Programmer to Programmer™

Beginning
JavaServer Pages

Vivek Chopra, Jon Eaves, Rupert Jones, Sing Li, John T. Bell

AN

VVIHEEN

Vi a7 o 71 38 7208 o M = TF=T1 T = T TN TV =TOX.COM

Beginning JavaServer Pages"

TEAM LING - LIVe, Informative, Non-cost and cenuine!

TEAM LING - LIVe, Informative, Non-cost and cenuine!

Beginning JavaServer Pages"

Vivek Chopra
Sing Li
Rupert Jones

Jon Eaves
John T. Bell

Wiley Publishing, Inc.

TEAM LING - LIVe, Informative, Non-cost and cenuine!

Beginning JavaServer Pages™

Published by

Wiley Publishing, Inc.

10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2005 by Wiley Publishing, Inc., Indianapolis, Indiana
Published by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 0-7645-7485-X

Manufactured in the United States of America

10987654321

1B/QT/QS/QV/IN

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or
authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood
Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be
addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317)
572-3447, fax (317) 572-4355, e-mail: brandreviewewiley.com.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REP-
RESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CON-
TENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CRE-
ATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CON-
TAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A
COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION
OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FUR-
THER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFOR-
MATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE.
FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE
CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services or to obtain technical support, please contact our Cus-
tomer Care Department within the U.S. at (800) 762-2974, outside the U.S. at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

Library of Congress Cataloging-in-Publication Data

Beginning JavaServer pages / Vivek Chopra ... [et al.].
p.cm.
Includes index.
ISBN 0-7645-7485-X (paper/website)
1. JavaServer pages. 2. Web sites--Design. 3. Web site development. I. Chopra, Vivek.
TK5105.8885.J38B45 2005
006.7 6--dc22
2004024591

Trademarks: Wiley, the Wiley Publishing logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade
dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States
and other countries, and may not be used without written permission. JavaServer Pages is a trademark of Sun
Microsystems, Inc. All other trademarks are the property of their respective owners. Wiley Publishing, Inc., is not
associated with any product or vendor mentioned in this book.

TEAM LING - LIVe, Informative, Non-cost and cenuine!

www.wiley.com

About the Authors

Vivek Chopra has over ten years of experience as a software developer, architect, and team lead, with
extensive experience with Web services, J2EE, and middleware technologies. He has worked and con-
sulted at a number of Silicon Valley companies and startups and has (pending) patents on Web services.
Vivek actively writes about technology and has coauthored half a dozen books on topics such as open-
source software, Java, XML, and Web services. He contributes to open source, too, and has developed
parts of the uddi4; library, an open-source Java API for UDDI.

Sing Li, first bit by the microcomputer bug in 1978, has grown up with the microprocessor age. His first
personal computer was a do-it-yourself Netronics COSMIC ELF computer with 256 bytes of memory,
mail-ordered from the back pages of Popular Electronics magazine. Currently, Sing is a consultant, system
designer, open-source software contributor, and freelance writer. He writes for several popular technical
journals and e-zines and is the creator of the Internet Global Phone, one of the very first Internet phones
available. He has authored and coauthored numerous books across diverse technical topics, including
JSP, Tomcat, servlets, XML, Jini, and JXTA.

Rupert Jones is a Technical Lead for J2EE projects at Internet Business Systems. Over the past six years,
Rupert has provided software development and consulting services for blue-chip companies, both in
Australia and internationally. He lives and works in Melbourne, Australia. Rupert can be contacted at
rup@rupertjones.com.

Jon Eaves has been developing software in a variety of languages and domains for over 15 years. He is
currently employed by ThoughtWorks, developing large-scale enterprise systems using J2EE. When he
can find spare time, he develops J2ME/MIDP applications and works on the BouncyCastle Crypto APIs
(www.bouncycastle.org). Jon can be reached at jon@eaves.org.

John T. Bell has more than 20 years of software development experience and currently serves as the lead
software architect for the Web site of a major hospitality company based in Bethesda, Maryland. He is
also an adjunct professor, teaching server-side Java technologies for the Center for Applied Information
Technology at Towson State University. He has a master’s degree in Computer Systems Management
and a bachelor’s degree in Electrical Engineering, both from the University of Maryland. This is Mr.
Bell’s third contribution to a Wrox title. He is also the author of The J2EE Open Source Toolkit.

TEAM LING - LIVe, Informative, Non-cost and cenuine!

Acquisitions Editor
Robert Elliott

Development Editor
Sydney Jones

Technical Editor
Wiley-Dreamtech India Pvt Ltd

Production Editor
William A. Barton

Copy Editor
Luann Rouff

Editorial Manager
Mary Beth Wakefield

Vice President and Executive Group Publisher

Richard Swadley

Vice President and Publisher
Joseph B. Wikert

TEAM LING - LIVe, Informative, Non-cost and cenuine!

Credits

Project Coordinator
April Farling

Graphics and Production Specialists

Jonelle Burns
Carrie A. Foster
Lauren Goddard
Denny Hager

Joyce Haughey
Amanda Spagnuolo

Quality Control Technicians
Jessica Kramer

Susan Moritz

Carl William Pierce

Charles Spencer

Media Development Specialist
Kit Malone

Proofreading and Indexing
TECHBOOKS Production Services

Acknowledgments

Vivek Chopra

I'd like to thank my coauthors and all the folks at Wrox for the effort and the long hours—thank you,
Rupert, Sing, Jon, John, Sydney, James, and Bob! I'd especially like to thank my wife, Rebecca, for her
patience and support, especially since I spent most weekends working on this book.

Sing Li

Thanks to the virtual Beginning JavaServer Pages team, top professionals from all corners of the globe.
It was wonderful working with you throughout 2003 and 2004.

To my wife, Kim—your inspiration and support are the high-octane fuel that keeps me running, looking
joyfully forward to each brave new day.

Rupert Jones

First of all, I'd like to thank my coauthors for their dedication to this book. It’s not easy holding down a
full-time job in this industry and fitting in time for such a venture. I am constantly amazed we all still
have friends and family who will talk to us, let alone recognize us. It’s been a pleasure undertaking this
task with a group of such consummate professionals.

To the Wrox crew—in particular, Sydney Jones, our developmental editor, and our tech reviewers at
DreamTech—thanks for all your hard work in getting us across the line. I know its difficult working
with technical people at the best of times, especially when they are geographically remote.

Thanks also to my colleagues at Internet Business Systems: Steve Hayes, Rob Mitchell, and Shane
Clauson. These guys provided me with much-needed help, advice, and encouragement, even in my
grumpier moments. It really is a pleasure to work with each of you.

And last but certainly not least, thanks to my loving family: Julia, Michael, Nick, and Caroline.

Jon Eaves

Id like to thank my coauthors and the team at Wrox for the hard work they put in while creating this
book. Closer to home, I'd like to thank my family for their encouragement, patience, and support. Mum
and Dad, everything I can do is because of your love. My wonderful wife, Sue, you rock my world more
and more every day. Boo and Maddy, your purring late at night kept me going when the words
wouldn’t come. Thank you, all.

John T. Bell

To Tammy, my loving and patient wife, maybe someday I will write a book that you can read, and to my
grandmother, Valmai Locklair, who slipped away from us as I was writing my chapters.

TEAM LING - LIVe, Informative, Non-cost and cenuine!

TEAM LING - LIVe, Informative, Non-cost and cenuine!

Contents

About the Authors v
Acknowledgments vii
Introduction XXV
The Right Way to Do Web Development XXV
Approach XXVi
How This Book Is Structured Xxvi
Conventions XXix
Source Code XXX
Errata XXX
p2p.wrox.com XXX
Part I: JSP Fundamentals 1
Chapter 1: Getting Started with JavaServer Pages 3
Creating Applications for the Internet 4
Limitations of the basic Web server model 5
Dynamic HTML generation via CGl 5
Shortcomings of CGl 7
Improving Java-based CGI: servlets 7
Summary 28
Exercises 29
Chapter 2: JSP Basics 1: Dynamic Page Creation for Data Presentation 31
The Anatomy of a JSP Page 31
Directives 32
XML-compatible syntax 33
Template data 33
Action 34
Scripting elements 35
Handling HTML form submission with JSP 36

Web site personalization 60
Summary 70
Exercises 71

TEAM LING - LIVe, Informative, Non-cost and cenuine!

Contents

Chapter 3: JSP Basics 2: Generalized Templating and Server Scripting 73
Scripting Elements for Java Code Embedding 74
Scripting elements 75
Creating a Simple Web Storefront 80
Attaching attributes to implicit objects 86
Rendering the list of categories 88
Rendering the list of products in a given category 89
Adding a Shopping Cart to a Catalog 20
Creating the Shopping Cart 95
Decoding incoming request parameters 97
Rendering order information 98
Rendering the Return to Shopping hyperlink 98
Shopping cart limitations 99
Overcoming the shopping cart limitations 100
Sessions and JSPs 107
Rendering the shopping cart using a session attribute 111
Summary 114
Exercises 115
Chapter 4: CSS, JavaScript, VBScript, and JSP 117
Code Elements That Execute
on the Client Side 118
Cascading Stylesheets 119
JavaScript 120
VBScript 121
User Preference Implementation 121
Creating a User-Customizable DHTML Menu 132
Summary 143
Exercises 144
Chapter 5: JSP and EL 145
EL and Its Vital Role in JSP 146
EL Named Variables 146
Applying EL 148
Using EL expressions inline with template data 148
Using EL expressions in attribute values 148
Coercion: Automatic Type Conversion 157
Boxing and unboxing 157
Coercion to a string 157
Coercion to a number 158
X

TEAM LING - LIVe, Informative, Non-cost and cenuine!

Contents

Coercion to a character 158
Best attempt to “do the right thing” without error 158
Accessing Object Properties and Collections 162
Implicit EL Objects in JSP 2.0 167
User-Supplied Functions within EL 173
Namespace and EL functions 173
Static methods of a Java class 173
Summary 177
Exercises 178
Chapter 6: JSP Tag Libraries and JSTL 179
The Vital Role of JSP Tag Libraries 180
The JSP Standard Tag Library 181
Anatomy of a Tag Library 182
The Tag Library Descriptor 182
The taglib map in the web.xml deployment descriptor 183
Locating JSTL and understanding tag library packaging 184
JSTL tags 184
Summary 210
Exercises 211
Chapter 7: JSP Directives 213
Directive Basics 214
Directives as instructions for the container 214
Alternative XML syntax for directives 214
Available JSP directives 215
The page Directive 217
The language attribute 217
The extends attribute 217
The import attribute 218
The session attribute 218
The info attribute 219
The isELIgnored attribute 219
The isErrorPage attribute 219
The errorPage attribute 220
The contentType attribute 220
The taglib Directive 223
Two general usage forms for the taglib directive 224
Attributes of the taglib directive 225
How It Works 227

Xi

TEAM LING - LIVe, Informative, Non-cost and cenuine!

Contents

The include Directive 231
The include performed at translation time 231
Summary 239
Exercises 239
Chapter 8: JSP Standard Actions 241
JSP Standard Actions Are Built-in Tags 242
Actions for Working with JavaBeans 242
The <jsp:useBean> standard action 243
How <jsp:useBean> and JSTL <c:set> Differ 258
Including JSP Output via <jsp:include> 259
Transferring Control Between JSPs 264
The <jsp:forward> standard action 264
Specifying Parameters for Other Actions 265
The <jsp:param> standard action 265
Working with Plug-ins 266
The <jsp:plugin> standard action 267
The <jsp:params> standard action 267
The <jsp:fallback> standard action 268
Standard Actions Specific to Tag Files 273
Summary 274
Exercises 274
Chapter 9: JSP and JavaBeans 275
Anatomy of a JavaBean 276
JavaBean Properties 277
JavaBean methods 280
Common JavaBean packaging 281
How JavaBeans and EJBs Differ 301
Summary 301
Exercises 302
Chapter 10: Error Handling 303
Understanding the Origin of Errors 303
Errors in Java language coding 304
Errors in JSP directives and actions 309
JSTL errors and EL errors 326
User data-input errors 327
Errors found in JSP template data 327

Xii

TEAM LING - LIVe, Informative, Non-cost and cenuine!

Contents

Summary 328
Exercises 328
Chapter 11.: Building Your Own Custom JSP Tag Library 329
What Is a Tag File? 329
A Simple Tag File: Displaying Today’s Date 330
Advantages of Tag Files 331
Code reuse 331
Hiding complexity 331
Separation of concerns 331
Simplicity 332
Flexible packaging 332
Developing Tag Files 332
Scope and implicit objects 332
Using directives in tag files 335
Body processing 341
Attributes 345
Packaging Tag Files 355
Java custom actions versus tag file custom actions 358
Summary 359
Exercises 359
Chapter 12: Advanced Dynamic Web Content Generation 361
Data Validation in Web Applications 362
Server-side validation and efficient usage of resources 363
Client-side data validation 364
The need for server-side validation 365
Common client-side validation scenarios 365
Operation of client-side validation 365
Dynamic generation of client-side JavaScript code 379
Dynamic generation of XML using JSP 386
Summary 392
Exercises 393
Chapter 13: Internationalization and Localized Content 395
About Internationalization-Ready Applications 396
Internationalization and Localization 396
The unique i18n requirements of a Web-based JSP application 397
Xiii

TEAM LING - LIVe, Informative, Non-cost and cenuine!

Contents

Building on the Java Platform’s i18n Capabilities 399
The concept of a locale 399
Maintaining locale information 400

Summary 433

Exercises 434

Chapter 14: JSP Debugging Techniques 435

The Science of Debugging 436

Catching Bugs at Compile Time 437

Using a Debugging System versus a Production System 441

Using System.out.printin() to Instrument Code 442

Using a Logging System 445
Logging through the servlet container 445
Logging with the JDK logger 447
Logging with Log4;j 454
Logging with tag libraries 460

Debugging with Tools 464
Setting breakpoints 464
Examining variables and setting watchpoints 467
Stepping through code 468
Remote debugging 468

Debugging Code in Production Environments 469
Debugging when the JSP is precompiled 470
Debugging under load 470
Adding contextual information to log files 471
Adding log filters 474

Finding the Intermittent Problem 474
Adding information as response comments 474
Snoop application 475

Avoiding Concurrency Issues 479

Summary 479

Exercises 479

Part 1I: JSP and Modern Web Server
Software Development 481
Chapter 15: JSPs and Servlets 483

A JSP Is a Servilet 484
Anatomy of a servlet 488
The lifecycle of a servlet 492

Xiv

TEAM LING - LIVe, Informative, Non-cost and cenuine!

Contents

Describing servlets to containers in the deployment descriptor 495
The servlet declaration 497
Using servlets when JSP is available 503
Specifying initialization parameters 504
Accessing initialization parameters within the ControllerServiet 506
Custom forwarding of incoming requests via the controller servlet 508
The forwarding targets 509
Summary 510
Exercises 510
Chapter 16: The Role of JSP in the Wider Context: Web Applications 511
What Is a Web Application? 512
Directory Structure for a Web Application 512
The Deployment Descriptor 513
Deployment descriptor elements for a JSP developer 513
Using a Web Archive 523
Development and Deployment Strategies 523
Packaging and Deploying for Tomcat 524
Introduction to Web application security 528
Summary 529
Exercises 530
Chapter 17: Model View Controller 533
What Is MVC? 534
MVC and Web Applications 534
Summary 546
Exercise 547
Chapter 18: Web Frameworks 549
What Is a Framework? 549
Why Frameworks Are Good 550
Types of Frameworks 551
Application frameworks 551
Persistence frameworks 552
Utility frameworks 553
WebWork 554
Components of WebWork 554
XV

TEAM LING - LIVe, Informative, Non-cost and cenuine!

Contents

The Spring Framework 567
Main components of the Spring MVC 567
An example using Spring 569

Summary 589

Exercises 590

Chapter 19: Struts Framework 591

Introducing Struts 592
A Struts walkthrough 593
Controller: actions and forms 594
Model 603
View 604
Example application 624

Summary 641

Exercises 641

Chapter 20: Layout Management with Tiles 643

Introduction to Tiles 643
What is the Tiles framework? 644
Tiles terminology 645
Installing Tiles 646

Tile Scope 650

Definitions 650

Tiles Tags 652
insert 653
definition 654
put 654
putList 655
add 656
get 656
getAsString 656
useAttribute 657
importAttribute 657
initComponentDefinitions 658

Passing Parameters to Tiles 658

Advanced Tiles 659
Definitions and inheritance 659
Nesting tiles 664

XVi
TEAM LING - LIVe, Informative, Non-cost and cenuine!

Contents

Tiles and Struts 671
Configuring Tiles with Struts 671
Tiles definitions as action forwards 671
Passing values from Struts to Tiles 673

Summary 678

Exercises 679

Chapter 21: JavaServer Faces 681

Configuring a JSF Project 681

Getting Started with JSF 683
Using backing beans 685
Managed beans 687
Controlling navigation 687
Preventing direct access to Faces JSP files 690

JSF Lifecycle 690
Restore view 692
Apply request values 692
Process validations 692
Update model values 692
Invoke application 693
Render response 693

Validating Data 693
Using standard validators 697
Creating your own validation 697

Converting Data 705
Standard converters 711
Implementing the Converter interface 713

Handling Events with Listeners 715

JSF versus Struts 718

Summary 719

Exercises 719

Chapter 22: JSP in J2EE 721

Overview of J2EE 721
What is J2EE? 722
What does a container do? 724

J2EE Technologies 724
J2EE APIs 725
J2EE platform architecture 727
JSP development scenarios 728

Xvii

TEAM LING - LIVe, Informative, Non-cost and cenuine!

Contents

Using JSP with J2EE Components 729
Servlets 730
JNDI 735
JDBC 738

EJB 741
Benefits of EJB 742
Restrictions on EJB 742
Types of EJB 743
Session beans 743
Entity beans 744
Message-driven beans 745
Timer Service 745

Summary 746

Exercises 746

Chapter 23: Access to Databases 747

Introduction to Databases 748
Connecting to a database 749
Downloading and Installing MySQL 752
JDBC APIs 753

Building Applications 774
Data characteristics 774
Transactions 775
Object-relational mapping 777

Different Types of Applications 777
Simple applications 778
Using JSP and JDBC 778
More complex applications 782

Using Hibernate 782
Installing Hibernate 784

Summary 823

Chapter 24: Security 825

Areas of Security 825
Authentication 826
Authorization 828
Data integrity 830
Confidentiality 830

Data Integrity and Confidentiality 830
Implementing SSL 831

xviii

TEAM LING - LIVe, Informative, Non-cost and cenuine!

Contents

Authentication 837
HTTP BASIC authentication 837
Form-based authentication 843
Client-certificate authentication 849

Authorization 855
Container 855
Programmatic 855

Summary 860

Exercises 860

Chapter 25: Performance 861

Performance Concepts 861
What to measure 862
The user’s perspective 863
How to measure performance 863
What to do after performance testing 865

Measuring Performance Using JMeter 866
Installing JMeter 866
JMeter concepts 866

Performance Tuning Tips 872
Development-time measures 872
Deployment-time measures 875

Summary 883

Chapter 26: Best Practices and Tools 885

Development Methodologies 886
Waterfall and iterative methodologies 886
Rational Unified Process 888
Extreme Programming 888
Test-driven development 889
Feature-driven development 890

Development Tools 890
Version-control tools 890
Build tools 890
Testing tools 891
Logging tools 891
Tools for enforcing coding standards 891

Apache Ant 892
Installing Ant 892
Ant concepts 893
Additional resources 903

Xix

TEAM LING - LIVe, Informative, Non-cost and cenuine!

Contents

CvsS 903
Installing CVS 903
CVS concepts 903
Connecting to a CVS server 9204
Checking in code 905
Checking out code 906
Comparing changes across revisions 906
Additional resources 907

JUnit 907
Installing JUnit 907
JUnit concepts 208
Additional resources 915

HttpUnit 915
Installing HttpUnit 915
HttpUnit concepts 916
Additional resources 919

Best Practices for Web Development 919
Follow good JSP coding practices 919
Separate application logic and presentation 920
Use design patterns where appropriate 920
Use frameworks for developing applications 921
Early testing and integration 921

Summary 921

Exercises 922

Part lII: Spreading Your New Wings:

Applying JSP in the Real World 923
Chapter 27: JSP Project I: Personalized Portal 925
The Portal Project 925
Introduction to RSS 926
Introduction to Web services 929
Project Features 930
Use cases 931
Initial analysis 931
The Application Design 932
Designing the persistent store 932
Defining the key entity objects 935
Designing the Web site control flow 944

XX

TEAM LING - LIVe, Informative, Non-cost and cenuine!

Contents

The Development Environment 945
Directory structure 946
Build scripts 947
Struts 949
Tiles 950
Log4j 951
Rome 953
Apache Axis 956

The Application 958
View 959
Controller 966
Running the portal application 975

Summary 981

Exercises 981

Chapter 28: JSP Project Il: Shopping Cart Application 983

The Bookstore Project 984
Project features 984
Use cases 984
Initial analysis 985

Application Design 986
Database design 986
Defining the key entity objects 989

The Development Environment and Its Configuration 1008
Directory structure 1009
Tomcat 1010
Ant 1010
Database 1016
Hibernate 1016
Struts, Validator, and Tiles 1022
web.xml 1023

The Application 1024
Application layout: Tiles 1024
Cart status 1026
Presenting a list of categories 1028
Presenting a list of books 1030
Adding a book to the shopping cart 1034
Managing the shopping cart 1036
Checkout 1042

Summary 1055

Exercises 1055

XXi

TEAM LING - LIVe, Informative, Non-cost and cenuine!

Contents

Part IV: Appendixes 1057
Appendix A: JSP Syntax Reference 1059
Scoping 1060
page scope 1060
request scope 1061
session scope 1061
application scope 1061
Implicit Objects 1062
The request object 1062
The response object 1062
The pageContext object 1063
The session object 1063
The application object 1064
The out object 1064
The config object 1065
The page object 1065
The exception object 1065
Directives 1066
The page directive 1066
The taglib directive 1067
The include directive 1067
Tag file directives 1068
Actions 1070
Standard actions 1070
Other JSP standard actions 1074
Scripting Elements 1075
Declaration scripting elements 1075
Scriptlets 1075
Expression scripting elements 1076
Appendix B: JSP Expression Language Reference 1077
EL Expressions 1077
EL expressions in-line with template data 1077
EL expressions in attribute values 1078
Accessing Arrays, Maps, Object Properties, and Collections 1078
Object properties access 1078
Array member access 1078
Java map access 1078
Java collection access 1079

xxii

TEAM LING - LIVe, Informative, Non-cost and cenuine!

Contents

Elements of EL Expressions 1079
Named variables 1079
Literals 1079
Operators 1080
Operator precedence 1081
Functions 1082

Type Conversions 1083
Coercion: automatic type conversion 1083

Implicit Objects 1084
The pageContext implicit object 1084
The pageScope implicit object 1085
The requestScope implicit object 1085
The sessionScope implicit object 1085
The applicationScope implicit object 1086
The param implicit object 1086
The paramValues implicit object 1086
The header implicit object 1087
The headerValues implicit object 1087
The cookies implicit object 1087
The initParam implicit object 1087

Appendix C: JSTL Reference 1089

JSTL Core Tags 1089
catch 1090
choose 1091
if 1091
import 1092
forEach 1092
forTokens 1093
out 1094
otherwise 1095
param 1095
redirect 1095
remove 1096
set 1096
url 1097
when 1098

JSTL XML Tags 1098
choose 1099
forEach 1100
if 1100

XXiii

TEAM LING - LIVe, Informative, Non-cost and cenuine!

Contents

JSTL Formatting Tags

otherwise
out
param
parse

set
transform
when

bundle
formatDate
formatNumber
message
param
parseDate
parseNumber
requestEncoding
setBundle
setlLocale
setTimeZone
timeZone

JSTL SQL Tags

dateParam
param

query
setDataSource
transaction
update

JSTL Functions

XXiv

contains
containslignoreCase
endsWith
escapeXml|
indexOf
join

length
replace
split
startsWith
substring

TEAM LING - LIVe, Informative, Non-cost and cenuine!

1101
1101
1102
1102
1103
1104
1105
1105
1106
1106
1107
1108
1109
1109
1110
1111
1111
1112
1112
1113
1113
1114
1114
1115
1116
1116
1117
1118
1119
1119
1119
1120
1120
1120
1120
1120
1121
1121
1121

Contents

substringAfter 1121
substringBefore 1122
toLowerCase 1122
toUpperCase 1122

trim 1122
Appendix D: Exercise Solutions 1123
Index 1213
XXV

TEAM LING - LIVe, Informative, Non-cost and cenuine!

TEAM LING - LIVe, Informative, Non-cost and cenuine!

Introduction

JavaServer Pages (JSP) was first introduced in 1999, and since then numerous books have been written
about it. This book aims to introduce JSP in a new way, different from existing titles.

Alot has been learned in the past five years about what constitutes good practices for developing Web
applications, and what should be avoided. Much of this has been learned by developers the hard way,
at the cost of Web sites with bad performance or unmaintainable code. While this was understandable
when these technologies were new, beginning JSP developers shouldn’t have to repeat these mistakes.

As the title suggests, the book is targeted toward developers who are new to JSP development, though
not to Java, or even to Web development itself. This book is nof a second or even a third edition of an
older JSP book. It has been written from scratch by experienced developers, who are eager to share their
insights with you.

This book covers JSP 2.0, the latest specification, as well as how JSP interacts with other Enterprise Java
technologies. JSP 2.0 introduces many new features that aid good Web development practices, and this
book covers them in great detail.

The Right Way to Do Web Development

This book covers JSP development techniques in great detail. However, a central theme in the book is an
emphasis on the right way to do Web development. These ideas are generally accepted “good develop-
ment practices” and draw upon the authors” own experiences in this area. Some of these practices
include the following:

Qa

JSP is a presentation technology: JSPs should be used for presentation only and should not
have code for control flow and application logic mixed in it. The book emphasis this and other
good JSP development practices.

Use the right tools, effectively: Use tools to assist in your Web development tasks, such as
development and debugging environments, build and deployment tools, version-control tools,
and profiling tools. The book provides a tutorial introduction to tools that should be in every
Web developer’s tool box.

Use design patterns where appropriate: Many of the problems that you solve as a software
developer have already been faced by others before you. Instead of trying to reinvent a solution
to a certain class of problems over and over again, it is wiser to use a tried and tested solution.
A design pattern is a solution to a type of a problem. Where appropriate, this book illustrates the
use of common design patterns in Web applications, such as Model View Controller (MVC),
front controller, Data Access Object (DAO), etc.

Use frameworks for developing applications: Frameworks implement generic solutions to
common problems faced by developers. Using a framework enables developers to focus on the
business problem at hand, rather than reinventing the wheel for every application. This book

XXvii
TEAM LING - LIVe, Informative, Non-cost and cenuine!

Introduction

introduces a number of frameworks, such as MVC (Struts, Spring, WebWork, JSF), persistence
(Hibernate), testing (jUnit, HttpUnit), logging (log4j, Java Logging API), and templating (Tiles)
frameworks.

Q Iterative development methodologies: These cover a range of techniques, but the common
theme is writing test cases early in the development cycle, often even before the actual code,
testing frequently during development, having early build and integration cycles, and
refactoring your code.

If some of these terms are not familiar to you right now, don’t worry; they will be by the time you are
done with this book!

Approach

We believe that the best way to learn, especially for beginners, is by first reading about a concept, seeing
how it is implemented, and then finally by writing some code.

This is the approach we’ve followed in the book. Each chapter first introduces important concepts and
then illustrates them with hands-on examples in the “Try It Out” sections. Following each “Try It Out”
section is a “How It Works” section that explains the example in detail.

At the end of each chapter, we have included coding exercises for you to try yourself. These exercises
build upon examples introduced earlier in the chapter and help reinforce concepts you learned in it.
The solutions for the exercise are listed at the end of the book in Appendix D.

How This Book Is Structured

The book is divided into four parts.

The first part, “JSP Fundamentals,” represents the bulk of the book. This part, as the name suggests,
introduces the fundamentals of JSP programming. Some of the topics it covers include JSP syntax and
directives, the JSP Expression Language, JSP Tag libraries, JavaServer Pages Standard Tag Library (JSTL),
and techniques for testing and debugging.

The second part, “JSP and Modern Web Server Software Development,” builds upon the first part and
explores the Web applications and environments that most production JSP code will be deployed in.
It covers the following topics:

Q Popular Web frameworks, such as Struts/Tiles, WebWork, and Spring
O Persistence frameworks, such as Hibernate

O Enterprise Java technologies, such as Java Database Connectivity (J/DBC) and Java Naming and
Directory Interface (JNDI)

0O Emerging presentation technologies such as JavaServer Faces

Q Issues relating to security, performance, and internationalization

XXViii
TEAM LING - LIVe, Informative, Non-cost and cenuine!

Introduction

Q Modern software methodologies and development tools such as Ant, JUnit, HttpUnit, jMeter,
Log4j, and CVS

This part provides you with a tutorial-style introduction to these technologies. The focus of this book is
JSP development, and even though these frameworks and tools are important, covering each of them in
detail would have resulted in a much bigger book!

In the third part, “Spreading Your New Wings: Applying JSP in the Real World,” you will be challenged
to apply your new JSP programming skills to real-world projects. These projects reinforce concepts
explained earlier in the book with concrete examples that you can try out on your own.

The fourth and final part consists of the four appendixes for the book, providing you with three refer-
ences and exercise solutions.

The chapters are organized as follows:

Chapter 1, “Getting Started with JavaServer Pages,” introduces JSPs and explains why they were needed
and describes how to download and install chapter samples and projects.

Chapter 2, “JSP Basics 1: Dynamic Page Creation for Data Presentation,” gives you a taste of JSP pro-
gramming using simple examples. The examples presented here teach the right way to do JSP program-
ming, without scripting elements and using JSTL, EL, and actions only.

Chapter 3, “JSP Basics 2: Generalized Templating and Server Scripting,” covers embedding Java
scriptlets in JSP files. This is how JSP was used originally, and even though this practice is now depre-
cated, developers often have to maintain and extend such code.

Chapter 4, “CSS, JavaScript, VBScript, and JSP,” illustrates JSP’s capability to generate not only dynamic
HTML Web page content, but also Web pages with JavaScript or VBScript code.

Chapter 5, “JSP and EL,” covers the JSP Expression Language (EL) in great detail and with a lot of exam-
ple code.

Chapter 6, “JSP Tag Libraries and JSTL,” introduces the basics of the tag library extension mechanism in
JSPs. It also covers the standard tag library, JSTL, along with examples.

Chapter 7, “JSP Directives,” covers the standard JSP directives and all their properties.

Chapter 8, “JSP Standard Actions,” provides an item-by-item introduction to the available standard
actions in JSP. Each action is introduced as a part of an actual hands-on example.

Chapter 9, “JSP and JavaBeans,” discusses the important role of JavaBeans in JSP operations. It focuses
on the ability of JavaBeans to act as a container of data to be presented, as well as to extend the data
manipulation and transformation capabilities of JSP.

Chapter 10, “Error Handling,” reveals the interpretation-time and runtime errors that can occur and how
to handle them. It also discusses the application-level JSP exception-handling mechanism, as well as the
Java programming language exception-handling mechanism.

XXiX
TEAM LING - LIVe, Informative, Non-cost and cenuine!

Introduction

Chapter 11, “Building Your Own Custom JSP Tag Library,” shows you how to create a custom tag
library, encapsulating a reusable piece of JSP code in a JSP tag file.

Chapter 12, “Advanced Dynamic Web Content Generation,” emphasizes that the utility of JSP extends
beyond the generation of HTML. JSPs can be used to generate any dynamic content for Web-based con-

sumption, such as client-side scripting elements and XML.

Chapter 13, “Internationalization and Localized Content,” explains internationalization concepts and
demonstrates how JSP can be used to generate localized Web pages.

Chapter 14, “JSP Debugging Techniques,” covers logging mechanisms and debugger-supported tech-
niques. The chapter also covers the debugging of a production system and thread safety issues.

Chapter 15, “JSP and Servlets,” presents Java servlets, their relationship with JSPs, servlet configuration,
and the servlet context.

Chapter 16, “Role of JSP in the Wider Context: Web Applications,” introduces the details of Web applica-
tions, including creating and deploying them.

Chapter 17, “Model View Controller,” covers the popular Model View Controller (MVC) pattern.

Chapter 18, “Web Frameworks,” describes what frameworks are, why they are needed, and what they
do. This chapter covers the WebWork and Spring frameworks.

Chapter 19, “Struts Framework,” provides detailed coverage of the popular Struts framework.

Chapter 20, “Layout Management with Tiles,” covers the Tiles frameworks for Web page layout and its
use with Struts.

Chapter 21, “JavaServer Faces,” introduces JSF 1.1, with examples. This chapter also compares JSF with
Struts and how they can be used together in Web applications.

Chapter 22, “JSP in J2EE,” provides an overview of important J2EE components that JSP would need to
interact with in Web applications.

Chapter 23, “Access to Databases,” covers details of database access from Web applications, including
JDBC and Hibernate.

Chapter 24, “Security,” introduces security issues for Web applications, such as authentication, access
control, data integrity, and privacy.

Chapter 25, “Performance,” covers performance concepts for Web applications, including how to mea-
sure performance as well as performance-tuning techniques.

Chapter 26, “Best Practices and Tools,” details development-time best practices and methodologies and
provides a tutorial introduction to developer tools for build, version control, and testing.

Chapter 27, “JSP Project I: Personalized Portal,” demonstrates how to integrate content from other Web
sites using RSS and Web services. This project reinforces concepts covered earlier in the book—namely,
use of tag libraries, JSTL, and EL—and emphasizes the use of design patterns.

XXX
TEAM LING - LIVe, Informative, Non-cost and cenuine!

Introduction

Chapter 28, “JSP Project II: Shopping Cart Application,” shows how to develop an online storefront Web
application. This project reinforces Struts and Tiles concepts and database persistence from Web applica-
tions using Hibernate.

Appendix A, “JSP Syntax Reference,” as the name suggests, is a handy reference to the JSP syntax.
Appendix B, “JSP Expression Language Reference,” lists the JSP EL syntax, with examples.

Appendix C, “ISTL Reference,” provides a reference to the JSTL tag library, including the core, XML, for-
matting, and SQL tags.

Appendix D, “Exercise Solutions,” has the answers to all the exercise problems listed at the end of the
chapters.

Conventions

To help you get the most from the text and keep track of what’s happening, we’ve used a number of con-
ventions throughout the book.

Hints, tips, and additional notes regarding the current discussion are offset and placed in italics
like this.

As for styles in the text:

Q Important terms are italicized when introduced for the first time.
Q Classes, filenames, URLs, directories, interfaces, utilities, parameters, and other code-related

terms within the text are presented as follows: WEB-INF\web.xml.

Code is presented in two different ways:

Code that is introduced for the first time, or an important code fragment, has a
gray background.

Code that is less important to the discussion, or that has been introduced earlier,
is shown without a background.

Try It Out

The “Try It Out” sections are exercises that you should work through, following the text in the book.

1. They usually consist of a set of steps.
2. Each step has a number.

3. In most cases, you can follow the steps with your copy of the downloaded code.

How It Works
After each “Try It Out,” the code you've typed is explained in detail.

XXXi

TEAM LING - LIVe, Informative, Non-cost and cenuine!

Introduction

Source Code

As you work through the examples in this book, you may choose either to type in all the code manually
or to use the source code files that accompany the book. All of the source code used in this book is avail-
able for download at www . wrox. com. Once at the site, simply locate the book’s title (either by using the

Search box or by using one of the title lists) and click the Download Code link on the book’s detail page

to obtain all the source code for the book.

Because many books have similar titles, you may find it easiest to search by ISBN; this book’s ISBN is
0-764-57485-X.

Once you download the code, just decompress it with your favorite compression tool.

Errata

We have made every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you find an error, such as a spelling mistake or a faulty piece of code,
we would be very grateful for your feedback. By sending in errata, you may save other readers hours of
frustration, and you will be helping us provide even higher quality information.

To find the errata page for this book, go to www.wrox . com and locate the title using the Search box or
one of the title lists. Then, on the book details page, click the Book Errata link. On this page, you can view
all errata that has been submitted for this book and posted by Wrox editors. A complete book list, includ-
ing links to each book’s errata, is also available at www . wrox.com/misc-pages/booklist.shtml.

If you don’t spot your error on the Book Errata page, go to www.wrox.com/contact/techsupport.
shtml and complete the form there to send us the error you have found. We’ll check the information
and, if appropriate, post a message to the book’s errata page and fix the problem in subsequent editions
of the book.

p2p.wrox.com

For author and peer discussion, join the P2P forums at p2p . wrox. com. The forums are a Web-based sys-
tem for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to e-mail you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

Athttp://p2p.wrox.com, you will find several different forums that will help you not only as you
read this book, but also as you develop your own applications. To join the forums, just follow these
steps:

1. Gotop2p.wrox.comand click the Register link.

2. Read the terms of use and click Agree.

XXXii
TEAM LING - LIVe, Informative, Non-cost and cenuine!

Introduction

3. Complete the required information to join as well as any optional information you wish to pro-
vide and click Submit.

4. You will receive an e-mail with information describing how to verify your account and com-

plete the joining process.

You can read messages in the forums without joining P2P, but in order to post your own messages, you
must join.

Once you join, you can post new messages and respond to messages that other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to ques-
tions about how the forum software works as well as many common questions specific to P2P and Wrox
books. To read the FAQs, click the FAQ link on any P2P page.

xxxiii

TEAM LING - LIVe, Informative, Non-cost and cenuine!

TEAM LING - LIVe, Informative, Non-cost and cenuine!

Part I: JSP Fundamentals

Chapter 1: Getting Started with JavaServer Pages

Chapter 2: JSP Basics 1: Dynamic Page Creation for Data
Presentation

Chapter 3: JSP Basics 2: Generalized Templating and Server
Scripting

Chapter 4: CSS, JavaScript, VBScript, and JSP

Chapter 5: JSP and EL

Chapter 6: JSP Tag Libraries and JSTL

Chapter 7: JSP Directives

Chapter 8: JSP Standard Actions

Chapter 9: JSP and JavaBeans

Chapter 10: Error Handling

Chapter 11: Building Your Own Custom JSP Tag Library
Chapter 12: Advanced Dynamic Web Content Generation
Chapter 13: Internationalization and Localized Content

Chapter 14: JSP Debugging Techniques

TEAM LING - LIVe, Informative, Non-cost and cenuine!

TEAM LING - LIVe, Informative, Non-cost and cenuine!

Getting Started with
JavaServer Pages

JavaServer Pages (JSP) is a Java-based technology that is run on a server to facilitate the processing
of Web-based requests. Many of the Web sites that you visit daily may be using JSP to format

and display the data that you see. This chapter reveals what JSP is, how it works, and why it is
important.

The evolution of request processing using Java-based server logic is also presented in this chapter.
JSP plays a vital role in this evolution. This role, along with how JSP assists in Web request pro-
cessing, will be discussed. This overview serves as a foundation upon which to build new JSP con-
cepts and to introduce new JSP features in later chapters.

Every chapter in this book contains hands-on JSP coding examples. Starting from this very first
chapter you will be working immediately with JSP coding. This chapter shows in detail how to set
up JSP code on your own Windows-based PC or Linux/UNIX workstation.

In particular, this chapter:

0 Provides a historical review of the Web technology evolution that leads to JSP
Discusses why JSP is needed

Reveals how JSP works

Shows where to download chapter code examples and the JSP Project examples

Shows where to download a server for executing JSP code on your PC or workstation

0O 00 0 O

Reveals how to set up the open-source Tomcat server for running your JSP code

TEAM LING - LIVe, Informative, Non-cost and cenuine!

Chapter 1

Creating Applications for the Internet

Before looking at a server that supports JSP, think of what happens under the hood when you use your
browser to access a Web site. It’s likely you're using one of the popular Web browsers, such as Netscape,
Microsoft Internet Explorer, Firefox, Konquerer, or Opera. Figure 1-1 illustrates the sequence of events
that occurs when the browser accesses a URL.

