
TEAM LinG - Live, Informative, Non-cost and Genuine!

Beginning JavaServer Pages™

01_57485x ffirs.qxd 1/18/05 11:01 PM Page i

TEAM LinG - Live, Informative, Non-cost and Genuine!

01_57485x ffirs.qxd 1/18/05 11:01 PM Page ii

TEAM LinG - Live, Informative, Non-cost and Genuine!

Beginning JavaServer Pages™

Vivek Chopra
Sing Li

Rupert Jones
Jon Eaves

John T. Bell

01_57485x ffirs.qxd 1/18/05 11:01 PM Page iii

TEAM LinG - Live, Informative, Non-cost and Genuine!

Beginning JavaServer Pages™
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2005 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 0-7645-7485-X

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1B/QT/QS/QV/IN

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or
authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood
Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be
addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317)
572-3447, fax (317) 572-4355, e-mail: brandreview@wiley.com.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REP-
RESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CON-
TENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CRE-
ATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CON-
TAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A
COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION
OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FUR-
THER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFOR-
MATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE.
FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE
CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services or to obtain technical support, please contact our Cus-
tomer Care Department within the U.S. at (800) 762-2974, outside the U.S. at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

Library of Congress Cataloging-in-Publication Data

Beginning JavaServer pages / Vivek Chopra ... [et al.].
p. cm.

Includes index.
ISBN 0-7645-7485-X (paper/website)
1. JavaServer pages. 2. Web sites--Design. 3. Web site development. I. Chopra, Vivek.
TK5105.8885.J38B45 2005
006.7 6--dc22

2004024591

Trademarks: Wiley, the Wiley Publishing logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade
dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States
and other countries, and may not be used without written permission. JavaServer Pages is a trademark of Sun
Microsystems, Inc. All other trademarks are the property of their respective owners. Wiley Publishing, Inc., is not
associated with any product or vendor mentioned in this book.

01_57485x ffirs.qxd 1/18/05 11:01 PM Page iv

TEAM LinG - Live, Informative, Non-cost and Genuine!

www.wiley.com

About the Authors
Vivek Chopra has over ten years of experience as a software developer, architect, and team lead, with
extensive experience with Web services, J2EE, and middleware technologies. He has worked and con-
sulted at a number of Silicon Valley companies and startups and has (pending) patents on Web services.
Vivek actively writes about technology and has coauthored half a dozen books on topics such as open-
source software, Java, XML, and Web services. He contributes to open source, too, and has developed
parts of the uddi4j library, an open-source Java API for UDDI.

Sing Li, first bit by the microcomputer bug in 1978, has grown up with the microprocessor age. His first
personal computer was a do-it-yourself Netronics COSMIC ELF computer with 256 bytes of memory,
mail-ordered from the back pages of Popular Electronics magazine. Currently, Sing is a consultant, system
designer, open-source software contributor, and freelance writer. He writes for several popular technical
journals and e-zines and is the creator of the Internet Global Phone, one of the very first Internet phones
available. He has authored and coauthored numerous books across diverse technical topics, including
JSP, Tomcat, servlets, XML, Jini, and JXTA.

Rupert Jones is a Technical Lead for J2EE projects at Internet Business Systems. Over the past six years,
Rupert has provided software development and consulting services for blue-chip companies, both in
Australia and internationally. He lives and works in Melbourne, Australia. Rupert can be contacted at
rup@rupertjones.com.

Jon Eaves has been developing software in a variety of languages and domains for over 15 years. He is
currently employed by ThoughtWorks, developing large-scale enterprise systems using J2EE. When he
can find spare time, he develops J2ME/MIDP applications and works on the BouncyCastle Crypto APIs
(www.bouncycastle.org). Jon can be reached at jon@eaves.org.

John T. Bell has more than 20 years of software development experience and currently serves as the lead
software architect for the Web site of a major hospitality company based in Bethesda, Maryland. He is
also an adjunct professor, teaching server-side Java technologies for the Center for Applied Information
Technology at Towson State University. He has a master’s degree in Computer Systems Management
and a bachelor’s degree in Electrical Engineering, both from the University of Maryland. This is Mr.
Bell’s third contribution to a Wrox title. He is also the author of The J2EE Open Source Toolkit.

01_57485x ffirs.qxd 1/18/05 11:01 PM Page v

TEAM LinG - Live, Informative, Non-cost and Genuine!

Credits
Acquisitions Editor
Robert Elliott

Development Editor
Sydney Jones

Technical Editor
Wiley-Dreamtech India Pvt Ltd

Production Editor
William A. Barton

Copy Editor
Luann Rouff

Editorial Manager
Mary Beth Wakefield

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Publisher
Joseph B. Wikert

Project Coordinator
April Farling

Graphics and Production Specialists
Jonelle Burns
Carrie A. Foster
Lauren Goddard
Denny Hager
Joyce Haughey
Amanda Spagnuolo

Quality Control Technicians
Jessica Kramer
Susan Moritz
Carl William Pierce
Charles Spencer

Media Development Specialist
Kit Malone

Proofreading and Indexing
TECHBOOKS Production Services

01_57485x ffirs.qxd 1/18/05 11:01 PM Page vi

TEAM LinG - Live, Informative, Non-cost and Genuine!

Acknowledgments
Vivek Chopra

I’d like to thank my coauthors and all the folks at Wrox for the effort and the long hours—thank you,
Rupert, Sing, Jon, John, Sydney, James, and Bob! I’d especially like to thank my wife, Rebecca, for her
patience and support, especially since I spent most weekends working on this book.

Sing Li

Thanks to the virtual Beginning JavaServer Pages team, top professionals from all corners of the globe.
It was wonderful working with you throughout 2003 and 2004.

To my wife, Kim—your inspiration and support are the high-octane fuel that keeps me running, looking
joyfully forward to each brave new day.

Rupert Jones

First of all, I’d like to thank my coauthors for their dedication to this book. It’s not easy holding down a
full-time job in this industry and fitting in time for such a venture. I am constantly amazed we all still
have friends and family who will talk to us, let alone recognize us. It’s been a pleasure undertaking this
task with a group of such consummate professionals.

To the Wrox crew—in particular, Sydney Jones, our developmental editor, and our tech reviewers at
DreamTech—thanks for all your hard work in getting us across the line. I know its difficult working
with technical people at the best of times, especially when they are geographically remote.

Thanks also to my colleagues at Internet Business Systems: Steve Hayes, Rob Mitchell, and Shane
Clauson. These guys provided me with much-needed help, advice, and encouragement, even in my
grumpier moments. It really is a pleasure to work with each of you.

And last but certainly not least, thanks to my loving family: Julia, Michael, Nick, and Caroline.

Jon Eaves

I’d like to thank my coauthors and the team at Wrox for the hard work they put in while creating this
book. Closer to home, I’d like to thank my family for their encouragement, patience, and support. Mum
and Dad, everything I can do is because of your love. My wonderful wife, Sue, you rock my world more
and more every day. Boo and Maddy, your purring late at night kept me going when the words
wouldn’t come. Thank you, all.

John T. Bell

To Tammy, my loving and patient wife, maybe someday I will write a book that you can read, and to my
grandmother, Valmai Locklair, who slipped away from us as I was writing my chapters.

01_57485x ffirs.qxd 1/18/05 11:01 PM Page vii

TEAM LinG - Live, Informative, Non-cost and Genuine!

01_57485x ffirs.qxd 1/18/05 11:01 PM Page viii

TEAM LinG - Live, Informative, Non-cost and Genuine!

Contents

About the Authors v
Acknowledgments vii

Introduction xxv

The Right Way to Do Web Development xxv
Approach xxvi
How This Book Is Structured xxvi
Conventions xxix
Source Code xxx
Errata xxx
p2p.wrox.com xxx

Part I: JSP Fundamentals 1

Chapter 1: Getting Started with JavaServer Pages 3

Creating Applications for the Internet 4
Limitations of the basic Web server model 5
Dynamic HTML generation via CGI 5
Shortcomings of CGI 7
Improving Java-based CGI: servlets 7

Summary 28
Exercises 29

Chapter 2: JSP Basics 1: Dynamic Page Creation for Data Presentation 31

The Anatomy of a JSP Page 31
Directives 32
XML-compatible syntax 33
Template data 33
Action 34
Scripting elements 35
Handling HTML form submission with JSP 36
Web site personalization 60

Summary 70
Exercises 71

02_57485x ftoc.qxd 1/18/05 11:01 PM Page ix

TEAM LinG - Live, Informative, Non-cost and Genuine!

x

Contents

Chapter 3: JSP Basics 2: Generalized Templating and Server Scripting 73

Scripting Elements for Java Code Embedding 74
Scripting elements 75

Creating a Simple Web Storefront 80
Attaching attributes to implicit objects 86
Rendering the list of categories 88
Rendering the list of products in a given category 89

Adding a Shopping Cart to a Catalog 90
Creating the Shopping Cart 95

Decoding incoming request parameters 97
Rendering order information 98
Rendering the Return to Shopping hyperlink 98
Shopping cart limitations 99
Overcoming the shopping cart limitations 100
Sessions and JSPs 107
Rendering the shopping cart using a session attribute 111

Summary 114
Exercises 115

Chapter 4: CSS, JavaScript, VBScript, and JSP 117

Code Elements That Execute
on the Client Side 118

Cascading Stylesheets 119
JavaScript 120
VBScript 121

User Preference Implementation 121
Creating a User-Customizable DHTML Menu 132
Summary 143
Exercises 144

Chapter 5: JSP and EL 145

EL and Its Vital Role in JSP 146
EL Named Variables 146
Applying EL 148

Using EL expressions inline with template data 148
Using EL expressions in attribute values 148

Coercion: Automatic Type Conversion 157
Boxing and unboxing 157
Coercion to a string 157
Coercion to a number 158

02_57485x ftoc.qxd 1/18/05 11:01 PM Page x

TEAM LinG - Live, Informative, Non-cost and Genuine!

xi

Contents

Coercion to a character 158
Best attempt to “do the right thing” without error 158

Accessing Object Properties and Collections 162
Implicit EL Objects in JSP 2.0 167
User-Supplied Functions within EL 173

Namespace and EL functions 173
Static methods of a Java class 173

Summary 177
Exercises 178

Chapter 6: JSP Tag Libraries and JSTL 179

The Vital Role of JSP Tag Libraries 180
The JSP Standard Tag Library 181
Anatomy of a Tag Library 182

The Tag Library Descriptor 182
The taglib map in the web.xml deployment descriptor 183
Locating JSTL and understanding tag library packaging 184
JSTL tags 184

Summary 210
Exercises 211

Chapter 7: JSP Directives 213

Directive Basics 214
Directives as instructions for the container 214
Alternative XML syntax for directives 214
Available JSP directives 215

The page Directive 217
The language attribute 217
The extends attribute 217
The import attribute 218
The session attribute 218
The info attribute 219
The isELIgnored attribute 219
The isErrorPage attribute 219
The errorPage attribute 220
The contentType attribute 220

The taglib Directive 223
Two general usage forms for the taglib directive 224
Attributes of the taglib directive 225
How It Works 227

02_57485x ftoc.qxd 1/18/05 11:01 PM Page xi

TEAM LinG - Live, Informative, Non-cost and Genuine!

xii

Contents

The include Directive 231
The include performed at translation time 231

Summary 239
Exercises 239

Chapter 8: JSP Standard Actions 241

JSP Standard Actions Are Built-in Tags 242
Actions for Working with JavaBeans 242

The <jsp:useBean> standard action 243
How <jsp:useBean> and JSTL <c:set> Differ 258

Including JSP Output via <jsp:include> 259
Transferring Control Between JSPs 264

The <jsp:forward> standard action 264
Specifying Parameters for Other Actions 265

The <jsp:param> standard action 265
Working with Plug-ins 266

The <jsp:plugin> standard action 267
The <jsp:params> standard action 267
The <jsp:fallback> standard action 268

Standard Actions Specific to Tag Files 273
Summary 274
Exercises 274

Chapter 9: JSP and JavaBeans 275

Anatomy of a JavaBean 276
JavaBean Properties 277
JavaBean methods 280
Common JavaBean packaging 281

How JavaBeans and EJBs Differ 301
Summary 301
Exercises 302

Chapter 10: Error Handling 303

Understanding the Origin of Errors 303
Errors in Java language coding 304
Errors in JSP directives and actions 309
JSTL errors and EL errors 326
User data-input errors 327
Errors found in JSP template data 327

02_57485x ftoc.qxd 1/18/05 11:01 PM Page xii

TEAM LinG - Live, Informative, Non-cost and Genuine!

xiii

Contents

Summary 328
Exercises 328

Chapter 11: Building Your Own Custom JSP Tag Library 329

What Is a Tag File? 329
A Simple Tag File: Displaying Today’s Date 330
Advantages of Tag Files 331

Code reuse 331
Hiding complexity 331
Separation of concerns 331
Simplicity 332
Flexible packaging 332

Developing Tag Files 332
Scope and implicit objects 332
Using directives in tag files 335
Body processing 341
Attributes 345

Packaging Tag Files 355
Java custom actions versus tag file custom actions 358

Summary 359
Exercises 359

Chapter 12: Advanced Dynamic Web Content Generation 361

Data Validation in Web Applications 362
Server-side validation and efficient usage of resources 363
Client-side data validation 364
The need for server-side validation 365
Common client-side validation scenarios 365
Operation of client-side validation 365
Dynamic generation of client-side JavaScript code 379
Dynamic generation of XML using JSP 386

Summary 392
Exercises 393

Chapter 13: Internationalization and Localized Content 395

About Internationalization-Ready Applications 396
Internationalization and Localization 396

The unique i18n requirements of a Web-based JSP application 397

02_57485x ftoc.qxd 1/18/05 11:01 PM Page xiii

TEAM LinG - Live, Informative, Non-cost and Genuine!

xiv

Contents

Building on the Java Platform’s i18n Capabilities 399
The concept of a locale 399
Maintaining locale information 400

Summary 433
Exercises 434

Chapter 14: JSP Debugging Techniques 435

The Science of Debugging 436
Catching Bugs at Compile Time 437
Using a Debugging System versus a Production System 441
Using System.out.println() to Instrument Code 442
Using a Logging System 445

Logging through the servlet container 445
Logging with the JDK logger 447
Logging with Log4j 454
Logging with tag libraries 460

Debugging with Tools 464
Setting breakpoints 464
Examining variables and setting watchpoints 467
Stepping through code 468
Remote debugging 468

Debugging Code in Production Environments 469
Debugging when the JSP is precompiled 470
Debugging under load 470
Adding contextual information to log files 471
Adding log filters 474

Finding the Intermittent Problem 474
Adding information as response comments 474
Snoop application 475

Avoiding Concurrency Issues 479
Summary 479
Exercises 479

Part II: JSP and Modern Web Server
Software Development 481

Chapter 15: JSPs and Servlets 483

A JSP Is a Servlet 484
Anatomy of a servlet 488
The lifecycle of a servlet 492

02_57485x ftoc.qxd 1/18/05 11:01 PM Page xiv

TEAM LinG - Live, Informative, Non-cost and Genuine!

xv

Contents

Describing servlets to containers in the deployment descriptor 495
The servlet declaration 497
Using servlets when JSP is available 503
Specifying initialization parameters 504
Accessing initialization parameters within the ControllerServlet 506
Custom forwarding of incoming requests via the controller servlet 508
The forwarding targets 509

Summary 510
Exercises 510

Chapter 16: The Role of JSP in the Wider Context: Web Applications 511

What Is a Web Application? 512
Directory Structure for a Web Application 512
The Deployment Descriptor 513

Deployment descriptor elements for a JSP developer 513
Using a Web Archive 523
Development and Deployment Strategies 523
Packaging and Deploying for Tomcat 524

Introduction to Web application security 528
Summary 529
Exercises 530

Chapter 17: Model View Controller 533

What Is MVC? 534
MVC and Web Applications 534
Summary 546
Exercise 547

Chapter 18: Web Frameworks 549

What Is a Framework? 549
Why Frameworks Are Good 550
Types of Frameworks 551

Application frameworks 551
Persistence frameworks 552
Utility frameworks 553

WebWork 554
Components of WebWork 554

02_57485x ftoc.qxd 1/18/05 11:01 PM Page xv

TEAM LinG - Live, Informative, Non-cost and Genuine!

xvi

Contents

The Spring Framework 567
Main components of the Spring MVC 567
An example using Spring 569

Summary 589
Exercises 590

Chapter 19: Struts Framework 591

Introducing Struts 592
A Struts walkthrough 593
Controller: actions and forms 594
Model 603
View 604
Example application 624

Summary 641
Exercises 641

Chapter 20: Layout Management with Tiles 643

Introduction to Tiles 643
What is the Tiles framework? 644
Tiles terminology 645
Installing Tiles 646

Tile Scope 650
Definitions 650
Tiles Tags 652

insert 653
definition 654
put 654
putList 655
add 656
get 656
getAsString 656
useAttribute 657
importAttribute 657
initComponentDefinitions 658

Passing Parameters to Tiles 658
Advanced Tiles 659

Definitions and inheritance 659
Nesting tiles 664

02_57485x ftoc.qxd 1/18/05 11:01 PM Page xvi

TEAM LinG - Live, Informative, Non-cost and Genuine!

xvii

Contents

Tiles and Struts 671
Configuring Tiles with Struts 671
Tiles definitions as action forwards 671
Passing values from Struts to Tiles 673

Summary 678
Exercises 679

Chapter 21: JavaServer Faces 681

Configuring a JSF Project 681
Getting Started with JSF 683

Using backing beans 685
Managed beans 687
Controlling navigation 687
Preventing direct access to Faces JSP files 690

JSF Lifecycle 690
Restore view 692
Apply request values 692
Process validations 692
Update model values 692
Invoke application 693
Render response 693

Validating Data 693
Using standard validators 697
Creating your own validation 697

Converting Data 705
Standard converters 711
Implementing the Converter interface 713

Handling Events with Listeners 715
JSF versus Struts 718
Summary 719
Exercises 719

Chapter 22: JSP in J2EE 721

Overview of J2EE 721
What is J2EE? 722
What does a container do? 724

J2EE Technologies 724
J2EE APIs 725
J2EE platform architecture 727
JSP development scenarios 728

02_57485x ftoc.qxd 1/18/05 11:01 PM Page xvii

TEAM LinG - Live, Informative, Non-cost and Genuine!

xviii

Contents

Using JSP with J2EE Components 729
Servlets 730
JNDI 735
JDBC 738

EJB 741
Benefits of EJB 742
Restrictions on EJB 742
Types of EJB 743
Session beans 743
Entity beans 744
Message-driven beans 745
Timer Service 745

Summary 746
Exercises 746

Chapter 23: Access to Databases 747

Introduction to Databases 748
Connecting to a database 749
Downloading and Installing MySQL 752
JDBC APIs 753

Building Applications 774
Data characteristics 774
Transactions 775
Object-relational mapping 777

Different Types of Applications 777
Simple applications 778
Using JSP and JDBC 778
More complex applications 782

Using Hibernate 782
Installing Hibernate 784

Summary 823

Chapter 24: Security 825

Areas of Security 825
Authentication 826
Authorization 828
Data integrity 830
Confidentiality 830

Data Integrity and Confidentiality 830
Implementing SSL 831

02_57485x ftoc.qxd 1/18/05 11:01 PM Page xviii

TEAM LinG - Live, Informative, Non-cost and Genuine!

xix

Contents

Authentication 837
HTTP BASIC authentication 837
Form-based authentication 843
Client-certificate authentication 849

