. We’ll then import the type, but in the schema, we won’t specify
the schema location. This will allow us to delay the binding of our type until
runtime, since the schema location can be provided in our runtime document.

Mini-antipatterns: Rigid XML 201
.

.
<xsd:element name= "InventoryItem"
 type="i:InventoryItemType" />
.
.

<xsd:import namespace="http://www.inventoryItem.org" />
.
.
<xsd:element name= "InventoryList">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="InventoryItem"
 type="i:InventoryItemType"
 maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>

</schema>

Listing 7.7 shows this approach is appropriately called the dangling type. We’ll
bind to the schema location in the instance document. Using this approach,
we delay binding of the types until runtime. We can then let individual
instances define types appropriate to their application. We gain all of the bene-
fits of the first three approaches, and we enjoy the additional benefit of com-
plete type freedom. Unfortunately, as I am finishing Bitter Java, the dangling
type is not yet implemented in the major schema validators. The way around
this is to use anyType:

<xsd:element name= "InventoryItem"
 type="anyType " />

7.6.4 XML versioning
In the section “Creating multiple interfaces,” we mentioned that we might
want to collect different versions of the same interface to preserve compatibil-
ity. With XML, we can avoid some of the problems that lead to interface ver-
sioning, but sometimes we’re faced with incompatible versions of the same
schema. Here’s how we can provide better versioning support:

Listing 7.7 Variable-content containers can delay type bindings

O Defining the
namespace

O No schema
location in the
import!

O Use the imported
type in another
namespace.

202 CHAPTER 7

Bitter connections and coupling
Reducing the impact of new XML versions
Creating new versions of XML schema definitions can trigger painful, rippling
change. These steps can reduce or eliminate problems caused by inflexible version
control.

� We should capture the XML version in our schema. Many mechanisms can
be used to do this, and each approach has strengths and weaknesses.
The important thing to do is to pick an approach for capturing a version
number and stick with it.

� We should capture compatible versions in the instance. By explicitly listing
compatible versions of the interface, we avoid guesswork. We explicitly
list compatible versions.

� Where possible, we should make compatible changes. We can make added
elements optional, or we can make newly changed types less restrictive
than the original.

� Older versions should be available. We can support multiple versions of
the same schema within the same processing application. Within the
same XML application, we can query the version number and process
accordingly.

� We should use translation technologies to bridge incompatible XML specifi-
cations. A powerful use of XSLT technology is quick translations
between incompatible types.

These techniques won’t necessarily eliminate the changes associated with churn-
ing a major interface. However, they will reduce the impact of any changes.

7.7 Summary: Sweetening bitter connections

Many Java programmers and architects understand the importance of a well-
performing connection but fail to consider the costs associated with establish-
ing and terminating connections. In this chapter, we examined antipatterns
related to connection creation and cleanup.

 Connection Thrashing is an antipattern that creates and terminates a con-
nection at significant expense, though the connections might easily be
reused with a connection pool. Database administrators have used the con-
nection-pooling concept for years, and the benefits are well documented.
Because the total cost of making and closing a connection can easily
approach fully half of the total cost of a database transaction, this approach
should be near the top of the list of performance enhancements that promise
significant bang for the buck.

Antipatterns in this chapter 203
 The Split Cleaner is an antipattern related to connection cleanup. When a
resource is requested and released in different methods, the potential exists for
cleanup-related problems. Connections not properly cleansed can lead to
leaks. Connections cleansed too soon will lead to exceptions. Both are bugs
that we can avoid by placing allocations and frees in close proximity.

 Finally, the Hardwired Connection antipattern can make business-to-busi-
ness connections very difficult to maintain. We can use technologies (such as
XML) and APIs (such as Web Services) to decouple systems, and make both
the service and the client much easier to maintain.

7.8 Antipatterns in this chapter

These are the templates for the antipatterns that appear in this chapter. They
provide an excellent summary format and form the basis of the cross-refer-
ences in appendix A.

Connection Thrashing
DESCRIPTION: When database connections are created from scratch with
each new user connection, the performance can be poor, because database
connection costs are prohibitive. This antipattern can happen for other
connection types as well.
MOST FREQUENT SCALE: Application.
REFACTORED SOLUTION NAME: Connection Pooling.

REFACTORED SOLUTION TYPE: Software.
REFACTORED SOLUTION DESCRIPTION: Design patterns and software
with built-in connection pools are widely available, and Java has a new
connection framework.
ROOT CAUSES: Haste, sloth, ignorance.
ANECDOTAL EVIDENCE: “We’ll just add connection pooling later.”

SYMPTOMS, CONSEQUENCES: Since database connections are expensive,
the primary symptom is strain of system resources such as memory or file
handles, causing errors or poor performance. In extreme cases, it is not
unusual for over half of an application’s total work effort to go toward
managing connections. Along with Round-tripping and the Cacheless
Cow, this antipattern is the biggest performance drainer in the book.

204 CHAPTER 7

Bitter connections and coupling
Split Cleaners
DESCRIPTION: When a resource is allocated separately from where it is
freed, cleanup can be lost.

MOST FREQUENT SCALE: Application.
REFACTORED SOLUTION NAME: Pairing Connections with Cleanup.
REFACTORED SOLUTION TYPE: Software.

REFACTORED SOLUTION DESCRIPTION: Connections should be allocated
and cleared in close proximity, and finally blocks should be used for con-
nection cleanup. In this way, inspection will quickly show whether a con-
nection has been cleansed appropriately.
ROOT CAUSES: Haste, sloth.
ANECDOTAL EVIDENCE: “That connection probably gets cleaned up
somewhere else.”
SYMPTOMS, CONSEQUENCES: Resources, like database or file connections,
run out prematurely.

Hardwired Connections
DESCRIPTION: For business-to-business connections, a common imple-
mentation is to enumerate all of the fields in an entire interface, complete
with parameter and return types. The connection is then made through
some form of a remote procedure call. This approach makes the connec-
tion difficult to maintain and support as the interfaces change.
MOST FREQUENT SCALE: Enterprise.

REFACTORED SOLUTION NAME: Web services or XML messages.
REFACTORED SOLUTION TYPE: Software.
REFACTORED SOLUTION DESCRIPTION: Connections should be made
with common standards that allow a dynamic description of the transac-
tion, including the parameter set and the message construction. Web ser-
vices provide such a wrapping, through open standards, including SOAP
for messaging and XML for the description of the parameter and message
format.
TYPICAL CAUSES: The solution described by this antipattern is actually
one of the most common implementations of business-to-business con-
nections. Many have not yet migrated to XML-based solutions for a variety
of reasons.

Antipatterns in this chapter 205
ANECDOTAL EVIDENCE: “We should connect via interface version
12.23.345.” “You can’t change that field length without six levels of man-
agement approval, because you will break everyone.” “We can have the
nine-digit ZIP code ready for testing in two years.”

SYMPTOMS, CONSEQUENCES: Multiple versions of the same interface is a
tell-tale characteristic. Interface support that significantly lags the capabilities
of both the client and server systems is another symptom of this problem.

XML Misuse
RELATED ANTIPATTERNS: This antipattern is a subset of the Golden
Hammer antipattern in AntiPatterns, since we are applying an ill-suited
technology to a purpose.

DESCRIPTION: XML, like many powerful technologies, can be misused. In
this case, we’re using XML to do large-scale search or summary missions.
REFACTORED SOLUTION NAME: Databases, Indexed XML, or other
appropriate technologies.
REFACTORED SOLUTION TYPE: Software or technology.
REFACTORED SOLUTION DESCRIPTION: XML indexing solutions or rela-
tional databases are better technology fits for these problems.
TYPICAL CAUSES: This antipattern is caused by the assumptions that some
convenience facilities in XML are scalable and robust, which is not neces-
sarily their intent.
SYMPTOMS, CONSEQUENCES: Applications using XML to do significant
sorting or summarizing perform poorly.

Rigid XML
DESCRIPTION: Some design choices can restrict the extensibility of XML.
Namespaces can collide and some constructs are more restrictive than
others.

REFACTORED SOLUTION NAME: Extensible, Flexible XML.
REFACTORED SOLUTION TYPE: Software.
REFACTORED SOLUTION DESCRIPTION: Design choices can affect the
flexibility of XML. In general, we should use namespaces to control colli-
sions, prefer types to elements in a schema, use dangling types or anyType
for implementations of variable content containers, and limit the impact of
XML versioning by observing best practices.

206 CHAPTER 7

Bitter connections and coupling
ROOT CAUSES: Ignorance or apathy.

SYMPTOMS, CONSEQUENCES: The problems with rigid XML are similar to
those for hardwired, inflexible code: difficult maintenance and changes that
ripple into other parts of the system. The primary symptom of Rigid XML is
a schema that requires significant maintenance. It does not contain changes
to isolated areas and so must be heavily revised for every minor change or
new use. Other symptoms include having to redesign schemas from scratch
even when solving similar problems, and the lack of effective reuse.
ANECDOTAL EVIDENCE: “We always need a new version when we change
the XML.” “I don’t know what the X stands for, but it is not eXtensible.”

8Bitter bean
s

This chapter covers
� EJB basics
� The Round-tripping antipattern
� Other EJB antipatterns
207

208
I watch Eric line up his run on the easy Class II rapid in North Alabama. At the
bend, the river is about 45 feet wide, and there is only one danger spot: a notorious
feature called a pour-over. This one is easily visible. Merely five feet wide, it’s diffi-
cult to hit. The bulk of the current swings around the bend, away from the pour-
over, but it appears Eric will hit it anyway. Although he’s a beginner, we’ve prac-
ticed for months for this run. Texas has been dry, so our practice has been on slow
water. Eric can steer, power, and roll his kayak. He can even roll without a pad-
dle, a skill that belies his beginner status. When it’s dry, it’s easy to look for chal-
lenges in unlikely places. As we watch with amusement (and some apprehension),
Eric’s brain appears to lock as he approaches the pour-over. He just stares, and it
pulls him in like a tractor beam. He goes over the powerful 2-foot wave behind the
rock and stares at the 4-foot drop and the powerful hydraulic beyond. He knows
that he’s going to flip and maybe get hammered by the hole ... so what does he do?
He drops his paddle.

8.1 A brief Enterprise JavaBeans review

EJBs—the “bitter beans” of this chapter’s title—build in extensive functionality
that dramatically simplifies database, message-oriented, and transactional pro-
gramming. This chapter will not cover message-oriented EJBs because they’re
relatively new, and we programmers don’t have enough experience to develop
antipatterns based on their use. A technology as complex and ambitious as this
must provide fertile grounds for antipatterns. We will not be disappointed.

 In this chapter, we’ll review the basic characteristics of EJBs and discuss
how they are built and deployed. Next, we’ll return to our BBS application
and consider an EJB implementation. This time, since we have so much code,
we’ll break away from the practice of providing a complete example, but we’ll
include enough detail to give you the full flavor of the application. Next,
we’ll revisit some existing antipatterns, such as Round-tripping, in greater
detail. We’ll discuss what happens when we run into the antipattern Every-
thing Is an EJB, and then we’ll see what happens when we make bad choices
for our EJB deployments.

8.1.1 The component-based distributed architecture
The EJB architecture is a component-based, distributed architecture. On the
server, a set of services support a container, which in turn supports the com-
ponents, called EJBs, within the container. The components can communicate
with clients via a stub approach. This is essentially the approach that CORBA,
the distributed objects standard, uses to communicate between client and

A brief Enterprise JavaBeans review 209
server. An object’s interface is separated from the implementation. The inter-
face is deployed on both the client and the server. On the client side, a simple
stub is used, which communicates with the server-side distributed interface, as
shown in figure 8.1. Users can then use the client-side interface, which com-
municates with the stub and, by proxy, the remote interface, and eventually
the remote implementation.

8.1.2 Types of EJBs
There are two major types of EJBs in common use (with more on the way):
Session beans provide distributed transactional support, and entity beans pro-
vide a mechanism for building shared, transactional, persistent models:

� Shared means that many different implementations can use the same
model, conserving resources and improving complex distributed
communications.

� Transactional means that the database can support complex, multipart
transactions. We’ve heard the same idea with the database term unit of
work.

� Persistent means the data is stored in a database. Though the structure of
the model is object-oriented, rich relational database support is provided.

Figure 8.2 shows the different subtypes of EJBs. Only the dark gray ones may
be used; the other nodes simply help us organize and categorize the types of
support. The two types of session beans are stateless and stateful. Stateless

EJB application server

EJB container

EJB interface

EJB
implementation

Client

EJB interface

EJB stub

User

Figure 8.1 EJBs use client-side stubs to communicate with server-side objects. Users of the
client-side EJBs use the remote interface, which in turn uses the proxy, which then uses the
distributed interface and the local implementation. The server supports a container, which
provides critical features to EJB components.

210 CHAPTER 8

Bitter beans
session beans have no persistent state. They’re used as small, fast wrappers
around distributed transactions, and they ensure transactional integrity. State-
ful session beans provide transactional support, with a primitive ability to sup-
port state. This state doesn’t assure persistence after a crash. Entity beans with
container-managed persistence are entity beans that can save their state, usu-
ally in a database, through the services of the container. They’ll persist
through a crash of the EJB application server. Entity beans with bean-managed
persistence are the same, but they must provide the persistence mechanism.
Each of these types of beans has a specific purpose and can be efficient within
that role. When we step out of that role, we can have problems with perfor-
mance, maintenance, manageability, or scalability.

8.2 Bitter BBS with EJBs

In this example, we’ll first introduce a full object model for our BBS. As with
all of the “before” examples in this book, we’ll make some mistakes. Our solu-
tion will suffer from round-tripping and will map every class onto a container-
managed entity bean. Many sources warn against the perils of this type of
architecture, including Core J2EE Patterns, various sources on java.sun.com,
and conferences such as Java One. Still, programming tools and a lack of edu-
cation lead to solutions like this one with alarming regularity. Braden Flowers,
a well-published architect at IBM, has seen numerous poor EJB examples
through his many years of working with IBM’s largest customers. He has
agreed to play the role of a novice and provide the examples in this chapter.

 The nature of wrapping legacy architectures is such that we won’t always
have a clean, object-oriented design throughout the application, but we

EJBs

Session
beans

Entity
beans

Stateless
session
beans

Stateful
session
beans

Container-
managed

persistence

Bean-
managed

persistence

Figure 8.2 These four types of EJBs are divided into two major classes: entity beans and session
beans. Entity beans build models that are transactional, persistent, and secure. Session beans
wrap distributed transactions.

Bitter BBS with EJBs 211
should have a good, consistent model for representing the user interface, even
when the rest of the design is lacking. This example will introduce a fully
object-oriented model on the server side. Figure 8.3 shows an entity-relation-
ship diagram describing our application.

 A board is a logical discussion topic, and it will hold a list of discussions.
(Earlier examples used thread, the more common name for BBS discussions.
Unfortunately, thread is a reserved keyword in Java.) A discussion contains
one or more posts. A post is a composition by an author and is the leaf node of
our BBS. The entity-relationship (ER) diagram in figure 8.3 shows the rela-
tionships between the entities and is ideal for this type of modeling.

 In the next step, we’ll generate the interfaces for our BBS. We’ll show an
initial attempt at refactoring. As usual, our design will fall short of our
expectations.

8.2.1 Elements of an EJB application
EJB applications have five different parts: the remote and home interfaces, the
bean and primary key classes, and the deployment descriptor.

 The remote interface is the primary interface of an EJB, and is the interface
that we’d define in a modeling tool. This is where we specify the business
attributes and methods of a given EJB. Because the container manages most of
the details, such as security, persistence, and context, we are free to focus on
the interface. The remote interface is a formal Java interface, meaning we
won’t specify an implementation here. The home interface describes the object
known as the EJB Home and is similar to a description of a factory object. We
define methods to manage the bean’s life cycle, such as creating and adding it
to a container, removing and destroying it, and finding it.

name (PK) boardName (PK)
discussionID (PK)

name

Post

boardName (PK)
discussionID (PK)

postID (PK)
author
date

subject
text

1 0..* 1 0..*
DiscussionBoard

Figure 8.3 This entity-relationship diagram shows the organization of our BBS. We have a board
that represents a collection of discussions around a central topic, containing discussions. We also
have discussions, representing a single discussion, containing posts. Our posts are an atomic
statement by a single author at a given time, on a given subject.

212 CHAPTER 8

Bitter beans
 The bean class is responsible for implementing the methods in the remote
interface. It doesn’t actually extend the remote interface, though the method
signatures must match. This bean concentrates on specifics of the model logic.
With the primary key class, we specify an entity bean’s primary database key.
This is a simple class that defines the set of fields that in turn will uniquely define
the rows in our database. We also have the usual responsibilities of supporting a
generic object, including comparison, hash codes, and equality for the class.

 As we mentioned, the container supports many of the management ser-
vices of an EJB, so we probably won’t see methods to handle such services as
security, transactions, context, naming, or even distribution. While we don’t
have to develop those services, we do need to configure them through a
deployment descriptor. These files use XML to describe how an EJB is to be
deployed. They allow us to delay binding of the container’s services until run-
time. A deployment descriptor’s format is specific to each classification of
enterprise bean, since each major category will need subtly different informa-
tion. Each bean class has its own deployment descriptor, which can be gener-
ated manually or automatically through the development environment or
proprietary framework. I’ve used both approaches, and either will work rea-
sonably well.

 We have seen all of the basic pieces of an EJB application. Table 8.1 shows
each piece, with the corresponding Java interfaces that are implemented and
the role that each plays. Next, we’ll implement our bulletin board example
with EJBs. At that point, we’ll be free to dive into the antipatterns that plague
EJB applications.

Table 8.1 Here are the parts of an EJB program: the common name of the artifact; the formal
construct used to build the program; the Java interface that is extended; and the role that the
construct plays in EJB development.

Program artifact Construct Extends Role

Remote interface Java interface javax.ejb.EJBObject Defines the business meth-
ods and attributes.

Home interface Java interface javax.ejb.EJBHome Defines life cycle methods.

Bean class Java class javax.ejb.EntityBean Implements remote interface
methods.

Primary key Java class Serializeable Identifies the database key.

Deployment
descriptor

XML file N/A Defines properties of ser-
vices used by the bean.

Bitter BBS with EJBs 213
8.2.2 Building the remote interface
As we explained earlier, the board is a collection point for discussions around a
single topic, denoted by the board name. Listing 8.1 shows the remote inter-
face to our Board bean.

package com.bitterjava.bbs.ejb;

public interface Board extends javax.ejb.EJBObject {

 int addDiscussion(java.lang.String threadName)
 throws javax.ejb.CreateException, java.rmi.RemoteException;

 String getName() throws java.rmi.RemoteException;

 com.bitterjava.bbs.ejb.Discussion getDiscussion(int discussionID)
 throws java.rmi.RemoteException;

 java.util.Collection getDiscussions()
 throws java.rmi.RemoteException;

 void removeDiscussion(com.bitterjava.bbs.ejb.Discussion discussion)
 throws java.rmi.RemoteException, javax.ejb.RemoveException;

}

For a distributed persistent object, the interface is remarkably simple. We
aren’t forced to deal with the complexities—the container in our application
server masks all of those complexities from us. Here we can see the power of
the EJB architecture.

 Next, we’ll look at two additional remote interfaces, for discussions and posts.

The remote interface for Discussion
The Discussion interface is used to provide a collection point for a discussion,
or a collection of posts. We have the methods that you’d expect: add, remove,
and get a post. We also have attributes for the name and a collection of posts,
wrapped with accessor methods:
package com.bitterjava.bbs.ejb;

public interface Discussion extends javax.ejb.EJBObject {

 int addPost(String author,
 Date date,
 String subject,
 String text)
 throws javax.ejb.CreateException,

Listing 8.1 The remote interface to our Board bean

Remote interfaces
always extend
EJBObjecto

o
A method
wrapper

Accessor for the name attribute o

214 CHAPTER 8

Bitter beans
 java.rmi.RemoteException;

 String getBoardName()throws java.rmi.RemoteException;

 String getName() throws java.rmi.RemoteException;

 Post getPost(int postID) throws java.rmi.RemoteException;

 Collection getPosts() throws java.rmi.RemoteException;
 int getDiscussionID() throws java.rmi.RemoteException;

 void removePost(Post post)
 throws java.rmi.RemoteException, javax.ejb.RemoveException;

 void setName(java.lang.String newValue)
 throws java.rmi.RemoteException;
}

The remote interface for Post
The Post interface is a little simpler. Because its members are all primitive
objects and not collections, they consist of only getter and setter methods.
Later, this will make the implementation class much simpler. If we view our
object model as a tree, then a post is a leaf node:

package com.bitterjava.bbs.ejb;

public interface Post extends javax.ejb.EJBObject {

 java.lang.String getAuthor() throws java.rmi.RemoteException;

 java.sql.Date getDate() throws java.rmi.RemoteException;

 int getPostID() throws java.rmi.RemoteException;

 String getSubject() throws java.rmi.RemoteException;

 String getText() throws java.rmi.RemoteException;

 void setAuthor(java.lang.String newValue) throws
 java.rmi.RemoteException;

 void setDate(java.sql.Date newValue) throws java.rmi.RemoteException;

 void setSubject(String newValue)
 throws java.rmi.RemoteException;

 void setText(java.lang.String newValue)
 throws java.rmi.RemoteException;
}

Together, these three interfaces make up the business types in our domain.
We’ll also need an interface to add and remove these items from a container,
and finder methods to locate groups of these objects, because these methods
do not logically belong on a single object.

Bitter BBS with EJBs 215
8.2.3 Creating the home interface
The home interface, shown in listing 8.2, supports methods related to a class
that aren’t contained in the bean class. Creating (B), finding (C), and
removing are all handled by the home interface. These life cycle methods help
the container manage the bean. In our case, we have no reason to remove a
board once it is created, so there’s no remove interface.

package com.bitterjava.bbs.ejb;

public interface BoardHome extends javax.ejb.EJBHome {

 com.bitterjava.bbs.ejb.Board create(java.lang.String argName)
 throws javax.ejb.CreateException, java.rmi.RemoteException;

 com.bitterjava.bbs.ejb.Board findByPrimaryKey(BoardKey key)
 throws java.rmi.RemoteException, javax.ejb.FinderException;

}

We will have two more home interfaces, for discussions and posts. First, the
Discussion home:

package com.bitterjava.bbs.ejb;

public interface DiscussionHome extends javax.ejb.EJBHome {

 com.bitterjava.bbs.ejb.Discussion create(
 java.lang.String argBoardName,
 int argDiscussionID)
 throws javax.ejb.CreateException, java.rmi.RemoteException;

 Enumeration findAllForBoard(String boardName)
 throws java.rmi.RemoteException, javax.ejb.FinderException;

 com.bitterjava.bbs.ejb.Discussion findByPrimaryKey(DiscussionKey key)
 throws java.rmi.RemoteException, javax.ejb.FinderException;
}

This interface also has another finder. We’ll need to find all of the discussions
on a given board. We’ve chosen to put this function in the home interface for
discussions, since it returns an enumeration of discussions. We have one
more home interface, for posts. It is straightforward:

package com.bitterjava.bbs.ejb;

Listing 8.2 The home interface to our Board bean

Creator method for Board
B

Finder (by
primary key)

 c

216 CHAPTER 8

Bitter beans
public interface PostHome extends javax.ejb.EJBHome {

 Post create(java.lang.String argBoardName,
 int argPostId,
 int argDiscussionID)
 throws javax.ejb.CreateException, java.rmi.RemoteException;

 public Enumeration findAllForDiscussion(String boardName,
 int discussionID)
 throws java.rmi.RemoteException, javax.ejb.FinderException;

 Post findByPrimaryKey(PostKey key)
 throws java.rmi.RemoteException, javax.ejb.FinderException;
}

Once again, we have two finders: one to find by primary key, and one to find
all posts on a discussion. Now that we’ve defined the interfaces, we should
examine the bean classes that will handle our implementation.

8.2.4 Implementing the bean class
In the bean classes, we’ll implement the methods that make up our BBS. Since
the container handles most management details for us, we’ll work primarily
with methods that make up the primary functions of a BBS.

The bean class for Board
Listing 8.3 shows the implementation for Board. The bean class implements
the methods defined in the remote interface.

package com.bitterjava.bbs.ejb;

import java.rmi.RemoteException;
import java.security.Identity;
import java.util.Properties;
import javax.ejb.*;

public class BoardBean implements EntityBeean {
 private javax.ejb.EntityContext entityContext = null;
 private String name;
 private java.util.Vector discussions;
 private DiscussionHome discussionHome = null;
 final static long serialVersionUID = 3206093459760846163L;

 public int addDiscussion(String discussionName)
 throws RemoteException, CreateException {
 int nextID = 0;
 for (int i = 0; i < discussions.size(); i++) {
 Discussion discussion = (Discussion)discussions.elementAt(i);
 int discussionID = discussion.getDiscussionID();

Listing 8.3 The implementation for Board

B

Extends
EntityBean,
one of four
possible types

C Adds a discussion
to a board

Bitter BBS with EJBs 217
 nextID = Math.max(nextID, discussionID+1);
 }
 Discussion newDiscussion = getDiscussionHome().create(name, nextID);
 newDiscussion.setName(discussionName);
 discussions.addElement(newDiscussion);
 return nextID;
 }

 public void ejbActivate() throws java.rmi.RemoteException {}

 public void ejbCreate(java.lang.String argName)
 throws javax.ejb.CreateException, java.rmi.RemoteException {
 name = argName;
 }

 public void ejbLoad() throws java.rmi.RemoteException {
 try {
 java.util.Enumeration e = getDiscussionHome().findAllForBoard(name);
 discussions = new java.util.Vector();
 while (e.hasMoreElements()) {
 discussions.addElement(e.nextElement());
 }
 } catch (FinderException e) {
 }
 }

 public void ejbPassivate() throws java.rmi.RemoteException {}

 public void ejbPostCreate(java.lang.String argName) throws
java.rmi.RemoteException {}

 public void ejbRemove() throws java.rmi.RemoteException,
javax.ejb.RemoveException {}

 public void ejbStore() throws java.rmi.RemoteException {}

 public javax.ejb.EntityContext getEntityContext() {
 return entityContext;
 }

 public String getName() {
 return name;
 }

 public Discussion getDiscussion(int discussionID)
 throws java.rmi.RemoteException {
 Discussion rcDiscussion = null;
 for (int i = 0; i < discussions.size(); i++) {
 Discussion thisDiscussion = (Discussion)discussions.elementAt(i);
 if (thisDiscussion.getDiscussionID() == discussionID) {
 rcDiscussion = thisDiscussion;
 break;
 }
 }
 return rcDiscussion;

Must appear to satisfy an
interface, even if empty.

D

Fired when bean
 is added to

container.E

F An attribute wrapped
in an accessor

G
Get a single BBS
discussion from the
board.

218 CHAPTER 8

Bitter beans
 }

 private DiscussionHome getDiscussionHome() {
 if (discussionHome == null) {
 try {
 Properties env = entityContext.getEnvironment();
 String providerURL = env.getProperty("providerURL");
 String discussionHomeName = env.getProperty("discussionHomeName");

 Properties p = new Properties();

 p.put("java.naming.provider.url", providerURL);
 p.put("java.naming.factory.initial",

"com.ibm.ejs.ns.jndi.CNInitialContextFactory");
 javax.naming.InitialContext ic = new javax.naming.InitialContext(p);

 java.lang.Object homeObject = ic.lookup(discussionHomeName);
 discussionHome =

(DiscussionHome)javax.rmi.PortableRemoteObject.narrow((
 org.omg.CORBA.Object)homeObject,
 DiscussionHome.class);
 } catch (Exception e) {
 }
 }
 return discussionHome;
 }

 public java.util.Collection getDiscussions() {
 return discussions;
 }

 public void removeDiscussion(Discussion discussion)
 throws RemoteException, RemoveException {
 for (int i = 0; i < discussions.size(); i++) {
 Discussion thisDiscussion = (Discussion)discussions.elementAt(i);
 if (thisDiscussion.isIdentical(discussion)) {
 discussions.remove(i);
 thisDiscussion.remove();
 break;
 }
 }
 }

 public void setEntityContext(javax.ejb.EntityContext ctx)
 throws java.rmi.RemoteException {
 entityContext = ctx;
 }

 public void unsetEntityContext()
 throws java.rmi.RemoteException {
 entityContext = null;
 }

}

H
We need the
discussionHome’s
interfaces.

I
Removes a
discussion from
the board.

Bitter BBS with EJBs 219
B This is the class for the implementation of our EJB. We have two major
requirements:

� Satisfy the EntityBean interface. The compiler will enforce this rule.
� Satisfy the interface of the remote interface. This will be enforced by the

EJB extensions.

C This adds a discussion to a board. This method satisfies the namesake in the
remote interface. Note that the method signatures match exactly. This is a require-
ment, and is enforced by the EJB environment.

D Because we’re satisfying an interface, all of the methods must be present, even if we
don’t use them.

E When our bean is added to the container, we’d like to be able to read all of the dis-
cussions in a board. We use discussionHome’s interface to find all of the discus-
sions in the board, and then we use the returned enumeration to populate our
board. Likewise, we’ll remove them when we remove the board EJB from the
container.

F All of our attributes are wrapped with accessor methods. This practice makes it
easier for us to provide remote interfaces and to consistently wrap services around
the elements of our interface.

G This method finds a given discussion. Here, we simply scan the collection for the
discussion that we want. No database access is required, because the container is
managing that complexity for us.

H We need the discussionHome’s interfaces to get the discussions related to a board.
Since a home object is a named resource, we’ll get a naming context and use it to
find our discussionHome object. This type of method is called a finder.

I This method removes a discussion from the board.