Internet or
internal network

Y

web server

2. sends request to web server

1. enters URL
—_——>

web browser

-
5. displays HTML 4. responds with HTML page

./

3. web server fetches stored HTML page

Figure 1-1: Web browser accessing a URL

The following steps correspond numerically with the numbered steps in Figure 1-1:

1. Enter the URL of a Web page into your browser. This URL tells the browser to contact a specific
machine on the Internet.

2. Thebrowser then sends the request to the specified machine on the Internet. The machine
specified runs a piece of software called a Web server. The Web server receives the request and
examines it. Popular Web servers include Apache, Microsoft Internet Information Services (IIS),
Netscape Enterprise Server, Sun Java System Web Server (formerly Sun ONE), Oracle HTTP
Server, and Zeus Web Server.

3. Depending on the request received, the Web server retrieves from its storage a Web page
encoded in HTML.

P

The page acquired in Step 3 is passed back to the requesting browser as a response.

5. The browser, after receiving the response Web page, displays it to the user.

TEAM LING - LIVe, Informative, Non-cost and cenuine!

Getting Started with JavaServer Pages

Of course, the Web page can contain graphical elements such as GIF files (the browser will have to issue
additional requests to the server for these files), as well as hyperlinks to other URLs that the user can click.

HTML (Hypertext Markup Language) is the standard format in which Web pages are
coded. HTML files are text-based files that can be edited in any text editor. An
HTML page consists of tagged sections such as a header and a body, and formatted
layout elements such as paragraphs and tables. All browsers understand HTML and
will display (called rendering in HTML lingo) the page according to the formatting
tags. For more information on HTML, check out Beginning Web Programming with
HTML, XHTML, and CSS (Wrox Press; ISBN 0-7645-7078-1).

In the preceding process, the browser talks to the Web server over the Internet. This conversation is
carried out via a standard network protocol. This particular protocol is appropriately called HTTP
(Hypertext Transfer Protocol). HTTP is built on top of TCP/IP, the protocol suite that ties all the computers
in the Internet together.

Limitations of the basic Web server model

The basic function of the Web server restricts it to serve a finite number of static Web pages. The content
of each page remains the same. There is no easy way to show information that may change, such as
today’s weather, the latest news, or the current product list offered by an online store. A new set of static
pages needs to be created to show new information.

Creating new static pages for every minute change of the underlying information is tedious. Obviously,
a lot of time and effort could be saved if there were some way for the server to automatically generate
portions of the HTML page. Doing so would eliminate the need to repeatedly create new static pages as
information changes. This generation should happen dynamically when the request is processed. For
example, it could generate the portion of the HTML page that displays the current date and time.

Internet software engineers quickly turned their attention to the Common Gateway Interface (CGI) to
provide this dynamic generation capability.

Dynamic HTML generation via CGI

CGI provides a way to execute a program on the server side. This may be on the same machine running
the Web server, or it may be on another machine connected to it. The CGI program’s output is the HTML
page that will be sent back to the Web browser for display. Figure 1-2 illustrates basic CGI operations.

1. First the browser is instructed to access a URL. You may be entering this URL by hand. More
likely, a CGI URL is accessed after you fill out an online form or click a hyperlink on a page
already displayed. For example, the URL may be http: //www.wrox.com/beginjsp/
chltest.cgi. This URL tells the browser to contact a specific machine on the Internet called
Www . Wrox.com.

2. The browser then sends the request to the specified machine on the Internet. This is identical to
the non-CGI case in Figure 1-1. In addition to the machine, the URL also specifies a specific CGI
program location. The portion of the URL that specifies the location is beginjsp/chltest.cgi.
The Web server examines the incoming request’s URL and forwards the incoming request to the
specified CGI program (chltest.cgi).

5
TEAM LING - LIVe, Informative, Non-cost and cenuine!

Chapter 1

3. TheCGI program is executed on the server side.
4. The CGI program’s output is captured by the Web server.

5. This CGI program’s output is passed back to the requesting Web browser using the HTTP
protocol.

6. The client Web browser finally displays the output from the CGI program as an HTML page.

Internet or
internal network

web server
2. sends request to web server

1. enters URL
—>

web browser

-
6. displays HTML 5. responds with HTML page

- /

3. runs program

./

4. takes output as
response

CGI Program

to or from other systems,
databases, etc.

Figure 1-2: Basic CGl operations

The CGI program can be programmed using any computer programming language (the most popular
CGI languages are Perl or a shell script, but C, C++, or Java can also be used). The output that the CGI
program generates is not limited to a finite set of static pages. Furthermore, the CGI program can access
additional resources in generating the output. For example, a CGI program displaying the available
quantity for a product sold over the Internet may access a relational database containing current inven-
tory information.

Elegant as CGI seems to be initially, it has major shortcomings. These shortcomings, described in the
following section, are evident when a single CGI program is accessed by many users.

TEAM LING - LIVe, Informative, Non-cost and cenuine!

Getting Started with JavaServer Pages

Shortcomings of CGI

The major shortcomings of basic CGI are as follows:

Q The overhead of starting an operating system process for each incoming request
Q The overhead of loading and running a program for each incoming request

Q The need for tedious and repetitive coding to handle the network protocol and request decoding

The first two operations consume a large number of CPU cycles and memory. Because both operations

must be performed for each incoming request, a server machine can be overloaded if too many requests
arrive in a short period of time. Because each CGI program is independent of the other, and often reflect
incompatible programming languages, it is not possible to share code used in networking and decoding.

The Java programming language can be used to create CGI programs. Unfortunately, using the Java pro-
gramming language for CGI amplifies some of the shortcomings of basic CGI described in the preceding
list. Early attempts to use the Java programming language to create CGI programs created servers that
were extremely slow and inefficient, and crashed frequently due to overloading.

Java-based CGl is not suitable for handling CGI requests because Java is inherently an interpreted lan-
guage. Because of this, a very large program called the Java Virtual Machine (JVM) must be started to
handle an incoming request. The cycle of starting a system process, then a JVM within the process, and
then running the Java CGI code within the JVM just for processing a single request is very expensive in
terms of both computing cycles and resources. Worse, the whole process needs to be repeated for each
incoming request. When compared to the time it takes to process the request and generate the output,
this overhead can be significant. If the server needs to handle many incoming requests, the overhead
can overwhelm the system.

Improving Java-based CGI: servlets

The Java-based CGI scenario can be improved if the overhead can be eliminated. If some way exists to
process all incoming requests by initially starting a single operating system process with a single JVM
image, the overhead can be eliminated.

Because the Java platform can load new classes during runtime dynamically, this capability can be used
to load new Java code (classes) to handle incoming requests. In order words, a server-side process is
started once and loaded with the JVM once, but additional classes are loaded by the JVM to process
incoming requests. This is significantly more efficient. In this scenario, the following can be observed:

Q The overhead of starting an operating system process for each request is eliminated.
Q The overhead of loading a JVM for each request is eliminated.

Q Java classes are loaded by the JVM to process incoming requests; if more than one request
requires the same processing, the already loaded class can be used to handle it, eliminating even
the class loading overhead for all but the first request.

Q Code that handles the networking protocol and decodes incoming requests can be shared by all
the dynamically loaded request processing Java classes.

TEAM LING - LIVe, Informative, Non-cost and cenuine!

Chapter 1

The Java Web Server from Sun Microsystems released in the late 1990s worked exactly in this way. This
Web server, written in the Java programming language, started up a JVM to handle all incoming
requests and in turn loaded additional Java classes as needed to process specific requests.

In order to ensure that the Java classes loaded for handling requests do not step over one another, or
stop the entire Web server altogether, a coding standard was created, which these classes must follow.
This standard is called the Java Serviets API (Application Programming Interface). The dynamically loaded
classes for processing are known as servlets.

The portion of code that manages the loading, unloading, reloading, and execution of servlets is called a
servlet container. Servlets may need to be unloaded if the system is running out of memory and some
servlets have not been used for a very long time. A servlet may need to be reloaded if its code has been
modified since it was last used.

There are many different ways to configure the Web server and servlet container. The next section dis-
cusses the most popular scenarios.

Web server configurations: integrating servlet containers

Depending on the Web server and servlet container used, very different configurations are possible.
Some popular configurations include the following:

Q The same JVM runs the Web server as well as the servlets; in this case, the Web server is coded
in Java, as is also the case with the Java Web Server mentioned earlier. This is often called the
standalone configuration. Figure 1-3a illustrates the standalone configuration.

Q The Web server is not written in the Java programming language, but it starts a JVM within the
same operating system process; in this case, the information is passed directly from the Web server
into the JVM hosting the servlet container. (Some versions of both the Apache Web server and
Microsoft IIS can work in this way.)This is often called the in-process configuration. Figure 1-3b
illustrates the in-process configuration.

Q The Web server is not written in the Java programming language and runs in a separate operat-
ing system process from the servlet container; in this case, the Web server passes the request to
the servlet container, using either a local network or operating—system-specific interprocess
communications mechanism (a typical configuration for the Apache or Microsoft’s IIS Web
server). This is often called the independent configuration or networked configuration. Figure 1-3c
illustrates this configuration.

The first two configurations in the preceding list have the advantage that the JVM runs within the same
OS process as the Web server. This enables rapid transfer of request information and processing output
to and from the CGI code. Conversely, if the servlet container or one of its servlets crashes, the entire
Web server may crash because they are in the same process.

The third configuration is less efficient when it comes to the transfer of request data between the Web

server and the servlet container. However, the servlet container can crash and restart without affecting
the operation of the Web server. This form creates a more robust system for handling Web requests.

TEAM LING - LIVe, Informative, Non-cost and cenuine!

Getting Started with JavaServer Pages

a. standalone configuration b. in-process configuration

ﬂ)s Process \ ﬂ)s Process \

e N\ “Java VM \

Java VM

servlet
container

server <« container

] web servlet

c. independent/networked configuration

AS Process \ AS Process

web servlet

container

Figure 1-3: Web server and servlet container configurations

Each of the three configurations described exhibit superior performance characteristics when compared
to the basic CGI operation introduced earlier.

Optimizing serviet development: JavaServer Pages

Servlets can be viewed as an efficient way of performing CGI operations using the Java programming
language. Java classes representing the servlet are dynamically loaded by the servlet container when
they are needed. Bear in mind, however, that each servlet can be composed of several compiled Java
classes. This means that a programmer will first write the Java code, then compile it, and then register
and execute (or deploy) the code via the servlet container. Should there be any need to modify the servlet,
the Java source code must be modified, recompiled, and then re-deployed via the servlet container.
Figure 1-4 illustrates the steps in the servlet development process.

TEAM LING - LIVe, Informative, Non-cost and cenuine!

Chapter 1

START]
v

write/edit Java
servlet code

!

compile servlet

v

deploy to servlets
container

test via
browser & server

Se—

YES
[DONE]

Figure 1-4: Steps in servlet development

Refer back to the basic CGI mechanism presented earlier, and it is evident that the main purpose of most
servlets is to generate an HTML page. As a result, you may see servlet Java source code that looks like
the following;:

public class HelloWorldExample extends HttpServlet {
public void doGet (HttpServletRequest request,
HttpServletResponse response)
throws IOException, ServletException

String msg = "Hello, world!";
response.setContentType ("text/html") ;

PrintWriter out = response.getWriter();
out.println(“<html>")-

out.println("<head>");

out.println("<title>JSP 2.0 Hello World</title>");
out.println("</head>");

out.println ("<body>") ;

out.println (msg) ;

10
TEAM LING - LIVe, Informative, Non-cost and cenuine!

Getting Started with JavaServer Pages

out.println("</body>") ;
out.println("</html>");

}

Aside from the servlet programming details, note the repeated use of the PrintWriter.println()
method to generate the output HTML page. You can see that every time you need to make a minor
change to the HTML, the Java source code must be modified, recompiled, and re-deployed. This created
a lot of tedious work for early servlet developers. In fact, this process hopelessly bound together the
work of Web page design with the work of server logic design and made the programmer responsible
for both!

JavaServer Pages (or JSP) was introduced to solve these problems. Specifically, JSP provides the following
benefits:

Q A templating mechanism whereby Java-based logic can be embedded within HTML pages

0 Automatic detection and recompilation whenever the JSP is changed

When using JSPs, it is not necessary to write or compile any code in Java programming language. The
development cycle can be very quick. Modifications to the JSP can be viewed immediately because the
JSP container (or JSP engine, or [SP runner, as it is sometimes called) will automatically recompile the JSP.

Unlike servlets, JSPs are not written in the Java programming language (although some JSPs may con-
tain embedded Java coding). Instead, they are text-based templates. This is best illustrated with an
example. The following JSP will display the same output as the servlet presented previously:

<%@ taglib prefix="tags" tagdir="/WEB-INF/tags" %>
<html>
<head>
<title>JSP 2.0 Hello World</title>
</head>
<body>
<tags:helloWorld/>
</body>
</html>

Note that the preceding JSP is essentially an HTML page with some special markup tags. JSPs are typi-
cally stored in source files with a . jsp file extension. When the JSP is accessed by an incoming request,
the JSP container will parse the special tags and replace them with dynamic output. For example, the
preceding JSP may produce the following output (just as the previous servlet) after processing by the JSP
container. The examples later in this chapter explain in detail how this JSP works.

<html>
<head>
<title>JSP 2.0 Hello World</title>
</head>
<body>
Hello, world!
</body>
</html>

11
TEAM LING - LIVe, Informative, Non-cost and cenuine!

Chapter 1

In most cases, the JSP container is actually a servlet, enabling JSPs to work within a basic servlet con-

tainer. However, this detail is not important to the operation of JSP, and need not concern the beginning
JSP developer.

It should be clear from this discussion that JSP greatly simplifies the development and construction of
server-side Java-based CGI. JSP enables the rapid development of server-side applications that create
dynamic output. There is one additional benefit to JSP that may not be immediately evident. Take a sec-
ond look at the JSP template. Note that although the JSP tags are embedded in the HTML file, the gen-
eral HTML page structure is still completely intact. In fact, it is possible to have professional Web page
designers (typically graphic design professionals with little or no programming skills) design the tem-
plate. This enables the task of Web site graphics and layout design to be decoupled from the application
development task. The page designer can work on the HTML portion of the template, while the JSP
developer can work on the tags used and their placement.

Now is a good time to set up a system and try some actual JSP code.

Try It Out Getting Tomcat Up and Running

This section provides step-by-step download and setup instructions for a servlet container and JSP
engine called Tomcat. Instructions are provided for both a Windows-based system and a Linux or UNIX-
based operating system, such as Red Hat Linux or FreeBSD.

As with all Try It Out sections, this section focuses on the hands-on aspects. If you come across ques-
tions during the procedure, it is likely that they are answered in the next “How it Works” section. You
may want to read ahead if you cannot wait for the answer.

Checking your system for Java

12

Before downloading Tomcat, you should ascertain that you have the Java platform installed and run-
ning. This book requires version 1.4.2 or later. To determine if you have Java platform installed and
running, type in the following command: On either Windows or a Linux/UNIX system, open a com-

mand prompt and type in the java -version command. Figure 1-5 shows Java version 1.4.2_04-b05
running on a Windows system

B C:\WIND OWS System32\ cmd.exe =10l %I

C:\>java -version

java version "1.4.2_ 84"

Java(TM) 2 Runtime Environment, Standard Edition (build 1.4.2_84-b@5)
Java HotSpot(TM) Client WM (build 1.4.2_04-b@S, mixed mode)

CiN>o

Figure 1-5: Verifying the Java platform version on a Windows system

TEAM LING - LIVe, Informative, Non-cost and cenuine!

Getting Started with JavaServer Pages

If you do not get the Java version information, contact your system administrator to obtain the configu-
ration for running Java programs. If it is your own machine, install the latest JDK. After the JDK is
installed you should ensure that the JAVA_HOME environment variable is set to the Java installation
directory, and that the bin directory under JAVA_HOME is added to your PATH environment variable.

Downloading Tomcat

You need to determine the latest version of Tomcat before downloading it. The latest version of the
Tomcat container can be determined by checking the following URL:

http://jakarta.apache.org/tomcat/

Figure 1-6 shows a recent version of this page. Notice the table in the center of the page. This table indi-

cates that 5.0.28 is the latest version that supports JSP Standard 2.0 (and Servlet standard 2.4). This book
will make extensive use of features in JSP 2.0.

The ongoing updates of Tomcat server will transition to the Tomcat 5.5.x version. The configuration,
deployment procedures, and level of support for [SP are identical between Tomcat 5.0.28 and Tomcat

5.5.x. All of the examples in this book will work with Tomcat 5.5.x.

-,!i The Jakarta Site - Apache Jakarta Tomcat - Netscape
. File Edit Wiew Go Bookmarks Tools Window Help

" GOO @ O |\ht‘|pfﬂakarra.apache.orgu10mcau

&) [. The Jakarta Site - Apache Jakarta T.. |

Wpache Jakarta Project
http:// jakarta.apache

.org/

Apache Jakarta Tomcat

Tomest is the servlet container that is used in the official Reference Implementation for
the Java Serviet and JavaServer Pazes technologies. The Java Servlet and JavaServer
Pages specifications are developed by Sun under the Java Community Process,

loped in an open and participatory environment and released under the

2 License, Tomeal is intendad to be acollaboration of the best-of-breed
develope.rs from around the world, We invite youto part1c1pa.te in this open development
project, To learn more about getting involved, click here

Tomcat Versions

For the impatient, current Tomeat production quality releases vs, Servlet/ISF
specifications:

[Serviet/JSP Spec Tomcat version
247210 50,28

232 4.1.30

22M.1 332

The releases are described in more detad] below to help you determine which one is right
for you. More details about each release can be found in the associabed release notes.

SRAEHD

=

|§|<|

Figure 1-6: Tomcat's welcome page

TEAM LING - LIVe, Informative, Non-cost and cenuine!

Click the Binaries link under the Download heading on the left side of the Tomcat index page. Figure 1-7
shows this page.

13

Chapter 1

. Eile Edit Wiew Go Bookmarks Tool: MWindow Halp

pe <2» =] |

o MNews & Status

+ Zearch Jakarta

Dowmloads

a @0 Q Q @ | . hitp-f/jakariz.apache. arg/sltedinindex.cgl 7| [y Search | c:;;o @
44 [. The Jakarta Site - Binary Downloads | %]
) B [}
Wpache Jakarta Project
http:// jakarta.apache.org/
Binary Downloads
About Jakarta
. W e We make binary versions of our code for the convenience of our users. In general, binaries are

meant for developers who want to use the Serviet and JavaServer Pages technologies (versus those
who want to "hack” the technologies in order to integrate them into other products),

Depending on what kind of user you are, you'll want to use a particular type of build, We divide our

available binaries into the following categories:
+ Binaries

* Source Clode

« CVE Fepositories

+ Release Builds
+ Milestone Builda
+ Nightly Builds
Support + Demo Builds
o Mailing Lists Release Builds are those that are ready for Prime Time. This build is "as good as it gets!”
V] 1] - 155,

* Bug Database Milestone Builds are those that are somewhat stable but not crystal-clean, We have some

confidence in them, but they are buggy and should only be used by advanced users who want to
explore future product direction or take advantage of new features. For developers, these builds
serve a3 & mechanism to track progress towards arelease.

Reference

Nightly Builds are thoss that are very unstable (a.k.a dynamite!). We have no confidence in them,
They are for developers who are helping to develop the technology and want "the latest bits." Use at
your own risk!

Deme Builds are useful for showing demonstrations of our products. For example, we packaged &
T ant sample Velocity application with a minimal distribution of Tomeat 2% and 4.
S = A 0] [
Figure 1-7: Tomcat’s Binary Downloads page

hd
= = [

From the Binary Downloads page, you will need to scroll down to the bottom and locate the latest
Tomcat 5 version. In our case, it is Tomcat 5.0.28.

Now you have a choice of downloads:

Q If you are working with Linux or another UNIX operating system, click and download the
.tar.gz file (jakarta-tomcat-5.0.28.tar.gz in our case).

Q If you are working with a Windows operating system, click and download the . exe file
(jakarta-tomcat-5.0.28.exe in our case).

Installing Tomcat

After downloading, you need to extract the Tomcat installation on a Linux system. The following code
shows how this is done:

tar zxvf jakarta-tomcat-5.0.28.tar.gz

14

TEAM LING - LIVe, Informative, Non-cost and cenuine!

Getting Started with JavaServer Pages

This will extract Tomcat 5 into a subdirectory called jakarta-tomcat-5.0.28 under the current direc-
tory. You may wish to rename this directory to one with a shorter name.

This directory will be referred to as <Tomcat Installation Directory> in future chapters.
This completes the Linux-based installation.

On a Windows system, execute the downloaded file (by selecting Open or by double-clicking the down-
loaded jakarta-tomcat-5.0.28.exe file). This will start the wizard-based windows installer. Keep in
mind the following during installation:

Q When the installer asks you to choose components, choose the Normal install, which is the
default.

O When the installer asks you to choose an installation location, change the default folder to
c:\tomcat5 or a similar directory of your choice.

This will be referred to as the <Tomcat Installation Directory> in future chapters.

Q When the installer asks you to enter configuration options, enter the administrator login username
of tomcat, and choose a password that you can remember for the administrator user. The discus-
sion following assumes that you used the password tomcat.

Accept the default for all other prompts during installation. Tomcat 5 will start up at the end of the
installation.

You can also install on Windows using the ZIP file version of Tomcat. In this case, the installation is simi-
lar to that on UNIX/Linux, as all you have to do is to extract out the ZIP file in a directory of choice.

Adding an administrative user and password on a Linux system

If you are on a Linux/UNIX system, or have installed Tomcat using the ZIP file, and not the Windows
installer executable, you will need to add the administrative username and password manually.

To do so, go to the <Tomcat Installation Directory>/conf directory. Using a text editor, make the
following highlighted modifications to the file called tomcat_users.xml:

<?xml version='1.0' encoding='utf-8'?>
<tomcat-users>
<role rolename="tomcat"/>
<role rolename="rolel"/>
<user username="tomcat" password="tomcat" roles="tomcat,manager"/>
<user username="both" password="tomcat" roles="tomcat,rolel"/>
<user username="rolel" password="tomcat" roles="rolel"/>
</tomcat-users>

The manager role has been added to the user named tomcat. This will add the user tomcat to the access
control list for the Manager utility. This utility can be used to add applications to a running Tomcat server;
the “Deploying Chapter Examples” section shows how this is done. An access control list specifies which
users are allowed to use the utility, and which password needs to be entered.

Save the changes to the tomcat_users.xml file.

15
TEAM LING - LIVe, Informative, Non-cost and cenuine!

Chapter 1

Starting and shutting down Tomcat 5

On a Windows system, you should see the Apache Process Runner (Tomcat Launcher) running on your sys-
tem tray (lower right-hand corner), with a green arrow indicating that Tomcat 5 is running. Alternatively,
you can always start Tomcat 5 by clicking the Start button and choosing Programs (or All Programs with
Windows XP) = Apache Tomcat 5 = Start Tomcat.

To shut down Tomcat 5 on a Windows system, right-click the Apache Process Runner on your system
tray and select Shutdown => Tomcat5. Tomcat will be shut down and the Apache Process Runner will
disappear from the system tray.

To start the Tomcat 5 server on a Linux/UNIX installation, change directory to the <Tomcat
Installation Directory>/bin. From the shell, run the startup. sh script via the following
command:

sh startup.sh

In the same directory is a shutdown. sh script. To shut down the Tomcat 5 server on a Linux system,
issue the following command:

sh shutdown.sh

Note that even on Windows systems, there are two batch files, startup.bat and shutdown.bat, in
the <Tomcat Installation Directory>/bin directory. These files can be used from a command
prompt with the proper environment setup to start or shut down Tomcat 5. If you wish to use these
command-line batch files, make sure you have the environmental variable JAVA_HOME set to point to
the installation directory of your Java SDK.

Verifying your Tomcat 5 installation
To verify that your version of Tomcat is installed properly, try to start a browser and access the follow-
ing URL:
http://localhost:8080/index.jsp

Figure 1-8 shows the resulting HTML page that you should see in your browser: the Tomcat 5 welcome
page.

How It Works

Tomcat, often referred to as the Tomcat server, is an open-source servlet container and JSP engine. Both

the servlet API and JSP specification have undergone many revisions. At this time, multiple versions

of the servlet API and JSP specifications are in use. Very large bodies of applications have been written on
these different versions. While each new version brings many new features and improvements, older ver-
sions tend to be well tested and more stable — two features greatly appreciated by business application
developers.

16
TEAM LING - LIVe, Informative, Non-cost and cenuine!

Getting Started with JavaServer Pages

wﬁj Apache Tomcat5.0.28 - Microsoft Internet Explorer
I
L]
@ Back = Ix'] Id] . /-) Sesrch ‘L Favories @Y Meds) =R
ackbess 4] httpiffiocalhostsg080f v: Ed 5o ks ?
-~
Apache Tomcat/5.0.28
Wpache Jakarta Project
/‘K % http://jakarta.apache.org/
Administration If you're seeing this page via a web browser, it means you've setup Tomcat
S successfully. Congratulations!
Latus

Tomcat Administration
Tomcat Manager

Documentation

Release Motes

Change Log
Tomcat Documentation

Tomcat Online

Home Page

Bug Database

Open Buas

Users Mailing List
Jevelopers Mailing List

IRC

&

As you may have guessed by now, this is the default Tomcat home page. It can be
found on the local filesystem at:

SCATALINA HOME/webapps/ROOT/index. j=p

wherg "$CATALINA_HOME" is the root of the Tomcat installation directory. If you're
seeing this page, and you don't think you should be, then either you're either a user

whao has arrived at new installation of Tomcat, or you're an administrator who hasn't
qgot hissher setup quite right. Prowviding the latter is the case, please refer to the

Tom ocumantation for more detailed setup and administration information than
i5 found in the INSTALL file.

MOTE: For security reasons, using the administration webapp is restricted to
users with role "admin”. The manager webapp is restricted to users with role
"manager". Users are defined in SCATALINA_HOME/conf/tomcat-

users. =ml.

Included with this release are a host of sample Sendets and JSPS (with associated

source code), extensive documentation (including the Servlet 2.4 and JSP 2.0 AP
JavaDac), and an introductory guide to developing web applications.

& Local intranet

Figure 1-8: The Tomcat 5 server welcome page

The Tomcat server is the reference implementation for the servlet API and JSP specifications. This means
that every facet of the API specification is implemented and validated against Tomcat. Because there are
multiple versions of these specifications, there are also multiple versions of Tomcat servers. The follow-
ing table shows the correspondence between the Tomcat server and servlet API and JSP specifications.

Tomcat Version Servlet API Version, JSP Spec Version

3.x.x 22,11
4.x.x 23,12
5.x.x 2.4,2.0

The servlet API and JSP specification designers aim to create, as much as possible, new versions that are
backward compatible. This means that applications based on older versions should be able to run in newer
version containers. However, in practice, this is not always possible. With new versions, there are often
APIs that are deprecated (no longer supported) and new APIs and formats that must be utilized.

17
TEAM LING - LIVe, Informative, Non-cost and cenuine!

Chapter 1

For example, this book focuses on the JSP 2.0 specification. The JSP engine for this specification is part of
the Tomcat 5.x.x series of servers. Products of most commercial vendors have all updated to this version
of the JSP specification.

When you first start up the Tomcat server, it is operating in standalone mode. In this mode, Tomcat is function-
ing in accordance with the first configuration presented earlier (in Figure 1-3a). Tomcat has a built-in Web
server that is used to handle the incoming request from your browser. Along with the Web server, the JSP
engine is also started. However, the servicing of this initial welcome page does not involve the JSP engine.

The JSP page that you see in your browser is stored under the <Tomcat Installation Directory>/
webapps /ROOT directory. You may want to examine the source code of this file. Note that even though the
page being accessed is a JSP page, there are no JSP tags (for dynamic elements) within the file. In other
words, it is mainly a static HTML file. A static HTML file with no dynamic element can be a JSP file.

Try It Out An Initial JSP Experience

Having verified that Tomcat 5 is correctly installed, it is time to try out some JSP coding. The initial
index. jsp that is displayed is not too exciting; it has no dynamically generated element. Using the
same browser, access the following URL:

http://localhost:8080/jsp-examples/jsp2/tagfiles/hello.jsp

This time, the page that you see should be similar to the one shown in Figure 1-9, which shows the
hello. jsp example from the Tomcat 5 distribution.

SP 2.0 Examples - Hello World Using a Tag File - Netscape =101 x|
. Eile Edit Wiew Go Bookmarks Tools Window Halp

QO O 0 O !&; hitp-flocalhostE080/ sp-examples/] sp2itaghies/elio.sp I [Ogs:aach] CE;Q @
[X]

) | % JSP 2.0 Examples - Hello World Usin...]

JSP 2.0 Examples - Hello World Using a Tag File

This J3P page invokes a custom tag that simply echos "Hello, World!" The custom tag is generated from atag file in the
SWEB-INF/tags directory.

MNatice that we did not need to write a TLD for this tag. We just created MWEB-INF ftags/helloWorld tag, imported it using
the taglib directive, and used it!

Result: Hello, world!

S 2 A o p o = <A,
Figure 1-9: The hello.jsp example from the Tomcat 5 distribution

18
TEAM LING - LIVe, Informative, Non-cost and cenuine!

Getting Started with JavaServer Pages

You can see the source code to this JSP by accessing the following URL:
http://localhost:8080/jsp-examples/jsp2/tagfiles/hello.jsp.html
The content is represented by the following code:

<%@ taglib prefix="tags" tagdir="/WEB-INF/tags" %>
<html>
<head>
<title>JSP 2.0 Examples - Hello World Using a Tag File</title>
</head>
<body>
<h1>JSP 2.0 Examples - Hello World Using a Tag File</hl>
<hr>
<p>This JSP page invokes a custom tag that simply echos "Hello, World!"
The custom tag is generated from a tag file in the /WEB-INF/tags
directory.</p>
<p>Notice that we did not need to write a TLD for this tag. We just
created /WEB-INF/tags/helloWorld.tag, imported it using the taglib
directive, and used it!</p>

<u>Result:</u>
<tags:helloWorld/>
</body>
</html>

In Figure 1-9, the “Hello, World!” message after the “Result:” label is dynamically generated via the
<tags:helloWorld/> tag in the preceding code.

To see how JSP is automatically and dynamically compiled, make some modifications to the hello. jsp
file. You will find the hello. jsp file in the <Tomcat Installation Directory>/webapps/
jsp-examples/tagfiles directory. Using a text editor, make the following highlighted modifications
and then save the resulting file in the same directory named hello2. jsp:

<%@ taglib prefix="tags" tagdir="/WEB-INF/tags" %>
<html>
<head>
<title>Presenting JSP 2.0</title>
</head>
<body>
<hl>My First JSP 2.0 Template</hl>
<hr>
<p>All I want to say is <tags:helloWorld/></p>
</body>
</html>

Now use your browser to load the new JSP file using the following URL:
http://localhost:8080/jsp-examples/jsp2/tagfiles/hello2.jsp

The resulting HTML output is shown in Figure 1-10.

19
TEAM LING - LIVe, Informative, Non-cost and cenuine!

Chapter 1

enting JSP 2.0 - Helscape =1o] x|
. Eile Edit Wiew Go Bookmarks Tools Window Halp

@o O @ Q | % hitp-localnost:a080/sp-examplesdsp2/taglleshelloZ |sp | [© Search | ng @
[X]

1 S Presenting JsP 2.0 1

My First JSP 2.0 Template

AT wrant to say is Hello, world!

© = & OF £ |Done == =
Figure 1-10: Customized hello2.jsp template

If you get an error when attempting to access hello2. jsp, your installation may not
have set the required environment for compiling JSP pages. This can happen with
certain versions of the Windows installer. To fix this, you need to stop Tomcat 5.
Next, you need to copy the tools. jar file from the <java SDK installation>/1ib
directory to the <tomcat 5 installation>/common/lib directory. Start Tomcat 5
after copying this file and hello2. jsp should then display without any error.

Edit the hello2. jsp page again, this time making the following highlighted modifications, and save
the file under the same name:

<%@ taglib prefix="tags" tagdir="/WEB-INF/tags" %>
<html>
<head>
<title>Presenting JSP 2.0</title>
</head>
<body>
<hl>My First JSP 2.0 Template</hl>
<hr>
<p>I am so excited, I want to scream "<tags:helloWorld/> <tags:helloWorld/>
<tags:helloWorld/>"</p>
</body>
</html>

20
TEAM LING - LIVe, Informative, Non-cost and cenuine!

Getting Started with JavaServer Pages

In this case, the dynamically generated text is repeated. Reload the JSP page by clicking the Reload (or
Refresh) button on your browser. This time, your page should look like the one shown in Figure 1-11.

i Presenting JSP 2.0 - Nelscape =1l =l
. Eile Edit Wiew Go Bookmarks Tools Window Help

- QO o @ O | % hitp:/localnost:a0804sp plesdsp2itagilesihellod |sp | [© Search | C?_go :@
[X|

1 S Presenting J5P 2.0 1

My First JSP 2.0 Template

I am so excited, [want to scream " Hello, world! Hello, world! Hello, world! ™

S =& of @)oo sl L0 7
Figure 1-11: Customized hello2.jsp with repeated tag

How It Works
The Tomcat 5 distribution includes many JSP examples. Instead of creating a JSP from scratch, the pre-

ceding examples utilize one of the simple examples in the distribution.

The different JSP examples included with Tomcat are located under the <Tomcat Installation
Directory>/webapps/jsp-examples directory. The preceding example is located under the
<Tomcat Installation Directory>/webapps/jsp-examples /jsp2/tagfiles Subdirectory.

Tags and taglib

This JSP makes use of a special custom tag that simply outputs the text “Hello World!” Custom JSP tags
are collected in a tag library, or taglib for short. To notify the JSP container of the location of the custom
tag, a special JSP tag (called the taglib directive) needs to be included:

<%@ taglib prefix="tags" tagdir="/WEB-INF/tags" %>

21
TEAM LING - LIVe, Informative, Non-cost and cenuine!

Chapter 1

This directive, explained in detail in Chapter 11, tells Tomcat 5 that the tags can be found in the
/WEB-INF/tags directory. In this case, the path is relative to the <Tomcat Installation Directory>/
webapps/jsp-examples directory. In addition, the preceding taglib directive also tells Tomcat that all
of the tags in this library are prefixed by the word tags. This prefix is very useful in production code,
where a single JSP page may use tags from many different tag libraries. By having this prefix, two libraries
may have tags with the same name and Tomcat will not get them confused. The prefix that is added to the
tag to distinguish which library it originates from is often called the namespace.

Within the JSP body, which is essentially an HTML page here, the tag is embedded as follows:
<tags:helloWorld/>

Note that this helloWorld tag has no body, as indicated by the empty notation </>, and has the names-
pace tags.

Wherever this helloWorld tag is placed within the JSP, the JSP container will substitute the dynamically
generated text “Hello, World!” in its place. This was thoroughly tested in the Try It Out section earlier,
where the tag was duplicated throughout the JSP page.

Using a tag that prints “Hello, World” all the time is rather boring. Bear in mind, however, that you can
create the tag using the Java programming language to do most anything. For example, the tag could
perform a lookup on the inventory database and display the remaining quantity of an item instead of
printing “Hello, World”. Therefore, the craft of JSP programming revolves around the placement of J[SP
tags within a template. If you're already familiar with HTML, learning JSP involves learning a set of new
tags and how they can be applied on the pages that you design. For readers who want to create their
own tags, Chapter 11, “Building Your Own Custom JSP Tag Library,” describes how to create your own
JSP tags and tag libraries.

JSP’s rapid development cycle

In the preceding Try It Out section, the hello2. jsp page is checked for modification every time the
URL containing the JSP is accessed. This should not be surprising. Each access from a browser is a sepa-
rate request, and recall that the server-side CGI mechanism (in this case, the JSP container) handles each
request independently.

Because each request is independent, the JSP container is given a chance to determine whether the JSP
has been modified since it was last accessed. If the JSP container detects that the JSP has been modified,
the page is recompiled before being used to handle an incoming request. This makes the JSP develop-
ment cycle quite straightforward; just modify the JSP file and the changes take effect immediately.

Try It Out Deploying Chapter Examples

Now let’s take a look at how to deploy the examples from this book to our Tomcat container.

22
TEAM LING - LIVe, Informative, Non-cost and cenuine!

Getting Started with JavaServer Pages

If you have not yet downloaded the chapter examples, you can download the latest version of the exam-
ples from www . wrox. com. Once at the site, simply locate the book’s title (either by using the Search box
or by using the title lists) and click the Download Code link on the book’s detail page to obtain all the
source code for the book.

After extracting the example code, you should have a directory structure similar to what is shown in
Figure 1-12.

& filezhomessinghwroi - Konquaror 200 |
Location Edit ¥iew Go Bookmarks Jeools Setings Window Help
s ’ “§ P £ 4 T =
el 0 okl o ™ f GO OEE B
E Location: || & file: thome/singrarox/ 3) ol

Marme - Size File Type Madified | Permissions [owner Group Link: |
4.0 KB Directory Z004-04-13 L3486 rasr-xr-x sing USErs
4.0 KB Dwractory 2004-04-13 13:52 rwxr-xr-x sing Users
4.0 KB Directory Z004-008-13 15:19 rasr-xr-x sing USErs
3.3 KB Web Archive 2004-04-13 L3:47 rw-r--r-- sing users
4.0 KB Directory Z004-04-13 L3486 rasr-xr-x sing USErs
4.0 KB Dwractory 2004-04-13 1346 rwxr-xr-x sing Users
4.0 KB Directory Z004-04-13 L3:46 rasr-xr-x sing USErs
4.0 KB Dwractory 2004-04-13 1346 rwxr-xr-x sing Users
4.0 KB Directory Z004-04-13 L3:46 rasr-xr-x sing USErs
4.0 KB Dwractory 2004-04-13 1346 rwxr-xr-x sing UsErs
4.0 KB Directory Z004-04-13 L3:46 rasr-xr-x sing USErs
4.0 KB Duractory 2004-04-13 1346 rwxr-xr-x sing users
4.0 KB Directory Z004-04-13 L3:46 rasr-xr-x sing Users
4.0 KB Dwractory 2004-04-13 1347 rwxr-xr-x sing users
4.0 KB Directory Z004-04-13 L3:4T rasr-xr-x sing USers
410 KB Directory 2004-04-13 1347 romr-xr-x sing users
4.0 KB Directory Z004-04-13 L3:4T rasr-xr-x sing USers
40 KB Directory 2004-04-13 1347 romr-xr-x sing users
4.0 KB Directory Z004-04-13 L3:4T rasr-xr-x sing USers

¢ 4.0 KB Dwectory 2004-04-13 L3 47 rwxr-xr-x sing usErs

JehLT-sre.zip 266.3 KB Zip Archive 2004-12-10 22:22 ri--—--- sing users

- Achla 4.0 KB Directory 2004-04-13 1347 rvr-xr-x sing users
+ Achlg 4.0 KB Directory 2004-04-13 L3-47 rentr-xr-x sing users
- Aehza 4.0 KB Durectory 2004-04-13 1347 rwxr-xr-x sing users

chl7/) Directory

Figure 1-12: Directory structure of example code distribution

In Figure 1-12, all of the code and associated files for each chapter is stored under its own directory. For
example, the code and associated files for this chapter is stored under the ch01 subdirectory.

Note that each directory contains a similarly named file with the . war extension. For example, a ch01.war
file is under the cho01 subdirectory. A WAR file is a Web ARchive file. It contains a deployable Web applica-
tion in a format that is accepted by all standard complaint JSP/servlet containers (such as Tomcat). In other
words, the WAR file contains JSP along with other applications components that can be loaded and exe-
cuted immediately on a JSP/servlet container.

Some of the later chapters contain examples with large body of code. These examples require an automated
tool, called Apache Ant, in the creation of the WAR file. Unlike the earlier chapters, the code for these chap-

ters is distributed as zip files. For example, the source code for Chapter 17 is in ch17-src.zip.