Authorization 855
Container 855
Programmatic 855

Summary 860
Exercises 860

Chapter 25: Performance 861

Performance Concepts 861
What to measure 862
The user’s perspective 863
How to measure performance 863
What to do after performance testing 865

Measuring Performance Using JMeter 866
Installing JMeter 866
JMeter concepts 866

Performance Tuning Tips 872
Development-time measures 872
Deployment-time measures 875

Summary 883

Chapter 26: Best Practices and Tools 885

Development Methodologies 886
Waterfall and iterative methodologies 886
Rational Unified Process 888
Extreme Programming 888
Test-driven development 889
Feature-driven development 890

Development Tools 890
Version-control tools 890
Build tools 890
Testing tools 891
Logging tools 891
Tools for enforcing coding standards 891

Apache Ant 892
Installing Ant 892
Ant concepts 893
Additional resources 903

02_57485x ftoc.qxd 1/18/05 11:01 PM Page xix

TEAM LinG - Live, Informative, Non-cost and Genuine!

xx

Contents

CVS 903
Installing CVS 903
CVS concepts 903
Connecting to a CVS server 904
Checking in code 905
Checking out code 906
Comparing changes across revisions 906
Additional resources 907

JUnit 907
Installing JUnit 907
JUnit concepts 908
Additional resources 915

HttpUnit 915
Installing HttpUnit 915
HttpUnit concepts 916
Additional resources 919

Best Practices for Web Development 919
Follow good JSP coding practices 919
Separate application logic and presentation 920
Use design patterns where appropriate 920
Use frameworks for developing applications 921
Early testing and integration 921

Summary 921
Exercises 922

Part III: Spreading Your New Wings:
Applying JSP in the Real World 923

Chapter 27: JSP Project I: Personalized Portal 925

The Portal Project 925
Introduction to RSS 926
Introduction to Web services 929

Project Features 930
Use cases 931
Initial analysis 931

The Application Design 932
Designing the persistent store 932
Defining the key entity objects 935
Designing the Web site control flow 944

02_57485x ftoc.qxd 1/18/05 11:01 PM Page xx

TEAM LinG - Live, Informative, Non-cost and Genuine!

xxi

Contents

The Development Environment 945
Directory structure 946
Build scripts 947
Struts 949
Tiles 950
Log4j 951
Rome 953
Apache Axis 956

The Application 958
View 959
Controller 966
Running the portal application 975

Summary 981
Exercises 981

Chapter 28: JSP Project II: Shopping Cart Application 983

The Bookstore Project 984
Project features 984
Use cases 984
Initial analysis 985

Application Design 986
Database design 986
Defining the key entity objects 989

The Development Environment and Its Configuration 1008
Directory structure 1009
Tomcat 1010
Ant 1010
Database 1016
Hibernate 1016
Struts, Validator, and Tiles 1022
web.xml 1023

The Application 1024
Application layout: Tiles 1024
Cart status 1026
Presenting a list of categories 1028
Presenting a list of books 1030
Adding a book to the shopping cart 1034
Managing the shopping cart 1036
Checkout 1042

Summary 1055
Exercises 1055

02_57485x ftoc.qxd 1/18/05 11:01 PM Page xxi

TEAM LinG - Live, Informative, Non-cost and Genuine!

xxii

Contents

Part IV: Appendixes 1057

Appendix A: JSP Syntax Reference 1059

Scoping 1060
page scope 1060
request scope 1061
session scope 1061
application scope 1061

Implicit Objects 1062
The request object 1062
The response object 1062
The pageContext object 1063
The session object 1063
The application object 1064
The out object 1064
The config object 1065
The page object 1065
The exception object 1065

Directives 1066
The page directive 1066
The taglib directive 1067
The include directive 1067
Tag file directives 1068

Actions 1070
Standard actions 1070
Other JSP standard actions 1074

Scripting Elements 1075
Declaration scripting elements 1075
Scriptlets 1075
Expression scripting elements 1076

Appendix B: JSP Expression Language Reference 1077

EL Expressions 1077
EL expressions in-line with template data 1077
EL expressions in attribute values 1078

Accessing Arrays, Maps, Object Properties, and Collections 1078
Object properties access 1078
Array member access 1078
Java map access 1078
Java collection access 1079

02_57485x ftoc.qxd 1/18/05 11:01 PM Page xxii

TEAM LinG - Live, Informative, Non-cost and Genuine!

xxiii

Contents

Elements of EL Expressions 1079
Named variables 1079
Literals 1079
Operators 1080
Operator precedence 1081
Functions 1082

Type Conversions 1083
Coercion: automatic type conversion 1083

Implicit Objects 1084
The pageContext implicit object 1084
The pageScope implicit object 1085
The requestScope implicit object 1085
The sessionScope implicit object 1085
The applicationScope implicit object 1086
The param implicit object 1086
The paramValues implicit object 1086
The header implicit object 1087
The headerValues implicit object 1087
The cookies implicit object 1087
The initParam implicit object 1087

Appendix C: JSTL Reference 1089

JSTL Core Tags 1089
catch 1090
choose 1091
if 1091
import 1092
forEach 1092
forTokens 1093
out 1094
otherwise 1095
param 1095
redirect 1095
remove 1096
set 1096
url 1097
when 1098

JSTL XML Tags 1098
choose 1099
forEach 1100
if 1100

02_57485x ftoc.qxd 1/18/05 11:01 PM Page xxiii

TEAM LinG - Live, Informative, Non-cost and Genuine!

xxiv

Contents

otherwise 1101
out 1101
param 1102
parse 1102
set 1103
transform 1104
when 1105

JSTL Formatting Tags 1105
bundle 1106
formatDate 1106
formatNumber 1107
message 1108
param 1109
parseDate 1109
parseNumber 1110
requestEncoding 1111
setBundle 1111
setLocale 1112
setTimeZone 1112
timeZone 1113

JSTL SQL Tags 1113
dateParam 1114
param 1114
query 1115
setDataSource 1116
transaction 1116
update 1117

JSTL Functions 1118
contains 1119
containsIgnoreCase 1119
endsWith 1119
escapeXml 1120
indexOf 1120
join 1120
length 1120
replace 1120
split 1121
startsWith 1121
substring 1121

02_57485x ftoc.qxd 1/18/05 11:01 PM Page xxiv

TEAM LinG - Live, Informative, Non-cost and Genuine!

xxv

Contents

substringAfter 1121
substringBefore 1122
toLowerCase 1122
toUpperCase 1122
trim 1122

Appendix D: Exercise Solutions 1123

Index 1213

02_57485x ftoc.qxd 1/18/05 11:01 PM Page xxv

TEAM LinG - Live, Informative, Non-cost and Genuine!

02_57485x ftoc.qxd 1/18/05 11:01 PM Page xxvi

TEAM LinG - Live, Informative, Non-cost and Genuine!

xxvii

Introduction

JavaServer Pages (JSP) was first introduced in 1999, and since then numerous books have been written
about it. This book aims to introduce JSP in a new way, different from existing titles.

A lot has been learned in the past five years about what constitutes good practices for developing Web
applications, and what should be avoided. Much of this has been learned by developers the hard way,
at the cost of Web sites with bad performance or unmaintainable code. While this was understandable
when these technologies were new, beginning JSP developers shouldn’t have to repeat these mistakes.

As the title suggests, the book is targeted toward developers who are new to JSP development, though
not to Java, or even to Web development itself. This book is not a second or even a third edition of an
older JSP book. It has been written from scratch by experienced developers, who are eager to share their
insights with you.

This book covers JSP 2.0, the latest specification, as well as how JSP interacts with other Enterprise Java
technologies. JSP 2.0 introduces many new features that aid good Web development practices, and this
book covers them in great detail.

The Right Way to Do Web Development
This book covers JSP development techniques in great detail. However, a central theme in the book is an
emphasis on the right way to do Web development. These ideas are generally accepted “good develop-
ment practices” and draw upon the authors’ own experiences in this area. Some of these practices
include the following:

❑ JSP is a presentation technology: JSPs should be used for presentation only and should not
have code for control flow and application logic mixed in it. The book emphasis this and other
good JSP development practices.

❑ Use the right tools, effectively: Use tools to assist in your Web development tasks, such as
development and debugging environments, build and deployment tools, version-control tools,
and profiling tools. The book provides a tutorial introduction to tools that should be in every
Web developer’s tool box.

❑ Use design patterns where appropriate: Many of the problems that you solve as a software
developer have already been faced by others before you. Instead of trying to reinvent a solution
to a certain class of problems over and over again, it is wiser to use a tried and tested solution.
A design pattern is a solution to a type of a problem. Where appropriate, this book illustrates the
use of common design patterns in Web applications, such as Model View Controller (MVC),
front controller, Data Access Object (DAO), etc.

❑ Use frameworks for developing applications: Frameworks implement generic solutions to
common problems faced by developers. Using a framework enables developers to focus on the
business problem at hand, rather than reinventing the wheel for every application. This book

03_57485x flast.qxd 1/18/05 11:00 PM Page xxvii

TEAM LinG - Live, Informative, Non-cost and Genuine!

xxviii

Introduction

introduces a number of frameworks, such as MVC (Struts, Spring, WebWork, JSF), persistence
(Hibernate), testing (jUnit, HttpUnit), logging (log4j, Java Logging API), and templating (Tiles)
frameworks.

❑ Iterative development methodologies: These cover a range of techniques, but the common
theme is writing test cases early in the development cycle, often even before the actual code,
testing frequently during development, having early build and integration cycles, and
refactoring your code.

If some of these terms are not familiar to you right now, don’t worry; they will be by the time you are
done with this book!

Approach
We believe that the best way to learn, especially for beginners, is by first reading about a concept, seeing
how it is implemented, and then finally by writing some code.

This is the approach we’ve followed in the book. Each chapter first introduces important concepts and
then illustrates them with hands-on examples in the “Try It Out” sections. Following each “Try It Out”
section is a “How It Works” section that explains the example in detail.

At the end of each chapter, we have included coding exercises for you to try yourself. These exercises
build upon examples introduced earlier in the chapter and help reinforce concepts you learned in it.
The solutions for the exercise are listed at the end of the book in Appendix D.

How This Book Is Structured
The book is divided into four parts.

The first part, “JSP Fundamentals,” represents the bulk of the book. This part, as the name suggests,
introduces the fundamentals of JSP programming. Some of the topics it covers include JSP syntax and
directives, the JSP Expression Language, JSP Tag libraries, JavaServer Pages Standard Tag Library (JSTL),
and techniques for testing and debugging.

The second part, “JSP and Modern Web Server Software Development,” builds upon the first part and
explores the Web applications and environments that most production JSP code will be deployed in.
It covers the following topics:

❑ Popular Web frameworks, such as Struts/Tiles, WebWork, and Spring

❑ Persistence frameworks, such as Hibernate

❑ Enterprise Java technologies, such as Java Database Connectivity (JDBC) and Java Naming and
Directory Interface (JNDI)

❑ Emerging presentation technologies such as JavaServer Faces

❑ Issues relating to security, performance, and internationalization

03_57485x flast.qxd 1/18/05 11:00 PM Page xxviii

TEAM LinG - Live, Informative, Non-cost and Genuine!

xxix

Introduction

❑ Modern software methodologies and development tools such as Ant, JUnit, HttpUnit, jMeter,
Log4j, and CVS

This part provides you with a tutorial-style introduction to these technologies. The focus of this book is
JSP development, and even though these frameworks and tools are important, covering each of them in
detail would have resulted in a much bigger book!

In the third part, “Spreading Your New Wings: Applying JSP in the Real World,” you will be challenged
to apply your new JSP programming skills to real-world projects. These projects reinforce concepts
explained earlier in the book with concrete examples that you can try out on your own.

The fourth and final part consists of the four appendixes for the book, providing you with three refer-
ences and exercise solutions.

The chapters are organized as follows:

Chapter 1, “Getting Started with JavaServer Pages,” introduces JSPs and explains why they were needed
and describes how to download and install chapter samples and projects.

Chapter 2, “JSP Basics 1: Dynamic Page Creation for Data Presentation,” gives you a taste of JSP pro-
gramming using simple examples. The examples presented here teach the right way to do JSP program-
ming, without scripting elements and using JSTL, EL, and actions only.

Chapter 3, “JSP Basics 2: Generalized Templating and Server Scripting,” covers embedding Java
scriptlets in JSP files. This is how JSP was used originally, and even though this practice is now depre-
cated, developers often have to maintain and extend such code.

Chapter 4, “CSS, JavaScript, VBScript, and JSP,” illustrates JSP’s capability to generate not only dynamic
HTML Web page content, but also Web pages with JavaScript or VBScript code.

Chapter 5, “JSP and EL,” covers the JSP Expression Language (EL) in great detail and with a lot of exam-
ple code.

Chapter 6, “JSP Tag Libraries and JSTL,” introduces the basics of the tag library extension mechanism in
JSPs. It also covers the standard tag library, JSTL, along with examples.

Chapter 7, “JSP Directives,” covers the standard JSP directives and all their properties.

Chapter 8, “JSP Standard Actions,” provides an item-by-item introduction to the available standard
actions in JSP. Each action is introduced as a part of an actual hands-on example.

Chapter 9, “JSP and JavaBeans,” discusses the important role of JavaBeans in JSP operations. It focuses
on the ability of JavaBeans to act as a container of data to be presented, as well as to extend the data
manipulation and transformation capabilities of JSP.

Chapter 10, “Error Handling,” reveals the interpretation-time and runtime errors that can occur and how
to handle them. It also discusses the application-level JSP exception-handling mechanism, as well as the
Java programming language exception-handling mechanism.

03_57485x flast.qxd 1/18/05 11:00 PM Page xxix

TEAM LinG - Live, Informative, Non-cost and Genuine!

xxx

Introduction

Chapter 11, “Building Your Own Custom JSP Tag Library,” shows you how to create a custom tag
library, encapsulating a reusable piece of JSP code in a JSP tag file.

Chapter 12, “Advanced Dynamic Web Content Generation,” emphasizes that the utility of JSP extends
beyond the generation of HTML. JSPs can be used to generate any dynamic content for Web-based con-
sumption, such as client-side scripting elements and XML.

Chapter 13, “Internationalization and Localized Content,” explains internationalization concepts and
demonstrates how JSP can be used to generate localized Web pages.

Chapter 14, “JSP Debugging Techniques,” covers logging mechanisms and debugger-supported tech-
niques. The chapter also covers the debugging of a production system and thread safety issues.

Chapter 15, “JSP and Servlets,” presents Java servlets, their relationship with JSPs, servlet configuration,
and the servlet context.

Chapter 16, “Role of JSP in the Wider Context: Web Applications,” introduces the details of Web applica-
tions, including creating and deploying them.

Chapter 17, “Model View Controller,” covers the popular Model View Controller (MVC) pattern.

Chapter 18, “Web Frameworks,” describes what frameworks are, why they are needed, and what they
do. This chapter covers the WebWork and Spring frameworks.

Chapter 19, “Struts Framework,” provides detailed coverage of the popular Struts framework.

Chapter 20, “Layout Management with Tiles,” covers the Tiles frameworks for Web page layout and its
use with Struts.

Chapter 21, “JavaServer Faces,” introduces JSF 1.1, with examples. This chapter also compares JSF with
Struts and how they can be used together in Web applications.

Chapter 22, “JSP in J2EE,” provides an overview of important J2EE components that JSP would need to
interact with in Web applications.

Chapter 23, “Access to Databases,” covers details of database access from Web applications, including
JDBC and Hibernate.

Chapter 24, “Security,” introduces security issues for Web applications, such as authentication, access
control, data integrity, and privacy.

Chapter 25, “Performance,” covers performance concepts for Web applications, including how to mea-
sure performance as well as performance-tuning techniques.

Chapter 26, “Best Practices and Tools,” details development-time best practices and methodologies and
provides a tutorial introduction to developer tools for build, version control, and testing.

Chapter 27, “JSP Project I: Personalized Portal,” demonstrates how to integrate content from other Web
sites using RSS and Web services. This project reinforces concepts covered earlier in the book—namely,
use of tag libraries, JSTL, and EL—and emphasizes the use of design patterns.

03_57485x flast.qxd 1/18/05 11:00 PM Page xxx

TEAM LinG - Live, Informative, Non-cost and Genuine!

xxxi

Introduction

Chapter 28, “JSP Project II: Shopping Cart Application,” shows how to develop an online storefront Web
application. This project reinforces Struts and Tiles concepts and database persistence from Web applica-
tions using Hibernate.

Appendix A, “JSP Syntax Reference,” as the name suggests, is a handy reference to the JSP syntax.

Appendix B, “JSP Expression Language Reference,” lists the JSP EL syntax, with examples.

Appendix C, “JSTL Reference,” provides a reference to the JSTL tag library, including the core, XML, for-
matting, and SQL tags.

Appendix D, “Exercise Solutions,” has the answers to all the exercise problems listed at the end of the
chapters.

Conventions
To help you get the most from the text and keep track of what’s happening, we’ve used a number of con-
ventions throughout the book.

Hints, tips, and additional notes regarding the current discussion are offset and placed in italics
like this.

As for styles in the text:

❑ Important terms are italicized when introduced for the first time.

❑ Classes, filenames, URLs, directories, interfaces, utilities, parameters, and other code-related
terms within the text are presented as follows: WEB-INF\web.xml.

Code is presented in two different ways:

Code that is introduced for the first time, or an important code fragment, has a
gray background.
Code that is less important to the discussion, or that has been introduced earlier,
is shown without a background.

Try It Out
The “Try It Out” sections are exercises that you should work through, following the text in the book.

1. They usually consist of a set of steps.

2. Each step has a number.

3. In most cases, you can follow the steps with your copy of the downloaded code.

How It Works
After each “Try It Out,” the code you’ve typed is explained in detail.

03_57485x flast.qxd 1/18/05 11:00 PM Page xxxi

TEAM LinG - Live, Informative, Non-cost and Genuine!

xxxii

Introduction

Source Code
As you work through the examples in this book, you may choose either to type in all the code manually
or to use the source code files that accompany the book. All of the source code used in this book is avail-
able for download at www.wrox.com. Once at the site, simply locate the book’s title (either by using the
Search box or by using one of the title lists) and click the Download Code link on the book’s detail page
to obtain all the source code for the book.

Because many books have similar titles, you may find it easiest to search by ISBN; this book’s ISBN is
0-764-57485-X.

Once you download the code, just decompress it with your favorite compression tool.

Errata
We have made every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you find an error, such as a spelling mistake or a faulty piece of code,
we would be very grateful for your feedback. By sending in errata, you may save other readers hours of
frustration, and you will be helping us provide even higher quality information.

To find the errata page for this book, go to www.wrox.com and locate the title using the Search box or
one of the title lists. Then, on the book details page, click the Book Errata link. On this page, you can view
all errata that has been submitted for this book and posted by Wrox editors. A complete book list, includ-
ing links to each book’s errata, is also available at www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot your error on the Book Errata page, go to www.wrox.com/contact/techsupport.
shtml and complete the form there to send us the error you have found. We’ll check the information
and, if appropriate, post a message to the book’s errata page and fix the problem in subsequent editions
of the book.

p2p.wrox.com
For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based sys-
tem for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to e-mail you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

At http://p2p.wrox.com, you will find several different forums that will help you not only as you
read this book, but also as you develop your own applications. To join the forums, just follow these
steps:

1. Go to p2p.wrox.com and click the Register link.

2. Read the terms of use and click Agree.

03_57485x flast.qxd 1/18/05 11:00 PM Page xxxii

TEAM LinG - Live, Informative, Non-cost and Genuine!

xxxiii

Introduction

3. Complete the required information to join as well as any optional information you wish to pro-
vide and click Submit.

4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P, but in order to post your own messages, you
must join.