Bean class for Discussion
Most of the code for the Discussion class is the same. Here are the interesting
methods:

public int addPost(String author, java.util.Date date, String subject,
String text) throws RemoteException, CreateException {

 int nextID = 0;
 for (int i = 0; i < posts.size(); i++) {
 Post post = (Post)posts.elementAt(i);
 int postID = post.getPostID();
 nextID = Math.max(nextID, postID+1);
 }

220 CHAPTER 8

Bitter beans
 Post newPost = getPostHome().create(boardName, nextID, discussionID);
 newPost.setAuthor(author);
 newPost.setDate(new java.sql.Date(date.getTime()));
 newPost.setSubject(subject);
 newPost.setText(text);
 posts.addElement(newPost);
 return nextID;
}

First, in addPost, we need to play the same trick as earlier to find the maxi-
mum value. We don’t have direct access to SQL aggregate functions, so we
iterate through the board, looking for the largest element. Here, our IDs are
relative to a post, so we pay only a modest penalty. A better implementation
might be to include a unique ID generator. Many possible implementations
exist. Next, let’s look at how we load the EJB:

public void ejbLoad() throws java.rmi.RemoteException {
 try {
 java.util.Enumeration e =
 getPostHome().findAllForDiscussion(boardName, discussionID);
 posts = new java.util.Vector();
 while (e.hasMoreElements()) {
 posts.addElement(e.nextElement());
 }
 } catch (Exception e) {
 System.out.println(e.toString());
 }
}

We simply request to load all of the posts in a discussion. Then, we put them
all into a vector called posts. This method is fired when the EJB is loaded into
the container. Next, we have a finder for a post within the discussion:

public Post getPost(int postID) throws java.rmi.RemoteException {
 Post rcPost = null;
 for (int i = 0; i < posts.size(); i++) {
 Post thisPost = (Post)posts.elementAt(i);
 int thisID = thisPost.getPostID();
 if (thisID == postID) {
 rcPost = thisPost;
 break;
 }
 }
 return rcPost;
}

In this method, we iterate through the posts vector (populated in EJBLoad),
and then return the one that has the specified ID. Finally, let’s look at remove:

Bitter BBS with EJBs 221
public void removePost(Post post) throws RemoteException, RemoveException
{

 for (int i = 0; i < posts.size(); i++) {
 Post thisPost = (Post)posts.elementAt(i);
 if (thisPost.isIdentical(post)) {
 posts.remove(i);
 thisPost.remove();
 break;
 }
 }
}

Here, we remove a post from the discussion. We find the post by iterating
through the vector. We then remove it, break, and return. You can find a com-
plete version of the class at http://www.bitterjava.com.

The bean class for Post
The PostBean class is full of primarily getters and setters, so it’s not as interest-
ing as the earlier ones. To illustrate the concept, we’ll show an attribute and
the associated accessors:

 public String author;

public java.lang.String getAuthor() {
 return author;
}

public void setAuthor(java.lang.String newValue) {
 this.author = newValue;
}

This entity bean is a leaf node in our database. It doesn’t have any additional
collections; thus, the implementation is fairly bland. The container does
almost everything for us, after some simple housekeeping. Again, you can find
a complete version of the class at http://www.bitterjava.com.

8.2.5 Defining the primary key
Let’s look at the primary key class for boardBean. The primary key class helps
to identify the database fields that represent a true database primary key, which
is a set of fields used to uniquely identify a row in a table. We’ll see the defini-
tions of equality, and as good citizens, whenever we override equality, we also
should override hash code:

package com.bitterjava.bbs.ejb;

public class BoardKey implements java.io.Serializable {
 public java.lang.String name;
 final static long serialVersionUID = 3206093459760846163L;

222 CHAPTER 8

Bitter beans
 public BoardKey() {
 super();
 }

 public BoardKey(java.lang.String argName) {
 name = argName;
 }

 public boolean equals(Object o) {
 if (o instanceof BoardKey) {
 BoardKey otherKey = (BoardKey) o;
 return ((this.name.equals(otherKey.name)));
 } else {
 return false;
 }
 }

 public int hashCode() {
 return (name.hashCode());
 }
}

Of course, session beans do not need a primary key class.
 We’ve looked at all of the Java interface and implementations for our

model. We now need a deployment descriptor, which will be used to define
the runtime behaviors and properties that the application server will need to
deploy our object model.

8.2.6 Creating a deployment descriptor
Most environments create deployment descriptors automatically. Though
VisualAge for Java can also create XML deployment descriptors, it’s much eas-
ier to use the user interface to handle deployment details. Even so, we’ll pro-
vide a portion of an example of a deployment descriptor for the refactored
project shown in the upcoming section “Antipattern: Round-tripping.” We
chose this deployment descriptor because it also has a session bean, with a
slightly different syntax:

<?xml version="1.0">
 <ejb-jar id="ejb-jar_ID">
 <description>Generated by Export Tool for
 Enterprise Java Beans 1.1 version 1.0
 from IBM VisualAge for Java version 4.0.
 </description>
 <display-name>BitterJavaEJBs</display-name>

This header information contains the XML version, a description of the bean,
and the pretty name, suitable for display, for the EJBs in the archive file. The
meat of the Java Archive (JAR) will follow.

Bitter BBS with EJBs 223
 <enterprise-beans>
 <entity id="Board">
 <ejb-name>Board</ejb-name>
 <home>com.bitterjava.bbs.ejb.BoardHome</home>
 <remote>com.bitterjava.bbs.ejb.Board</remote>
 <ejb-class>com.bitterjava.bbs.ejb.BoardBean</ejb-class>
 <persistence-type>Container</persistence-type>
 <prim-key-class>com.bitterjava.bbs.ejb.BoardKey
 </prim-key-class>

Here, we see the class names for the home, remote, bean class (ejb-class),
EJB entity bean persistence type, and the primary key defined for Board.

 <reentrant>False</reentrant>
 <cmp-field id="Board_name">
 <field-name>name</field-name>
 </cmp-field>
.
.
 <env-entry id="EnvEntry_1">
 <env-entry-name>ejb10-properties/providerURL
 </env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>iiop://localhost:900
 </env-entry-value>
 </env-entry>

.

.
 </entity>

The Board description is one of the fields that we specified in our interface,
followed by information that the detailed environment might need to manage
the bean, such as properties and types. We have several similar fields and envi-
ronment entries, which we’ve removed here for brevity. The full version is
available at http://www.bitterjava.com:

 <session id="BoardManager">
 <ejb-name>BoardManager</ejb-name>
 <home>com.bitterjava.bbs.ejb.BoardFacadeHome</home>
 <remote>com.bitterjava.bbs.ejb.BoardManager</remote>
 <ejb-class>com.bitterjava.bbs.ejb.BoardFacadeBean
 </ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>

Here, we have an entry for a session bean, which is the facade that we’ll use in
the refactoring exercise. A facade is a new interface layer that we’ll place
between the EJB client and server. Because it isn’t an entity bean, there will
be no fields or primary keys. We do have tags for the home, remote, and

224 CHAPTER 8

Bitter beans
bean-class interfaces and implementations. We also have a tag showing that
this bean is a session bean, and it implements the stateless session bean proto-
col from an EJB container.

 <env-entry id="EnvEntry_5">
 <env-entry-name>ejb10-properties/postHomeName
 </env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>com/bitterjava/bbs/ejb/Post
 </env-entry-value>
 </env-entry>
.
.
 </enterprise-beans>

We then have environment entries for the bean, describing the parameter
names in detail and providing descriptive information that we’ll need to man-
age the bean. We omit similar descriptions for other session facade session
beans, as well as our discussion and post entity beans.

 <assembly-descriptor id="AssemblyDescriptor_ID">
 <container-transaction id="MethodTransaction_1">
 <method id="MethodElement_1">
 <ejb-name>Board</ejb-name>
 <method-name>*</method-name>
 </method>
 <trans-attribute>Required</trans-attribute>
 </container-transaction>
.
.

 </assembly-descriptor>
 </ejb-jar>

The assembly descriptor describes security roles (we don’t have any here). The
descriptor also includes transactional details. Since many different EJBs might
have the same transactional and security details, they are broken out into a
separate section so that they might be handled in a single pass.

8.2.7 Using the model
Conceptually, this model can be used in the place of our command model in
the triangle architecture specified in chapter 3. We’d use the controller to pro-
vide entry points for various actions required by our user interface. In a high-
performance environment, we’d typically deploy the EJB server on different
hardware from the web application server. Such a deployment would force us
to pay careful attention to the interface between the hardware containing our
JSP and controller and the hardware containing our model. We’d have to

Antipattern: Round-tripping 225
populate the fields on our user interface through remote calls to our model.
Such a design can hurt our performance, and it is our first bitter bean.

8.3 Antipattern: Round-tripping

As we populate our bulletin board remotely, we can quickly build up a stag-
gering number of communications. To build a board, we also have to fetch
the discussions in a board; to build a discussion, we have to build all of the
posts in the discussion. This quickly leads to many remote communications
that spin out of control. Indeed, one of the most common EJB antipatterns is
called Round-tripping. Many EJB consultants have made a living going from
customer to customer solving this problem, and preparing the same report
that details causes and solutions. Though there may be many subtle differ-
ences, the causes for the most part are the same. EJB frameworks and environ-
ments make it easy to take an existing model, press a button, and spit out an
EJB-centric object model. This model is then deployed on different hardware
from the base web architecture. As the model is instantiated, the communica-
tion costs explode. Let’s take a look at figure 8.4.

ProductEJBInvoiceitemEJB

InvoiceEJB CustomerEJB AddressEJB

+id : int
+date : Date
+customerId : int
+itemid : Collection of int

+id : int
+name : String
+billingAddressId: int
+shippingAddressId: int

+id : int
+street: String
+city : String

+id : int
+quantity : int
+productId : int

+id : int
+name : String
+price : double

0..n

0..n

1..1

0..n

1..1

0..n

1..1

1..1

Figure 8.4 This ER diagram shows an object model for an invoice solution. We create an object
model in a design tool or programming environment, press a button, and generate an EJB model.
This model looks good, but if we deploy it as a distributed solution, it will not perform well.

226 CHAPTER 8

Bitter beans
8.3.1 Computing the cost of a distributed deployment
Figure 8.4 shows an ER diagram for a classic EJB implementation of an invoice
solution. If we decide to deploy this solution with distributed entity beans,
and if our controller and JSP are on the client, we’ll need to populate the fields
on our user interface based on the fields in the model. While single communi-
cation round-trips are not expensive, we have containment relationships that
can get out of hand in a hurry. Table 8.2 shows the fields, multipliers, and
costs associated with displaying a view of this model.

To compute the total cost, it is best to go out to the leaf nodes and work back
to the root object. Table 8.2 shows the leaf nodes at the bottom and works up
to the root Invoice class. For the variable costs, we have three fields per prod-
uct and one field in the item, for a total of four units per item. For the fixed
costs, we have a customer with two addresses (eight fields), and two fixed

Table 8.2 Without a façade layer, individual fields must be accessed one at a time. If a field points
to an object (such as Customer) or collection (such as Items), then those individual pieces must
also be retrieved. These nested costs can multiply quickly. The costs for these composite fields are
shown in bold.

Object Contents
Number

of round-trips
Total number
of round-trips

Invoice Id
Date
Customers
Items

1 +
 1 +
 8 +
 4N =

10+4N

Customer Name
ID
Addresses

1 +
 1 +
 6 =

8

Addresses
 (for 2 addresses)

Id
Street
City

2 +
 2 +
 2 =

6

Items
 (for N items)

Quantity
Products

1N +
 3N =

4N

Products
 (for N items)

ID
Name
Price

1N +
 1N +
 1N =

3N

Antipattern: Round-tripping 227
fields on the invoice. The total cost is 10*4N. That does not seem too bad,
but let’s look at some real-world numbers.

 If we assume 50 milliseconds per network transaction, this is the cost of
fetching a single invoice:

� For 1 invoice with 2 items
� 18 × 50 mSec = 900 mSec—almost an entire second

� For 1 invoice with 20 items
� 90 × 50 mSec = 4500 mSec—4.5 seconds

These times are relatively slow, but reasonable. However, it’s probably unreal-
istic to expect our users to fetch a single invoice. In reality, they’ll probably
usually fetch several and drill down to the one they’re seeking. The math for
multiple invoices is grim:

� For 10 invoices with 2 items
� 9000 mSec—9 seconds

� For 10 invoices with 20 items
� 45 seconds!

� For 100 invoices with 20 items
� 450 seconds, or 7.5 minutes

We aren’t fetching too many bytes in any single instance; we’re simply taking
too many round-trips. Some might quibble with our assumptions, but if we
allow users to fetch more than a single invoice at a time, this architecture
won’t hold up to even the most basic performance requirements. We have the
same problem with our bulletin board example. Boards contain discussions
that contain posts. We simply have to refactor.

8.3.2 Chatty interfaces
The UML sequence diagram is the perfect tool for identifying round-tripping.
Figure 8.5 shows the sequence diagram for the Invoice example. We’ve com-
bined the local EJB and its home for simplicity. In this case, we’re looking at
the interface between the EJBs and the view, since each of those method calls
will be expensive distributed invocations. First, the controller issues a find to
the invoice home, which triggers cascading finds on other EJBs. Next, we
include get methods to populate our user interface. Let’s assume that we’re
building a data bean in our controller that we’ll pass to our JSP. Because we
have accessor methods for all of the attributes that will fill the interface, we

228 CHAPTER 8

Bitter beans
have a problem. Bold lines in the sequence diagram indicate looping, and we
have a significant number of them. Ideally, we’d like to group all finds and
gets together in a single distributed call. That way, all of the calls to the acces-
sors will be local, giving us a significant performance boost. That is precisely
the solution that we’ll implement with the session facade.

8.3.3 Solution: Group together round-trips with a facade
To batch all of the round-trip calls in a chatty interface into a single collection
and handle all of the work with a single conversation, we’ll implement a facade.
With this technique, we’re creating a new layer with a formal interface in our
architecture. We can use distributed commands for this purpose, but we can
just as easily use stateless session beans. Figure 8.6 shows the impact of a facade.

 What a difference a simple refactoring step can make! We’ve taken a design
with several round-trips and boiled them down to one. The communication
mechanism doesn’t matter too much. We can wrap a variety of different

Servlet
controller

InvoiceEjb/
InvoiceHome

CustomerEbj/
CustomerHome

AddressEjb/
AddressHome

ItemEjb/
ItemHome

ProductEjb/
ProductHome

Find invoice

Get date

Get street

Get quantity

Find product

Find item
Get product number

Get product name
Get product price

Find customer

Find address

Get city

Get name

Get items

Figure 8.5 This sequence diagram graphically illustrates the round-tripping problem. We have
a distributed interface between the controller and the EJB objects. The bold lines indicate
places where we have significant looping. The UML sequence diagram is ideal for detecting
round-tripping.

Antipattern: Round-tripping 229
mechanisms with our command architecture, or we can use session EJBs. The
key is to reduce chatty interfaces by collecting multiple communications
around a single point.

8.3.4 Roots of round-tripping
As all beginners on the riverbanks watch, the pour-over cartwheels Eric’s kayak
several terrifying times before finally releasing him. Frantically, we fumble for
ropes and throw one end uselessly behind him. Suddenly Eric rolls up, effortlessly,
without his paddle. The beginners now see Eric’s mishap in a different light: he
didn’t blunder over the pour-over--he aggressively fought the current to get his
boat right in that monstrous maw in the river. He then bravely disdained his sole
means of control and propulsion, as if to say, “I don’t need a stinking paddle.” He
executed some carefully planned linked moves in the hydraulic, disengaged, and
did an Eskimo roll, sans paddle. On this day, Eric is everyone’s paddling idol.

When Eric went into his first rapid, he was equipped with a new tool: a hands
Eskimo roll. It was an advanced technique that few had mastered, and one that
gave him a false sense of security. He went into the rapid underequipped and
overconfident. Though his roll worked in this instance, he knew it wouldn’t be

Servlet
Serializable

object
Session EJBSerializable

object
Entity EJB

Ask for data bean
Get information from EJB

Create

Set copy of
information

Obtain data
for display

Figure 8.6 This sequence diagram is characteristic of the facade design pattern. The distributed
interface appears just before the session EJB. Note that the communication is reduced to a single
call. (Actually, one additional call at lower levels is required to initialize the communication with
the stateless session bean.)

230 CHAPTER 8

Bitter beans
enough to guarantee his safety throughout his paddling career. Should he ever
find the need for a paddle in his hands after his roll, he’d need to learn to apply
his tools appropriately. Likewise, using distributed frameworks and develop-
ment environments does save us from many implementation details, but it
should not absolve us of understanding the tools that we employ.

 The Round-tripping antipattern made database-stored procedures popular,
even in the face of significant maintenance and design trade-offs. The perfor-
mance costs for round-tripping were simply too great to ignore. This antipat-
tern also doomed many CORBA and Smalltalk architectures, though we can
refactor them with some of the same techniques that we present in this chap-
ter. Many EJB environments allow us to use distribution and persistence as
easily as we might flip a switch, but we must also understand the implications of
using that switch. One such implication is performance.

8.3.5 Refactoring the BBS with a facade
We can think of our distributed interface as low-tech communication across a
turbulent river. Each request for information must be written down on a piece
of paper and carefully ferried across the dangerous river. We could tediously
paddle every page across the river individually. Eventually, we might decide that
we’d like to collect several papers together and take them all at once. We could
simply wait for all of the papers related to a single request, box them, and take
them on a single trip. We could box the entire response in the same way.

 This is the approach that we’ll take with the facade on our BBS example,
allowing us to dramatically reduce our round-trip communications. We’ll use a
stateless session bean as a local client of our object model, instead of using the
EJB objects directly from a JSP or controller object. We’ll wrap the important
public interfaces in the facade, called BoardFacade. Since this will be a stateless
session bean, we won’t have a primary key class, but we will have home and
remote interfaces, a bean class, and a deployment descriptor.

The remote interface for BoardFacade
First, listing 8.4 contains the remote interface. We’re collecting the methods
for accessing the BBS application here. Because we don’t want to expose the
EJB entity bean implementation to our controller, our methods that return
boards, discussions, or posts return primitive object types, and our collections
return vectors. Otherwise, there are no surprises.

 This facade provides three different ways to aggregate information in a sin-
gle round-trip: We can specify a longer parameter list, use a compound object
with many smaller atomic parts, or use a collection.

Antipattern: Round-tripping 231
package com.bitterjava.bbs.ejb;

public interface BoardFacade extends javax.ejb.EJBObject {

 Vector addPostToDiscussion(String boardName,
 int discussionID,
 com.bitterjava.bbs.ejb.Post post)
 throws javax.ejb.CreateException,
 java.rmi.RemoteException,
 javax.ejb.FinderException;

 Vector addDiscussionToBoard(String boardName, String discussionName)
 throws javax.ejb.CreateException,
 java.rmi.RemoteException,
 javax.ejb.FinderException;

 com.bitterjava.bbs.Board createBoard(String boardName)
 throws javax.ejb.CreateException,
 java.rmi.RemoteException,
 javax.ejb.FinderException;

 com.bitterjava.bbs.Board getBoard(String name)
 throws java.rmi.RemoteException, javax.ejb.FinderException;

 java.util.Vector getPostsInDiscussion(String boardName, int
discussionID)

 throws java.rmi.RemoteException, javax.ejb.FinderException;

 java.util.Vector getDiscussionsInBoard(String boardName)
 throws java.rmi.RemoteException, javax.ejb.FinderException;

 void removeBoard(String boardName)
 throws java.rmi.RemoteException,
 javax.ejb.RemoveException,
 javax.ejb.FinderException;

 Vector removePostFromDiscussion(String boardName,
 int discussionID,
 com.bitterjava.bbs.ejb.Post post)
 throws java.rmi.RemoteException,
 javax.ejb.FinderException,
 javax.ejb.RemoveException;

 Vector removeDiscussionFromBoard(String boardName, Discussion
discussion)

 throws java.rmi.RemoteException,
 javax.ejb.FinderException,
 javax.ejb.RemoveException;

}

Listing 8.4 Buffering with a facade

b
Buffering in
the parameter
list

Buffering with
a collection c

D
Buffering
with a
composite
object
collection

232 CHAPTER 8

Bitter beans
B This interface uses all three techniques to aggregate information, but we are most
interested in the parameter list. In this list, we have a boardName and discus-
sionID. We also have a collection of attributes that we bind together with a post
object that is nothing more than a collection of fields. In the original interface, we
needed to make several method calls, whereas this interface uses just one. We can
use this technique to collect several sets into a composite interface with a single
method call. The command interface uses this approach by having many local set
calls, a distributed execute call, followed again by local gets.

C This interface illustrates the use of a collection to aggregate many round-trips into
one. We’d normally have to make a round-trip for every object in the vector.
Instead, with this interface, we retrieve a single buffer that has many objects. We
also collect many different get calls into a single interface, because we’d normally
have to use the remote accessors for each of the attributes. Instead, we call once.

D This interface demonstrates the collection of several round-trips with a single com-
posite object. In this example, we have three composite objects.

This is the object for the board:

package com.bitterjava.bbs;

public class Board implements java.io.Serializable {
 private java.lang.String name;
 private java.util.Collection discussions;

 public java.lang.String getName() {
 return name;
 }

 public java.util.Collection getDiscussions() {
 return discussions;
 }

 public void setName(String name) {
 this.name = name;
 }

 public void setDiscussions(java.util.Vector discussions) {
 this.discussions = discussions;
 }
}

We aren’t interested in encapsulating any behaviors here, since our behaviors
are captured in our model. We simply need a helper class so that we can orga-
nize all of the different parameters in our interface.

Antipattern: Round-tripping 233
The home interface for BoardFacade
Since we have a session bean, the home interface is extremely simple, having
only the create method:

package com.bitterjava.bbs.ejb;

public interface BoardFacadeHome extends javax.ejb.EJBHome {

 com.bitterjava.bbs.ejb.BoardFacade create()
 throws javax.ejb.CreateException, java.rmi.RemoteException;
}

The bean class for BoardFacade
This class has the implementation of the two previous interfaces. We’ll see this
facade interact with all three of the EJBs. We simply have to pass requests
straight through the facade to the EJB interface.

 Let’s look at some of the method implementations in our facade solution.
I’ve chosen a representative set of the implementation but left off some of the
similar implementations and much of the exception management for brevity.
For the full implementation, go to http://www.bitterjava.com.

package com.bitterjava.bbs.ejb;

import java.rmi.RemoteException;
import java.security.Identity;
import java.util.Properties;
import javax.ejb.*;

public class BoardFacadeBean implements SessionBean {
 private javax.ejb.SessionContext mySessionCtx = null;
 final static long serialVersionUID = 3206093459760846163L;

 private static BoardHome boardHome = null;
 private static DiscussionHome discussionHome = null;
 private static PostHome postHome = null;

We use these three instance variables as convenient placeholders for our home
interfaces, where we have our finders and the life cycle methods. We expose
several of them within our interface.

 public java.util.Vector addPostToDiscussion(String boardName,
 int discussionID,
 Post post)
 throws RemoteException, FinderException, CreateException {

 Discussion discussion = getDiscussionHome().findByPrimaryKey(
 new DiscussionKey(boardName, discussionID));
 discussion.addPost(post.getAuthor(),
 post.getDate(),
 post.getSubject(),

234 CHAPTER 8

Bitter beans
 post.getText());
 return getPostsInDiscussion(boardName, discussionID);
 }

In this method, we add a post to a discussion. We first find the home interface
for the discussion and execute a finder by primary key. We then add a post
with this interface. Note that we have conveniently collected all of the ele-
ments of the post within a small helper object called post, to help simplify the
interface.

 public com.bitterjava.bbs.Board getBoard(String name)
 throws java.rmi.RemoteException, FinderException {

 com.bitterjava.bbs.ejb.Board boardEjb =
 getBoardHome().findByPrimaryKey(new BoardKey(name));
 return marshallDataObject(boardEjb);
 }

Here, we use a technique to convert an EJB to one of our helper objects. We use
one of three marshallDataObject methods. An example is shown further here.

 private BoardHome getBoardHome() {
 if (boardHome == null) {
 try {
 Properties env = mySessionCtx.getEnvironment();
 String providerURL = env.getProperty("providerURL");
 String boardHomeName = env.getProperty("boardHomeName");
 Properties p = new Properties();
 p.put("java.naming.provider.url", providerURL);
 p.put("java.naming.factory.initial",
 "com.ibm.ejs.ns.jndi.CNInitialContextFactory");
 javax.naming.InitialContext ic =
 new javax.naming.InitialContext(p);

 java.lang.Object homeObject = ic.lookup(boardHomeName);
 boardHome = (BoardHome) javax.rmi.PortableRemoteObject.narrow(
 (org.omg.CORBA.Object)homeObject, BoardHome.class);
 } catch (Exception e) {}
 }
 return boardHome;
 }

The Java home objects are named resources, so we can find them through the
naming context and the JNDI interface. Many of these property values are
established in our deployment descriptors.

 Vector getPostsInDiscussion(String boardName, int discussionID)
 throws java.rmi.RemoteException, javax.ejb.FinderException {

 java.util.Vector posts = new java.util.Vector();
 try {

Antipattern: Round-tripping 235
 java.util.Enumeration e = getPostHome().findAllForDiscussion(
 boardName, discussionID);
 while (e.hasMoreElements()) {
 java.lang.Object o = e.nextElement();
 com.bitterjava.bbs.ejb.Post postEjb = resolvePost(o);
 com.bitterjava.bbs.Post post = marshallDataObject(postEjb);
 posts.addElement(post);
 }
 } catch (NullPointerException e) {}

 return posts;
}

In this method, we’re collecting all of the posts in a single discussion. The
while loop in bold would have been executed right on an interface boundary
in our original design. The original methods that performed the tasks of the
methods in italics were all distributed in our original design.

 private com.bitterjava.bbs.Board marshallDataObject(Board boardEjb)
 throws RemoteException {

 com.bitterjava.bbs.Board board = new com.bitterjava.bbs.Board();
 board.setName(boardEjb.getName());

 java.util.Vector discussions = new java.util.Vector();
 java.util.Collection discussionEjbs = boardEjb.getDiscussions();
 java.util.Iterator iter = discussionEjbs.iterator();
 while (iter.hasNext()) {
 java.lang.Object o = iter.next();
 com.bitterjava.bbs.ejb.Discussion discussionEjb =

resolveDiscussion(o);
 com.bitterjava.bbs.Discussion discussion =

marshallDataObject(discussionEjb);
 discussions.addElement(discussion);
 }
 board.setDiscussions(discussions);
 return board;
 }

Here, we’re taking an EJB object and creating generic data objects from a col-
lection of EJBs. This approach provides a helper for generic data objects, so
that we can easily hide the implementation of our model.

 private Post resolvePost(Object o) {
 return (Post)javax.rmi.PortableRemoteObject.narrow(
 (org.omg.CORBA.Object)o, Post.class);
 }
 }

This method helps us resolve the remote address of the object passed to our
method.

236 CHAPTER 8

Bitter beans
This completes our facade implementation of our BBS. Figure 8.7 shows the
result. We have our base EJB model with home and remote interfaces. We use
a facade object to hide those interfaces and to present a local interface to our
EJB. The application will do less round-tripping for the EJB layer and provide
much better performance.

A good facade
Like any other interface, a good facade is an art form. We’d like to build a log-
ical grouping of methods into a single facade; it’s foolish to build an interface
across too many separate facades. Instead, we should design a logical packag-
ing that will make sense to our users. Where transactional issues exist, the
facade should use the capabilities of the session beans to manage the transac-
tional logic. A good facade is not a haphazard implementation.

Interface boundary

Clients

Board
remote

Board
home

Thread
remote

Thread
home

Post
remote

Post
home

Fa
ca

d
e

se
ss

io
n

 b
ea

n
 (

re
m

o
te

)

Fa
ca

d
e

se
ss

io
n

 b
ea

n
 (

lo
ca

l)

Figure 8.7 This facade will dramatically reduce our round-tripping. We’ve consolidated the
interfaces of six different classes down to a single facade interface. Further, the individual
methods are much more coarse, so one method will perform many smaller operations. For
example, one method gets all of the discussions in a board with one single call, returning a vector.

Antipattern: Square Bean in a Round Hole 237
8.4 Antipattern: Square Bean in a Round Hole

In AntiPatterns, the authors presented an antipattern called the Golden Ham-
mer. This is what they had to say about the anecdotal evidence:

 “I have a hammer and everything else is a nail.” “Our database is our archi-
tecture.” “Maybe we shouldn’t have used Excel macros for this job after all.”

 For EJBs, the Golden Hammer is usually the entity bean with container-
managed persistence. This is also the EJB classification with the most over-
head. If every object in our model is a container-managed entity bean, we
might want to hunker down behind the desk to prepare for the deluge of cus-
tomer complaints about performance. We should instead limit the use of
entity beans to problems that need them. The characteristics of this EJB classi-
fication are:

� Transactional. The application should have transactional characteristics.
Entity beans will maintain their value after a crash, and they will also
maintain transactional integrity. Such functionality is valuable, but it
comes at a cost.

� Persistent. This is the most obvious of the characteristics. None of the
examples in this chapter require you to write a single line of database
code. The container will do all of that for you.

� Shared. We can share the same model across many different users, which
is one of the founding concepts of EJBs.

 These characteristics are incredibly valuable. Distributed, transactional,
shared, and persistent architectures that used to take years can be developed in
mere months. The danger is that entity beans become our Golden Hammer.

 In the coming section, we’ll break form slightly. We’ll show a series of
mini-antipatterns followed by solutions. In the first, we will show that we can
also go overboard with our entity beans.