Using a Tomcat utility called Manager, deploying a WAR file can be quite a simple process.

23
TEAM LING - LIVe, Informative, Non-cost and cenuine!

Chapter 1

Authentication for Manager access
Now try to access the Manager utility using the following URL:

http://localhost:8080/manager/html

At this point, the Manager utility should ask you for your user ID and password. This process is known
as authentication. Figure 1-13 illustrates a typical authentication screen that you may see.

éj‘\p ache Tomcar5.0.28 MILI\Qllﬁ1|IT@||I9'F<|J|I\IQI =[]
/ avorites Tools Help I -
= —
em " QX B P Jorens @ms @ 2 L EF B
acdress @] hiep:/flocalhost: 8050 managerfhtnl B> EE
A

Apache Tomcat/5.0.28
wpache Jakarta Project
- http:// jakarta.apache.org/
_ If you're seeing this page via a web browser, it means you've setup Tomcat

successfully. Congratulations!

Status
Tomcat Administration AS yoU M have aussead hunow this is tha dafault TAmr‘at home page. It can be 1
Tomcat Manager found on tf Connect to localhost B
=
SCA ':_3\ .
A i
whare "$C allation diractory. If you're
seeing thic Tomeat Manager Application ither you're either a user
who has a) administrator who hasn't
ot hisfer Hserneme: £ tomcat] 2, please refer to the
¢ password: R nistration information than
is found in
[Remember my passward
MOTE: F¢ 1 webapp Is restricted to
Home Paga users witl tricted to users with role
Bug Database "managel onf/tomecat-
Open Bug_s_ ; uszers.
Users Mailing List
Vi i I Included with this release are a host of sample Sendets and JSPs (with associated
RC source code), extensive documentation (including the Serdet 2.4 and JSP 2.0 AR
JavaDoc), and an introductory guide to developing web applications.
-
&1 Opening pags http:flocalhost Tt T % Local intranet

Figure 1-13: Tomcat Manager authentication screen

In the authentication screen, enter the username and password you have set up for administration dur-
ing installation. Once successful, you will see the Manager utility’s main screen, as shown in Figure 1-14.

24

TEAM LING - LIVe, Informative, Non-cost and cenuine!

Getting Started with JavaServer Pages

In Figure 1-14 you can see the WAR files that are already deployed on the running Tomcat server. Now
try to deploy the ch01.war file. Scroll down the page if you need to, until you see the box entitled WAR

File to Deploy. Click the Browse button next to the Select WAR File to Upload prompt. Browse to the

ch01.war file and select it. Next, click the Deploy button.

&1 /manager - Microsoft Internet Explorer [B]m]*]
File Edit ‘“iew Favorites Tools Help ﬁ'
Qi - © X [B € P Jrrowns @ @ 3+ %5 B
addvess] hitp:fflocalhost:a080/manager htl B> BT

— —
|Llstﬁggllca|lnns | HTML Manager Hel | Manager Help | Sar\cersimus| m

Path Display Hame Running Sessions Commands
] .lv\n\eicumaton true | o Start Stop Reload Undeploy
facin |T0mca1 Administration Apglication rue o Start Stop Belpad Lndeploy
slancer | frug I Start Stop Reiad Undeploy
Ispexanples | 15p 2.0 Examgies Trug 0 Start Stop Feled Undeploy
fmanagetr |Tom|::ath|snagar Aptication true o Start Stop Reload Undeploy
fsmrvlet-sangles | Serviet 2.4 Exsmples tru 0 Start Stop Feioad Lindeploy
tomcet-d |TomcatDDcummdim true o Stat Stop Reload Undeploy
pussbiay | etz Contert Menagemert rue 0 Start Ston Feload Undeploy

Deploy directory or WAR file located on server

Context Path Goptional):

ML Configuration file URL:

WAR or Directory URL:

WAR file to deploy

Select R file o Lgload [(Browse..]

] Done . Local intranet

v

Figure 1-14: Main screen of Tomcat’s Manager utility

This should start our final Chapter 1 example Web application. Looking at the list of Web applications
deployed on the server, notice that the cho1 Web application is now running on the server, as shown in

Figure 1-15.

TEAM LING - LIVe, Informative, Non-cost and cenuine!

25

Chapter 1

@ manager - Microsoft Internet Explorer

)|
R

File Edit ‘“iew Favorites Tools Help

eaatk - _) B @ (h /:)Seerch ";;'\\‘rFa\-umes a"meﬁa :e} L;Bv .; =] 15

addvess] htepsfflocalhost pload il Go |Liks >

Wpache Jakarta Project %
http:// jakarta.apache.org/ :

Tomcat Web Application Manager

Message: ‘:«-{ - Deployed application at context pach /chOL ‘
|LlstAggJina1inns | HTML banager Help | Manager Help | Sarer Status
Path Display Hame Running | Sessions Commands

] Welcome to Tomeat true o Start Stoo Reload Undeploy

fzcimin Tomcal Administration Application rue o Stert Sloo Reload Undesioy
tealancar true o Start Stoo Reload Undsplioy

fchin Chzpler 1 Examale (Arox Beginning JavaServer Pages) rue o Stel Sloo Reload Undssioy

I i JSP 2.0 Examples frue o Stwt Stop Reload Undesioy
mananer Tomcat Marspsr Application rue o Starl Stop Reload Undsploy

rervist: i .Sen'lai 2.4 Examples true o | Start Stop Reload Unclesioy
Aomeal-tocs Tomcat Documertation Irue Q Sl Sloo Reload Undegioy
Pevebiday Wahdav Contert Management true o Start Ston Reload Undsiploy

Figure 1-15: Successful deployment of the chOl.war example

You can try out the deployed ch01 example by accessing the following URL:

http://localhost:8080/ch01l/index.jsp
The page displayed should be similar to what is shown in Figure 1-16.

This JSP page displays information about this book.

How It Works

This Manager application enables you to deploy, start, stop, or undeploy server-side Web applications. A
Web application is a deployable unit represented by the WAR file. When the ch01 .war file is selected
using the Browse button and the Deploy button is clicked, the file is uploaded from the local directory to
the Tomcat server. The WAR file is placed into the server’s webapps directory. Tomcat is programmed to
scan for new Web applications in this directory. When Tomcat detects the newly uploaded ch01.war
file, it will deploy the ch01 Web application. This results in the retrieval of the WAR file from the
webapps directory, creating a new ch01 directory holding all of the application files (JSP, servlets, tags,
descriptors, and so on).

26

TEAM LING - LIVe, Informative, Non-cost and cenuine!

Getting Started with JavaServer Pages

& Book Information - Microsoft Internet Explores
3
y

Qe - () [¥] [2] Th Osewer Slzravores @reds €2 - 2 i o

addess @] httpsfflocalhost: 808001 findes sp v| & so ks ?

Book Information

The name of this book is Beginning JavalServer Pages .
It is published by Wron Press.

The zerver used m all the examples iz Tomecat 5

&] Done

& Local intranet

Figure 1-16: Book information presented by the chO1.war JSP example

The index. jsp file from ch01.war can be relocated to the <Tomcat Installation Directory>/
webapps/ch01 directory. Using a text editor to view this file, you should see the following:

<%@ taglib prefix="wroxtags" tagdir="/WEB-INF/tags" %>
<html>

<head>
<title>Book Information</title>
</head>
<body>
<hl>Book Information</hl>
<hr>
<p>The name of this book is <i><wroxtags:bookTitle/></i>.</p>
<p>It is published by <wroxtags:publisher/>.</p>

<p>The server used in all the examples is <wroxtags:containerName/>.</p>
</body>

</html>

Again, this is an HTML template with embedded JSP tags. The first tag at the top, the taglib directive,
looks familiar. It is almost exactly the same as the one in hello. jsp from the second example. This
directive associates the wroxtags namespace with the tag files in the WEB-INF/tags directory.

27
TEAM LING - LIVe, Informative, Non-cost and cenuine!

Chapter 1

If you take a look at the <Tomcat Installation Directory>/webapps/ch0l/WEB-INF/tags direc-
tory you will see several . tag files there. Each of these files is associated with an available tag. The fol-
lowing table describes the tags that are used in index. jsp.

Tag Name Description

bookTitle Displays the title of the book

publisher Displays the publisher for the book

containerName Displays the name of the JSP container used in the book

These tags are embedded inline with the HTML within index. jsp. Note that the resulting JSP is inde-
pendent of how these tags work. For example, if the tags were designed to look up the book information
from a library database, the very same index. jsp file can be used to display the book information with-
out any change. By editing the JSP file and modifying the HTML, it is easy to create the exact look
required to present the information.

In other words, the presentation of the information, captured in this JSP, is completely independent of and
separated from the information itself (and the method used to retrieve or synthesize this information —
the tags). JSP technology is considered to be most suitable for use in the Web-based presentation of
business information. Often, one will hear that “JSP is for presentation,” or that JSP is a presentation-layer
technology.

Summary

This chapter provided an introduction to JSP technology, described its intimate relationship with servlets
and CGI, and provided two actual hands-on examples that enabled you to work with the technology.
You now have

a
a
a
a
a

Q

Examined the historical evolution that lead to the development of JSP

An appreciation of why JSP is necessary in addition to CGI and servlets

An understanding of what JSP is and how it works

An understanding of Java-based server-side Web request processing in general

Downloaded and installed the Tomcat server for executing JSP code on your own PC or
workstation

An understanding of how to modify a JSP page to dynamically generate Web output

The next chapter explores the basic tags used in JSP programming.

28

TEAM LING - LIVe, Informative, Non-cost and cenuine!

Getting Started with JavaServer Pages

Exercises

1. Modify the index. jsp file in the third example to display a page similar to the one shown in
Figure 1-17. Make sure you use the tags to generate the book title, publisher, and container
name information.

2 A About Beginning JavaServer Pages - Nelscape =10l x|
. Eile Edit Wiew Go Bookmarks Tools Window Halp

- @o o @ O | % hitpslocalnosta0G0/ch index sp | [© Search | ng :@
[X|

&l | % Al About Beginning JavaServer Pag...]

Beginning JavaServer Pages

published by Wrox Fress

Moze: You will need Tomcat 5 to use thiz book,

© & & OFf) Dne = 10 P
Figure 1-17: JSP output of Exercise 1

2. The ch01l.war file contains a JSP example that displays information about this book, as well as
the server used in the examples. Modify this JSP, and add JSP coding if necessary, to render a
page that displays the information shown in Figure 1-18. The last line in the page should iden-
tify the browser that you are using, and will vary depending on whether you are using Internet
Explorer, Netscape, or another browser. You should examine the available tags in the tag library
carefully.

29
TEAM LING - LIVe, Informative, Non-cost and cenuine!

Chapter 1

iZ Book Information - Netscape =l =l
. Eile Edit Wiew Go Bookmarks Tools Window Halp

o @O O @ Q .|&;, hitp-#ilocalhost S0S0/ Andex |sp | [© Search] Qigo @
[X|

_‘ill'% Book Information]
Book Information

The name of this book is Beginning JavaServer Pages
Tt is published by Wrox Press.
The server usad in all the examples is Tomeat 5.

The browser you are using is Mozilla/s.0 (2{11: U; Linux 1686, en-US; rw1.4) Gecko /20030624 Metscape/7.1.

@ D & OF)] 0one == =
Figure 1-18: JSP output of Exercise 2

30
TEAM LING - LIVe, Informative, Non-cost and cenuine!

JSP Basics 1: Dynamic
Page Creation for
Data Presentation

Many of the most popular Web sites in the world are running JSP technology. JSP enables the flexi-
ble and dynamic creation of Web pages. For example, in an online community, JSP may be used to
create highly personalized pages containing only information that is relevant to a community
member. As another example, an online store could use JSP to dynamically create a checkout

form with the products in a customer’s shopping cart. The possibilities are limited only by the
designer’s imagination.

This chapter formally introduces the components that make up a JSP page, and thoroughly
explores the role of JSP as a dynamic Web page creation technology.

This chapter covers the following topics:

Q The anatomy of a typical JSP page
Processing HTML forms with JSP
Incorporating the output of JSP fragments

Q
Q
Q Creating a JSP that generates different HTML depending on input
Q

Using JSP to create a personalized Web site

Three hands-on examples are presented in this chapter. They introduce new concepts and tech-
niques in JSP programming.

The Anatomy of a JSP Page

Figure 2-1 shows a typical JSP page, with all of its visible elements explicitly labeled.

TEAM LING - LIVe, Informative, Non-cost and cenuine!

Chapter 2

DIRECTIVE

<title>Book Information</title>

<head>

<body> TEMPLATE DATA
<hl>Book Information</hls> ACTION

<hr>

<% if (request.getParameter ("outside").equals("true")) { %>
<p><%= info.getMessage() %></p>

</body>
</html>

ACTION

SCRIPTING ELEMENTS

Figure 2-1: Anatomy of a JSP page

The visible elements that make up a JSP page can include the following;:

Q Directive elements
O Template data
Q Action
Q Scripting elements
A JSP page does not need to have all of these visible elements, but you will very likely encounter all of

them if you look into any moderately complex JSP project. The following sections briefly describe each
visible element.

Directives

Unlike other JSP elements, directives are not used to generate output directly. Rather, they are used to
control some characteristics of a JSP page. Directives may be used to give special instructions to the JSP

32
TEAM LING - LIVe, Informative, Non-cost and cenuine!

JSP Basics 1: Dynamic Page Creation for Data Presentation

container about what to do during the translation of the page. You can always tell a directive from other
elements because it is enclosed in a special set of braces:

<%@ ... Jdirective ... %>
Three directives are allowed in JSP:

Q page directive
a taglib directive
0 include directive
Chapter 1 already demonstrated the use of the taglib directive. Although the examples in this chapter

use the page directive and the include directive, Chapter 7, “JSP Directives,” provides a thorough
exploration of how to use these directives.

XML-compatible syntax

A directive — for example, a taglib directive — typically appears in a JSP as follows:
<%@ taglib %>

The same element can also appear in a JSP as follows:
<jsp:directive.taglib />

This is an XML-compatible syntax for expressing the JSP directive. There are many advantages to
expressing a JSP page in XML. For example, many developer tools can work with XML documents
directly. Enterprise technologies, such as Web services, also make extensive use of XML. The emerging
new XHTML standard is also XML-based. Because JSP works intimately with these technologies and
the standard <%e@ ... %> syntax is not valid XML, this alternative notation is necessary.

All professional JSP developers are trained in the <%@ . . . %> notation. There are millions of lines of
existing JSP code in this notation, so it will likely be supported for the foreseeable future.

Template data

Template data is static text. This static text is passed directly through the JSP container unprocessed. For
example, it may be text that provides static HTML. In Figure 2-1, the template data is the static HTML.

In fact, the example in Chapter 1 demonstrated that an HTML page with no other JSP elements is consid-
ered a valid JSP page. This is because such a page consists of all template data — an allowed element on
a JSP page.

Although most JSP pages are used in generating HTML pages, JSP is not specific to HTML generation.

For example, JSP can be used to generate XML output or even arbitrary text-based reports for direct
printing.

33
TEAM LING - LIVe, Informative, Non-cost and cenuine!

Chapter 2

A helpful way to see the value of template data in a JSP page is to remember that template text is used to
specify the static portion of a page, while other JSP elements are used in generating the dynamic portion
of the page.

If a JSP page is expressed in XML syntax, typically contained in a . jspx file, the template data portion
may have characters that need to be escaped. For example, the characters < and > are not allowed
directly in an XML document and must be expressed as &1t ; and > ;, respectively.

Action

Action elements are JSP elements that are directly involved in the processing of the request. In most
cases, action elements enable you to access data and manipulate or transform data in the generation of
the dynamic output. For example, an online store may have a JSP page that displays a shopping cart.
This cart JSP shows the products that you have purchased. Action elements may be used to generate the
listing of the products (dynamic content) on the page and to calculate the cost and shipping (dynamic
content), while template data (static HTML) is used to display the logo and shipping policy statements.

Action elements can be either standard or custom. A standard action is dependably available in every JSP
container that conforms to the JSP 2.0 standard. For example, <jsp:useBean>, <jsp:getProperty>,
<jsp:setProperty>, and <jsp:include> are standard actions that appear within the examples in this
chapter. A custom action is an action created using JSP’s tag extension mechanism. This mechanism
enables developers to create their own set of actions for manipulating data or generating dynamic out-
put within the JSP page.

Actions are synonymous with tags because every action is an XML tag. The terms are
used interchangeably in this book, just as they are in the JSP developer community.

Every XML tag has a name, optional attributes, and an optional body. For example, the standard
<jsp:include> action can be coded as follows:

<jsp:include page="news.jsp" flush="false"/>

The name of this tag is jsp: include, the attributes are page and f£1lush, and this <jsp:include>
instance does not have a body. The XML empty notation is used.

An XML tag can also have a body containing other tags, of course:
<jsp:include page="news.jsp" flush="false">
<jsp:param name="user" value="${param.username}"/>

</jsp:include>

In this tag, the name is still jsp:include and the attributes are still page and £1ush, but now the body
is no longer empty. Instead, the body contains a <jsp:param> standard action.

After template data, actions are the next most frequently used elements in JSP coding. You will become
very comfortable working with action elements by the end of this chapter.

34
TEAM LING - LIVe, Informative, Non-cost and cenuine!

JSP Basics 1: Dynamic Page Creation for Data Presentation

It was noted earlier that non-XML JSP elements such as directives have an XML-
compatible alternative syntax. Actions are XML-based from the earliest version of
JSP, and there is no need to have an alternative syntax.

Scripting elements

The practice of embedding code in another programming language within a JSP page is called scripting.
Scripting elements are embedded code, typically in the Java programming language, within a JSP page.
There are three different types of scripting elements:

@ Declarations
Q Scriptlets

QO Expressions

While the JSP specification allows the embedding of non-Java code within a JSP
page, only very specialized containers may have such support. In almost all cases,
the code embedded in scripting elements will be in the Java programming language.
Java is the assumed scripting language throughout the discussions in this book.

Declarations are Java code that is used to declare variables and methods. They appear as follows:
<%! ... Java declaration goes here... %>
The XML-compatible syntax for declarations is:
<jsp:declaration> ... Java declaration goes here ... </jsp:declaration>
Scriptlets are arbitrary Java code segments. They appear as follows:
<% ... Java code goes here ... %>
The XML-compatible syntax for scriptlets is:
<jsp:scriptlet> ... Java code goes here ... </jsp:scriptlet>
Expressions are Java expressions that yield a resulting value. When the JSP is executed, this value is con-
verted to a text string and printed at the location of the scripting element. Expression scripting elements
appear as:
<%= ... Java expression goes here ... %>
The XML-compatible syntax for expressions is:

<jsp:expression> ... Java expression goes here ... </jsp:expression>

35
TEAM LING - LIVe, Informative, Non-cost and cenuine!

Chapter 2

Chapter 3, “JSP Basics 2: Generalized Templating and Server Scripting,” provides a comprehensive dis-
cussion of how to use scripting elements when coding JSP.

Note that while the capability to embed Java code within [SP may initially appear to be a very powerful
feature, that power can be abused. In actual practice, this powerful and flexible feature has been found to
be the main contributor to difficult-to-maintain JSP coding in large projects. The JSP designers have
concluded that removing the dependency on scripting is the only way to mend this problem moving for-
ward. This is the primary reason why JSP 2.0 has implemented an Expression Language (EL). Using a
combination of the JavaServer Pages Standard Tag Library (JSTL, described later in this chapter) and
EL, it is possible to code JSP that is free of scripting elements. One desirable side effect of this is that you
can become an expert JSP developer without learning Java. Beginners to JSP should adopt this style of
programming and avoid the use of scripting elements whenever possible. Almost all of the examples in
this book favor JSTL and EL over scripting elements. However, it is also true that many JSP developers
may need to maintain legacy projects that made heavy use of scripting elements. Chapter 3 caters to
these developers and explores the scripting capabilities thoroughly.

Handling HTML form submission with JSP

One of the most frequently occurring activities within a Web-based application is the handling of data
submitted from an HTML form. JSP is designed to make this frequently occurring activity easy. This
section describes the elements and built-in support that enable you to handle form submission.

Consider the simple HTML form shown in Figure 2-2.

@m-l--uu‘r-uu Portal - Microsoft Internet Explorer
Iy
N
Gﬁack x J |Xl |d] 2 / ! Sesrch ,' Favarites eI‘Mccﬁa 6‘) =" E ‘3
addess @] hiepfflocalhost: B080jchoz examplz1 findex. jsp = 'GO ks

Select your preferred portal:
news v|

] Done & Local intranet

Figure 2-2: Portal Selection HTML form

36

TEAM LING - LIVe, Informative, Non-cost and cenuine!

JSP Basics 1: Dynamic Page Creation for Data Presentation

In Figure 2-2, the user can select a portal (news, weather, or entertainment) from the drop-down list.
When the Select button is clicked, the form is submitted to the server for processing.

Under the hood, the browser performs the following steps:

1. Examines the HTML code to determine the server URL that will handle the form

2. Gathers the data entered by the user in the form and creates parameters attached to the request
to be sent to the browser; for example, if the user selected the news portal, the string news is
sent to the server as an attached request parameter.

3. Encodes the parameters, if necessary, for safe delivery to the server
4. Sends the request to the server URL and waits for a response
Steps 2 and 3 need further explanation. Chapter 1 revealed that the request sent to the server uses the

HTTP protocol. Under this protocol, there are two ways to attach parameters to a request: the GET
method and the POST method.

GET versus POST

One way to attach parameters with a URL request is called the GET method, and the parameter data is
sent inline with the main URL. For example, suppose the URL handling the form is called

http://localhost:8080/ch02/examplel/showportal.jsp

and assume the user has selected the news portal. Using the GET method, the URL sent to the server will
contain the following:

http://localhost:8080/ch02/examplel/showportal.jsp?portchoice=news

If there is another parameter called username and it has the value admin, then the URL sent will be as
follows:

http://localhost:8080/ch02/examplel/showportal.jsp?portchoice=news&username=admin
Note that because the parameter is actually a part of the URL, there are at least two limitations:

Q The length of the parameter value cannot exceed the maximum URL length.

Q Certain characters, such as the ampersand (&) and equal sign (=), have special meanings, and
must be encoded (changed to another representation) if they're to be used as part of the URL.

It is the second limitation that makes encoding parameters necessary. For example, if the username were
deliberately entered as a&dm=1in, the resulting URL will be sent to the server:

http://localhost:8080/ch02/examplel/showportal.jsp?portchoice=news&username=a%26dm$
3Din

The good news is that the browser will know how to encode the parameters. On the server side, the JSP
container will know how to decode the encoded parameter if necessary. In other words, before attaching

37
TEAM LING - LIVe, Informative, Non-cost and cenuine!

Chapter 2

a parameter to the URL, developers need to be aware only that a GET method may encode the parameter,
but they may never need to work with the encoded parameter directly.

The other way of attaching parameters to a URL request is via the POST method. The POST method uses
the HTTP message body to send the parameter information. All this is done by the browser, and the
developer doesn’t need to do anything extra on the client end to make it happen. The JSP container
understands this method of parameter passing and will enable you to access the parameters directly on
the server side. The POST method has the following advantages:

Q The length of a parameter value sent is not limited.
Q The parameters are not sent as part of the visible URL and are, therefore, less prone to tamper-

ing by malicious users.

Yet another difference between GET and POST relates to their intended use. Try refreshing a page that has
a POST action in it, and you will promptly get a warning message from your browser. The message for
Internet Explorer describes the reason very well: “The page you are trying to view contains POSTDATA.
If you resend the data, any action the form carried out (such as a search or online purchase) will be
repeated. To resend the data, click OK. Otherwise, click Cancel.”

As designed, GET was supposed to be used for sending data that could be resent without any change in
the system. For example, the GET action shown in the URL http://localhost:8080/ch02/examplel/
showportal. jsp?portchoice=news shows the news portal, and reloading the page multiple times will
cause no change. The POST action, on the other hand, could be used to send data that results in sending an
e-mail or purchasing an item. Refreshing the result of a POST could cause the e-mail to be sent twice, or
multiple items to be purchased. Of course, this was just the intent, and nothing stops Web developers
from developing Web applications that behave differently.

The following exercise shows how JSP can handle HTML form submission.
Try It Out Handling HTML Form Submission
Deploy the ch02.war file on your Tomcat 5 server. (See Chapter 1 if you are not sure how to do this.)
Access the first example by pointing your browser to the following URL:
http://localhost:8080/ch02/examplel/index.jsp

The form displayed is exactly that of Figure 2-2. First, select News for the portal choice, and then click
the Select button.

38
TEAM LING - LIVe, Informative, Non-cost and cenuine!

JSP Basics 1: Dynamic Page Creation for Data Presentation

This will send the request to the server, and the news portal page will be displayed, as shown in Figure 2-3.

Note that both the title of the page and its content indicate that it is the news portal.

&) News Portal - Microsoft Internet Explorer]
'l.,r
Gﬁack x J |XI] |d] . /. ! Sesrch ," Favarites eI‘Mccﬁa 6‘) =" E ‘3
Addess & htep:fflocalhost:6080/chozfexamplel [showportal. sp?portchoice=news | 'Go s
Welcome to the News Portal!
] Done & Local intranet

Figure 2-3: News portal page

Enter the URL again. From the portal drop-down menu, this time select Weather for the portal choice

and click Select. The weather portal page will be displayed, as shown in Figure 2-4. Note that both the

title of the page and the content of the page indicate that it is the weather portal.

TEAM LING - LIVe, Informative, Non-cost and cenuine!

39

Chapter 2

&7 Weather Portal - Microsoft Intermnet Explorer ===
File Edit View Favorites Tools Help "
@ Back - J IXI] Id] " /- ! Search '/“', Favorites w‘ Media {h =" E ‘3
Address IJ}J http:jflocalhost: 8080/ch0z]examplel fshowportal. jsp?portchoice=weather v Go Lrks >

7 1 Tas
You Get the Latest Weather!
&] Done & Local intranes

Figure 2-4: Weather portal page

Finally, enter the URL one more time. From the portal drop-down menu, select Entertainment for the
portal choice and click Select. The entertainment portal page will be displayed, as shown in Figure 2-5.
Again, both the title of the page and the content of the page indicate that it is the entertainment portal.

At first glance, it appears that the JSP form submission handler sends you to a different portal Web page
depending on your selection. However, if you were paying attention to the URL that is displayed at the
top of the browser after you click the Select button, you realized that all three portal pages are generated
from the same JSP page — dynamically. The URL you will see and the JSP page that generates the portal
pages is as follows:

http://localhost:8080/ch02/examplel/showportal.jsp

The next section reveals how this is done.

40

TEAM LING - LIVe, Informative, Non-cost and cenuine!

JSP Basics 1: Dynamic Page Creation for Data Presentation

&7 Entertainment Portal - Microsoft Internet Explorer ===
File Edit “iew Favorites Tools Help -

@Back = J |XI] |d] I\ /-:Sl:u'l:h '/“', Favarites w‘Mccﬁa 61 A= E ‘3

addess | &] htep:/flocalhost:G080/chazlexamplel fshowpartal. lsp7portchoice=entertainment |4 Go Lrks >

Entertainment News Just for You!

&] Done & Local intranes

Figure 2-5: Entertainment portal page

How It Works

The index. jsp page, found in the <Tomcat Installation
Directory>\webapps\ch02\examplel\index. jsp file, contains the following:

<html>
<head><title>Select Your Portal</title></head>
<body>
<hl>Select your preferred portal:</hl>
<form action="showportal.jsp" method="get">
Your First Name: <input name="username" type="text" size="40"/>
<select name="portchoice">
<option>news</option>
<option>weather</option>
<option>entertainment</option>
</select>
<input type="submit" value="Select"/>
</form>
</body>
</html>

One thing to note immediately is that this is a pure HTML page. Our earlier analysis of the anatomy of a
JSP page reveals that this is just a special case of a JSP page in which the entire page is template data.

41
TEAM LING - LIVe, Informative, Non-cost and cenuine!

Chapter 2

Using the GET method to submit a form

The highlighted line in the example shown in the previous section, the <form> open tag, specifies that
the server’s URL to handle the form will be showportal. jsp. It also specifies that the method used to
send request parameters will be the GET method.

The name of the HTML element — in this case, the <select> element — will be used as the name of
the parameter sent to the server. The name of the <select> element, and therefore the parameter, in this
case is portchoice.

If you try the form again, select the news portal, and note the URL that is sent to the server, you will see
the GET method in action:

http://localhost:8080/ch02/examplel/showportal.jsp?portchoice=news

Note the way the browser has added the parameter to the end of the server URL. This is identical to our
description for the GET method earlier.

The JSP page that is responsible for handling the form submission is showportal. jsp. This is located in
the <Tomcat Installation Directory>\webapps\ch02\examplel\showportal.jsp file. This is the
page that dynamically generates one of the three portal pages shown in Figure 2-3, Figure 2-4, and
Figure 2-5. The content of this JSP is as follows:

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<html>
<c:choose>
<c:when test="S${param.portchoice == 'news'}">
<head><title>News Portal</title></head>
<body>
<hl>Headline News Just For You!</hl>
</body>
</c:when>
<c:when test="S${param.portchoice == 'weather'}">
<head><title>Weather Portal</title></head>
<body>
<hl>Accurate Weather Around the Clock!</hl>
</body>
</c:when>
<c:when test="S${param.portchoice == 'entertainment'}">
<head><title>Weather Portal</title></head>
<body>
<h1>The Most Popular Reality TV Shows!</hl>
</body>

</c:when>

<c:otherwise>
<head><title>System Portal</title></head>
<body>

<hl>Application logic problem detected!</hl>

</body>

</c:otherwise>

</c:choose>
</html>

42
TEAM LING - LIVe, Informative, Non-cost and cenuine!

JSP Basics 1: Dynamic Page Creation for Data Presentation

You should recognize the JSP directive element on this JSP page. It is the very first line, the taglib
directive, reproduced here:

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

The taglib directive enables you to specify a tag library to be used within this JSP. A tag library adds
custom action elements that can be used throughout the page. The attributes of a taglib directive are
described in the following table.

Attribute Description

prefix Indicates the string prefix that is used by all the tags in this tag
library. The namespace notation in XML is used to prefix the tags. For
example, if the prefix is ¢, and the tag name is out, the full tag name
is <c:out>. Some prefixes are reserved and cannot be used, includ-
ingjsp:,jspx:,java:,javax:,servlet:,sun;,andsunWL

uri A URI that uniquely identifies a tag library. The JSP container will
examine the available tag libraries in its classpath and locate the
corresponding tag library. In this case, the uri specifies JSTL 1.1. In
the example in Chapter 1, a tagdir attribute is used instead of uri.
The tagdir attribute was used to specify the location of the custom
tag files that was used. The tagdir and uri attributes are mutually
exclusive; only one may be used in any taglib directive.

Working with JSTL 1.1

JSTL (JSP Standard Tag Library) is a standard set of tags designed for use specifically within JSP to
perform most common Web application programming tasks. The set of tags includes conditional flow
control, iteration, data output, internationalization, and working with XML documents and databases.
The latest release of the reference implementation is open source and can be located at

http://jakarta.apache.org/taglibs/doc/standard-doc/intro.html
The version of JSTL that is designed to work with Tomcat 5, Servlets 2.4, and JSP 2.0 is JSTL 1.1.

The taglib directive specifies a URI that matches JSTL 1.1. This tag library contains many different tags
(custom actions). You can find the JAR files for JSTL 1.1 in the application’s 1ib directory. In our case, it
can be located in the <Tomcat Installation Directory>\webapps\ch02\WEB-INF\1ib directory
and consists of jstl.jar and standard. jar.

One specific JSTL 1.1 tag construct that is used in the JSP is the <choose> tag construct:

<c:choose>
<c:when test="...expression...">

</c:when>
<c:when test="...expression...">

43
TEAM LING - LIVe, Informative, Non-cost and cenuine!

Chapter 2

</c:when>
<c:otherwise>

</c:otherwise>
</c:choose>

Specifically, this construct will choose and execute only the body of one of the <c:when> or <c:otherwise>
tags. During the execution of the JSP, the expression in the test attribute of the <c : when> tag will be evalu-
ated, and the very first test expression evaluated to be true at execution time will have the associated tag
body executed. In our case, the actual construct is coded as follows:

<c:choose>

<c:when test="${param.portchoice == 'news'}">
<head><title>News Portal</title></head>
<body>
<hl>Headline News Just For You!</hl>
</body>
</c:when>
<c:when test="${param.portchoice == 'weather'}">
<head><title>Weather Portal</title></head>
<body>
<hl>Accurate Weather Around the Clock!</hl>
</body>
</c:when>
<c:when test="${param.portchoice == 'entertainment'}">
<head><title>Weather Portal</title></head>
<body>
<h1>The Most Popular Reality TV Shows!</hl>
</body>

</c:when>

<c:otherwise>
<head><title>System Portal</title></head>
<body>

<hl>Application logic problem detected!</hl>

</body>

</c:otherwise>

</c:choose>

The highlighted code is the actual JSTL 1.1 <choose> construct. It should be clear that only one of the
nonhighlighted bodies will be executed, depending on the value of the expression in the test attributes
of <c:when> tags. The HTML code for the different portal pages is located here (the nonhighlighted bod-
ies of the <c:when> tag). For example, if the user selected the weather portal, the incoming portchoice
parameter has the value 'weather' and the weather portal’s HTML code will be rendered. Chapter 6,
“JSP Tag Libraries and JSTL,” has significantly more detailed coverage of JSTL 1.1.

Working with the JSP 2.0 Expression Language (EL)

Take a closer look; the three EL expressions used in the preceding example are:

a ${param.portchoice == 'news'}
a ${param.portchoice == 'weather'}
4 ${param.portchoice == 'entertainment'}

44
TEAM LING - LIVe, Informative, Non-cost and cenuine!

JSP Basics 1: Dynamic Page Creation for Data Presentation

These are all EL (Expression Language) expressions. EL expressions are easily identifiable in a JSP page
because they are always bracketed as follows:

${... EL expression ...}

The three expressions above are comparing using the “equals” comparative operator (==). You may also
use greater than (>), less than (<), greater or equal (>=), less or equal (<=), and not equal (! =).

EL expressions are always evaluated at runtime, meaning that they are run as JSP is actually executed
(while processing an actual incoming request) and not at the time when the JSP is processed by the JSP
container. This distinction is important because form parameters such as portchoice will have a value
only during runtime and not any time before the processing of the request.

EL expressions can be used as follows:

QO Anywhere template data may be placed

Q Within attributes of an action that can take an expression, such as the test attribute of the JSTL's
<when> action

If you look at the expressions used in the <choose> tag again, you see that it makes use of an object with
the name param. This is an implicit object in EL. EL implicit objects are described in the next section.

EL implicit objects
EL implicit objects are objects that are made available to EL expressions by the JSP container during run-

time. There is no need to create or initialize these objects. They can be simply referred to by name within
your EL expression.

These useful objects were designed to facilitate your JSP programming activity. The following table
briefly describes the available EL implicit objects. Chapter 5, “JSP and EL,” provides more in-depth
coverage of each of the available implicit objects.

EL Implicit Object Name Description

pageContext This is the same as the pageContext implicit object in JSP. It has
many properties associated with the processing of the current
JSP page. Chapter 5 provides details of this object.

pageScope Used to access any attributes attached to the page scope.
Attributes are objects provided by Java or business logic pro-
grammers that a JSP programmer may use in generating
dynamic content. Typically, attributes are attached by servlets in
a framework. Chapters 5 and 19 explore this fully.

requestScope Used to access any attributes attached to the request scope.
Attributes attached to a request scope have one instance per
incoming request.

Table continued on following page

45
TEAM LING - LIVe, Informative, Non-cost and cenuine!

Chapter 2

sessionScope

applicationScope

param

paramValues

header

headervValues

cookie

initParam

Used to access any attributes attached to the session scope.
Attributes attached to a session scope have one instance across
multiple requests belonging to the same user session.

Used to access any attributes attached to the application scope.
Attributes attached to an application scope have only one
instance across multiple JSPs belonging to the same Web appli-
cation (i.e., deployed WAR file). All requests, sessions, and JSPs
will share the same instance.

Used to access parameters passed in with the request. This is
typically from a form submission. Any parameter can be
accessed by name through this implicit object. This is the only
EL implicit object used in this chapter.

Used to access parameters passed in with the request. It enables
access to parameters that may have multiple values.

Used to access the HTTP header information.

Used to access the HTTP header information and enable access
to a header that may have multiple values.

Used to access cookie information available with the incoming
request. Cookies are typically used to establish user sessions
across different requests. See Chapter 5 for more information.

Used to access the initialization parameters for the Web applica-
tion. Chapter 5 demonstrates the use of this implicit object.

In a nutshell, our portal example uses only the implicit param object to access the incoming parameter

called portchoice from the form submission. The EL expression to access the value of the portchoice
parameter is as follows:

${param.portchoice}

In general, any incoming parameter from a form submission may be accessed as follows:

$ {param. <name of parameter>}

In summary, the combination of JSTL 1.1’s <choose> tag construct and EL’s param implicit object

enables the showportal. jsp page to generate one of three portal pages dynamically, depending on the

user’s portal selection.

Try It Out Including JSP Pages

This second example is built upon the first example. Using the technique in the first example to dynami-

cally generate a portal home page can present one major problem: All the HTML content of the portal
must be coded within the one and only showportal . jsp page. This presents a problem if

46

TEAM LING - LIVe, Informative, Non-cost and cenuine!

JSP Basics 1: Dynamic Page Creation for Data Presentation

Q You have a large number of portals, in which case the page can become unmanageable

Q The individual portal pages are maintained by different people or groups that will have to coor-

dinate the update of the single showportal.jsp page

To resolve this problem, the showportal . jsp page must be rewritten to be independent of the content

of the portal pages. This second example demonstrates the solution.

With the ch02.war deployed, try out the following URL:

http://localhost:8080/ch02/example2/index. jsp

The form displayed should be similar to the one shown in Figure 2-6.

@‘-}vlvnl‘r-uu Partal - Microsoft Internet Explorer
-
L
@Back - Q@ Ix'] Id] . /-:Secrch :L Favorites @Y Media) SN o
Address Jﬁ hiep:jflocalhost: 8080jchDzfexamplezfindex. |sp : .Go ks ?
Wrox JSP Portal Selector
Portal Selection news v|
] Done & Local intranet

Figure 2-6: Example 2 Portal Selection form

Select the news portal and click the Select button. The news portal home page is shown, and a news

headline is displayed. Figure 2-7 illustrates the news portal home page for this example.

TEAM LING - LIVe, Informative, Non-cost and cenuine!

47

Chapter 2

éj News Portal - Microsoft Internet Explorer

eaack > | |8L| |z'] ;j ,'._’Sucrch i_\\?Favnribes @ reda £ - e =3 ‘g

Sk

55 .Ej htzp:fflocalhost: B080/ch0z fexamplez Jshowportal. jspiportcholce=news ﬂ Go i

Welcome to the News Portall
JSP Programmer Won 10 Million in Lottery

Darmis drnictarm feargrniat darmi, Sed et mipsarm consedetarer namc faaremibars frmingmilla.
Pellentestare habmitant morbmi trrnistmitare senectars et netars et malesarada fames ac tarrpmis
egestas, Marnc non lacars sed dolor sagmittmis ornare, Promin pellentestare mipzarm yriverra darmi,
Marbri min wmismi. Phasellars asrgare tortor, conzetarat nee, zodales et, lobarbmiz ac, elmit. Harne
congare delor non narne. Darmis rarbrarm arma et name Lorern mipsarm dolor smit smet, consactetarer
admipmizcrning elmit. Donec a Imibero art lectars earmismod almitaram. Sed vmitae narlla
dmignmissmim darmi porta varmiars, minteger est wmnismi, laoreet ac, consectetarer min, porttmitor ac,
wrnisrni. Mascenas facmilmismiz massa vmitas velmit. Almitaram erat volarpat

Loradr irxsude dolor sit adrat, consectatur adirasicing alit, sed do aiusdrod tadrxor incididunt ut labors et
dolore dragna aliqua. Ut anidr ad drinidr veniadr, quiz nostrud sxerctation ulladrco laboris nizi ut aliquir:
ex ea codrdrodo consequat, Duls aute irure dolor in rersrehenderit in volurdate velit esse dlludr dolore
eu fuglat nulla rzarlatur, Excercteur sint occascat curxidatat non rsroldent, sunt in culr:a qul offida
deserunt drollit anidr id est laborudr,

:ejoone
Figure 2-7: Example 2 News portal home page

& Local intranet

Other than the extra news headline, this portal home page appears to be the same as the one in the first
example.