Once you join, you can post new messages and respond to messages that other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to ques-
tions about how the forum software works as well as many common questions specific to P2P and Wrox
books. To read the FAQs, click the FAQ link on any P2P page.

03_57485x flast.qxd 1/18/05 11:00 PM Page xxxiii

TEAM LinG - Live, Informative, Non-cost and Genuine!

03_57485x flast.qxd 1/18/05 11:00 PM Page xxxiv

TEAM LinG - Live, Informative, Non-cost and Genuine!

Part I: JSP Fundamentals

Chapter 1: Getting Started with JavaServer Pages

Chapter 2: JSP Basics 1: Dynamic Page Creation for Data
Presentation

Chapter 3: JSP Basics 2: Generalized Templating and Server
Scripting

Chapter 4: CSS, JavaScript, VBScript, and JSP

Chapter 5: JSP and EL

Chapter 6: JSP Tag Libraries and JSTL

Chapter 7: JSP Directives

Chapter 8: JSP Standard Actions

Chapter 9: JSP and JavaBeans

Chapter 10: Error Handling

Chapter 11: Building Your Own Custom JSP Tag Library

Chapter 12: Advanced Dynamic Web Content Generation

Chapter 13: Internationalization and Localized Content

Chapter 14: JSP Debugging Techniques

04_57485x pt01.qxd 1/14/05 9:55 PM Page 1

TEAM LinG - Live, Informative, Non-cost and Genuine!

04_57485x pt01.qxd 1/14/05 9:55 PM Page 2

TEAM LinG - Live, Informative, Non-cost and Genuine!

1
Getting Started with

JavaServer Pages

JavaServer Pages (JSP) is a Java-based technology that is run on a server to facilitate the processing
of Web-based requests. Many of the Web sites that you visit daily may be using JSP to format
and display the data that you see. This chapter reveals what JSP is, how it works, and why it is
important.

The evolution of request processing using Java-based server logic is also presented in this chapter.
JSP plays a vital role in this evolution. This role, along with how JSP assists in Web request pro-
cessing, will be discussed. This overview serves as a foundation upon which to build new JSP con-
cepts and to introduce new JSP features in later chapters.

Every chapter in this book contains hands-on JSP coding examples. Starting from this very first
chapter you will be working immediately with JSP coding. This chapter shows in detail how to set
up JSP code on your own Windows-based PC or Linux/UNIX workstation.

In particular, this chapter:

❑ Provides a historical review of the Web technology evolution that leads to JSP

❑ Discusses why JSP is needed

❑ Reveals how JSP works

❑ Shows where to download chapter code examples and the JSP Project examples

❑ Shows where to download a server for executing JSP code on your PC or workstation

❑ Reveals how to set up the open-source Tomcat server for running your JSP code

05_57485x ch01.qxd 1/14/05 9:14 PM Page 3

TEAM LinG - Live, Informative, Non-cost and Genuine!

Creating Applications for the Internet
Before looking at a server that supports JSP, think of what happens under the hood when you use your
browser to access a Web site. It’s likely you’re using one of the popular Web browsers, such as Netscape,
Microsoft Internet Explorer, Firefox, Konquerer, or Opera. Figure 1-1 illustrates the sequence of events
that occurs when the browser accesses a URL.

Figure 1-1: Web browser accessing a URL

The following steps correspond numerically with the numbered steps in Figure 1-1:

1. Enter the URL of a Web page into your browser. This URL tells the browser to contact a specific
machine on the Internet.

2. The browser then sends the request to the specified machine on the Internet. The machine
specified runs a piece of software called a Web server. The Web server receives the request and
examines it. Popular Web servers include Apache, Microsoft Internet Information Services (IIS),
Netscape Enterprise Server, Sun Java System Web Server (formerly Sun ONE), Oracle HTTP
Server, and Zeus Web Server.

3. Depending on the request received, the Web server retrieves from its storage a Web page
encoded in HTML.

4. The page acquired in Step 3 is passed back to the requesting browser as a response.

5. The browser, after receiving the response Web page, displays it to the user.

web browser

Internet or
internal network

web server

1. enters URL
2. sends request to web server

4. responds with HTML page

3. web server fetches stored HTML page

5. displays HTML

4

Chapter 1

05_57485x ch01.qxd 1/14/05 9:14 PM Page 4

TEAM LinG - Live, Informative, Non-cost and Genuine!

Of course, the Web page can contain graphical elements such as GIF files (the browser will have to issue
additional requests to the server for these files), as well as hyperlinks to other URLs that the user can click.

In the preceding process, the browser talks to the Web server over the Internet. This conversation is
carried out via a standard network protocol. This particular protocol is appropriately called HTTP
(Hypertext Transfer Protocol). HTTP is built on top of TCP/IP, the protocol suite that ties all the computers
in the Internet together.

Limitations of the basic Web server model
The basic function of the Web server restricts it to serve a finite number of static Web pages. The content
of each page remains the same. There is no easy way to show information that may change, such as
today’s weather, the latest news, or the current product list offered by an online store. A new set of static
pages needs to be created to show new information.

Creating new static pages for every minute change of the underlying information is tedious. Obviously,
a lot of time and effort could be saved if there were some way for the server to automatically generate
portions of the HTML page. Doing so would eliminate the need to repeatedly create new static pages as
information changes. This generation should happen dynamically when the request is processed. For
example, it could generate the portion of the HTML page that displays the current date and time.

Internet software engineers quickly turned their attention to the Common Gateway Interface (CGI) to
provide this dynamic generation capability.

Dynamic HTML generation via CGI
CGI provides a way to execute a program on the server side. This may be on the same machine running
the Web server, or it may be on another machine connected to it. The CGI program’s output is the HTML
page that will be sent back to the Web browser for display. Figure 1-2 illustrates basic CGI operations.

1. First the browser is instructed to access a URL. You may be entering this URL by hand. More
likely, a CGI URL is accessed after you fill out an online form or click a hyperlink on a page
already displayed. For example, the URL may be http://www.wrox.com/beginjsp/
ch1test.cgi. This URL tells the browser to contact a specific machine on the Internet called
www.wrox.com.

2. The browser then sends the request to the specified machine on the Internet. This is identical to
the non-CGI case in Figure 1-1. In addition to the machine, the URL also specifies a specific CGI
program location. The portion of the URL that specifies the location is beginjsp/ch1test.cgi.
The Web server examines the incoming request’s URL and forwards the incoming request to the
specified CGI program (ch1test.cgi).

HTML (Hypertext Markup Language) is the standard format in which Web pages are
coded. HTML files are text-based files that can be edited in any text editor. An
HTML page consists of tagged sections such as a header and a body, and formatted
layout elements such as paragraphs and tables. All browsers understand HTML and
will display (called rendering in HTML lingo) the page according to the formatting
tags. For more information on HTML, check out Beginning Web Programming with
HTML, XHTML, and CSS (Wrox Press; ISBN 0-7645-7078-1).

5

Getting Started with JavaServer Pages

05_57485x ch01.qxd 1/14/05 9:14 PM Page 5

TEAM LinG - Live, Informative, Non-cost and Genuine!

3. The CGI program is executed on the server side.

4. The CGI program’s output is captured by the Web server.

5. This CGI program’s output is passed back to the requesting Web browser using the HTTP
protocol.

6. The client Web browser finally displays the output from the CGI program as an HTML page.

Figure 1-2: Basic CGI operations

The CGI program can be programmed using any computer programming language (the most popular
CGI languages are Perl or a shell script, but C, C++, or Java can also be used). The output that the CGI
program generates is not limited to a finite set of static pages. Furthermore, the CGI program can access
additional resources in generating the output. For example, a CGI program displaying the available
quantity for a product sold over the Internet may access a relational database containing current inven-
tory information.

Elegant as CGI seems to be initially, it has major shortcomings. These shortcomings, described in the
following section, are evident when a single CGI program is accessed by many users.

web browser

Internet or
internal network

web server

CGI Program

1. enters URL
2. sends request to web server

5. responds with HTML page6. displays HTML

4. takes output as
response

to or from other systems,
databases, etc.

3. runs program

6

Chapter 1

05_57485x ch01.qxd 1/14/05 9:14 PM Page 6

TEAM LinG - Live, Informative, Non-cost and Genuine!

Shortcomings of CGI
The major shortcomings of basic CGI are as follows:

❑ The overhead of starting an operating system process for each incoming request

❑ The overhead of loading and running a program for each incoming request

❑ The need for tedious and repetitive coding to handle the network protocol and request decoding

The first two operations consume a large number of CPU cycles and memory. Because both operations
must be performed for each incoming request, a server machine can be overloaded if too many requests
arrive in a short period of time. Because each CGI program is independent of the other, and often reflect
incompatible programming languages, it is not possible to share code used in networking and decoding.

The Java programming language can be used to create CGI programs. Unfortunately, using the Java pro-
gramming language for CGI amplifies some of the shortcomings of basic CGI described in the preceding
list. Early attempts to use the Java programming language to create CGI programs created servers that
were extremely slow and inefficient, and crashed frequently due to overloading.

Java-based CGI is not suitable for handling CGI requests because Java is inherently an interpreted lan-
guage. Because of this, a very large program called the Java Virtual Machine (JVM) must be started to
handle an incoming request. The cycle of starting a system process, then a JVM within the process, and
then running the Java CGI code within the JVM just for processing a single request is very expensive in
terms of both computing cycles and resources. Worse, the whole process needs to be repeated for each
incoming request. When compared to the time it takes to process the request and generate the output,
this overhead can be significant. If the server needs to handle many incoming requests, the overhead
can overwhelm the system.

Improving Java-based CGI: servlets
The Java-based CGI scenario can be improved if the overhead can be eliminated. If some way exists to
process all incoming requests by initially starting a single operating system process with a single JVM
image, the overhead can be eliminated.

Because the Java platform can load new classes during runtime dynamically, this capability can be used
to load new Java code (classes) to handle incoming requests. In order words, a server-side process is
started once and loaded with the JVM once, but additional classes are loaded by the JVM to process
incoming requests. This is significantly more efficient. In this scenario, the following can be observed:

❑ The overhead of starting an operating system process for each request is eliminated.

❑ The overhead of loading a JVM for each request is eliminated.

❑ Java classes are loaded by the JVM to process incoming requests; if more than one request
requires the same processing, the already loaded class can be used to handle it, eliminating even
the class loading overhead for all but the first request.

❑ Code that handles the networking protocol and decodes incoming requests can be shared by all
the dynamically loaded request processing Java classes.

7

Getting Started with JavaServer Pages

05_57485x ch01.qxd 1/14/05 9:14 PM Page 7

TEAM LinG - Live, Informative, Non-cost and Genuine!

The Java Web Server from Sun Microsystems released in the late 1990s worked exactly in this way. This
Web server, written in the Java programming language, started up a JVM to handle all incoming
requests and in turn loaded additional Java classes as needed to process specific requests.

In order to ensure that the Java classes loaded for handling requests do not step over one another, or
stop the entire Web server altogether, a coding standard was created, which these classes must follow.
This standard is called the Java Servlets API (Application Programming Interface). The dynamically loaded
classes for processing are known as servlets.

The portion of code that manages the loading, unloading, reloading, and execution of servlets is called a
servlet container. Servlets may need to be unloaded if the system is running out of memory and some
servlets have not been used for a very long time. A servlet may need to be reloaded if its code has been
modified since it was last used.

There are many different ways to configure the Web server and servlet container. The next section dis-
cusses the most popular scenarios.

Web server configurations: integrating servlet containers
Depending on the Web server and servlet container used, very different configurations are possible.
Some popular configurations include the following:

❑ The same JVM runs the Web server as well as the servlets; in this case, the Web server is coded
in Java, as is also the case with the Java Web Server mentioned earlier. This is often called the
standalone configuration. Figure 1-3a illustrates the standalone configuration.

❑ The Web server is not written in the Java programming language, but it starts a JVM within the
same operating system process; in this case, the information is passed directly from the Web server
into the JVM hosting the servlet container. (Some versions of both the Apache Web server and
Microsoft IIS can work in this way.)This is often called the in-process configuration. Figure 1-3b
illustrates the in-process configuration.

❑ The Web server is not written in the Java programming language and runs in a separate operat-
ing system process from the servlet container; in this case, the Web server passes the request to
the servlet container, using either a local network or operating–system–specific interprocess
communications mechanism (a typical configuration for the Apache or Microsoft’s IIS Web
server). This is often called the independent configuration or networked configuration. Figure 1-3c
illustrates this configuration.

The first two configurations in the preceding list have the advantage that the JVM runs within the same
OS process as the Web server. This enables rapid transfer of request information and processing output
to and from the CGI code. Conversely, if the servlet container or one of its servlets crashes, the entire
Web server may crash because they are in the same process.

The third configuration is less efficient when it comes to the transfer of request data between the Web
server and the servlet container. However, the servlet container can crash and restart without affecting
the operation of the Web server. This form creates a more robust system for handling Web requests.

8

Chapter 1

05_57485x ch01.qxd 1/14/05 9:14 PM Page 8

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 1-3: Web server and servlet container configurations

Each of the three configurations described exhibit superior performance characteristics when compared
to the basic CGI operation introduced earlier.

Optimizing servlet development: JavaServer Pages
Servlets can be viewed as an efficient way of performing CGI operations using the Java programming
language. Java classes representing the servlet are dynamically loaded by the servlet container when
they are needed. Bear in mind, however, that each servlet can be composed of several compiled Java
classes. This means that a programmer will first write the Java code, then compile it, and then register
and execute (or deploy) the code via the servlet container. Should there be any need to modify the servlet,
the Java source code must be modified, recompiled, and then re-deployed via the servlet container.
Figure 1-4 illustrates the steps in the servlet development process.

a. standalone configuration

c. independent/networked configuration

OS Process

OS Process

Java VM

servlet
container

b. in-process configuration

OS Process

Java VM

servlet
container

web
server

web
server

web
server

OS Process

Java VM

servlet
container

9

Getting Started with JavaServer Pages

05_57485x ch01.qxd 1/14/05 9:14 PM Page 9

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 1-4: Steps in servlet development

Refer back to the basic CGI mechanism presented earlier, and it is evident that the main purpose of most
servlets is to generate an HTML page. As a result, you may see servlet Java source code that looks like
the following:

public class HelloWorldExample extends HttpServlet {
public void doGet(HttpServletRequest request,

HttpServletResponse response)
throws IOException, ServletException

{
String msg = “Hello, world!”;
response.setContentType(“text/html”);
PrintWriter out = response.getWriter();
out.println(“<html>”);
out.println(“<head>”);
out.println(“<title>JSP 2.0 Hello World</title>”);
out.println(“</head>”);
out.println(“<body>”);
out.println(msg);

write/edit Java
servlet code

START

DONE

TESTS OK?

YES

NO

deploy to servlets
container

test via
browser & server

compile servlet

10

Chapter 1

05_57485x ch01.qxd 1/14/05 9:14 PM Page 10

TEAM LinG - Live, Informative, Non-cost and Genuine!

out.println(“</body>”);
out.println(“</html>”);

}
}

Aside from the servlet programming details, note the repeated use of the PrintWriter.println()
method to generate the output HTML page. You can see that every time you need to make a minor
change to the HTML, the Java source code must be modified, recompiled, and re-deployed. This created
a lot of tedious work for early servlet developers. In fact, this process hopelessly bound together the
work of Web page design with the work of server logic design and made the programmer responsible
for both!

JavaServer Pages (or JSP) was introduced to solve these problems. Specifically, JSP provides the following
benefits:

❑ A templating mechanism whereby Java-based logic can be embedded within HTML pages

❑ Automatic detection and recompilation whenever the JSP is changed

When using JSPs, it is not necessary to write or compile any code in Java programming language. The
development cycle can be very quick. Modifications to the JSP can be viewed immediately because the
JSP container (or JSP engine, or JSP runner, as it is sometimes called) will automatically recompile the JSP.

Unlike servlets, JSPs are not written in the Java programming language (although some JSPs may con-
tain embedded Java coding). Instead, they are text-based templates. This is best illustrated with an
example. The following JSP will display the same output as the servlet presented previously:

<%@ taglib prefix=”tags” tagdir=”/WEB-INF/tags” %>
<html>

<head>
<title>JSP 2.0 Hello World</title>

</head>
<body>

<tags:helloWorld/>
</body>

</html>

Note that the preceding JSP is essentially an HTML page with some special markup tags. JSPs are typi-
cally stored in source files with a .jsp file extension. When the JSP is accessed by an incoming request,
the JSP container will parse the special tags and replace them with dynamic output. For example, the
preceding JSP may produce the following output (just as the previous servlet) after processing by the JSP
container. The examples later in this chapter explain in detail how this JSP works.

<html>
<head>

<title>JSP 2.0 Hello World</title>
</head>
<body>

Hello, world!
</body>

</html>

11

Getting Started with JavaServer Pages

05_57485x ch01.qxd 1/14/05 9:14 PM Page 11

TEAM LinG - Live, Informative, Non-cost and Genuine!

In most cases, the JSP container is actually a servlet, enabling JSPs to work within a basic servlet con-
tainer. However, this detail is not important to the operation of JSP, and need not concern the beginning
JSP developer.

It should be clear from this discussion that JSP greatly simplifies the development and construction of
server-side Java-based CGI. JSP enables the rapid development of server-side applications that create
dynamic output. There is one additional benefit to JSP that may not be immediately evident. Take a sec-
ond look at the JSP template. Note that although the JSP tags are embedded in the HTML file, the gen-
eral HTML page structure is still completely intact. In fact, it is possible to have professional Web page
designers (typically graphic design professionals with little or no programming skills) design the tem-
plate. This enables the task of Web site graphics and layout design to be decoupled from the application
development task. The page designer can work on the HTML portion of the template, while the JSP
developer can work on the tags used and their placement.

Now is a good time to set up a system and try some actual JSP code.

Try It Out Getting Tomcat Up and Running
This section provides step-by-step download and setup instructions for a servlet container and JSP
engine called Tomcat. Instructions are provided for both a Windows-based system and a Linux or UNIX-
based operating system, such as Red Hat Linux or FreeBSD.

As with all Try It Out sections, this section focuses on the hands-on aspects. If you come across ques-
tions during the procedure, it is likely that they are answered in the next “How it Works” section. You
may want to read ahead if you cannot wait for the answer.

Checking your system for Java
Before downloading Tomcat, you should ascertain that you have the Java platform installed and run-
ning. This book requires version 1.4.2 or later. To determine if you have Java platform installed and
running, type in the following command: On either Windows or a Linux/UNIX system, open a com-
mand prompt and type in the java –version command. Figure 1-5 shows Java version 1.4.2_04-b05
running on a Windows system

Figure 1-5: Verifying the Java platform version on a Windows system

12

Chapter 1

05_57485x ch01.qxd 1/14/05 9:14 PM Page 12

TEAM LinG - Live, Informative, Non-cost and Genuine!

If you do not get the Java version information, contact your system administrator to obtain the configu-
ration for running Java programs. If it is your own machine, install the latest JDK. After the JDK is
installed you should ensure that the JAVA_HOME environment variable is set to the Java installation
directory, and that the bin directory under JAVA_HOME is added to your PATH environment variable.