8.4.1 Mini-antipattern: Bean-Managed Joins
My first question when I saw that I could create entity beans with bean-man-
aged persistence was, “Why would I?” Isn’t that like ordering a hamburger
without the meat? “Yes, I’m ready to order. I’ll have a persistence framework,
hold the persistence.” Like any framework, Java’s bean-managed persistence
handles some problems better than others. For example, join algorithms are
handled more quickly in the database engine.

 The first mini-antipattern involves processing a join, but outside the data-
base engine. A database join is the process of combining two sets of database

238 CHAPTER 8

Bitter beans
rows by merging all database rows where selected fields in two different
tables match. Database engines are highly optimized and process joins many
times faster than we can. One common place that entity bean solutions can
encounter application joins is with reporting. Because reports often present
renormalized (joined) data, container-managed entity beans can lead to
implementations that perform poorly.

 One-to-many joins occur frequently with object models. For example,
when we build the invoice in figure 8.4, container-managed persistence would
be forced to process several joins in our application.

 Reporting can often be best handled outside the realm of EJBs, perhaps
with a view. Too many entity beans can lead to application joins and to the next
problem. One particularly common problem is the creation of relationship
EJBs. DBAs create relationship tables in a database environment, but in the EJB
domain, relationship objects can lead to too many joins and poor performance.

8.4.2 Solution: Views, mappers, bean-managed joins
One painful solution to entity bean joins is to measure performance and make
improvements where significant problems surface. We can use bean-managed
joins in those problem areas and then code the database joins manually. This
solution tends to break the portability of a solution between databases, but
good attention to open SQL programming can alleviate this concern.

 A more elegant alternative is to provide a view and use a facade instead of
an entity bean. Or you can use object relational mapping software, such as
WebGain’s TopLink. These solutions allow objects with complex relationships
to be saved and restored efficiently.

8.4.3 Mini-antipattern: Entity Beans for Lightweight Functions
If a method simply returns a list, there may be times we should go right to the
database rather than use a full-blown EJB model. For our BBS, the list of
boards is a perfect example. Extending our model to load full boards when all
we need is a list of board names is extremely heavy-handed.

 Instead, we can simply add a JDBC interface to our facade. It’s an easy
extension to make. This method signature is added to the remote interface,
which is added to BoardFacade.java:

java.util.List getBoardNames() throws java.rmi.RemoteException;

Listing 8.5 contains the implementation, which is added to BoardFacade-
Bean.java.

Antipattern: Square Bean in a Round Hole 239
public java.util.List getBoardNames() throws java.rmi.RemoteException {

 java.util.Vector names = new java.util.Vector();
 java.sql.Connection conn = null;
 java.sql.PreparedStatement stmt = null;
 java.sql.ResultSet rs = null;

 try {
 conn = getPooledConnection();
 String sqlString = "SELECT DB2ADMIN.BOARD.NAME AS NAME" +
 " FROM DB2ADMIN.BOARD";
 stmt = conn.prepareStatement(sqlString);
 rs = stmt.executeQuery();
 marshalBoardNames(rs, names);
 } catch (Exception e) {
 throw new RemoteException("Database exception: " + e);
 } finally {
 if (rs != null) {
 try { rs.close();
 } catch (java.sql.SQLException e) {
 }
 }
 if (stmt != null) {
 try {
 stmt.close();
 } catch (java.sql.SQLException e) {
 }
 }
 if (conn != null) {
 try {
 conn.close();
 } catch (java.sql.SQLException e) {
 }
 }
 }
 return names;

}

This approach lets us return a simple list of board names without having to
load all the board EJBs, which would do much more work than we need. We
may choose instead to extend our model to keep things consistent, but this
option is available as a performance optimization. A scary number of entity
beans do nothing but provide a simple reference table. In this case, the EJB
implementation will be more difficult and will provide much more capability
than we need. For reference tables, we don’t have to map a full object model

Listing 8.5 Use JDBC instead of a full entity bean for lightweight problems

We use a pooled
connection (chapter 7).

o

o Cleanup is in
finally (chapter 7).

240 CHAPTER 8

Bitter beans
on a relational database. We have no need for the robust transactional sup-
port, either. It’s much better to build a light implementation with a more
basic technology.

8.4.4 Mini-antipattern: Entities for Read Only
A more specialized case of the Entity Beans for Lightweight Functions anti-
pattern is the large list that is read but not written. In some cases, we have sta-
ble data that will seldom (or never) change. In these cases, a full entity bean is
overkill. Some examples of objects that are read but not written are lists of
states in a nation, cities in states, tax tables, and ZIP codes. In these cases, we
can use a session bean like the one in the previous section as a lightweight
wrapper around a database table. Or we may decide to load such data into a
shared hash table once in a client-side cache.

8.4.5 Mini-antipattern: Entity Beans for Write but Not Read
Believe it or not, occasionally we might need to record data that will probably
never be read. That concept seems strange to me, but there are examples of
data that should be recorded, where the expected case is that the data will never
be accessed. Transaction logs, audit files, and system logs are good examples
of this type of data.

 Clearly, the use of entity beans is overkill for these situations; a more prim-
itive construct than a database is called for. We should optimize the expected
case: writing the data. We may opt for file services, since the data organization
doesn’t need to be optimized for frequent random access.

8.4.6 Troublesome scrollable lists
Scrollable lists present interesting challenges to EJB developers. Instead of
returning an entire list, many web pages display some subset of the result and
allow users to navigate the entire list with links. The problem is that the list
can change while the user navigates the list. If we do a full database query
every time to populate the list, performance can suffer. For this reason, man-
agement of such a request can be difficult.

 The stateful session bean is ideal for this type of problem. When model-
related conversation state (the list contents) is required only for the duration
of a session, a stateful session is a better candidate. This bean can serve as a
facade, and the list data and user’s current location in the list can be stored in
the bean. Implementations vary, and some implementations may prove prob-
lematic in solutions deploying application server clusters. Capabilities in this
area are changing rapidly, so check with your vendor to be sure.

Antipattern: Square Bean in a Round Hole 241
8.4.7 Overall solution: Pick the right bean for the job
Table 8.3 shows the different EJB classifications, the general characteristics of
appropriate solutions, and a list of problems that it can solve. Doubtlessly,
EJBs will continue to evolve, and the imbedded services such as container-
managed persistence and session states will become more robust. Table 8.3
describes the state of the art, as we understand it today.

Table 8.3 This table shows each EJB classification, with a generic description of the types of
problems that it can solve. The last classification is not an EJB, but is used to categorize
solutions that are not well suited for EJBs.

EJB classification Description Solution examples

Entity beans (container
managed)

Transactional, shared, persistent.
Simple object relationships.

Server-side persistent object
models.

Entity beans (bean
managed)

Transactional, shared, persistent.
Complex object relationships.

Optimizations for the above,
with relational joins, or persis-
tence to other data stores.

Stateless session beans Transactional distributed access
without state requirements.

Adding transactional integrity to
a method or procedure.
Adding a facade to consolidate
interfaces across major inter-
face boundaries.

Stateful session beans Transactional, distributed access
with limited conversational state
requirements, within the bounds
of a single session.

Saving session state.
Scrolling through large, multi-
part lists.

None Not necessarily transactional, per-
sistent, shared, or secure. All
aspects of an application that do
not have compelling reasons to be
EJBs should not be EJBs. This is
the default implementation.

Log and property files.
Quick hitters that do not belong
in the model.
Nontransactional data.
User interface–related aspects
of the application.

242 CHAPTER 8

Bitter beans
8.5 Mini-antipattern: Everything Is an EJB

After interviewing five consultants and programmers for this book, I discov-
ered that the one common antipattern was the application of EJBs to trivial
problems. This antipattern is a more direct example of the Golden Hammer
antipattern. Each consultant had an example of bright programmers using this
advanced technology to build simple applications. One gave an example of a
three-tier EJB application built to display a few time sheets. Another had a
team who used EJBs to build read-only reports that used a single database
table. Many saw customers replace working, robust applications built on solid,
well-suited technologies simply to stay current (a nebulous benefit under the
best of circumstances). EJBs can help save us from complex details of persis-
tence, transaction integrity, security, and distribution—at a price. If our appli-
cation doesn’t need the capability, our costs will quickly outpace our benefits.
An application should have many of these characteristics to be considered an
EJB candidate:

� Complexity. If the problem is not complex, the effort and overhead
should steer us toward a simpler architecture.

� Persistence. Sometimes, a persistence framework can simplify an applica-
tion significantly. Still, other persistence solutions, such as databases or
even files, may be more appropriate for simpler solutions.

� Stringent transactional integrity requirements. Building robust transac-
tional applications takes effort, especially for persistent distributed appli-
cations.

� Distributed or multitiered deployment requirements. Stand-alone applica-
tions usually won’t have the complexity or sophistication to mandate
EJBs.

� A complex, shared object model. At a cost, EJBs provide the ability of lay-
ering an understandable object model over legacy systems and sharing
that model across many users.

When few of these conditions are present, it is unlikely that EJBs will provide
enough benefit to outweigh the performance and development costs. I am
confident that many programmers will continue to use them anyway.

EJBs and caching 243
8.6 EJBs and caching

Programmers often use a design pattern called the ValueObject, which works
like a small spot-cache to reduce round-tripping. Programming ValueObjects
can be tedious and they must be coded for every instance, so a programmer
may neglect them when working under a tight schedule. I prefer to spend
more time on a general-purpose or a prepackaged cache.

 When EJB application servers are deployed on major system boundaries,
they too are targets for caching. This problem is unique to the EJB client
machine. Because the model can keep data resident between calls, the cache
between the EJB model and database is usually not necessary at the EJB server.
Further, since many EISs have aggressive caching built in, a cache upstream of
the EJB is generally not necessary. Nevertheless, we could benefit from a cache
in certain circumstances:

� Models that don’t use entity beans or stateful session beans are possible
targets for a client-side and server-side cache, depending on the factors
outlined in chapter 5, in the section “Solution 2: Cache commands.”

� If the controller and JSP are deployed on separate hardware, the interface
between the controller and the facade is an appropriate place for a cache.
See the next section, “Implementing a cache with a facade,” for details.

� For some EISs, such as transaction monitors, a cache can provide per-
formance boosts upstream of the EJB server.

8.6.1 Implementing a cache with a facade
In this chapter, we have not yet considered a cache between the EJB server and
the web application server. If we decide to deploy both the EJB server and the
web application server on the same box, we won’t need a cache. With other
deployments, a cache will almost certainly provide some performance benefits
by reducing the communication between the EJB client and server boxes.
Let’s look at three caching alternatives.

Command pattern within a session bean
One solution is to implement the Command design pattern with a session
bean. This interface would be easy to cache for the same reasons as our origi-
nal command: a series of set methods for input parameters, an initialize
method to establish connections and do validations, an execute method to
access the model, and a series of get methods to obtain the results of the com-
mand. We’d have a built-in key in a concatenation of the set parameters of the

244 CHAPTER 8

Bitter beans
command interface, and a consistent place for the cache implementation in
the execute method. With this approach, we can automate cached command
generation with some careful thought and planning.

A cache between the facade and the controller
A second possibility is to design the facade to return atomic objects and collec-
tions that are easily cacheable, and then add appropriate hash and key fields to
the returned objects. This approach is manual, but it can result in clear, ele-
gant interfaces.

 A distributed command
The Command pattern is very well suited to a distributed architecture. IBM
has some of the best practical guides and papers on this topic. One book that
has outstanding ideas for general architecture, although presented in a Web-
Sphere context, is called Design and Implement Servlets, JSPs, and EJBs for Web-
Sphere. Distributed commands give us a smaller, tighter footprint than a session
bean, less overhead per communication, and integrated keys and attachment
points for a cache. The downside is that this approach will probably mandate a
proprietary implementation, though some promising work—such as the action
objects of the Jakarta Struts framework—is moving the ball forward.

 The key to success with EJBs is not to get lazy and expect the frameworks
to guess our intentions and optimize for us. We can choose a number of suc-
cessful approaches, and should not lose sight of the impact of a cache as a first
line of defense for a distributed interface.

8.7 Smoothing out the bitter beans

In this chapter, we’ve reviewed the basics of EJBs. They are implemented as
components that go into a container, which provides such important services
as support for transactions, persistence, and security. The EJB architecture is
distributed and uses the stub-based approach, similar to CORBA. You learned
that there are two major classifications: session beans and entity beans. Session
beans come in stateless and stateful varieties, and entity beans have persistence
that is managed either by the container or the bean itself.

 Of the antipatterns that we examined, the worst was Round-tripping. We
looked at an example that showed how complex object relationships can have
a multiplier effect that can bring system performance to its knees. We did
reveal a silver bullet that can kill this beast: the facade. We can wrap a chatty

Antipatterns in this chapter 245
interface with a facade that combines many different round-trips into one, sav-
ing network traffic and boosting performance significantly.

 The rest of the antipatterns in the chapter relate to the type of EJB used to
solve a particular problem. EJB entity beans in particular are like golden ham-
mers, and the whole world looks like a nail. Also, there may be situations
where we use bean-managed persistence or a relational mapping tool to opti-
mize performance, session beans to reduce overhead, or stateful session beans
for a lighter approach to keeping session-duration conversations. The key to
the successful use of EJBs is not to be lulled to complacency by the ease of
implementation and pay attention to performance concerns.

8.8 Antipatterns in this chapter

These are the templates for the antipatterns that appear in this chapter. They
provide an excellent summary format and form the basis of the cross-refer-
ences in appendix A.

Round-tripping
� RELATED ANTIPATTERNS: The Cacheless Cow. Some specializations

of this antipattern exist. Lack of a cache can also cause round-
tripping.

� DESCRIPTION: Round-tripping occurs when a chatty interface falls
on a distributed boundary. For EJBs, a client (usually a controller or
JSP) accesses the remote interface of a distributed entity bean. Since
an entity bean usually exposes many fields and sometimes collec-
tions, this results in many round-trip communications, absolutely
murdering performance.

� MOST FREQUENT SCALE: Application.
� REFACTORED SOLUTION NAME: The Facade.
� REFACTORED SOLUTION TYPE: Software.
� REFACTORED SOLUTION DESCRIPTION: The most common solution

to this problem is the facade. This interface is implemented with a
distributed call, like a session bean. The interface combines many
chatty communications into a single, consolidated call.

� TYPICAL CAUSES: A common cause is the use of major frameworks
like EJBs near interface boundaries without modification.

� SYMPTOMS, CONSEQUENCES: Applications are slow.

246 CHAPTER 8

Bitter beans
� ALTERNATIVE SOLUTIONS: The distributed command can also be
used to control round-tripping. Also, refactoring can frequently shift
an interface so that logical tasks are grouped together into a single
physical round-trip. Other alternatives can help performance. A
cache can help after the first load. (Often, both a cache and facade
are desired.) The EJB can also be deployed on the same box, though
many times, strong reasons motivate separation.

Round Bean in a Square Hole
RELATED ANTIPATTERNS: The Golden Hammer, in AntiPatterns.
DESCRIPTION: Many times, a classification of EJB is used inappropriately.
Several different variations of this problem exist. A complex object
relationship may fit bean-managed persistence better than container-man-
aged persistence. In other cases, a problem may not require the full sup-
port of an entity bean. Similarly, entity beans may be overkill for
applications that exclusively read or write.
MOST FREQUENT SCALE: Microarchitecture.
REFACTORED SOLUTION NAME: Use the Correct EJB for the Job.

REFACTORED SOLUTION TYPE: Software.
REFACTORED SOLUTION DESCRIPTION: The correct bean should be
employed for the application:

� For applications having a relationship corresponding to a relational
join (one to many or n-ary relationships), frequently an entity bean
with bean-managed persistence should be employed.

� For lightweight functions, session beans have much less overhead
than entity beans.

� For write-only applications like system logs or audit trails, files or
JDBC may be the best choice.

� For read-only applications, session beans with JDBC or SQLJ could
be better choices.

ROOT CAUSES: Inexperience or apathy.
ANECDOTAL EVIDENCE: “This development environment builds the
whole model for me automatically. I don’t even have to think.”

SYMPTOMS, CONSEQUENCES: Applying the wrong bean to a problem
leads to ugly designs or poor performance.

Antipatterns in this chapter 247
ALTERNATIVE SOLUTIONS: Other layers, like relational mappers, can
automatically manage entity beans with complex relationships.

Everything Is an EJB
RELATED ANTIPATTERNS: The Golden Hammer, in AntiPatterns.
DESCRIPTION: This is the generic form of the Round Bean in a Square
Hole antipattern. If a problem is not well suited, an EJB solution is likely
to be too difficult or poorly performing.
MOST FREQUENT SCALE: Micro-architecture.

REFACTORED SOLUTION NAME: Apply EJBs Appropriately.
REFACTORED SOLUTION TYPE: Software.
REFACTORED SOLUTION DESCRIPTION: EJBs should be used only where
they provide significant value, and the problem domain has complexity
that warrants a distributed, transactional architecture. See the section
“Everything Is an EJB” for more details.

ROOT CAUSES: Inexperience or apathy.
SYMPTOMS, CONSEQUENCES: Using entity beans for everything is too
heavy-handed, and has common performance consequences.

ALTERNATIVE SOLUTIONS: Simpler, lower-level technologies such as
JDBC and servlets can work.

Part 3

The big picture

A s the years went by, we found ourselves running more serious rivers. We
also learned to appreciate the bigger picture. Class IV+ Wilson’s Creek is a short,
very steep run. Driving a road high above the creek along its full length, we
weren’t able to see any fine detail, but we could identify geology changes that
marked the most serious rapids. We could observe features from the car that we
couldn’t see from the cockpit of the boat. We later used that knowledge because
steep canyon walls on either side prevented us from scouting the hardest rapid
from river level.

In chapters 9 through 11, we’ll look at Java antipatterns at a higher level, in a
broader context. In chapter 9, we’ll explore programming hygiene and its sur-
prising impact on antipatterns. In chapter 10, we’ll take a look at some anti-
patterns affecting scalability and performance. Some are related to process,
and others to programming or architecture. In chapter 11, I’ll offer some
parting thoughts about antipatterns in the Java community.

 Some programmers will wonder why higher level topics such as hygiene
and performance belong in this book at all, while I’ve left out issues such as
security, usability, and other deployment concerns. Early on, I was struck by
the tight connection between low-level server-side antipatterns and these top-
ics. To this end, I included the hygiene chapter and placed it late in the book
so that you could view the rules with related antipatterns fresh in your mind. I
also included the performance chapter so you could learn to deal with perfor-
mance issues at a higher level. I didn’t consider usability because of its loose
relationship with server-side programming and relative independence from

250 PART 3

The big picture
Java. Similarly, many security concerns are determined beneath the level of the
programming standards (at the HTTPS level). Others are either too specific or
addressed as deployment issues. I left deployment details for another book to
allow me to focus on Java application development details. The compromises
weren’t easy, but I hope you can appreciate the result.

9Bitter hygien
e

This chapter covers
� Coding conventions for Java
� A simple coding standard used by

a startup company
� A table containing useful coding conventions
251

252
I am in Colorado, looking at a quarter-mile-long, class V+ rapid called Pine
Creek. I prefer the steeper, tighter runs of the East to these powerful western rap-
ids, but here I am. Neither my friends nor I have run anything so dangerous,
technical, and demanding. We all decide to portage the first and most difficult
part of the rapid and maybe the rest as well. The crucial move is an S-turn
around some massive turbulence called the Pine Creek Hole. The Hole regularly
traps kayaks and even larger craft with dire consequences for some. The 30-foot
hydraulic can be fatal. We ultimately decide to put in just below the Hole.

After staring at the hydraulic from 50 feet up, we decide that the rest of the
rapid’s features look relatively placid. As we shoulder the boats down to river level,
we find that the mind-numbing size of Pine Creek Hole has biased our perception
of the rest of the rapid. Before our eyes, the Class IV rapid that we expect slowly
morphs into an expert-level Class V-. The 5-foot wave trains we expected are twice
as high. The numerous little 3-foot drops have grown to 8 feet.

Feeling confident in my ability and the ample space to avoid dangerous obsta-
cles, I get into my boat and start my run. As I approach the fourth massive wave
in the initial train, I flip. I’ve never had to execute a roll in such violent condi-
tions before, but with the power and speed of the river this time, swimming could
be disastrous. Submerged under a large wave I hold my breath for what seems to
be forever, waiting for my chance to roll.

9.1 Why study programming hygiene?

Why should we even consider something as banal as coding standards in Bitter
Java? Shouldn’t we leave this tedious subject to be covered in coding guide-
lines buried on a server or team leader’s desk? In the past, I’d have been the
last person to write a chapter about coding style guidelines, but my recent
programming experiences have convinced me of their value. In many cases,
bad Java can be traced directly to bad form. Good programming hygiene
keeps intentions clear, makes it easier to share a code base, and enables effi-
cient refactoring.

 In this chapter, we’ll review some of the coding conventions we’ve dis-
cussed so far in Bitter Java. We’ll also examine common hygiene-related mis-
steps, and we’ll provide a helpful set of conventions. Finally, we’ll present a
real-world style guide and a summary of coding standards.

9.1.1 Extreme programming requires good hygiene
My experience at allmystuff with extreme programming (XP) convinced me of
the value of good coding standards. XP has a small number of rules that make

Why study programming hygiene? 253
possible powerful improvements in programming cycle time, deliverable qual-
ity, and project success. Many of these rules, outlined in table 9.1, demand
that you pay close attention to programming hygiene. For example, in XP the
entire code base is shared, and programmers have to follow strict conventions
so that anyone on the team can quickly read any line of code. Another rule is
that programming is done in pairs, which means teammates must agree on
such mundane issues as brace, tab, and comment treatments. Frequent refac-
toring mandates consistent style so that code fragments can move throughout
the code base freely. Readability is shattered if programmers ignore these com-
mon conventions.

9.1.2 Coding standards protect against antipatterns
While coding standards protect against antipatterns, some antipatterns cannot
survive good hygiene. Take the Lapsed Listener and Leak Collection antipat-
terns from chapter 6 and the Split Cleaner antipattern from chapter 7. Adher-
ing to two simple coding standards helps diffuse each of these antipatterns:

� Ensure that every added resource or registration has a corresponding
remove.

Table 9.1 Extreme programming (XP) requires good programming hygiene to work effectively.

XP Rule XP Rule Value XP Hygiene Requirements

Program to com-
mon standards.

Standards are required for refactor-
ing as a team. See the next row.

Enough said.

Refactor merci-
lessly.

The cost of maintaining and fixing
poorly designed code dwarfs the
cost of refactoring.

Refactoring often involves moving
code fragments throughout the code
base. For the style to be uniform, all
must observe common standards.

Share the entire
code base.

The correct solutions can be devel-
oped without regard to ownership or
“turf wars.”

If many different teams can touch a
class, only common standards can
keep the style uniform.

Move people
around.

Programmers have better focus and
motivation. Losing one person will
not doom a project.

Changing responsibilities also
changes the set of classes that a
team will affect.

Program in pairs. Tunnel vision is avoided, and bugs
are caught early.

Both programmers must agree on
standards.

Value simplicity. Simple is usually sufficient, and is
much easier. Cycle times are much
shorter.

Many coding conventions promote
simplicity.

254 CHAPTER 9

Bitter hygiene
� Place resource requests and releases in close proximity, and in the same
method if possible. Also place collection adds and removes in close
proximity. Many of the antipatterns are refactored much more easily
when we also apply common coding standards.

We can often take things a step further by using coding standards as a weapon
against antipatterns. Figure 9.1 shows a process we can apply when fighting
antipatterns. We start with isolated problems. In isolation, a bug or poor
design does not rise to the level of an antipattern. When we have enough
occurrences to cause concern, we document an antipattern. We refactor the
generic antipattern, and then publish a guide that demonstrates how to refac-
tor existing occurrences. Programmers use the antipattern and refactoring
guide to identify and fix existing occurrences. We then put protective mea-
sures in place to prevent the problems from occurring. This is where coding
standards can help. Coding standards range from formatting and style to
usage guidelines or even light structural guidelines. In many cases, these
guidelines can gently steer us away from antipatterns. They are also a conve-
nient collection point for these types of remedies.

Protective Barrier

Isolated
problem

Isolated
problem

Isolated
problem

Isolated
problem

Antipattern

Improved
solution

Refactoring
guide

Protective
barrier

Figure 9.1 Effective use of antipatterns requires a process. In this one, when isolated incidents
occur with sufficient frequency, they are used to document a generic antipattern. The refactored
antipattern is used to build a guide for repairing existing problems, and to stimulate protective
measures.

Mini-antipatterns: Unreadable code 255
 Now that we’ve reviewed the roles that coding hygiene can play in process
and antipatterns, we’ll dive into some specific examples. The next portion of
this chapter will discuss antipatterns related to hygiene. These are actually
groupings of many smaller mini-antipatterns, followed by a set of standards
that can defeat them.

9.2 Mini-antipatterns: Unreadable code

In this section, we’ll make a case for a class of standards that improve the read-
ability of code. The benefit seems nebulous, but most experienced program-
mers understand the need. Mismatched quotes, comments, or braces have
bitten almost all programmers at one time or another. Almost anyone who has
done significant maintenance has been forced to deal with inconsistent style,
poor commenting, or comments that do not match the code. True, readability
is subjective, but the need for common, consistent standards is not.

9.2.1 Names matter
Good style communicates. If an application is designed with good object and
method names, a story emerges that tells us exactly what is happening. Con-
sider the fragments shown in listing 9.1.

This program illustrates the impact of good naming and bad naming. The first example, with-
out comments, reads like a story. The second … doesn't.

// good B Code with good naming communicates.

PurchaseOrder.setCustomer(shoppingCart.getCustomer());
purchaseOrder.setItems(shoppingCart.getItems());
purchaseOrder.totalCost = purchaseOrder.addLineItems()+
 purchaseOrder.getTax()+
 purchaseOrder.getShippingCost();
purchaseOrder.finalizePurchase();

// bad C Code with bad naming is hard to read.

po.setOther(sc.getOther());
po.setVector(sc.getVector(contents));
po.tc = po.addAll()+po.tax()+po.ship();

po.doIt();

Listing 9.1 Good and bad naming

256 CHAPTER 9

Bitter hygiene
B We can see exactly what’s going on. It reads like a story. We first initialize the pur-
chase order with the customer and items from the shopping cart. We then
compute the total cost, including a sum of the line items plus shipping and tax,
and we execute the transaction.

C If we don’t have any other clues, we have no idea what this code fragment does.
Abbreviations may save typing, but they don’t clearly communicate the intentions
of the programmer.

We have three ways to communicate with names: meaning, capitalization, and
structure.

9.2.2 Standards for names
In all cases, choosing names requires common sense. Syntactically similar
names can lead to bugs. For example, theCustomer looks too much like the-
Consumer. pass can be a noun or a verb. Either of these conditions can lead to
bugs, or at least reduce readability. We can be defensive and specific.

The meaning of names
The coding standard that will have the greatest impact is a naming guideline
for variable names. Sometimes, teams of strong programmers leave off naming
guidelines because the need is simply understood. Apart from code structure,
naming provides the best clues for the purpose of any code fragment.
Table 9.2 offers some common suggestions for naming.

Capitalization
Capitalization is a tool that can communicate clarity and structure. We use
capitalization for two reasons:

� Capitalization for word structure. Java uses a convention called camel
case (a variable would look like CamelCase) to communicate word
structure. With camel case, the first letter of every new word, after the
first, is capitalized. The rest are lowercase. For acronyms or abbrevia-
tions, we can capitalize the first letter or the whole thing as long as we
are consistent:

processSqlStatement()
firstName
HttpServletRequest

� Capitalization for program structure. Certain identifiers will use differ-
ent capitalization to denote program structure. Class names are capital-
ized, while attributes, automatic variables, parameter names, and

Mini-antipatterns: Unreadable code 257
method names are not. Constants are capitalized, with words separated
by underscores. Packages are all lowercase:

Customer // class
customerFirstName // attribute
java.lang // package
CUSTOMER COLUMN // constant

Programmers don’t always apply capitalization rules consistently. Acronyms
and abbreviations are a particular source of confusion. For capitalization of
abbreviations, which aren’t the same as acronyms, the standard libraries are
slightly inconsistent but generally go with full capitalization. Here are some
examples:

URL
IOException
SQLException
SAXParser
HTMLEditorKit

Table 9.2 Here are some coding conventions for naming. We’ve included an example of the
intended usage, with the entities observing the rule in bold.

Naming rule Usage

For fields and attributes, use descriptive nouns with
restrictive adjectives where appropriate.

StateTax
shippingAddress

Use a descriptive test prefix for Boolean attributes,
like is, contains or has.

if(anItem.isTaxable) {
 // do something
}

if (collection.hasTaxableItems) {
 // do something
}

Name Boolean accessors with a descriptive test, like
is, has, or contains. get and set are not
required.

person.isPersistent()
while(table.hasMoreRows()) {
 // do something
}

Make collection names plural for clarification. shoppingCart.items

For methods, use descriptive verbs with restrictive
nouns indicating targets where appropriate.

command.execute()
computeInterest()

Name accessors with get and set, followed by the
field names.

getCustomer()
setCustomerName()

Exception: Single letters are acceptable for loop
counters, for the economy of space, as long as read-
ability remains clear.

for (i=0; i<10, i++) {
 // do something
}

258 CHAPTER 9

Bitter hygiene
Even this rule is not consistently applied. For example, HttpURLConnection
combines the two styles. Either style is probably acceptable, as long as you
pick a style and stick with it.

Hungarian notation and scope
In the Java community, the debate over the use of Hungarian notation has
been waged for many years. This convention is commonly employed in such
languages as C++ to provide additional information about a variable. For
example, sCity denotes a variable of a type string named city. For the most
part, Java programmers have avoided Hungarian notation, preferring a sim-
pler style that tends to improve the English readability.