Enter the URL again and this time select the weather portal and click the Select button. The weather por-

tal home page is displayed, showing the weather of several cities in the world. This portal page is shown
in Figure 2-8.

48

TEAM LING - LIVe, Informative, Non-cost and cenuine!

JSP Basics 1: Dynamic Page Creation for Data Presentation

@'.".'-mlh:-u Partal - Microsoft Internet Explorer =)0

Qe -) [¥] [2] @0 Osewer Slrravores @mede € Iv L 3 W

addess] hiepsiflocalhost: 8080 ch0z esxamplez fshowportal JspPportchoice=weather v Qs ks ?

You Get the Latest Weather!

Mumbai 30C
Tokyo i8C
Hong Kong 28C

] Done & Local intranet

Figure 2-8: Example 2 Weather portal home page

Finally, enter the URL again, select the entertainment portal, and click the Select button. The entertain-
ment home page is displayed with an entertainment headline, as shown in Figure 2-9.

All of these portal pages appear to be similar to those in the first example, with the exception of some
additional information displayed. Bear in mind, however, that the showportal . jsp in this example no
longer generates the portal pages directly behind the scenes. But this fact is completely transparent to us,
the users.

49
TEAM LING - LIVe, Informative, Non-cost and cenuine!

Chapter 2

@'.".'-mlh:-u Partal - Microsoft Internet Explorer =

L
o

eaack > | |8'] |z'] h /-’Sacrch -:_"\?Favnribes @ reda £ - iz = ‘g

55] htep:iflocalhost: 8050/ Jshowportal jspiportcho v Qs ks ?

Entertainment News Just for You!

Reality TV Show Ratings Falling

A

Darmis drnictarm feargrniat darmi, Sed et mipsarm consedetarer namc faaremibars frmingmilla.
Pellentestare habmitant morbmi trrnistmitare senectars et netars et malesarada fames ac tarrpmis
egestas, Marnc non lacars sed dolor sagmittmis ornare, Promin pellentestare mipzarm yriverra darmi,
Marbri min wmismi. Phasellars asrgare tortor, conzetarat nee, zodales et, lobarbmiz ac, elmit. Harne
congare delor non narne. Darmis rarbrarm arma et name Lorern mipsarm dolor smit smet, consactetarer
admipmizcrning elmit. Donec a Imibero art lectars earmismod almitaram. Sed vmitae narlla
dmignmissmim darmi porta varmiars, minteger est wmnismi, laoreet ac, consectetarer min, porttmitor ac,
wrnisrni. Mascenas facmilmismiz massa vmitas velmit. Almitaram erat volarpat

Loradr irxsude dolor sit adrat, consectatur adirasicing alit, sed do aiusdrod tadrxor incididunt ut labors et
dolore dragna aliqua. Ut anidr ad drinidr vaniadr, quis nostrud exercitation ulladrco laborizs nizi ut aliquir
ex ea codrdrodo consequat, Duls aute irure dolor in rersrehenderit in volurdate velit esse dlludr dolore
eu fuglat nulla rzarlatur, Excercteur sint occascat curxidatat non rsroldent, sunt in culr:a qul offida
deserunt drollit anidr id est laborudr,

] Done & Local intranet

Figure 2-9: Example 2 Entertainment portal home page

How It Works

Figure 2-10 contrasts the construction of the first example against the construction of this example.

In Figure 2-10, note that in the first example, showportal. jsp is solely responsible for generating the
portal pages. Contrast this with the case in the second example. Here, the individual portal pages reside
within their own independent . jsp files. For example, the weather portal page resides in weather. jsp.
In the second example, the sole purpose of the showportal. jsp page becomes the selection of the . jsp
file to display. It is completely independent of what is contained within these portal pages.

50
TEAM LING - LIVe, Informative, Non-cost and cenuine!

JSP Basics 1: Dynamic Page Creation for Data Presentation

EXAMPLE 1

index.jsp
showportal.jsp
Porta_ll selection .
Selection Dynamically
generates
one of three
portal
pages
the selected portal page
news.jsp
EXAMPLE 2/3 . dex.i
index.jsp news portal
showportal.jsp
Portal selection weather.jsp
Selection Dynamically
selects one
of three weather portal

portal pages
to generate

entertain.jsp

entertainment
portal

the selected portal page

Figure 2-10: Removing dependency on portal content in the second example

The new form, index. jsp, which is located at <Tomcat Installation
Directory>\webapps\ch02\example2\index. jsp, has been improved with added HTML layout
and a CSS stylesheet. This index. jsp is reproduced as follows:

<html>
<head>
<link rel=stylesheet type="text/css" href="portal.css">
<title>Select Your Portal</title>
</head>
<body>
<table class="mainBox" width="400">
<tr>
<td class="boxTitle" colspan="2">
Wrox JSP Portal Selector
</td>
</tr>

51

TEAM LING - LIVe, Informative, Non-cost and cenuine!

Chapter 2

<tr><td colspan="2"> </td></tr>
<tr><td>
<form action="showportal.jsp" method="get">
<table>
<tr>
<td width="200">Portal Selection</td><td>
<select name="portchoice">
<option>news</option>
<option>weather</option>
<option>entertainment</option>
</select>
</td>
</tr>
<tr><td colspan="2"> </td></tr>
<tr><td colspan="2" align="center">
<input type="submit" value="Select"/>
</td></tr>
</table>
</form>
</td></tr>
</table>
</body>
</html>

Readers interested in Cascading Stylesheets (CSS) and HTML formatting should
consult Beginning Web Development with HTML, XHTML, and CSS (Wrox Press; ISBN
0-7645-7078-1).

Note that the relevant highlighted <form> tag remains the same, even though the page is now consider-
ably more cluttered with HTML layout and CSS information. Because this form has already been tested
in the first example, you can confidently add the layout and formatting. While this improves the appear-
ance, the JSP logic (in this case, form submission logic) remains the same.

The CSS stylesheet is called portal.css. It contains styles for the major visual elements of the portal,
such as boxes, a headline, and news text. portal.css is reproduced here:

.tableCell
{ font-family : Verdana, Geneva, Arial, Helvetica, sans-serif;
font-size : 16;
font-weight : bold;
color : #0f7fcf;
background-color: #ffffff;
}

.valueCell
{

font-family : Verdana, Geneva, Arial, Helvetica, sans-serif;
font-size : 16;

52
TEAM LING - LIVe, Informative, Non-cost and cenuine!

JSP Basics 1: Dynamic Page Creation for Data Presentation

color : #000000;
background-color: #fefefe;

}

.headLine
{
font-family : Verdana, Geneva, Arial, Helvetica, sans-serif;
font-size : 18;
font-weight : bold;
color: #000000;
}

.newsText
{
font-family : Verdana, Geneva, Arial, Helvetica, sans-serif;
font-size : 10;
color: #000000;

}
.boxTitle

{
font-family : Arial, Helvetica, sans-serif;
font-size : 22;
font-weight : bold;
color : #ffffff;
background-color: #0F7ACA; }
.mainBox

{
font-family : Verdana, Geneva, Arial, Helvetica, sans-serif;
font-size : 12; color : #ffffff;
background-color: #eeeeee;

}

JSP best practices

Throughout this book, and specifically in Chapter 26, “Best Practices and Tools,” JSP best practices are
emphasized. Best practices are commonly accepted wisdom originating from documented industry
experience. The difference between the first example and the second illustrates a best practice when
designing JSP applications. The concept is quite simple:

Q Use the simplest HTML to prototype your application before adding style and layout.
Q Separate JSP development from HTML layout and formatting if possible.
In our case, the pages of the first example used minimal HTML. This allowed testing of the JSP elements

without the clutter of HTML layout and stylesheets. Once the JSP elements are tested, HTML layout and
stylesheets can be added.

If you are working in a team environment, the designer of the look and feel of the application may be a
graphics designer. In this case, you may be responsible only for the putting together the JSP elements on
a page. JSP development and HTML layout are typically separate activities.

53
TEAM LING - LIVe, Informative, Non-cost and cenuine!

Chapter 2

Using the <jsp:include> standard action to select portal rendering

The showportal. jsp page in the second example, located at <Tomcat Installation
Directory>\webapps\ch02\example2\showportal. jsp, is reproduced here:

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<html>
<c:choose>
<c:when test="${param.portchoice == 'news'}">
<jsp:include page="news.jsp" />
</c:when>
<c:when test="${param.portchoice == 'weather'}">
<jsp:include page="weather.jsp" />
</c:when>
<c:when test="${param.portchoice == 'entertainment'}">
<jsp:include page="entertain.jsp" />
</c:when>
<c:otherwise>
<head><title>System Portal</title></head>
<body>
<hl>Application logic problem detected!</hl>

</c:otherwise>
</c:choose>
</body></html>

Changes from the showportal. jsp in the first example are highlighted in the preceding code. The
<c:choose> logic of the custom JSTL action is well tested in the first example. The only new element
here is the <jsp: include> standard action. Instead of having the HTML render the portal pages right
inside showportal. jsp, the <jsp:include> standard action is used to import other independent JSP
pages. The task of displaying (called rendering in JSP development) the portal page is passed on to (or
delegated to) the individual portal pages: news. jsp, weather. jsp, and entertain. jsp.

The main function of the <jsp: include> standard action is to include the output of another JSP page at
the location where the <jsp: include> tag is placed. This action is not limited to JSP, but will work with
other Web files, including HTML pages. Several attributes may be added to the <jsp:include> tag; the
one used in the example is described in the following table.

Attribute Description
Page Specifies the JSP (or HTML page, etc.) whose output is to be included

at the current location of the tag

Chapter 8, “JSP Standard Actions,” offers a more comprehensive exploration of the standard actions,
such as <jsp:include>.

If you have selected the news portal, the news . jsp page will be included in the showportal. jsp page
and rendered. The source of news . jsp, which is located at <Tomcat Installation Directory>\
webapps\ch02\example2\news. jsp, is reproduced here:

<head>
<link rel=stylesheet type="text/css" href="portal.css">

54
TEAM LING - LIVe, Informative, Non-cost and cenuine!

JSP Basics 1: Dynamic Page Creation for Data Presentation

<title>News Portal</title>
</head>
<body>
<table class="mainBox" width="600">
<tr><td class="boxTitle" >
Welcome to the News Portal!
</td></tr>
<tr><td>

<jsp:useBean id="newsfeed" class="com.wrox.begjsp.ch2.NewsFeed"
scope="request" >
<jsp:setProperty name="newsfeed" property="topic" value="news"/>
<jsp:getProperty name="newsfeed" property="value"/>
</Jjsp:useBean>

<jsp:include page="dummytext.html" />

</td></tr>
</table>

This page uses a simulated newsfeed to fetch a headline and then display it to the user. This is indicated
by the highlighted code.

The second line of highlighted code includes a simple HTML page, called dummytext .html, that pro-
vides the simulated news article text. This demonstrates that the <jsp: include> action is not limited to
the rendering of included JSP but also works with HTML pages.

The first set of highlighted code uses another three JSP standard actions to work with the newsfeed
object: <jsp:useBean>, <jsp:setProperty>, and <jsp:getProperty>. How this works is explained
in the next section.

Manipulating JavaBeans with JSP standard actions
A JavaBean is an object coded in the Java programming language that follows some rigid conventions.
For example, all JavaBeans expose their capabilities through the following:
Q Properties: Valued attributes of the bean; these can be read /write, read only, or write only.
Q Methods: Functional procedures that can be invoked.
Q Events: Notifications that can be caught.
JavaBeans are reusable software components that can be very useful in JSPs. Of course, the application
of a JavaBean is not restricted to JSP. JavaBeans are used in creating servlets or even standalone Java

applications. Interactions between [SP and JavaBeans typically center around the use of JavaBean prop-
erties. Chapter 9, “JSP and JavaBeans,” describes in detail the use of JavaBeans within JSPs.

A read /write property of a bean will allow both the get and set operations. The get operation obtains
the current value of a JavaBean property. The set operation sets the value of a JavaBean property.

55
TEAM LING - LIVe, Informative, Non-cost and cenuine!

Chapter 2

56

In a production development shop, the development team members responsible for
the business logic will typically supply you with JavaBeans that you can use within
your JSPs. They should also provide you with a description of a bean’s properties,
and instructions on how to use it.

AJavaBean can be used to generate dynamic content for the portal home pages.

The JavaBean used for our example is a NewsFeed JavaBean. It simulates the action of a real newsfeed.
Newsfeeds are electronic data connections that supply news information items.

To get a news item in a topic, you need to set the topic filter, and then read from the JavaBean. The
following table describes the properties of this NewsFeed JavaBean.

Property Read/Write Description

” o

topic Write only Set to “news,” “weather,” or “entertain-
ment” to filter the newsfeed. This must be
set before accessing the value or values

property.

value Read only This property supplies a single informa-
tion item once the topic property is set.

values Read only This property will supply a list of infor-
mation items once the topic property is
set. For our example, this property will
have value only if “weather” is the topic.

According to the preceding table, to get the latest news item, it is necessary to:

1. Setthe topic property to news.

2. Read the value property.
To get the latest entertainment information:

1. Setthe topic to entertainment.

2. Read the value property.
To get the latest weather information:

1. Setthe topic property to weather.
2. Read the values property.

This is exactly what happened within the news . jsp portal page; the responsible segment of JSP code is
reproduced here:

TEAM LING - LIVe, Informative, Non-cost and cenuine!

JSP Basics 1: Dynamic Page Creation for Data Presentation

<jsp:useBean id="newsfeed" class="com.wrox.begjsp.ch2.NewsFeed" scope="request" >
<jsp:setProperty name="newsfeed" property="topic" value="news"/>
<jsp:getProperty name="newsfeed" property="value"/>

</jsp:useBean>

The <jsp:useBean> tag is used to create an instance of a JavaBean, of Java class com.wrox.begjsp.
ch2.NewsFeed. This instance is attached to the current request, ensuring that each request will have its
own instance. If the JavaBean creation is successful, then the <jsp: setProperty> tag is used to set the
bean’s topic property to the value "news". After setting the topic property, the <jsp:getProperty> tag
is used to read and render (display) the value property of the bean.

The <jsp:useBean> tag is used to either locate an existing instance of a JavaBean or to create a new
instance if one is not found. Chapter 8 provides details about this versatile standard action. Only the
attributes used in this example are described in the following table.

Attribute Description

id The name of the created JavaBean instance. A scripting variable with
the same name is also created.

class The Java class (compiled code) of the JavaBean. The JSP container
must be able to locate this class in order to instantiate it. This typi-
cally means that it must be located under the application’s WEB-
INF/classes directory or in one of the JAR files in the application’s
WEB-INF/1ib directory.

scope Can be page, request, session, or application. The request
scope means the JavaBean instance created is unique to only this
request. The other scopes are explained in Chapter 8.

Readers who are interested in the Java source code of the NewsFeed object can locate it in the <Tomcat
Installation Directory>\webapps\ch02\example2 \WEB-INF\classes\com\wrox\begjsp\ch02
directory.

The <jsp:useBean> tag can optionally have a body. If a body is specified, as it is in the second example,
the body will be executed only if the JavaBean is created successfully. This means that if the JavaBean
creation is not successful, the JSP will not attempt to access its properties. No headline will be generated
by news . jsp in this case.

Within the body of the <jsp:useBean> tag, this code line sets the topic property of the newly created
bean to "news". The syntax of this standard action is quite self-explanatory. Note the use of the name
“newsfeed,” corresponding to the ID given to the newly created JavaBean instance in the
<jsp:useBean> tag:

<jsp:setProperty name="newsfeed" property="topic" value="news"/>

Note that both the <jsp:useBean> and the <jsp: setProperty> standard actions do not generate any
output if they are successful in their operations. This is not true with the <jsp: getProperty> tag. The

57
TEAM LING - LIVe, Informative, Non-cost and cenuine!

Chapter 2

output of this tag is the value of the JavaBean’s property converted to a string. This output will be placed
at the location of the tag. For example, the line that renders the headline in news. jsp is as follows:

<jsp:getProperty name="newsfeed" property="value"/>
Again, notice the name reference to the JavaBean instance created earlier: “newsfeed.”

The portal page that displays the entertainment news works in the same way. entertain. jsp, located at
<Tomcat Installation Directory>\webapps\ch02\example2\entertain.jsp, is reproduced here:

<head>
<link rel=stylesheet type="text/css" href="portal.css">
<title>Weather Portal</title>
</head>
<body>
<table class="mainBox" width="600">
<tr><td class="boxTitle" >
Entertainment News Just for You!
</td></tr>
<tr><td>

<jsp:useBean id="newsfeed" class="com.wrox.begjsp.ch2.NewsFeed"
scope="request" >
<jsp:setProperty name="newsfeed" property="topic"
value="entertainment"/>
<jsp:getProperty name="newsfeed" property="value"/>
</jsp:useBean>

<jsp:include page="dummytext.html" />

</td></tr>
</table>

Compare the highlighted JSP lines with news . jsp and check it against the instructions on how to use
the NewsFeed JavaBean. You will find that the code is the same as news . sp, except that the topic
property is set to “entertainment” before accessing the value property.

The situation is quite different, however, in the rendering of the weather portal page. This is because the
values property of the NewsFeed JavaBean is used in this case, instead of the value property. Unlike
the value property, the values property returns more than one value. In fact, it returns an entire table
of cities and temperatures. It turns out that no standard JSP action can handle this type of property eas-
ily. This is one of the reasons why JSP 2.0 is designed to work with JSTL 1.1 — combining custom actions
in JSTL 1.1 with the Expression Language in JSP 2.0, multivalued properties can be handled very easily.

Rendering a multivalued JavaBean property with JSTL/EL

The weather. jsp JSP, located at <Tomcat Installation
Directory>\webapps\ch02\example2\weather. jsp, is reproduced here:

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<head>

58
TEAM LING - LIVe, Informative, Non-cost and cenuine!

JSP Basics 1: Dynamic Page Creation for Data Presentation

<link rel=stylesheet type="text/css" href="portal.css">
<title>Weather Portal</title>
</head>
<body>
<table class="mainBox" width="600">
<tr><td class="boxTitle" >
You Get the Latest Weather!
</td></tr>
<tr><td>
<jsp:useBean id="newsfeed" class="com.wrox.begjsp.ch2.NewsFeed" scope="request"

<jsp:setProperty name="newsfeed" property="topic" value="weather"/>
</jsp:useBean>
<table>
<c:forEach items="${newsfeed.values}" var="row" >
<tr><td class="tableCell" width="200"> ${row.city} </td>
<td> ${row.temp}</td>
</tr>
</c:forEach>
</table>
</td></tr>
</table>

Referring back to Figure 2-7, you can see that the highlighted code is responsible for dynamically gener-
ating the table of cities and associated temperatures. Of course, this data is obtained from the NewsFeed
JavaBean. Both the <jsp:useBean> and <jsp: setProperty> standard actions appear again. They are
used to create the NewsFeed JavaBean instance and set the topic property to weather. However, the
<jsp:getProperty> standard action is not used.

Instead, the JSTL iteration tag is used to create the table. In general, the JSTL iteration tag has the follow-

ing form:

<c:forEach items=".. a collection of objects .." var=".. var name.." >
code that executes once for each object in the collection...
</c:forEach>

The two attributes used are described in the following table.

Attribute Description

items An expression that results in a collection of objects. In Java program-
ming terms, the object returned must support the java.util.
Collection interface. For example, this can be a property of a
JavaBean that returns a collection of objects.

var During each repetition through the loop, an object is selected from
the collection specified in items. The object is given this name and
can be referred to within the body by this name.

Chapter 6 features more comprehensive coverage of JSTL in general, and the iteration tag in particular.

59
TEAM LING - LIVe, Informative, Non-cost and cenuine!

Chapter 2

This <c: forEach> tag enables us to iterate through all the values of the values property on the
NewsFeed JavaBean. It will generate one table row for each value returned. The code to generate the
table is reproduced here:

<table>
<c:forEach items="${newsfeed.values}" var="row" >
<tr><td class="tableCell" width="200"> S${row.city} </td>
<td> ${row.temp}</td>
</tr>
</c:forEach>
</table>

In the description of <jsp:useBean>, you learned that a scripting variable is created that refers to the
JavaBean specified by the tag. The name of this scripting variable is specified in the id attribute. In

this case, the scripting variable is used in the EL expression $ {newsfeed.values}, referring to the val-
ues property of the NewsFeed JavaBean. This property is supplied for the items attribute of the JSTL
iteration tag.

Each object returned by the NewsFeed JavaBean is assigned to the variable “row” set in the var attribute
of the <c: forEach> tag. It is used within the body to obtain the city and temperature value. These val-
ues are obtained via the $ {row.city} and ${row. temp} EL expressions. From a JSP perspective, city
and temp are properties of the objects in the collection returned by the values property of the NewsFeed
JavaBean.

For readers fluent with the Java programming language, the values property of the NewsFeed JavaBean
returns an ArrayList of HashMaps. This combination of data structures enable convenient access to
tabular data from JSPs using JSTL 1.1 and EL.

Web site personalization

JSP can be used to create personalized Web applications. A personalized Web application is aware of the
user’s identity. This is certainly useful, for example, to provide users with their own set of preferences
while using your application. A more concrete scenario may be an online book seller customizing a
home page to feature books that match a user’s favorite topic in an attempt to increase sales. There

are many aspects to creating a personalized Web site. The chapters in this book build upon each other,
presenting to you features that enable you to use JSP in Web site personalization. Chapter 27, “Project I:
Personalized Portal,” demonstrates how such a personalized Web site can be built.

The last example in this chapter reveals how the portal selection system can be used to propagate (send)

user information to the independent portal pages. This enables each of the portal pages to greet users by
their first name, creating a personalized experience.

60
TEAM LING - LIVe, Informative, Non-cost and cenuine!

JSP Basics 1: Dynamic Page Creation for Data Presentation

_ Web Site Personalization

To see the personalization of the portal application in action, make sure the ch02 application is running

on Tomcat and access the following URL:

http://localhost:8080/ch02/example3/index.jsp

The portal selection form is displayed. This time, the form also enables you to enter your first name for

personalization purposes. This form is shown in Figure 2-11.

:,éj Select Your Portal - Microsoft | Explorer

File Edit “iew Favorites Tools Help

eaatk A | lx‘] Lﬂ ;j /T‘ search {/\\'\i Favorites &Meda &) "v _‘5 = ’g

addbess @] htep:/flocalhost:B080chaz]examplesfindes fsp

Wrox JSP Portal Selector

Your First Mame: Joe
Portal Selection [news [v]

] Done

& Local intranes

Figure 2-11: Portal selection form for personalization

Enter your first name, select the news portal, and then click the Select button. You should now see a per-

sonalized news portal, as shown in Figure 2-12.

TEAM LING - LIVe, Informative, Non-cost and cenuine!

61

Chapter 2

&1 News Portal - Microsoft Internet Explorer (S]]
File Edit “iew Favorites Tools Help "4'
y n | = B :)
eau:k - |s'] |21 (p)) seach 5 P Favoites @Pmeds &2 (- o [H VS
addess @] htep:fflocalhost:5060jchaziexampleishowportal. p7username=Jostportchoce=rens ﬂ G0 Liks ”

Welcome to the News Portal, Joe!

JSP Programmer Won 10 Million in Lottery

Darmils drnictarm feargrnist darmi, Sed et mipsarmn consecbetarer narnc faarcrnibars frrningmilla,
Pellentestare habmitant rmorbrni trnistmitare senectars et netars et malesarada fames ac tarpmis
egestas, Marne non lacars sed dolor sagmittmis omare. Promin pellentestare mipsarm smiverrs darmi.
Marbmi min wrmizmi. Phaszellars ssrgsre tortor, consetsrst nec, sodales et, lobortmiz ac, elmit. Harnc
congare dolor non name Darmis rartrarm arma et name Lorem mipsarm dolor smit amet, consectetarer
admiprizcming elmit. Donec a Imibero art lectars earmismod almitaram. Sed vmitas narlla
drnignmissmim darmi porta varmiars, minteger est wmismi, lacraet ac, consactetarar min, portmitor ac,
wmnizmi. Mascenas facmilmismis massa vmitas valmit, Almitaram arat volartpat,

Loradr irssudr dolor sit adrat, consactetur adirxisicing slit, sad do eiusdrod tedrror inddidunt ut labore ot
dolore dragna aliqua. Ut enidr ad drinidr veniadr, quis nostrud exerdtation ulladrco labots nisi ut aliquirs
ex ea codrdrodo consequat, Duls aute irure dolor in rersrehenderit in volursztate velit 2sse dlludr dolore
eu fugiat nulls rearistur, Excersteur sink occascat curidatat non rxroident, sunt in clrza qui offica
deserunt drallit anidr id est laborudr,

:ej Dane ‘_\J Lioecal intranet

Figure 2-12: Personalized news portal

Note that the portal is now personalized with your own name. In the previous case, the name of Joe
was entered.

Enter the URL again into your browser. Once the selection form is displayed, enter your first name and

select the entertainment portal. Click the Select button. You should see the personalized entertainment
portal with the headline obtained from the simulated newsfeed, similar to what is shown in Figure 2-13.

62

TEAM LING - LIVe, Informative, Non-cost and cenuine!

JSP Basics 1: Dynamic Page Creation for Data Presentation

&1 Weather Portal - Microsoft Intemet Explorer (S]]
File Edit “iew Favorites Tools Help ;'F
A s J . -
@au:k i |31 |21 A ’-) sesrch [Favorites wmeda @ - < E ‘3
addess @] hrep:fflocalhost:5060jchaziexampleishowportal. fsprusername=lostportchoce=ertertanment j G0 Liks ”

Entertainment News Just for You, Joe!

Reality TV Show Ratings Falling

Darmils drnlctarm feargrniat darmi, Sed et mipsarmn consectetarer narnc faarcmibars frningrnilla,
Pellentestare habrmitant rmorbrni trnistmitare seneckars et netars et malesarada fames ac tarrpmis
egestas, Marne non lacars sed dolor sagmittiis ormare. Promin pellentestare mipsarm vrmiverrs darmi.
Marbmi min wmismi. Phaszellars ssrgsre tortar, consetarst nec, sodales et, lobortmis ac, elmit, Harnc
congare dolor non name Darmis rartrarm arma et namc Lorem mipsarm dolor smit amet, consectetarer
admiprizcming elmit. Donec a Imibero art leckars earmismod almitaram. Sed vmitae narlla
drignmissmim darmi porta varmiars, minteger est wmismi, lacreet ac, consectetarar min, porttmitor ac,
wmizmi. Mascenas facmilmizmis massa vmitas valmit, Almitaram arat volartpat,

Loradr irssudr dolor sit adret, consactetur adirzisicing elit, sed do eivsdrod tadrror inddidunt ut labore &t
dolore dragna aliqua. Ut enidr ad drinidr veniadr, quizs nostrud exerctation ulladroo laboris nisi ut aliquirs:
ex ea codrdrodo consequat, Duls aute irure dolor in rercrehenderit in volurstate velit 2sse diludr dolore
eu fugiat nulla rearistur, Excersteur sink occascat coridatat non reroident, sunt in culrxa qui officia
deserunt drallit anidr id est laborudr,

&] bone & Local intranes

Figure 2-13: Personalized entertainment portal

Finally, enter the URL again into your browser. From the selection form, enter your first name and select
the weather portal. Click the Select button to see the personalized weather portal page, as shown in
Figure 2-14.

Although this example shows the name of the user being used only in a personalized greeting, a lot

more can be done. For example, the username can be used to retrieve user-specific information from a
database (using JavaBeans, perhaps) and customize the user’s experience accordingly.

63

TEAM LING - LIVe, Informative, Non-cost and cenuine!

Chapter 2

&7 Weather Portal - Microsoft Intermnet Explorer ===
File Edit “iew Favorites Tools Help |

w
eauck > | |x] |z] A /-ISI:Ol'I:h '\.'/“\'{I"Faroritﬁ @reds £ (o [FH

addess @] hep:fflocalhost:5060/chazexamplesishoviportal. fsp7username=Jostportchoice=eather v/ Go Liks ™

You Get the Latest Weather, Joe!

Mumbai 30C
Tokyo i8¢C
Hong Kong 28C

&] Done & Local intranes

Figure 2-14: Personalized weather portal

Observing HTTP GET method URL encoding
Using this example, it is possible to observe the effect of parameter encoding when the form parameters
are submitted using the HTTP GET method. To try this, enter the URL for the selection page on the
browser. On the portal selection page, enter the following for a username:
J?o= e

Note that there is a space character after the equal sign and before the final e.

Select the news portal and click the Select button. You should now see the news portal greeting with this
rather strange username, as shown in Figure 2-15.

The thing to note here is that the parameter username has been encoded by the browser. You should see
the following URL:

http://localhost:8080/ch02/example3/showportal . jsp?username=J%3Fo0%3D+e&portchoice=n
ews

The ?, =, and space have been encoded by the browser.

64

TEAM LING - LIVe, Informative, Non-cost and cenuine!

JSP Basics 1:

Dynamic Page Creation for Data Presentation

@ News Portal - Microsoft Internet Explorer
File Edit “iew Favorites Tools Help

@auck > | |x] |z] A /-ISI:Ol'I:h '\.'/‘:'{I"Fa\furitﬁ @reds £ (o [FH

addess @] httpsfflocalhost:5060jchaz examplesishowpartal lsprusername=1%3F0%30+efportchoice=news

v'Go

S]]]

-~

»
s

Welcome to the News Portal, J?70= e!

JSP Programmer Won 10 Million in Lottery

Darmils drnlctarm feargrniat darmi, Sed et mipsarmn consectetarer narnc faarcmibars frningrnilla,
Pellentestare habrmitant rmorbrni trnistmitare seneckars et netars et malesarada fames ac tarrpmis
egestas, Marne non lacars sed dolor sagmittiis ormare. Promin pellentestare mipsarm vrmiverrs darmi.
Marbmi min wmismi. Phaszellars ssrgsre tortar, consetarst nec, sodales et, lobortmis ac, elmit, Harnc
congare dolor non name Darmis rartrarm arma et namc Lorem mipsarm dolor smit amet, consectetarer
admiprizcming elmit. Donec a Imibero art leckars earmismod almitaram. Sed vmitae narlla
drignmissmim darmi porta varmiars, minteger est wmismi, lacreet ac, consectetarar min, porttmitor ac,
wmizmi. Mascenas facmilmizmis massa vmitas valmit, Almitaram arat volartpat,

Loradr ir<gudr dolor it adret, consectetur adirdisicing slit, sad do sivsdrod tedrroor inddidunt ut labore &t
dolore dragna aliqua. Ut enidr ad drinidr veniadr, quizs nostrud exerctation ulladroo laboris nisi ut aliquirs:
ex ea codrdrodo consequat, Duls aute irure dolor in rercrehenderit in volurstate velit 2sse diludr dolore
eu fugiat nulla rearistur, Excersteur sink occascat coridatat non reroident, sunt in culrxa qui officia
deserunt drallit anidr id est laborudr,

] Done

& Local intranes

Figure 2-15: Observing URL encoding when using the GET method

Vulnerability of the HTTP GET method of form submission

This quick experiment will show that the GET method for form submission is very easy for malicious
users to hack. After viewing the news portal, modify the URL at the browser by hand. For example, if
you have just entered “Joe” as your name and accessed the news portal, the following URL should be

displayed:

http://localhost:8080/ch02/example3/showportal .jsp?username=Joe&portchoice=news

Now, from the browser, simulate a malicious hacker and modify the URL to the following;:

http://localhost:8080/ch02/example3/showportal.jsp?username=Joe&portchoice=news123

The portchoice parameter now has the value news123. Press Enter (or Return) in the browser. Because
this is not an anticipated portal choice, showportal. jsp will generate a page similar to the one shown

in Figure 2-16.

TEAM LING - LIVe, Informative, Non-cost and cenuine!

65

Chapter 2

&7 System Portal - Micresoft Internet Explorer B[]
File Edit View Favorites Tools Help a*
0 Back - J IXI] Id] .‘ /- ! Search :" Favorites w‘Mccﬁa 6-‘\ =" E ‘3
Address IJE http:jflocalhost: 8080/ch0z]example3/showportal. lspTusername=Jostportchoie=rews1 25 |4 ' a0 s
Application logic problem detected!

&] Done & Local intranes

Figure 2-16: Resulting page from a hacked port selection URL

Recall from our discussion earlier that the HTTP POoST method can also be used to submit form data. To
see this, modify the <form> element in the index. jsp file to the following;:

<form action="showportal.jsp" method="post">

Try the previous form submission again, and you should see that the URL used to access the portal no
longer contains visible parameter values. In our case, the URL selecting a news portal looks as follows:

http://localhost:8080/ch02/example3/showportal.jsp

The parameters are still passed to the server, but this is done invisibly using HTTP message body. While
this is still not an entirely secure way of sending form data, it does not invite hacking in the way that the
GET method does (i.e., by plainly exposing the parameter values).

How It Works

The index. jsp file is modified to include the <input> HTML element for the input of the user’s name.
Note that the name given to the HTML element is username. This will become the parameter name
when the form is submitted to Tomcat. index. jsp is reproduced below, with the new lines highlighted:

66
TEAM LING - LIVe, Informative, Non-cost and cenuine!

JSP Basics 1: Dynamic Page Creation for Data Presentation

<html>
<head>
<link rel=stylesheet type="text/css" href="portal.css">
<title>Select Your Portal</title>
</head>
<body>
<table class="mainBox" width="400">
<tr><td class="boxTitle" colspan="2">
Wrox JSP Portal Selector
</td></tr>
<tr><td colspan="2"> </td></tr>
<tr><td>
<form action="showportal.jsp" method="get">
<table>
<tr>
<td width="200">
Your First Name: </td>
<td><input name="username" type="text" size="25"/></td>
</tr>
<tr>
<td width="200">Portal Selection</td>
<td>
<select name="portchoice">
<option>news</option>
<option>weather</option>
<option>entertainment</option>
</select>
</td>
</tr>
<tr><td colspan="2"> </td></tr>
<tr><td colspan="2" align="center">
<input type="submit" value="Select"/>
</td></tr>
</table>
</form>
</td></tr>
</table>
</body>
</html>

Passing parameters to included JSPs

Instead of submitting just the portchoice parameter as shown in example 2, the index. jsp form now
submits two parameters: protchoice and username. On the server side, showportal. jsp is modified
to pass the new username parameter to the selected portal JSP. showportal. jsp is reproduced here,
with the new code to process the username parameter highlighted:

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<html>
<c:choose>
<c:when test="${param.portchoice == 'news'}">
<jsp:include page="news.Jjsp" >
<jsp:param name="user" value="${param.username}"/>
</jsp:include>

67
TEAM LING - LIVe, Informative, Non-cost and cenuine!

Chapter 2

</c:when>
<c:when test="${param.portchoice =='weather'}">
<jsp:include page="weather.jsp" >
<jsp:param name="user" value="${param.username}"/>
</jsp:include>
</c:when>
<c:when test="${param.portchoice == 'entertainment'}">
<jsp:include page="entertain.jsp" >
<jsp:param name="user" value="${param.username}"/>
</Jjsp:include>
</c:when>
<c:otherwise>
<head><title>System Portal</title></head>
<body>
<hl>Application logic problem detected!</hl>
</body>
</c:otherwise>
</c:choose>
</body>
</html>

The <jsp: include> standard action supports an optional body. Prior versions of this showportal.jsp
page did not need this body. This time, the body is used. Within the body, a <jsp:param> standard
action is used to specify a parameter for the included JSP. For example, the following line specifies a
user parameter:

<jsp:include page="entertain.jsp" >
<jsp:param name="user" value="${param.username}"/>
</jsp:include>

When executed, the included entertain. jsp file will have access to a parameter called user; and the
parameter will have the value equal to the username parameter that is submitted from the form. Using
the <jsp:param> tag is the best way to pass parameters to any included JSPs.

Strictly speaking, the included JSP also has access to all the parameters available in
the JSP page doing the inclusion. This means that an included entertain. jsp
could have used the user parameter from the form instead of the username parame-
ter from the <jsp:param> action. However, having the included JSP depend on a
parameter of the main page is a bad programming practice. This is because the JSP
being included will not be able to work with an including page that does not have a
parameter with the required name — greatly reducing the reuse possibility of the
included JSP.

Modifying the included JSP to use personalization data

The change required in the portal pages to support the simple personalization is minimal. The news . jsp
portal page is reproduced here, with the changed code highlighted:

<head>

<link rel=stylesheet type="text/css" href="portal.css">
<title>News Portal</title>

68
TEAM LING - LIVe, Informative, Non-cost and cenuine!

JSP Basics 1: Dynamic Page Creation for Data Presentation

</head>
<body>
<table class="mainBox" width="600">
<tr><td class="boxTitle" >
Welcome to the News Portal, ${param.user}!
</td></tr>
<tr><td>

<jsp:useBean id="newsfeed" class="com.wrox.begjsp.ch2.NewsFeed"
scope="request" >
<jsp:setProperty name="newsfeed" property="topic" value="news"/>
<jsp:getProperty name="newsfeed" property="value"/>
</jsp:useBean>

<jsp:include page="dummytext.html" />

</td></tr>
</table>

The EL expression $ {param.user} is used to access the parameter passed by the <jsp:include>

standard action. Like the original showportal. jsp, it uses the EL implicit object, param, to obtain and
render the value of the user parameter.

The entertain. jsp file is modified to support the personalization as well. The single modified line is
highlighted here:

<head>

<link rel=stylesheet type="text/css" href="portal.css">
<title>Weather Portal</title>
</head>
<body>
<table class="mainBox" width="600">
<tr><td class="boxTitle" >
Entertainment News Just for You, ${param.user}!
</td></tr>
<tr><td>

<jsp:useBean id="newsfeed" class="com.wrox.begjsp.ch2.NewsFeed"
scope="request" >
<jsp:setProperty name="newsfeed" property="topic" value="entertainment"/>
<jsp:getProperty name="newsfeed" property="value"/>
</jsp:useBean>

<jsp:include page="dummytext.html" />

</td></tr>
</table>

The only change to the weather . jsp file is highlighted in the following code:

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<head>

<link rel=stylesheet type="text/css" href="portal.css">

69
TEAM LING - LIVe, Informative, Non-cost and cenuine!

Chapter 2

<title>Weather Portal</title>
</head>
<body>
<table class="mainBox" width="600">
<tr><td class="boxTitle" >
You Get the Latest Weather, ${param.user}!
</td></tr>
<tr><td>
<jsp:useBean id="newsfeed" class="com.wrox.begjsp.ch2.NewsFeed"
scope="request" >
<jsp:setProperty name="newsfeed" property="topic" value="weather"/>
</jsp:useBean>
<table>
<c:forEach items="${newsfeed.values}" var="row" >
<tr><td class="tableCell" width="200"> S${row.city} </td>
<td> ${row.temp}</td>
</tr>
</c:forEach>
</table>
</td></tr>
</table>

Again, the implicit EL object param is used to obtain the user parameter from the JSP container. The
username parameter is used to personalize the title.

Summary

The main role of JSP in a Web-based application is to create a dynamic presentation of information or
data. This chapter focused on the elements that enable these dynamic presentation capabilities.