Downloading Tomcat
You need to determine the latest version of Tomcat before downloading it. The latest version of the
Tomcat container can be determined by checking the following URL:

http://jakarta.apache.org/tomcat/

Figure 1-6 shows a recent version of this page. Notice the table in the center of the page. This table indi-
cates that 5.0.28 is the latest version that supports JSP Standard 2.0 (and Servlet standard 2.4). This book
will make extensive use of features in JSP 2.0.

The ongoing updates of Tomcat server will transition to the Tomcat 5.5.x version. The configuration,
deployment procedures, and level of support for JSP are identical between Tomcat 5.0.28 and Tomcat
5.5.x. All of the examples in this book will work with Tomcat 5.5.x.

Figure 1-6: Tomcat’s welcome page

Click the Binaries link under the Download heading on the left side of the Tomcat index page. Figure 1-7
shows this page.

13

Getting Started with JavaServer Pages

05_57485x ch01.qxd 1/14/05 9:14 PM Page 13

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 1-7: Tomcat’s Binary Downloads page

From the Binary Downloads page, you will need to scroll down to the bottom and locate the latest
Tomcat 5 version. In our case, it is Tomcat 5.0.28.

Now you have a choice of downloads:

❑ If you are working with Linux or another UNIX operating system, click and download the
.tar.gz file (jakarta-tomcat-5.0.28.tar.gz in our case).

❑ If you are working with a Windows operating system, click and download the .exe file
(jakarta-tomcat-5.0.28.exe in our case).

Installing Tomcat
After downloading, you need to extract the Tomcat installation on a Linux system. The following code
shows how this is done:

tar zxvf jakarta-tomcat-5.0.28.tar.gz

14

Chapter 1

05_57485x ch01.qxd 1/14/05 9:14 PM Page 14

TEAM LinG - Live, Informative, Non-cost and Genuine!

This will extract Tomcat 5 into a subdirectory called jakarta-tomcat-5.0.28 under the current direc-
tory. You may wish to rename this directory to one with a shorter name.

This directory will be referred to as <Tomcat Installation Directory> in future chapters.

This completes the Linux-based installation.

On a Windows system, execute the downloaded file (by selecting Open or by double-clicking the down-
loaded jakarta-tomcat-5.0.28.exe file). This will start the wizard-based windows installer. Keep in
mind the following during installation:

❑ When the installer asks you to choose components, choose the Normal install, which is the
default.

❑ When the installer asks you to choose an installation location, change the default folder to
c:\tomcat5 or a similar directory of your choice.

This will be referred to as the <Tomcat Installation Directory> in future chapters.

❑ When the installer asks you to enter configuration options, enter the administrator login username
of tomcat, and choose a password that you can remember for the administrator user. The discus-
sion following assumes that you used the password tomcat.

Accept the default for all other prompts during installation. Tomcat 5 will start up at the end of the
installation.

You can also install on Windows using the ZIP file version of Tomcat. In this case, the installation is simi-
lar to that on UNIX/Linux, as all you have to do is to extract out the ZIP file in a directory of choice.

Adding an administrative user and password on a Linux system
If you are on a Linux/UNIX system, or have installed Tomcat using the ZIP file, and not the Windows
installer executable, you will need to add the administrative username and password manually.

To do so, go to the <Tomcat Installation Directory>/conf directory. Using a text editor, make the
following highlighted modifications to the file called tomcat_users.xml:

<?xml version=’1.0’ encoding=’utf-8’?>
<tomcat-users>

<role rolename=”tomcat”/>
<role rolename=”role1”/>
<user username=”tomcat” password=”tomcat” roles=”tomcat,manager”/>
<user username=”both” password=”tomcat” roles=”tomcat,role1”/>
<user username=”role1” password=”tomcat” roles=”role1”/>

</tomcat-users>

The manager role has been added to the user named tomcat. This will add the user tomcat to the access
control list for the Manager utility. This utility can be used to add applications to a running Tomcat server;
the “Deploying Chapter Examples” section shows how this is done. An access control list specifies which
users are allowed to use the utility, and which password needs to be entered.

Save the changes to the tomcat_users.xml file.

15

Getting Started with JavaServer Pages

05_57485x ch01.qxd 1/14/05 9:14 PM Page 15

TEAM LinG - Live, Informative, Non-cost and Genuine!

Starting and shutting down Tomcat 5
On a Windows system, you should see the Apache Process Runner (Tomcat Launcher) running on your sys-
tem tray (lower right-hand corner), with a green arrow indicating that Tomcat 5 is running. Alternatively,
you can always start Tomcat 5 by clicking the Start button and choosing Programs (or All Programs with
Windows XP) ➪ Apache Tomcat 5 ➪ Start Tomcat.

To shut down Tomcat 5 on a Windows system, right-click the Apache Process Runner on your system
tray and select Shutdown ➪ Tomcat5. Tomcat will be shut down and the Apache Process Runner will
disappear from the system tray.

To start the Tomcat 5 server on a Linux/UNIX installation, change directory to the <Tomcat
Installation Directory>/bin. From the shell, run the startup.sh script via the following
command:

sh startup.sh

In the same directory is a shutdown.sh script. To shut down the Tomcat 5 server on a Linux system,
issue the following command:

sh shutdown.sh

Note that even on Windows systems, there are two batch files, startup.bat and shutdown.bat, in
the <Tomcat Installation Directory>/bin directory. These files can be used from a command
prompt with the proper environment setup to start or shut down Tomcat 5. If you wish to use these
command-line batch files, make sure you have the environmental variable JAVA_HOME set to point to
the installation directory of your Java SDK.

Verifying your Tomcat 5 installation
To verify that your version of Tomcat is installed properly, try to start a browser and access the follow-
ing URL:

http://localhost:8080/index.jsp

Figure 1-8 shows the resulting HTML page that you should see in your browser: the Tomcat 5 welcome
page.

How It Works
Tomcat, often referred to as the Tomcat server, is an open-source servlet container and JSP engine. Both
the servlet API and JSP specification have undergone many revisions. At this time, multiple versions
of the servlet API and JSP specifications are in use. Very large bodies of applications have been written on
these different versions. While each new version brings many new features and improvements, older ver-
sions tend to be well tested and more stable — two features greatly appreciated by business application
developers.

16

Chapter 1

05_57485x ch01.qxd 1/14/05 9:14 PM Page 16

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 1-8: The Tomcat 5 server welcome page

The Tomcat server is the reference implementation for the servlet API and JSP specifications. This means
that every facet of the API specification is implemented and validated against Tomcat. Because there are
multiple versions of these specifications, there are also multiple versions of Tomcat servers. The follow-
ing table shows the correspondence between the Tomcat server and servlet API and JSP specifications.

Tomcat Version Servlet API Version, JSP Spec Version

3.x.x 2.2, 1.1

4.x.x 2.3, 1.2

5.x.x 2.4, 2.0

The servlet API and JSP specification designers aim to create, as much as possible, new versions that are
backward compatible. This means that applications based on older versions should be able to run in newer
version containers. However, in practice, this is not always possible. With new versions, there are often
APIs that are deprecated (no longer supported) and new APIs and formats that must be utilized.

17

Getting Started with JavaServer Pages

05_57485x ch01.qxd 1/14/05 9:14 PM Page 17

TEAM LinG - Live, Informative, Non-cost and Genuine!

For example, this book focuses on the JSP 2.0 specification. The JSP engine for this specification is part of
the Tomcat 5.x.x series of servers. Products of most commercial vendors have all updated to this version
of the JSP specification.

When you first start up the Tomcat server, it is operating in standalone mode. In this mode, Tomcat is function-
ing in accordance with the first configuration presented earlier (in Figure 1-3a). Tomcat has a built-in Web
server that is used to handle the incoming request from your browser. Along with the Web server, the JSP
engine is also started. However, the servicing of this initial welcome page does not involve the JSP engine.

The JSP page that you see in your browser is stored under the <Tomcat Installation Directory>/
webapps/ROOT directory. You may want to examine the source code of this file. Note that even though the
page being accessed is a JSP page, there are no JSP tags (for dynamic elements) within the file. In other
words, it is mainly a static HTML file. A static HTML file with no dynamic element can be a JSP file.

Try It Out An Initial JSP Experience
Having verified that Tomcat 5 is correctly installed, it is time to try out some JSP coding. The initial
index.jsp that is displayed is not too exciting; it has no dynamically generated element. Using the
same browser, access the following URL:

http://localhost:8080/jsp-examples/jsp2/tagfiles/hello.jsp

This time, the page that you see should be similar to the one shown in Figure 1-9, which shows the
hello.jsp example from the Tomcat 5 distribution.

Figure 1-9: The hello.jsp example from the Tomcat 5 distribution

18

Chapter 1

05_57485x ch01.qxd 1/14/05 9:14 PM Page 18

TEAM LinG - Live, Informative, Non-cost and Genuine!

You can see the source code to this JSP by accessing the following URL:

http://localhost:8080/jsp-examples/jsp2/tagfiles/hello.jsp.html

The content is represented by the following code:

<%@ taglib prefix=”tags” tagdir=”/WEB-INF/tags” %>
<html>

<head>
<title>JSP 2.0 Examples - Hello World Using a Tag File</title>

</head>
<body>

<h1>JSP 2.0 Examples - Hello World Using a Tag File</h1>
<hr>
<p>This JSP page invokes a custom tag that simply echos “Hello, World!”
The custom tag is generated from a tag file in the /WEB-INF/tags
directory.</p>
<p>Notice that we did not need to write a TLD for this tag. We just
created /WEB-INF/tags/helloWorld.tag, imported it using the taglib
directive, and used it!</p>

<u>Result:</u>
<tags:helloWorld/>

</body>
</html>

In Figure 1-9, the “Hello, World!” message after the “Result:” label is dynamically generated via the
<tags:helloWorld/> tag in the preceding code.

To see how JSP is automatically and dynamically compiled, make some modifications to the hello.jsp
file. You will find the hello.jsp file in the <Tomcat Installation Directory>/webapps/
jsp-examples/tagfiles directory. Using a text editor, make the following highlighted modifications
and then save the resulting file in the same directory named hello2.jsp:

<%@ taglib prefix=”tags” tagdir=”/WEB-INF/tags” %>
<html>

<head>
<title>Presenting JSP 2.0</title>

</head>
<body>

<h1>My First JSP 2.0 Template</h1>
<hr>
<p>All I want to say is <tags:helloWorld/></p>

</body>
</html>

Now use your browser to load the new JSP file using the following URL:

http://localhost:8080/jsp-examples/jsp2/tagfiles/hello2.jsp

The resulting HTML output is shown in Figure 1-10.

19

Getting Started with JavaServer Pages

05_57485x ch01.qxd 1/14/05 9:14 PM Page 19

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 1-10: Customized hello2.jsp template

Edit the hello2.jsp page again, this time making the following highlighted modifications, and save
the file under the same name:

<%@ taglib prefix=”tags” tagdir=”/WEB-INF/tags” %>
<html>

<head>
<title>Presenting JSP 2.0</title>

</head>
<body>

<h1>My First JSP 2.0 Template</h1>
<hr>
<p>I am so excited, I want to scream “<tags:helloWorld/> <tags:helloWorld/>

<tags:helloWorld/>”</p>
</body>

</html>

If you get an error when attempting to access hello2.jsp, your installation may not
have set the required environment for compiling JSP pages. This can happen with
certain versions of the Windows installer. To fix this, you need to stop Tomcat 5.
Next, you need to copy the tools.jar file from the <java SDK installation>/lib
directory to the <tomcat 5 installation>/common/lib directory. Start Tomcat 5
after copying this file and hello2.jsp should then display without any error.

20

Chapter 1

05_57485x ch01.qxd 1/14/05 9:14 PM Page 20

TEAM LinG - Live, Informative, Non-cost and Genuine!

In this case, the dynamically generated text is repeated. Reload the JSP page by clicking the Reload (or
Refresh) button on your browser. This time, your page should look like the one shown in Figure 1-11.

Figure 1-11: Customized hello2.jsp with repeated tag

How It Works
The Tomcat 5 distribution includes many JSP examples. Instead of creating a JSP from scratch, the pre-
ceding examples utilize one of the simple examples in the distribution.

The different JSP examples included with Tomcat are located under the <Tomcat Installation
Directory>/webapps/jsp-examples directory. The preceding example is located under the
<Tomcat Installation Directory>/webapps/jsp-examples /jsp2/tagfiles subdirectory.

Tags and taglib
This JSP makes use of a special custom tag that simply outputs the text “Hello World!” Custom JSP tags
are collected in a tag library, or taglib for short. To notify the JSP container of the location of the custom
tag, a special JSP tag (called the taglib directive) needs to be included:

<%@ taglib prefix=”tags” tagdir=”/WEB-INF/tags” %>

21

Getting Started with JavaServer Pages

05_57485x ch01.qxd 1/14/05 9:14 PM Page 21

TEAM LinG - Live, Informative, Non-cost and Genuine!

This directive, explained in detail in Chapter 11, tells Tomcat 5 that the tags can be found in the
/WEB-INF/tags directory. In this case, the path is relative to the <Tomcat Installation Directory>/
webapps/jsp-examples directory. In addition, the preceding taglib directive also tells Tomcat that all
of the tags in this library are prefixed by the word tags. This prefix is very useful in production code,
where a single JSP page may use tags from many different tag libraries. By having this prefix, two libraries
may have tags with the same name and Tomcat will not get them confused. The prefix that is added to the
tag to distinguish which library it originates from is often called the namespace.

Within the JSP body, which is essentially an HTML page here, the tag is embedded as follows:

<tags:helloWorld/>

Note that this helloWorld tag has no body, as indicated by the empty notation </>, and has the names-
pace tags.

Wherever this helloWorld tag is placed within the JSP, the JSP container will substitute the dynamically
generated text “Hello, World!” in its place. This was thoroughly tested in the Try It Out section earlier,
where the tag was duplicated throughout the JSP page.

Using a tag that prints “Hello, World” all the time is rather boring. Bear in mind, however, that you can
create the tag using the Java programming language to do most anything. For example, the tag could
perform a lookup on the inventory database and display the remaining quantity of an item instead of
printing “Hello, World”. Therefore, the craft of JSP programming revolves around the placement of JSP
tags within a template. If you’re already familiar with HTML, learning JSP involves learning a set of new
tags and how they can be applied on the pages that you design. For readers who want to create their
own tags, Chapter 11, “Building Your Own Custom JSP Tag Library,” describes how to create your own
JSP tags and tag libraries.

JSP’s rapid development cycle
In the preceding Try It Out section, the hello2.jsp page is checked for modification every time the
URL containing the JSP is accessed. This should not be surprising. Each access from a browser is a sepa-
rate request, and recall that the server-side CGI mechanism (in this case, the JSP container) handles each
request independently.

Because each request is independent, the JSP container is given a chance to determine whether the JSP
has been modified since it was last accessed. If the JSP container detects that the JSP has been modified,
the page is recompiled before being used to handle an incoming request. This makes the JSP develop-
ment cycle quite straightforward; just modify the JSP file and the changes take effect immediately.

Try It Out Deploying Chapter Examples
Now let’s take a look at how to deploy the examples from this book to our Tomcat container.

22

Chapter 1

05_57485x ch01.qxd 1/14/05 9:14 PM Page 22

TEAM LinG - Live, Informative, Non-cost and Genuine!

If you have not yet downloaded the chapter examples, you can download the latest version of the exam-
ples from www.wrox.com. Once at the site, simply locate the book’s title (either by using the Search box
or by using the title lists) and click the Download Code link on the book’s detail page to obtain all the
source code for the book.

After extracting the example code, you should have a directory structure similar to what is shown in
Figure 1-12.

Figure 1-12: Directory structure of example code distribution

In Figure 1-12, all of the code and associated files for each chapter is stored under its own directory. For
example, the code and associated files for this chapter is stored under the ch01 subdirectory.

Note that each directory contains a similarly named file with the .war extension. For example, a ch01.war
file is under the ch01 subdirectory. A WAR file is a Web ARchive file. It contains a deployable Web applica-
tion in a format that is accepted by all standard complaint JSP/servlet containers (such as Tomcat). In other
words, the WAR file contains JSP along with other applications components that can be loaded and exe-
cuted immediately on a JSP/servlet container.

Some of the later chapters contain examples with large body of code. These examples require an automated
tool, called Apache Ant, in the creation of the WAR file. Unlike the earlier chapters, the code for these chap-
ters is distributed as zip files. For example, the source code for Chapter 17 is in ch17-src.zip.

Using a Tomcat utility called Manager, deploying a WAR file can be quite a simple process.

23

Getting Started with JavaServer Pages

05_57485x ch01.qxd 1/14/05 9:14 PM Page 23

TEAM LinG - Live, Informative, Non-cost and Genuine!

Authentication for Manager access
Now try to access the Manager utility using the following URL:

http://localhost:8080/manager/html

At this point, the Manager utility should ask you for your user ID and password. This process is known
as authentication. Figure 1-13 illustrates a typical authentication screen that you may see.

Figure 1-13: Tomcat Manager authentication screen

In the authentication screen, enter the username and password you have set up for administration dur-
ing installation. Once successful, you will see the Manager utility’s main screen, as shown in Figure 1-14.

24

Chapter 1

05_57485x ch01.qxd 1/14/05 9:14 PM Page 24

TEAM LinG - Live, Informative, Non-cost and Genuine!

In Figure 1-14 you can see the WAR files that are already deployed on the running Tomcat server. Now
try to deploy the ch01.war file. Scroll down the page if you need to, until you see the box entitled WAR
File to Deploy. Click the Browse button next to the Select WAR File to Upload prompt. Browse to the
ch01.war file and select it. Next, click the Deploy button.

Figure 1-14: Main screen of Tomcat’s Manager utility

This should start our final Chapter 1 example Web application. Looking at the list of Web applications
deployed on the server, notice that the ch01 Web application is now running on the server, as shown in
Figure 1-15.

25

Getting Started with JavaServer Pages

05_57485x ch01.qxd 1/14/05 9:14 PM Page 25

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 1-15: Successful deployment of the ch01.war example

You can try out the deployed ch01 example by accessing the following URL:

http://localhost:8080/ch01/index.jsp

The page displayed should be similar to what is shown in Figure 1-16.

This JSP page displays information about this book.

How It Works
This Manager application enables you to deploy, start, stop, or undeploy server-side Web applications. A
Web application is a deployable unit represented by the WAR file. When the ch01.war file is selected
using the Browse button and the Deploy button is clicked, the file is uploaded from the local directory to
the Tomcat server. The WAR file is placed into the server’s webapps directory. Tomcat is programmed to
scan for new Web applications in this directory. When Tomcat detects the newly uploaded ch01.war
file, it will deploy the ch01 Web application. This results in the retrieval of the WAR file from the
webapps directory, creating a new ch01 directory holding all of the application files (JSP, servlets, tags,
descriptors, and so on).

26

Chapter 1

05_57485x ch01.qxd 1/14/05 9:14 PM Page 26

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 1-16: Book information presented by the ch01.war JSP example

The index.jsp file from ch01.war can be relocated to the <Tomcat Installation Directory>/
webapps/ch01 directory. Using a text editor to view this file, you should see the following:

<%@ taglib prefix=”wroxtags” tagdir=”/WEB-INF/tags” %>
<html>

<head>
<title>Book Information</title>

</head>
<body>

<h1>Book Information</h1>
<hr>
<p>The name of this book is <i><wroxtags:bookTitle/></i>.</p>
<p>It is published by <wroxtags:publisher/>.</p>
<p>The server used in all the examples is <wroxtags:containerName/>.</p>
</body>

</html>

Again, this is an HTML template with embedded JSP tags. The first tag at the top, the taglib directive,
looks familiar. It is almost exactly the same as the one in hello.jsp from the second example. This
directive associates the wroxtags namespace with the tag files in the WEB-INF/tags directory.