 Using Hungarian notation might make sense when you need to clearly
mark the differences between full class attributes and common automatic vari-
ables. Consider listing 9.2 (from Tapash Majumder on the http://www.bitter-
java.com message boards).

The use of an attribute name and an automatic variable name within the same method is a
common Java bug pattern. In this case, if users intend to have the value variable updated, they
will be surprised.
public class SomeClass

{
//
protected int value;

public int getValue(){
 return value;
}

public void setValue(int value) {
 this.value = value;
}

// lots of distracting methods here

public void readValueFromDatabase() {
 int value = 0;

// lots of distracting code here

 value = getFromTable(tableName);

}

We have an automatic variable and an attribute with the same name. We can
easily confuse the two, leading to errors. Four common conventions can come
into play here, and all have been used with good success.

Listing 9.2 A common Java bug pattern

B This “value” is
an attribute.

C This “value” is a
local variable.

D Which “value”
 gets used?

Mini-antipatterns: Unreadable code 259
1 Use a leading or trailing underscore (_) when dealing with attributes.
In this case, at the value in B in the previous example, we’d have int
_value. We would also place the underscore at D. Doing so avoids all
collisions at the cost of readability.

2 Precede all attributes with this. For that solution, at D, we’d have
this.value = getFromTable(tableName), yielding the desired result.
This approach has the advantage of reducing the number of collisions
with little effect on readability.

3 Limit the access of all member attributes to the accessors. In this case,
at D we’d have setValue(getFromTable(tableName)) with no con-
flict. This has the advantage of hiding the implementation of all
attributes, at the cost of real estate.

4 Finally, we could prohibit conflicting names. This method results in
code with better readability, but it is error prone.

In order of preference, I like options 2, 1, 3, and 4, though I have seen each
employed successfully. Table 9.3 lists the coding conventions for preventing
collisions.

 The best policy for any standard is flexibility. For attribute scope, we might
decide to choose option 4 and revise the policy if bugs created by the collision

Table 9.3 Here are coding conventions for preventing collisions between attribute names and
local variables. These types of errors are usually obscure and can be difficult to trace. They are
preventable, at a cost.

Scope Rule Example (Declare, Use) Pros Cons

Leading or trailing _
for all attributes.

Public int _value;
_value = 0;

Prevents
collisions.

Hinders readability with
clutter.

Precede all attribute
references with
this.

// no change in declaration
this.value = 0

Prevents
collisions.

Hinders readability by
taking up space.

Access attributes
solely through acces-
sors.

// no change in declaration
setValue(0)

Prevents
collisions.
Isolates
attributes.

Hinders readability by
taking up space.

Disallow attribute
names in the method
body.

// no change in declaration
// no change in use

Most
readable
alternative.

Allows collisions and
human error.

260 CHAPTER 9

Bitter hygiene
of attributes with local variables plague us. Or we might decide to take a more
extreme stance and revise it based on program readability.

Reserved names
Java does allow us to reuse package and class names from the standard Java
packages and objects, although Sun strongly discourages this practice. It’s easy
to forget about reserved names. For instance, when we were building the EJB
examples for this book, we originally chose the names of common bulletin
board objects using the language common to that domain: posts, boards, and
threads. Of course, a thread is also a Java construct. If we were to import both
bbs.thread and java.lang.*, it wouldn’t be clear which thread we would
instantiate with this:

Thread = new Thread();

9.2.3 Braces and indentation
Few coding standards prompt as much controversy as the treatment of braces
and indentation. This is probably another area where it is best to pick a stan-
dard and stick with it, but some rules should be established more strongly
than others. Consider the following code fragment. Assume some of our pre-
mium customers are not charged for shipping.

if (purchaseOrder.isChargedForShipping())
 totalCost = totalCost+purchaseOrder.addShipping();

Now, let’s assume that we want to add shipping surcharges for items under
$10. We simply add the condition like this:

if (purchaseOrder.isChargedForShipping())
 totalCost = totalCost+purchaseOrder.addShipping();
 if (totalCost < 10)
 totalCost = totalCost+SMALL_ORDER_SUR_CHARGE;

We have just accidentally charged our premium customers. For this reason, it’s
best to bracket all if, while, and for statements with {} whether or not more
than one line of code is used:

if (purchaseOrder.isChargedForShipping()) {
 totalCost = totalCost+purchaseOrder.addShipping();
}

You can avoid this error, and others like it, by using a good editor that auto-
indents. We cannot know which editor or environment future owners of this
code are likely to prefer, so it’s best to be safe.

Mini-antipatterns: Unreadable code 261
Which brace style is best?
Two major brace styles are commonly used. This one

if (condition) {
 // do something
}

values screen real estate more than clarity. This one

if (condition)
{
 // do something
}

values clarity over real estate. If we choose to adopt a standard that mandates
the use of braces after conditionals, then the first style is usually sufficient,
because it lets us have more lines of code on the screen at any given time. The
most important thing is to pick a standard and stick with it.

 Another consideration is indentation clues. It’s important to be able to tell
at a glance which braces belong together. Almost all coding standards use
indentation as one clue. Commenting can be an additional clue, and may or
may not be supported by a standard:

if(i>10){
 while(j==4) {
 // do something
 } // end while
} // end if

Because a good code editor will find matching parentheses, some programmers
might think commenting is unnecessary or even distracting. In any case, code
that has too many consecutive closes to be clear may benefit from refactoring.

9.2.4 Comments
Comments are meant to improve the readability of code for humans. The
examples in this book are far from sterling examples for commenting, because
the goals of documenting code for a book are far different from the goals of
documenting for a production application. In a book, page space is at a pre-
mium, and we have other means of describing and annotating. A good rule of
thumb is that comments should describe why something is being done, rather
than what is being done. For production applications, we can use comments
to document bugs and obscurities. Comments can clarify and mark.

 Java supports three different types of commenting. Block, or C-style
comments, are bracketed with /* and */ characters. Documentation com-
ments, usually used at the top of type definitions and member functions, are

262 CHAPTER 9

Bitter hygiene
bracketed with /** and */. End-of-line comments are preceded with // and
extend to the end of the line. Table 9.4, and the program that follows,
describes the comment classes with examples.

/**
 * CommentClass: This class shows the three types of comments.
 * @Author: Bruce A. Tate
 *
 */

public class CommentClass {
 int someVariable; // This variable serves no purpose.
/*
 imp anotherVariable; // Why won’t this work?
*/
}

Documentation comments are processed by the JavaDoc utility, which pro-
duces documentation from tags in the comments. We use end-of-line com-
ments to document variables and individual lines of programs. We use block
style comments to block out segments of code from execution for testing pur-
poses, or to provide algorithm type comments in the middle of a member
function.

 Block style comments can also be bug prone, and they can interfere with
the placement of block comments for debugging purposes. They should not
be used mid-line or for smaller sections. In my opinion, the unclosed com-
ment is a particularly insidious bug that can be very difficult to track, espe-
cially in distributed code. This is another case where a good editor is worth its
weight in gold. Bugs like this one, and the related bug of matching closing

Table 9.4 Java has three comment styles.

Comment Style Name Example of Comment Style Usage of Comment Style

Documentation comments /**
 * ClassName
 * @author: Bruce Tate
 */

Use for comments that are use-
ful in code, and in automati-
cally generated documentation
(JavaDoc).

Block, or C-style comments /* step 1
 * step 2
 * step 3
 */

Use to block a piece of code
from executing, or to document
a long description or algorithm.

End-of-line, or single-line
comments

i = 1; // a comment Use to drop in annotations at
the end of a line, or to drop in
short comments between lines.

Mini-antipatterns: Unreadable code 263
quotes, are easy to spot with an editor that distinguishes comments, strings,
identifiers, and keywords with visual clues such as color, font, and style.

 After you choose a comment style, you have to decide how much to com-
ment. This topic is also debated in the Java community, and no clear answers
have emerged. Some purists argue that comments provide additional bug-
prone lines of code that are hard to keep in sync through maintenance. Others
argue for documenting everything profusely. Some in the middle ground opt
for commenting only type definitions and methods. I tend to fall between the
most extreme camps. As I stated earlier, we should describe why something is
done, not what is being done. Commenting should always add something,
and never take anything away. If a line of code is obvious, it needs no com-
ment. If intentions are not clear, the best course is to make them clear. The
next best alternative is to document the decision. For various reasons, includ-
ing conflicting priorities and unit testing, bugs may be discovered but not
fixed. These should always be documented.

 In a self-published coding standard document, Scott Ambler offers the fol-
lowing example. This line of code has an unclear initialization:

int index = -1;

A comment makes it clear:

int index = -1; // -1 serves as flag meaning the index isn't valid

A constant also makes it clear, and makes the comment unnecessary:

static final int INVALID= -1;
int index = INVALID;

This example brings us to a critical documentation guideline: Some things
should not be commented. To keep comments with the described code in sync
and up to date takes effort. Comments are always used to assist programmers,
not programs. If a comment doesn’t clarify or provides only redundant infor-
mation, remove it. In all cases, clear, concise code that does not need com-
ments is the best option.

History
In many cases, it helps to maintain a change history within a program. Some
change-control systems automatically append a change history as files are
checked in and out. In any case, a robust change history is an important tool
that can provide enormous assistance with these refactoring activities:

� Removal of dead code. A change history can provide information about
the existence of dead code, called lava flow in the AntiPatterns book.

264 CHAPTER 9

Bitter hygiene
� Simplification. Over time, simple methods can become needlessly com-
plex. Rewriting such methods saves maintenance time and effort.
Change histories can give clues to the complexities.

� Consolidation, decomposition. Sometimes, consolidation or decomposi-
tion can improve performance or improve readability. The history
might reveal why two classes were separated in the first place, and help
us decide whether to consolidate.

I prefer to keep as much of the change history as possible in the software
change control system. This approach helps keep code uncluttered and as con-
cise as possible. Many larger programming groups like to keep it in line. Either
approach works, as long as it is diligently and uniformly applied.

Documentation
Many times, documentation in and out of the code shares a common purpose.
With the development of frameworks and APIs, public methods can be
explained once for both purposes. Then, JavaDoc can parse the comments in
the code and produce amazingly robust documentation. The obvious benefit
is a single point of maintenance. A more subtle benefit is that it’s easier to
keep an API document up to date if it’s maintained with the code.

 Still, some drawbacks should make us consider this approach carefully. For
example, the audience reading the code and the programmers developing the
application might have significantly different perspectives and needs. Realisti-
cally, the decision depends on many factors, including, but not limited to, the
audience, the application’s shelf life, and the stability of the code base.

9.2.5 Tabs vs. spaces
A detail like tabs versus spaces might seem trivial, but with the increase in team
programming and publishing of code, this issue becomes much more impor-
tant. Different editors will handle tabs differently. Some editors can set inden-
tation levels and make it extremely efficient to indent and move code with the
Tab key. Others are not so rich. In addition, tabs simply behave differently
than spaces, and they can catch the unsuspecting programmer off guard.
These tips can make it easier for teams to work together, where different edi-
tors are permitted:

� Pick a standard, and stick with it. Consistency is the most important
rule.

� In absence of other considerations, prefer spaces to tabs. Spaces are inter-
preted the same universally. The same is not true of tabs.

Mini-antipatterns: Unreadable code 265
� If the editors in an environment are mixed, save code with a no-tabs
option. Most editors can save code with or without tabs. Some even con-
vert tabs to spaces in real time, as they are typed.

These small sacrifices can make it much easier for teams to interact. They also
make it easier to include code in technical documentation or published papers,
should the need arise.

9.2.6 Editors
Few subjects can invoke passion in a programmer like the choice of editor. I
mention them here not to state a preference, but to point out the role of the
editor in good programming hygiene and readability. I’ve used everything
from Emacs to Notepad. You can easily enforce many of the standards
described in this chapter by using a good editor. If you don’t already have a
favorite, here are some factors to consider:

� Some development environments have built-in editors. In some cases,
having a built-in editor is not as restrictive as it might otherwise seem,
because the environment helps to manage such tasks as search and
replace, class browsing, and hotlinking to related methods or classes.

� Better editors can enforce standards such as brace placement and inden-
tation, usually with configuration files or parameters.

� An editor should give clues about the structure of a program. Colors,
fonts, or other visual clues should make clear any comments, strings,
variables, or keywords. An editor should also help identify matching
braces or parentheses.

� The handling of tabs and spaces is important.
� The editor should be well integrated with the development environ-

ment. Useful features are the linking of a compiler error report with a
line of code, the launching of compilation from within the environ-
ment, and syntax checking.

My choice of development environment, VisualAge for Java, doesn’t have a
pluggable editor, and many see that as a critical flaw. The editor in VisualAge
is also not nearly as robust or configurable as the best programming editors.
In future releases, it is my hope that this and other development environments
will open up as interfaces between key components of the environment are
exposed and formalized.

266 CHAPTER 9

Bitter hygiene
9.3 Mini-antipatterns: Organization and visibility

In the previous section, we examined commenting conventions that help us
describe structure. In this section, we’ll address standards that alternately
ensure privacy and public utility as required. To understand our motivation,
consider the following treatment of an instance variable:

public SomeClass {

 public int age;

 public SomeClass() {
 // code to correctly initialize age
 }
}

public AnotherClass {

 public void aMethod() {
 SomeClass anInstance = new SomeClass();
 Person person = new Person();

 person.age = anInstance.age;
 }
}

Two groups of programmers will cringe at this example. Purists will see that
we are directly accessing our instance variable. Database programmers will see
that we have implemented age as an integer attribute, meaning that for consis-
tency, we will have to update the database yearly on the person’s birthday.
We’d probably want to change SomeClass to calculate the age based on the
birthday, but that would make all users of SomeClass.age change. Instead, we
should implement age with get and set access methods:

public SomeClass {

 private int age;

 public int getAge() {
 return age;
 }

 public SomeClass() {
 // code to correctly initialize age
 }
}

In this case, we do not need a set, because the value is initialized in the con-
structor and won’t change. The implementation for age is then hidden. Our
clients will access solely through the accessors, and we protect the instance

Mini-antipatterns: Organization and visibility 267
variable with the private modifier. Then, we can safely refactor, as in
listing 9.3.

We calculate getAge based on the birthdate, saving us from managing ever-changing ages.

private Date birthDate;

public Date getBirthDate() {
 return birthDate;
}

public void setBirthDate(Date aBirthDate) {
 this.birthDate = aBirthDate;
}

public int getAge(){

 Date today = new Date();
 int thisYear = today.getYear();
 int birthYear = this.birthDate.getYear();
 int age = thisYear - birthYear;

 if (! hadBirthdayThisYear()) {
 age = age - 1;
 }

 return age;
}

private boolean hadBirthdayThisYear() {

 Date today = new Date();
 int thisMonth = today.getMonth();
 int birthMonth = this.birthdate.getMonth();
 int thisDay = today.getDate();
 int birthDayOfMonth = this.birthdate.getDate();
 if (birthMonth < thisMonth) {
 return true;
 } else if (birthMonth > thisMonth) {
 return false;
 }else if (birthDayOfMonth <= thisDay) {
 return true;
 }else {
return false;
 }

}

Listing 9.3 This is a better implementation for getAge

o Attributes are private
and wrapped.

o The implementation of
getAge is hidden.

o Intermediate elements
are private.

268 CHAPTER 9

Bitter hygiene
We are demonstrating the basic object-oriented principles of implementation
hiding and visibility. Wrapping attributes with accessors is but one of many
examples of information hiding. Let’s now consider visibility of member func-
tions and attributes. Java has three expressed levels of visibility and one
implied level, as shown in table 9.5.

Figure 9.2 shows a conceptual view of visibility. Each widening bracket shows
expanding visibility, going from private, to protected, to public. Package
(unspecified) visibility is orthogonal, and helps to define visibility on another
axis according to the packaging of the classes, rather than the inheritance rela-
tionships specified. Visibility modifiers do not make Java’s runtime behavior
more robust. Instead, through them, we can enforce policies that will help to
ensure loosely coupled interfaces, effective implementation hiding, and good
object-oriented principles.

Table 9.5 Here are the visibilities supported by Java. Visibility is used to allow or deny access to
the features of a class. In this way, we can expose useful interfaces for public use, or restrict
intermediate results or useful but private features for security, safety, or design principle.

Keyword Visibility Usage

private Private methods and attributes
restrict visibility to the defining
class.

Attributes and methods that compute inter-
mediate results important only to another cal-
culation. Methods that should be restricted to
the defining class for safety or security.

protected Protected methods and
attributes restrict visibility to the
defining class plus subclasses.

Attributes and methods that may be required
for future subclasses. In general, pro-
tected should be preferred to private.
Inheritance chains may need access to many
aspects of the implementation, in ways that
are not always easy to predict.

public Public methods do not restrict
visibility.

Only methods (not attributes) should be pub-
lic. Methods that must be exposed to fulfill
the contract for the interface are declared
with public visibility.

Unspecified Visibility is restricted to the
package.

This visibility can be used like C++ friends.
Coordinated frameworks within a single pack-
age can use this visibility. For example, a col-
lection class utility set could use this visibility
to ensure that iterators could see other col-
lection types.

Mini-antipatterns: Structure 269
9.4 Mini-antipatterns: Structure

Bad object-oriented code can come in any number of shapes and sizes. Novice
programmers make nearly universal mistakes as they try to mold the design
process to what they know. Language is a surprisingly effective tool to help
with the transition. Good object-oriented design is tough to dictate through
coding conventions, but enforcing some guidelines can improve code simplic-
ity, readability, and reuse. Some of the principles that can be enforced are ele-
mentary design, interface usage, and method complexity. In this section, we’ll
discuss individual conventions for Java interfaces, packages, elementary code
structure, and basic design principles.

Package P

Private

Protected

Package

Public

Package Q

Class A
Package P

Class B
Package P

Class C
Package Q

Child of A
Package Q

Child of A
Package P

Figure 9.2 Java visibilities allow us to restrict access to attributes and methods. From strictest
to loosest, we can restrict access to a class (private), a class and its descendents (protected),
a package (unspecified), or all classes (public).

270 CHAPTER 9

Bitter hygiene
9.4.1 Basic object-oriented philosophy
Though standards cannot dictate good design, they can eliminate some bad
designs. By following these basic principles, which may be targets for some
coding standards, we hope to develop more straightforward, flexible designs:

� In general, classes should be things. It sounds elementary, but a surprising
number of object-oriented designs try to encapsulate process. This type
of design makes it easy to accumulate functionality into one, amorphous
blob that does all of the work, instead of factoring the process across a
number of objects. Two words that are commonly used to short-circuit
this rule are manager and process. If a program has classes such as
RepaintingProcess, InventoryProcessor, or PurchaseProcessManager,
then usually it is time to refactor.

� Methods should be single actions. Methods should be actions that do one
thing, and they should be descriptively named.

� Methods should be short and easy to understand. Different coding stan-
dards have different metrics for simplicity. Some that I like are:
�The method body, minus cleanup, should be able to fit on a single

screen. (I once met a lazy but innovative programmer who set his
font size incredibly small to pass code reviews.)

�A method should be understandable in 30 seconds.
�A method should be less than a specified number of lines or words.

� You should choose the simplest approach that will work. This is an extreme
programming technique that values readability and cycle time over a
couple of bytes of memory and a few cycles of speed.

We are shooting for universal simplicity and clarity, and it is an elusive goal.
The identifiers that we choose to describe our programs will have a surprising
impact on the way that we think about our programs, all the way through the
life cycle. Simple and descriptive names can help the cause for short, simple
method implementations. Short and simple methods can make a dramatic dif-
ference in maintenance costs over time.

9.4.2 Low-level design considerations
We’ve discussed basic, high-level details, but we also need to examine conven-
tions at a decidedly lower level. The application of these low-level concepts has
some long-term implications that aren’t always clear at implementation time.
Let’s look at some rules.

Mini-antipatterns: Structure 271
Interfaces vs. abstract classes
An interface is used to enforce a type contract between the caller and an object.
An abstract class is used to provide a common parent, for behavior or interface,
for a set of child classes. In general, interfaces provide a more flexible, general,
and accurate mechanism for enforcing a type contract, whereas abstract classes
provide a better mechanism for sharing partial implementation. Interfaces pro-
vide equivalent functionality to C++ multiple inheritance or Smalltalk mix-ins
and must be used if you want to capture default implementations.

 Here are some general guidelines to follow:
� Interfaces should be used whenever an implementation might change.

Abstract classes can lock in an implementation.
� Interfaces should be used to describe add-on features (Printable, Seri-

alizeable, Cloneable).
� Interfaces should be used when no default implementation is specified.
� Abstract classes should be used when partial implementations are specified.
� Interfaces can sometimes be combined with an abstract class providing a

fixed interface that can be used in a mix-in with a partial implementa-
tion. This combination can give you the convenience of a partial imple-
mentation with the full flexibility of an interface.

In the spirit of our continued refactoring of the bulletin board application, our
command architecture can ideally be captured as a reusable interface. The last
examples in chapter 6 can easily be modified to use a command interface. All
of the command objects already use a common interface; we need only
enforce them. To do so, we first define the command interface. Then, we can
enforce this interface across the classes that use it with the implements key-
word, as in listing 9.4.

This program refactors our command objects to use interfaces. Then, our designs will be reus-
able, and the consistency will be enforced.
public interface Command { o Interface definition
 public void initialize();
 public void execute();
}

public class AddPostCommand implements Command {
 // code remains the same

}

Listing 9.4 Refactoring command objects

o Enforcement of
interface definition

272 CHAPTER 9

Bitter hygiene
The interface gives us additional punch in two ways. We maintain consistency
across our implementations of common ideas, and we enforce the interfaces so
that we can reuse our designs. Few novice programmers appreciate the power
or simplicity of interfaces.

Consider the Cloneable interface
If our object might need to be cloned, then we should implement the Clone-
able interface. This interface is used by several design patterns. We should
often take the safer road by implementing from scratch rather than picking up
the default behavior from Object.

Equality and hash codes
If we override Object.equals, then we should override Object.hashCodes,
and vice versa. Equality is simply a stronger test than the hash code, so
requirements for one but not the other are extremely rare.

The final modifier
The choice to use the final modifier is, well, final. Its use prohibits reuse of a
class, attribute, or method, so take special care in using it. Conventions you
might impose for final include:

� Use final only for the declaration of constants.
� Alternatively, allow guarded use of final, but only in cases where the

superclass defines the interface of all of the methods (disregarding
implementation-specific methods).

9.4.3 Exceptions
The Java language forces us to consider exceptions that might occur in our
programs, but it cannot force us to handle exceptions well. In Bitter Java, the
exception management is intentionally sparse. We do this to keep the examples
short and readable, but at the cost of failing to communicate good exception-
management practices. Here are a few rules of thumb:

� Exceptions should provide logical, predictable behavior. For example, a
mistyped file name should not cause a dramatic stack trace and exit,
because this behavior is neither logical nor predictable.

� Exceptions should be handled at a granular level. It is almost always
poor practice to handle a raw exception, since logical behavior cannot
be determined at this level.

Mini-antipatterns: Leaks and performance 273
� It is also usually poor practice to throw a raw exception (though we do
so in this book to keep things as brief as possible).

The most complete and well-behaving Java code has predictable, logical excep-
tion management. Users and clients of an interface will appreciate the effort.

9.5 Mini-antipatterns: Leaks and performance

This section will depart briefly from design-oriented standards and will visit
some of the rules discussed in chapters 6, 7, and 8. They are standards that
help to prevent some of the antipatterns in this book. The nature of a project’s
coding conventions guidelines will determine whether this type of information
is appropriate.

In general

� Optimize later. Optimization should be done at the tail end of the
development cycle, with one caveat. If it is absolutely crystal clear that
one area will be a bottleneck, then it should be attacked first and fully
optimized, to allow recovery time. If you need to make code obscure
for the sake of optimization, document the approach.

Leaks and cleanup

� Pair code that handles allocation and freeing of resources as closely
together as possible, preferably in the same method.

� With collections, objects that are added should be removed as well.
Add/remove pairs should remain in close proximity. The primary excep-
tion is a collection that uses weak or soft reference objects, or a collec-
tion that implements a fixed set that will remain fixed or that will grow
throughout the life cycle of the collection. We need to document such
cases clearly.

Looping and round-tripping

� EJBs should be accessed through a common command layer or facade so
that collecting all of the attributes for a bean will not create a round-
tripping situation.

� Keep redundant computations outside of loops and loop tests. For
example, do not use this:

for (int i = 0; i < someCollection.size(); i++)

274 CHAPTER 9

Bitter hygiene
� When building strings within a tight loop, use string buffers instead of
string concatenation to build the strings.

Synchronization

� For synchronization, pick a strategy and stick with it.
� Synchronization carries overhead. Use it where it is necessary, but never

add synchronized to all of the methods just to be safe. Some standards
prefer synchronization on a method level where possible. Others recom-
mend locking specific objects for greater control.

� Know how Java handles synchronization. Two misconceptions are com-
mon. The first is that a synchronized section protects a block of code. It
doesn’t; it only protects code for the threads executing in one instance
since all locks are on the object level. The second misconception is that
atomic functions do not need protection. In truth, only very small byte
movements are considered atomic.

Blocking

� Where possible, try to avoid blocking. For files, use the nonblocking IO
package java.nio (beginning in Java 1.4).

� When a response is not required immediately, use a queue instead of a
transaction or RPC.

� Wherever possible, spin off threads to handle tasks that are likely to
block.

� Some applications require shared access for readers and exclusive access
for writers. In these circumstances, use read/write locks (see the antipat-
tern description in “Synchronized read/write bottleneck,” in chapter 5)
to limit the amount of blocking.

9.6 Conventions for testing

Still underwater on the Pine Creek rapid, I go through a mental checklist to
make sure that my paddle, head, knuckles, and back are in the correct position.
After 8 seconds that feel like an eternity, I sense my life jacket’s buoyancy bringing
my right side near the surface, giving me an opening to roll. I sweep out my pad-
dle, snap my hips, brace with the paddle, and shoot upright. Feeling relieved, I
position my kayak and resume the run.

I mention this story because we now go from a valued and respected topic to
one that is … not. I hate practicing rolls and getting water up my nose, but

Conventions for testing 275
when I was upside-down in the middle of a Class V- rapid in Colorado, I
needed to know that my roll would work. Two things helped me hit that roll.
The first was repeated use, or testing; the second was organization. Though it
would be silly to test my roll in all different contexts, I did spend time perfect-
ing my roll in turbulent water. I also spent time organizing my strategy. I knew
to hold my paddle with the right wrist, rolled forward, next to my left knee. I
knew to keep my head to my chest and my nose to the deck for protection.
When the time came, it worked. These standards and tips can help us do the
same thing for software. Some of the tips come from XP practices. Others
come from coding conventions that I’ve used throughout my career.

� Code unit tests first. XP recognizes the value of embracing testing. Cod-
ing the tests helps us to consider exceptions when we design our classes.
It helps us design all the way, code all the way, and test all the way. With
a more accurate assessment of what we’re building, we can even pro-
duce better schedules.

� Include a main for unit tests. Using a main can help when testing some
stand-alone classes with the command line, to make sure that they fit
specifications.

� Organize test cases. Some organizations will want to build test cases into
the classes themselves, and some will want externally driven classes. Scaf-
fold as necessary.

� Append built-in test methods with a keyword like test. It is important to
be able to identify test cases versus production code for many reasons,
and this practice helps us identify the tests quickly.

A combination of good design, effective test organization, and discipline will
ensure that our classes perform when we need them. A first-rate unit testing
application, such as JUnit or HTTPUnit, will make some of these steps unnec-
essary and will enforce others. Testing methodologies go well beyond the
scope of coding conventions, or even this book. Many books are available that
can supplement your knowledge on the subject, including:

� Testing Object-Oriented Systems: Models, Patterns, and Tools (The Addi-
son-Wesley Object Technology Series), by Robert V. Binder

� Object-Oriented Software Testing: A Hierarchical Approach, by Shel Sie-
gel and Robert J. Muller

276 CHAPTER 9

Bitter hygiene
9.7 Building a good style guide

Now that we’ve seen a good set of conventions, it’s time to discuss ways to
put them together into a style guide. A style guide exists to serve the pro-
gramming community and the customer. It is intended to assist with the
production of quality code. To accomplish that objective, it must be read and
embraced by the entire organization. I believe in very short style guides for
that reason. Here are some tips to consider:

� Keep style guides short.
� Everyone who touches code should read the style guide.
� Maintain the style guide like an application: fix it when it is broken.
� Use it and embrace it, but do not be overly rigid. Understand when

exceptions apply.
� Make it appropriate to the toolsets and skill levels on the team.

Did I mention short? Nothing is more frustrating than a code cop screaming
about section 145.265.23 of a style guide at 5:30 on a Friday afternoon. Long
guides have the potential to turn into either unused boat anchors or crusading
holy books. Instead, a style guide should take into account the tools, personal-
ities, and skills of an organization. A style guide for a team of longhaired, 10-
year Jolt-drinking veterans wouldn’t need to preach about basic object-ori-
ented design. A style guide for a team using an integrated development envi-
ronment probably wouldn’t need to mention make-file structure, because the
development environment manages that.

9.7.1 Buy, borrow, or steal?
Many consultants sell programming style guides for a living. Some additional
style guides are available in books or for free on the Internet. Which approach
is best? Should you have a consultant build one? Should you combine from
different sources? Should you build one from scratch? I’ve coded on teams
that approached programming style in different ways. One team chose not to
use a style guide; we failed. The successful teams used these methods:

� Build it from scratch. This is the approach that was taken at Contextual,
Inc. (see the next section). Because the team was small and communica-
tion was good, this approach worked well.

� Adapt a style guide from another assignment. This is by far the most
common approach. Most good programmers know what they like. A

Building a good style guide 277
leadership team is likely to have at least one member with an old style
guide that can be adapted for use.