AlL JSP pages are composed of the following elements:

QO Directives

d Actions

Q Template data

Q Scripting elements

HTML form submission is managed on the client side by the browser. On the server side, a JSP container
can greatly simplify the handling of form submission. Parameters are passed with the URL request from

the browser to the server using either the HTTP GET or the HTTP poST method. The GET method attaches
the parameters to the URL as trailing text, while the POST method uses the HTTP message body to carry the

parameters. The EL implicit object, param, can be used on the JSP side to directly access the submitted
form parameters.

The form-processing task involves accepting the submitted parameters and dynamically generating a
response page.

JSTL 1.1 features many custom actions that can be useful in JSP programming. The <choose>
. .<when>. .<otherwise> JSTL tags construct can be used to selectively generate different content

70
TEAM LING - LIVe, Informative, Non-cost and cenuine!

JSP Basics 1: Dynamic Page Creation for Data Presentation

depending on an EL expression. EL expressions enable you to access objects — either implicit objects or
ones created by Java or business logic developers.

The <jsp:include> standard action can be used to render the output of one JSP page (or HTML page)
within another JSP page.

JavaBeans are reusable code components. They are often used by Java developer to supply data to JSP
developers in the creation of the presentation layer. Their properties and usage must be documented.
The standard actions, <jsp:useBean>, <jsp:setProperty>, and <jsp:getProperty>, work with
JavaBeans. However, to access bean properties that return multivalued data, the use of JSTL and EL may
be necessary. The <forEach> iteration tag of JSTL is very useful for rendering tabular data values from
JavaBeans.

Because JSP has complete control on the dynamic generation of the response page to an incoming request,
it can be also be used to create Web applications that feature a personalized user experience. The final
example illustrates the basic principles involved in Web site personalization.

Exercises

1. Using the JSP code in the second Try It Out exercise as a base, write a JSP that will display the
combined portals shown in Figure 2-17.

&1 New Portal - Microsoft Internet Explorer (S]]
File Edit “iew Favorites Tools Help >

Qo - © [x] B 6] Psowtr Yrroens @rete @ (- LB B
T o> EXE
Welcome to the News Portal!

JSP Programmer Won 10 Million in Lottery

address] hepefflocalhost: B0B0Jchnz/solution/sh

Darmnils drnictarmn feargmiat darmi, Sed et mipsarm consectetarer narnc faarcnibars frmingrnilla,
Pellentestare habrnitant morbmi trrnistmitare senectars ek netars et malesarads fames ac tarpmis
egestas, Marnc non lacars sed dolor sagmittrmiz arnare, Promin pellentestare mipzarm vrmiverrs darmi,
Marbmi min wrnismi. Phasellars aargare tortor, conzetarat nec, zodales et, lobortmis ac, elmit. Harne
congare dolor nen name, Darmiz rabrarm arna et name Loremn mipzarm dolor smit amet, conzectetarer
adraiprniscning elmit, Donec a lmibers art lectars 2armismod almitaram, Sed vmitae narla
dmignmissmim darmi parta varmiars, mintagar st wmismi, laoraet ac, consectatarer min, porttmitor ac,
wrismi. Magcanas facmilmismiz massa vnitas velmit. Almitaram srat volapat,

Laredr irxsudr dolor sit adret, consectetur adirzizicing elit, sed do elusdrod tedrsor incdidunt ut labore et
dolore dragna aliqua. Ut enidr ad drinidr veniadr, quis nostrud exercitation ulladreo laborls nis ut aliquirs
ex ea codrdrodo consequat. Duis sute irure dolor in rercrehenderit in volurstate velit esse dlludr delore
eu fugiat nulls reariat ur gint eurid non reroident, sunt in culres qui offics
dezerunt drollit anidr id est laborudr

'You Get the Latest Weather! -

Mumbai 30C
Tokyo 18 C
Hong Kong 28 C

Entertainment News Just for You!

Darrmis drmictarm feargrmist darmi, Sed et mipsarm conzecketarar narme faarcmibars freningrmilla,
Pellentestare habrnitant morbmi trnistrnitare senectars et netars et malesarada fames ac tarpmis
egestaz, Narnc nen lacars zed dolor sagmittmis ornare, Prormin pellentestare rmipsarm wrniverra darmi,
Morbrmi rnin wrnisrni. Phasallars aargare tortor, consetarat nec, sodales at. lobortmis ac. almit. Hamc
congara dolor non narme. Darmis rartrarm arma @t namc Lorarmn mipsarm dolor smit amat, consactatarar
adrnipraiscrning elmit, Donec a Imibero art lectars 2armismod almtaram, Sed vmitae nadla
drlgnmissmirn darml porta varmiars, minteger 2st winisml, laoreet ac, consectetarer min, portbmitor ac,
wrnismi. Maecenas facmilmismiz massa vmitae velmit. Almitaram erat volarpat,

Loredr ircsudr dolar zit adret, conzectetur sdircizicing elit, zed do eiusdrod tedrrzor incididunt ut labore et
dolore dragna aliqua. Uk enidr ad drinidr venisdr, quis nostrud exercitation ulladreo laboris nisi ut aliquirs
ex ea codrdrodo consequat, Duis aute irure dolor in rerscrehenderit in volurctate velit esse dlludr dolore
eu fugiat nulla iats ar sint t ourxis non ident, sunt in culrca qui offica
deserunt drollit anidr id ast laborudr.

~

:e] Done ‘ﬂ Local intranst

Figure 2-17: Exercise 1 output
71
TEAM LING - LIVe, Informative, Non-cost and cenuine!

Chapter 2

72

2.

You can use JSP to create highly flexible data presentation. Exercise 1 revealed that essentially
the same JSP portal pages can be used in diversely different user presentations. This code reuse
practice is highly encouraged. Using Exercise 1 as a base, modify news . jsp, weather. jsp, and
entertain. jsp in a way such that they can also be used within the second Try It Out exercise.
Test these new pages with the second Try It Out exercise. You are not allowed to change the
showportal. jsp code for the second Try It Out.

TEAM LING - LIVe, Informative, Non-cost and cenuine!

JSP Basics 2: Generalized
Templating and Server
Scripting

The previous chapter presented JSP as a server-side mechanism used in the generation of dynamic
HTML responses to an incoming request. It also demonstrated how static templated data (such as
a fragment or a whole page of HTML) can be included and combined as part of the output. This
chapter adds another dimension, showing how JSP generalized templating can be combined with
scripting code written in the Java programming language.

The ability to include Java elements in a JSP page is the center of focus in this chapter. When work-
ing with JSP 2.0 and JSTL 1.1, there is very little reason to embed raw Java programming code into
a JSP page. However, the Expression Language (EL) and JSTL features presented in the previous
chapter are brand-new to most commercial JSP containers (compliant to the JSP 2.0 standard). Older,
existing production code will typically not be using JSTL/EL, and will very likely have embedded
Java code. This body of production code will need to maintained, and perhaps migrated. In this
chapter, you will learn how to deal with legacy code that makes extensive use of embedded Java
code via scripting elements in JSPs.

The primary mechanism of embedding Java code into a JSP page is called scripting. Scripting is
typically done through scripting elements — declarations, expressions, and scriptlets — within a
JSP. These elements are covered briefly in the previous chapter. This chapter fully explores the role
of these elements within the composition of a JSP page.

The sample code within the chapter makes extensive use of scripting elements. This sample code
features the design and creation of a simple Web-based storefront that displays different categories
of products and allows users to add products to their shopping cart. Through three successively
more complex examples, you will discover the fundamental coding techniques that are used on
e-commerce sites.

Scoping is a very important concept for the JSP developer. This chapter explores global application
scope, session scope, and request scope. Actual code from the e-commerce example will take

TEAM LING - LIVe, Informative, Non-cost and cenuine!

Chapter 3

advantage of all of these scopes. Exploring session scope requires an understanding of the container-
managed session. This chapter introduces the concept of a session, reveals how it is implemented, and
shows how it can be extremely useful in the JSP implementation of e-commerce applications. By the end
of this chapter, you should

A Understand the interaction between a JSP and embedded Java code
Be fluent in the use of scripting elements within JSP
Be able to maintain, enhance, and migrate JSP code that contains scripting elements
Be familiar with the design and operation of a basic electronic storefront

Be able to implement a working shopping cart using JSP

Understand the application, session, and request scopes in JSP

0O 000U oo

Understand why sessions are necessary and how to work with them from within your JSP

Scripting Elements for Java Code
Embedding

Historically, JSP and Java go hand-in-hand. In early versions of the JSP standard, Java code was used
routinely as the glue for supplementing the standard JSP actions during content generation.

In fact, JSP 1.0 lacked a mechanism for implementing custom actions, and the standard actions that were
included were extremely limited. This virtually guaranteed extensive embedding of Java coding in all
but the simplest JSP 1.0 code.

The first version that supported a workable way of extending JSP standard actions was JSP 1.1. Even
though JSP 1.1 started to support third-party tag libraries, the art of tag library creation and integration
is not well documented. As a result, a standard set of available generalized tags was lacking. Not until
JSP 1.2 did the use of custom tag libraries became popular.

JSP 2.0 is the first version of JSP to introduce an Expression Language (EL) designed to work in conjunc-
tion with a standard tag library (JSTL 1.1). It is also the first version of JSP to simplify the creation of cus-
tom tags, via support of tagfiles (creating new tags using JSP as the implementation language). In other
words, JSP 2.0 is the first version of JSP that enables the creation of pure JSP coding right out of the box
without the need to embed Java coding.

As a result, if you ever need to look at existing or legacy code, you are likely to see embedded Java
within JSP pages. In this old JSP code, there was simply no other way to accomplish tasks that are not
covered by standard JSP actions.

As a JSP developer, you should be aware that JSP is considered a presentation layer technology. In other
words, it should be used in the creation of a dynamic presentation of data. In fact, JSP containers are
designed and optimized specifically for this purpose. This also means that JSP should not be used as the
primary way to process or manipulate data within an application. These activities are best left for devel-
opers at the business tier, using technology such as Enterprise JavaBeans (E]JBs) or through the creation

74
TEAM LING - LIVe, Informative, Non-cost and cenuine!

JSP Basics 2: Generalized Templating and Server Scripting

of custom Java classes. Allowing embedded Java code in JSP pages encourages the mixing of data pro-
cessing functions, which JSP is not designed for and cannot do well. In fact, years of industry experience
confirm that mixing JSP and Java coding can lead to code that is difficult to maintain. Therefore, given a
choice, modern JSP developers should seek to reduce or completely eliminate the use of embedded Java
code in their JSPs. Having said this, in some real-world situations, you may be asked to enhance or main-
tain legacy JSP code that is written using earlier versions of the JSP standard. In these cases, you will
need to have a working knowledge of scripting elements within JSPs.

Scripting elements

To embed Java coding into a JSP page, you need to use scripting elements. There are three general ways
to do this, as briefly mentioned in Chapter 2. Fully explored in this chapter are the following three types
of scripting elements:

Q Declarations

Q Expressions

Q Scriptlets

Declaration scripting elements

Declaration scripting elements are used to insert methods, constants, and variable declarations into JSP
pages. Here is a declaration scripting element that declares three constants (EXAMPLE, SHOP_PAGE, and
CART_PAGE), and a method called dispPrice ():

<%!
private static String EXAMPLE = "/example2";
private static String SHOP_PAGE = "/estore.jsp";
private static String CART PAGE = "/shopcart.jsp";

private String dispPrice(String price)
{
int len = price.length();
if (len <= 2)
return price;
else
return "$" + price.substring(0,len -2) + "."
+ price.substring(len-2);

oe
\4

The following properties are illustrated by the preceding declaration scripting element:

Q Declaration scripting elements are enclosed by <%! ... %>.

Q The content of scripting elements in general, and declaration scripting elements specifically, is
actually code fragments written in Java.

0 Constants, variables, and methods declared within declaration scripting elements are used
within the JSP page, by other scripting elements, EL expressions, or JSP actions.

You can have multiple declaration scripting elements within a single JSP page. The JSP container will
merge them into one when processing the page, so it isn’t necessary to separate them.

75
TEAM LING - LIVe, Informative, Non-cost and cenuine!

Chapter 3

In the preceding embedded Java code, note that the constant paths (EXAMPLE, SHOP_PAGE, and
CART_PAGE) are hard-coded into the JSP. If these paths were to change in the future, all of the code con-
taining them would have to be changed. Chapter 17, “Model View Controller,” illustrates a more flexi-
ble approach whereby the application flow can be configured without changing any JSP or Java code.

Working with jspinit() and jspDestroy()

76

You can define two very special methods within a declaration scripting element. They are methods with
the following signatures:

a public void jspInit (void) ;

U publicvoid jspDestory (void) ;

These methods are special because the JSP container will call them at two well-defined points during the
life of a JSP page. The following table describes when the container calls these methods.

Method Name When It Is Called

void jspInit () Called during the initialization of the JSP page, before the first
request is processed by the page. This method can be used to
acquire global resources that may be used by the page’s request
processing logic. This method is optional for a JSP page author.
Most JSP pages have no need to declare this method.

void jspDestroy () Called by the container just before destroying the JSP page. This
method can be used to release the resources that it acquired in
jspInit (). Most JSP pages have no need to declare this method.

To fully understand what these methods do, you must realize that a JSP container typically creates only one
single instance (see the following note) of a JSP to service all incoming requests. The jspInit () method is
called by the container during the initialization of this single instance. If the incoming request processing
load is heavy, a JSP container may eliminate some initialized JSPs that have not been used for a while. If
this happens, the container is obliged to call the jspDestroy () method before eliminating the JSP.

Some JSP containers may take advantage of multiple Java Virtual Machines (JVMSs) on a Symmetric
MultiProcessor (SMP), or a clustering system. These specialized containers may maintain one instance
of a JSP per JVM to process incoming requests.

The following declaration scripting element declares the two special methods. In this case, the Java code
attaches an object as an attribute to the ServletContext in the jspInit () method, and the
jspDestroy () method removes this attribute.

For readers who are avid Java programmers, the following information will enable you to determine what
code can go into these methods. Every JSP is actually a Java class. A JSP Java class implements the
javax.servlet.Servlet interface. In other words, a [SP is always a servlet. It implements all of
the methods of the Servlet interface. For example, the following code uses the getServletContext ()
of the Servlet interface. The servlet context of a [SP corresponds to its implicit application object.
The application object is readily available for use in expression scripting elements and scriptlet
scripting elements.

TEAM LING - LIVe, Informative, Non-cost and cenuine!

JSP Basics 2: Generalized Templating and Server Scripting

<%!

public void jspInit()
{

getServletContext () .setAttribute("cats", EShop.getCats());
}

public void jspDestroy ()
{

getServletContext () .removeAttribute ("cats");
}

>

o

Expression scripting element

An expression scripting element is an embedded Java expression that is evaluated and converted to a
text string. The resulting text string is placed in the JSP output, in the location at which the element
appears. You will find expression scripting elements in a JSP in the following locations:

QO Within certain attributes of JSP actions (standard or custom)

Q Within templated data

For example, the following expression scripting elements are used to print out some data values within a
row of a table:

<table>
<tr>
<td><%= curItem.getName() %></td>
<td><%= dispPrice(String.valueOf (curItem.getPrice())) %></td>
</tr>
</table>

From the example, note the following about expression scripting elements:

Q They are bracketed by <%= %>.

Q They contain expressions in the Java programming language — for example, a variable, a field,
or the result of a method call.

Q Their output is merged with the template data, HTML in the preceding example.

Expression scripting elements may also be used in attributes of JSP actions. The following example
shows an expression scripting element used in the value attribute of the standard <jsp:param> action:

<jsp:include page="weather.jsp" >
<jsp:param name="user"
value="<%= request.getParameter ("username")%>"/>
</Jjsp:include>

In this case, the expression scripting element will be evaluated first. The text string value of the
request.getParameter () method call will be substituted before the <jsp:param> action is eval-
uated. The expression scripting element in this case is said to be a request time expression (because it is
evaluated during request processing).

77
TEAM LING - LIVe, Informative, Non-cost and cenuine!

Chapter 3

Scriptlet scripting element

Scriptlet scripting elements are used to include complete fragments of Java code in the body of the JSP.
These elements differ from declarations and expressions in two ways:

Q They are not limited to the declaration of methods, variables, and constants.

Q They do not generate a string output directly, as expressions do.
If you need to generate output within a scriptlet scripting element, you can use the out implicit object.
The out implicit object is of the javax.servlet.jsp.JIspWriter type, which in turn is a subclass of

java.io.Writer, and all of its methods are available. For example, the following scriptlet scripting ele-
ment prints a total cost, conditionally with local tax added on:

<

oe

if (state.isLocal()

out.print (totalCost * localTax);
else

out.println(totalCost);

oe
\%

The following is an example of several scriptlet scripting elements in the layout of a table with varying
numbers of output rows. Note the free mix of template data and scriptlet scripting elements:

<table border="1">
<tr><th align="left">Item</th><th align="left">Price</th></tr>

<%
String selectedCat = request.getParameter ("catid");
if (selectedCat == null)
selectedCat = "1";
ArraylList items = (ArrayList) EShop.getItems(selectedCat) ;
for (int 1=0; i< items.size(); 1++)
{
Product curItem = (Product) items.get(i);
%>
<tr>

<td><%= curlItem.getName() %></td>
<td><%= dispPrice(String.valueOf (curItem.getPrice())) %></td>
</tr>
<%
}
%>
</table>

An especially important technique to note is the use of scriptlet scripting elements in the control flow of the
JSP. In the preceding case, the highlighted code implements a loop that prints a row for each element in the
items ArrayList collection. The use of scriptlet scripting elements — expression scripting elements and
template data (HTML) — is freely mixed. Note the following characteristics of scriptlet scripting elements:

Q They are Java code fragments that are bracketed in <% ... %>.
Q They can be placed anywhere within the JSP body, mixed among the template data.

Q All the Java control flow structures (1 £, for, while, switch, and so on) may be used for control
flow within a JSP page.

78

TEAM LING - LIVe, Informative, Non-cost and cenuine!

JSP Basics 2: Generalized Templating and Server Scripting

Java class syntax and scripting elements layout

If the placement of scripting elements within a JSP reminds you of the coding syntax of a Java class, you
are very observant. In fact, the combined scripting elements on a JSP page match precisely certain ele-
ments in a Java class. In most JSP containers, the entire JSP page is translated to a Java class in source
code before compilation. Figure 3-1 illustrates the correspondence between scripting elements in the
layout and the syntax of a Java class.

Declaration scripting elements are placed as the first thing in the body of the Java class definition.
The JSP body, including any scriptlets scripting elements, is placed in the body of the Java class immedi-
ately after JSP generated code that defines the JSP implicit objects and sets up the page environment.

This implies the following:

Q Within declaration scripting elements, you do not have access to the implicit objects and page-
specific elements.

Q Within scriptlet and expression scripting elements, you have full access to the implicit objects
and page-specific elements.

public final class estore jsp extends org.apache.jasper.runtime.HttpJspBase {

Declaration scripting elements placed here

JSP generated code to set up implicit objects
and support environment

A mix of scriptlet scripting elements, expression scripting
! elements, code generated from template data,
and code generated from actions placed here '

Figure 3-1: The scripting elements and their equivalent Java class placement

79
TEAM LING - LIVe, Informative, Non-cost and cenuine!

Chapter 3

Creating a Simple Web Storefront

You are likely to have encountered many Web-based stores in your daily Internet surfing activities. The
example in this chapter provides a glimpse into how these stores are built. More specifically, you will
see how JSP can be used to implement navigation and presentation in the user interface of a Web-based
store. The JSP in this example makes extensive use of embedded Java coding and provides you with
hands-on experience working with scripting elements.

The first example implements a catalog of products. Within this catalog, shoppers may select a product
category, and the products in that category will be displayed on the screen with their prices.

Try It Out Creating a Products Catalog

To try out the first example, make sure Tomcat 5 is running and deploy the ch03 . war file (see Chapter 1
for details if you do not remember how to use the Manager application to deploy a war file). Point your
browser to the following URL:

http://localhost:8080/ch03/examplel/estore. jsp

You should see the simple catalog shown in Figure 3-2.

i3 wrox Shopping Mall - Netscape =181 =
. Eile Edit Wiew Go Bookmarks Tools Window Halp

- OO o @ O | hitplocalnosta080/ch03/example’ festore Jsp | [©y Search | Cf_go @
[X|

;,ﬂl' “ Wrox Shopping hall]
Systems [[tem Price
Software [Pentium 4 - 4 GHz, 512 MB, 300 GB | $989.92

Books |AMD Opteron - 4 GHz, 1 GB, 300 GB|$1200.89

© & A OF) [Done == = =
Figure 3-2: Catalog display of systems available for purchase

80

TEAM LING - LIVe, Informative, Non-cost and cenuine!

JSP Basics 2: Generalized Templating and Server Scripting

In Figure 3-2, the categories of products are displayed on the left side of the page. Each product category
is represented by a hyperlink. If you click the product category hyperlink, a list of products and their
prices are displayed on the right-hand side. Now try clicking the link for the Software product category.
You should see the selection of software available, as shown in Figure 3-3.

The software selection shows two Tomcat servers available and their prices. Finally, click the Books
product category. You should see the three books that are available, as shown in Figure 3-4.

This catalog application is simple and free of fancy HTML formatting so we can focus on the JSP and
scripting code. It is always a good idea to test your code before adding formatting elements. This best
practice is covered in Chapter 1.

3 wrox Shopping Mall - Netscape =1l x|
. Eile Edit Wiew Go Bookmarks Tools Window Help
. GO O 0 O | hitpvlocalnostB080/ch0/examplel festore |sp7catld=2 | [©y Search | ng @
&) | % Wrox Shopping Mall] (]
Systems Item Price
Software Tomeat 5 Server for Windows 392,00
Books Tomear 5 Server for Linug 899,00
SRAD0] == e,

Figure 3-3: Display of software available for purchase

81
TEAM LING - LIVe, Informative, Non-cost and cenuine!

Chapter 3

3 wrox Shopping Mall - Netscape =1l x|
. Eile Edit Wiew Go Bookmarks Tools Window Halp
. @o o @ O | hitp:#fiocalhost@00/ch03/example festore sp?catid=3 | [©y Search | C.‘:go @
&) | % Wrox Shopping Mall] (]
|[tem Price
g—mg—lﬁe [Beginning JavaServer Pages |$29.99
Books [Professional Apache Tomeat 5($49.99
[Apache Tomeat Bible 49,99
SE2aA%0 =i = | el

Figure 3-4: Display of books available for purchase

How It Works

This catalog makes use of only a single JSP page. This JSP page presents the information contained in a
set of objects. These objects are already provided for us. Similar to the JavaBean used in Chapter 2, the
objects are coded in Java. In most production environments, the description of the objects that you can
use within your JSPs is provided for you. In a production environment, the objects are often called busi-
ness objects. The following table describes the available objects.

Object Name Description

EShop An object containing static convenience methods. The getCats ()
method can be used to obtain the current catalog categories. The
getItems () method can be used to obtain the products in a specific

category.

Category Represents a single category and has fields containing the name,
description, and a unique category ID. This object can be accessed
as a JavaBean.

Product Represents a single product. It has a unique SKU identifier, a name, a
description, and a price. This object can be accessed as a JavaBean.

82
TEAM LING - LIVe, Informative, Non-cost and cenuine!

JSP Basics 2: Generalized Templating and Server Scripting

The compiled code for these Java objects is located in a package called com.wrox.begjsp.ch03; you
can find it under the <Tomcat Installation Directory>/webapps/WEB-INF/classes directory.
Figure 3-5 illustrates how the Java objects are used within the catalog.

EShop.getCats()

ArrayList of

Category
renders the

categories

estore.jsp

/

Systems Item Price
Software
Books hs N

EShop.getltems()

ArrayList of
Product

renders the
products

Figure 3-5: Using EShop, Category, and Product objects in the catalog

In Figure 3-5, Java coded scripting elements will be used to glue the object data to the JSP template,
resulting in the generated HTML catalog page.

The code to this catalog can be located in the estore. jsp JSP page. The estore. jsp file is reproduced
here, but you can find it in the <Tomcat Installation Directory>/ch03/examplel/estore. jsp file:

<%@ page language="java"
import = "com.wrox.begjsp.ch03.*,java.util.*" %>

<%!
public void jspInit()
{

getServletContext () .setAttribute("cats", EShop.getCats());
}

public void jspDestroy ()
{

getServletContext () .removeAttribute ("cats") ;

83
TEAM LING - LIVe, Informative, Non-cost and cenuine!

Chapter 3

}
private String dispPrice(String price)
{
int len = price.length();
if (len <= 2)
return price;

else
return "$" + price.substring(0,len -2) + "." + price.substring(len-2);
}
%>
<html>
<head>
<title>Wrox Shopping Mall</title>
</head>
<body>
<table width="600">
<tr>
<td width="20%">
<%
ArraylList cats = (ArrayList) application.getAttribute("cats");
for (int i=0; i< cats.size(); i++)
{
Category curCat = (Category) cats.get(i);
%>

<a href="<%= request.getRequestURL() + "?catid=" + curCat.getId() %>">
<%= curCat.getName() %>

<%
}
%>
</td>
<td>
<hl></hl>
<table border="1">
<tr><th align="left">Item</th><th align="left">Price</th></tr>

<%
String selectedCat = request.getParameter ("catid");
if (selectedCat == null)
selectedCat = "1";
ArrayList items = (ArrayList) EShop.getItems (selectedCat) ;
for (int i=0; i< items.size(); i++)
{
Product curItem = (Product) items.get(i);
%>
<tr>
<td><%= curlItem.getName () $></td>
<td><%= dispPrice(String.valueOf (curltem.getPrice())) %></td>
</tr>
<%
}
%>

84
TEAM LING - LIVe, Informative, Non-cost and cenuine!

JSP Basics 2: Generalized Templating and Server Scripting

</table>
</td>
</tr>
</table>
</body>
</html>

Lines containing scripting elements are highlighted in the preceding code. You can see plenty of exam-
ples of all three types of scripting elements (declarations, expressions, and scriptlets).

At the top of the JSP is a <%¥@page> directive. This is a directive that has not appeared before:

<%@ page language="java"
import = "com.wrox.begjsp.ch03.*,java.util.*" %>

The <%@page> directive describes certain properties of the JSP, via its attributes, to the container. For
example, this <%@page> directive is saying that the programming language used in scripting elements
is "java", and that the classes in packages com.wrox.begjsp.ch03.* and java.util.* should be
imported. The import attribute is equivalent to the following Java code:

import com.wrox.begjsp.ch03.*;
import java.util.*;

The next section in estore. jsp is a declaration scripting element. In this case, the special jspInit ()
and jspDestroy () methods are defined. Also note the declaration of a Java method called dispPrice ()

<%!

public void jspInit()
{

getServletContext () .setAttribute("cats", EShop.getCats());
}

public void jspDestroy ()
{
getServletContext () .removeAttribute("cats") ;

}

private String dispPrice(String price)
{
int len = price.length();
if (len <= 2)
return price;
else

return "$" + price.substring(0,len -2) + "." + price.substring(len-2);

}

%>

The jspInit () method attaches an attribute to the servlet context of the JSP. The servlet context of a JSP
is completely equivalent to the application implicit object. However, remember from our earlier discus-
sion that implicit objects are not yet set up and are therefore not available from within the jspInit ()
method. This is why it is necessary to call getServletContext () instead. getServletContext () isa

85
TEAM LING - LIVe, Informative, Non-cost and cenuine!

Chapter 3

method on the javax.servlet.Servlet interface, an interface that the underlying class of a JSP imple-
ments. Calling EShop.getCats () will return an ArrayList containing Category objects that describe
the categories available in the catalog. Therefore, the following line will attach an attribute with the
name "cats" to the application implicit object:

getServletContext () .setAttribute("cats", EShop.getCats());

This means that the categories will be attached to the application implicit object when the JSP is first
used by the container, even before the first request is processed. jspInit () will never be called again,
unless the page is destroyed and recreated by the container. Should the page be destroyed to make more
room for others, the container will call the jspDestroy () method, which will in turn remove the
attribute.

Later within the JSP code, you can obtain the categories ArrayList using the following Java code:
ArrayList cats = (ArrayList) application.getAttribute("cats");

This is exactly what happens in the first scriptlet scripting element within the estore. jsp page. Note
the use of the application implicit object instead of the equivalent but more cumbersome
getServletContext () call.

You will frequently see this practice of attaching an attribute to an object, to be retrieved during process-
ing by the JSP. This pattern occurs regularly in JSP programming.

Attaching attributes to implicit objects

Attaching attributes to implicit objects is the primary mechanism that enables the different elements of

a JSP page to cooperate. It can also be used as a mechanism for passing information between a JSP page
and any included JSP page, or even between JSP pages within the same application. Figure 3-6 illustrates
the basic action of attaching attributes to JSP implicit objects for request processing.

In Figure 3-6, attributes attached by an element of a JSP page (for example, a declaration scripting ele-
ment) are later used by another element within the JSP page (a scriptlet element, the <jsp:UseBean>
standard action, a custom tag, and so on).

Attributes are any Java-based object that can be attached to certain implicit objects using a textual name.
JSP or scripting code can then later retrieve an attribute as long as it knows the textual name. The pri-
mary implicit objects that you can attach attributes to are the scoping objects, including the following:

U pageContext
a request
a session

a application

Each of these objects implements an interface that has the setattribute () and getAttribute ()
method, enabling you to attach Java objects as attributes.

86
TEAM LING - LIVe, Informative, Non-cost and cenuine!

JSP Basics 2: Generalized Templating and Server Scripting

JSP Implicit Object

application
(ServletContext)

<%@ page language="java" import = "com.wrox.begjsp.ch03.*" %>

o°

<%!
public void jspInit() { attaches
attribute

getServletContext () .setAttribute("cats", EShop.getCats());

%> .
accesses
attribute ,/”

<html> //'

<heads><title>Wrox Shopping Mall</title></head> //
<body> //

<table width="600">

<tr><td width="20%"> K

<

o°

ArrayList cats = (ArrayList) application.getAttribute("cats");
for (int i=0; i< cats.size(); i++) {
Category curCat = (Category) cats.get (i) ;

o°

>

Figure 3-6: Attaching attributes to implicit objects

The following table shows the interfaces that enable attribute attachment for each of the implicit objects.

Implicit Object Interface/Superclass Supporting Attributes
pageContext javax.servlet.jsp.JspContext superclass
request javax.servlet.ServletRequest interface
session javax.servlet.http.HttpSession interface
application javax.servlet.ServletContext interface

Each implicit object that supports the attachment of attributes has a unique scoping. Scoping determines
how long and under what circumstances the attributes attached will be available. Scoping is explained
in detail after the next example.

Let’s turn our attention back to estore. jsp; the page is laid out into two table cells, as illustrated in
Figure 3-7.

87
TEAM LING - LIVe, Informative, Non-cost and cenuine!

Chapter 3

left table cell right table cell

System
Software
Books

list of products
in the selected category

Figure 3-7: Layout of the generated catalog page

The first cell on the left-hand side is basically a list of categories in the "cats" attribute.

Rendering the list of categories

The code that performs the rendering of the list of categories on the left side of Figure 3-7 is reproduced
here. The code involves several scriptlet scripting elements mixed among template data (HTML) and
expression scripting elements:

<td width="20%">
<%

ArrayList cats = (ArrayList) application.getAttribute("cats");
for (int 1=0; i< cats.size(); 1i++)
{
Category curCat = (Category) cats.get(i);

%>

<a href="<%= request.getRequestURL() + "?catid=" + curCat.getId() %>">
<%= curCat.getName() %>

<%
}

%>

</td>

88
TEAM LING - LIVe, Informative, Non-cost and cenuine!

JSP Basics 2: Generalized Templating and Server Scripting

In the highlighted scriptlet scripting element, note that the "cats" attribute is retrieved from the
application implicit object and placed into the cats ArrayList. Then the code iterates through all
the categories in this list and assigns each category to the temporary curcat variable.

The curcat variable is then used to display the category name, using the expression scripting element:
<%= curCat.getName() %>

This name is made into a hyperlink using another expression scripting element within an HTML <a>
element:

<a href="<%= request.getRequestURL() + "?catid=" + curCat.getId() %>">

The getRequestURL () method on the request implicit object obtains the URL that is used to access the
current JSP. During runtime, this may be transformed to a URL such as the following:

http://localhost:8080/ch03/examplel/estore.jsp?catid=3

You may recognize this as the form submission GET method that was used in Chapter 2 to attach param-
eters to a request URL. Indeed, this is a technique frequently used in JSP programming to send parame-
ters to another JSP for processing.

While this method of creating a URL is simple and works under most circumstances, it can be problem-
atic when user sessions are used. Sessions are explained later in this chapter. Chapter 6, “JSP Tag
Libraries and [STL,” describes some tags that can be used to create URLs that will automatically main-
tain session information.

Rendering the list of products in a given category

In the right-hand cells of the table in Figure 3-7, the products in the currently selected category are dis-
played. This cell is rendered using the following code. Note that the structure of the code is very similar
to the code presented for the categories list.

<table border="1">
<tr><th align="left">Item</th><th align="left">Price</th></tr>
<%
String selectedCat = request.getParameter ("catid");
if (selectedCat == null)
selectedCat = "1";

ArrayList items = (ArrayList) EShop.getItems (selectedCat);

for (int 1=0; i< items.size(); 1++)

{

Product curItem = (Product) items.get(i);

%>
<tr>

<td><%= curlItem.getName () $></td>

<td><%= dispPrice(String.valueOf (curItem.getPrice())) $%></td>
</tr>

89
TEAM LING - LIVe, Informative, Non-cost and cenuine!

Chapter 3

<%
}
%>
</table>

In the description of the previous section, you saw that clicking a category hyperlink within the left-hand
cell generates a (GET method) submit to the estore. jsp with a catid parameter.

The first scriptlet scripting element obtains this catid parameter from the request implicit object. Note
that the first time the page is displayed, there is no catid parameter included with the URL. In this case,
the default is simply set to the value of "1" .

Next, the EShop.getItems () static method call obtains all the products in a category. This is returned
in an ArrayList and assigned to a variable called items by the code:

ArrayList items = (ArrayList) EShop.getItems (selectedCat);
The rest of the code iterates through the list of products in the items ArrayList. Each product’s name

and price are printed as a table cell. Each product in the items ArrayList will cause a row in the table to
be rendered. Note the use of the disppPrice () method, defined in the declaration scripting element, to

Adding a Shopping Cart to a Catalog

After finishing the interactive catalog to display categories and products, the next step in building an
electronic storefront is adding a shopping cart. This Try It Out exercise reveals how you can add a simple
shopping cart to the product catalog example described in the preceding section.

In this example, the user will be enabled to do the following:

1. Browse through the catalog
2. Click a Buy link to place an item into her or his shopping cart

3. Increase the quantity of the product placed into the shopping cart

Try It Out Adding a Shopping Cart
Use the following URL to test the second example:

http://localhost:8080/ch03/example2/estore.jsp

You should see the new catalog page, as illustrated in Figure 3-8. It looks the same as the one in the pre-
vious Try It Out exercise except that every product displayed now has an associated Buy hyperlink.

Click the Books category on the left-hand side. The list of available books will be displayed, as shown in
Figure 3-9.

90
TEAM LING - LIVe, Informative, Non-cost and cenuine!

JSP Basics 2: Generalized Templating and Server Scripting

2 wrox Shopping Mall - Netscape =1l =l
. Eile Edit Wiew Go Bookmarks Tools Window Halp

o @0 Q Q Q | hitp-#lacalnost:8080/ch03/example2/estore sp | [© Search | ﬂa @
[X]

ﬁ[% Wrox Shopping hall]
Systems Item |Price Order
Software Pentium 4 -4 GHz, 512 MB, 200 GE $285.9% BUY
Books 1 =

AMD Opteron- 4 GHz, 1 GB, 300 GB $1200.99 BU

S = A OF o == ==
Figure 3-8: Catalog with Buy hyperlink
2 wrox Shopping Mall - Netscape =1l =l
. Eile Edit Wiew Go Bookmarks Tools Window Halp
o @0 Q Q @ | hitp-#lacalnost:8080/ch03/example2/estore jspT calld=3 | [© Search | ng @
ﬂ[% Wrox Shopping Mall] 5]
[Ttem Price |Order
%% |§egiming JavaServer Pages |$30.99 BUY
Books [Professional Apache Tomeat 5/349.59 BUY
|Apache Tomeat Bible $42.99 BUY
22D == =)

Figure 3-9: Catalog showing available books for purchase 91
TEAM LING - LIVe, Informative, Non-cost and cenuine!

Chapter 3

To purchase the Beginning JavaServer Pages book, click the Buy hyperlink. At this point, your shopping
cart is displayed, as shown in Figure 3-10.

2 wrox Shopping Mall - Shopping Cart - Netscape =10l x|
. Eile Edit Wiew Go Bookmarks Tools Window Halp

@o O @ Q | httpulacalhost:5050/chi3/examplez/shopcart jsp7action=huy &sku=511 | [© Search | ng @
%]

) | % Wrox Shopping Mall - Shopping Cart]

| Your Shopping Cart

[Quantity ltem Price Extended [Add
I Beginning JavaServer Pages $39.99 $39.99 [Add 1
[Return to Shopping

© = & OF £ |Done ==
Figure 3-10: Shopping cart with selected book

One copy of the book has been placed into the shopping cart. In Figure 3-10, you can see that the
extended price for this order is $39.99.

Now, buy another copy of this book. Do this by clicking the Add 1 hyperlink. You should see the quan-
tity increase to 2, and a new extended price of $79.98, as shown in Figure 3-11.

If you click the Add 1 link a few more times, the quantity and price will increase accordingly.

92
TEAM LING - LIVe, Informative, Non-cost and cenuine!

JSP Basics 2: Generalized Templating and Server Scripting

2 wrox Shopping Mall - Shopping Cart - Netscape =10l x|
. Eile Edit Wiew Go Bookmarks Tool: MWindow Halp

@o O 0 Q | httpulacalhost:8080/chO3/examplez/shapcart jsp7action=Incaquan=1 &sku=511 | [© Search | QE;Q @
a

) | % Wrox Shopping Mall - Shopping Cart]

Your Shopping Cart
Cuantity ltem Price Extended Add
2 Beginning JavaServer Pages 339,99 §79.92 (Add 1
FEeturn to Shopping

IRaesD == = [
Figure 3-11: Shopping cart with two books

How It Works

To create the Add 1 hyperlink for each product, the estore. jsp file is modified. You can find the modi-
fied file at <Tomcat Installation Directory>/webapps/ch03/example2/estore. jsp. The content
of this file is reproduced in the following code, with modifications highlighted:

<%@ page language="java"

import = "com.wrox.begjsp.ch03.*,java.util.*" %>
<%!

public void jspInit()

{

getServletContext () .setAttribute("cats", EShop.getCats());
}

public void jspDestroy ()
{

getServletContext () .removeAttribute("cats");

}

private String dispPrice(String price)
{

int len = price.length();
if (len <= 2)

93
TEAM LING - LIVe, Informative, Non-cost and cenuine!

Chapter 3

return price;
else
return "$" + price.substring(0,len -2) + "." + price.substring(len-2);
}
o)

5>

<html>
<head>
<title>Wrox Shopping Mall</title>
</head>
<body>
<table width="600">
<tr>
<td width="20%">

<%

ArrayList cats = (ArrayList) application.getAttribute("cats");
for (int 1=0; i< cats.size(); 1++)
{
Category curCat = (Category) cats.get(i);
%>
<a href="<%= request.getRequestURL() + "?catid=" + curCat.getId() %>">
<%= curCat.getName() %>

<%
}
%>
</td>
<td>
<hl></hl>

<table border="1">
<tr><th align="left">Item</th><th align="left">Price</th>
<th align="left">Order</th></tr>
<%
String selectedCat = request.getParameter ("catid");
if (selectedCat == null)
selectedCat = "1";
ArrayList items = (ArrayList) EShop.getItems(selectedCat);
for (int 1=0; i< items.size(); 1++)
{
Product curItem = (Product) items.get(i);
%>
<tr>
<td><%= curltem.getName () $></td>
<td><%= dispPrice(String.valueOf (curltem.getPrice())) %></td>
<td><a href="<%= request.getContextPath() +
"/example2/shopcart.jsp?action=buy&sku=" + curItem.getSku() %>">
BUY
</td>
</tr>
<%
}

%>

94
TEAM LING - LIVe, Informative, Non-cost and cenuine!

JSP Basics 2: Generalized Templating and Server Scripting

</table>
</td>
</tr>
</table>

</body>
</html>

The highlighted code creates a hyperlink out of the word BUY. This is done via the generation of an <a>
HTML element. The URL generated for the href attribute of the <a> elements is as follows:

http://localhost:8080/ch03/example2/shopcart.jsp?action=buy&sku=511

This URL will call up the shopcart. jsp page, with two parameters. The first parameter is action, with
value "buy". The second parameter is sku, and the value is the actual sku of the product that you have
selected.