27

Getting Started with JavaServer Pages

05_57485x ch01.qxd 1/14/05 9:14 PM Page 27

TEAM LinG - Live, Informative, Non-cost and Genuine!

If you take a look at the <Tomcat Installation Directory>/webapps/ch01/WEB-INF/tags direc-
tory you will see several .tag files there. Each of these files is associated with an available tag. The fol-
lowing table describes the tags that are used in index.jsp.

Tag Name Description

bookTitle Displays the title of the book

publisher Displays the publisher for the book

containerName Displays the name of the JSP container used in the book

These tags are embedded inline with the HTML within index.jsp. Note that the resulting JSP is inde-
pendent of how these tags work. For example, if the tags were designed to look up the book information
from a library database, the very same index.jsp file can be used to display the book information with-
out any change. By editing the JSP file and modifying the HTML, it is easy to create the exact look
required to present the information.

In other words, the presentation of the information, captured in this JSP, is completely independent of and
separated from the information itself (and the method used to retrieve or synthesize this information —
the tags). JSP technology is considered to be most suitable for use in the Web-based presentation of
business information. Often, one will hear that “JSP is for presentation,” or that JSP is a presentation-layer
technology.

Summary
This chapter provided an introduction to JSP technology, described its intimate relationship with servlets
and CGI, and provided two actual hands-on examples that enabled you to work with the technology.
You now have

❑ Examined the historical evolution that lead to the development of JSP

❑ An appreciation of why JSP is necessary in addition to CGI and servlets

❑ An understanding of what JSP is and how it works

❑ An understanding of Java-based server-side Web request processing in general

❑ Downloaded and installed the Tomcat server for executing JSP code on your own PC or
workstation

❑ An understanding of how to modify a JSP page to dynamically generate Web output

The next chapter explores the basic tags used in JSP programming.

28

Chapter 1

05_57485x ch01.qxd 1/14/05 9:14 PM Page 28

TEAM LinG - Live, Informative, Non-cost and Genuine!

Exercises
1. Modify the index.jsp file in the third example to display a page similar to the one shown in

Figure 1-17. Make sure you use the tags to generate the book title, publisher, and container
name information.

Figure 1-17: JSP output of Exercise 1

2. The ch01.war file contains a JSP example that displays information about this book, as well as
the server used in the examples. Modify this JSP, and add JSP coding if necessary, to render a
page that displays the information shown in Figure 1-18. The last line in the page should iden-
tify the browser that you are using, and will vary depending on whether you are using Internet
Explorer, Netscape, or another browser. You should examine the available tags in the tag library
carefully.

29

Getting Started with JavaServer Pages

05_57485x ch01.qxd 1/14/05 9:14 PM Page 29

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 1-18: JSP output of Exercise 2

30

Chapter 1

05_57485x ch01.qxd 1/14/05 9:14 PM Page 30

TEAM LinG - Live, Informative, Non-cost and Genuine!

2
JSP Basics 1: Dynamic

Page Creation for
Data Presentation

Many of the most popular Web sites in the world are running JSP technology. JSP enables the flexi-
ble and dynamic creation of Web pages. For example, in an online community, JSP may be used to
create highly personalized pages containing only information that is relevant to a community
member. As another example, an online store could use JSP to dynamically create a checkout
form with the products in a customer’s shopping cart. The possibilities are limited only by the
designer’s imagination.

This chapter formally introduces the components that make up a JSP page, and thoroughly
explores the role of JSP as a dynamic Web page creation technology.

This chapter covers the following topics:

❑ The anatomy of a typical JSP page

❑ Processing HTML forms with JSP

❑ Incorporating the output of JSP fragments

❑ Creating a JSP that generates different HTML depending on input

❑ Using JSP to create a personalized Web site

Three hands-on examples are presented in this chapter. They introduce new concepts and tech-
niques in JSP programming.

The Anatomy of a JSP Page
Figure 2-1 shows a typical JSP page, with all of its visible elements explicitly labeled.

06_57485x ch02.qxd 1/14/05 9:16 PM Page 31

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 2-1: Anatomy of a JSP page

The visible elements that make up a JSP page can include the following:

❑ Directive elements

❑ Template data

❑ Action

❑ Scripting elements

A JSP page does not need to have all of these visible elements, but you will very likely encounter all of
them if you look into any moderately complex JSP project. The following sections briefly describe each
visible element.

Directives
Unlike other JSP elements, directives are not used to generate output directly. Rather, they are used to
control some characteristics of a JSP page. Directives may be used to give special instructions to the JSP

<%@ taglib prefix="wroxtags" tagdir="/WEB-INF/tags" %>

<html>

</html>

<head>

<head>
<body>

</body>

<jsp:useBean id="info" class="com.wrox.begjsp.ch1.Info"scope="request" />

<title>Book Information</title>

<h1>Book Information</h1>
<hr>
<p>The name of this book is <wroxtags:bookTitle/> x/p>

<p>It is published by <wroxtags:publisher/>. <xp>

<% if (request.getParameter("outside").equals("true")) { %>

<% } %>

<p><%= info.getMessage() %></p>

<jsp:include page="copyright.html" />

DIRECTIVE

TEMPLATE DATA

SCRIPTING ELEMENTS

ACTION

ACTION

32

Chapter 2

06_57485x ch02.qxd 1/14/05 9:16 PM Page 32

TEAM LinG - Live, Informative, Non-cost and Genuine!

container about what to do during the translation of the page. You can always tell a directive from other
elements because it is enclosed in a special set of braces:

<%@ ... directive ... %>

Three directives are allowed in JSP:

❑ page directive

❑ taglib directive

❑ include directive

Chapter 1 already demonstrated the use of the taglib directive. Although the examples in this chapter
use the page directive and the include directive, Chapter 7, “JSP Directives,” provides a thorough
exploration of how to use these directives.

XML-compatible syntax
A directive — for example, a taglib directive — typically appears in a JSP as follows:

<%@ taglib %>

The same element can also appear in a JSP as follows:

<jsp:directive.taglib />

This is an XML-compatible syntax for expressing the JSP directive. There are many advantages to
expressing a JSP page in XML. For example, many developer tools can work with XML documents
directly. Enterprise technologies, such as Web services, also make extensive use of XML. The emerging
new XHTML standard is also XML-based. Because JSP works intimately with these technologies and
the standard <%@ ... %> syntax is not valid XML, this alternative notation is necessary.

All professional JSP developers are trained in the <%@ ... %> notation. There are millions of lines of
existing JSP code in this notation, so it will likely be supported for the foreseeable future.

Template data
Template data is static text. This static text is passed directly through the JSP container unprocessed. For
example, it may be text that provides static HTML. In Figure 2-1, the template data is the static HTML.

In fact, the example in Chapter 1 demonstrated that an HTML page with no other JSP elements is consid-
ered a valid JSP page. This is because such a page consists of all template data — an allowed element on
a JSP page.

Although most JSP pages are used in generating HTML pages, JSP is not specific to HTML generation.
For example, JSP can be used to generate XML output or even arbitrary text-based reports for direct
printing.

33

JSP Basics 1: Dynamic Page Creation for Data Presentation

06_57485x ch02.qxd 1/14/05 9:16 PM Page 33

TEAM LinG - Live, Informative, Non-cost and Genuine!

A helpful way to see the value of template data in a JSP page is to remember that template text is used to
specify the static portion of a page, while other JSP elements are used in generating the dynamic portion
of the page.

If a JSP page is expressed in XML syntax, typically contained in a .jspx file, the template data portion
may have characters that need to be escaped. For example, the characters < and > are not allowed
directly in an XML document and must be expressed as < and >, respectively.

Action
Action elements are JSP elements that are directly involved in the processing of the request. In most
cases, action elements enable you to access data and manipulate or transform data in the generation of
the dynamic output. For example, an online store may have a JSP page that displays a shopping cart.
This cart JSP shows the products that you have purchased. Action elements may be used to generate the
listing of the products (dynamic content) on the page and to calculate the cost and shipping (dynamic
content), while template data (static HTML) is used to display the logo and shipping policy statements.

Action elements can be either standard or custom. A standard action is dependably available in every JSP
container that conforms to the JSP 2.0 standard. For example, <jsp:useBean>, <jsp:getProperty>,
<jsp:setProperty>, and <jsp:include> are standard actions that appear within the examples in this
chapter. A custom action is an action created using JSP’s tag extension mechanism. This mechanism
enables developers to create their own set of actions for manipulating data or generating dynamic out-
put within the JSP page.

Every XML tag has a name, optional attributes, and an optional body. For example, the standard
<jsp:include> action can be coded as follows:

<jsp:include page=”news.jsp” flush=”false”/>

The name of this tag is jsp:include, the attributes are page and flush, and this <jsp:include>
instance does not have a body. The XML empty notation is used.

An XML tag can also have a body containing other tags, of course:

<jsp:include page=”news.jsp” flush=”false”>
<jsp:param name=”user” value=”${param.username}”/>

</jsp:include>

In this tag, the name is still jsp:include and the attributes are still page and flush, but now the body
is no longer empty. Instead, the body contains a <jsp:param> standard action.

After template data, actions are the next most frequently used elements in JSP coding. You will become
very comfortable working with action elements by the end of this chapter.

Actions are synonymous with tags because every action is an XML tag. The terms are
used interchangeably in this book, just as they are in the JSP developer community.

34

Chapter 2

06_57485x ch02.qxd 1/14/05 9:16 PM Page 34

TEAM LinG - Live, Informative, Non-cost and Genuine!

Scripting elements
The practice of embedding code in another programming language within a JSP page is called scripting.
Scripting elements are embedded code, typically in the Java programming language, within a JSP page.
There are three different types of scripting elements:

❑ Declarations

❑ Scriptlets

❑ Expressions

Declarations are Java code that is used to declare variables and methods. They appear as follows:

<%! ... Java declaration goes here... %>

The XML-compatible syntax for declarations is:

<jsp:declaration> ... Java declaration goes here ... </jsp:declaration>

Scriptlets are arbitrary Java code segments. They appear as follows:

<% ... Java code goes here ... %>

The XML-compatible syntax for scriptlets is:

<jsp:scriptlet> ... Java code goes here ... </jsp:scriptlet>

Expressions are Java expressions that yield a resulting value. When the JSP is executed, this value is con-
verted to a text string and printed at the location of the scripting element. Expression scripting elements
appear as:

<%= ... Java expression goes here ... %>

The XML-compatible syntax for expressions is:

<jsp:expression> ... Java expression goes here ... </jsp:expression>

While the JSP specification allows the embedding of non-Java code within a JSP
page, only very specialized containers may have such support. In almost all cases,
the code embedded in scripting elements will be in the Java programming language.
Java is the assumed scripting language throughout the discussions in this book.

It was noted earlier that non-XML JSP elements such as directives have an XML-
compatible alternative syntax. Actions are XML-based from the earliest version of
JSP, and there is no need to have an alternative syntax.

35

JSP Basics 1: Dynamic Page Creation for Data Presentation

06_57485x ch02.qxd 1/14/05 9:16 PM Page 35

TEAM LinG - Live, Informative, Non-cost and Genuine!

Chapter 3, “JSP Basics 2: Generalized Templating and Server Scripting,” provides a comprehensive dis-
cussion of how to use scripting elements when coding JSP.

Note that while the capability to embed Java code within JSP may initially appear to be a very powerful
feature, that power can be abused. In actual practice, this powerful and flexible feature has been found to
be the main contributor to difficult-to-maintain JSP coding in large projects. The JSP designers have
concluded that removing the dependency on scripting is the only way to mend this problem moving for-
ward. This is the primary reason why JSP 2.0 has implemented an Expression Language (EL). Using a
combination of the JavaServer Pages Standard Tag Library (JSTL, described later in this chapter) and
EL, it is possible to code JSP that is free of scripting elements. One desirable side effect of this is that you
can become an expert JSP developer without learning Java. Beginners to JSP should adopt this style of
programming and avoid the use of scripting elements whenever possible. Almost all of the examples in
this book favor JSTL and EL over scripting elements. However, it is also true that many JSP developers
may need to maintain legacy projects that made heavy use of scripting elements. Chapter 3 caters to
these developers and explores the scripting capabilities thoroughly.

Handling HTML form submission with JSP
One of the most frequently occurring activities within a Web-based application is the handling of data
submitted from an HTML form. JSP is designed to make this frequently occurring activity easy. This
section describes the elements and built-in support that enable you to handle form submission.

Consider the simple HTML form shown in Figure 2-2.

Figure 2-2: Portal Selection HTML form

36

Chapter 2

06_57485x ch02.qxd 1/14/05 9:16 PM Page 36

TEAM LinG - Live, Informative, Non-cost and Genuine!

In Figure 2-2, the user can select a portal (news, weather, or entertainment) from the drop-down list.
When the Select button is clicked, the form is submitted to the server for processing.

Under the hood, the browser performs the following steps:

1. Examines the HTML code to determine the server URL that will handle the form

2. Gathers the data entered by the user in the form and creates parameters attached to the request
to be sent to the browser; for example, if the user selected the news portal, the string news is
sent to the server as an attached request parameter.

3. Encodes the parameters, if necessary, for safe delivery to the server

4. Sends the request to the server URL and waits for a response

Steps 2 and 3 need further explanation. Chapter 1 revealed that the request sent to the server uses the
HTTP protocol. Under this protocol, there are two ways to attach parameters to a request: the GET
method and the POST method.

GET versus POST
One way to attach parameters with a URL request is called the GET method, and the parameter data is
sent inline with the main URL. For example, suppose the URL handling the form is called

http://localhost:8080/ch02/example1/showportal.jsp

and assume the user has selected the news portal. Using the GET method, the URL sent to the server will
contain the following:

http://localhost:8080/ch02/example1/showportal.jsp?portchoice=news

If there is another parameter called username and it has the value admin, then the URL sent will be as
follows:

http://localhost:8080/ch02/example1/showportal.jsp?portchoice=news&username=admin

Note that because the parameter is actually a part of the URL, there are at least two limitations:

❑ The length of the parameter value cannot exceed the maximum URL length.

❑ Certain characters, such as the ampersand (&) and equal sign (=), have special meanings, and
must be encoded (changed to another representation) if they’re to be used as part of the URL.

It is the second limitation that makes encoding parameters necessary. For example, if the username were
deliberately entered as a&dm=in, the resulting URL will be sent to the server:

http://localhost:8080/ch02/example1/showportal.jsp?portchoice=news&username=a%26dm%
3Din

The good news is that the browser will know how to encode the parameters. On the server side, the JSP
container will know how to decode the encoded parameter if necessary. In other words, before attaching

37

JSP Basics 1: Dynamic Page Creation for Data Presentation

06_57485x ch02.qxd 1/14/05 9:16 PM Page 37

TEAM LinG - Live, Informative, Non-cost and Genuine!

a parameter to the URL, developers need to be aware only that a GET method may encode the parameter,
but they may never need to work with the encoded parameter directly.

The other way of attaching parameters to a URL request is via the POST method. The POST method uses
the HTTP message body to send the parameter information. All this is done by the browser, and the
developer doesn’t need to do anything extra on the client end to make it happen. The JSP container
understands this method of parameter passing and will enable you to access the parameters directly on
the server side. The POST method has the following advantages:

❑ The length of a parameter value sent is not limited.

❑ The parameters are not sent as part of the visible URL and are, therefore, less prone to tamper-
ing by malicious users.

Yet another difference between GET and POST relates to their intended use. Try refreshing a page that has
a POST action in it, and you will promptly get a warning message from your browser. The message for
Internet Explorer describes the reason very well: “The page you are trying to view contains POSTDATA.
If you resend the data, any action the form carried out (such as a search or online purchase) will be
repeated. To resend the data, click OK. Otherwise, click Cancel.”

As designed, GET was supposed to be used for sending data that could be resent without any change in
the system. For example, the GET action shown in the URL http://localhost:8080/ch02/example1/
showportal.jsp?portchoice=news shows the news portal, and reloading the page multiple times will
cause no change. The POST action, on the other hand, could be used to send data that results in sending an
e-mail or purchasing an item. Refreshing the result of a POST could cause the e-mail to be sent twice, or
multiple items to be purchased. Of course, this was just the intent, and nothing stops Web developers
from developing Web applications that behave differently.

The following exercise shows how JSP can handle HTML form submission.

Try It Out Handling HTML Form Submission
Deploy the ch02.war file on your Tomcat 5 server. (See Chapter 1 if you are not sure how to do this.)

Access the first example by pointing your browser to the following URL:

http://localhost:8080/ch02/example1/index.jsp

The form displayed is exactly that of Figure 2-2. First, select News for the portal choice, and then click
the Select button.

38

Chapter 2

06_57485x ch02.qxd 1/14/05 9:16 PM Page 38

TEAM LinG - Live, Informative, Non-cost and Genuine!

This will send the request to the server, and the news portal page will be displayed, as shown in Figure 2-3.
Note that both the title of the page and its content indicate that it is the news portal.

Figure 2-3: News portal page

Enter the URL again. From the portal drop-down menu, this time select Weather for the portal choice
and click Select. The weather portal page will be displayed, as shown in Figure 2-4. Note that both the
title of the page and the content of the page indicate that it is the weather portal.

39

JSP Basics 1: Dynamic Page Creation for Data Presentation

06_57485x ch02.qxd 1/14/05 9:16 PM Page 39

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 2-4: Weather portal page

Finally, enter the URL one more time. From the portal drop-down menu, select Entertainment for the
portal choice and click Select. The entertainment portal page will be displayed, as shown in Figure 2-5.
Again, both the title of the page and the content of the page indicate that it is the entertainment portal.

At first glance, it appears that the JSP form submission handler sends you to a different portal Web page
depending on your selection. However, if you were paying attention to the URL that is displayed at the
top of the browser after you click the Select button, you realized that all three portal pages are generated
from the same JSP page — dynamically. The URL you will see and the JSP page that generates the portal
pages is as follows:

http://localhost:8080/ch02/example1/showportal.jsp

The next section reveals how this is done.

40

Chapter 2

06_57485x ch02.qxd 1/14/05 9:16 PM Page 40

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 2-5: Entertainment portal page

How It Works
The index.jsp page, found in the <Tomcat Installation
Directory>\webapps\ch02\example1\index.jsp file, contains the following:

<html>
<head><title>Select Your Portal</title></head>
<body>

<h1>Select your preferred portal:</h1>
<form action=”showportal.jsp” method=”get”>

Your First Name: <input name=”username” type=”text” size=”40”/>
<select name=”portchoice”>

<option>news</option>
<option>weather</option>
<option>entertainment</option>

</select>
<input type=”submit” value=”Select”/>

</form>
</body>

</html>

One thing to note immediately is that this is a pure HTML page. Our earlier analysis of the anatomy of a
JSP page reveals that this is just a special case of a JSP page in which the entire page is template data.

41

JSP Basics 1: Dynamic Page Creation for Data Presentation

06_57485x ch02.qxd 1/14/05 9:16 PM Page 41

TEAM LinG - Live, Informative, Non-cost and Genuine!

Using the GET method to submit a form
The highlighted line in the example shown in the previous section, the <form> open tag, specifies that
the server’s URL to handle the form will be showportal.jsp. It also specifies that the method used to
send request parameters will be the GET method.