� Buy one and modify it. Out of the box, no style guide is going to work
for a team of strong programmers with distinct personalities. I recom-
mend the approach of taking a guide and trimming it, rather than
adding to it or combining multiple guides. The idea is to build a short,
concise guide that works. Did I mention short?

9.7.2 A sample style guide from Contextual, Inc.
This section contains the style guide used by Contextual, Inc., a startup based
in Austin, Texas (http://www.contextual.com). I worked with the same people
at allmystuff; they interview aggressively and tend to do a good job of screen-
ing for good understanding and hygiene. Therefore, their style guide reflects
an advanced community. They use XP principles, including a shared code base,
so their style guide reflects source code structure and spacing for consistency.
They use Emacs extensively within their base development environment; there-
fore, advanced regular expression searches, which look for certain patterns as
well as fixed text, are important to them. As such, punctuation rules dictating
the use of white space and braces are prevalent in their style guide.

 They decided to publish a short style guide that captured the basic essence
in two short web pages. The guide resides on their intranet, so the whole team
can get to it quickly.

 My thanks to Brian Dainton at Contextual for providing this style guide.

Reviewing Contextual's style guide

With slight modifications, this is the style guide used by Contextual, Inc., a startup
based in Austin, Texas. The guide is short by design. All programmers can access the
guide. Violations of the style guide are usually handled one-on-one, but frequent
offenses or common community violations are broadcast. (Used with permission of
Contextual, Inc., 2001.)

� Enclose statements such as if, while, and for within open and closed
curly braces even if the body is a single line.

� Typically, import statements should import java.util.* rather than
java.util.Vector to make maintainability simpler.

� Name all objects as if they were in the same package as all the JDK and
other application objects.

� Make variables names descriptive and never abbreviate them.

278 CHAPTER 9

Bitter hygiene
� Spacing:

1Use two lines between the package statement and the first import.

2Use two lines between the last import and the public class section.

3Use two lines between each method.

4Do not insert blank lines after the class open curly brace or directly
before the class closed curly brace.

� Method blocks should follow this format:

public String
doIt(String x,
 String y,
 Object somethingElse)
 throws Exception,
 OtherException
{
 ...
}

� Code should maximize the usage of short-circuiting. Error conditions
should be at indentation level 8, the main path of execution should be
at 4 (unless it is imbedded within a try/catch, for, etc.).

� Indentation level is 4.
� You should use // to indicate comments unless they are for JavaDoc pur-

poses. Comments should begin no less than one full space after the sec-
ond slash.

� Do not use underscores in class names, variable names, method names,
and so forth. Use camel case syntax instead.

� Do not recompute the size of a vector each time you do the loop check;
for example, don’t do the following:

for (int i = 0; i < someVector.size(); i++)

� Use the syntax !!! in a comment to signify that the code needs to be
revisited at that spot.

� Code should be less than 80 characters per line where possible.
� Declare variables where they are first used, not at beginning of a

function.
� A cast looks like:

(Foo) foo

Building a good style guide 279
not like

(Foo)foo

� Any arithmetic operator should be surrounded by proper white space;
for example:

for (int i = 0; i < x.size(); i++)
return x / y;

versus this:

for (int i=0; i<x.size(); i++)
return x/y;

� try/catch/finally blocks should look like this:

try {
 ...
} catch (Exception exceptionType1) {
 ...
} catch (Exception exceptionType2) {
 ...
} finally {
 ...
}

� Separate declarations, variable names, and default values by a single
space.

� All fields in an object must be declared prior to the methods for the
objects. Class fields should be declared prior to instance fields.

� When setting a local field, use the same parameter name; for example:

public void
setName(String name)
{
 this.name = name;
}

Contextual’s code is extremely well designed, religiously refactored, and
highly readable. It behaves well with the tools, and is easily learned by new
hires. As you can see, a coding standards document doesn’t have to be long to
be effective. It should address issues that are important to the programming
teams and their clients, both internal and external.

280 CHAPTER 9

Bitter hygiene
9.8 Summary of coding standards

Instead of listing a template of antipatterns, we’ll provide a summary of the
coding standards described in this chapter. The best way to use this informa-
tion is to cross out those guidelines that are not important or compatible with
the goals of your team, and then add any you like from one of the references
in the bibliography or from the style guide in the previous section.

Guidelines for names

� For fields and attributes, use descriptive nouns with restrictive adjectives
where appropriate.

� Use a descriptive test prefix for Booleans, like is, contains, or has.
� Make collection names plural for clarification.
� For methods, use descriptive verbs with restrictive nouns indicating tar-

gets where appropriate.
� Name accessors with get and set, followed by the field names.
� Name Boolean accessors with a descriptive test, like is, has, or contains.
� Exception: Single letters are acceptable for loop counters, for the econ-

omy of space, where readability remains clear.
� Use camel case to distinguish between words. Capitalize the first letter

of acronyms.
� Capitalize the first letters of classes and interfaces, but not methods,

variables, or attributes.

Guidelines for attribute name/automatic variable name collisions

� Use a leading or trailing _ for all attributes, or
� Precede all attribute references with this, or
� Access attributes solely through accessors, or
� Disallow the same attribute names in the method body.

Guidelines for braces

� Enclose such statements as if, while, or for within open and closed
curly braces even if the body is a single line.

� Choose a style and be consistent.

Summary of coding standards 281
Guidelines for comments

� Use /** */ documentation style comments for comments that are useful in
code, and in automatically generated documentation (JavaDoc).

� Use /* */ c-style comments to block a piece of code from executing, or to
document a long description or algorithm.

� Use // end-of-line comments to drop in annotations at the end of a line,
or to drop in short comments between lines.

� Keep a change history in the header of each method, or choose a
change control system that maintains an inline change history for you.

Guidelines for visibility

� Use private visibility for attributes and methods that compute interme-
diate results important only to another calculation, and methods that
should be restricted to the defining class for safety or security.

� Use protected visibility for attributes and methods that might be
required for future subclasses. In general, protected should be preferred
to private.

� Use public visibility for methods that must be exposed to fulfill the con-
tract for the interface.

� Use unspecified, or package, visibility for coordinated frameworks
within a single package. For example, a collection class utility set could
use this visibility to ensure that iterators could see other collection types.

� Do not use public visibility for attributes.

Guidelines for design

� Classes should be nouns. Watch words like process and manager that try
to short-circuit this rule.

� Methods should be single actions.
� Methods should be short and easy to understand.
� Choose the simplest approach that will work.
� Interfaces should generally be preferred over abstract classes: when an

implementation might change; to describe add-on features; when no
default implementation is specified.

� Abstract classes should be used over interfaces when partial implementa-
tions are specified.

282 CHAPTER 9

Bitter hygiene
� Implement the Cloneable interface if an object might need to be
cloned, and implement from scratch rather than picking up the default
behavior from Object.

� If you override Object.equals, also override Object.hashCodes, and
vice versa.

� Use final only for the declaration of constants. -OR-

� Use final only where the superclass defines the interface of all of the
methods (disregarding implementation-specific methods).

Guidelines for packaging and file structure
� A .java file should contain a single class, and be named the same as the

class, including the correct use of case.
� Place even private classes in separate files.
� Place interfaces in separate files.
� A package should contain a logical grouping of classes.
� Place files in a structure that mirrors package structure.

Guidelines for leaks and performance
� Pair code that handles allocation and freeing of resources as closely

together as possible, preferably in the same method.
� With collections, adds should not be added to the code without associ-

ated removes. The primary exception is collections that use weak or soft
reference objects.

� EJBs should be accessed through a common command layer or facade.
� Keep redundant computations outside of loops and loop tests.
� Optimize later.

Guidelines for testing

� Code unit tests first.
� Include a main for unit tests.
� Organize test cases. Pick a default organization and stay with it.
� Append built-in tests with the word test.

10Bitter scalability
This chapter covers
� Topologies for high-performance deployments
� Antipatterns related to poor performance
� Antipatterns related to performance

methodology and tuning
283

284
I am in Georgia, on the dreaded Chatooga, made famous by the movie Deliver-
ance. I’ve aspired to one day go on a pilgrimage to the Chatooga from before I
even started kayaking. But as we start our run I am on the verge of changing my
mind. The river is stunningly beautiful, radiating power and a sense of awe at
every turn. In spots like Seven-Foot Falls, the river slams against undercut ledges
where the stream can pin and kill a boater. At Bull Sluice, jets of water are sucked
through a hole in the riverbed large enough to swallow a boater and his boat. The
water is then forced through an opening just a few inches across. Riverwide ter-
minal hydraulics, like Woodall Shoals, look benign but are traps for paddlers and
swimmers. By the time we reach the ominous Five Falls, I feel myself becoming
paralyzed with fear. The river drops rapidly over five waterfalls, with little recov-
ery time between them. Deep down I know I will always fear that mighty river.

This chapter will present a series of small antipatterns related to scalability.
We’ll focus on refactored high-level designs for scalability. Scalability issues
require some coding finesse, but the larger examples to support them go
beyond the scope of this book. Some good sources are Core J2EE Patterns:
Best Practices and Design Strategies; Concurrent Programming in Java:
Design Principles and Patterns; and Java Performance and Scalability (see
the bibliography).

 We can use several different techniques to make a solution more scalable.
Many times, a faster, bigger box is a perfectly viable solution. Since many
mainframes now support open standards and can even run Linux, they can run
very large Internet applications with only mild rework. Because scaling in this
manner doesn’t usually require as many advanced design considerations, this
chapter will instead focus on scaling through parallel design. We’ll look at
antipatterns in the area of performance and scalability, with some related to
process and others related to programming.

10.1 Good topologies for performance

Internet topologies have varied dramatically, but they are starting to settle on
slight variations of a common design. Many performance experts prefer a
topology like the one in figure 10.1. In this configuration, all software on the
web and application servers is redundant to achieve availability and better per-
formance. The user’s request comes through the Internet and goes through a
firewall and a sprayer. Called edge services, these technologies have seen signifi-
cant advances over the last decade.

Good topologies for performance 285
 Edge servers can provide these functions:
� Firewall. A firewall is a hardware or software layer that sits between two

zones. In our architecture, we have firewalls between our DMZ and the
public Internet, and between our DMZ and the private intranet. Two
major kinds of firewalls are filtering and proxy. A filtering firewall, usu-
ally implemented in a router, filters packets, or atomic TCP/IP mes-
sages, for security and performance. A proxy firewall allows or denies
outbound traffic based on an existing security policy. For example, a
systems administrator could block MP3 access with this type of firewall.
In our architecture, we have two firewalls, which are configured with
two different security policies. With such a configuration, only the most
sophisticated attack penetrates both firewalls.

� Spraying/load balancing. A sprayer is a network node responsible for
taking requests to a single destination and fanning them out to multiple
physical machines. Usually, a sprayer is identified with a DNS name so
that the user community doesn’t need to be partitioned. A load

 Firewall

Firewall

Internet

Data

Fast fail-safe
legacy app

configuration

Fast fail-safe
database

configuration

Web app
server

Web app
server

Web app
server

Web
server

Web
server

Standby Sprayer

Web
server

Figure 10.1 A good topology for performance has layers that do one thing and do it well. This one
has a sprayer, with a hot standby, that takes incoming requests and routes them to one of three
identical web servers. The web server can then request services to build dynamic content from any
of the available web application servers behind the corporate firewall, which in turn can use
database or transactional servers.

286 CHAPTER 10

Bitter scalability
balancer is a sprayer that makes intelligent decisions about where to
route a request based on the load on a given system at any point in time.
Among the popular sprayers available are Cisco’s Local Director and
IBM’s Network Dispatcher. Many other vendors have solutions in this
space as well.

� Static caching. Many vendors have boxes that can cache static content
upstream of even the static web servers. These static caches can be inde-
pendent boxes, or they can be included in other edge-server features.
The combination of a proxy firewall and a cache for outbound requests
(called a caching proxy) is fairly common. Since caching proxies bypass
all of the existing communication within a firewall and free web servers
and web application servers, they can have a significant impact on per-
formance.

� Dynamic caching. Increasingly, vendors are providing innovative cach-
ing solutions for dynamic content and pushing those functions up closer
to the edge server. JSP fragments and specialized EJB caches are becom-
ing increasingly important as more pages are created dynamically.

An organization’s security policy might specify that edge services satisfy
requests via a cache. Other requests could be passed on to a web server, which
would be responsible for strictly static content. Other requests could be passed
to the application server to resolve any dynamic content. In a subtle configu-
ration variation, application server software could be deployed jointly with the
web server to handle the view, the controller, and a thin model wrapper (such
as the command layer in chapter 3 or the facade in chapter 8). Alternatively,
the web server might be deployed alone, with the model, view, and controller
deployed on the application server.

 The web application server houses the server-side model. EJB containers
would be deployed here, as would wrapping technologies for legacy systems.
The application server is usually deployed inside the innermost firewall for
additional security, and for performance reasons that we will explore next.

10.1.1 Layering hardware in homogeneous groups
In our configuration, we achieve scalability through independent servers that
do one thing well. When we have a performance problem, we can simply
increase power by adding to the existing network a new system that performs
the function we need. The key is that the configuration of the individual boxes
must be identical.

Good topologies for performance 287
 Scaling Internet applications requires an architecture that uses indepen-
dent software components as building blocks. Table 10.1 reviews the likely
components. These pieces should stand alone, with only minimal standard-
ized interfaces, or touch points, exposed to the rest of the system.

Now let’s explore each component’s role in our system:
� Static clients. The clients communicate to the middle tier exclusively

through HTTP POST and GET. The client scripting language can be gen-
erated dynamically. In the event that validation or complex user inter-
face logic forces deployment of client-side Java, this too should
communicate to the server exclusively through HTTP. In this way, the
client can request a service via a single name and the request can be
mapped by the edge services onto an appropriate server. This service
can be completely independent of the client.

� Servlets. The initial touch points are the interaction controllers, which
are implemented as servlets. They get input in the form of HTTP
request form parameters. These servlets communicate with business
logic through intermediate objects called commands, or facades. They
also return dynamic content to the client by dispatching JSP pages. In
addition, servlets can use services provided by the web server, such as

Table 10.1 Here are the controlled touch points between the elements of our architecture. The
controller, JSP pages, and command layer form the interface between the static client and the
model. The communication to the static client goes through the controller, while model
communication is encapsulated in the command.

Touch Point Shares Interfaces With Uses This Interface

Static client Controller HTTP POST, GET

Controller (A.K.A. interaction
controller, IC)

Static clients
Commands
JSP

HTTP
Method calls
Request object, URL
parameters

JSP pages Command beans
Controllers

Data JavaBeans from controller
Request object, URL
parameters

Command layer (A.K.A. facade) Controller
JSP
Model

Method call
Data JavaBeans through con-
troller
Many

Model Command layer Many

288 CHAPTER 10

Bitter scalability
session state management. (In configurations with multiple web applica-
tion servers, the session state can be problematic. We’ll talk more about
session state in the section “Chaotic session management.”) The inter-
action controller may also access other web application services, such as
naming and security services.

� JSP pages. Compiled to form servlets, JSPs build the return-trip view for
the client. Additional JSP fragments can be embedded in the original to
form a compound document. JSPs get input from the interaction con-
troller in two ways. First, the interaction controller can embed beans,
called data beans. Second, parameters can be passed through the HTTP
response object; the compiled JSP then returns an output page that is
returned to the client or embedded in another JSP.

� Command layer (or facade). The command layer is a thin wrapper
around the model. It presents an interface to the interaction controller
and JSP. It consists of set methods for input parameters, prepare-to-
execute and execute methods to fire the appropriate business logic, and
get methods that provide access to output parameters. Alternatively, a
stateless session bean can be used to provide a remote interface to the
EJB tier. This layer helps decouple the model and view, and also helps
eliminate round-tripping.

� Model layer. This layer can consist of legacy code, proprietary Java, or
EJB-centric code. Clarity of design, high performance, and reliability are
the keys here. This layer has been the most prone to poor performance,
and several antipatterns in this book have targeted it. Problems indepen-
dent of EJBs include a lack of connection pooling, poor or missing cach-
ing strategies, poor algorithms and Java designs, and restrictive locking
schemes. EJBs introduce more problems, including implementing the
wrong EJB types, using full EJB entities for relationships, or choosing to
use EJBs for trivial problems. The model layer tends to be fairly complex,
so it’s important to keep external interfaces clean and simple. The only
interface to the rest of the system should be through the command layer.

Homogeneous units in layers often scale well because it’s easy to determine
where performance problems originate. Once we identify a problem, we can
apply additional hardware or tuning to proportionally increase the system
workload capacity.

Antipattern: Performance Afterthoughts 289
10.1.2 Other topology variations
Several slight variations on our configuration are possible. Some systems com-
bine all of the view logic onto a single presentation server, including a web
server for static content and a web application server for dynamic content
within the DMZ. This configuration is especially common for applications that
directly access a legacy layer. The advantage is that all web services are encap-
sulated in a single layer. Of course, the downside is that enterprise connections
are exposed in the DMZ, which can make certain hostile attacks easier.

 Another variation combines the web application and web servers, with an
array of servers housing the model inside the innermost firewall. With this
configuration, all enterprise connections are made safely inside the corporate
intranet. The command layer controls the round-tripping between the model
and view layers.

 You can optimize this configuration so that all web servers, or even web
application servers, share a high-performance, highly available, distributed
directory. This makes it easier to manage and serve static content. A distrib-
uted file system can mirror directories for HTML pages and images, for exam-
ple, to simplify publication of new interface versions. The architecture also
makes it much easier to configure for high availability. Performance through
efficient caching is a significant benefit as well.

 Books have been written about the topics covered in this chapter. Our bib-
liography contains excellent sources on deployment strategies.

 In the next section, we’ll look at performance-related antipatterns. Most
involve high-level process issues, and others are specifically related to Java.

10.2 Antipattern: Performance Afterthoughts

I first learned the value of performance analysis as a member of a national sup-
port team for the predecessor to the Intel version of DB2. Our customers typ-
ically did not use capacity planning, and they rarely designed for performance.

 One day, during an application design review for a Fortune 500 company, I
asked about the firm’s test plan. My contact replied that testing consisted of an
intern’s attempts to break the system. Slightly disturbed by that answer, I then
asked about stress testing. He explained that stress testing involved five people
trying to break the system at the same time. For performance testing, he’d ask
20 people to test the system the morning of production deployment, before
the rest of the users arrived. The system would then be deployed to 300 con-
current users. Needless to say, over the next year I felt like Bill Murray in
Groundhog Day, a movie about the same bad day repeating itself over and over.

290 CHAPTER 10

Bitter scalability
 This was not an isolated case. Out of an estimated 50 customers I visited
during that period, only four had reliable performance-testing plans.

 Ten years later, I am consulting. The problem domain is dramatically dif-
ferent. Performance analysis is one of very few areas that have become more
complex with Internet deployment. For public deployments, the size of the
user community for a given application generally cannot be determined in
advance. The networks leading to the application servers are rarely under the
sole control of the information technology staff. It’s much more difficult to
educate users about practices that are likely to stress a system. At the same
time, for most companies performance- and stress-testing techniques have
changed very little.

 At allmystuff, we had very strong technical leadership but did very little
performance testing. If we’d encountered significant success—and the ensuing
traffic—I’m not sure that our architectures could have handled the load.
Though our network topology was solid, our design model captured every
object as a persistent EJB, and we did no dynamic caching. Our quality assur-
ance department had tests for fail-over, but performed very limited tests for
heavy concurrent use. Because our product never attracted enough customers
to stress the system, we failed long before we were forced to pay for our
errors. As a consultant, I find that my clients usually haven’t performance-
tested their applications, or they’ve been blindsided by the high number of
users in their systems. This situation is normal, but it represents a very danger-
ous way of doing business. Sometimes, systems are designed well enough to
scale as user needs grow. Other times, they are adequate to handle the needs
of the initial community, but when the user base increases unexpectedly, scal-
ability problems are uncovered. As with many relatively new technologies, per-
formance problems mar Internet deployments all too often.

10.2.1 Developing without performance planning
The Performance Afterthought antipattern is process oriented. In general,
architects focus on business and end-user requirements at the front of the
cycle and give only marginal attention to performance considerations. Perfor-
mance decisions are saved for the end of the cycle. In the Internet environ-
ment, this strategy can be fatal for a variety of reasons, as the following shows.

Considerations for early performance planning on Internet projects
For Internet applications, performance cannot be treated as an afterthought without
dire consequences. Here are some factors that complicate delayed planning, coding,
and testing of performance components of a system:

Antipattern: Performance Afterthoughts 291
� Internet workloads can be inherently unpredictable. If the target audi-
ence of an Internet application is not well defined, it’s easy to underes-
timate the size of the community. At the height of the dotcom boom,
technology companies dealt with workload prediction in different
ways. Some hardware companies installed additional servers, free of
charge, and allowed their clients to pay only when the servers were
turned on. Designing for unpredictable performance can be a dicey
proposition. It’s tough to decide whether a constrained budget should
focus on additional hardware or high-priority software features. This
unpredictability, combined with the lack of a realistic performance
plan, can throw off initial estimates considerably.

� Some platform-dependent architectures can be difficult to scale and adapt
to common Internet architectures. Taking an early shortcut to build in a
convenient platform-dependent feature can result in impaired scalability
down the road. If the performance requirements aren’t clearly commu-
nicated, this trap is much more likely to appear.

� By failing to take performance into account, a company can underesti-
mate hardware needs or development time. Robust, scalable architectures
take money and time. Without a clear understanding of what is neces-
sary, under-budgeting is a real danger.

� The most common highly scalable architectures require a number of
assumptions about architecture and design. Following a set of conven-
tions for building highly parallel systems is much easier at the front of
the development cycle. Decisions about session state management, per-
sistence, locking, multithreading, loose or tight coupling, programming
language, and dynamic content management will have a bearing on how
a massively parallel architecture is built. Poor decisions on any of those
fronts will limit the options available for creating parallel architectures.

10.2.2 Some real-world examples
Let’s look at some real-world examples of companies that failed to adequately
plan for performance. As a member of a database critical-situation manage-
ment team and later as a consultant, I’ve dealt with many failures involving
scalability. (Of course, I’ll maintain the confidentiality of my customers for
obvious reasons.)

Late performance design
Early in 2001, a large travel company implemented an EJB solution from the
beginning. The architecture had many different complex layers and aggressive

292 CHAPTER 10

Bitter scalability
performance criteria. Though significant elements of the design were com-
pleted very early in the project, the first performance benchmark was not run
until weeks before the project was scheduled to be completed. When the
project was near completion, a performance snapshot revealed significant
problems with production data volumes and workload. By that time, pro-
jected changes to the base object model and framework forced the team to
scrap the EJB architecture, because not enough money was available to handle
the extensive revisions. The project changed direction to use simple screen
scraping front ends from 20-year-old technology. In a postmortem, the team
agreed that an early-performance sanity check would have caught the problem
in plenty of time.

No planning
In 2000, a small company built a complex user interface. The business analysts
established few hard performance requirements, and they neglected to create a
comprehensive performance plan. To complicate matters, no time was left at
the end of the cycle to handle performance testing. In order to compensate,
the programming team asked the entire company—board members and ven-
ture capitalists included—to assist in a companywide “test fest.” This high-vis-
ibility event was the first time that the system was tested under load. It failed
in several different ways; for example, a single JavaScript custom control took
several minutes to populate. The company has since laid off more than two-
thirds of its staff and is struggling to stay afloat.

Insufficient funds
In 1998, a large Fortune 100 energy company decided to release a company-
wide intranet infrastructure. The performance requirements were rigorous
and stringent. The development team finished three major risky components
early in the cycle, but they did not test the components under load. One of
the components was a custom persistence framework. It failed, because many
functions that would otherwise be handled by relational joins and low-level
database functions were instead handled by the application. The alternatives
radically changed the underlying persistence framework as well as the object
model on top of it. The company completed the project only after significant
schedule delays, penalties, and cost overruns that ran well into seven figures.

10.2.3 Solution: Plan for performance!
My early trip down the Chatooga reminds me of high-volume Internet appli-
cations. Scalability is one of the most technically demanding characteristics to

Antipattern: Performance Afterthoughts 293
build into web applications. The dangers are significant and real. Features
such as concurrency control, session sharing, and sharable models have hum-
bled many a competent programmer. In some cases, applications are built
without consideration of the potential size of the user base. In other cases,
performance is handled late in the development cycle without time to
recover. Though the Chatooga is powerful and demanding, many boaters
now run it with relative safety. Similarly, Internet experts are rapidly learning
how to deploy highly scalable and reliable solutions with parallel clusters.

 For both object-oriented applications and Internet applications, it is critical
to plan performance from the beginning. It isn’t enough to throw out loose
requirements and bury them in some document. We must examine the hard-
ware and software architectures in detail and compare them against the perfor-
mance criteria. Here are performance-planning tips.

Performance planning tips

I’ve accumulated these performance-planning tips over 10 years of consulting.

1 Know your users ... Good requirements are the key to meeting any
user’s needs. We should include formal response-time requirements,
and we should interview and observe our end users.

2 … but don’t completely trust them. This sounds contradictory to the
first goal, but it isn’t. It simply means that your information-gathering
efforts should not end with your user community. In fact, your perfor-
mance requirements may be more stringent than your users might rec-
ommend. Many sources suggest that customer per formance
expectations for generic consumer Internet sites are changing. For
example, in 1999 E-Commerce News published Performance Primer:
Gone in 4 Seconds, which stated that the typical Internet consumer
spends no longer than 4 seconds at a site. Today, with high-bandwidth
connections, the typical user will probably not wait even that long.
Interview your user community, but also do your own research so that
you won’t be lured into false security.

3 Plan for performance. A performance plan is a critical element of any
high-volume Internet application. All major stakeholders should sign
off on the plan early in the design cycle. Performance plans should be
written in advance of the application architecture, because perfor-
mance requirements will dictate the application architecture. Hard
metrics for response time should be included.

294 CHAPTER 10

Bitter scalability
4 Assume eventual parallel deployment. In designing for scalability, it’s
much easier to plan for eventual parallel deployment in advance, even
if the added scalability is never needed. Even if you don’t initially
deploy on a parallel architecture, it pays to keep that option open for
the long term. That means addressing the following:

�Database designs should assume shared access with reliable concur-
rency control.

�Session state should be deployable across multiple machines, with a
strategy for ensuring session affinity or keeping track of a multipart
conversation in a parallel architecture.

�Operating system services and other services should be deployable in
a parallel configuration.

�The model should have a clear path to a sharable, scalable solution.

5 Tackle high-risk elements first. With all projects, risk mitigation
involves planning for the worst possible contingency. That means
addressing high-risk elements as early as possible in the development
cycle, with sufficient time to recover.

6 Perform a sanity check on key assumptions as needed. While a full-blown
performance test belongs at the end of the cycle, frequent sanity
checks of critical risk elements are a good idea. Identify these key risk
elements in the performance plan. System architects need to under-
stand what elements are likely to break.

7 Plan for contingencies. Internet workloads are inherently unpredict-
able, and aggressive contingency plans should mitigate that risk. Make
contingency plans for any highly performance-sensitive components
with completion dates scheduled later in the development cycle. Risk
mitigation can often provide for a delayed delivery of a subset of sensi-
tive components in order to protect the whole application. All stake-
holders should sign off on aggressive schedules.

8 Plan to test the system and key touch points. Several tools can help you
test parallel architectures under load with enough time to recover.
Many Internet applications enable access to legacy systems. These sys-
tems were frequently not designed for the type of access or the scale
that the enabling technologies provide. Testing the back end in the
new context is critical; ensure that you have enough time to adjust for
any problems.

Antipattern: Round-tripping 295
9 Save time for performance. Regrettably, but inevitably, something will
go wrong. It’s important to have enough time and money to make
modifications. The time a company dedicates to performance issues
depends on several factors, including the competence of its staff and
the consequences for failure.

These suggestions don’t take the place of a strong development culture and
plain old common sense. We can help a project succeed by encouraging devel-
opers to watch for performance concerns and allowing them to step forward
without repercussion. I’ve worked with many teams in a variety of develop-
ment cultures. Some managers tended to staple messengers to the wall; under
those circumstances, problems did not get reported. Other companies encour-
aged developers to find problems and even had formal reward systems for
bringing suggestions to managers’ attention. The balance probably lies some-
where in between, with reasonable accountability and an atmosphere that
focuses on fixing problems rather than assigning blame.

10.3 Antipattern: Round-tripping

The Round-tripping antipattern is a combination of earlier antipatterns in this
book, but it merits special attention here because of its significant impact on
performance. Round-tripping occurs when a design requires significant itera-
tion across an interface boundary. In figure 10.2, the model is deployed on a
different system than the view.

 For our purposes, it doesn’t matter whether the view logic is imple-
mented as a proprietary client, an applet, or a distributed application across
multiple servers. The key is that the design will require multiple round-trip
communications across the interface boundary between the model and the
view. As the view grows in complexity, the communication costs will rise.
Because we’re iterating through the fields of our view across a major inter-
face boundary, this is a classic example of the Round-tripping antipattern.

10.3.1 Solution: Cache and Facade
The antipattern we just described is technically the same problem that
occurred twice in earlier chapters. In chapter 5, we discussed the Cacheless
Cow antipattern and used our bulletin board example to illustrate a round-
tripping scenario without a cache to compensate. The Everything Is an EJB
antipattern in chapter 8 iterates through the fields on an EJB. Three solutions
to the round-tripping antipattern exist:

296 CHAPTER 10

Bitter scalability
� Caching, described in detail in chapter 5, eliminates the need for the
round-trip communication for the expected case by keeping a local copy
of frequently accessed data the first time it’s fetched. Parallel implemen-
tations can somewhat reduce the effectiveness of a local cache. Multiple
servers require multiple copies of the same data, and multiple round-
trips to build them. Updates to cacheable data are more expensive
because the cached copy on each server must be invalidated. Still, for
applications with high read/write ratios and extremely high volume,
caching is effective. Further, edge servers offer caching solutions that
eliminate the need for multiple cached copies.