Creating the Shopping Cart

The shopping cart is implemented in the shopcart. jsp page. The shopcart. jsp page can be located
at<Tomcat,InstallationJDirectory>/webapps/ch03/exampleZ/shopcart.jsp.Hisreproduced
here with the scripting elements highlighted:

<%@ page language="java"

import = "com.wrox.begjsp.ch03.*,java.util.*" %>
<%!

private static String EXAMPLE = "/example2";

private static String SHOP_PAGE = "/estore.jsp";

private static String CART_PAGE = "/shopcart.jsp";

private String dispPrice(String price)
{
int len = price.length();
if (len <= 2)
return price;

else
return "$" + price.substring(0,len -2) + "." + price.substring(len-2);
}
%>
<html>
<head>
<title>Wrox Shopping Mall - Shopping Cart</title>
</head>
<body>
<%
int quan = 1;
String action = request.getParameter ("action");

if (action.equals("inc"))

95
TEAM LING - LIVe, Informative, Non-cost and cenuine!

Chapter 3

String oldQuan = request.getParameter ("quan") ;
quan = Integer.parselnt (oldQuan) ;
quan++;

} // else - action=buy

%>
<table width="600">
<tr>
<td>
<hl></hl>
<table border="1">
<tr><th colspan="5">Your Shopping Cart</th></tr>
<tr><th align="left">Quantity</th><th align="left">Item</th>
<th align="right">Price</th>
<th align="right">Extended</th>
<th align="left">Add</th>
</tr>
<%
String sku = request.getParameter ("sku");
Product item = null;
if (sku != null)
item = EShop.getItem(sku) ;
%>
<tr>
<td><%= quan %></td>
<td><%= item.getName () %></td>
<td align="right"><%= dispPrice(String.valueOf (item.getPrice()))
%></td>
<td align="right"><%= dispPrice(String.valueOf (item.getPrice() * quan))
%></td>

<td>
<a href="<%= request.getContextPath() + EXAMPLE + CART PAGE +
"?action=inc&quan=" + quan + "&sku=" + sku %>">
Add 1l
</td>
</tr>

<tr>
<td colspan="5">
<a href="<%= request.getContextPath() + EXAMPLE + SHOP_PAGE %>">
Return to Shopping
</td>
</tr>

</table>
</td>
</tr>
</table>
</body>
</html>

96
TEAM LING - LIVe, Informative, Non-cost and cenuine!

JSP Basics 2: Generalized Templating and Server Scripting

The initial declaration scripting element contains the same disppPrice () method for formatting the
product price. It also contains three constant declarations for EXAMPLE, SHOP_PAGE, and CART_PAGE.

Decoding incoming request parameters

The first scriptlet scripting element decodes the incoming URL parameters. This element is reproduced
here for convenience:

A
oe

int quan = 1;
String action = request.getParameter ("action");
if (action.equals("inc"))
{
String oldQuan = request.getParameter ("quan") ;
quan = Integer.parselnt (oldQuan) ;
quan++;
} // else - action=buy

%>

The variable quan tracks the quantity of the item. It defaults to 1. The default is used when the Buy
hyperlink on the estore. jsp page is clicked. In this case, the incoming URL is similar to the following:

http://localhost:8080/ch03/example2/shopcart.jsp?action=buy&sku=511
Note that there is no quan request parameter in the URL, resulting in the use of the default quantity of 1.
If the Add 1 link on the shopcart . jsp page is clicked, the incoming URL is similar to the following:
http://localhost:8080/ch03/example2/shopcart.jsp?action=inc&quan=3&sku=511

Note that in this case, the URL has a quan request parameter. The default will not be used in this case.
The quan parameter contains the quantity displayed before the Add 1 link is clicked. The action in this
case is inc instead of buy. The preceding code ensures that the quantity is increased by 1 when the Add
1 link is clicked.

The second scriptlet scripting element in shopcart . jsp decodes the sku request parameter. This ele-
ment is reproduced here:
<%
String sku = request.getParameter ("sku");
Product item = null;
if (sku != null)
item = EShop.getItem(sku) ;

%>

In this case, if an sku parameter is available, the method EShop.getItem() is called. This method will
retrieve the product associated with sku parameter. The preceding code assigns the item variable with
this product.

o7
TEAM LING - LIVe, Informative, Non-cost and cenuine!

Chapter 3

Rendering order information

The order information is rendered as a row of the HTML table, as shown by the following code:

<tr>

<td><%= quan %></td>

<td><%= item.getName () %></td>

<td align="right"><%= dispPrice(String.valueOf (item.getPrice())) %></td>

<td align="right"><%= dispPrice(String.valueOf (item.getPrice() * quan)) %></td>

<td>

<a href="<%= request.getContextPath() + EXAMPLE + CART PAGE + "?action=inc&quan="
+ quan + "&sku=" + sku %>">

Add 1

</td>
</tr>

The quan variable is used within an expression scripting element to render the current quantity ordered.
It is also used within the expression scripting element that renders the extended price. The i tem variable
is used to access the name and price of the product (associated with the incoming sku request parame-
ter). The dispPrice () method is used for both the price and extended price cells to format the output.
The URL within the href attribute of the <a> HTML element around the Add 1 hyperlink is rendered
here. It is typically in a form similar to the following;:

http://localhost:8080/ch03/example2/shopcart.jsp?action=inc&quan=3&sku=511

Rendering the Return to Shopping hyperlink

The final expression scripting element in shopcart . jsp renders an HTML row that has a hyperlink for
returning to the estore. jsp page. The code is as follows:

<tr>

<td colspan="5">

<a href="<%= request.getContextPath() + EXAMPLE + SHOP_PAGE %>">
Return to Shopping

</td>
</tr>

This code makes use of the getContextPath () method of the request implicit object. This will return a

portion of the URL used to access this page, up to the application name (ch03 in our case). The constants

EXAMPLE and SHOP_PAGE are appended, resulting in a URL similar to the following;:
http://localhost:8080/ch03/example2/estore.jsp

The highlighted portion of the URL represents the portion returned by the getContextPath () method.

This concludes the coverage of how the shopping cart works in example 2. This implementation has
some major limitations, however, as described in the following section.

98
TEAM LING - LIVe, Informative, Non-cost and cenuine!

JSP Basics 2: Generalized Templating and Server Scripting

Shopping cart limitations

To observe the limitations of this shopping cart, first repeat the action of the previous Try It Out exercise.
This will result in two books in the shopping cart, similar to what is shown in Figure 3-11.

At this point, click the Return to Shopping hyperlink. This results in the display of the catalog page
(refer to Figure 3-8), showing the available systems.

Now click the Software category on the left side. The list of software products is now displayed, as
shown in Figure 3-12.

2 wrox Shopping Mall - Netscape =101 =l
. Eile Edit Wiew Go Bookmarks Tools Window Halp
O o 0 O | hitp-flocalhostE080/ch03/examplez/estore jspPoatid=2 I [Qm] QE;Q @

- Qo

&) | % Wrox Shopping Mall] =
Systems |[tem Price |[Order

Softuare |Tomca£ 5 Zerver for Windows $9%.00 BUY

Books. [Tomeat 5 Server for Linux | $99.00 BUY

SRa%0 == = e

Figure 3-12: Catalog displaying software selection

Click the Buy link of the Tomcat 5 Server for Windows product. This will return you to the shopping cart,
as shown in Figure 3-13.

The limitations of this shopping cart should be evident at this point:

Q The shopping cart displays only the most recently purchased product.
Q The previously purchased book has disappeared forever.

The next Try It Out exercise will eliminate these limitations. However, it is important to appreciate why
these limitations exist.

99
TEAM LING - LIVe, Informative, Non-cost and cenuine!

Chapter 3

3 wrox Shopping Mall - Shopping Cart - Netscape =loix|
. Eile Edit Wiew Go Bookmarks Tools Window Halp

QO o @ O | hitp¥localhost:B0G0/ch03/example2sshopeart sp7action=buy &sku=872 | [© Search | ng @
%]

&l | % Wrox Shopping Mall - Shopping Cart]

| Your Shopping Cart

Quantity ltem Price Extended Add

1 Tomeat 5 Server for Windows $99.00 | $9%2.00 Add 1
Feturn to Shopping

= =5 = | 2
Figure 3-13: Shopping cart after purchase of Tomcat 5 server

If you consider how the shopping cart (shopcart. jsp) page and the catalog (estore. jsp) page work
together, you will notice the following;:

Q There is no mechanism to remember what has been ordered previously.

QO All communication and data passing between the two pages are limited to the parameters with
the URL request; namely the action, sku, and quan parameters. This mechanism does not
allow information for multiple items to be passed.

Overcoming the shopping cart limitations

Two steps are needed to overcome these limitations:

1. Create a mechanism to remember what had been ordered.

2. Useacommunication mechanism that can pass an unlimited row of product and quantity
information.

The following Try It Out exercise provides both. Try the example and see for yourself.

100
TEAM LING - LIVe, Informative, Non-cost and cenuine!

JSP Basics 2: Generalized Templating and Server Scripting

TdryltOut | Overcoming the Shopping Cart Limitations
Access example 3 via the following URL:
http://localhost:8080/ch03/examplel3/estore.jsp
The catalog is displayed as shown in Figure 3-8 in the preceding Try It Out exercise.
The Systems category is displayed by default. The list of available systems are displayed on the right-
hand side of the page. Click the Buy hyperlink of the first system (Pentium 4), adding it to your shop-

ping cart. The improved shopping cart is now displayed as shown in Figure 3-14.

This new shopping cart calculates the total price of the order on a separate row of the table. It also has a
link to clear the cart.

Now, click the Add 1 hyperlink to add another Pentium system. As shown in Figure 3-15, the cart shows
two Pentium systems, and the total price is updated.

2 wrox Shopping Mall - Shopping Cart - Netscape =1o] x|
. File Edit Miew Go Bookmarks Tools Window Help
@ 0 0 Q | httpiocalhostB0&0/chDa/exampledishopeant spraction=buyasku=232 (| [Cy Search | ng Z:@

- (v] ;

&) | % Wrox Shopping Kall - Shopping Cart] m

| Your Shopping Cart

[Quantity [Item Price| Extended [Add

1 [Pentinm 4 - 4 GHz, 512 MB, 300 GB $989.99 $989.99 |Add 1

| Totali| $389.99 |

[Clear the cart

[Return to Shopping

T = A Of 0o == == |

Figure 3-14: Example 3 shopping cart

101
TEAM LING - LIVe, Informative, Non-cost and cenuine!

Chapter 3

2 wrox Shopping Mall - Shopping Cart - Netscape =1o] x|
. Eile Edit Miew Go Bookmarks Tools Window Help
@ O @ O | httpulocalhost: 5080 ch0a/exampledishapeart spractl asku=z32 (| [C Search | Q:;O @

- (+}]

] | % Wrox Shopping hall - Shopping Cart] Q

[Your Shopping Cart

[Quantity [Item Price| Extended [Add

|2 |Pentium 4-4GHz, 512 MB, 300 GB $989.99| $1979.98 |_Add 1

| Total:| $1579.98 |

[Clear the cart

[Return 1o Shopping

AT D] == =,

Figure 3-15: Cart with two systems ordered

Next, click the Return to Shopping link. This will return you to the catalog.

On the left side, select Books. Once the books are displayed on the right, click the Buy link for Beginning
JavaServer Pages. This will take you back to your shopping cart. You will see that the book has been added
to the shopping cart. Unlike the cart in the previous Try It Out exercise, this time both of the Pentium
systems that you have ordered are displayed in the cart. Note that the total price has been updated to
include the 2 Pentium systems and the book. Figure 3-16 illustrates the cart, with all the line items
shown.

You may want to add other items, and try increasing their quantity.

Finally, click the Clear the Cart hyperlink. Note that all of the items in the shopping cart are now cleared,
as shown in Figure 3-17.

The next section reveals how this improved shopping cart works behind the scenes.

102
TEAM LING - LIVe, Informative, Non-cost and cenuine!

JSP Basics 2: Generalized Templating and Server Scripting

{2 wrox Shopping Mall - Shopping Cart - Netscape =1o] x|
. File Edit View Go Bookmarks Tools Window Help

00 O 0 O | http:iocalhostB0&0/chOrexampledfshopean jspTaction=buy&sku=511 | [Search | Qigo @
[X]

) | % Wrox Shopping Mall - Shopping Cart]

[Your Shopping Cart

[Quantity [Item Price| Extended [Add
[2 [Pentinm 4 - 4 GHz, 512 MB, 300 GB $989.99 $1979.98 [add 1
1 [Beginning JavaServer Fages $32.99 $39.99 [add 1

[
| Totali| $2019.97 |
Clear the cart

Return to Shopping

© & A OF) [Dore == =[]
Figure 3-16: Shopping cart tracking multiple line items

How It Works

To implement this improved cart, the following new pieces are needed:

Q AJava class that represents a single line item in the cart, called LineItem

QO Anew ArrayList of LineItems objects to track the objects ordered
The LineItem class has properties called quantity, sku, description, and price. The code for this
Java class can be found in the com.wrox.begjsp.ch03 package. The source code for this package is

located in the <Tomcat Installation Directory>/webapps/WEB-INF/classes directory. You may
wish to study the source code for this class; this chapter focuses only on the JSP usage of this class.

The ArrayList to track products ordered is created within the shopping cart JSP code, presented next.
The estore. jsp for example 3, located at <Tomcat Installation Directory>/webapps/ch03/

example3/estore. jsp, is identical to estore. jsp in the second Try It Out exercise, earlier in this
chapter. This page is not presented again.

103
TEAM LING - LIVe, Informative, Non-cost and cenuine!

Chapter 3

2 wrox Shopping Mall - Shopping Cart - Netscape =1o] x|
. File Edit View Go Bookmarks Tools Window Help

o @OO @ O | httpulocalhost:5080/chiG/exampledishapcart jsp7action=cl | [Search | Q‘-:;o @
[X|

] | % Wrox Shopping hall - Shopping Cart]

| Your Shopping Cart
[Quantity Item Price Extended [Add

Total: o

Clear the cart
[Return to Shopping

A O P[0 ===
Figure 3-17: Shopping cart after clearing it of items

The shopcart . jsp for the current example is significantly different, and is located in
<Tomcat Installation Directory>/webapps/ch03/example3/shopcart.jsp. The code for this
shopcart. jsp is reproduced here, with major differences from the previous version highlighted:

<%@ page language="java"

import = "com.wrox.begjsp.ch03.*,java.util.*" session="true" %>
<%!

private static String EXAMPLE = "/example3";

private static String SHOP_PAGE = "/estore.jsp";

private static String CART_PAGE = "/shopcart.jsp";

private String dispPrice(String price)
{
int len = price.length();
if (len <= 2)
return price;
else
return "$" + price.substring(0,len -2) + "." + price.substring(len-2);

104
TEAM LING - LIVe, Informative, Non-cost and cenuine!

JSP Basics 2: Generalized Templating and Server Scripting

<html>
<head>
<title>Wrox Shopping Mall - Shopping Cart</title>
</head>
<body>

<%
ArraylList items = (ArraylList) session.getAttribute("lineitems");
String action = request.getParameter ("action") ;
String sku = request.getParameter ("sku");
Product prod = null;
if (sku != null)
prod = EShop.getItem(sku);

if (items == null)
{ // add first item
items = new ArrayList();
items.add(new LineItem (1, sku,prod.getName(),
prod.getPrice()));
session.setAttribute("lineitems", items);

}
else if (action.equals("clear"))
{
items.clear () ;
}
else
{

boolean itemFound = false;
// check to see if sku exists

for (int 1=0; i<items.size(); i++)

{
Lineltem curltem = (Lineltem) items.get(i);
if (curItem.getSku() .equals (sku))
{

itemFound = true;
curltem.setQuantity (curItem.getQuantity () + 1);

break;
} // of if
} //of for

if (!itemFound)
items.add (new LineItem (1, sku,prod.getName (),
prod.getPrice()));
} // of final else

int total = 0;

%>
<table width="600">
<tr>
<td>
<hl></hl>

<table border="1" width="600">
<tr><th colspan="5">Your Shopping Cart</th></tr>
<tr><th align="left">Quantity</th><th align="left">Item</th><th
align="right">Price</th>

105
TEAM LING - LIVe, Informative, Non-cost and cenuine!

Chapter 3

<th align="right">Extended</th>
<th align="left">Add</th></tr>

<%

for (int 1=0; i< items.size(); 1++)

{
LineIltem curltem = (Lineltem) items.get(i);
int quan = curltem.getQuantity();
long price = curltem.getPrice();
long extended = quan * price;
total += extended;

<tr>
<td><%= quan %></td>
<td><%= curltem.getDesc() $></td>
<td align="right"><%= dispPrice(String.valueOf (price)) %></td>
<td align="right"><%= dispPrice(String.valueOf (extended)) $%></td>
<td>
<a href="<%= request.getContextPath() + EXAMPLE + CART_PAGE +

"?action=inc&sku=" + curlItem.getSku() %>">

Add 1
</td>
</tr>
<%
}
%>
<tr>
<td colspan="5">
</td>
</tr>
<tr>
<td colspan="3" align="right">Total:</td>
<td align="right"><%= dispPrice(String.valueOf (total)) %></td>
<td> </td>
</tr>
<tr>
<td colspan="5">
<a href="<%= request.getContextPath() + EXAMPLE + CART_PAGE +

"?action=clear" %>">

Clear the cart
</td>
</tr>

<tr>
<td colspan="5">
<a href="<%= request.getContextPath() + EXAMPLE + SHOP_PAGE %>">

Return to Shopping

106

</td>
</tr>

</table>

</td>

TEAM LING - LIVe, Informative, Non-cost and cenuine!

JSP Basics 2: Generalized Templating and Server Scripting

</tr>
</table>
</body>
</html>

The first thing to note in this new shopcart. jsp is the new attribute, session, specified in the
<%@ page> directive. The directive is reproduced here for reference:

<%@ page language="java"
import = "com.wrox.begjsp.ch03.*,java.util.*" session="true" %>

Specifying session="true" tells the JSP container explicitly that this page should participate in a ses-
sion. While it is stated explicitly here for learning purposes, it is not necessary because the default value,
when the attribute is not specified, is true. It is important to understand what a session is and how it is
implemented.

Sessions and JSPs

A session is a managed object that resides on the server, within the JSP container. The main purpose of a
session is to track incoming requests from the same user.

To understand the need for sessions, it is necessary to reexamine only the second Try It Out exercise.
Observe the way that request URLs are marked up to include parameters (such as action, sku, quan),
and think about what actually happens between the user’s browser and the JSP container.

When the user clicks a Buy link on the estore. jsp in this example, the browser requests a URL similar
to the following;:

http://localhost:8080/ch03/example2/shopcart.jsp?action=buy&sku=511

From the perspective of the JSP container, an independent request (unrelated to the original request
for estore. jsp) is asking for the shopcart . jsp page. The only things that link the two independent
requests are the parameters encoded at the end of the URL.

From the perspective of the users, the two requests are absolutely related. When they click the Buy link,
they expect to see the product in the shopping cart. This kind of perceived relationship between inde-
pendent requests from the user perspective is the main motivation for establishing a session. A session
binds these logically related requests together.

Therefore, it should be clear that you can encode GET method parameters to a URL within a generated
page to create the illusion that two separate JSP pages belong to the same “session.”

However, this method is clearly limited. There is no easy way to encode an entire shopping cart, full of
items, to the same URL. Fortunately, this is a very common need, and the JSP container manages a ses-
sion object specifically for this purpose. Figure 3-18 illustrates the JSP managed session.

In Figure 3-18a, encoding in the URL is used to tie together requests in the same session. All the data
parameters are attached to the request by the JSPs in the application. In Figure 3-18b, the JSP container
manages the session. The application only needs to attach data to the session implicit object as attributes.
Any JSP element or JSP pages in the same session can then access these attributes for rendering.

107
TEAM LING - LIVe, Informative, Non-cost and cenuine!

Chapter 3

(a) Using URL with encoded parameters

1. Responds with HTML
page containing

an embedded
URL with encoded

Browser

parameters ____--1

le -
2. Accesses URL with
___encoded parameters

(b) Using container-managed session

JSP Container

JSP

3. Decodes and
- .__ accesses parameter

s

1. First response
includes a unique token

Browser

2. Subsequent requests
include unique token

i

Figure 3-18: Session in JSP container

Session implementation

JSP Container

3. Looks up imf)licit
session object
using unique token

session J

~-q---
1
1

4, Sels'sion available
+ to JSP

The JSP container cooperates with the browser to implement sessions using the standard HTTP protocol.
AJSP developer never needs to implement sessions or work directly with the session implementation
mechanism. JSP developers can take advantage of sessions in the following simple ways:

Q By specifying in a <@page> directive that the page should have a session (or leaving it unspeci-
fied and using the session="true" default)

O By attaching attributes to the session implicit object, and writing rendering code that uses the

attribute

In some cases, however, it is advantageous to have an appreciation for how sessions are actually imple-
mented behind the scenes. The most common method for implementing a session is via cookies. Figure
3-19 illustrates this method of session implementation.

108

TEAM LING - LIVe, Informative, Non-cost and cenuine!

JSP Basics 2: Generalized Templating and Server Scripting

JSP Container

1b. Stores cookie in

1a. first response session table
includes a cookie | _____--------"T >
/ | |
Browser '
(manages cookies 2. Stor kie for . .
by website hostname) . Store cookie fo X 5. Session available
__--later use S toJSP !
-~ - ,/ i
, |
4. Looks up implicit |
3. Subsequent requests session object . Yo N
include cookie .using cookie K T,
'\ session)

6. JSP attaches attributes
to session, or accesses
attached attributes .

Figure 3-19: Session implementation using cookies

In Figure 3-19, the JSP container creates a unique token called a cookie and hands it to the browser on the
first incoming request. The browser is programmed to hand this unique token back to the JSP container on
subsequent requests (all modern browsers support cookies). Within the JSP container, a table maps the
cookie’s unique value to a session object. When a request comes into the JSP container, it is checked for a
cookie. If a cookie is found, it is used to look up the session. Because the session object can have an unlim-
ited number of attributes attached to it, the cookie (a very small token) can potentially be used to access a
very large set of session-specific data (shopping cart information, user preferences, and so on).

Using a session to track line items in a shopping cart

Let’s turn our attention back to the examination of the new shopcart. jsp; the code that maintains
the line items in the current shopping cart is the first scriptlet scripting element, reproduced here for

reference:
<%
ArrayList items = (ArrayList) session.getAttribute("lineitems");
String action = request.getParameter ("action");

String sku = request.getParameter ("sku");
Product prod = null;

109
TEAM LING - LIVe, Informative, Non-cost and cenuine!

Chapter 3

%>

if (sku != null)
prod = EShop.getItem(sku) ;

if (items == null)
{ // add first item
items = new ArrayList();
items.add (new LineItem (1, sku,prod.getName(),
prod.getPrice()));
session.setAttribute("lineitems", items);

}
else if (action.equals("clear"))
{
items.clear () ;
}
else
{

boolean itemFound = false;
// check to see if sku exists
for (int 1=0; i<items.size(); 1++)
{
LineIltem curltem = (Lineltem) items.get(i);
if (curItem.getSku() .equals (sku))
{
itemFound = true;
curltem.setQuantity (curItem.getQuantity () + 1);

break;
} // of if
} //of for

if (!itemFound)
items.add(new LineItem (1, sku,prod.getName (),
prod.getPrice()));
} // of final else

int total = 0;

This preceding Java code handles the decoding of three different types of requests:

110

a

When the user first clicks a Buy link in a session: A session attribute called 1ineitems does
not exist in this case. Create a new ArrayList of LineItems and attach it with the name
lineitems. The product that the user wishes to purchase should be added to this initial
ArrayList asa LineItem.

When the user clicks the Clear the Cart link: The request carries an action parameter with the
clear value; delete everything in the 1ineitems ArrayList.

When the user clicks the Add 1 link on the shopping cart for a specific line item: The request
carries an action parameter with the inc value. Go through the lineitems ArrayList and
find the LineItem with the incoming sku and increase the quantity ordered.

TEAM LING - LIVe, Informative, Non-cost and cenuine!

JSP Basics 2: Generalized Templating and Server Scripting

Rendering the shopping cart using a session attribute

The table of line items is rendered by the following code:

<%
for (int i=0; i< items.size(); i++)
{
Lineltem curltem = (Lineltem) items.get(i);
int quan = curltem.getQuantity();
long price = curltem.getPrice();
long extended = quan * price;
total += extended;
%>

<tr>
<td><%= quan %></td>
<td><%= curlItem.getDesc() $></td>
<td align="right"><%= dispPrice(String.valueOf (price)) %></td>
<td align="right"><%= dispPrice(String.valueOf (extended)) %></td>
<td>
<a href="<%= request.getContextPath() + EXAMPLE + CART_PAGE +
"?action=inc&sku=" + curlItem.getSku() %>">
Add 1l
</td>
</tr>
<%
}

%>

The initial scriptlet scripting element contains the for loop that will render a table row for each
LineItemin the items ArrayList (previously fetched from the session). The quantity is extracted from
the LineItem to calculate the extended price. A variable called total is used to sum all the extended
prices.

Rendering the total order price and the Clear the Cart hyperlink

The final segment of new code in shopcart . jsp renders the total price and the new Clear the Cart
hyperlink, each in its own HTML table row:

<tr>
<td colspan="3" align="right">Total:</td>
<td align="right"><%= dispPrice(String.valueOf (total)) %></td>
<td> </td>

</tr>

<tr>
<td colspan="5">
<a href="<%= request.getContextPath() + EXAMPLE + CART PAGE + "?action=clear"
$>">
Clear the cart
</td>
</tr>

111
TEAM LING - LIVe, Informative, Non-cost and cenuine!

Chapter 3

The Clear the Cart hyperlink has a URL with the value of the action parameter set to clear. This is
a specific case handled by the first scriptlet scripting element on this page, and will clear everything
within the 1ineitems session attribute.

Scoping of implicit objects in JSP
The final topic covered in this chapter is the scoping of implicit objects. Earlier in this chapter, you learned
that typical JSP programming may involve the attachment of Java object attributes to one of the four JSP
implicit objects:
U pageContext
a request
0 session
a application
In Java programming terms, a reference to the attributes is maintained by one of these objects when an

attribute is attached. Because destroying an implicit object will cause all attached attributes to disappear,
the lifetime of the attributes depends on the lifetime of the object they are attached to.

The lifetime of an attribute and the accessibility of an attribute together make up the scope of the
attribute. The following table summarizes the different scopes available when attributes are attached to
the different implicit objects.

Implicit Object Scope Lifetime Accessibility
pageContext Page scope Lasts only until all the Accessible only within the
output for the current current JSP page.

request has been
rendered, or when
request processing is

passed to another JSP
page.
request Request Lasts until the end of the Accessible from all the JSP
scope processing of the current pages that service the same
request. This means that request.

the object is still valid if
the same request is being
passed to another JSP
page for processing.

session Session Lasts until the end of the Accessible from all the
scope session. Note that a session-aware JSP pages
session can last over (session attribute set to
many independent true with a <%@page>
requests. The precise directive) that are accessed
lifetime of a session within the same session.
depends on the
container.
112

TEAM LING - LIVe, Informative, Non-cost and cenuine!

JSP Basics 2: Generalized Templating and Server Scripting

Implicit Object Scope Lifetime Accessibility
application Application Lasts until the entire Accessible within all the
scope application is unloaded JSP pages within the
by the JSP container — application. This is the
for example, if the ch03 global scope.

application is stopped or
ch03.war undeployed.

In the third Try It Out exercise in this chapter, the 1ineitems attribute is attached to the request
implicit object and therefore has a request scope. The cats attribute, however, is attached to the appli-
cation scope within the jspInit () method in the estore. jsp page. This means that cats should be
accessible from any JSP page within the same ch03 application. To convince yourself of this, try to access
the following URL:

http://localhost:8080/ch03/examplex/showglob. jsp

You should see a list of the available categories, as shown in Figure 3-20.

3 Show Application Scope - Netscape =10l x|
. File Edit Miew Go Bookmarks Tools Window Help

o QO o O O | hitp-fflocalhost:6080/ch03 examplexy'showglob. |sp | [C\ssaﬂ:h] ngo @
) | % Show Application Scopa] %]
Systems

Software

Books

® & & ©f)| Done == e | o

Figure 3-20: Accessing the cats application-scoped attribute

113
TEAM LING - LIVe, Informative, Non-cost and cenuine!

Chapter 3

This shows that the cats attribute remains available, long after the earlier session testing. This global
cats attribute is attached to the application scope, and accessed by the showglob. jsp page. The
showglob. jsp file can be located at <Tomcat Installation Directory>/webapps/ch03/
examplex/showglob. jsp. It is reproduced here, with scripting elements highlighted:

<%@ page language="java"

import = "com.wrox.begjsp.ch03.*,java.util.*" %>
<html>
<head>
<title>Show Application Scope</title>
</head>
<body>
<table width="600">
<tr>
<td>
<%
ArraylList cats = (ArrayList) application.getAttribute("cats");
for (int 1=0; i< cats.size(); 1i++)

{
Category curCat = (Category) cats.get(i);
%>

oe
\%

<%= curCat.getName ()

<%
}
%>
</td>
</tr>
</table>

</body>
</html>

The cats attribute is still available to showglob. jsp despite the following:

0O showglob. jsp does not create the cats attribute.
a estore. jsp is executed before showglob. jsp
a showglob. jsp is not even part of example 3.
Herein lie both the benefits and shortcomings of the application scope. The application scope is global to

the entire application, allowing its attributes to be accessed by any JSP or other Web elements within the
same application.

Summary

The JSP standard, prior to JSP 2.0, had shortcomings that necessitated the use of embedded Java pro-
gramming code. In the earliest JSP incarnation, JSP 1.0, this was absolutely necessary.

114
TEAM LING - LIVe, Informative, Non-cost and cenuine!

JSP Basics 2: Generalized Templating and Server Scripting

Due to the existence of legacy code, the practicing JSP developer must be familiar with the mechanism
and techniques used for embedding Java code within JSP. The primary mechanism for embedding Java
code within JSP is through scripting elements.

Through three successive Try It Out exercises, you have thoroughly explored scripting elements in the
form of declarations, expressions, and scriptlets.

Also presented in this chapter was an e-commerce example of an electronic storefront, which demon-
strated the following concepts:

H]
Q
Q

How to implement an interactive catalog showing categories of products
How to implement a working shopping cart

How to use Java objects as attributes to pass information between JSP elements or multiple JSP
pages

How to use implicit JSP objects that support the attachment of attributes, and the lifetime of
these implicit objects

The importance of scoping in JSP, and how to take advantage of it in your applications

The idea of a session, and how to make use of it in e-commerce applications

Exercises

1.

2.

Modify the shopcart . jsp in the third Try It Out exercise to calculate an 8 percent sales tax and
print the grand total.

Modify shopcart. jsp in the third Try It Out exercise to include adding a link on each line item
to subtract 1 from the displayed quantity.

115
TEAM LING - LIVe, Informative, Non-cost and cenuine!

TEAM LING - LIVe, Informative, Non-cost and cenuine!

CSS, JavaScript,
VBScript, and JSP

You can use JSP as the vehicle to provide an interactive user experience over the Web. The previ-
ous chapter illustrated how this might be accomplished in an e-commerce environment. Creating a
dynamic Web-based user interface is the primary way in which the JSP technology is used within
Web-based applications.

Knowing that JSP can be used to generate the HTML-based user interface, readers who are
Webmasters or Web site designers may have another question on their minds. If JSP is such a flexi-
ble dynamic presentation environment, maybe it can be used to generate some of the client-side
user interface elements too. More specifically, it is very interesting to consider what can be
achieved when JSP is used to generate client-side Web page elements, including the following:

0 Cascading Stylesheet coding
Q JavaScript coding
Q VBScript coding

This chapter explores the exciting possibilities that are available when JSP is used in generating
these elements. Unlike JSP logic, these elements have the unique property that they are interpreted
and executed by the Web browser on the client side. Because it is possible to use JSP to generate
code that will be executed on the client side, developers can enjoy features and capabilities beyond
anything achievable via plain HTML and stylesheets.

In this chapter, two examples are presented. The first example shows how to implement a cus-
tomizable user preference selector using JSP. Using this technique, you can enable your users to
customize the style and look of their interactive experience. Behind the scenes, JSP is used to
dynamically generate the Cascading Stylesheets (CSS) script that affects the look of the pages
displayed by the browser.

The second example illustrates a technique to customize an interactive drop-down menu, enabling
the user to control the selections on the menu. HTML designers will recognize this as a DHTML
(Dynamic HTML) menu. Using JSP, a portion of the JavaScript code of the menu is generated on
the fly, resulting in DHTML that is customized to the application’s need or the user’s preference.

TEAM LING - LIVe, Informative, Non-cost and cenuine!

Chapter 4

After reading this chapter and going through these examples, you will:

Q

(]

Understand how you can use JSP to gain fine-grain control over the look-and-feel of the interac-
tive Web-based user interface

Appreciate how JSP can be used to generate CSS and JavaScript/ VBScript elements that will be
executed on the client’s browser

Learn one way to customize user preferences for your own Web application using JSP
Learn how to implement a JSP-based customizable DHTML menu for your Web applications

Appreciate how JSP can be effective in generating user interface elements beyond simple HTML

Code Elements That Execute
on the Client Side

The template data in the JSP pages within the examples thus far have been HTML. However, modern
Web pages contain more that just HTML. In fact, most Web pages contain non-HTML elements that may
include some of the following;:

a
a

CSS (Cascading Stylesheets)
JavaScript or VBScript code

All of the elements listed are sent to the browser with the HTML page. These elements are then pro-
cessed by the client’s browser. Figure 4-1 illustrates this.

Server
Browser (Client)
HTML
Page
JUPTEEE - HTML sent with CSS and JavaScript/VBScript code HTML rendered
/" JavaScript/ ", with CSS styling
' _VBScript .1
gl JavaScript/

,/" CcSS \‘\" VB?CCI'IIKI:I:
" Stylesheets .- executed here

Figure 4-1: Elements that execute on the client side

118

TEAM LING - LIVe, Informative, Non-cost and cenuine!

CSS, JavaScript, VBScript, and JSP

In Figure 4-1, the CSS stylesheets are sent to the browser, and used by the browser’s CSS processor to
stylize the HTML rendering. The JavaScript or VBScript code is also sent to the browser. This code will
be executed by the JavaScript or VBScript interpreter within the browser. Almost all modern browsers,
including the most popular Internet Explorer 6.x and Netscape 7.x versions, support CSS and JavaScript.
VBScript is unique to Microsoft’s browsers.

The CSS, JavaScript, and VBScript elements originate from the server, and are often embedded as a part
of the base HTML page. Because JSP is frequently used to generate HTML, these elements are also sub-
jected to dynamic generation using JSP. Figure 4-2 shows JSP being used to generate these elements
dynamically.

Y

CSS Stylesheets
as
template data in JSP

-/
Y

JavaScript/VBScript
as JSP Container/Engine
template data in JSP

-/
Y

HTML
as
template data in JSP

-/

Generated CSS Stylesheets, JavaScript/
VBScript, or HTML

Figure 4-2: Using JSP to dynamically generate CSS, JavaScript, or VBScript

In Figure 4-2, CSS and JavaScript/VBScript coding are all template data within a JSP. Portions of the
resulting JSP output are generated upon the receipt of an incoming request by the JSP container. This
allows for the customization of the output depending on the incoming request. JSP scoping mechanisms,
including sessions, may also be used to customize the generated output.

Cascading Stylesheets

A Cascading Stylesheet (CSS) is a set of style descriptions that can be used to affect how the browser dis-
plays (renders) specific HTML elements. Some versions of CSS may also be used to format XML data,
rendering it as HTML formatted data.

119
TEAM LING - LIVe, Informative, Non-cost and cenuine!

Chapter 4

Individual HTML elements can be associated with style elements in a CSS. The style elements describe
how the associated HTML element should appear on the page. Note that any single CSS style element
can be associated with many HTML elements. CSS enables a Web designer to separate the HTML struc-
tural layout from the formatting and styling. If the CSS element is changed, the corresponding HTML
element will be rendered with the modified style, without affecting the HTML structure.

CSS elements can be included within an HTML page using the <style> element. For example, the fol-
lowing HTML segment embeds a CSS style class definition called .boxTitle into the page:

<style>
.boxTitle
{
font-size : 22;
font-weight : bold;
color : #ffffff;
background-color: blue;
}
</style>

An external file containing CSS styling elements can be included in the <head> section of an HTML page
using the <1ink> element:

<link rel=stylesheet type="text/css" href="portal.css">

The preceding code will include all the CSS styling elements in the external portal. css file in the cur-
rent HTML file.

JavaScript

JavaScript is a programming language that may be used to access the object model presented by the
browser. This object model includes all the static and dynamic elements of the displayed/rendered page,
enabling JavaScript to access data input from the user, change the rendered HTML output, or even sub-
mit custom data back to the server.

Frequently, JavaScript coding is used in validating the user input data values or when implementing
dynamic behavior on a displayed Web page.

JavaScript has a turbulent history. During the early years of the browser wars, competing browser ven-
dors (Netscape, Microsoft, and so on) supported different dialects of JavaScript and browser object
models that were basically incompatible. Fortunately, the emergence of an ECMA (European Computer
Manufacturers Association) standard JavaScript subset, coupled with the reduced competition in the
browser space, has resulted in more compatible JavaScript dialects in modern versions of browsers. Even
today, it is not uncommon to see scripting code that will detect a specific version of a browser, and then
branch to version-specific coding.

JavaScript code can be included in an HTML page via the <script> HTML element. For example, the
following HTML fragment embeds some JavaScript declarations into the page:

<script language="JavaScript">
var keepstatic=1

120
TEAM LING - LIVe, Informative, Non-cost and cenuine!

CSS, JavaScript, VBScript, and JSP

var menucolor="green"
var submenuwidth=150
</script>

In addition, a file consisting of JavaScript code can be included inline into an HTML page using the fol-
lowing variant of the <script> element:

<script language="JavaScript" src="menu.js"></script>

The preceding code will include the JavaScript code within the menu. js file at the location where the
<script> element is placed.

VBScript

VBScript is a Microsoft-specific scripting language that may be used on Microsoft browsers, instead of
JavaScript. Unlike JavaScript, VBScript has a syntax that is familiar to Microsoft’s Visual Basic develop-
ers. Microsoft also provides extensive debugging and tool support for this dialect of scripting language.
Unfortunately, using VBScript to write client-side code restricts one’s choice of browser to only Microsoft
Internet Explorer.

However, because all modern versions of Microsoft browsers also support JavaScript, most professional
developers code to JavaScript and avoid maintaining multiple versions of the same client-side coding.

User Preference Implementation

Some Web sites enable users to customize their look and feel. For example, a user may choose the color
or the font that will be used to display the pages in a portal. Of course, this customization applies only to
the individual user. A Web site supports multiple users, and this means that each user will be viewing
the same Web site with his/her customizations applied. Figure 4-3 depicts this customization.

User 1

User 1 sees blue color
theme with sans-serif font.

Server

JSP-based
webpage supporting
user preference

User 2 sees red color
theme with serif font.