The name of the HTML element — in this case, the <select> element — will be used as the name of
the parameter sent to the server. The name of the <select> element, and therefore the parameter, in this
case is portchoice.

If you try the form again, select the news portal, and note the URL that is sent to the server, you will see
the GET method in action:

http://localhost:8080/ch02/example1/showportal.jsp?portchoice=news

Note the way the browser has added the parameter to the end of the server URL. This is identical to our
description for the GET method earlier.

The JSP page that is responsible for handling the form submission is showportal.jsp. This is located in
the <Tomcat Installation Directory>\webapps\ch02\example1\showportal.jsp file. This is the
page that dynamically generates one of the three portal pages shown in Figure 2-3, Figure 2-4, and
Figure 2-5. The content of this JSP is as follows:

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<html>

<c:choose>
<c:when test=”${param.portchoice == ‘news’}”>

<head><title>News Portal</title></head>
<body>

<h1>Headline News Just For You!</h1>
</body>

</c:when>
<c:when test=”${param.portchoice == ‘weather’}”>

<head><title>Weather Portal</title></head>
<body>

<h1>Accurate Weather Around the Clock!</h1>
</body>

</c:when>
<c:when test=”${param.portchoice == ‘entertainment’}”>

<head><title>Weather Portal</title></head>
<body>

<h1>The Most Popular Reality TV Shows!</h1>
</body>

</c:when>
<c:otherwise>

<head><title>System Portal</title></head>
<body>

<h1>Application logic problem detected!</h1>
</body>

</c:otherwise>
</c:choose>

</html>

42

Chapter 2

06_57485x ch02.qxd 1/14/05 9:16 PM Page 42

TEAM LinG - Live, Informative, Non-cost and Genuine!

You should recognize the JSP directive element on this JSP page. It is the very first line, the taglib
directive, reproduced here:

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>

The taglib directive enables you to specify a tag library to be used within this JSP. A tag library adds
custom action elements that can be used throughout the page. The attributes of a taglib directive are
described in the following table.

Attribute Description

prefix Indicates the string prefix that is used by all the tags in this tag
library. The namespace notation in XML is used to prefix the tags. For
example, if the prefix is c, and the tag name is out, the full tag name
is <c:out>. Some prefixes are reserved and cannot be used, includ-
ing jsp:, jspx:, java:, javax:, servlet:, sun:, and sunw:.

uri A URI that uniquely identifies a tag library. The JSP container will
examine the available tag libraries in its classpath and locate the
corresponding tag library. In this case, the uri specifies JSTL 1.1. In
the example in Chapter 1, a tagdir attribute is used instead of uri.
The tagdir attribute was used to specify the location of the custom
tag files that was used. The tagdir and uri attributes are mutually
exclusive; only one may be used in any taglib directive.

Working with JSTL 1.1
JSTL (JSP Standard Tag Library) is a standard set of tags designed for use specifically within JSP to
perform most common Web application programming tasks. The set of tags includes conditional flow
control, iteration, data output, internationalization, and working with XML documents and databases.
The latest release of the reference implementation is open source and can be located at

http://jakarta.apache.org/taglibs/doc/standard-doc/intro.html

The version of JSTL that is designed to work with Tomcat 5, Servlets 2.4, and JSP 2.0 is JSTL 1.1.

The taglib directive specifies a URI that matches JSTL 1.1. This tag library contains many different tags
(custom actions). You can find the JAR files for JSTL 1.1 in the application’s lib directory. In our case, it
can be located in the <Tomcat Installation Directory>\webapps\ch02\WEB-INF\lib directory
and consists of jstl.jar and standard.jar.

One specific JSTL 1.1 tag construct that is used in the JSP is the <choose> tag construct:

<c:choose>
<c:when test=”...expression...”>

...
</c:when>
<c:when test=”...expression...”>

...

43

JSP Basics 1: Dynamic Page Creation for Data Presentation

06_57485x ch02.qxd 1/14/05 9:16 PM Page 43

TEAM LinG - Live, Informative, Non-cost and Genuine!

</c:when>
<c:otherwise>

...
</c:otherwise>

</c:choose>

Specifically, this construct will choose and execute only the body of one of the <c:when> or <c:otherwise>
tags. During the execution of the JSP, the expression in the test attribute of the <c:when> tag will be evalu-
ated, and the very first test expression evaluated to be true at execution time will have the associated tag
body executed. In our case, the actual construct is coded as follows:

<c:choose>
<c:when test=”${param.portchoice == ‘news’}”>

<head><title>News Portal</title></head>
<body>

<h1>Headline News Just For You!</h1>
</body>

</c:when>
<c:when test=”${param.portchoice == ‘weather’}”>

<head><title>Weather Portal</title></head>
<body>

<h1>Accurate Weather Around the Clock!</h1>
</body>

</c:when>
<c:when test=”${param.portchoice == ‘entertainment’}”>

<head><title>Weather Portal</title></head>
<body>

<h1>The Most Popular Reality TV Shows!</h1>
</body>

</c:when>
<c:otherwise>

<head><title>System Portal</title></head>
<body>

<h1>Application logic problem detected!</h1>
</body>

</c:otherwise>
</c:choose>

The highlighted code is the actual JSTL 1.1 <choose> construct. It should be clear that only one of the
nonhighlighted bodies will be executed, depending on the value of the expression in the test attributes
of <c:when> tags. The HTML code for the different portal pages is located here (the nonhighlighted bod-
ies of the <c:when> tag). For example, if the user selected the weather portal, the incoming portchoice
parameter has the value ‘weather’ and the weather portal’s HTML code will be rendered. Chapter 6,
“JSP Tag Libraries and JSTL,” has significantly more detailed coverage of JSTL 1.1.

Working with the JSP 2.0 Expression Language (EL)
Take a closer look; the three EL expressions used in the preceding example are:

❑ ${param.portchoice == ‘news’}

❑ ${param.portchoice == ‘weather’}

❑ ${param.portchoice == ‘entertainment’}

44

Chapter 2

06_57485x ch02.qxd 1/14/05 9:16 PM Page 44

TEAM LinG - Live, Informative, Non-cost and Genuine!

These are all EL (Expression Language) expressions. EL expressions are easily identifiable in a JSP page
because they are always bracketed as follows:

${... EL expression ...}

The three expressions above are comparing using the “equals” comparative operator (==). You may also
use greater than (>), less than (<), greater or equal (>=), less or equal (<=), and not equal (!=).

EL expressions are always evaluated at runtime, meaning that they are run as JSP is actually executed
(while processing an actual incoming request) and not at the time when the JSP is processed by the JSP
container. This distinction is important because form parameters such as portchoice will have a value
only during runtime and not any time before the processing of the request.

EL expressions can be used as follows:

❑ Anywhere template data may be placed

❑ Within attributes of an action that can take an expression, such as the test attribute of the JSTL’s
<when> action

If you look at the expressions used in the <choose> tag again, you see that it makes use of an object with
the name param. This is an implicit object in EL. EL implicit objects are described in the next section.

EL implicit objects
EL implicit objects are objects that are made available to EL expressions by the JSP container during run-
time. There is no need to create or initialize these objects. They can be simply referred to by name within
your EL expression.

These useful objects were designed to facilitate your JSP programming activity. The following table
briefly describes the available EL implicit objects. Chapter 5, “JSP and EL,” provides more in-depth
coverage of each of the available implicit objects.

EL Implicit Object Name Description

pageContext This is the same as the pageContext implicit object in JSP. It has
many properties associated with the processing of the current
JSP page. Chapter 5 provides details of this object.

pageScope Used to access any attributes attached to the page scope.
Attributes are objects provided by Java or business logic pro-
grammers that a JSP programmer may use in generating
dynamic content. Typically, attributes are attached by servlets in
a framework. Chapters 5 and 19 explore this fully.

requestScope Used to access any attributes attached to the request scope.
Attributes attached to a request scope have one instance per
incoming request.

Table continued on following page

45

JSP Basics 1: Dynamic Page Creation for Data Presentation

06_57485x ch02.qxd 1/14/05 9:16 PM Page 45

TEAM LinG - Live, Informative, Non-cost and Genuine!

sessionScope Used to access any attributes attached to the session scope.
Attributes attached to a session scope have one instance across
multiple requests belonging to the same user session.

applicationScope Used to access any attributes attached to the application scope.
Attributes attached to an application scope have only one
instance across multiple JSPs belonging to the same Web appli-
cation (i.e., deployed WAR file). All requests, sessions, and JSPs
will share the same instance.

param Used to access parameters passed in with the request. This is
typically from a form submission. Any parameter can be
accessed by name through this implicit object. This is the only
EL implicit object used in this chapter.

paramValues Used to access parameters passed in with the request. It enables
access to parameters that may have multiple values.

header Used to access the HTTP header information.

headerValues Used to access the HTTP header information and enable access
to a header that may have multiple values.

cookie Used to access cookie information available with the incoming
request. Cookies are typically used to establish user sessions
across different requests. See Chapter 5 for more information.

initParam Used to access the initialization parameters for the Web applica-
tion. Chapter 5 demonstrates the use of this implicit object.

In a nutshell, our portal example uses only the implicit param object to access the incoming parameter
called portchoice from the form submission. The EL expression to access the value of the portchoice
parameter is as follows:

${param.portchoice}

In general, any incoming parameter from a form submission may be accessed as follows:

${param.<name of parameter>}

In summary, the combination of JSTL 1.1’s <choose> tag construct and EL’s param implicit object
enables the showportal.jsp page to generate one of three portal pages dynamically, depending on the
user’s portal selection.

Try It Out Including JSP Pages
This second example is built upon the first example. Using the technique in the first example to dynami-
cally generate a portal home page can present one major problem: All the HTML content of the portal
must be coded within the one and only showportal.jsp page. This presents a problem if

46

Chapter 2

06_57485x ch02.qxd 1/14/05 9:16 PM Page 46

TEAM LinG - Live, Informative, Non-cost and Genuine!

❑ You have a large number of portals, in which case the page can become unmanageable

❑ The individual portal pages are maintained by different people or groups that will have to coor-
dinate the update of the single showportal.jsp page

To resolve this problem, the showportal.jsp page must be rewritten to be independent of the content
of the portal pages. This second example demonstrates the solution.

With the ch02.war deployed, try out the following URL:

http://localhost:8080/ch02/example2/index.jsp

The form displayed should be similar to the one shown in Figure 2-6.

Figure 2-6: Example 2 Portal Selection form

Select the news portal and click the Select button. The news portal home page is shown, and a news
headline is displayed. Figure 2-7 illustrates the news portal home page for this example.

47

JSP Basics 1: Dynamic Page Creation for Data Presentation

06_57485x ch02.qxd 1/14/05 9:16 PM Page 47

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 2-7: Example 2 News portal home page

Other than the extra news headline, this portal home page appears to be the same as the one in the first
example.

Enter the URL again and this time select the weather portal and click the Select button. The weather por-
tal home page is displayed, showing the weather of several cities in the world. This portal page is shown
in Figure 2-8.

48

Chapter 2

06_57485x ch02.qxd 1/14/05 9:16 PM Page 48

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 2-8: Example 2 Weather portal home page

Finally, enter the URL again, select the entertainment portal, and click the Select button. The entertain-
ment home page is displayed with an entertainment headline, as shown in Figure 2-9.

All of these portal pages appear to be similar to those in the first example, with the exception of some
additional information displayed. Bear in mind, however, that the showportal.jsp in this example no
longer generates the portal pages directly behind the scenes. But this fact is completely transparent to us,
the users.

49

JSP Basics 1: Dynamic Page Creation for Data Presentation

06_57485x ch02.qxd 1/14/05 9:16 PM Page 49

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 2-9: Example 2 Entertainment portal home page

How It Works
Figure 2-10 contrasts the construction of the first example against the construction of this example.

In Figure 2-10, note that in the first example, showportal.jsp is solely responsible for generating the
portal pages. Contrast this with the case in the second example. Here, the individual portal pages reside
within their own independent .jsp files. For example, the weather portal page resides in weather.jsp.
In the second example, the sole purpose of the showportal.jsp page becomes the selection of the .jsp
file to display. It is completely independent of what is contained within these portal pages.

50

Chapter 2

06_57485x ch02.qxd 1/14/05 9:16 PM Page 50

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 2-10: Removing dependency on portal content in the second example

The new form, index.jsp, which is located at <Tomcat Installation
Directory>\webapps\ch02\example2\index.jsp, has been improved with added HTML layout
and a CSS stylesheet. This index.jsp is reproduced as follows:

<html>
<head>

<link rel=stylesheet type=”text/css” href=”portal.css”>
<title>Select Your Portal</title>

</head>
<body>

<table class=”mainBox” width=”400”>
<tr>

<td class=”boxTitle” colspan=”2”>
Wrox JSP Portal Selector

</td>
</tr>

Portal
Selection

index.jsp
EXAMPLE 1

EXAMPLE 2/3

selection

selection

the selected portal page

the selected portal page

Portal
Selection

index.jsp

Dynamically
generates

one of three
portal
pages

showportal.jsp

news.jsp

Dynamically
selects one

of three
portal pages
to generate

showportal.jsp

news portal

weather.jsp

weather portal

entertain.jsp

entertainment
portal

51

JSP Basics 1: Dynamic Page Creation for Data Presentation

06_57485x ch02.qxd 1/14/05 9:16 PM Page 51

TEAM LinG - Live, Informative, Non-cost and Genuine!

<tr><td colspan=”2”> </td></tr>
<tr><td>

<form action=”showportal.jsp” method=”get”>
<table>

<tr>
<td width=”200”>Portal Selection</td><td>

<select name=”portchoice”>
<option>news</option>
<option>weather</option>
<option>entertainment</option>

</select>
</td>

</tr>
<tr><td colspan=”2”> </td></tr>
<tr><td colspan=”2” align=”center”>

<input type=”submit” value=”Select”/>
</td></tr>

</table>
</form>

</td></tr>
</table>

</body>
</html>

Note that the relevant highlighted <form> tag remains the same, even though the page is now consider-
ably more cluttered with HTML layout and CSS information. Because this form has already been tested
in the first example, you can confidently add the layout and formatting. While this improves the appear-
ance, the JSP logic (in this case, form submission logic) remains the same.

The CSS stylesheet is called portal.css. It contains styles for the major visual elements of the portal,
such as boxes, a headline, and news text. portal.css is reproduced here:

.tableCell
{ font-family : Verdana, Geneva, Arial, Helvetica, sans-serif;

font-size : 16;
font-weight : bold;
color : #0f7fcf;
background-color: #ffffff;

}

.valueCell
{

font-family : Verdana, Geneva, Arial, Helvetica, sans-serif;
font-size : 16;

Readers interested in Cascading Stylesheets (CSS) and HTML formatting should
consult Beginning Web Development with HTML, XHTML, and CSS (Wrox Press; ISBN
0-7645-7078-1).

52

Chapter 2

06_57485x ch02.qxd 1/14/05 9:16 PM Page 52

TEAM LinG - Live, Informative, Non-cost and Genuine!

color : #000000;
background-color: #fefefe;

}

.headLine
{

font-family : Verdana, Geneva, Arial, Helvetica, sans-serif;
font-size : 18;
font-weight : bold;
color: #000000;

}

.newsText
{

font-family : Verdana, Geneva, Arial, Helvetica, sans-serif;
font-size : 10;
color: #000000;

}
.boxTitle

{
font-family : Arial, Helvetica, sans-serif;
font-size : 22;
font-weight : bold;
color : #ffffff;
background-color: #0F7ACA; }

.mainBox
{

font-family : Verdana, Geneva, Arial, Helvetica, sans-serif;
font-size : 12; color : #ffffff;
background-color: #eeeeee;

}

JSP best practices
Throughout this book, and specifically in Chapter 26, “Best Practices and Tools,” JSP best practices are
emphasized. Best practices are commonly accepted wisdom originating from documented industry
experience. The difference between the first example and the second illustrates a best practice when
designing JSP applications. The concept is quite simple:

❑ Use the simplest HTML to prototype your application before adding style and layout.

❑ Separate JSP development from HTML layout and formatting if possible.

In our case, the pages of the first example used minimal HTML. This allowed testing of the JSP elements
without the clutter of HTML layout and stylesheets. Once the JSP elements are tested, HTML layout and
stylesheets can be added.

If you are working in a team environment, the designer of the look and feel of the application may be a
graphics designer. In this case, you may be responsible only for the putting together the JSP elements on
a page. JSP development and HTML layout are typically separate activities.

53

JSP Basics 1: Dynamic Page Creation for Data Presentation

06_57485x ch02.qxd 1/14/05 9:16 PM Page 53

TEAM LinG - Live, Informative, Non-cost and Genuine!

Using the <jsp:include> standard action to select portal rendering
The showportal.jsp page in the second example, located at <Tomcat Installation
Directory>\webapps\ch02\example2\showportal.jsp, is reproduced here:

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<html>

<c:choose>
<c:when test=”${param.portchoice == ‘news’}”>

<jsp:include page=”news.jsp” />
</c:when>
<c:when test=”${param.portchoice == ‘weather’}”>

<jsp:include page=”weather.jsp” />
</c:when>
<c:when test=”${param.portchoice == ‘entertainment’}”>

<jsp:include page=”entertain.jsp” />
</c:when>
<c:otherwise>

<head><title>System Portal</title></head>
<body>

<h1>Application logic problem detected!</h1>

</c:otherwise>
</c:choose>

</body></html>

Changes from the showportal.jsp in the first example are highlighted in the preceding code. The
<c:choose> logic of the custom JSTL action is well tested in the first example. The only new element
here is the <jsp:include> standard action. Instead of having the HTML render the portal pages right
inside showportal.jsp, the <jsp:include> standard action is used to import other independent JSP
pages. The task of displaying (called rendering in JSP development) the portal page is passed on to (or
delegated to) the individual portal pages: news.jsp, weather.jsp, and entertain.jsp.

The main function of the <jsp:include> standard action is to include the output of another JSP page at
the location where the <jsp:include> tag is placed. This action is not limited to JSP, but will work with
other Web files, including HTML pages. Several attributes may be added to the <jsp:include> tag; the
one used in the example is described in the following table.

Attribute Description

Page Specifies the JSP (or HTML page, etc.) whose output is to be included
at the current location of the tag

Chapter 8, “JSP Standard Actions,” offers a more comprehensive exploration of the standard actions,
such as <jsp:include>.

If you have selected the news portal, the news.jsp page will be included in the showportal.jsp page
and rendered. The source of news.jsp, which is located at <Tomcat Installation Directory>\
webapps\ch02\example2\news.jsp, is reproduced here:

<head>
<link rel=stylesheet type=”text/css” href=”portal.css”>

54

Chapter 2

06_57485x ch02.qxd 1/14/05 9:16 PM Page 54

TEAM LinG - Live, Informative, Non-cost and Genuine!

<title>News Portal</title>
</head>
<body>

<table class=”mainBox” width=”600”>
<tr><td class=”boxTitle” >

Welcome to the News Portal!
</td></tr>
<tr><td>

<jsp:useBean id=”newsfeed” class=”com.wrox.begjsp.ch2.NewsFeed”

scope=”request” >
<jsp:setProperty name=”newsfeed” property=”topic” value=”news”/>
<jsp:getProperty name=”newsfeed” property=”value”/>

</jsp:useBean>

<jsp:include page=”dummytext.html” />

</td></tr>
</table>

This page uses a simulated newsfeed to fetch a headline and then display it to the user. This is indicated
by the highlighted code.