� The Facade design pattern, discussed in chapter 8, refactors a round-
tripping architecture to make a call to a facade object, which then
encapsulates many request and response distributed calls into a single
distributed call. Stateless session beans are good choices for facade
objects. We can also use distributed command objects to solve this
problem; this approach requires only a single round-trip. (The stateless
session bean requires an initialization round-trip in addition to the
round-trip for the actual communication—not a perfect solution, but
still a significant improvement.)

Policy view

Policy object

Insured
object

Name:

Address:
.....

5 round-trips

Model logic

Number

Date opened

Max benefit
.....

Number:

Max:

Date:

Name:

Address:

View logic

Figure 10.2 Round-tripping is considered the top EJB performance problem by many consultants.
It occurs when significant iterations occur over major interfaces. In this case, we iterate through
a list of fields, and set or get them independently across a client-server boundary.

Antipattern: Round-tripping 297
� The third solution to round-tripping is to simply refactor. In some
cases, it’s possible to redefine the major interface boundaries so that
they fall in places with fewer round-trip communications. In rare cases,
we should sacrifice packaging for performance if we can eliminate a
large number of round-trips, but as a rule, refactoring should produce a
cleaner, more readable architecture. For this type of refactoring, the
UML sequence diagram, like the one in figure 10.3, is extremely useful.

UML sequence diagrams clearly show round-trip communication layers
between major interface points. The rectangles across the top of the graph
represent objects. The vertical lines under each are timelines. The horizontal
arrows represent flow of control. For optimization, iterations and chatty inter-
faces between objects can be shifted off an interface boundary. In other cases,
we can add a facade or cache. The detail and layout of good sequence dia-
grams makes it all possible.

Servlet
Serializable

object
Session EJBSerializable

object
Entity EJB

Ask for data bean
Get information from EJB

Create

Set copy of
information

Obtain data
for display

Figure 10.3 Sequence diagrams are ideal for dealing with round-tripping. The interfaces
between objects can be clearly seen, and we can determine if we have iteration or major
activity across them.

298 CHAPTER 10

Bitter scalability
10.4 Antipattern: Bad Workload Management

At McDonald’s, there may be five lines, but I always seem to wind up behind
the kid who orders 27 Big Macs. Sure, other lines may be longer, but mine
always seems to move the slowest. In this instance, the cash registers are
resources, and one person is taking a disproportionate share of the resources.

 Web servers generally don’t have this problem because the content is static
and all of it is served relatively quickly. Web application servers, on the other
hand, experience this problem in spades. Some jobs simply take more time to
complete than others—for example, database write operations are often con-
siderably longer than reads. Enterprise applications behind the server may dic-
tate transaction length; enterprise transactions may be synchronized, forcing
application servers to wait for completion. Some database architectures force a
connection to be held for the entire duration of a recoverable transaction
(called a unit of work), which can encompass many different atomic opera-
tions. In some cases, the web application server itself can dictate transaction
length. Heavily layered EJB applications can simply take time to execute.

 In any case, highly variable transaction lengths can cause significant prob-
lems. Consider the jobs in figure 10.4. We have 20 jobs, each of one unit, dis-
tributed evenly across 4 queues. Two metrics are significant: total throughput
and waittime. The total throughput is operating at maximum efficiency
because each of the servers will be working on a job, and the average wait time
is 2 units.

 Now, consider the jobs in figure 10.5. There are still 20 total units, but the
jobs are of variable length. There are 11 jobs, one of 10 units, and the rest of
one unit each. In the figure, we distributed the work in a round-robin fashion
and generated the order randomly. In this instance, the second queue got the
larger job. Since we were distributing work round-robin, two additional jobs
were added to the queue. In this instance, we could have finished the job in

1
1
1
1
1

1
1
1

1
1
1
1
1

1
1

1
1
1
1
1

Q1 Q4Q3Q2

Figure 10.4
Good load balancing ensures that all servers will have a
proportionate workload.

Antipattern: Bad Workload Management 299
10 units, but because the second queue received additional work, the total
length of time required to process all of the work was 12 units. Our through-
put has suffered. In addition, our average waiting time has been extended to 7
units, because smaller jobs have to wait for larger ones to complete.

 In practice, workload distribution that is not uniform can cause additional
problems. A single system that receives a disproportionate load can bog down
and become slower, and throw the balance further out of kilter. Symptoms
include inferior throughput for the combined matrix of systems and sporadic
performance for any given user. Real-world scenarios with the sporadic long
job like this are common; examples include an account report on a stock trad-
ing system, or a new post on a bulletin board (where reads frequently out-
number writes by a margin of 100 to 1). We must develop an effective strategy
for dealing with workload disparity when performance requirements are strin-
gent and high throughput is necessary.

10.4.1 Solution: Workload Management
We can use various techniques to help us distribute workloads uniformly. We
might attempt to isolate transactions that are unusually long; these techniques
fall under the umbrella of workload management. Some techniques will use
hardware, called load balancers, and others will require us to break down
longer transactions or isolate unusually long transactions to specialized queues.
In all cases, our goal is an even distribution of work, leading to better efficiency.

Queue specialization
To understand solutions for queues and workloads, let’s turn to the real-world
queue experts. They employ a practice called queue specialization to keep

1
1

1

10

1
1

1

1

1

1
1

Q1 Q4Q3Q2

Figure 10.5
Odd jobs like the one at Q2 can disrupt balance by giving
disproportionate loads to random servers sporadically.

300 CHAPTER 10

Bitter scalability
workloads going smoothly. In our McDonald’s example, I’ve often wondered
if each restaurant could start a single line for the terminally slow, for the cus-
tomers who pay for 27 Big Macs with a shoebox full of pennies. That’s proba-
bly not enforceable, but supermarkets do essentially the same thing, in reverse.
Because the majority of the work consists of longer transactions, supermarkets
offer express lanes for short transactions. These lines limit the number of items
per customer and may limit the form of payment. This arrangement makes the
workloads for the various queues much more predictable.

 We can simulate the express lane in our systems by dedicating servers to
workloads of similar sizes. The key is to isolate long-running transactions to a
subset of the servers. If a specialized long-duration-transaction server is idle, it
can then take on short transactions, just like in the supermarket. The reverse is
not true, because the long-duration transactions can adversely affect our
overall balance. Figure 10.6 shows our workloads with Q1 functioning as a
specialized server for long transactions.

Partitioning jobs
Another possible solution to the distribution problem is to break larger jobs
into smaller ones. In many cases, it makes sense to break huge user interfaces
down for other reasons. A well-known trick that Disney uses is hiding the line.
The customers for a popular ride enter a short line to a building with lots of
displays of interesting things, which again goes outside into a garden, which
then enters another building with actors talking about the ride experience
itself. The larger line is broken into many smaller ones. The authors of the
most effective surveys also hide the length of the survey by breaking it into
smaller chunks and branching conditionally. A “yes” answer to “Did you buy
model 4045A?” could lead to more questions about that model. We can do the

1
1

1

10

1
11

1

1
1

Q1

1

Q4Q3Q2

Figure 10.6
A dedicated server (Q1 here) for longer tasks can smooth out the
workload and ensure that a single odd task cannot throw the entire
system out of kilter.

Antipattern: Bad Workload Management 301
same with long business forms. Other times, poor distribution of work can be
a case of a facade or command doing too much work. If a command’s granu-
larity is too coarse, then meaningful reuse is significantly reduced. Figure 10.7
shows the impact of partitioning combined with specialization. In this case,
we’ve dedicated half of our service queues to managing large loads, and we’ve
partitioned the larger, 10-unit job into two smaller jobs.

Of course, we should reserve partitioning the workload for cases where the
partitioning makes sense structurally. Readability and ease of maintenance are
prices too high to pay for a slight improvement in performance. Also, transac-
tion partitioning should not break transactional integrity. For instance, let’s
consider a business transaction—a bank account transfer, for example. A trans-
fer consists of a debit and a credit transaction. We should not partition the
transfer transaction into two because both things should succeed or fail in a
transactional unit. If either succeeds while the other fails, the bank or the cus-
tomer (or both) will not be happy with the results.

10.4.2 True load balancing
True load balancing involves distributing workload intelligently, based on an
individual system’s capacity, workload, and performance, as well as the band-
width to the server. Earlier we mentioned round-robin scheduling. These dis-
patchers have been popular for three reasons:

� The nature of web applications has been primarily static content, so the
jobs have been relatively uniform. With a uniform collection of identi-
cally configured servers, this type of algorithm does a decent job of uni-
form work distribution.

� Round-robin load balancers are very fast. The same has not always been
true of more sophisticated true load-balancing dispatchers.

� In general, job durations have been very short. In these instances, dis-
patchers have needed to make very fast decisions to avoid creating a

1
1
1
1
1

1
1

Q1

1

Q4

1
1

Q3Q2

55 Figure 10.7
With dedicated odd job service queues (here, Q1 and Q2), workload
partitioning can add balance to a system. This may be as simple as adding
commits to a longer transaction, if the application can tolerate the unit-of-
work implications.

302 CHAPTER 10

Bitter scalability
bottleneck. In general, the dispatcher needs to be as fast as the average
service time, divided by the number of servers.

Application traffic is getting more dynamic and workloads are getting more
diverse. At the same time, true load-balancing technologies are getting much
faster, making them an attractive option. The load-balancing dispatcher can
take distribution and expected performance into account, as well as the exist-
ing performance of a system. Load balancing is a difficult problem to solve. To
achieve the most complete job, we must be able to estimate transaction dura-
tion and accurately measure the workload on a system. Even this measurement
can be problematic: what resources are constrained? An I/O bound system
may show a relatively low CPU utilization, though it is swamped. Most load
balancers opt not to solve all of these problems, and instead settle for effective
compromises and rich tools for specialization, configuration, and tuning.

 Other interesting problems arise. If a system remains up but loses the ability
to do work (for example, if the database network connection goes down), it
will “complete” its tasks rapidly, though not with the desired results. If the
load-balancing algorithm is too primitive, this system will get most of the
work, with the load balancer systematically directing most of the traffic to the
wrong box. For this reason, load balancers usually are built to deal with some
aspects of reliability as well. The dispatcher can detect whether a given system is
down and dynamically take that system out of the rotation. It can also repeat-
edly route the same user to the same server, increasing the impact of caching
and simplifying implementations. Even so, queue specialization and workload
partitioning are still effective tools for solid, predictable performance.

10.5 Antipattern: Chaotic Session Management

When multiple web application servers are maintained, a user can be routed to
a different system with each subsequent request. In this case, load balancing
can make session state management much more difficult, or vice versa. Several
options are available for distributed session management.

10.5.1 Solution 1: Dispatching with session affinity
Some dispatchers will route a given user to the same server for every subse-
quent request. An association between the user and a server is called session
affinity. Dispatching with session affinity solves the problem by essentially
localizing the solution. If a given user will always hit the same server, the
application is masked from the distributed architecture.

Antipattern: Chaotic Session Management 303
 This approach greatly simplifies the programming for session state manage-
ment. This is because the architecture completely insulates the programmer
from distribution issues.

 Despite the fact that this technique has been widely and successfully
deployed, it does have its limitations. Proxy architectures can sometimes lead
to sporadic behavior. If a user’s Internet service or company can route
through several different proxies, the dispatcher may route contiguous
requests to different servers, leading to unpredictable results for the user.
(Some dispatcher technologies do not have this problem.) Also, because there
is no replication of the session data, session data can be lost if the user’s first
application server crashes.

10.5.2 Solution 2: Using a distributed state management service
Most web application server vendors have distributed state management ser-
vices. The services provide a dictionary (a session ID associated with data) for
state management. A framework either replicates this data or makes this data
available through distributed requests.

 This solution also frees the programmer from having to deal with the dis-
tributed architecture. The performance of distributed state management ser-
vices will probably improve over time as vendors iterate on them. These
vendors also use approaches that are easily adapted to open standards. Some of
these solutions add failure safety by replicating the state to another site.

 Keep in mind that distributed replication and communication comes with
overhead. This performance penalty can be severe compared with localized
session state management. Also, performance suffers for very large blocks of
session data.

10.5.3 Using custom session bean solutions
Another approach is to use a session bean to communicate with a persistent
store, state table, or database elsewhere. Session beans can be relatively light-
weight alternatives to entity EJBs. With this solution, we can support much
larger session blocks than by using the native alternatives. Since the session
bean is custom, it is very flexible.

 Using a custom session bean does have disadvantages:
� Stateful session beans can be difficult to clean up.
� Memory leaks are common with this type of architecture.
� Data in stateful session beans is not transactional or fail-safe.

304 CHAPTER 10

Bitter scalability
� This solution forces a level of programming that other solutions don’t
require.

10.5.4 Using custom entity bean solutions
Another solution is to use an entity EJB to store session data. This is the most
robust solution. Frequently, entity beans are used to handle transactional data
related to a session, and one of the lightweight alternatives is used to cache
housekeeping session data, such as user preferences.

 However, using custom entity beans is also the most heavy-handed solu-
tion, and it comes with a definite performance penalty.

10.6 Antipattern: Thrash-tuning

Performance analysis often seems like a black art. With so many different vari-
ables, it’s difficult to determine which parameters have significant impact and
which make things worse. Add the inherent unpredictability of the Internet,
and things get dicey at best. Slight improvements in performance can result in
increased traffic, which in turn harms performance. Unstructured perfor-
mance-tuning is sometimes called thrash-tuning. Here are some characteristics
of thrash-tuning:

� Results of major design or parameter changes are unclear. Though fairly
significant changes are made, many times all at once, it isn’t clear
whether a real performance improvement has been made.

� Attempts to improve performance go in circles. In many instances, an
administrator or developer may tune a parameter and put it back again
several times, without settling on an improvement.

� Performance tuning consumes much more of the schedule than it should.
Performance improvements can be elusive, and performance improve-
ments are not always readily apparent.

In general, the performance-tuning methodologies are the cause of the prob-
lem, though the symptoms can sneak up on us quickly. These practices can get
us into trouble:

� Changing more than one parameter at a time. This approach has tripped
veterans and novices alike. Though it seems counterintuitive, this prac-
tice takes more time than it saves because it’s extremely difficult to
determine the impact of parameters.

Antipattern: Thrash-tuning 305
� Working without a baseline. This practice is a close second in the perfor-
mance antipattern area. Without a baseline, it’s impossible to tell what
progress is being made toward the goal.

� Undisciplined choices for performance improvement. It’s easy to work
into a cycle of making expensive, low-impact fixes. Ironically, some of
the best programmers fall into this trap.

� Working on performance for too long. It’s equally important to know
when to stop. Firm exit criteria will save time and money.

10.6.1 Solution: Use sound performance methodologies
With parallel architectures, solid performance-testing methodology is much
more important because so many variables are involved. Two investments for
high-volume applications are imperative: a strong performance-testing
methodology and an isolated performance environment. The methodology,
and the will to use it, allows efficient testing and rapid improvement, and con-
trols the performance-tuning expenses. It will also protect part of the testing
budget and schedule to ensure that stakeholders will be satisfied with the
application speed. With an isolated, stable environment, system performance
can be closely controlled and measured. In general, the steps shown next have
worked well for me.

Performance Enhancing Methodologies
I have used many performance methodologies in the past, and these rules represent
some of the most effective parts of each. Two keys to success are attention to frequent
measurements and repeatable steps after a good baseline, and a focus on items with
high reward/cost ratios.

1 Decide on the metrics for success. An often-overlooked key to success is
defining success.

2 Set up the base environment, and stick to a code base. This is the base
environment. The process will measure the base; make single, con-
trolled modifications; and then measure the base again. This process is
repeated until success is achieved. Sometimes, it’s cheaper to rent the
equipment and lab space than to build a specialized lab. That option is
perfectly acceptable as long as the testing conditions are at least as
stringent as the production conditions.

3 Take a snapshot of the controlled environment. For the environment to
be a valid baseline, it must be completely repeatable, from configura-
tion files to database data.

306 CHAPTER 10

Bitter scalability
4 Take baseline measurements. Before you attempt anything else, you
must measure the system. The baseline will show either progression or
regression in subsequent tests. The baseline measurements should
include enough detail so that you can isolate problems to individual
components. Code profilers can assist with this process. Other tools,
such as Page Detailer, can break down the individual load times for
objects on a web page. The point is to have enough information to
spot the bottlenecks.

5 Test with repeatable scenarios. Testing with repeatable scenarios makes
it much easier to understand when a change has improved the perfor-
mance of the system.

6 Work on the most important scenarios first. This should go without say-
ing, but many programmers waste valuable time on meaningless
administrator functions or unimportant error conditions, and ignore
the critical test cases.

7 Work on the bottlenecks with the highest reward/cost ratio. Again, it
should go without saying that many smaller low-cost, medium-reward
fixes can often improve the system as much as a high-reward fix with a
high cost.

8 Quit when you are done. Performance testing can go on indefinitely if
you let it. Establish criteria that will make your customers happy and
quit once you’ve satisfied those criteria.

9 Once a system is in production, do not stop measuring and tuning. Pro-
duction systems will probably have different behavior from sterile
tests. It’s difficult to predict how caching models will hold up, how
workloads will be distributed, or how end users will use a system. You
should periodically measure your production systems and, where pos-
sible, tune the systems with information learned from the sterile test
environment. If a system must be tuned in production, it’s important
to keep the methodology strong; change one variable at a time, and
measure between changes. For production systems, response time in a
vacuum is not enough, since the workload can also change. Other
metrics, such as page views per second, may be more valuable.

10 If necessary, get help. Because Internet performance tuning can be such
a demanding discipline and is becoming more specialized, it pays to
spend a little money up front to prevent a long-term disaster.

Antipatterns in this chapter 307
10.7 Taming the performance beast

In this chapter, we discussed performance antipatterns. Some were related to
code, but most were related to process. The unpredictable growth and work-
loads inherent in high-volume Internet applications make achieving good per-
formance tuning more difficult. Planning and testing are mandatory, leaving
enough time at the end of the cycle to tune the system to predefined specifica-
tions. Many Internet architects are turning to parallel architectures to provide
scalability, with a dispatcher serving multiple web servers, which in turn serve
multiple web application servers. The complexity of these solutions makes the
architectures ripe for antipatterns. We should pay special attention to even
workload distribution, round-tripping across interface boundaries, and session
state management. A world-class performance-testing environment, built or
rented, and a solid performance-testing methodology are critical.

10.8 Antipatterns in this chapter

These are the templates for the antipatterns that appear in this chapter. They
provide an excellent summary format and form the basis of the cross-refer-
ences in appendix A.

Performance Afterthoughts
DESCRIPTION: Poorly defined performance plans, poor requirement spec-
ification, and inattention to performance throughout the cycle can lead to
nasty surprises at the end of the cycle.
MOST FREQUENT SCALE: Application.
REFACTORED SOLUTION NAME: Performance Planning.

REFACTORED SOLUTION TYPE: Process.
REFACTORED SOLUTION DESCRIPTION: Gather performance require-
ments, plan, and prepare for the future. Sanity-check key components,
and address the riskiest elements of the architecture early.
TYPICAL CAUSES: Poor planning.
ANECDOTAL EVIDENCE: “We’ll have plenty of time to performance-tune
at the end of the cycle.” “It is a good design. We don’t need to tune for
performance.” “We’ll let our unit testers probe for performance.” “We’ve
done all of our test cases except our performance test case.”

308 CHAPTER 10

Bitter scalability
SYMPTOMS, CONSEQUENCES: Repeated delivery of software with poor
performance; performance-tuning activities that are unfocused and inef-
fective; inability of low-level developers to articulate the performance
requirements for a component they’re building.

Round-tripping
RELATED ANTIPATTERNS: The Cacheless Cow. Some specializations of
this antipattern exist. The lack of a cache can also cause round-tripping.
DESCRIPTION: Round-tripping occurs when a chatty interface falls on a
major interface boundary, such as a distributed interface. For EJBs, a cli-
ent (usually a controller or JSP) accesses the remote interface of a distrib-
uted entity bean. Since an entity bean usually exposes many fields and
sometimes collections, this results in many round-trip communications,
absolutely murdering performance.
MOST FREQUENT SCALE: Application.

REFACTORED SOLUTION NAME: The Facade.
REFACTORED SOLUTION TYPE: Software.
REFACTORED SOLUTION DESCRIPTION: The most common solution to
this problem is the facade. This interface is implemented with a distrib-
uted call, such as a session bean. The interface combines many chatty
communications into a single, consolidated call.

TYPICAL CAUSES: A common cause is the use of major frameworks, such
as EJBs, near interface boundaries without modification.
SYMPTOMS, CONSEQUENCES: Applications are slow.

ALTERNATIVE SOLUTIONS: The distributed command can also be used to
control round-tripping. In addition, refactoring can frequently shift an
interface so that logical tasks are grouped into a single physical round-trip.
Other alternatives can help performance. A cache can help after the first
load. (Often, both a cache and facade are desired.) The EJB can also be
deployed on the same box, though many times, strong reasons motivate
separation.

Bad Workload Management
DESCRIPTION: Poor distribution of work occurs when one server of a
cluster receives a disproportionate share of the work.

MOST FREQUENT SCALE: System.

Antipatterns in this chapter 309
REFACTORED SOLUTION NAME: Workload Management.

SOLUTION ALSO KNOWN AS: Even Load Balancing.
REFACTORED SOLUTION TYPE: Technology.
REFACTORED SOLUTION DESCRIPTION: True load-balancing dispatchers
help. Partitioning larger jobs into smaller ones can even out a workload,
and the specialization of certain servers to handle longer jobs can produce
significant benefits.

TYPICAL CAUSES: Dynamic content is much more uneven. When the same
primitive techniques are used to balance static and dynamic jobs, uneven
distribution of work can be the result. In addition, if odd long jobs are
treated the same as other jobs, they’ll throw off round-robin load-balanc-
ing schemes.
SYMPTOMS, CONSEQUENCES: Sporadic performance and inconsistent per-
formance across identically configured servers are the most common
symptoms.
SOLUTION ALTERNATIVES: Server consolidation to a single high-powered
server eliminates this problem completely, at the price of convenient
scalability.

Chaotic Session State Management
DESCRIPTION: Certain state management techniques with distributed
architectures have different strengths and weaknesses. Some alternatives
include dispatching with session affinity, distributed state management,
stateful session bean state management, and entity bean state manage-
ment. These techniques can easily be misapplied.
MOST FREQUENT SCALE: Enterprise. In many cases, an enterprise imple-
mentation will dictate an approach.

REFACTORED SOLUTION NAME: Correct Choice of Technique.
REFACTORED SOLUTION TYPE: Software.
REFACTORED SOLUTION DESCRIPTION: Choose the right tool for the job.
Understand the problem domain and the technologies that will be applied
to the problem.
ROOT CAUSES: Ignorance.

SYMPTOMS, CONSEQUENCES: Improper choice of technique can result in
poor performance, dif ficult application maintenance, and dif ficult
extensibility.

310 CHAPTER 10

Bitter scalability
Thrash-tuning
DESCRIPTION: Performance tuning is difficult without a solid baseline or
when multiple configuration parameters are changed at once between
measurements. Attempting performance tuning in these conditions can
result in similar or identical tests run several times, giving the appearance
of thrashing.

MOST FREQUENT SCALE: Application.
REFACTORED SOLUTION NAME: Good Performance Methodology.
REFACTORED SOLUTION TYPE: Process.

REFACTORED SOLUTION DESCRIPTION: Good testing methodology and a
good testing environment are the primary keys. Baseline measurements
are mandatory. All tests should start from a common configuration and
change a single parameter at a time.
ROOT CAUSES: Haste, ignorance.
ANECDOTAL EVIDENCE: “What did we change for that last test?” “Didn’t
we just do that?” “We’re right back where we started.”
SYMPTOMS, CONSEQUENCES: Inefficient performance testing and tuning,
longer-than-expected performance tuning cycles, and unclear results of
performance improvements.

11Sweet parting thoughts
This chapter covers
� Ways to use antipatterns

to jump-start a career
� A high-level process for

the application of antipatterns
� A challenge to publish antipatterns
311

312
We are on the nearly flooded Barton Creek in Texas. Considering that its bound-
aries are almost entirely within the Austin City limits, it is an amazingly isolated
run. The creek normally has plenty of fun, intermediate-level rapids when the
water is at sane levels. Today it is freight-train loud. We’d run it many times
before, but never with this much water.

Years before, in much easier conditions, I’d been trapped in a hydraulic, where
I struggled in vain, panicked, and was beaten badly on the river bottom before I
swam clear. Today, I have a healthy dose of nervous anticipation, but not so much
as to be incapacitated. After all, I am on a familiar creek with some very strong
boaters. There are few dangerous places on the river where I cannot be reached
from the bank with a short throw rope or from another boat, and I am prepared.
I know where the challenges are hiding.

As we descend I see the mist rising just behind a horizon line. It is the first dan-
ger spot, an 8-foot waterfall with a nasty hole at the bottom. At the top of the fall
my approach and speed are good—I get a nice jump off the edge of the drop. I flip
as I clear the hydraulic but I roll routinely, without much effort. Now we are
approaching the second danger spot called Twin Falls.

A mass of water surges violently to the left over a 4-foot waterfall with a com-
plicated hydraulic. I do not want any part of it, but some of the stronger paddlers
head that way. I go right instead. The move is intricate, but plenty of water sweeps
through the main channel to guide my boat. In spite of that help, I misread the
current and get swept into the hydraulic behind a pour-over. It is a particularly
nasty and sticky formation today. My momentum is gone. I shudder at the power
and suction of the hydraulic, and focus on staying upright. Barton Creek now has
my undivided attention.

11.1 Antipatterns help us on many levels

Throughout this book, we’ve looked at Java programming processes and prac-
tices that break under pressure. We’ve refactored the problems to solutions
that work. At this point, let’s step back briefly and take one final look at the
big picture.

 By now, the value of the antipatterns presented here should be clear, but
this list is in no way comprehensive. Now that we understand the negative
impact of individual antipatterns on projects, management, and programmers,
we can begin to appreciate the value of integrating antipatterns on many dif-
ferent levels. They can jump-start careers, save projects—make us into better
programmers. Study and application of antipatterns in advance of a program-
ming venture can steer us around the swamp-like traps that have mired so

Antipatterns help us on many levels 313
many projects of all dimensions and sharpen our skills by hammering home
the reasons behind the rules for good hygiene and program structure.

11.1.1 Antipatterns ignite careers
For most of my career, I’ve sought difficult problems and honed my skills in
finding practical solutions to those problems. As a database systems program-
mer at IBM, I learned about database performance and the common problems
that plague database applications. My management team liked my initiative
and deployed me on a highly visible national team chartered to solve these
problems. After publishing an article on performance-related antipatterns, I
was approached by a publisher to write my first book.

 These days, I am a consultant. My professional focus is on antipatterns and
the application of refactored solutions. The first rule of consulting and sales is
“Hurt, then rescue.” We must be able to see a customer’s problems, commu-
nicate the impact of the problems, and show that the impact is sufficient
enough to warrant a decent commissions check for the solution. Then, we
must solve the problem. The best consultants recognize a pattern of behavior
that they can leverage across many enterprises. Does this process sound famil-
iar? It should.

 Software engineers and architects who are well versed in antipatterns can
be of considerable value. They have the foresight to steer the troops away
from many software development ambushes, often while upper management
is watching. The most respected programmers seem to know why an idea is
good or bad. I like learning from my mistakes as much as the next person, but
I would much rather learn from your mistakes.

11.1.2 Understanding antipatterns improves programs
Many of the bad practices outlined in this book can be exceedingly expensive
mistakes. We know that a tight coupling between the model and view can be
crippling or even fatal under many circumstances. We have seen the impact of
round-tripping. The code may be easy to refactor, but the problem may not
be easy to find—I’ve worked on projects that involved months of trying to
locate the source of performance problems of this kind. Often, a caching
strategy should be considered from the beginning, so that strategies for stale
data and invalidation will be compatible with the architecture. Many of the
EJB antipatterns are also easy to fix, but very difficult to isolate without
advanced knowledge because so many layers and variables complicate the
search. It is not rare for a single decision leading to an antipattern to cost hun-
dreds of thousands of dollars over the life cycle of a project. Crisis meetings

314 CHAPTER 11

Sweet parting thoughts
with high-ranking management and highly paid technical staff can burn
money at a frightening rate. So can schedule overruns and consultants.

 By far the best way to solve antipatterns is to avoid the conditions that
allow them to occur in the first place. This requires that we allocate time in
our careers and projects to perform adequate research. We should also ask
questions about key antipatterns that share our project’s domain when we
interview and phone-screen job candidates, and we need to reserve time after
a project to identify and capture key antipatterns that plagued its design. Pub-
lishing the worst problems where the whole team is able to read them is a
good idea.

11.1.3 Understanding antipatterns makes you a better programmer
Good programmers learn from their mistakes, but that costs time. Great pro-
grammers learn from the mistakes of others. The study of antipatterns gives us
insight into the patterns of behavior that lead to failure. Few programmers are
motivated enough to follow style guides and programming practices if they
don’t understand why they should. If we understand the Split Cleaner design
pattern in chapter 7, then we also understand why we must aggressively pair
adds with removes and know when it’s okay to break those rules. Understand-
ing Model-View-Controller can lead to cleaner architectures, and learning
some of the variations in chapter 4 can help us understand the ways that
design patterns can break.