User 2

Figure 4-3: User preference implementation

121
TEAM LING - LIVe, Informative, Non-cost and cenuine!

Chapter 4

In Figure 4-3, user 1 customized to a blue-colored theme and a sans serif font, whereas user 2 cus-
tomized to a red-colored theme and a serif font. In this case, user 1 and user 2 can be simultaneously
accessing the same data on the Web site, but each user will have a customized view of the site according

to his or her preferences.

You can use JSP to implement this kind of customization. The first example in this chapter reveals how.

Try It Out | Customizing User Preferences

122

First, make sure your Tomcat 5 server is running. Next, deploy the ch04 .war file on your Tomcat 5

server. If you do not remember how to deploy a Web application, revisit Chapter 1.
Now, try to access the following URL:

http://localhost:8080/ch04/examplel/

This brings up the portal home page. You will recall this portal example from Chapter 2. Figure 4-4 illus-

trates this new portal home page.

&1 Select Your Portal - Microsoft Internet Explorer)] %]
T T >
eaack > | |x"| |z"| ;j ,.'._‘Sucrch f/\\? Favortes @ meds €4 (- 7, ERof
addvess | @] htep:iflocalhost: 5080fchO4fexamplet | ﬂ Go Lirks
Wrox JSP Portal Selector
Your First Name: Joe
Color Therne blue [v]
Font sans-getif Z|
Portal Selection news [¥]
:ejoone ‘jLa:arnranet

Figure 4-4: Portal home page enhanced with user preference options

TEAM LING - LIVe, Informative, Non-cost and cenuine!

CSS, JavaScript, VBScript, and JSP

This example is built on top of the Chapter 2 example to keep the additional details simple and familiar.
Unlike the Chapter 2 example, however, there are two new selection boxes in Figure 4-4:

Q One for color scheme selection

Q One for font selection
These two selections enable users to customize the look of the portal on a per-user basis.
Key in the following values on the selection page:

Q In the Name field, type Joe.

QA Inthe color field, select blue.

Q In the Font field, select sans-serif
a

In the Portal field, select news.
Now, click the Select button. You should see a customized portal, as shown in Figure 4-5.

In Figure 4-5, the page is now customized with the user’s name, and is displayed in a blue color theme
(not visible) with a sans-serif font face.

wﬁj News Portal - Microsoft Internet Explorer

L/
U

@Back - Ix'] Id] ;‘J /-:Socrch ‘L Favorites (@Y Media {4 = 33

addess @] httpsfflocalhost:5060/chO4/examplel fshowportal Jsprussrname=Joetcolor=blustf ont=sars-serfiportchakce=news ¥ .Go ks ?

Welcome to the News Portal, Joe!

JSP Programmer Won 10 Million in Lottery

Darmis drnictarm feargrniat darmi, Sed et mipsarm consectetarer narme faaremibars frningroilla.
Pellentestare habmitant morbrnl trrnistritare senectars et netars et malesarada fames ac tarprils
egestas, Marnc non lacars sed dolor sagmittmis ornare, Promin pellentestare mipsarm vrniverra darmi,
Marbrmi min wmismi. Phaszellars asrgare tortor, conzetarat nec, sodales e, lobortmis ac, elmit. Narne
congare delor nen narne. Darmis rarbrarm arma et name Lorern mipzarm deolor smit smet, consectetarar
admipmizcring elmit. Donec a Imiberc art lectars earmizmod almitaram, Sed vmitae narlla
dmignmissmim darmi porta varmiars, minteger et wmismi, laoreet ac, consectetarer min, porttmitor ac,
wrnisrni. Mascenas facmilmismiz massa vmitas velmit. Almitaram erat volartpat

Loradr iresudr dolor sit adret, consactatur adirxisicing alit. sed do eiusdrod tadrxor incididunt ut labors et
dolore dragna aliqua. Ut enidr ad drinidr veniadr, quis nostrud exercitation ulladrco laboris nisi ut aliquir
ex ea codrdrodo consequat, Duls aute irure dolor in rerxrehenderit in volurdate velit esse dlludr delore
eu fuglat nulla rearlatur, Excerdbeur sint occascat cursidatat non reroldent, sunt in culrca qul officda
deserunt drollit anidr id est laborudr,

] Done & Local intranet

Figure 4-5: Portal page displayed with user preferences

123
TEAM LING - LIVe, Informative, Non-cost and cenuine!

Chapter 4

To see how a different user of the portal may have a totally different visual experience, start another
browser instance without closing the first one. Again, with the new browser instance, access the
following URL:

http://localhost:8080/ch04/examplel/
This time, enter the following values and selections:

Q In the Name field, type Mark.
0 Inthe color list, select red.

O In the Font list, select serif.
a

In the Portal list, select news.

This time, the news portal page is displayed with Mark’s name, as shown in the bottom window of
Figure 4-6.

&1 News Portal - Microsoft Internet Explorer -

Qe -) [¥] (2] @0 Oseweh Flrravoies @ruese € (v L 3 B

addess @] heep:flocalhost:5080/ch04) le L fshomportal name=loe&color=bluetfont=sans-serfaportchoice=news ﬂ Go ks ™

Welcome to the News Portal, Joe!

JSP Programmer Won 10 Million in Lottery

Darmils drnlctarm feargriat darmi, Sed et mipsarm consecetarer narmc faarcmibars frmingrmilla.
Pellentestare habritant morbmi trrniskmitare seneckars ek netars et malesarada fames ac tarrpmis
egestas, Harne non lacars sed dolor sagmittmis ornare, Promin pellentestare mipzarm vmiverra darmi,
Marbmi min wmismi. Phazellars asrgare tortor, conzetarat nec, zodales et, lobortmiz ac, elmit. Narne
congare delor nen name. Darmis rarrarm arms et name Lorern mipsarm dolor smit amet, consactetarer
admipriscrning elmit. Donec a Imibero art lectars earmizmod almitaram. Sed wrnitae narlla
dmignmissmim darmi parta varmiars, mintagar ast wnismi, laoreat ac, consactatarar min, porttmitor ac,
wrnisrni. Mascanas facmilmizmiz massa vmitas velmit. Almitaram arat volarpat

—
Laradr ircsudi dalor 21t adiats Gne| @ News Portal - Microsoft Internet Explorer =
dolore dragna aliqua. Ut enidr ad dr 1 i worites 11, "‘I"
ex ea codrdrodo consequat, Duls au : i
eu fugiat nulls reariatur, Excersbeor »_ % N — i 5
deserunt drollit anidr id et laberuds @aark - %] 8] Tn O seach §pFavories @Pmeda €8 (v C [

Address @mm:mocahw:mcr cle1fsh i, [sprusern kiclor=redad iFpor clﬂ Go Liks

‘Welcome to the News Portal, Mark!

JSP Programmer Won 10 Million in Lottery

Dunnis dmi it e, Sed ot mip name ingmill Iubmites seomi
saactar t neterr ot malesaruda fones o tarpenis egertas. Hame vom lucars ced dolor cagmithnis omvame. Proesin pellentertas mipeam washremy
i, M i, e, Phasellars sargrs tortes, comsetare e, sodales ot, lobortasis oc, aknit, Hae congae dolor ven vamne, Diowis

FaEiran ST ot . L dolor auit s, et Dimes 4 hebaro art ctars sammisenoed

Facmihrilamis e tendias velndt, Ahmitarin ers wolapa.

Loredr ool dolor st adret, consectepar sdingeicng el sed do ebadrod tedmeor incididant v labore e dolore drazne aliqua. TH erddr 3 drinsdr
ik, quis nostrad execitation wibadrco loboris il vt aliquiss ext ea codndrodo consequat. Tnsis oate frure dolor in renadnderit #n vohrdae
welit esse cilbad dolore ea fingiet realle moristur. Excentor 38 occucd omsidete non nroidet, ard i oaleoes qui oficis desenat drollit snide id
st Wibomadr.

@] Done &] oore & Local intranet

Figure 4-6: Separate browser instance with different portal color and font preference

124
TEAM LING - LIVe, Informative, Non-cost and cenuine!

CSS, JavaScript, VBScript, and JSP

In Figure 4-6, the same news portal page is now displayed in a red-colored theme, using a serif font.
Using this technique, each user can set his or her own preferences, and view the portal pages according
to the preferred look.

To show that the user preferences selected work on all the portal pages of the application, start yet
another browser instance. Access the following portal URL:

http://localhost:8080/ch04/examplel/
This time, enter the following values and data.

Q In the Name field, type John.
Q Inthe color list, select green.
Q In the Font list, select serif.

Q Inthe Portal list, select weather.

Click Select; the resulting weather portal page should look like the one shown in Figure 4-7.

&) Weather Portal - Microsoft Internet Explorer
I
L
@ ok - @ - (%] (2] €a /') Search ‘“ Favorkes @ Meds %) = o
Address .Jﬁ hitp:fflocalhost: 8080/chD4jexamplel Jshowportal Jspiussrname=John@color=gresnafont=serfeportchoice=weather V . Go ks >
You Get the Latest Weather, John!
NMumbai wnc
Tokyo 18cC
Hong Kong 28C
] Done & Local intranet

Figure 4-7: A weather portal page viewed with active user preferences

125
TEAM LING - LIVe, Informative, Non-cost and cenuine!

Chapter 4

In Figure 4-7, the color scheme used is green, and a serif font is used as the per-user preference. As you
can see, the customized user preferences worked across the news and weather portal pages (you can try
the entertainment page on your own).

How It Works

The JSP pages in this application implement a simple user-preference selection mechanism. It enables
the selection of only a color scheme and a font. The same mechanism, however, can readily be extended
to support a larger set of user preferences.

In a nutshell, the user-specified color and font are passed as form submission parameters to a processing
JSP. This JSP then modifies the content of a CSS on the fly, depending on the parameter values. The
browser on the client then renders the HTML page according to this modified CSS, resulting in the
customized look of the portal page.

Adding user preference form fields

The application’s initial Web page contains an HTML form; the page is called index. jsp, and is located
at <Tomcat Intallation Directory>/webapps/ch04/examplel/index.jsp. Two new parameters
are introduced: color and font. The color parameter contains the color selected by the user, and font
contains the font type. The index. jsp page is reproduced in the following code, with modifications
made to the original index. jsp highlighted:

<html>
<head>
<link rel=stylesheet type="text/css" href="portal.css">
<title>Select Your Portal</title>
</head>
<body>
<table class="mainBox" width="400">
<tr><td class="boxTitle" colspan="2">
Wrox JSP Portal Selector
</td></tr>
<tr><td colspan="2"> </td></tr>
<tr><td>
<form action="showportal.jsp" method="get">
<table>
<tr>
<td width="200">
Your First Name: </td>
<td><input name="username" type="text" size="25"/></td>
</tr>
<tr>
<td width="200">Color Theme</td><td>
<select name="color">
<option>blue</option>
<option>red</option>
<option>green</option>
</select>
</td>
</tr>

<tr>
<td width="200">Font</td><td>

126

TEAM LING - LIVe, Informative, Non-cost and cenuine!

CSS, JavaScript, VBScript, and JSP

<select name="font">
<option>sans-serif</option>
<option>serif</option>
</select>
</td>
</tr>

<tr>
<td width="200">Portal Selection</td><td>
<select name="portchoice">
<option>news</option>
<option>weather</option>
<option>entertainment</option>
</select>
</td>
</tr>
<tr><td colspan="2"> </td></tr>
<tr><td colspan="2" align="center">
<input type="submit" value="Select"/>
</td></tr>

</table>
</form>
</td></tr>
</table>
</body>
</html>

The two new parameters, color and font, will be available to the form processing JSP when this form
is submitted. The form processing JSP will be showportal. jsp, as specified in the action attribute of
the <form> HTML element.

Dynamic generation of CSS stylesheet content

The look of the pages is predicated on a CSS, as was the case with the original Chapter 2 example. This
stylesheet is called portal.css, and its content is reproduced here:

.tableCell

{

}

font-family : Verdana, Geneva, Arial, Helvetica, sans-serif;
font-size : 16;
font-weight : bold;

#0f7fct;

background-color: #ffffff;

.valueCell

{

}

.headLine

font-family : Verdana, Geneva, Arial, Helvetica, sans-serif;
font-size : 16;

#000000;

background-color: #fefefe;

TEAM LING - LIVe, Informative, Non-cost and cenuine!

127

Chapter 4

font-family : Verdana, Geneva, Arial, Helvetica, sans-serif;
font-size : 18;

font-weight : bold;

color: #000000;

.newsText
{
font-family : Verdana, Geneva, Arial, Helvetica, sans-serif;
font-size : 10;
color: #000000;
}
.boxTitle
{
font-family : Arial, Helvetica, sans-serif;
font-size : 22;
font-weight : bold;
color : #ffffff;
background-color: #0F7ACA;
}
.mainBox
{
font-family : Verdana, Geneva, Arial, Helvetica, sans-serif;
font-size : 12;
color : #ffffff;
background-color: #eeeeee;

To see how the preceding stylesheet affects the news portal page, examine the HTML template data
within the news. jsp portal page, which remains unchanged in this application. The news . jsp page is
found in <Tomcat Installation Directory>/ch04/examplel/news.jsp, and is reproduced here:

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<title>News Portal</title>
</head>
<body>
<table class="mainBox" width="600">
<tr><td class="boxTitle" >
Welcome to the News Portal, S${param.user}!
</td></tr>
<tr><td>

<jsp:useBean id="newsfeed" class="com.wrox.begjsp.ch2.NewsFeed"
scope="request" >
<jsp:setProperty name="newsfeed" property="topic" value="news"/>
<jsp:getProperty name="newsfeed" property="value"/>
</jsp:useBean>

<jsp:include page="dummytext.html" />

</td></tr>
</table>

128

TEAM LING - LIVe, Informative, Non-cost and cenuine!

CSS, JavaScript, VBScript, and JSP

The highlighted class attributes throughout the HTML template data control the way the final page is
displayed. This includes both color and font used. For example, in the . boxTit1le class, font is specified
tobe Arial, Helvetica, sans-serif, and the foreground color is specified as an RGB value of
#£££££F (white), while background color is specified as an RGB value of #0£7aca (a shade of blue):

.boxTitle
{
font-family : Arial, Helvetica, sans-serif;
font-size : 22;
font-weight : bold;
color : #ffffff;
background-color: #0F7ACA;

To change the appearance of the resulting HTML page, it is necessary to change the highlighted
attributes in the preceding code. One way to do this within a JSP is to introduce some EL expressions:

.boxTitle

{
font-family : ${selfont};
font-size : 22;
font-weight : bold;
color : #ffffff;
background-color: S${selcolor};

Now, the color and font that will be used in the style, and thus in the output HTML, will depend on the
values of the selfont and selcolor variables. The only work remaining is to set the value of these vari-
ables according to the user-selected font and color parameters. This is done within the showportal.
jsp page, the form processor in this application.

Decoding form parameters and setting style variables

The showportal . jsp file found in <Tomcat Installation Directory>/webapps/ch04/examplel/
showportal . jsp contains the code to set the selfont and selcolor variables. The entire showportal.
jsp file is reproduced here, with the code for decoding the form parameters and setting the selfont/
selcolor variables highlighted:

noQ

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<html>
<head>
<c:choose>
<c:when test="${param.color == 'blue'}">

<c:set var="selcolor" value="blue"/>
</c:when>
<c:when test="${param.color == 'red'}">
<c:set var="selcolor" value="red" />
</c:when>
<c:when test="${param.color == 'green'}">
<c:set var="selcolor" value="green" />
</c:when>
</c:choose>

<c:choose>

129
TEAM LING - LIVe, Informative, Non-cost and cenuine!

Chapter 4

130

<c:when test="${param.font == 'sans-serif'}">

<c:set var="selfont" value="Verdana, Geneva, Arial, Helvetica,
</c:when>
<c:when test="${param.font == 'serif'}">

<c:set var="selfont" value="'Times New Roman',K Times,serif" />
</c:when>

</c:choose>

<style>
.tableCell

{

font-family : ${selfont};
font-size : 16;
font-weight : bold;
color : #0f7fcf;
background-color: #ffffff;

.valueCell

{

}

font-family : ${selfont};
font-size : 16;

color : #000000;
background-color: #fefefe;

.headLine

{

font-family : ${selfont};
font-size : 18;
font-weight : bold;
color: #000000;

.newsText

{

}

{

font-family : ${selfont};
font-size : 10;
color: #000000;

boxTitle

font-family : ${selfont};
font-size : 22;

font-weight : bold;

color : #ffffff;
background-color: S${selcolor};
}

mainBox

font-family : ${selfont};
font-size : 12;

color : #ffffff;
background-color: #eeeeee;

sans-serif"/>

TEAM LING - LIVe, Informative, Non-cost and cenuine!

CSS, JavaScript, VBScript, and JSP

</style>

<c:choose>
<c:when test="${param.portchoice == 'news'}">
<jsp:include page="news.jsp" >
<jsp:param name="user" value="${param.username}"/>
</jsp:include>
</c:when>
<c:when test="${param.portchoice =='weather'}">
<jsp:include page="weather.jsp" >
<jsp:param name="user" value="${param.username}"/>
</jsp:include>
</c:when>
<c:when test="${param.portchoice == 'entertainment'}">
<jsp:include page="entertain.jsp" >
<jsp:param name="user" value="${param.username}"/>
</jsp:include>
</c:when>
<c:otherwise>
<head><title>System Portal</title></head>
<body>
<hl>Application logic problem detected!</hl>
</body>
</c:otherwise>
</c:choose>
</body>
</html>

In the highlighted section of the preceding code, a JSTL <choose> construct is used to decode the incom-
ing form parameters. The value of the selcolor variable is set according to the following table.

Incoming Color Parameter Value of selcolor
red red

blue blue

green green

It so happens that the color constants used in the CSS are exactly the same as the form selection values.
Another JSTL <choose> construct is used to decode the incoming font parameter. The value of the
selfont variable is set according to the following table.

Incoming Font Parameter Value of selfont
serif 'Times New Roman', Times, serif
sans-serif Verdana, Geneva, Arial, Helvetica, sans-serif

131
TEAM LING - LIVe, Informative, Non-cost and cenuine!

Chapter 4

Note that in showportal. jsp, the entire portal.css stylesheet is included as a <style> HTML ele-
ment. Embedding the CSS makes it possible to use EL expressions and other JSP facilities to dynamically
modify the stylesheet content. For example, if the user selects serif as the font and green as the color,
the following .boxTitle style will be generated:

.boxTitle
{
font-family : 'Times New Roman', Times, serif;
font-size : 22;
font-weight : bold;
color : #ffffff;
background-color: green;
}

The content of the other JSPs within the application remains the same as the original Chapter 2 example.
By using CSS to abstract the appearance of the portal pages, it is possible to customize the final appear-
ance of your page without modifying the underlying pages themselves (by just modifying the CSS
classes).

Creating a User-Customizable DHTML Menu

One of the most common applications of client-side scripting, using JavaScript or VBScript, is the cre-
ation of a DHTML menu. A DHTML menu provides a menu with a drop-down submenu via a highly
familiar, non-Web-style, interactive interface. This interface is familiar because all standard Windows-
based GUISs use a similar menu structure. Figure 4-8 illustrates one such menu.

Unlike regular HTML-based menus, the menu in DHTML is not constructed out of hyperlink or HTML
form elements. Instead, HTML code is modified on the fly using style and positioning elements to create
a highly interactive experience for the end user.

Combining JSP with DHTML enables user-specific customization that is otherwise unachievable with
client-side scripting alone. For example, JSP can be used to generate the scripting code that sets up the
individual menu and submenu items. This enables an application to present a different menu to each
user, customized to their needs.

The example in the next Try It Out exercise builds on the first, and shows how to add a customized
DHTML menu using JSP.

Try It Out Adding a Customized DHTML Menu

Before you can try out this example, you will need to download the code for the DHTML menu. The
URL for the download is as follows:

http://www.dynamicdrive.com/dynamicindexl/sm/index.htm

132
TEAM LING - LIVe, Informative, Non-cost and cenuine!

CSS, JavaScript, VBScript, and JSP

2} Welcome to Homepage - Microsoft Internet Explorer provided by A0OL Canada

] File Edit View Favorites Tools Help

&« . = QD & a

2 9 o . 92 8

[L 5 : [
Back Forward Stop Refresh Home Search Favorites Media History Mail Print Edit Feal.com FRelated
| Address [£] hitp://localhost:B080/ch04/example2/sample. htm | @6o

‘ Discuss

Free Dow 5 | Search Engines

Top Navigational s Smart menu) v2

MSNBC
CHS news
News.com

| Miscellaneous

Wired News
Techiweh

=
& :

| |& Local intranet
#san|| A2 @ e DG H 0O GCon. | icho.. | B | BT [[&we... Bno. | Fsho. | [R@@BE 1224 AM
Figure 4-8: A DHTML menu in action

Make sure you download Top Nav Bar script version 2.1 or later. Dynamic drive is a resource center for

client-side scripting programmers. You will find a wide selection of handy scripts that you can use on
your own Web site.

This specific DHTML menu will self-adapt to work with all major browsers, including Internet Explorer
6 and Netscape 7.

The file that you will need is menu. js. Place this in the <Tomcat Installation Directory>/

webapps/ch04/example2 directory. Now, you are ready to try out the customized dynamic menu.
Access the following URL:

http://localhost:8080/ch04/example2/

The familiar portal selection form is displayed (see Figure 4-9), but this time with an additional menu
selection.

133
TEAM LING - LIVe, Informative, Non-cost and cenuine!

Chapter 4

@ Select Your Portal - Microsoft Internet Explorer =
eaack >) |8L| |z'] h /'._’Sucrch S"\'~ Favortes (@ Meda) (v . ?. =] ‘g
ackdess |] hirpsiflocalhost:B080jch04]esamplez] v Qs ks ?
Wrox JSP Portal Selector
Your First Mame: Joe
Color Therne blue [v]
Font sans-sehf Z|
Menu nevwis-only :]
Portal Selection nEws v
] Done & Local intranet

Figure 4-9: Portal selection form with an additional customized menu selection

In Figure 4-9, you can select either the news-only or all-menu option. First, try entering the following
data into the form:

Q In the Name field, type Joe.

O Inthe Color list, select blue.

Q In the Font list, select sans-serif.
Q In the Menu list, select news-only.

0 Inthe Portal Selection list, select news.

Click Select. You should see the news portal screen with the DHTML menu, as shown in Figure 4-10.

134

TEAM LING - LIVe, Informative, Non-cost and cenuine!

CSS, JavaScript, VBScript, and JSP

&1 News Portal - Microsoft Internet Explorer -

L/
U

- ‘e A) <J i Y

@Back) IH] I~] AR Sesrch P Favaries eh‘béo €€ v iz = g

Address JﬁhttD!Irlocalhosr:EUEUIchD-ﬂexamDIeZ.lsJ'oxl:Ortal.]sn’u;arname=:loe&coIor=hlueE:Ionr=sa'rs-serf&me’u:holcemem-onlv&aorr‘:holcemev_V_' = [H5
| Mews Portal | Other Portals

World News
American News

UK News) the News Portal, Joe!
JSP Programmer Won 10 Million in Lottery

»

Darmis drnictarm feargrniat darmi, Sed et mipsarm consectetarer narme faaremibars frningrailla.
Pellentestare habmitant morbrnl trrnistritare senectars et netars et malesarada fames ac tarprils
egestas, Harnc non lacars sed dolor sagmittmis ornare, Promin pellentestare mipsarm vriverra darmi,
Marbri min wmismi. Phaszellars asrgare tortor, conzetarat nec, sodales et, lobortmis ac, elmit. Narne
congare delor nen narne. Darmis rarkrarm arma &8 name Lorern mipzarm deolor smit smet, consectetarar
admipmizcrning elmit. Donec a Imiberc art lectars earmizmod almitaram, Sed vmitae narlla
drmignmizsmmim darmi porta varmiars, minteger est wmizmi, laoreet ac, conzactetarer min, portbmitor ac,
wrnisrni. Mascenas facmilmismis massa vmitas velmit. Almitaram erat volartpat

Loradr ircsude dolor sit adrat, consactatur adirzisicing slit. sed do aiusdrod tedmxor incididunt ut labore et
dolore dragna aliqua. Ut anidr ad drinidr vaniadr, quis nostrud exercitation ulladrco laboris nisi ut aliquir:
ex ea codrdrodo consequat, Duls aute irure dolor in rerxrehenderit in volurdate velit esse dlludr delore
eu fuglat nulla rarlatur, Excerdbeur sint occascat cursidatst non reroldent, sunt in culrca qul officda
deserunt drallit anidr id est laborudr,

&1 http:/flocalhost: 5060/cho4examplez] % Local intranet

Figure 4-10: News portal with “news-only” DHTML menu

Although you can’t see it in the black-and-white screenshot, the menu’s color is consistent with the
user-specified color —blue in this case. Note also that the font used in the menu is also consistent with
the user preference —a sans-serif font.

Move your cursor over the DHTML menu and notice the selections that are available. They are all news-
related sites. (The links do not actually work, of course; they will simply redirect you back to the exam-
ple.) Figure 4-11 shows the same page with another menu selected.

135
TEAM LING - LIVe, Informative, Non-cost and cenuine!

Chapter 4

&1 News Portal - Microsoft Internet Explorer -

L/
U

@Back - Ix'] Id] ;‘J /-:Secrch :L Favorites (@Y Media {4 - = = 33

Address @httD!Irlocalhosr:EUEUIchD-ﬂexamDIeZ.lsJ'oxl:Ortal.]sD?u;arname=:loe&color=blueE:Ionr=sarrs-ser-‘Eune’u:holcemem-onlv&aorr‘:holcemev_V_' = [ks >
| Mews Portal | Other Portals

Yahoo News
CHN News
Welcome to the News Portal, Joe!

JSP Programmer Won 10 Million in Lottery

Darmis drictarm feargrniat darmi, Sed et mipsarm consedetarer namc faarcmibars frmingmilla.
Pellentestare habmitant morbrnl tnistmitare senectars et netars et malesarada fames ac tarrpmis
egestas, Marnc non lacars sed dolor sagmittmis ornare, Promin pellentestare mipzarm yoniverra darmi,
Marbrni min wmizmi. Phasellars asrgare tortor, conzetarat nee, sodales et, lobortmiz ac, elmit. Narne
congare delor non narne. Darmis rarbrarm arma et name Lorern mipsarm dolor smit smet, consactetarer
admiprmizcrning elmit, Donec a Imibero art lectars earmismod almitaram. Sed vmitae narlla
drmignmizsmim darmi porta varmiars, mintager est wnizmi, lacreet ac, conzectetarer min, porttmitor ac,
wrnisrni. Mascenas facmilmismiz massa vmitas velmit Almitaram erat volarpat

Loradr ircsude dolor sit adrat, consactatur adirzisicing alit, sad do eiusdrod tadrxor incididunt ut labors et
dolora dragna aliqua. Ut anidr ad drinidr vaniadr, quis nostrud exercitation ulladrco laboriz nisi ut aliquin:
ex ea codrdrodo consequat, Duls aute irure dolor in rersrehenderit in volurdate velit esse dlludr dolore
eu fuglat nulla rarlatur, Excerdeaur sint occascat curkidatat non peroldent, sunt in culra qui offida
deserunt drallit anidr id est laborudr,

&] htep:fflocalhost;G060/cHo4/examplez] % Local intranet

Figure 4-11: News portal page with alternative menu selection

Now, to test DHTML customization using JSP, start another instance of a Web browser without closing
the first. With the new browser instance, access the following URL:

http://localhost:8080/ch04/example2/
Enter the following data into the portal selection form:

Q In the Name field, type Mark.

Q Inthe color list, select green.

Q In the Font list, select serif.

Q In the Menu list, select all.

0 Inthe Portal Selection list, select news.

Click Select. You should see the green news portal page with a different DHTML menu, similar to what
is shown in Figure 4-12.

136

TEAM LING - LIVe, Informative, Non-cost and cenuine!

CSS, JavaScript, VBScript, and JSP

@NPWQ Portal - Microsoft Internet Explorer = (=t
-

@mk - Q@ Ix'] @] . /- Jsearch 5.7 Favartes (@ mede) AR
Address 4}]httn:,n’localhosr:EUEU.I’chDﬁexamDIeZ.lsi'oxl:Ortal.]sD?usarname=MakMOIor=c|ree'v&‘ont=sen‘B~mermholce=all&nortcho|ce=neu\»s _V_| kg Go Links
| News | Weather | Entertainment | Lotieries

Mega Fortune
Welcome to the News Portal, Mark! :

JSP Programner Won 10 Million in Lottery

»

Dennis dmictinn ferzmist dmi Sed et mipsann Tabmitat i
semectars et netars ot madesareds fmes o turpnis egestes. Home non Jacers sed dolor sagmittnis cmare, Fromin pellatestare mipsom vy
anni. Morbemi min wmioni Phasellars sargare tortor, consebat vec, eoddes o, Jobortmis ac, ehndt . Hene congere dolor nom nave. Dimmsis
Pt v ot e, Loems wipe s dolar gk gt consectsns Almipasisoning sit, Dona 4 kb i Lot emninnod dbitir,
Sed wanitan vuril duigrenisamnin dinn porta vimnis mEtEmT et wriand, Loret 50, consectetinr imin, portinitor 0, wminnd. Bl
funnilmianis maees Ve vehnd, Aknftiren o volatpit.

Loredr ioeasdr dodor it adret, consectenx adindsicng «lit, sed do emsdnod tadmior moididm vt hore e dolore dragre aliqua. Uk snddr o drovddr
wenadr, quis nosmad exerciiaion ailuiron Jhore Fiel b ex e codndrodo congequa Dok sme e dolir in rerrshendert in vl
welit esse cilbudr dolore e fagin milla poriane. Excerceur sint occhecil onadeat o Gaoidn, A in odeo qui oficis deseamnt drollit aidr id
ot Jahorudr.

&1 http:/flocalhost: 5060/cho4examplez] % Local intranet

Figure 4-12: News portal with the “all” DHTML menu

Figure 4-12 shows how the same JSP page can be used to display different DHTML menus to different
users. The menu color is now green, and the font used in the menu is a serif style, again consistent
with the user’s preferences. This is an example of how the menu’s appearance can be controlled by a
JSP-generated stylesheet.

Move the cursor over the different menu selections, and note how this menu is very different from the
news-only selection.

To focus on the concepts and keep the code simple, the JSP code in this example is used to generate one
of only two different DHTML menus. Using the same technique, it is possible to allow fine-grained user
customization down to a single menu item, enabling users to completely customize their menus. This
possibility is left as an area of further exploration for you.

How It Works

To support the additional form field, index. jsp is modified. The new index. jsp can be located at
<Tomcat Installation Directory>/webapps/ch04/example/index. jsp. The modification is
highlighted in the following index. jsp listing:

<html>
<head>

137
TEAM LING - LIVe, Informative, Non-cost and cenuine!

Chapter 4

<link rel=stylesheet type="text/css" href="portal.css">
<title>Select Your Portal</title></head>
<body>
<table class="mainBox" width="400">
<tr><td class="boxTitle" colspan="2">
Wrox JSP Portal Selector
</td></tr>
<tr><td colspan="2"> </td></tr>
<tr><td>
<form action="showportal.jsp" method="get">
<table>
<tr>
<td width="200">
Your First Name: </td>
<td><input name="username" type="text" size="25"/></td>
</tr>
<tr>
<td width="200">Color Theme</td><td>
<select name="color">
<option>blue</option>
<option>red</option>
<option>green</option>
</select>
</td>
</tr>

<tr>
<td width="200">Font</td><td>
<select name="font">
<option>sans-serif</option>
<option>serif</option>
</select>
</td>
</tr>

<tr>
<td width="200">Menu</td><td>
<select name="menuchoice">
<option>news-only</option>
<option>all</option>
</select>
</td>
</tr>

<tr>
<td width="200">Portal Selection</td><td>
<select name="portchoice">
<option>news</option>
<option>weather</option>
<option>entertainment</option>
</select>
</td>
</tr>

<tr><td colspan="2"> </td></tr>
<tr><td colspan="2" align="center">

138
TEAM LING - LIVe, Informative, Non-cost and cenuine!

CSS, JavaScript, VBScript, and JSP

<input type="submit" value="Select"/>
</td></tr>
</table>
</form>
</td></tr>
</table>

</body>
</html>

The new form parameter is called menuchoice. This form parameter is passed into showportal. jsp,
the form processor JSP. showportal . jsp can be found in <Tomcat Installation Directory>/
webapps/ch04/showportal.jsp.

showportal. jsp does not directly work with the menuchoice parameter. Instead, news . jsp is where
the DHTML menu is generated, and the menuchoice parameter processed.

Customizing the DHTML menu with user color and font preferences

The showportal. jsp file, however, has several new stylesheet and script elements that affect the DHTML
menu. This enables us to customize the color and font used in the DHTML menu. The following is a listing
of the new showportal. jsp, with the DHTML's stylesheet and script elements highlighted:

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<html>
<head>
<c:choose>
<c:when test="${param.color == 'blue'}">
<c:set var="selcolor" value="blue"/>
</c:when>
<c:when test="${param.color == 'red'}">
<c:set var="selcolor" value="red" />
</c:when>
<c:when test="${param.color == 'green'}">
<c:set var="selcolor" value="green" />
</c:when>
</c:choose>

<c:choose>
<c:when test="${param.font == 'sans-serif'}">
<c:set var="selfont" value="Verdana, Geneva, Arial, Helvetica, sans-serif"/>
</c:when>
<c:when test="${param.font == 'serif'}">
<c:set var="selfont" value="'Times New Roman', Times,serif" />
</c:when>
</c:choose>

<style>

.tableCell

{
font-family : ${selfont};
font-size : 16;
font-weight : bold;
color : #0f7fcf;

139
TEAM LING - LIVe, Informative, Non-cost and cenuine!

Chapter 4

background-color: #ffffff;
}

.valueCell

{
font-family : ${selfont};
font-size : 16;
color : #000000;
background-color: #fefefe;

}

.headLine

{
font-family : S${selfont};
font-size : 18;
font-weight : bold;
color: #000000;

.newsText

{
font-family : ${selfont};
font-size : 10;
color: #000000;

}

.boxTitle

{
font-family : ${selfont};
font-size : 22;
font-weight : bold;
color : #ffffff;
background-color: ${selcolor};

}
.mainBox
{
font-family : ${selfont};
font-size : 12;
color : #ffffff;
background-color: #eeeeee;
}
all.clsMenultemNS, .clsMenultemIE
{
text-decoration: none;
font: bold 12px;
font-family: S${selfont};
color: white;
cursor: hand;
z-index:100
}
</style>
<script language="JavaScript">
var keepstatic=1
var menucolor="${selcolor}"
var submenuwidth=150
</script>

140
TEAM LING - LIVe, Informative, Non-cost and cenuine!

CSS, JavaScript, VBScript, and JSP

<c:choose>
<c:when test="${param.portchoice == 'news'}">
<jsp:include page="news.Jjsp" >
<jsp:param name="user" value="${param.username}"/>
</jsp:include>
</c:when>
<c:when test="${param.portchoice =='weather'}">
<jsp:include page="weather.jsp" >
<jsp:param name="user" value="${param.username}"/>
</jsp:include>
</c:when>
<c:when test="${param.portchoice == 'entertainment'}">
<jsp:include page="entertain.jsp" >
<jsp:param name="user" value="S${param.username}"/>
</jsp:include>
</c:when>
<c:otherwise>
<head><title>System Portal</title></head>
<body>
<hl>Application logic problem detected!</hl>
</body>
</c:otherwise>
</c:choose>
</body>
</html>

Generating JavaScript code with JSP for the DHTML menu

The news. jsp file has the embedded DHTML menu and the code that configures it. This file is located
in <Tomcat Install Directory>/webapps/ch04/news.jsp and is reproduced as follows. The high-
lighted code is the JSP construct that generates the JavaScript code to configure the menu. Note that it
will construct two very different menus depending on the value of the menuchoice form parameter.

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<title>News Portal</title>
</head>
<body>
<script language="JavaScript" src="menu.js"></script>
<script language="JavaScript">
function showToolbar ()
{

menu = new Menu () ;

<c:choose>

<c:when test="${param.menuchoice == 'news-only'}">
menu.addItem("newsportalid", "News Portal", "News Portal", null, null);
menu.addItem("otherportalid", "Other Portals", "Other Portals",
null, null);
menu.addSubItem("newsportalid", "World News", "World News",
"http://localhost:8080/ch04/example2/","");
menu.addSubItem("newsportalid", "American News", "American News",
"http://localhost:8080/ch04/example2/","");
menu.addSubItem("newsportalid", "UK News", "UK News",

141
TEAM LING - LIVe, Informative, Non-cost and cenuine!

Chapter 4

"http://localhost:8080/ch04/example2/","");

menu.addSubItem("otherportalid", "Yahoo News", "Yahoo News",
"http://localhost:8080/ch04/example2/","");
menu.addSubItem ("otherportalid", "CNN News", "CNN News",
"http://localhost:8080/ch04/example2/","") ;
</c:when>

<c:when test="${param.menuchoice == 'all'}">
menu.addItem("newsid", "News", "News", null, null);
menu.addItem("weatherid", "Weather", "Weather", null, null);
menu.addItem("entid", "Entertainment", "Entertainment", null, null);
menu.addItem("lotid", "Lotteries", "Lottories", null, null);
menu.addSubItem("newsid", "World News", "World News",
"http://localhost:8080/ch04/example2/","");
menu.addSubItem("newsid", "American News", "American News",
"http://localhost:8080/ch04/example2/","");
menu.addSubItem("newsid", "UK News", "UK News",

"http://localhost:8080/ch04/example2/","");

menu.addSubItem("newsid", "Yahoo News", "Yahoo News",
"http://localhost:8080/ch04/example2/","");
menu.addSubItem("newsid", "CNN News", "CNN News",

"http://localhost:8080/ch04/example2/","");

menu.addSubItem("weatherid", "Accurate Weather", "Accurate Weather",
"http://localhost:8080/ch04/example2/","");
menu.addSubItem("weatherid", "Weather Central", "Weather Central",

"http://localhost:8080/ch04/example2/","");

menu.addSubItem("entid", "E Motion", "E Motion",
"http://localhost:8080/ch04/example2/","");

menu.addSubItem("entid", "Hollywood on the Run", "Hollywood on the Run",
"http://localhost:8080/ch04/example2/","");

menu.addSubItem("lotid", "Lucky 9", "Lucky 9",
"http://localhost:8080/ch04/example2/","");

menu.addSubItem("lotid", "Mega Fortune", "Mega Fortune",
"http://localhost:8080/ch04/example2/","");

</c:when>
</c:choose>
menu . showMenu () ;

}
showToolbar () ;

function UpdateIt()
{
if (ie&&keepstatic&&!opré6)
document.all["MainTable"].style.top = document.body.scrollTop;
setTimeout ("UpdateIt ()", 200);

142
TEAM LING - LIVe, Informative, Non-cost and cenuine!

CSS, JavaScript, VBScript, and JSP

}
UpdateIt();
</script>

<table class="mainBox" width="600">
<tr><td class="boxTitle" >
Welcome to the News Portal, ${param.user}!
</td></tr>
<tr><td>

<jsp:useBean id="newsfeed" class="com.wrox.begjsp.ch2.NewsFeed"
scope="request" >
<jsp:setProperty name="newsfeed" property="topic" value="news"/>
<jsp:getProperty name="newsfeed" property="value"/>
</jsp:useBean>

<jsp:include page="dummytext.html" />

</td></tr>
</table>

Note that the code generated by the JSTL <choose> construct is not a complete JavaScript function. Rather,
it is a code fragment within the showToolBar () function that is used to generate the DHTML menu.

Summary

You can use JSP to dynamically generate textual output within any template data. While previous exam-
ples have been focused on HTML template data, this chapter explores two alternatives:

Q Cascading Stylesheets (CSS)
Q Client-side scripting code (JavaScript)

JSP can be used to dynamically generate CSS code. With CSS, you can
Q Affect how HTML elements are displayed by the browser

Q Directly control the appearance of the page to the end user

By using JSP to dynamically generate CSS elements, it is possible to customize the look of the final page

programmatically. One application area is customizing the look of Web pages according to specific user
preferences.