The second line of highlighted code includes a simple HTML page, called dummytext.html, that pro-
vides the simulated news article text. This demonstrates that the <jsp:include> action is not limited to
the rendering of included JSP but also works with HTML pages.

The first set of highlighted code uses another three JSP standard actions to work with the newsfeed
object: <jsp:useBean>, <jsp:setProperty>, and <jsp:getProperty>. How this works is explained
in the next section.

Manipulating JavaBeans with JSP standard actions
A JavaBean is an object coded in the Java programming language that follows some rigid conventions.
For example, all JavaBeans expose their capabilities through the following:

❑ Properties: Valued attributes of the bean; these can be read/write, read only, or write only.

❑ Methods: Functional procedures that can be invoked.

❑ Events: Notifications that can be caught.

JavaBeans are reusable software components that can be very useful in JSPs. Of course, the application
of a JavaBean is not restricted to JSP. JavaBeans are used in creating servlets or even standalone Java
applications. Interactions between JSP and JavaBeans typically center around the use of JavaBean prop-
erties. Chapter 9, “JSP and JavaBeans,” describes in detail the use of JavaBeans within JSPs.

A read/write property of a bean will allow both the get and set operations. The get operation obtains
the current value of a JavaBean property. The set operation sets the value of a JavaBean property.

55

JSP Basics 1: Dynamic Page Creation for Data Presentation

06_57485x ch02.qxd 1/14/05 9:16 PM Page 55

TEAM LinG - Live, Informative, Non-cost and Genuine!

A JavaBean can be used to generate dynamic content for the portal home pages.

The JavaBean used for our example is a NewsFeed JavaBean. It simulates the action of a real newsfeed.
Newsfeeds are electronic data connections that supply news information items.

To get a news item in a topic, you need to set the topic filter, and then read from the JavaBean. The
following table describes the properties of this NewsFeed JavaBean.

Property Read/Write Description

topic Write only Set to “news,” “weather,” or “entertain-
ment” to filter the newsfeed. This must be
set before accessing the value or values
property.

value Read only This property supplies a single informa-
tion item once the topic property is set.

values Read only This property will supply a list of infor-
mation items once the topic property is
set. For our example, this property will
have value only if “weather” is the topic.

According to the preceding table, to get the latest news item, it is necessary to:

1. Set the topic property to news.

2. Read the value property.

To get the latest entertainment information:

1. Set the topic to entertainment.

2. Read the value property.

To get the latest weather information:

1. Set the topic property to weather.

2. Read the values property.

This is exactly what happened within the news.jsp portal page; the responsible segment of JSP code is
reproduced here:

In a production development shop, the development team members responsible for
the business logic will typically supply you with JavaBeans that you can use within
your JSPs. They should also provide you with a description of a bean’s properties,
and instructions on how to use it.

56

Chapter 2

06_57485x ch02.qxd 1/14/05 9:16 PM Page 56

TEAM LinG - Live, Informative, Non-cost and Genuine!

<jsp:useBean id=”newsfeed” class=”com.wrox.begjsp.ch2.NewsFeed” scope=”request” >
<jsp:setProperty name=”newsfeed” property=”topic” value=”news”/>
<jsp:getProperty name=”newsfeed” property=”value”/>

</jsp:useBean>

The <jsp:useBean> tag is used to create an instance of a JavaBean, of Java class com.wrox.begjsp.
ch2.NewsFeed. This instance is attached to the current request, ensuring that each request will have its
own instance. If the JavaBean creation is successful, then the <jsp:setProperty> tag is used to set the
bean’s topic property to the value “news”. After setting the topic property, the <jsp:getProperty> tag
is used to read and render (display) the value property of the bean.

The <jsp:useBean> tag is used to either locate an existing instance of a JavaBean or to create a new
instance if one is not found. Chapter 8 provides details about this versatile standard action. Only the
attributes used in this example are described in the following table.

Attribute Description

id The name of the created JavaBean instance. A scripting variable with
the same name is also created.

class The Java class (compiled code) of the JavaBean. The JSP container
must be able to locate this class in order to instantiate it. This typi-
cally means that it must be located under the application’s WEB-
INF/classes directory or in one of the JAR files in the application’s
WEB-INF/lib directory.

scope Can be page, request, session, or application. The request
scope means the JavaBean instance created is unique to only this
request. The other scopes are explained in Chapter 8.

Readers who are interested in the Java source code of the NewsFeed object can locate it in the <Tomcat
Installation Directory>\webapps\ch02\example2\WEB-INF\classes\com\wrox\begjsp\ch02
directory.

The <jsp:useBean> tag can optionally have a body. If a body is specified, as it is in the second example,
the body will be executed only if the JavaBean is created successfully. This means that if the JavaBean
creation is not successful, the JSP will not attempt to access its properties. No headline will be generated
by news.jsp in this case.

Within the body of the <jsp:useBean> tag, this code line sets the topic property of the newly created
bean to “news”. The syntax of this standard action is quite self-explanatory. Note the use of the name
“newsfeed,” corresponding to the ID given to the newly created JavaBean instance in the
<jsp:useBean> tag:

<jsp:setProperty name=”newsfeed” property=”topic” value=”news”/>

Note that both the <jsp:useBean> and the <jsp:setProperty> standard actions do not generate any
output if they are successful in their operations. This is not true with the <jsp:getProperty> tag. The

57

JSP Basics 1: Dynamic Page Creation for Data Presentation

06_57485x ch02.qxd 1/14/05 9:16 PM Page 57

TEAM LinG - Live, Informative, Non-cost and Genuine!

output of this tag is the value of the JavaBean’s property converted to a string. This output will be placed
at the location of the tag. For example, the line that renders the headline in news.jsp is as follows:

<jsp:getProperty name=”newsfeed” property=”value”/>

Again, notice the name reference to the JavaBean instance created earlier: “newsfeed.”

The portal page that displays the entertainment news works in the same way. entertain.jsp, located at
<Tomcat Installation Directory>\webapps\ch02\example2\entertain.jsp, is reproduced here:

<head>
<link rel=stylesheet type=”text/css” href=”portal.css”>
<title>Weather Portal</title>

</head>
<body>

<table class=”mainBox” width=”600”>
<tr><td class=”boxTitle” >

Entertainment News Just for You!
</td></tr>
<tr><td>

<jsp:useBean id=”newsfeed” class=”com.wrox.begjsp.ch2.NewsFeed”

scope=”request” >
<jsp:setProperty name=”newsfeed” property=”topic”

value=”entertainment”/>
<jsp:getProperty name=”newsfeed” property=”value”/>

</jsp:useBean>

<jsp:include page=”dummytext.html” />

</td></tr>
</table>

Compare the highlighted JSP lines with news.jsp and check it against the instructions on how to use
the NewsFeed JavaBean. You will find that the code is the same as news.jsp, except that the topic
property is set to “entertainment” before accessing the value property.

The situation is quite different, however, in the rendering of the weather portal page. This is because the
values property of the NewsFeed JavaBean is used in this case, instead of the value property. Unlike
the value property, the values property returns more than one value. In fact, it returns an entire table
of cities and temperatures. It turns out that no standard JSP action can handle this type of property eas-
ily. This is one of the reasons why JSP 2.0 is designed to work with JSTL 1.1 — combining custom actions
in JSTL 1.1 with the Expression Language in JSP 2.0, multivalued properties can be handled very easily.

Rendering a multivalued JavaBean property with JSTL/EL
The weather.jsp JSP, located at <Tomcat Installation
Directory>\webapps\ch02\example2\weather.jsp, is reproduced here:

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<head>

58

Chapter 2

06_57485x ch02.qxd 1/14/05 9:16 PM Page 58

TEAM LinG - Live, Informative, Non-cost and Genuine!

<link rel=stylesheet type=”text/css” href=”portal.css”>
<title>Weather Portal</title>

</head>
<body>

<table class=”mainBox” width=”600”>
<tr><td class=”boxTitle” >

You Get the Latest Weather!
</td></tr>
<tr><td>
<jsp:useBean id=”newsfeed” class=”com.wrox.begjsp.ch2.NewsFeed” scope=”request”

>
<jsp:setProperty name=”newsfeed” property=”topic” value=”weather”/>

</jsp:useBean>
<table>

<c:forEach items=”${newsfeed.values}” var=”row” >
<tr><td class=”tableCell” width=”200”> ${row.city} </td>

<td> ${row.temp}</td>
</tr>

</c:forEach>
</table>
</td></tr>

</table>

Referring back to Figure 2-7, you can see that the highlighted code is responsible for dynamically gener-
ating the table of cities and associated temperatures. Of course, this data is obtained from the NewsFeed
JavaBean. Both the <jsp:useBean> and <jsp:setProperty> standard actions appear again. They are
used to create the NewsFeed JavaBean instance and set the topic property to weather. However, the
<jsp:getProperty> standard action is not used.

Instead, the JSTL iteration tag is used to create the table. In general, the JSTL iteration tag has the follow-
ing form:

<c:forEach items=”.. a collection of objects ..” var=”.. var name..” >
... code that executes once for each object in the collection...

</c:forEach>

The two attributes used are described in the following table.

Attribute Description

items An expression that results in a collection of objects. In Java program-
ming terms, the object returned must support the java.util.
Collection interface. For example, this can be a property of a
JavaBean that returns a collection of objects.

var During each repetition through the loop, an object is selected from
the collection specified in items. The object is given this name and
can be referred to within the body by this name.

Chapter 6 features more comprehensive coverage of JSTL in general, and the iteration tag in particular.

59

JSP Basics 1: Dynamic Page Creation for Data Presentation

06_57485x ch02.qxd 1/14/05 9:16 PM Page 59

TEAM LinG - Live, Informative, Non-cost and Genuine!

This <c:forEach> tag enables us to iterate through all the values of the values property on the
NewsFeed JavaBean. It will generate one table row for each value returned. The code to generate the
table is reproduced here:

<table>
<c:forEach items=”${newsfeed.values}” var=”row” >

<tr><td class=”tableCell” width=”200”> ${row.city} </td>
<td> ${row.temp}</td>

</tr>
</c:forEach>

</table>

In the description of <jsp:useBean>, you learned that a scripting variable is created that refers to the
JavaBean specified by the tag. The name of this scripting variable is specified in the id attribute. In
this case, the scripting variable is used in the EL expression ${newsfeed.values}, referring to the val-
ues property of the NewsFeed JavaBean. This property is supplied for the items attribute of the JSTL
iteration tag.

Each object returned by the NewsFeed JavaBean is assigned to the variable “row” set in the var attribute
of the <c:forEach> tag. It is used within the body to obtain the city and temperature value. These val-
ues are obtained via the ${row.city} and ${row.temp} EL expressions. From a JSP perspective, city
and temp are properties of the objects in the collection returned by the values property of the NewsFeed
JavaBean.

For readers fluent with the Java programming language, the values property of the NewsFeed JavaBean
returns an ArrayList of HashMaps. This combination of data structures enable convenient access to
tabular data from JSPs using JSTL 1.1 and EL.

Web site personalization
JSP can be used to create personalized Web applications. A personalized Web application is aware of the
user’s identity. This is certainly useful, for example, to provide users with their own set of preferences
while using your application. A more concrete scenario may be an online book seller customizing a
home page to feature books that match a user’s favorite topic in an attempt to increase sales. There
are many aspects to creating a personalized Web site. The chapters in this book build upon each other,
presenting to you features that enable you to use JSP in Web site personalization. Chapter 27, “Project I:
Personalized Portal,” demonstrates how such a personalized Web site can be built.

The last example in this chapter reveals how the portal selection system can be used to propagate (send)
user information to the independent portal pages. This enables each of the portal pages to greet users by
their first name, creating a personalized experience.

60

Chapter 2

06_57485x ch02.qxd 1/14/05 9:16 PM Page 60

TEAM LinG - Live, Informative, Non-cost and Genuine!

Try It Out Web Site Personalization
To see the personalization of the portal application in action, make sure the ch02 application is running
on Tomcat and access the following URL:

http://localhost:8080/ch02/example3/index.jsp

The portal selection form is displayed. This time, the form also enables you to enter your first name for
personalization purposes. This form is shown in Figure 2-11.

Figure 2-11: Portal selection form for personalization

Enter your first name, select the news portal, and then click the Select button. You should now see a per-
sonalized news portal, as shown in Figure 2-12.

61

JSP Basics 1: Dynamic Page Creation for Data Presentation

06_57485x ch02.qxd 1/14/05 9:16 PM Page 61

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 2-12: Personalized news portal

Note that the portal is now personalized with your own name. In the previous case, the name of Joe
was entered.

Enter the URL again into your browser. Once the selection form is displayed, enter your first name and
select the entertainment portal. Click the Select button. You should see the personalized entertainment
portal with the headline obtained from the simulated newsfeed, similar to what is shown in Figure 2-13.

62

Chapter 2

06_57485x ch02.qxd 1/14/05 9:16 PM Page 62

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 2-13: Personalized entertainment portal

Finally, enter the URL again into your browser. From the selection form, enter your first name and select
the weather portal. Click the Select button to see the personalized weather portal page, as shown in
Figure 2-14.

Although this example shows the name of the user being used only in a personalized greeting, a lot
more can be done. For example, the username can be used to retrieve user-specific information from a
database (using JavaBeans, perhaps) and customize the user’s experience accordingly.

63

JSP Basics 1: Dynamic Page Creation for Data Presentation

06_57485x ch02.qxd 1/14/05 9:16 PM Page 63

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 2-14: Personalized weather portal

Observing HTTP GET method URL encoding
Using this example, it is possible to observe the effect of parameter encoding when the form parameters
are submitted using the HTTP GET method. To try this, enter the URL for the selection page on the
browser. On the portal selection page, enter the following for a username:

J?o= e

Note that there is a space character after the equal sign and before the final e.

Select the news portal and click the Select button. You should now see the news portal greeting with this
rather strange username, as shown in Figure 2-15.

The thing to note here is that the parameter username has been encoded by the browser. You should see
the following URL:

http://localhost:8080/ch02/example3/showportal.jsp?username=J%3Fo%3D+e&portchoice=n
ews

The ?, =, and space have been encoded by the browser.

64

Chapter 2

06_57485x ch02.qxd 1/14/05 9:16 PM Page 64

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 2-15: Observing URL encoding when using the GET method

Vulnerability of the HTTP GET method of form submission
This quick experiment will show that the GET method for form submission is very easy for malicious
users to hack. After viewing the news portal, modify the URL at the browser by hand. For example, if
you have just entered “Joe” as your name and accessed the news portal, the following URL should be
displayed:

http://localhost:8080/ch02/example3/showportal.jsp?username=Joe&portchoice=news

Now, from the browser, simulate a malicious hacker and modify the URL to the following:

http://localhost:8080/ch02/example3/showportal.jsp?username=Joe&portchoice=news123

The portchoice parameter now has the value news123. Press Enter (or Return) in the browser. Because
this is not an anticipated portal choice, showportal.jsp will generate a page similar to the one shown
in Figure 2-16.

65

JSP Basics 1: Dynamic Page Creation for Data Presentation

06_57485x ch02.qxd 1/14/05 9:16 PM Page 65

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 2-16: Resulting page from a hacked port selection URL

Recall from our discussion earlier that the HTTP POST method can also be used to submit form data. To
see this, modify the <form> element in the index.jsp file to the following:

<form action=”showportal.jsp” method=”post”>

Try the previous form submission again, and you should see that the URL used to access the portal no
longer contains visible parameter values. In our case, the URL selecting a news portal looks as follows:

http://localhost:8080/ch02/example3/showportal.jsp

The parameters are still passed to the server, but this is done invisibly using HTTP message body. While
this is still not an entirely secure way of sending form data, it does not invite hacking in the way that the
GET method does (i.e., by plainly exposing the parameter values).

How It Works
The index.jsp file is modified to include the <input> HTML element for the input of the user’s name.
Note that the name given to the HTML element is username. This will become the parameter name
when the form is submitted to Tomcat. index.jsp is reproduced below, with the new lines highlighted:

66

Chapter 2

06_57485x ch02.qxd 1/14/05 9:16 PM Page 66

TEAM LinG - Live, Informative, Non-cost and Genuine!

<html>
<head>

<link rel=stylesheet type=”text/css” href=”portal.css”>
<title>Select Your Portal</title>

</head>
<body>

<table class=”mainBox” width=”400”>
<tr><td class=”boxTitle” colspan=”2”>

Wrox JSP Portal Selector
</td></tr>
<tr><td colspan=”2”> </td></tr>
<tr><td>
<form action=”showportal.jsp” method=”get”>

<table>
<tr>

<td width=”200”>
Your First Name: </td>

<td><input name=”username” type=”text” size=”25”/></td>
</tr>
<tr>

<td width=”200”>Portal Selection</td>
<td>

<select name=”portchoice”>
<option>news</option>
<option>weather</option>
<option>entertainment</option>

</select>
</td>

</tr>
<tr><td colspan=”2”> </td></tr>
<tr><td colspan=”2” align=”center”>

<input type=”submit” value=”Select”/>
</td></tr>

</table>
</form>
</td></tr>

</table>
</body>

</html>

Passing parameters to included JSPs
Instead of submitting just the portchoice parameter as shown in example 2, the index.jsp form now
submits two parameters: protchoice and username. On the server side, showportal.jsp is modified
to pass the new username parameter to the selected portal JSP. showportal.jsp is reproduced here,
with the new code to process the username parameter highlighted:

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<html>

<c:choose>
<c:when test=”${param.portchoice == ‘news’}”>

<jsp:include page=”news.jsp” >
<jsp:param name=”user” value=”${param.username}”/>

</jsp:include>

67

JSP Basics 1: Dynamic Page Creation for Data Presentation

06_57485x ch02.qxd 1/14/05 9:16 PM Page 67

TEAM LinG - Live, Informative, Non-cost and Genuine!

</c:when>
<c:when test=”${param.portchoice ==’weather’}”>

<jsp:include page=”weather.jsp” >
<jsp:param name=”user” value=”${param.username}”/>

</jsp:include>
</c:when>
<c:when test=”${param.portchoice == ‘entertainment’}”>

<jsp:include page=”entertain.jsp” >
<jsp:param name=”user” value=”${param.username}”/>

</jsp:include>
</c:when>
<c:otherwise>

<head><title>System Portal</title></head>
<body>

<h1>Application logic problem detected!</h1>
</body>

</c:otherwise>
</c:choose>
</body>

</html>

The <jsp:include> standard action supports an optional body. Prior versions of this showportal.jsp
page did not need this body. This time, the body is used. Within the body, a <jsp:param> standard
action is used to specify a parameter for the included JSP. For example, the following line specifies a
user parameter:

<jsp:include page=”entertain.jsp” >
<jsp:param name=”user” value=”${param.username}”/>

</jsp:include>

When executed, the included entertain.jsp file will have access to a parameter called user; and the
parameter will have the value equal to the username parameter that is submitted from the form. Using
the <jsp:param> tag is the best way to pass parameters to any included JSPs.

Modifying the included JSP to use personalization data
The change required in the portal pages to support the simple personalization is minimal. The news.jsp
portal page is reproduced here, with the changed code highlighted:

<head>
<link rel=stylesheet type=”text/css” href=”portal.css”>
<title>News Portal</title>

Strictly speaking, the included JSP also has access to all the parameters available in
the JSP page doing the inclusion. This means that an included entertain.jsp
could have used the user parameter from the form instead of the username parame-
ter from the <jsp:param> action. However, having the included JSP depend on a
parameter of the main page is a bad programming practice. This is because the JSP
being included will not be able to work with an including page that does not have a
parameter with the required name — greatly reducing the reuse possibility of the
included JSP.