 Antipatterns can also help us look at coding in a whole new light. We can
empower ourselves to make a difference by learning to spot patterns of trou-
ble in our domain and find solutions to those problems. Becoming more pro-
ductive will be valuable—making a whole team more productive will multiply
the value. Learning to apply antipatterns to a new domain need not be diffi-
cult. We can see direct relationships between Round-tripping and the Cache-
less Cow. We can identify the common root cause in Lapsed Listeners, Leak
Collections, and Split Cleaners: a failure to pair the preparation and cleanup.
Testers will note similarities between some of the performance analysis antipat-
terns and the general testing process. With enough exposure over time, we can
spot and solve antipatterns quickly. This ability makes us more efficient, pro-
ductive—and valuable.

Integrating antipatterns with process 315
11.2 Integrating antipatterns with process

We can indeed make a significant impact by studying and applying the theory
of antipatterns. While individual pockets of value can make a difference, we
can do much more by integrating them into our processes and organizations.
Figure 11.1 illustrates the six stages in which we can improve our process with
antipattern-related activity.

 Figure 11.1 shows a common iterative development process that we
reviewed in chapter 2. The eight-ball symbols identify the likely places that a
development process can be modified to include protection from antipatterns.
Some deal with prevention or early detection of antipatterns, and some deal
with capturing and refactoring them.

B In the project initialization. We can identify antipatterns related to a technology or
approach. By aggressively seeking out likely problems, we can short-circuit many
of them before they start. This is a highly recommended practice that helps pre-
vent antipatterns.

c In the design stage. In our design documentation, we can provide a place in our
design artifacts to capture likely antipatterns. We should also capture annotations

Plan
Design
Code
Assess

B

C

D

E

F

G

Plan
Design
Code
Assess

Plan
Design
Code
Assess

Plan
Design
Code
Assess

Plan
Design
Code
Assess

Plan
Design
Code
Assess

 Prototypes Designs Beta Release Production

Figure 11.1 An antipattern can be addressed in at least six stages in the development process.
At initialization, we can research antipatterns in our chosen domain. At design and code time, we
can use annotations and inspections to prevent them. At testing time, we can establish patterns.
Between cycles, we can refactor. At the end of the cycle, postmortems help to identify
antipatterns.

316 CHAPTER 11

Sweet parting thoughts
to warn against antipatterns in likely places (for example, the use of a publish/sub-
scribe design pattern could have an annotation to watch for Lapsed Listeners, as in
chapter 6). This practice also helps prevent antipatterns.

D In the implementation stage. Code inspections are a good way to find occurrences of
existing antipatterns. Senior developers and leads should know about the antipat-
terns related to a technology and react accordingly.

E In the testing stage. An occurrences field in a bug database can allow us to capture
information on how many times a certain type of problem has cropped up. This
flag motivates us to look beyond the scope of a single fix and look to the causes of
the bug. This way, we can identify new antipatterns.

F Between iterations. At allmystuff, we did some refactoring between iterations of our
framework. Between iterations is an ideal time to refactor antipatterns, and this
practice helps us refactor identified antipatterns early. Remember, extreme pro-
gramming teaches us that refactoring saves time; it does not waste time.

G After delivery. After a project, we should take the time to do a postmortem. This
meeting gives developers a chance to look back at a development process and mod-
ify it for the next cycle. This process should be dedicated to fixing the problem
rather than placing the blame. At allmystuff, our postmortems were often combat-
ive and confrontational. Upper management was also watching, making it difficult
for engineering or client services management to release control long enough for
the process to work. Managers’ involvement pretty much guaranteed that certain
issues would not be addressed, or discussion would be killed shortly after those
issues were raised. A good postmortem should be free from management influence
and politics. Managers should instead concentrate on ensuring that each identified
problem and associated task has appropriate ownership and attention.

To thrive, an antipattern must infect a process in three ways:
� It must be injected into a system. An antipattern will not hurt us if it is

never introduced. Knowledge, common sense, and diligence are the
best inoculations against infection.

� It must go undetected long enough to cause harm. If an antipattern is
refactored before it causes damage or is copied, then it will cost us only
the refactoring time. If it goes undetected or if we allow it to persist,
then the meter is running: the costs will accumulate over time.

� It may be repeated, multiplying the damage. If we solve an antipattern
after it has only bitten us once, we are ahead of the game; otherwise, the
impact will be multiplied across many implementations.

Next steps, last steps 317
We can attempt to break an antipattern’s cycle in one of these three places. At
stages 1, 2, and 3, we prevent the antipattern from ever making it into the
design. Stage 5 refactors the antipattern, preventing the damage from spread-
ing. At stages 4 and 6, we try to find patterns and break the cycles before the
antipatterns can be repeated.

11.3 Next steps, last steps

This collection of intermediate antipatterns is an attempt to encourage the Java
community to use antipatterns. To establish momentum in this area, we must
work together. If you want to help build this community, make an effort to par-
ticipate in the discussion boards, such as the one at http://www.bitterjava.com
(for Java antipatterns) or http://www.antipatterns.com (for general process anti-
patterns). The Bitter Java message boards have been recently created for you.
If you’d like to publish, there are a number of opportunities to do so. You can
start small with online services, like http://www.bitterjava.com, and vendor
pages such as IBM’s developerWorks at http://www.ibm.com/developer and
Middleware Co.’s TheServerside.com at http://www.theserverside.com.

 We need to collect Java antipatterns as vigorously as we do design patterns.
We should also collect success stories about the application and use of antipat-
tern research. As the momentum builds, tool vendors, authors, and program-
mers will help strengthen the movement.

 As I am violently tossed about on Barton Creek, I clear my mind. My boat now
points to the east bank, perpendicular to the current, with my forward momen-
tum completely arrested. I let my training take over.

 Though I am rarely on a body of water large enough to practice, my earlier
obsession with hydraulic-escape techniques tells me that instinctively leaning too
hard on my downstream paddle will separate my shoulder. Instead, I brace and
test my lateral freedom. I find that though downstream momentum is limited, I
can work back and forth, toward either bank, with a combination of bracing and
sweeping strokes that I’ve studied but seldom applied on bigger water. After a cou-
ple of strokes, I reach one side of the hydraulic. I lose momentum and slide back
toward the center. However, I use that backward momentum to move toward the
other bank.

 The hole still holds firm, but it turns my boat 90 degrees to face it. My instincts
scream at me to paddle away from it, but on this day, I trust my training. I pad-
dle hard, right into the teeth of the turbulent hole in the river. My boat stands up
on end, and my weight and the downward turbulence conspire to drive me deep

318 CHAPTER 11

Sweet parting thoughts
into the creek. Then suddenly the buoyancy of the kayak drives me high into the
air, and I dramatically pop free.

 My friends look at me as if I am Lazarus, raised from the dead. I recognize the
look and feel the same, but I shrug my shoulders as if to say, “No big deal.” I turn
my back to them, allow myself a wide grin, and paddle on down the river, ever
closer to the safety of our cars below.

ACross-references
of antipatterns
This appendix will

� Cross-reference antipatterns
in Bitter Java by name

� Cross-reference antipatterns
in Bitter Java by scale

� Cross-reference antipatterns
in Bitter Java by symptom
319

320 APPENDIX A

Cross-references of antipatterns
Table A.1 Cross-reference of antipatterns by name

Name Description Solution Symptoms Location

1. Bad Workload
Management

Poor distribution of work occurs
when one server of a cluster gets
a disproportionate share of the
work.

Even load bal-
ancing, job parti-
tioning

Sporadic perfor-
mance and incon-
sistent
performance
across identically
configured serv-
ers

Chapter 10,
Section 10.4

2. Cacheless
Cow

Caches can be used to provide a
significant performance boost with
very little effort, but many develop-
ers neglect this basic enhance-
ment. Most Internet applications
take advantage of hardware and
web servers for caching of static
content, but caching of dynamic
content takes more time.

Dynamic com-
mand cache

Poor performance Chapter 5,
all sections

3. Chaotic
Session
Management

Certain state management tech-
niques with distributed architec-
tures have different strengths and
weaknesses. Some alternatives
include dispatching with session
affinity, distributed state manage-
ment, stateful session bean state
management, and entity bean
state management. They can eas-
ily be misapplied.

Choose the right
tool for the job.
Understand the
problem domain
and the technol-
ogies that will
be applied to
the problem.

Improper choice
of technique can
result in poor per-
formance, diffi-
cult application
maintenance, and
difficult extensibil-
ity.

Chapter 10,
Section 10.5

4. Coarse or Fine
Commands

Commands can be divided too
coarsely or finely for optimal per-
formance, readability, or reuse.

Optimal com-
mand granularity

Poor reuse/poor
performance

Chapter 4,
Section 4.4

5. Compound
JSPs

When a command’s execution can
lead to one of many pages being
returned to the user, sometimes a
programmer will express this deci-
sion logic in a JSP.

Push decision-
making into con-
trollers

Poor separation of
concerns

Chapter 4,
Section 4.3

6. Connection
Thrashing

When database connections are
created from scratch with each
new user connection, the perfor-
mance can be poor, because data-
base connection costs are
prohibitive. This antipattern can
happen for other connection types
as well.

Connection pool-
ing

Poor performance Chapter 7,
Section 7.2

APPENDIX A 321
7. Everything Is
an EJB

This is the generic form of the
Round Bean in a Square Hole anti-
pattern. If a problem is not well
suited, an EJB solution is likely to
be too difficult or will perform
poorly.

Use alterna-
tives to EJBs

Poor performance,
high expense for
simple solutions

Chapter 8,
Section 8.5

8. Excessive
Layering

Object-oriented systems are easy
to layer with excessive complexity
that is not required to adequately
describe the relationships and
behavior in the model. The com-
plexity of the software can easily
outpace the capabilities of the
hardware platform.

Refactor; inte-
grate early and
often

Poor performance,
poor readability

Chapter 2
Section 2.3.4

9. Fat
Commands

Functionality that belongs in the
model or controller can creep into
the command layer.

Refactor into
model-based
commands.

Command layers
change with every
change in model.
The command
layer looks like a
utility collection.

Chapter 4,
Section 4.5

10. Hardwired
Connections

For business-to-business connec-
tions, a common implementation
is to enumerate all of the fields in
an entire interface, complete with
parameter and return types. The
connection is then made through
some form of a remote procedure
call. This approach makes the con-
nection difficult to maintain and
support as the interfaces change.

XML messages
or web services

Multiple versions
of the same inter-
face; interface
support lagging
the capabilities of
both the client
and server sys-
tems.

Chapter 7,
Section 7.4

11. Incomplete
Process
Transitions

Many fail to get the full benefits
from object-oriented technologies
and iterative processes because
they fail to make a full transition to
the new development process.

Education, lead-
ership

Long cycles, anal-
ysis paralysis,
overruns

Chapter 2,
Section 2.5.2

Table A.1 Cross-reference of antipatterns by name (continued)

Name Description Solution Symptoms Location

322 APPENDIX A

Cross-references of antipatterns
12. Lapsed
Listeners
Leak

The publish/subscribe design pat-
tern requires applications or
classes with an interest in an
event to register. The Lapsed Lis-
tener is one form of memory leak
where an event listener is regis-
tered without being removed. If the
life cycle of the listener registry is
long, then a memory leak will
occur.

Weak refer-
ences, or pairing
register with
remove.

Some objects are
not garbage-col-
lected, causing
the system to
slow over time,
until the app is
terminated or
eventually dies.

Chapter 6,
Section 6.3

13. Leak
Collection

If a collection has a long life cycle,
it can have long-lived references
that are never removed. These will
prevent large blocks of memory
from being freed.

Weak refer-
ences, or pairing
add with
remove.

Some objects are
not garbage-col-
lected, causing
the system to
slow over time,
until the app is
terminated or
eventually dies.

Chapter 6,
Section 6.4

14. Magic Servlet The Magic Servlet is a Java servlet
that does all of the work itself. The
servlet has elements of model,
view, and controller. Servlets cre-
ated in this form should be
approached with extreme preju-
dice: they are simply evil.

Model 2, the Tri-
angle, Model-
View-Controller

Poor readability,
rippling impact of
minor changes

Chapter 3,
all sections

15. Monolithic
JSPs

Like the Magic Servlet, the mono-
lithic JSPs show a complete
absence of any trace of model-
view-controller separation. In this
case, all of the code is in a tag
language.

Model 2, the Tri-
angle, Model-
View-Controller

Poor readability,
rippling impact of
minor changes

Chapter 4
Section 4.2

Table A.1 Cross-reference of antipatterns by name (continued)

Name Description Solution Symptoms Location

APPENDIX A 323
16. Performance
Afterthoughts

Poorly defined performance plans,
poor requirement specification,
and inattention to performance
throughout the cycle can lead to
nasty surprises at the end of the
cycle.

Gather perfor-
mance require-
ments, plan,
and prepare

Repeated deliv-
ery of software
that performs
poorly, perfor-
mance-tuning
activities that are
unfocused and
ineffective, and
inability of low-
level developers
to articulate the
performance
requirements for
a component that
they are building.

Chapter 10,
Section 10.2

17. Rigid XML Some design choices can restrict
the extensibility of XML.
Namespaces can collide, and
some constructs are more restric-
tive than others.

Extensible, flexi-
ble XML

Difficult mainte-
nance and
changes that rip-
ple into other
parts of the sys-
tem

Chapter 7,
Section 7.6

18. Round Bean
in a Square
Hole

Many times, the wrong classifica-
tion of EJB is used inappropriately.
There are several different varia-
tions of this problem. A complex
object relationship may fit bean-
managed persistence better than
container-managed persistence. In
other cases, a problem may not
require the full support of an entity
bean. Similarly, entity beans may
be overkill for applications that
exclusively read or write.

Use the correct
EJB for the job

Poor performance
or readability

Chapter 8,
Section 8.4

19. Round-
tripping

Round-tripping occurs when a
chatty interface falls on a distrib-
uted boundary. For EJBs, a client
(usually a controller or JSP)
accesses the remote interface of
a distributed entity bean. Since an
entity bean usually exposes many
fields and sometimes collections,
this results in many round-trip
communications, absolutely mur-
dering performance.

Command layer,
facade, refactor-
ing, caching

Poor performance Chapter 8,
Section 8.3

Chapter 10,
Section 10.3

Table A.1 Cross-reference of antipatterns by name (continued)

Name Description Solution Symptoms Location

324 APPENDIX A

Cross-references of antipatterns

20. Split Cleaners When a resource is allocated sep-
arately from where it is freed,
cleanup can be potentially lost.

Pairing alloca-
tion with free

Resource leaks Chapter 7,
Section 7.3

21. Synchronized
Read/Write
Bottleneck

The Java programming language
locks on the object level for syn-
chronization, but does not distin-
guish between readers and
writers. This locking mechanism is
too restrictive for applications like
databases and caches.

Read/write
locks

Poor performance Chapter 5,
Section 5.5

22. Thrash-tuning Performance tuning is difficult
without a solid baseline or when
multiple configuration parameters
are changed at once between
measurements. Attempting perfor-
mance tuning in these conditions
can result in similar or identical
tests run several times, giving the
appearance of thrashing.

Good testing
methodology
and a good test-
ing environment
are the primary
keys. Baseline
measurements
are mandatory.
All tests should
start from a
common config-
uration and
change a single
parameter at a
time.

Inefficient perfor-
mance testing
and tuning, longer
than expected
performance tun-
ing cycles, and
unclear results of
performance
improvements

Chapter 10,
Section 10.6

23. Too Many
Webpage
Items

Many web designers have no con-
cept of the costs associated with
loading web page items like graph-
ics or animations. Since items
have incremental load costs, too
many objects can doom perfor-
mance.

Eliminate extra-
neous objects

Poor performance Chapter 2,
Section 2.2.7

24. XML Golden
Hammer

XML, like many powerful technolo-
gies, can be misused. In this
case, we are using XML to do
large-scale search or summary
missions.

Databases,
indexed XML

Poor performance Chapter 7,
Section 7.5.1

Table A.1 Cross-reference of antipatterns by name (continued)

Name Description Solution Symptoms Location

APPENDIX A 325

Table A.2 Cross-reference of antipatterns by scale, name

Name Scale Location

2. Cacheless Cow Application Chapter 5

4. Coarse or Fine Commands Application Section 4.4

5. Compound JSPs Application Section 4.3

6. Connection Thrashing Application Section 7.2

7. Everything Is an EJB Application Section 8.5

8. Excessive Layering Application Section 2.3.4

9. Fat Commands Application Section 4.5

11. Incomplete Process Transitions Application Section 2.5.2

12. Lapsed Listeners Leak Application Section 6.3

13. Leak Collection Application Section 6.4

14. Magic Servlet Application Chapter 3

15. Monolithic JSPs Application Section 4.2

16. Performance Afterthoughts Application Section 10.2

17. Rigid XML Application Section 7.6

18. Round Bean in a Square Hole Application Section 8.4

19. Round-tripping Application Section 8.3
Section 10.3

20. Split Cleaners Application Section 7.3

22. Thrash-tuning Application Section 10.6

24. XML Golden Hammer Application Section 7.5.1

3. Chaotic Session Management Enterprise Section 10.5

10. Hardwired Connections Enterprise Section 7.4

23. Too Many Webpage Items Enterprise Section 2.2.7

21. Synchronized Read/Write Bottleneck Micro-architecture Section 5.5

1. Bad Workload Management System Section 10.4

326 APPENDIX A

Cross-references of antipatterns
Table A.3 Cross-reference of antipatterns by symptom, name

Name Symptoms Location

11. Incomplete Process
Transitions

Analysis paralysis Section 2.5.2

9. Fat Commands Command layers change with every change
in model. Command layer looks like utility
collection.

Section 4.5

11. Incomplete Process
Transitions

Cost overruns Section 2.5.2

3. Chaotic Session
Management

Difficult maintenance Section 10.5

17. Rigid XML Difficult maintenance Section 7.6

7. Everything Is an EJB Expensive simple solutions Section 8.5

16. Performance Afterthoughts Ineffective tuning activities Section 10.2

22. Thrash-tuning Inefficient performance testing and tuning Section 10.6

10. Hardwired Connections Interface support lagging the capabilities of
both the client and server systems

Section 7.4

11. Incomplete Process
Transitions

Long development cycles Section 2.5.2

22. Thrash-tuning Long development cycles Section 10.6

12. Lapsed Listeners Leak Memory leak Section 6.3

13. Leak Collection Memory leak Section 6.4

10. Hardwired Connections Multiple versions of the same interface Section 7.4

1. Bad Workload Management Performance is sporadic and inconsistent
across identically configured servers

Section 10.4

16. Performance Afterthoughts Performance requirements are not known
by responsible programmers

Section 10.2

2. Cacheless Cow Poor performance Chapter 5

3. Chaotic Session
Management

Poor performance Section 10.5

4. Coarse or Fine Commands Poor performance Section 4.4

6. Connection Thrashing Poor performance Section 7.2

7. Everything Is an EJB Poor performance Section 8.5

APPENDIX A 327

8. Excessive Layering Poor performance Section 2.3.4

12. Lapsed Listeners Leak Poor performance Section 6.3

13. Leak Collection Poor performance Section 6.4

16. Performance Afterthoughts Poor performance Section 10.2

18. Round Bean in a Square
Hole

Poor performance Section 8.4

19. Round-tripping Poor performance Section 8.3
Section 10.3

21. Synchronized Read/Write
Bottleneck

Poor performance Section 5.5

23. Too Many Webpage Items Poor performance Section 2.2.7

24. XML Golden Hammer Poor performance Section 7.5.1

8. Excessive Layering Poor readability Section 2.3.4

14. Magic Servlet Poor readability Chapter 3

15. Monolithic JSPs Poor readability Section 4.2

18. Round Bean in a Square
Hole

Poor readability Section 8.4

3. Chaotic Session
Management

Poor reuse Section 10.5

4. Coarse or Fine Commands Poor reuse Section 4.4

5. Compound JSPs Poor separation of concerns Section 4.3

20. Split Cleaners Resource leaks Section 7.3

14. Magic Servlet Rippling impact of minor changes Chapter 3

15. Monolithic JSPs Rippling impact of minor changes Section 4.2

17. Rigid XML Rippling impact of minor changes Section 7.6

Table A.3 Cross-reference of antipatterns by symptom, name (continued)

Name Symptoms Location

bibliography
My goal for Bitter Java is to provide a book that informs and communicates in
clear, understandable language. For this reason, many of the books and articles
that I consulted provide interesting angles to old ideas. Some of the books and
articles helped me shape ideas, while others provided new language that worked
in this forum. Many antipatterns, after all, are not yet named. Still other sources
provided organizational insight.

 Among the sources I’ve listed are some of the standards in the industry, as
well as some relatively unknown sources. Some that you might not have seen
before are Eric Allen’s bug pattern on the Split Cleaner (part of a perceptive
series on bug patterns on developerWorks); Michael Conner, et al.’s article on
caching of dynamic content; and a well-executed book on the command pattern
for a specific architecture, by Joaquin Picon. Some of my favorites are on this list,
including Skip McCormick, et al.’s AntiPatterns, which keeps some tedious top-
ics fun to read; Kent Beck’s book on extreme programming, which takes a neces-
sar y step back toward simplicity; and Walker Royce’s Software Project
Management, which has shaped many of my ideas about managing iterative
projects.

NOTE Links are provided for convenience. All were tested before the book
was published, but may not remain current.
329

330 BIBLIOGRAPHY
Allen, Eric E., Diagnosing Java Code: The Split Cleaner Bug Pattern, on IBM devel-
operWorks: July 2001.
Link: http://www.ibm.com/developerworks/java/library/j-
diag0717.html?dwzone=java.

Ambler, Scott W., Writing Robust Java Code, self-published. January 2000.
Link: http://www.ambysoft.com/javaCodingStandards.pdf.

Beck, Kent, eXtreme Programming eXplained, Reading, Mass.: Addison-Wesley,
2000.

Binder, Robert V., Testing Object-Oriented Systems: Models, Patterns, and Tools,
The Addison-Wesley Object Technology Series, Reading, Mass.: Addison-Wesley,
2000.
Link: http://cseng.aw.com/book/coverpic/0,3831,0201809389,00.html.

Bos, Bert, XML in 10 Points, World Wide Web Consortium (W3C), at http://
www.w3.org/XML/1999/XML-in-10-points.

Brooks, Fredrick P., The Mythical Man-Month, Reading, Mass.: Addison-Wesley,
1995.

Brown, William J., Raphael C. Malveau, Hays W. “Skip” McCormick III, and Tho-
mas J. Mowbray, Anti-patterns: Refactoring Software, Architectures, and Projects
in Crisis, New York: John Wiley and Sons, Inc., 1998.
Link: http://www.antipatterns.com.

Clark, Roger, A Primer on Internet Technologies, at http://www.anu.edu.au/people/
Roger.Clarke/II/IPrimer.html. February 1998, Xamax Consultancy Pty. Ltd.,
1997, 1998.

Conner, Mike, George Copeland, and Greg Flurry, “Scaling Up E-business Applica-
tions with Caching,” in Developer Toolbox Technical Magazine: August 2000.
Link: http://www6.software.ibm.com/devtools/news0800/art7.htm.

Costello, Roger L., XML Schema: Best Practices Homepage, November 2001.
Link: http://www.xfront.com/BestPracticesHomepage.html.

Henry, Ethan and Ed Lycklama, How Do You Plug Java Memory Leaks? in Dr. Dobb’s
Journal: February 2000.
Link: http://www.ddj.com/articles/2000/0002/0002l/0002l.htm.

Lea, Doug, Draft Java Coding Standard, released to the public domain,
February 2000.
Link: http://g.oswego.edu/dl/html/javaCodingStd.html.

Leung, Tony K. T., Plugging Memory Leaks in JavaPro, at http://www.devx.com/
upload/free/features/javapro/1999/06jun99/tl0699/tl0699.asp.

BIBLIOGRAPHY 331
Metz, Cade, “Performance Primer: Gone in 4 Seconds,” in PC Magazine:
February 20, 2001.
Link: http://www.zdnet.com/ecommerce/stories/main/
0,10475,2682126,00.html.

Monson-Haefel, Richard, Enterprise Java Beans, Cambridge, Mass.: O’Reilly &
Associates, Inc., 2000.

Picon, Joaquin, Regis Coqueret, Andreas Hutfless, Gopal Indurkhya, and Martin
Weiss, Design and Implement Servlets, JSPs, and EJBs for WebSphere, Armock,
N.Y.: IBM Redbooks, 2000.
Link: http://www.redbooks.ibm.com/abstracts/sg245754.html.

Royce, Walker, Software Project Management: A Unified Framework, Reading, Mass.:
Addison-Wesley, 1998.

Sharma, Rahul, J2EE Connector Architecture, Sun Microsystems, Inc., at http://
java.sun.com/j2ee/connector/.

Siegel, Shel and Robert J. Muller, Object-Oriented Software Testing: A Hierarchical
Approach, New York: John Wiley and Sons, 1996.

Singh, Amandeep, “Implementing Read/Write Locks in Java,” self-published.
Link: http://www.asingh.net/technical/rwlocks.html.

Sun Microsystems, Inc., The Java Programming Reference at http://devel-
oper.java.sun.com/developer/infodocs/?frontpage-main#docs.

Williams, Kevin. XML for Data: Four Tips for a Smart Architecture, on
IBM developerWorks, August 2001.
Link: http://www-106.ibm.com/developerworks/xml/library/x-xdtips.html.

Additional references by subject
This group of books represents many of the industry standard books for Java
design, refactoring, performance, and standards. Some, like Design Patterns or
Refactoring, provide blinding flashes of insight and clarity. Others, like Core
J2EE Patterns, are clean and practical. In every case, the source communicates
something important to the technologies and disciplines that provide a founda-
tion for this book.

Design patterns and refactoring
Crupi, John, Dan Malks, and Deepak Alur, Core J2EE Patterns: Best Practices and

Design Stratgeies, Englewood Cliffs, N.J.: Prentice Hall, 2001.

332 BIBLIOGRAPHY
Cooper, James William, Java Design Patterns: A Tutorial, Reading, Mass.: Addison-
Wesley, 2000.

Fowler, Martin, Kent Beck (Contributor), John Brant (Contributor), William
Opdyke, and Don Roberts, Refactoring: Improving the Design of Existing Code,
Reading, Mass.: Addison-Wesley, 1999.

Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides (The Gang of
Four), Design Patterns: Elements of Reusable Object-Oriented Software, Reading,
Mass.: Addison-Wesley, 1994.

Grand, Mark, Patterns in Java, Volume 3, A Catalog of Enterprise Design Patterns
Illustrated with UML, New York: John Wiley and Sons, Inc., 2001.

Lea, Doug, Concurrent Programming in Java: Design Principles and Patterns, Read-
ing, Mass.: Addison-Wesley, 1999.

Preiss, Bruno R., Data Structures and Algorithms with Object-Oriented Design Pat-
terns in Java, New York: John Wiley and Sons, Inc., 1999.

Performance

Bulka, Dov, Java Performance and Scalability Series, vol. 1, Reading, Mass.: Addison-
Wesley, 2000.

Crupi, John, et al., Core J2EE Patterns.
Lea, Doug, Concurrent Programming in Java.

TCP/IP

Stevens, Richard, TCP/IP Illustrated Series, vol. 1, Reading, Mass.: Addison-Wesley,
1994, ISBN 0-201-63346-9.

UML

Arrington, C. T., Enterprise Java with UML, New York: OMG Press/Wiley, 2001.
Booch, Grady, et al., The Unified Modeling Language User Guide, Reading, Mass.:

Addison-Wesley, 1998.
Fowler, Martin, and Kendall Scott, UML Distilled: A Brief Guide to the Standard

Object Modeling Language, Reading, Mass.: Addison-Wesley, 1997.