In this chapter, the first Try It Out and How It Works sections reveal how user preferences may be imple-
mented using JSP to generate request-dependent CSS code on-the-fly.

143
TEAM LING - LIVe, Informative, Non-cost and cenuine!

Chapter 4

Another non-HTML template data that JSP can work with is client-side scripting code. Client-side script-
ing code is
Q Typically JavaScript or VBScript code that is part of the HTML page served by the server

0 Executed on the client side by the browser

A common use of client-side scripting code is the implementation of a DHTML menu. DHTML menus
typically provide a familiar drop-down menu to the user of a Web application.

This chapter’s second Try It Out and How It Works sections demonstrate how you can use JSP to generate
JavaScript code on-the-fly, which can be used to customize a DHTML menu depending on application
needs.

Creatively combining JSP’s data-driven dynamic generation capability with non-HTML template data
can result in exciting new application possibilities.

Exercises

1. Modify the code in the first Try It Out exercise to enable users to select the style of font used:
either normal or italic.

2. Add customized DHTML menu support to the weather (weather . jsp) and entertainment
(entertain. jsp) portal pages in the second Try It Out exercise.

144
TEAM LING - LIVe, Informative, Non-cost and cenuine!

JSP and EL

The previous chapters in this book demonstrated the breadth of JSP technology and introduced
some basic techniques of JSP development. The aim thus far has been to provide you with some
fast, hands-on experience with the JSP technology. The working examples in these earlier chapters
enabled you to try out real JSP code, and see what JSP can be used for in the real world.

Unlike the earlier chapters, this chapter provides a more in-depth exploration of a cornerstone
element of the JSP standard: JSP’s Expression Language, or EL for short.

In this chapter, you will discover the following:

O

Why EL is an indispensable part of JSP 2.0

How to use EL named variables

How to perform type conversion and coercion in EL

How to handle null values in EL

How to work with arithmetic, logical, comparison, and other operators in EL
The different ways of accessing members of a collection in EL

How to access properties of objects in EL

How to access nested object properties in EL

How to use implicit objects in EL

How to define and access functions in EL

000000 o0o oo

How to use a namespace when referencing EL functions

This chapter covers a lot of ground, and includes five separate examples. By the end of the chapter,
you should be very familiar with EL, and be comfortable using it in your own applications.

TEAM LING - LIVe, Informative, Non-cost and cenuine!

Chapter 5

EL and Its Vital Role in JSP

EL was not part of the JSP standard prior to 2.0. One of the main reasons for creating EL was to ensure
that presentation-level JSP pages could be created without relying on scripting elements. Chapter 3, “JSP
Basics 2: Generalized Templating and Server Scripting,” covered the use of scripting elements (typically
code written in Java) that are embedded within a JSP page.

The need for scripting elements within JSP is typically driven by the requirements of an application.
Major application requirements that demand the use of scripting elements include the following;:

Q To provide control-flow for JSP execution

O To set, and subsequently access, variables that are local to the JSP page

Q To render a value from a complex expression that involves Java objects

Q To access properties of an arbitrary Java object

Q To call methods of JavaBeans or other Java objects
Unfortunately, experience has shown that the use of scripting elements in JSPs makes large projects diffi-
cult to maintain over the long term. It also encourages programming practices that may tightly couple
the presentation (user interface) of an application to its business logic, reducing its flexibility and scala-

bility. This is a highly undesirable practice in the creation of Web applications and services. Ideally, JSPs
should be created free of scripting elements if at all possible.

In order to create a JSP version that can work completely free of scripting elements, it is essential that all
five of the application requirements can be satisfied without the use of embedded Java coding. JSP 2.0
satisfies these requirements. The first two items are handled by JSTL (explored in detail in Chapter 6,
“JSP Tag Libraries and JSTL”), while the last three requirements are handled by EL.

EL is independent of [SP 2.0. Despite the vital role of EL in JSP 2.0, the use of EL is not exclusive to
JSP containers. The EL parser is also not tightly integrated into the JSP parser, but can be detached and
reused for other purposes. In fact, EL is incorporated into both Java Server Faces (JSE, a server-side GUI
construction kit technology; see Chapter 21, “JavaServer Faces,” for more information), and JSTL.
Therefore, becoming familiar with EL will save you time when exploring these other technologies.

EL Named Variables

When working with EL (and JSTL), you will frequently work with named variables. Named variables in
EL refer to attributes attached to JSP scoping objects. For example, the following EL expression will ren-
der the value of the named variable called bearCount:

There are ${bearCount} bears in the cave.
The EL parser will search for the attribute through the various JSP scoping objects in the following order:

1. Page
2. Request

146
TEAM LING - LIVe, Informative, Non-cost and cenuine!

JSP and EL

3. Session (if currently valid)

4. Application
In practice, this is equivalent to a call to the Java PageContext . findAttribute () method. If you are
maintaining legacy JSP code with embedded Java, you may see this call. You can consult the JSP

Javadocs (API documentation) to see how this method works.

Figure 5-1 illustrates the search for an EL named variable.

EL Implicit Objects

1. Name of implicit object

2. Looks for attribute

Search for
named
variable

3. Looks for attribute

request
scope
4. Looks for attribute

session
scope

5. Looks for attribute

application
scope

Figure 5-1: Order of search for an EL named variable

In Figure 5-1, you can see the search order for an EL named variable: First the set of EL implicit objects is
searched for a matching name (EL implicit objects are covered later in this chapter), and then the four
scopes. If the named variable is not found, some action may create it.

If the attribute with the specified name cannot be located in any scope, a null value is returned. The null
value will render as a " (empty string) in the output, and will not trigger any errot.

147
TEAM LING - LIVe, Informative, Non-cost and cenuine!

Chapter 5

Applying EL

As the name implies, the Expression Language works with expressions. It is a programming language
used in the construction of expressions. All EL expressions are enclosed in the ${. . . } notation. The
expression is evaluated before the rest of the JSP is evaluated. You can place EL expressions in two
places within a JSP:

Q Inline with template data

Q Within attributes of JSP actions, standard or custom

Using EL expressions inline with template data

The most typical use of EL expressions is to render a textual string inline with template data. For example,
consider the following JSP fragment:

There are ${5 + 1} bears in the cave.

In this case, the EL expression is placed inline with the HTML template data. At JSP processing time, the
expression $ {5+1} will evaluate to 6, and be placed at the same position as the original expression. This
will result in the following HTML:

There are 6 bears in the cave.

Using EL expressions in attribute values

The other place where you will see EL expressions used is within the attributes of certain tags, including
JSTL tags, standard JSP actions, and custom tags.

For example, consider the following JSP fragment using JSTL:
<c:if test="S${salary > 100000}">
Rich cousin!

</c:if>
In this case, the EL expression $ {salary > 100000} is used to conditionally render the body of the JSTL
tag. It is placed in the test attribute of the <c:if> custom JSTL action. This will cause the EL expression

to be evaluated before the JSTL custom action is evaluated. The HTML Rich cousin!

will be rendered only if the named variable called salary is greater in value than 100, 000.

For example, consider the following JSP fragment featuring the JSTL <c: set> tag:
<c:set var="datetime" val='${dateNow} - ${timeNow}'/>

If the dateNow named variable contains the string "May 1, 2005" and timeNow contains "11:00 AM",
then the resulting datetime named variable will contain "May 1, 2005 - 11:00 AM".

As shown in the preceding section, an EL expression can be an arithmetic expression, or an expression
featuring a comparison. The following Try It Out section explores some of these EL expressions.

148
TEAM LING - LIVe, Informative, Non-cost and cenuine!

JSP and EL

Try ltOut | Applying EL Expressions

To try out the first example, deploy ch05.war to your Tomcat 5 server. Review Chapter 1 if you do not
remember how to deploy a WAR file.

Access the following URL using your browser to see the example’s output:
http://localhost:8080/ch05/examplel/

You should see something similar to what is shown in Figure 5-2.

i Examples - Netscape

=10l x|

. Eile Edit Wiew Go Bookmarks Tools Window Help

B @0 Q Q Q [% nitprincalnost 8080/chD5/example1/ | (G Search | Cgo @
%]

] | % EL Expression Examples]

EL Expression Examples

Arithmetic Operators in Expressions

There are 6.0 apples on the table.
There are 6 apples on the table.
It feels like -12 degree today.

The average grade is good.

There are 0.42592592592592593 remaining.
There are 3.0 apples on the table.

There are 250,375 apples on the table.
There are 3 apples on the table.

There are 3 apples on the table.

Logical Operators

Your guess is 12.
You're in range!
Your guess is 1.
Try again!

Comparison Operators

4 '3 true
‘4 >3 true
= e
A a1,

T2 A Sf 0 ooe U= e e

Figure 5-2: Output result of EL expressions

The output in Figure 5-2 is the result of a collection of different EL expressions. The following How It
Works section examines the EL expressions used to generate this output.

How It Works

The JSP used to generate the output shown in Figure 5-2 is located at <Tomcat Installation
Directory>/webapps/ch05/examplel/index. jsp. The code in this index. jsp is reproduced here:

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix="fmt" uri="http://java.sun.com/jsp/jstl/fmt" %>

<html>

149
TEAM LING - LIVe, Informative, Non-cost and cenuine!

Chapter 5

<head>

<title>EL Expression Examples</title>
</head>
<body>

<hl1>EL Expression Examples</hl>

<h2>Arithmetic Expressions</h2>
There are ${1 + 2 * 4 - 6 / 2} apples on the table.

There are

<fmt: formatNumber pattern="#####"/>${1 + 2 * 4 - 6 / 2}</fmt:formatNumber>

apples on the table.

It feels like ${-4 - 8} degrees today.

<c:set var="myGrade" value="11"/>

The average grade is ${(myGrade == 10) ? "perfect" : "good"}.
There are ${23/54} remaining.

There are ${6 div 2} apples on the table.

There are ${2003 div 8} apples on the table.

There are ${2003 mod 8} apples on the table.

There are ${2003 % 8} apples on the table.

<h2>Logical Operators </h2>
<c:set var="guess" value="12"/>
Your guess is ${guess}.

<c:if test="${(guess >= 10) && (guess <= 20)}">
You're in range!

</c:if>

<c:if test="${(guess < 10) || (guess > 20)}">
Try again!

</c:if>

<c:set var="guess" value="1"/>
Your guess is S${guess}.

<c:if test="${(guess >= 10) and (guess <= 20)}">
You're in range!

</c:if>

<c:if test="${(guess < 10) or (guess > 20)}">
Try again!

</c:if>

<h2>Comparison Operators </h2>

4 > '3 ${4 > '3'"}

4" > 3 S{'4'" > 3}

4 > '3 ${'4' > '3'}

3 ${4 >= 3}

<= 3 ${4 < 3}

== "4 ${4 == 4}

<h2>empty Operator</h2>
empty "" S${empty ""}

empty "sometext" ${empty "sometext"}

==

150

TEAM LING - LIVe, Informative, Non-cost and cenuine!

JSP and EL

empty Junk ${empty Junk}

empty guess S${empty guess}

<h2>Boolean and Null Values</h2>

<c:set var="StrVar" value="true"/>
<c:if test="${StrVar}">

equal!
</c:if>

null == null ${null == null}

"null" == null ${"null" == null}

</body>
</html>

The page consists of many different EL expressions. The highlighted code shows the two major uses of
EL expressions in JSP: inline with template data, and within attributes of tags.

The first highlighted line shows the EL expression ${1 + 2 * 4 - 6 / 2} used inline with the HTML
template data:

There are ${1 + 2 * 4 - 6 / 2} apples on the table.

The second highlighted line shows the same EL expression in the value attribute of the JSTL
<fmt : formatNumber> tag:

<fmt: formatNumber pattern="#####"/>${1 + 2 * 4 - 6 / 2}</fmt:formatNumber>

Operators

The expressions in index. jsp are created using operators available within EL. These operators include
the following;:

Arithmetic operators
Logical operators

Comparison operators

U 0 U0 U

The empty prefix operator

The preceding example contains expressions using every one of these operators. An explanation of these
expressions used in the index. jsp file follows.

Arithmetic operators

All the basic arithmetic operators that you are familiar with are available within EL expressions. This
includes addition, subtraction, multiplication, division, and modulus. For example, consider this line in
index.jsp:

There are ${1 + 2 * 4 - 6 / 2} apples on the table.

151
TEAM LING - LIVe, Informative, Non-cost and cenuine!

Chapter 5

This results in the following HTML:
There are 6.0 apples on the table.

Note that operator precedence has caused the multiplication and division to be executed first. Furthermore,
the calculation has caused a decimal to appear in the output. You can use the numeric formatting tags in
JSTL to eliminate this. For example, the following JSP fragment in index. jsp renders the same result with-
out the decimal point:

There are

<fmt: formatNumber value="${1 + 2 * 4 - 6 / 2}" pattern="#####"/>
apples on the table.

The formatNumber JSTL tag is used to format the numerical output, using a pattern that specifies no
decimal point should be displayed. This results in the following output:

There are 6 apples on the table.

Note that the set of JSTL formatting tags must be included with the <taglib> directive at the top of
index.jsp:

<%@ taglib prefix="fmt" uri="http://java.sun.com/jsp/jstl/fmt" %>

This <taglib> directive also associates the namespace fmt with these formatting tags. Formatting tags
and JSTL are covered extensively in Chapter 6, “JSP Tag Libraries and JSTL.”

The div operator is another way to specify the divide (/) operator, and may be used interchangeably.
Therefore, the following two lines are completely equivalent:

There are ${1 + 2 * 4 - 6 div 2} apples on the table.
There are ${1 + 2 * 4 - 6 / 2} apples on the table.

The mod operator, sometimes expressed by using the symbol %, may be used to obtain the remainder
after a division. For example, consider the following EL expressions in index. jsp:

There are ${2003 div 8} apples on the table.

There are ${2003 mod 8} apples on the table.
There are ${2003 % 8} apples on the table.

The following code shows the resulting HTML output:
There are 250.375 apples on the table.
There are 3 apples on the table.

There are 3 apples on the table.

You can also work with negative numbers, using the unary operator, as in the following fragment from
index.jsp:

It feels like ${-4 - 8} degrees today.

152
TEAM LING - LIVe, Informative, Non-cost and cenuine!

JSP and EL

This will result in the following HTML output:
It feels like -12 degrees today.

Floating-point numbers are also supported; the following calculation from index. jsp results in a frac-
tional number:

There are ${23/54} remaining.
This renders the following HTML output:

There are 0.42592592592592593 remaining.
The conditional operator can also be used:

<c:set var="myGrade" value="10"/>
The average grade is ${ (myGrade == 10) ? "perfect" : "good"}.

The JSTL <c: set> custom action is used to create a named variable. It is an attribute (by default, created
in page scope) called myGrade with the integer value 10. The EL expression will render “perfect” if the
grade is 10, or “good” otherwise. If myGrade is 10, as in the case of index. jsp, the following HTML is
rendered:

The average grade is perfect.

Logical operators

Logical operators can be used to combine multiple Boolean expressions. The two logical operators sup-
ported by EL are && and | |. Alternatively, the textual form and and or may also be used. For example,
consider the following JSP segment from index. jsp:

<h2>Logical Operators </h2>
<c:set var="guess" value="12"/>
Your guess is ${guess}.

<c:if test="${(guess >= 10) && (guess <= 20)}">
You're in range!

</c:if>

<c:if test="${(guess < 10) || (guess > 20)}">
Try again!

</c:if>

The JSTL <c: 1£> custom action is used to implement a simple “guess the number” game. If the guess is
between 10 and 20 inclusive, the message “You're in range!” is printed; otherwise, the player is asked to
“Try again!” Because guess in this case is set to 12, the resulting output is as follows:

Your guess is 12.
You're in range!

153
TEAM LING - LIVe, Informative, Non-cost and cenuine!

Chapter 5

The following is the same expression, using the textual form of the logical operators:

<c:set var="guess" value="1"/>
Your guess is ${guess}.

<c:if test="${(guess >= 10) and (guess <= 20)}">
You're in range!

</c:if>

<c:if test="${(guess < 10) or (guess > 20)}">
Try again!

</c:if>

Comparison operators

EL supports the entire range of comparison operators found in most programming languages. Each of
the operators has a symbolic form and an abbreviated textual form. The following table enumerates the
available operators.

Operator Alternate Form Description

> Gt Greater than

>= Ge Greater than or equal to
< Lt Less than

<= Le Lesser than or equal to
== Eqg Equal to

= Ne Not equal to

The following fragment of index. jsp tests some of these comparison operators:

<h2>Comparison Operators </h2>

4 > '3 ${4 > '3'"}

"4 > 3 S{'4' > 3}

"4 > '3 s{'4'" > '3'}

3 ${4 >= 3}

3 ${4 < 3}

== '4" $(4 == 4}

>

A
1l

4
4
4

The resulting output is shown here:

4 > '3' true
'4' > 3 true
'4' > '3' true
4 >= 3 true

4 <= 3 false

4 == '4' true

154
TEAM LING - LIVe, Informative, Non-cost and cenuine!

JSP and EL

Note that in the previous comparison EL always attempts to convert the type of the data being com-
pared “in the right way.” That is, the character data is converted to numeric value before being com-
pared, except in the case where two characters are compared.

XML document validity

The >, >=, <, and <= operators contain the < and > special symbols. These symbols typically need to be
escaped if the template text is an XML document. For example, consider the following expression:

<bucketLevel>
<c:1f test="${appleCount >= 100}">
full
</c:if>
</bucketLevel>

The preceding JSP fragment is not valid XML due to the > character in the expression. Instead, you
should use the alternate form, as follows:

<bucketLevel>
<c:if test="${appleCount ge 100}">
full
</c:if>
</bucketLevel>

Using this alternate form enables the gt, ge, 1t, and 1e operators to be used without affecting the valid-
ity of the surrounding XML template text.

The empty operator

The empty operator is a prefix operator, meaning that it takes only one single operand on its right. It can
be used to test for a null value. For example, consider the following JSP fragment from index. jsp in the
previous Try It Out exercise:

<h2>empty Operator</h2>

empty "" ${empty ""}

empty "sometext" ${empty "sometext"}

empty Junk ${empty Junk}

empty guess S${empty guess}

The resulting output is as follows:

empty Operator

empty "" true

empty "sometext" false
empty Junk true

empty guess false

In the previous example, the empty string " " is considered empty while any other string value is not. A
nonexistent variable, Junk, is given a null value in EL. This null value is considered empty when tested
with the empty operator. On the other hand, the guess variable exists (used earlier) and therefore is not

155
TEAM LING - LIVe, Informative, Non-cost and cenuine!

Chapter 5

empty. In other words, depending on the data type of the operand, the empty operator can also be used
to test for the conditions shown in the following table.

Operand Data Type Empty Value
String “

Any named variable Null

Array no elements
Map no elements
List no elements

An ambiguity exists if a named variable is tested to be empty, as it can either contain the null value or
the empty string " .

Boolean variables and nulls

The following JSP fragment from index. jsp of the previous Try It Out exercise illustrates some interest-
ing conversion properties to Boolean types and working with null values.

<h2>Boolean and Null Values</h2>
<c:set var="StrVar" value="true"/>
<c:1if test="${StrVvVar}">

equal!
</c:if>

null == null ${null == null}

"null" == null ${"null" == null}

The resulting output is as follows:

equal!
null == null true
"null" == null false

The named variable StrVvar is initially set to the string true. This is a variable of type String. However,
because the test attribute of the JSTL <c: 1£> tag requires a Boolean expression, it is automatically con-
verted to a Boolean by EL before use. This causes the printing of the “equal! " message.

Finally, the comparison operator is being used on the special null value. It is shown here that while a
null value can be successfully compared to another null value, the string "null" is not considered equal
to the null value.

This concludes the coverage of the first example in this chapter. The next section takes a more detailed
look at automatic type conversion, encountered earlier.

156
TEAM LING - LIVe, Informative, Non-cost and cenuine!

JSP and EL

Coercion: Automatic Type Conversion

Programming in JSP in general, and in EL in particular, tends to be rather weakly typed. It is not necessary
to declare the type of a variable before using it. This is rather unlike the Java programming language,
where the data type and name of each variable must be declared before use.

The advantage of a weakly typed language such as EL is the ease of programming with it. The JSP/EL
developer does not have to worry about declaring every variable used and figuring out the most appro-
priate type for each variable. Further adding to the ease of programming, the developer usually does not
need to call any type of data-type conversion functions. Instead, developers can completely rely on a set
of built-in rules, EL’s type coercion rules in this case, to take care of type coercion for them.

The disadvantage of a weakly typed approach is that in some programming situations, you may need
finer control over the data type conversion outcome. In these cases, you will need to understand differ-
ent built-in rules and how they may affect the output.

Boxing and unboxing

The basic type conversion is based on boxing. Boxing is simply the action of creating an associated Java
object from a primitive type. The following table shows the common Java primitive types and their
boxed form.

Primitive Type Boxed Type
int Integer
long Long
double Double
char Character
boolean Boolean

To box an int variable means to wrap it in an Integer. To box a long, wrap it up in a Long instance.
The action of converting a wrapped value to its associated primitive value is called unboxing. For exam-
ple, unboxing a Boolean means obtaining the primitive boolean value from a Boolean instance.

Coercion, or automatic type conversion, occurs when the required type does not match the type of the
incoming value/variable. For example, the attribute of a tag may require an Integer value, but the
input value is a String. Before this conversion can happen, EL will always box a primitive type. The
following sections take a look at the most commonly used coercions to examine what goes on under the
hood.

Coercion to a string

Variable values are coerced to a String type as follows:

1. Box the variable if it is primitive.

2. Usethe toString () method of the wrapping object to obtain the String equivalent.

157
TEAM LING - LIVe, Informative, Non-cost and cenuine!

Chapter 5

Note that null values are returned as a null string, " . This ensures that nothing is rendered in the out-
put if the object value is null. An error will result if the call of tostring () throws an exception.

Coercion to a number

Number types include short, int, float, double, and their boxed types.

Variables of any type are coerced to number types by first boxing them if necessary; then, follow these
steps:
1. Ifthe typeis String, use the valueof () method to get its value; " * (empty string) will return 0.

2. Ifthe type is Character, use new Short ((short) v.charValue()), assuming the Character
variable is called v.

3. Unbox the variable if necessary.

Null values in this case are returned as 0. If the type is a Boolean, an error will result. Numbers can
always be converted successfully among themselves (for example, Integer to Float). If the call to
valueOf () throws an exception, it results in an error.

Coercion to a character

Variable values are coerced to Character type by the following rules:

1. If the type is a Number type, first it is coerced to the type Short; then a Character is returned
that is numerically equivalent to the short value.

2. Ifthe type is String, the method charat (0) is used to obtain the Character. This is essen-
tially the first character of the string.

A null value causes a result of (char) 0. A Boolean incoming type will cause an error.

Best attempt to “do the right thing” without error

It should be clear that the automatic type conversion rules are designed to “do the right thing” in most
circumstances. They will always try directing conversion if possible— for example, converting directly
between the numeric data types.

Null values will always be converted to trivial type-correct values. For example, a null value for a
String type is converted to an empty string, " ". Null is converted to 0 for Numeric type, and (char) 0

to Character type. This enables a JSP to render a null value in most cases, without resulting in an error.

The following Try It Out exercise shows this automatic type conversion in action.

Try It Out Automatic Type Conversion
With ch05 . war deployed, access the following URL with your browser:

http://localhost:8080/ch05/example2/

158
TEAM LING - LIVe, Informative, Non-cost and cenuine!

JSP and EL

The output of this example is illustrated in Figure 5-3.

L Type Conversion Examples - Netscape =1

. Eile Edit Wiew Go Bookmarks Tools Window Help

. @o O @ Q |g hitp-#/localhostE080/ch0S/exampled/ | (G Search | Qgg @
%]

] | % EL Type Conversion Examplas]

EL Type Conversion Examples

The Character value is 't'.
The Character value is '$'.
The Character value is '3".

The Double value is 0.0,
The Deuble value is -3.0.

The Boolean value is false.
The Boolean value is true.
The Boolean value is lalse.
The Boolean value is false.

© = & OF £ |bone == e,
Figure 5-3: EL type conversion examples

In Figure 5-3, each line is the output of a custom tag from a custom tag library. These tags all have a val
attribute that is a different data type. By supplying EL expressions of varying data types for the value of
these attributes, the automatic type conversion feature of EL can be observed.

How It Works

You can find the JSP that produced the output in Figure 5-3 in <Tomcat Installation
Directory>/webapps/ch05/example2/index. jsp. The content of this file is reproduced here:

<%@ taglib prefix="wroxtags" tagdir="/WEB-INF/tags" %>

<html>
<head>
<title>EL Type Conversion Examples</title>
</head>
<body>
<hl>EL Type Conversion Examples</hl>

<wroxtags:CharacterType val="this is it"/>
<wroxtags:CharacterType val="8"/>

159
TEAM LING - LIVe, Informative, Non-cost and cenuine!

Chapter 5

<wroxtags:CharacterType val="3.0001"/>

<wroxtags:DoubleType val=""/>
<wroxtags:DoubleType val="-3"/>

<wroxtags:BooleanType val=""/>
<wroxtags:BooleanType val="true"/>
<wroxtags:BooleanType val="t"/>
<wroxtags:BooleanType val="3.1"/>

</body>
</html>

The custom tags are included in the wroxtags namespace using the initial taglib directive:
<%@ taglib prefix="wroxtags" tagdir="/WEB-INF/tags" %>

All the tags are implemented using the JSP 2.0 tag file mechanism. This allows custom tags to be created
using JSP coding. Tags and tag files are covered in Chapter 11, “Building Your Own Custom JSP Tag
Library.” For now, focus your attention on the type of the tag attribute.

The first tag, <wroxtags:CharacterType>, requires a Character typed val attribute. In the
index. jsp code, a String, an int, and a £loat value are supplied:

<wroxtags:CharacterType val="this is it"/>
<wroxtags:CharacterType val="8"/>
<wroxtags:CharacterType val="3.0001"/>

This will trigger the EL coercion. In the case of the String “this is it”, the charAt (0) method is used,
resulting in a value of 't '. See the earlier section entitled “Coercion to a character” for details. The cor-
responding output from the tag is as follows:

The Character value is 't'.

In the case of the int 8, the number is boxed into an Integer object and coerced into a Short, and then a
Character numerically equal to the Short is returned. The corresponding output from the tag follows:

The Character value is '8'.
In the case of the f1loat 3.001, the number is boxed into a Float object and coerced into Short, and
then a Character numerically equal to the Short is returned. The corresponding output from the tag
follows:

The Character value is '3'.

The next tag is called <wroxtags: DoubleType> and requires a Double typed attribute. The following
JSP code fragment from index. jsp tries to supply the value of various data types:

<wroxtags:DoubleType val=""/>

<wroxtags:DoubleType val="-3"/>

160
TEAM LING - LIVe, Informative, Non-cost and cenuine!

JSP and EL

The first line supplies an empty string as the value. According to the “Coercion to number” section ear-
lier, an " " (empty string) will result in a numeric value of 0. The resulting output is as follows:

The Double value is 0.0.

The second line supplies an integer value of -3. This Numeric type is boxed and converted to Double,
resulting in the following output:

The Double value is -3.0.

The last tag is called <wroxtags:BooleanType> and requires a Boolean typed attribute. The code in
index. jsp tries to assign the attribute with values of different data types:

<wroxtags:BooleanType val=""/>
<wroxtags:BooleanType val="true"/>
<wroxtags:BooleanType val="t"/>
<wroxtags:BooleanType val="3.1"/>

If you consult the JSP 2.0 specification, you will find that the coercion uses the Boolean.valueOf ()
method to obtain the value. The API documentation of this method basically says that only the text
string "true" can be coerced into the Boolean value of true. Any other data type (except boolean or
Boolean, of course) or value will result in false. Therefore, the following output results from the
preceding JSP fragment:

The Boolean value is false.

The Boolean value is true.

The Boolean value is false.

The Boolean value is false.
For completeness, and the more curious readers, the rest of this section examines the tag’s source code.
The source code to the tag files can be located at <Tomcat Installation
Directory>/webapps/ch05/WEB-INF/tags. The CharacterType. tag file contains the following

source code:

<%@attribute name="val" type="java.lang.Character" %>
The Character value is 'S${val}'.

The DoubleType. tag file contains this source code:

<%@ attribute name="val" type="java.lang.Double" %>
The Double value is ${val}.

The BooleanType. tag file contains this source code:

<%@ attribute name="val" type="java.lang.Boolean" %>
The Boolean value is ${val}.

This concludes our examination of the second Try It Out exercise and EL’s automatic type conversions.

161
TEAM LING - LIVe, Informative, Non-cost and cenuine!

Chapter 5

The EL named variables refer to scoped attributes. Frequently, these attributes are Java objects or beans
that have various properties. Occasionally, an attribute may be a Java collection that can be iterated
through to obtain contained values. The following section examines how EL can be used to access prop-
erties of Java objects and collections.

Accessing Object Properties
and Collections

When using EL to address the properties of a named variable, the “.” or “[1” (square brackets) opera-
tors are used. For example, consider the following JSP fragment:

You must earn ${member.minQual} points to maintain your membership.
If the member named variable refers to a JavaBean, its minQual property is read and substituted. Of
course, the property must exist and be readable. The getMinQual () method of the underlying JavaBean
will be invoked to obtain the property value.
With EL, the preceding syntax is completely interchangeable with the following:

You must earn ${member["minQual"]} points to maintain your membership.

In addition to JavaBeans, the preceding syntax can also be used to address the following Java object
types:

U Map
0 List
d Array

For example, the expression $ {pointsArray[8]} refers to the ninth element of the pointsArray array.

For a more complex data structure, consider a named variable (a JavaBean) called car that has a prop-
erty called door, which is in turn a JavaBean that has a property called color thatis a String type. The
EL expression that accesses the color of the door will be $ {car.door.color}. The ". " operator can be
used to access nested properties in this way.

For another example, consider a named variable (a JavaBean) called newsfeed. This named variable has
a property (a Java HashMap) called temp containing world temperatures. This map consists of entries
that map city names to their current temperatures. For example, { "Hong Kong" , "28 C"} may be an
entry in this map, and { "Mumbai", "30 C"} may be another. Using EL, the temperature of Hong Kong
can be referred to via $ {newsfeed. temp ["Hong Kong"] }. The temperature of Mumbai can be accessed
via the EL expression $ {newsfeed. temp.Mumbai}.

Occasionally, you may need to work with an attribute attached to a JSP implicit scope object that may
have a name containing the ”.” character, other special characters, or even characters from foreign

162
TEAM LING - LIVe, Informative, Non-cost and cenuine!

JSP and EL

character sets. In this case, the [1 notation is your only choice. For example, to obtain the value of an
attribute named "javax.security.password" attached to the request scope, you must use the EL
expression ${requestScope["javax.security.password"]}. The EL implicit object,
requestScope, will be covered shortly in this chapter.

Time to see this in action. The next Try It Out example illustrates nested property access and the equiva-
lence of the ". * and " [] " notations.

Try ltOut | EL Access to Nested Properties
With cho05 . war deployed, point your browser to the following URL:

http://localhost:8080/ch05/example3/

This example uses a NewsFeed Java object similar to the one used in the Chapter 2 portal example. EL is
used to access the properties of this newsfeed object. The output of this page is shown in Figure 5-4.

=10l x|

zcess and Nested Properlies Examples - Netscape

. Eile Edit Wiew Go Bookmarks Tools Window Help

B 00 Q Q Q [% nitprincalnost 8080/chDS/exampleds | (G Search | Cgo @
%]

] | % EL Property Access and Nestad Pmp...]

EL Property Access and Nested Properties Examples

Mews headline is JSP Programmer Won 10 Million in Lottery.
Entertainment headline is Reality TV Show Eatings Falling,
The weather in Tokyo right now is 18 C.

The weather in Mumbal right now is 30 C

The weather in Hong Kong right now is 28 C.

S A of 0o [== = |
Figure 5-4: EL property access and nested properties examples

In Figure 5-4, the news headline and entertainment headline are shown, as well as the current tempera-
ture in three cities.

163
TEAM LING - LIVe, Informative, Non-cost and cenuine!

Chapter 5

How It Works

The index. jsp that produced the output in Figure 5-4 is located at <Tomcat Installation
Directory>/webapps/ch05/example3/index. jsp. The content of this file is reproduced here

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<jsp:useBean id="newsfeed" class="com.wrox.begjsp.ch5.NewsFeed" scope="page" />
<html>
<head>
<title>EL Property Access and Nested Properties Examples</title>
</head>
<body>
<hl1>EL Property Access and Nested Properties Examples</hl>

<jsp:setProperty name="newsfeed" property="topic" value="news"/>
News headline is ${newsfeed.value}.

<jsp:setProperty name="newsfeed" property="topic" value="entertainment"/>
Entertainment headline is ${newsfeed["value"]}.

<jsp:setProperty name="newsfeed" property="topic" value="weather"/>
The weather in Tokyo right now is ${newsfeed.values.Tokyo}.

The weather in Mumbai right now is ${newsfeed["values"].Mumbai}.

The weather in Hong Kong right now is ${newsfeed.values|["Hong Kong"]}.

</body>
</html>

As a refresher, recall from Chapter 2 that the NewsFeed object can be used as follows:

Q First set the topic property to either news or entertainment, and then read the value prop-
erty for the headline of the news or entertainment section.

Q First set the topic property to weather, and then read the values property for the tempera-
ture of various cities.

In this case, the values property for reading the weather information is actually a Java Map, with the
name of the city as the key and the temperature of the city as the value.

First, an instance of the NewsFeed object is created by the standard <jsp:useBean> action:
<jsp:useBean id="newsfeed" class="com.wrox.begjsp.chb5.NewsFeed" scope="page" />

This action creates a page scoped attribute that is accessible as an EL named variable, via the name
newsfeed. The newsfeed named variable can immediately be used in EL expressions.

To print out the news headline, first the topic property of newsfeed is set to news; then the value
property is read to get the headline. This is done via the following JSP code, involving the
<jsp:setProperty> standard action and an inline EL expression:

<jsp:setProperty name="newsfeed" property="topic" value="news"/>
News headline is ${newsfeed.value}.

164
TEAM LING - LIVe, Informative, Non-cost and cenuine!

JSP and EL

Note that the $ {newsfeed.value} expression is used to access the value property of the newsfeed
JavaBean. The resulting HTML output is as follows:

News headline is JSP Programmer Won 10 Million in Lottery.

To print out the entertainment headline, the exact same approach is used. This time, the topic property
is set to entertainment and the value property is read to get the headline. The following JSP code
from index. jsp is responsible for this:

<jsp:setProperty name="newsfeed"
Entertainment headline is ${newsfeed["value"]}.

property="topic" value="entertainment"/>

Note that the $ {newsfeed["value"]} EL expression is used to access the entertainment headline. As
mentioned earlier, this is entirely equivalent to the expression $ {newsfeed.value} used to fetch the
news headline. The resulting HTML output is as follows:

Entertainment headline is Reality TV Show Ratings Falling.

To access the weather information, a more complex data structure needs to be accessed. This is the

values property of the newsfeed object. Figure 5-5 shows this Java data structure.

newsfeed
(JavaBean)

..has property..

topic
write only property

value

Figure 5-5: Newsfeed data structure

read only property

value

read only property

E HashMap

Key Value
sa. | Hong Kong 28C

t | Mumbai 30¢C

i Toyko 18 C

In Figure 5-5, the values property is a readable property of the newsfeed JavaBean. This property is
accessible only after the topic is set to weather. The property itself is a Map. The key of the map is the
name of the cities, and the associated value is the temperature.

TEAM LING - LIVe, Informative, Non-cost and cenuine!

165

Chapter 5

The following code in the index. jsp file used in this example will access and print out the cities and
their temperature:

<jsp:setProperty name="newsfeed" property="topic" value="weather"/>

The weather in Tokyo right now is ${newsfeed.values.Tokyo}.

The weather in Mumbai right now is ${newsfeed["values"].Mumbai}.

The weather in Hong Kong right now is ${newsfeed.values["Hong Kong"]}.

The EL expression $ {newsfeed.values.Tokyo} is used to access the temperature in Tokyo; note the
nested property access using the . operator. As a variation, the temperature of Mumbeai is accessed using the
EL expression $ {newsfeed["values"] .Mumbai}; of course, this is entirely equivalent to the EL expression
${newsfeed.values.Mumbai}. You may want to try changing it and see for yourself. Finally, the tempera-
ture in Hong Kong is displayed using the EL expression $ {newsfeed.values["Hong Kong"] }. Because
there is a space character in the city name, this is the most convenient way of accessing the temperature

value. Executing the previous JSP fragment will result in all the temperatures being displayed via the
following HTML:

The weather in Tokyo right now is 18 C.

The weather in Mumbai right now is 30 C.

The weather in Hong Kong right now is 28 C.

For those curious to see the Java source code of NewsFeed. java, especially the complex values property,
it is located at <Tomcat Installation Directory>/webapps/ch05/WEB-INF/classes/com/wrox/
begjsp/ch5/NewsFeed. java, and is reproduced here:

package com.wrox.begjsp.ch5;

import java.beans.*;
import java.util.*;

public class NewsFeed extends Object implements java.io.Serializable
{

private String topic;

private String value;

private HashMap values;

public NewsFeed()
{
}

public void setTopic(String topic)
{

value = "";

values = null;

if (topic.equals("news"))

{

value = "JSP Programmer Won 10 Million in Lottery";

166

TEAM LING - LIVe, Informative, Non-cost and cenuine!

JSP and EL

}

if (topic.equals("entertainment"))
{
value = "Reality TV Show Ratings Falling";

if (topic.equals("weather"))

{

values = new HashMap () ;

values.put ("Mumbai", "30 C");
values.put ("Tokyo", "18 C");
values.put ("Hong Kong", "28 C");

}

public String getValue()
{

return this.value;

}

public Map getValues ()
{

return this.values;

}

This concludes the coverage of this Try It Out example and EL-based property access.

When named variables were discussed earlier, you learned that EL will first try to match a name to EL
implicit objects before attributes attached to scoping objects are checked. Now is a good time to take a
look at the set of available EL implicit objects and how you can use them.

Implicit EL Objects in JSP 2.0

Implicit objects in EL are available to the JSP developer, within an EL expression, without any explicit
coding or declarations. Implicit objects are designed to facilitate JSP programming and make the most
common aspects of a JSP page immediately available to code written in EL.

There are a total of 11 implicit objects. These 11 implicit objects can be classified into five major categories:

Q

Q
Q
Q
a

JSP implicit object

Convenience scoping access implicit objects
Convenience parameter access implicit objects
Convenience header access implicit objects

The convenience initialization parameter access implicit object

167
TEAM LING - LIVe, Informative, Non-cost and cenuine!

Chapter 5

The only EL implicit object in the JSP implicit object category is the pageContext implicit object. This is
the very same object as the JSP implicit object of the same name (JSP implicit objects and their use are
covered later in Chapter 9, “JSP and JavaBeans”). The rest of the EL implicit objects are Java maps, and
they simply provide easier means for accessing certain properties of the pageContext implicit object.

There are four convenience scoping access implicit objects, called pageScope, requestScope,
sessionScope, and applicationScope. These are maps that enable easy access to scoped attributes.
For example, an attribute called username attached to the request scope can be accessed directly via
the EL expression $ {requestScope.username}.

There are two convenience parameter access implicit objects for accessing the HTTP request parameters
(the form submission parameters): param and paramvalues. The param is a map used to access single-
valued parameters, and paramvalues can be used to access parameters that may contain multiple val-

ues. The next Try It Out example shows how this is handled.

There are three convenience header access implicit objects for accessing the HTTP headers: header,
headerValues, and cookie. These are maps that are useful in cases where you may need raw access to
HTTP header and/or cookies.

There is one convenience initialization parameter access implicit object, initParam. This map can be
used to access the value of initialization parameters, typica