XML

http://xml.org: This website contains information about all of the XML specifica-
tions, as well as some great instructional documents.

index
A

abstract classes 271, 281
vs. interfaces 271

abstract type
XML 200

Access 25, 192, 280
accessor methods 213, 219,

227
ActiveX 62, 82
algorithm 302
allmystuff 16
amazon.com 8, 37
analysis paralysis 46
antipattern 1, 16, 51, 102, 109,

136, 151, 157, 225, 237,
249, 317

and design patterns 6–7, 13
bad workload

management 298
books 9
cache 6
community 12
compound JSPs 88
Connection Thrashing 172
detective work 15
hardwired connections 185
in industry 14
Magic Servlet 59
monolithic JSPs 84
on line 8, 13
Performance

Afterthoughts 289
Round-Tripping 16, 295
Split Cleaners 181
Thrash Tuning 304

well-known 10
AntiPatterns text 10, 13,

18–19, 21, 205, 263
Apache 18
Apple 41
architects 16, 21, 172, 202,

290, 294, 313
are 146
arrays 11, 167–168
artifact 46, 212
audit files 240
availability 284, 289
AWT 41

B

Baldrige, Malcolm 15
BASIC 25, 40
BEA 18, 134
bean class

EJB 212, 215–216, 230
braces 260
bubble sort 10
bug patterns 13
bugs 10, 13, 16, 31, 66, 150,

203, 253
and comments 263
memory 145
memory leaks 157, 163

C

C 21, 24, 42, 56, 149–150,
156–158, 261

C++ 4, 10, 24, 40, 42–44, 56,

144–145, 148–151, 161,
168, 258, 268, 271

cache 6, 30, 51, 107–111,
125–128, 131–138, 140,
158, 160, 203, 240,
243–244, 286, 295, 297,
302, 304, 306, 313, 320,
324

access frequency 127
and memory leaks 157, 159
application properties for

caching 127
command 126
data distribution 127
database size 127
EJB 243, 290
hardware 30, 109, 286
hit 131
in code 128, 132
manager, to purchase 134
memory leak 136
servers 109
size 127
stale data 127
volatility of data 127

cacheable units 127–128
cache-less cow 140
caching 6
capitalization 256
careers

antipatterns 312
cascading style sheets 194
CGI 34, 62
CICS 10, 186
circular references 148
class diagrams 9
333

334 INDEX
Class.forName 63, 122, 174
client/server 34–35, 59,

173–174
client-server 35, 59
Cloneable interface 272
close() 61, 174, 183–185, 239

in JSP 85
CNInitialContextFactory 178,

218
coarse commands 98
COBOL 69
code inspection 16
code reviews 16, 270
ColdFusion 82, 94
collection

consolidating round
trips 232

command xviii
distributed 244

command bean 69, 76, 84, 92
command pattern 80, 244
comments 10, 255, 261–263,

281
and code editors 265
and coding standards 261
C style 261
document style 264
documentation style 262
single-line 262

communication overhead 16
communications area 186, 188,

190
communications buffer

186–187
component 38, 151, 196, 208,

287, 323, 326–327
Concurrent Programming 284

books 8
connection pool 71, 111, 116,

174–177, 179–180,
202–203, 288

benefits 176
connections 5, 51, 173–175,

177, 179–180, 185–186,
192, 202–204, 243, 289,
320–321

and HTTP 34
cleaning 111
database 62
last mile 30

Conner, Dr. Mike 67, 108

consultants 225, 242, 276,
313–314

consulting 6, 14, 46, 62, 109,
290, 293, 313

container
EJB 208, 210–212

container-managed
persistence 210, 237–238,
241, 323

controller 321–323
in MVC 56, 58–59, 66, 68,

83
Copy-on-Write 142
CORBA 24, 42, 104, 187, 208,

230, 234–235, 244
cost

of EJB without facade 226
coupling 15, 70, 102, 163, 185,

190–192, 200, 291, 313
between model and view 83

createJDBCDataSource 178
cut-and-paste 38, 66, 153, 163,

169
cycle time 4, 46, 253, 270

D

dangling pointers 149
dangling type 200–201
data source 177–179
database connection 64, 69, 71,

116, 131, 179, 203, 320
DataSourceFactory 178–179
DB2 18, 289

drivers 62
DCOM 42
deallocation 146
decouple 189
defines 43
delay binding 201, 212
deployment descriptor

211–212, 222, 230
code 222

design patterns 1, 157, 272,
317

and antipatterns 6–7, 13, 17
command pattern 67–68
defined 7
in industry 14
JSP 82
model-view-controller 56

publish/subscribe 127
refactoring 11
ValueObject 243

diamond inheritance
problem 43

dispatcher 77, 302–303
dispose method 155
DMZ 29, 285, 289
DNS 25–26, 33, 285
Docroot Manager 135
Document Object Model.

See DOM
documentation 264
DOM 194
Dover Elevators 14
downstream view 60
DriverManager 63, 122, 174
dynamic content 35, 74–75, 87,

134–135, 285–287, 289,
320

and performance
planning 291

cache 109
in JSP 86

E

early binding 189
e-commerce 111, 189
edge services 109, 284,

286–287
editor

code 265
EIS 180, 243
EJB 158, 208, 225–227,

241–244, 273, 282, 286,
288, 295–296, 298,
303–304, 313, 321, 323

and memory leaks 158
and XML 190
basics 224
cache 243
examples 13
history 67
in Bitter Java 18
instead of commands 73
oversold 27
performance 288, 290
with commands 98

ejbPassivate 217
Encina 186

INDEX 335
Enterprise Java Beans. See EJB
entity beans 209–210, 212,

221, 223–224, 226, 230,
237–240, 243, 247, 304,
320, 323

EntityContext 216–218
entity-relationship diagram 211
ER diagram 211, 226
event filtering 41
event listener 151, 155, 322
event management 41
event storm 41
exception

managing connections 184
exception management 52,

161, 233, 272–273
exceptions 77, 118, 123, 125,

185, 203, 272, 275–276
and validation 124

execute
method 71, 92, 123, 183,

271
extreme programming 277

defined 47
simplicity 270

F

facade 68, 223–224, 228–231,
233, 236, 238, 240–241,
243–244, 273, 282,
286–288, 295–297, 301

in code 233
file handles 41, 203

connection cost 173
final

modifier 272
finalize 155
finally 111, 161, 184–185, 204,

239, 279
fine commands 98, 100
firewalls 29–31, 285
fragments 135
frameworks 40–41, 140, 148,

151, 225, 230, 244, 281
and antipatterns 24
graphical 40

Front Page 25
FrontTier 134

G

garbage collected 148–151,
156, 162, 164, 322

garbage collection 136, 144,
146–151, 153–157, 159,
161–162, 164–165

garbage collector 144,
146–148, 150, 156, 158,
160

GET 34, 60–61, 287
getClassLoader 87
getConnection 63, 122, 174,

178, 184
getParameter 91
getServletContext 77
getters 73, 121, 132, 179, 221
GREP 160, 164
grep 155

H

hard wiring XML 197
hash codes 212, 272
hash table 11, 126, 131,

135–137, 161, 167, 240
and memory leaks 157
as cache 131

heap 145–146, 164
Hello, World 25, 60
helps 56
hidden namespaces 197
home interface 211, 215,

233–234
HTML 25, 28, 32, 34, 70, 78,

85, 90, 92–93, 97,
119–120

downstream view 60, 62
editor 65, 83
editors 76, 94
header 64
in JSP 86
input form 89
JavaScript 75
JSP 74, 78
MVC view 59
performance 289
scripting 82
table headings 64

HTTP 25, 28–29, 32–33, 37,
61, 185, 287–288

and MVC 59
image requests 126
refactoring JSP 86
servlets 54, 61
stateless 158

Hungarian notation 258
hybrid approach

to b2b interface
synchronization 189

hygiene 160, 198, 249, 313
programming 16

I

IBM xviii, 9, 18, 40–42, 67,
134, 174, 210, 244, 313

Includes 43
indentation 260
inheritance 38, 168, 268
initialize 122

method 71, 116, 271
interaction controller 76, 79,

90, 102, 288
interfaces

vs. abstract classes 271
intermediate xvii, 268, 281, 317

programmers 16
Internet applications 16, 82,

125, 174, 284, 290,
292–294, 320

scaling 287
Internet communications 35
Internet standards 1, 24–25,

35, 67
interviews 16
IP 25, 31–33, 185, 285
IP header 32
ISO 9000 14–15
iteration

major interface boundaries 6

J

J2EE 18, 180, 210, 284
books 8, 56

Jakarta 56, 67–68, 80, 104, 244
JAR 222
Java 42
Java code

in JSP 94

336 INDEX
Java Naming and Directory
Interface. See JNDI

Java Server Page. See JSP
java.nio 274
JDBC 31, 62, 177–180,

238–239
J-Insight 161
JNDI 177, 179, 234
J-Probe 161
JSP xviii, 74–75, 113, 131, 134,

224, 226–227, 230,
287–288, 320, 323

defined 74
error conditions 122
figure 76
fragment cache 134
fragment caching 286
history 67
in cached solution 115, 120
in cached solutions 127
in code 77
PERL rewrite 65
return trip 75
versions 20
with EJB 243

JVM 5, 160–161

L

Lapsed Listener 253
last mile 30
leaks

cleanup considerations 273
life cycle 17, 42–43, 149–151,

153–155, 157–159, 163,
165, 169, 211–212, 215,
233, 322

Lisp 56
load balancing 30, 285,

301–302
localhost 33, 223
lock 136–137, 140

in cache 135
read 138
write 139

loosely coupled 185, 190, 268

M

Magic Pushbutton 54–55, 60,
62

Magic Servlet 5, 9, 54, 59, 62,
84, 86

causes 66
common problems 65
figure 60
template 79

mark and sweep 148
memory 51, 125, 136,

144–152, 154–155,
157–164, 166–168, 203,
322

and C 42
cache 110–111, 128, 131
connection cost 173
connections 177
leaks 15
management 24, 44

memory leak 145, 153
memory leaks 145, 148–151,

160–162
solving 161

memory management 43, 144,
149, 151

memory managers
in C 145

mentoring 16
method

design rules 270
methodology 1, 5, 37, 44, 46,

305–306, 324
extreme programming 47
iterative 40, 45

metrics 46, 270, 298, 306
performance 293, 305

microkernel 41
Microsoft 25, 42
MIME 33
model logic 57, 64, 69, 78,

102, 212
in JSP 86

model-view separation 57
model-view-controller 7, 54,

56, 59, 67, 83, 88, 114,
151, 314, 322

and JSP 83
figure 56
refactoring monolithic

JSP 86
return trip 74

modem 30, 36
MP3 285

multiple inheritance 43–44,
271

N

named resource 177–179, 219
names

rules for 255
standards for 256

namespace 195–198, 200–201,
205

NetScape 42
non-blocking IO package 274

O

object models 238, 241
object oriented development

vs. tag language 83
object-oriented systems 40
object-oriented technologies 45
OO programming 37
operating system 41, 126

ancient 25
optimization 10, 273
OptimizeIt 161
Oracle PL/SQL 62
OS/2 40
override 38, 221, 272, 282

P

Page Detailer 35, 37, 306
page-level granularity 99
partitioning jobs 300
performance 303–304

and layering 40
application 16, 62, 71,

166–167, 202, 264, 273,
282, 284, 295–297, 299,
301, 313, 320, 323–324

command granularity 100
connection pooling 116,

173, 175–176, 194
database 5, 172
EJB 224
examples 291
hardware 108, 111, 134,

284–286, 288–289, 302
infrastructure 30

INDEX 337
performance (continued)
late in the process 291
persistence frameworks 41
plan 290–294
process 5, 16, 238, 243, 249,

289–291, 293, 295,
304–307, 313–314, 320,
323–324, 326

requirements 291
testing 292, 294, 305
tradeoffs 25
tuning 304
unpredictable 291
web objects 37

PerformTask 61, 65
Perl 62, 65, 67, 110
persistence framework 237,

242, 292
persistent object model 112
pervasive computing 31
Piedra 24, 40
ping xviii, 33
pointer arithmetic 146
polymorphism 39
POP3 31
portals 135
POST 33–34, 60–61, 287
premature binding 189
prepopulation 120
primary key class 212,

221–222, 230
PrintWriter 61, 63, 124
procedural language 21
process

antipatterns 315
programming in pairs 253
PropertyChangeListener 151,

154
proxy server 25
public Internet 30, 285
Publish 11
Publishing 165

Q

Quality Circles 15
quality metrics 15
queue specialization 299

R

random access 11, 240
reachable 148–150, 156–157,

160–162, 164
objects 148–149, 156, 160,

164
read only

with EJBs 240
read/write bottleneck 137, 141
read/write locks 138, 140, 274
read/write ratio 138
readability 10, 75, 94, 163, 166,

168, 255, 257–258, 270,
280, 320

and code editors 265
and comments 261
and consolidation 264
and Hungarian notation 259
and naming 256

readable 97, 157
redundancy 47
refactor 21, 52, 67, 108, 160,

165, 267, 313, 315–316
antipatterns process 11

refactoring 184–185, 211, 223,
228, 253, 271, 315–316

and antipattern process 12
and class names 270
and coding standards 261
and extreme

programming 47
and methodologies 45
and XP 253
commands 101
EJB solutions 227, 230
EJBs 112
JSP antipatterns 82
Magic Servlet 54
magic servlet 66, 68, 74
opportunities 44
role of standards 253
round tripping 297
split cleaners 184
targets 16
to model-view-controller 58
with cache 111, 133

reference counting 146–148
reference objects 165, 273, 282

phantom 156
soft 156

weak 156
release cycles 45
reliability 32, 38, 65–66, 75,

302
remote accessors 232
remote interface 209, 211–213,

219, 230, 238, 288, 323
remote procedure call. See RPC
repaint 41
RequestDispatcher 77
reserved names 260
Resin

Caucho's product 134
response object 63, 87, 288
return trip 5, 63, 74, 77, 288
reuse 38–40, 65–66, 89, 98,

163, 168, 195, 206, 272,
301, 320

and interfaces 272
commands 99
connections 174

round-tripping 16, 31, 35, 203,
208, 210, 229–230, 236,
273, 288, 295, 313

cost 226
solution 297

RPC 69, 186–187, 274

S

SAX 191, 194
scalability 27, 210, 249, 284,

286, 291, 294
schemas 195–197, 199, 206
scrollable lists 240
security xviii, 26, 28–31, 146,

180, 211–212, 216, 224,
242, 249, 268, 281,
285–286, 288

and C++ 42
security policy 285
semaphores 41
separation of concerns 65, 77,

84, 86, 89, 94
sequence diagrams 9, 297
serializable 221, 232
serialVersionUID 216, 221,

233
server-side

Java 8, 24, 27, 30–32, 37, 54,
59–60, 243, 249, 286

338 INDEX
server side (continued)
programming 18

servlets 25
container 25
in code 62
JSP 75
on line 8
standards 28
touch points 287

session beans 73, 80, 104,
209–210, 222, 224, 236,
241, 243–244, 296, 303

stateful 240
session data 136, 303–304
session management 158, 302
session state 158–160, 241,

288, 302–303
and performance

planning 291
setEntityContext 218
setters 73, 121, 132, 179, 221
shell sort 10
singleton 150, 153–159, 164
Smalltalk 42–43, 56, 68, 77,

104, 230, 271
SMTP 31
SOAP 192, 204
soft reference 160, 282
soft references 160
Split Cleaner 181, 253
sprayers 30
SQL 73, 238

aggregate functions 220
in JSP 85
result set 70

state diagrams 9
stateful session beans 210
stateless session beans 210
static attribute

and serialization 131
static content

cache 25, 109–111, 126,
286, 289, 301, 320

XML 198
strongly typed 43
structured programming 37, 40
Struts

Jakarta 56, 67–68, 80, 104,
244

style guide 252, 276–277, 280
Sun 42

Swing 150–151
synchronization 135
synchronize 135
synchronized keyword 137
system logs 240

T

tabs vs. spaces 264
tag language 32, 82–84, 322

problems 83
Taligent 41
TCP 25, 28, 31–32, 185, 285
TCP header 32
testing 274

for memory leaks 163
thin client model 35
three-tier

application deployment 242
tightly coupled 185
timeout 133

cache 133, 159
TimesTen 134
Tomcat 158
tomcat 18
tools

for memory leaks 149
modeling 9
programming 76, 210

training requirements 4
transaction logs 240
translation technologies

XML 202
triangle 75, 87, 224

design pattern 54, 56, 76, 78,
82, 88, 98, 102, 112, 314

Tuxedo 186
typedefs 43

U

UDDI 191
UML 158, 181, 227–228

books 8–9
defined 9
sequence diagram 297

undo/redo 69, 99
Unified Modeling Language.

See UML
unit tests 275

unsetEntityContext 218
URL 30, 113, 117, 178–179,

196, 257, 287
use cases 9, 45–46, 101
useBean 78, 87

V

validation 38, 68–69, 71–72,
88, 122–124, 130–131,
133, 185, 287

ValueObject 243
variable names 16, 196
variable-content containers 199
versions

XML 202
Vignette 135
visibility

standards 266
Visual Basic 25, 55
VisualAge for Java 153, 222

W

waterfall methodology 44
weak references 156
weakly reachable 156
web application servers 180,

285–286, 288–289, 302
web services 191–192, 203,

289
Web Services Description

Language. See WSDL
WebLogic 18, 134
WebSphere 18, 20, 177, 179,

244
Windows 40, 126, 150
WML 31
workload management

298–299
written but not read 240
WSDL 191
www.bitterjava.com 8, 13, 20,

33, 52, 221, 223, 233, 258,
317

www.vignette.com 135
wwwthreads 110

INDEX 339
X

XML xviii, 32, 34, 167,
189–199, 201–206, 212,
222, 323–324

example 190
on line 8
versioning 201

XML document schema 195
XML schema 189–190,

196, 199
X-Path 193
XSL 34
XSLT 191, 194, 202

Y

Y2K bug 11, 37
yahoo.com 35

Z

Zero Defects 15

Name resolution (DNS)

Client

Server

Resource requests (HTTP)

Java service (servlets)

Programming language (Java)

Communication (TCP and IP)

Communication (TCP and IP)

Hypertext transfer (HTTP)

Presentation (HTML)

DNS

Java servlets rely on many standards, adding
tremendous flexibility and some overhead. Read
about Internet technologies in section 2.2,
page 28.

Application provider’s site

% requests flowing through to each layer

10
units

Average cost

Total: 1+.5+1.5+1+.3=4.3

Layer: 100%*1=1
50%*1=.5
30%*5=1.5
10%*10=1

3%*10=.3

B
ac

k-
en

d
 s

er
ve

rs

A
p

p
 s

er
ve

rs

W
eb

 s
er

ve
rs

E
d

g
e

se
rv

er
s

In
te

rn
et

C
lie

n
t

10
units

5
units

1
unit

1
unit

100% 50% 30% 3%10%

Layer +
comm cost

for 1 req

Aggressive caching can satisfy requests before
they penetrate deep into an architecture. Read
about cache-related antipatterns in chapter 5.

Supporting technologies and frameworks

Web application
server

Application

Transaction
manager

Security
manager

Connection
manager

Enterprise
information

system

Resource
adapter

The J2EE connector architecture allows
application servers to provide general pooling,
security, and transaction support for connectors.
Read about it in section 7.2.5, page 180.

Interface boundary

Clients

Board
remote

Board
home

Thread
remote

Thread
home

Post
remote

Post
home

Fa
ca

d
e

se
ss

io
n

 b
ea

n
 (

re
m

o
te

)

Fa
ca

d
e

se
ss

io
n

 b
ea

n
 (

lo
ca

l)

Round-tripping is the most bitter of the EJB
antipatterns. Facades can dramatically reduce
this problem by providing a local interface and
making many communications at once. Read
about them in section 8.3, page 225.

Antipatterns in Bitter Java

Name Location

Bad Workload Management section 10.4, page 298

Cacheless Cow chapter 5

Chaotic Session Management section 10.5, page 302

Coarse or Fine Commands section 4.4, page 98

Compound JSPs section 4.3, page 88

Connection Thrashing section 7.2, page 172

Everything Is an EJB section 8.5, page 242

Excessive Layering section 2.3.4, page 39

Fat Commands section 4.5, page 102

Hardwired Connections section 7.4, page 185

Incomplete Process Transitions section 2.5.2, page 45

Lapsed Listeners Leak section 6.3, page 151

Leak Collection section 6.4, page 157

Magic Servlet chapter 3

Monolithic JSPs section 4.2, page 84

Performance Afterthoughts section 10.2, page 289

Rigid XML section 7.6, page 194

Square Bean in a Round Hole section 8.4, page 237

Round-tripping
section 8.3, page 225
section 10.3, page 295

Split Cleaners section 7.3, page 181

Synchronized Read/Write Bottleneck section 5.5, page 136

Thrash-tuning section 10.6, page 304

Too Many Webpage Items section 2.2.7, page 35

XML Golden Hammer section 7.5.1, page 193

	contents
	foreword
	preface
	acknowledgments
	about this book
	about the cover illustration
	The basics
	Bitter tales
	1.1 A Java development free fall
	1.1.1 Antipatterns in life

	1.2 Using design patterns accentuates the positive
	1.2.1 Design patterns online
	1.2.2 UML provides a language for patterns

	1.3 Antipatterns teach from the negative
	1.3.1 Some well-known antipatterns
	1.3.2 Antipatterns in practice
	1.3.3 Antipattern resources

	1.4 Antipattern ideas are not new
	1.4.1 Learning from the industry
	1.4.2 Detective work
	1.4.3 Refactoring antipatterns

	1.5 Why Bitter Java?
	1.5.1 The Bitter Java approach
	1.5.2 Bitter Java tools
	1.5.3 The Bitter Java organization
	1.5.4 The Bitter Java audience

	1.6 Looking ahead

	The bitter landscape
	2.1 Fertile grounds for antipatterns
	2.1.1 The benefits of layering
	2.1.2 Layering can work against us

	2.2 Internet technologies
	2.2.1 Internet topologies affect our applications
	2.2.2 Enterprise layers add security and overhead
	2.2.3 Standards enable the Internet and add layers
	2.2.4 TCP and IP provide low-level communications
	2.2.5 HTTP provides application-level transport
	2.2.6 HTML and XML
	2.2.7 Mini-antipattern: Too Many Web Page Items

	2.3 Object technologies and antipatterns
	2.3.1 Encapsulation helps to isolate change
	2.3.2 Inheritance enables packaging of common behavior
	2.3.3 Polymorphism enables flexible reuse
	2.3.4 Mini-antipatterns: Excessive Layering
	2.3.5 Setting the stage for Java

	2.4 Java technologies solve antipatterns
	2.5 Major problems with the waterfall
	2.5.1 Iterative methodologies
	2.5.2 Mini-antipatterns: Incomplete Process Transitions
	2.5.3 Programming horizons: Extreme programming

	2.6 A quick survey of the bitter landscape
	2.7 Antipatterns in this chapter

	Server-side Java antipatterns
	Bitter servlets
	3.1 Getting off on the wrong foot
	3.1.1 An early antipattern: The Magic Pushbutton
	3.1.2 Building with Model-View-Controller
	3.1.3 Failing to separate model and view
	3.1.4 Breaking out the model

	3.2 Antipattern: The Magic Servlet
	3.2.1 Can we use servlets as the model?
	3.2.2 Stumbling into the Magic Servlet trap
	3.2.3 Causes of the Magic Servlet

	3.3 Solution: Refactor using commands
	3.3.1 Break out the model
	3.3.2 Wrapping the model with command objects
	3.3.3 Separating the model logic
	3.3.4 Separating the return trip
	3.3.5 Using a JSP for the return trip

	3.4 Summary
	3.5 Antipattern in this chapter

	Bitter JSPs
	4.1 Getting only halfway home
	4.1.1 Recognizing the danger signs

	4.2 Antipattern: Monolithic JSPs
	4.2.1 This program lacks model-view separation
	4.2.2 Solution: Refactor to Model-View-Controller

	4.3 Antipattern: Compound JSPs
	4.3.1 Should we combine multiple JSPs?
	4.3.2 An example combining two interfaces
	4.3.3 Solution: Split the JSP
	4.3.4 Making decisions in the controller servlet

	4.4 Mini-antipatterns: Coarse and Fine Commands
	4.4.1 Too many commands in a group
	4.4.2 Solution: Refactor to appropriate granularity
	4.4.3 Tips for granularity

	4.5 Mini-antipattern: Fat Commands
	4.6 Reviewing the JSP antipatterns
	4.7 Antipatterns in this chapter

	Bitter cache management
	5.1 We need caches!
	5.2 Antipattern: The Cacheless Cow
	5.2.1 Bitter BBS with no cache
	5.2.2 Building the model, view, and controller for ShowBoard
	5.2.3 Building the model, view, and controller for ShowThread
	5.2.4 Building the model, view and controller for AddPost
	5.2.5 Performance problems

	5.3 Solution: Cache
	5.3.1 Solution 1: Use a hardware cache
	5.3.2 Solution 2: Cache commands
	5.3.3 Adding a cache to our BBS
	5.3.4 Possible enhancements to cached commands

	5.4 Cache-related mini-antipatterns
	5.4.1 Concurrent access to static cache
	5.4.2 The ever-growing cache

	5.5 Antipattern: Synchronized Read/Write Bottlenecks
	5.5.1 Collisions between readers can hurt performance
	5.5.2 Read/write locks allow correct shared access

	5.6 Cooking the Cacheless Cow
	5.7 Antipatterns in this chapter

	Bitter memories
	6.1 Understanding memory leaks and antipatterns
	6.1.1 Managing memory
	6.1.2 Understanding garbage collection
	6.1.3 Reference counting
	6.1.4 Reachable objects

	6.2 Trading C++ for Java
	6.2.1 Circumstances that cause Java memory leaks
	6.2.2 Finding Java leaks

	6.3 Antipattern: Lapsed Listeners Leak
	6.3.1 Examining some dangerous practices
	6.3.2 Solution 1: Explicitly remove the listeners
	6.3.3 Solution 2: Shorten the life cycle of the anchor
	6.3.4 Solution 3: Weaken the reference
	6.3.5 Reference objects simplify memory management

	6.4 Antipattern: The Leak Collection
	6.4.1 Causing trouble with caches and session state
	6.4.2 Solution 1: Search for common warning signs
	6.4.3 Solution 2: Aggressively pair adds with removes
	6.4.4 Solution 3: Use soft references for caches
	6.4.5 Solution 4: Use collections with weak references
	6.4.6 Solution 5: Use finally

	6.5 Shooting memory leaks
	6.5.1 Make sure there is a leak
	6.5.2 Determine that the leak should be fixed
	6.5.3 Isolate the problem
	6.5.4 Determine the source and fix the problem
	6.5.5 Protect against the problem for the future

	6.6 Mini-Antipatterns: Little Hogs
	6.6.1 String manipulation
	6.6.2 Collections
	6.6.3 Inheritance chains

	6.7 Summary
	6.8 Antipatterns in this chapter

	Bitter connections and coupling
	7.1 Making connections
	7.2 Antipattern: Connection Thrashing
	7.2.1 Creating and terminating with every access
	7.2.2 Solution: Reuse connections with a pool
	7.2.3 Refactoring our BBS to add pooled connections
	7.2.4 Using getPooledConnection
	7.2.5 Using the J2EE connector architecture

	7.3 Antipattern: Split Cleaners
	7.3.1 Exceptions can lead to Split Cleaners
	7.3.2 Solution: Pair connection with cleanup, in finally

	7.4 Antipattern: Hardwired Connections
	7.4.1 The communications buffer
	7.4.2 Premature binding
	7.4.3 Solution 1: Decouple with XML messages
	7.4.4 Solution 2: Delay binding with web services

	7.5 Mini-antipatterns for XML misuse
	7.5.1 XML’s Golden Hammers
	7.5.2 XML’s bitter transitions

	7.6 Mini-antipatterns: Rigid XML
	7.6.1 Name collisions
	7.6.2 Rigid constructs
	7.6.3 Restrictive variable-content containers
	7.6.4 XML versioning

	7.7 Summary: Sweetening bitter connections
	7.8 Antipatterns in this chapter

	Bitter beans
	8.1 A brief Enterprise JavaBeans review
	8.1.1 The component-based distributed architecture
	8.1.2 Types of EJBs

	8.2 Bitter BBS with EJBs
	8.2.1 Elements of an EJB application
	8.2.2 Building the remote interface
	8.2.3 Creating the home interface
	8.2.4 Implementing the bean class
	8.2.5 Defining the primary key
	8.2.6 Creating a deployment descriptor
	8.2.7 Using the model

	8.3 Antipattern: Round-tripping
	8.3.1 Computing the cost of a distributed deployment
	8.3.2 Chatty interfaces
	8.3.3 Solution: Group together round-trips with a facade
	8.3.4 Roots of round-tripping
	8.3.5 Refactoring the BBS with a facade

	8.4 Antipattern: Square Bean in a Round Hole
	8.4.1 Mini-antipattern: Bean-Managed Joins
	8.4.2 Solution: Views, mappers, bean-managed joins
	8.4.3 Mini-antipattern: Entity Beans for Lightweight Functions
	8.4.4 Mini-antipattern: Entities for Read Only
	8.4.5 Mini-antipattern: Entity Beans for Write but Not Read
	8.4.6 Troublesome scrollable lists
	8.4.7 Overall solution: Pick the right bean for the job

	8.5 Mini-antipattern: Everything Is an EJB
	8.6 EJBs and caching
	8.6.1 Implementing a cache with a facade

	8.7 Smoothing out the bitter beans
	8.8 Antipatterns in this chapter

	The big picture
	Bitter hygiene
	9.1 Why study programming hygiene?
	9.1.1 Extreme programming requires good hygiene
	9.1.2 Coding standards protect against antipatterns

	9.2 Mini-antipatterns: Unreadable code
	9.2.1 Names matter
	9.2.2 Standards for names
	9.2.3 Braces and indentation
	9.2.4 Comments
	9.2.5 Tabs vs. spaces
	9.2.6 Editors

	9.3 Mini-antipatterns: Organization and visibility
	9.4 Mini-antipatterns: Structure
	9.4.1 Basic object-oriented philosophy
	9.4.2 Low-level design considerations
	9.4.3 Exceptions

	9.5 Mini-antipatterns: Leaks and performance
	9.6 Conventions for testing
	9.7 Building a good style guide
	9.7.1 Buy, borrow, or steal?
	9.7.2 A sample style guide from Contextual, Inc.

	9.8 Summary of coding standards

	Bitter scalability
	10.1 Good topologies for performance
	10.1.1 Layering hardware in homogeneous groups
	10.1.2 Other topology variations

	10.2 Antipattern: Performance Afterthoughts
	10.2.1 Developing without performance planning
	10.2.2 Some real-world examples
	10.2.3 Solution: Plan for performance!

	10.3 Antipattern: Round-tripping
	10.3.1 Solution: Cache and Facade

	10.4 Antipattern: Bad Workload Management
	10.4.1 Solution: Workload Management
	10.4.2 True load balancing

	10.5 Antipattern: Chaotic Session Management
	10.5.1 Solution 1: Dispatching with session affinity
	10.5.2 Solution 2: Using a distributed state management service
	10.5.3 Using custom session bean solutions
	10.5.4 Using custom entity bean solutions

	10.6 Antipattern: Thrash-tuning
	10.6.1 Solution: Use sound performance methodologies

	10.7 Taming the performance beast
	10.8 Antipatterns in this chapter

	Sweet parting thoughts
	11.1 Antipatterns help us on many levels
	11.1.1 Antipatterns ignite careers
	11.1.2 Understanding antipatterns improves programs
	11.1.3 Understanding antipatterns makes you a better programmer

	11.2 Integrating antipatterns with process
	11.3 Next steps, last steps

	Cross-references of antipatterns
	bibliography
	index