68

Chapter 2

06_57485x ch02.qxd 1/14/05 9:16 PM Page 68

TEAM LinG - Live, Informative, Non-cost and Genuine!

</head>
<body>

<table class=”mainBox” width=”600”>
<tr><td class=”boxTitle” >

Welcome to the News Portal, ${param.user}!
</td></tr>
<tr><td>

<jsp:useBean id=”newsfeed” class=”com.wrox.begjsp.ch2.NewsFeed”

scope=”request” >
<jsp:setProperty name=”newsfeed” property=”topic” value=”news”/>
<jsp:getProperty name=”newsfeed” property=”value”/>

</jsp:useBean>

<jsp:include page=”dummytext.html” />

</td></tr>
</table>

The EL expression ${param.user} is used to access the parameter passed by the <jsp:include>
standard action. Like the original showportal.jsp, it uses the EL implicit object, param, to obtain and
render the value of the user parameter.

The entertain.jsp file is modified to support the personalization as well. The single modified line is
highlighted here:

<head>
<link rel=stylesheet type=”text/css” href=”portal.css”>
<title>Weather Portal</title>

</head>
<body>

<table class=”mainBox” width=”600”>
<tr><td class=”boxTitle” >

Entertainment News Just for You, ${param.user}!
</td></tr>
<tr><td>

<jsp:useBean id=”newsfeed” class=”com.wrox.begjsp.ch2.NewsFeed”

scope=”request” >
<jsp:setProperty name=”newsfeed” property=”topic” value=”entertainment”/>
<jsp:getProperty name=”newsfeed” property=”value”/>

</jsp:useBean>

<jsp:include page=”dummytext.html” />

</td></tr>
</table>

The only change to the weather.jsp file is highlighted in the following code:

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<head>

<link rel=stylesheet type=”text/css” href=”portal.css”>

69

JSP Basics 1: Dynamic Page Creation for Data Presentation

06_57485x ch02.qxd 1/14/05 9:16 PM Page 69

TEAM LinG - Live, Informative, Non-cost and Genuine!

<title>Weather Portal</title>
</head>
<body>

<table class=”mainBox” width=”600”>
<tr><td class=”boxTitle” >

You Get the Latest Weather, ${param.user}!
</td></tr>
<tr><td>

<jsp:useBean id=”newsfeed” class=”com.wrox.begjsp.ch2.NewsFeed”
scope=”request” >

<jsp:setProperty name=”newsfeed” property=”topic” value=”weather”/>
</jsp:useBean>
<table>

<c:forEach items=”${newsfeed.values}” var=”row” >
<tr><td class=”tableCell” width=”200”> ${row.city} </td>

<td> ${row.temp}</td>
</tr>

</c:forEach>
</table>

</td></tr>
</table>

Again, the implicit EL object param is used to obtain the user parameter from the JSP container. The
username parameter is used to personalize the title.

Summary
The main role of JSP in a Web-based application is to create a dynamic presentation of information or
data. This chapter focused on the elements that enable these dynamic presentation capabilities.

All JSP pages are composed of the following elements:

❑ Directives

❑ Actions

❑ Template data

❑ Scripting elements

HTML form submission is managed on the client side by the browser. On the server side, a JSP container
can greatly simplify the handling of form submission. Parameters are passed with the URL request from
the browser to the server using either the HTTP GET or the HTTP POST method. The GET method attaches
the parameters to the URL as trailing text, while the POST method uses the HTTP message body to carry the
parameters. The EL implicit object, param, can be used on the JSP side to directly access the submitted
form parameters.

The form-processing task involves accepting the submitted parameters and dynamically generating a
response page.

JSTL 1.1 features many custom actions that can be useful in JSP programming. The <choose>
..<when>..<otherwise> JSTL tags construct can be used to selectively generate different content

70

Chapter 2

06_57485x ch02.qxd 1/14/05 9:16 PM Page 70

TEAM LinG - Live, Informative, Non-cost and Genuine!

depending on an EL expression. EL expressions enable you to access objects — either implicit objects or
ones created by Java or business logic developers.

The <jsp:include> standard action can be used to render the output of one JSP page (or HTML page)
within another JSP page.

JavaBeans are reusable code components. They are often used by Java developer to supply data to JSP
developers in the creation of the presentation layer. Their properties and usage must be documented.
The standard actions, <jsp:useBean>, <jsp:setProperty>, and <jsp:getProperty>, work with
JavaBeans. However, to access bean properties that return multivalued data, the use of JSTL and EL may
be necessary. The <forEach> iteration tag of JSTL is very useful for rendering tabular data values from
JavaBeans.

Because JSP has complete control on the dynamic generation of the response page to an incoming request,
it can be also be used to create Web applications that feature a personalized user experience. The final
example illustrates the basic principles involved in Web site personalization.

Exercises
1. Using the JSP code in the second Try It Out exercise as a base, write a JSP that will display the

combined portals shown in Figure 2-17.

Figure 2-17: Exercise 1 output

71

JSP Basics 1: Dynamic Page Creation for Data Presentation

06_57485x ch02.qxd 1/14/05 9:16 PM Page 71

TEAM LinG - Live, Informative, Non-cost and Genuine!

2. You can use JSP to create highly flexible data presentation. Exercise 1 revealed that essentially
the same JSP portal pages can be used in diversely different user presentations. This code reuse
practice is highly encouraged. Using Exercise 1 as a base, modify news.jsp, weather.jsp, and
entertain.jsp in a way such that they can also be used within the second Try It Out exercise.
Test these new pages with the second Try It Out exercise. You are not allowed to change the
showportal.jsp code for the second Try It Out.

72

Chapter 2

06_57485x ch02.qxd 1/14/05 9:16 PM Page 72

TEAM LinG - Live, Informative, Non-cost and Genuine!

3
JSP Basics 2: Generalized

Templating and Server
Scripting

The previous chapter presented JSP as a server-side mechanism used in the generation of dynamic
HTML responses to an incoming request. It also demonstrated how static templated data (such as
a fragment or a whole page of HTML) can be included and combined as part of the output. This
chapter adds another dimension, showing how JSP generalized templating can be combined with
scripting code written in the Java programming language.

The ability to include Java elements in a JSP page is the center of focus in this chapter. When work-
ing with JSP 2.0 and JSTL 1.1, there is very little reason to embed raw Java programming code into
a JSP page. However, the Expression Language (EL) and JSTL features presented in the previous
chapter are brand-new to most commercial JSP containers (compliant to the JSP 2.0 standard). Older,
existing production code will typically not be using JSTL/EL, and will very likely have embedded
Java code. This body of production code will need to maintained, and perhaps migrated. In this
chapter, you will learn how to deal with legacy code that makes extensive use of embedded Java
code via scripting elements in JSPs.

The primary mechanism of embedding Java code into a JSP page is called scripting. Scripting is
typically done through scripting elements — declarations, expressions, and scriptlets — within a
JSP. These elements are covered briefly in the previous chapter. This chapter fully explores the role
of these elements within the composition of a JSP page.

The sample code within the chapter makes extensive use of scripting elements. This sample code
features the design and creation of a simple Web-based storefront that displays different categories
of products and allows users to add products to their shopping cart. Through three successively
more complex examples, you will discover the fundamental coding techniques that are used on
e-commerce sites.

Scoping is a very important concept for the JSP developer. This chapter explores global application
scope, session scope, and request scope. Actual code from the e-commerce example will take

07_57485x ch03.qxd 1/14/05 10:12 PM Page 73

TEAM LinG - Live, Informative, Non-cost and Genuine!

advantage of all of these scopes. Exploring session scope requires an understanding of the container-
managed session. This chapter introduces the concept of a session, reveals how it is implemented, and
shows how it can be extremely useful in the JSP implementation of e-commerce applications. By the end
of this chapter, you should

❑ Understand the interaction between a JSP and embedded Java code

❑ Be fluent in the use of scripting elements within JSP

❑ Be able to maintain, enhance, and migrate JSP code that contains scripting elements

❑ Be familiar with the design and operation of a basic electronic storefront

❑ Be able to implement a working shopping cart using JSP

❑ Understand the application, session, and request scopes in JSP

❑ Understand why sessions are necessary and how to work with them from within your JSP

Scripting Elements for Java Code
Embedding

Historically, JSP and Java go hand-in-hand. In early versions of the JSP standard, Java code was used
routinely as the glue for supplementing the standard JSP actions during content generation.

In fact, JSP 1.0 lacked a mechanism for implementing custom actions, and the standard actions that were
included were extremely limited. This virtually guaranteed extensive embedding of Java coding in all
but the simplest JSP 1.0 code.

The first version that supported a workable way of extending JSP standard actions was JSP 1.1. Even
though JSP 1.1 started to support third-party tag libraries, the art of tag library creation and integration
is not well documented. As a result, a standard set of available generalized tags was lacking. Not until
JSP 1.2 did the use of custom tag libraries became popular.

JSP 2.0 is the first version of JSP to introduce an Expression Language (EL) designed to work in conjunc-
tion with a standard tag library (JSTL 1.1). It is also the first version of JSP to simplify the creation of cus-
tom tags, via support of tagfiles (creating new tags using JSP as the implementation language). In other
words, JSP 2.0 is the first version of JSP that enables the creation of pure JSP coding right out of the box
without the need to embed Java coding.

As a result, if you ever need to look at existing or legacy code, you are likely to see embedded Java
within JSP pages. In this old JSP code, there was simply no other way to accomplish tasks that are not
covered by standard JSP actions.

As a JSP developer, you should be aware that JSP is considered a presentation layer technology. In other
words, it should be used in the creation of a dynamic presentation of data. In fact, JSP containers are
designed and optimized specifically for this purpose. This also means that JSP should not be used as the
primary way to process or manipulate data within an application. These activities are best left for devel-
opers at the business tier, using technology such as Enterprise JavaBeans (EJBs) or through the creation

74

Chapter 3

07_57485x ch03.qxd 1/14/05 10:12 PM Page 74

TEAM LinG - Live, Informative, Non-cost and Genuine!

of custom Java classes. Allowing embedded Java code in JSP pages encourages the mixing of data pro-
cessing functions, which JSP is not designed for and cannot do well. In fact, years of industry experience
confirm that mixing JSP and Java coding can lead to code that is difficult to maintain. Therefore, given a
choice, modern JSP developers should seek to reduce or completely eliminate the use of embedded Java
code in their JSPs. Having said this, in some real-world situations, you may be asked to enhance or main-
tain legacy JSP code that is written using earlier versions of the JSP standard. In these cases, you will
need to have a working knowledge of scripting elements within JSPs.

Scripting elements
To embed Java coding into a JSP page, you need to use scripting elements. There are three general ways
to do this, as briefly mentioned in Chapter 2. Fully explored in this chapter are the following three types
of scripting elements:

❑ Declarations

❑ Expressions

❑ Scriptlets

Declaration scripting elements
Declaration scripting elements are used to insert methods, constants, and variable declarations into JSP
pages. Here is a declaration scripting element that declares three constants (EXAMPLE, SHOP_PAGE, and
CART_PAGE), and a method called dispPrice ():

<%!
private static String EXAMPLE = “/example2”;
private static String SHOP_PAGE = “/estore.jsp”;
private static String CART_PAGE = “/shopcart.jsp”;
private String dispPrice(String price)
{

int len = price.length();
if (len <= 2)

return price;
else
return “$” + price.substring(0,len -2) + “.”

+ price.substring(len-2);
}

%>

The following properties are illustrated by the preceding declaration scripting element:

❑ Declaration scripting elements are enclosed by <%! ... %>.

❑ The content of scripting elements in general, and declaration scripting elements specifically, is
actually code fragments written in Java.

❑ Constants, variables, and methods declared within declaration scripting elements are used
within the JSP page, by other scripting elements, EL expressions, or JSP actions.

You can have multiple declaration scripting elements within a single JSP page. The JSP container will
merge them into one when processing the page, so it isn’t necessary to separate them.

75

JSP Basics 2: Generalized Templating and Server Scripting

07_57485x ch03.qxd 1/14/05 10:12 PM Page 75

TEAM LinG - Live, Informative, Non-cost and Genuine!

In the preceding embedded Java code, note that the constant paths (EXAMPLE, SHOP_PAGE, and
CART_PAGE) are hard-coded into the JSP. If these paths were to change in the future, all of the code con-
taining them would have to be changed. Chapter 17, “Model View Controller,” illustrates a more flexi-
ble approach whereby the application flow can be configured without changing any JSP or Java code.

Working with jspInit() and jspDestroy()
You can define two very special methods within a declaration scripting element. They are methods with
the following signatures:

❑ public void jspInit(void);

❑ public void jspDestory(void);

These methods are special because the JSP container will call them at two well-defined points during the
life of a JSP page. The following table describes when the container calls these methods.

Method Name When It Is Called

void jspInit() Called during the initialization of the JSP page, before the first
request is processed by the page. This method can be used to
acquire global resources that may be used by the page’s request
processing logic. This method is optional for a JSP page author.
Most JSP pages have no need to declare this method.

void jspDestroy() Called by the container just before destroying the JSP page. This
method can be used to release the resources that it acquired in
jspInit(). Most JSP pages have no need to declare this method.

To fully understand what these methods do, you must realize that a JSP container typically creates only one
single instance (see the following note) of a JSP to service all incoming requests. The jspInit() method is
called by the container during the initialization of this single instance. If the incoming request processing
load is heavy, a JSP container may eliminate some initialized JSPs that have not been used for a while. If
this happens, the container is obliged to call the jspDestroy() method before eliminating the JSP.

Some JSP containers may take advantage of multiple Java Virtual Machines (JVMs) on a Symmetric
MultiProcessor (SMP), or a clustering system. These specialized containers may maintain one instance
of a JSP per JVM to process incoming requests.

The following declaration scripting element declares the two special methods. In this case, the Java code
attaches an object as an attribute to the ServletContext in the jspInit() method, and the
jspDestroy() method removes this attribute.

For readers who are avid Java programmers, the following information will enable you to determine what
code can go into these methods. Every JSP is actually a Java class. A JSP Java class implements the
javax.servlet.Servlet interface. In other words, a JSP is always a servlet. It implements all of
the methods of the Servlet interface. For example, the following code uses the getServletContext()
of the Servlet interface. The servlet context of a JSP corresponds to its implicit application object.
The application object is readily available for use in expression scripting elements and scriptlet
scripting elements.

76

Chapter 3

07_57485x ch03.qxd 1/14/05 10:12 PM Page 76

TEAM LinG - Live, Informative, Non-cost and Genuine!

<%!
public void jspInit()
{

getServletContext().setAttribute(“cats”, EShop.getCats());
}

public void jspDestroy()
{

getServletContext().removeAttribute(“cats”);
}

%>

Expression scripting element
An expression scripting element is an embedded Java expression that is evaluated and converted to a
text string. The resulting text string is placed in the JSP output, in the location at which the element
appears. You will find expression scripting elements in a JSP in the following locations:

❑ Within certain attributes of JSP actions (standard or custom)

❑ Within templated data

For example, the following expression scripting elements are used to print out some data values within a
row of a table:

<table>
<tr>

<td><%= curItem.getName() %></td>
<td><%= dispPrice(String.valueOf(curItem.getPrice())) %></td>

</tr>
</table>

From the example, note the following about expression scripting elements:

❑ They are bracketed by <%= %>.

❑ They contain expressions in the Java programming language — for example, a variable, a field,
or the result of a method call.

❑ Their output is merged with the template data, HTML in the preceding example.

Expression scripting elements may also be used in attributes of JSP actions. The following example
shows an expression scripting element used in the value attribute of the standard <jsp:param> action:

<jsp:include page=”weather.jsp” >
<jsp:param name=”user”

value=”<%= request.getParameter(“username”)%>”/>
</jsp:include>

In this case, the expression scripting element will be evaluated first. The text string value of the
request.getParameter() method call will be substituted before the <jsp:param> action is eval-
uated. The expression scripting element in this case is said to be a request time expression (because it is
evaluated during request processing).

77

JSP Basics 2: Generalized Templating and Server Scripting

07_57485x ch03.qxd 1/14/05 10:12 PM Page 77

TEAM LinG - Live, Informative, Non-cost and Genuine!

Scriptlet scripting element
Scriptlet scripting elements are used to include complete fragments of Java code in the body of the JSP.
These elements differ from declarations and expressions in two ways:

❑ They are not limited to the declaration of methods, variables, and constants.

❑ They do not generate a string output directly, as expressions do.

If you need to generate output within a scriptlet scripting element, you can use the out implicit object.
The out implicit object is of the javax.servlet.jsp.JspWriter type, which in turn is a subclass of
java.io.Writer, and all of its methods are available. For example, the following scriptlet scripting ele-
ment prints a total cost, conditionally with local tax added on:

<%
if (state.isLocal())

out.print(totalCost * localTax);
else

out.println(totalCost);
%>

The following is an example of several scriptlet scripting elements in the layout of a table with varying
numbers of output rows. Note the free mix of template data and scriptlet scripting elements:

<table border=”1”>
<tr><th align=”left”>Item</th><th align=”left”>Price</th></tr>
<%

String selectedCat = request.getParameter(“catid”);
if (selectedCat == null)

selectedCat = “1”;
ArrayList items = (ArrayList) EShop.getItems(selectedCat);
for (int i=0; i< items.size(); i++)
{

Product curItem = (Product) items.get(i);
%>
<tr>

<td><%= curItem.getName() %></td>
<td><%= dispPrice(String.valueOf(curItem.getPrice())) %></td>

</tr>
<%

}
%>

</table>

An especially important technique to note is the use of scriptlet scripting elements in the control flow of the
JSP. In the preceding case, the highlighted code implements a loop that prints a row for each element in the
items ArrayList collection. The use of scriptlet scripting elements — expression scripting elements and
template data (HTML) — is freely mixed. Note the following characteristics of scriptlet scripting elements:

❑ They are Java code fragments that are bracketed in <% ... %>.

❑ They can be placed anywhere within the JSP body, mixed among the template data.

❑ All the Java control flow structures (if, for, while, switch, and so on) may be used for control
flow within a JSP page.

78

Chapter 3

07_57485x ch03.qxd 1/14/05 10:12 PM Page 78

TEAM LinG - Live, Informative, Non-cost and Genuine!

Java class syntax and scripting elements layout
If the placement of scripting elements within a JSP reminds you of the coding syntax of a Java class, you
are very observant. In fact, the combined scripting elements on a JSP page match precisely certain ele-
ments in a Java class. In most JSP containers, the entire JSP page is translated to a Java class in source
code before compilation. Figure 3-1 illustrates the correspondence between scripting elements in the
layout and the syntax of a Java class.

Declaration scripting elements are placed as the first thing in the body of the Java class definition.

The JSP body, including any scriptlets scripting elements, is placed in the body of the Java class immedi-
ately after JSP generated code that defines the JSP implicit objects and sets up the page environment.
This implies the following:

❑ Within declaration scripting elements, you do not have access to the implicit objects and page-
specific elements.

❑ Within scriptlet and expression scripting elements, you have full access to the implicit objects
and page-specific elements.

Figure 3-1: The scripting elements and their equivalent Java class placement

Declaration scripting elements placed here

A mix of scriptlet scripting elements, expression scripting
elements, code generated from template data,
and code generated from actions placed here

JSP generated code to set up implicit objects
and support environment

public final class estore_jsp extends org.apache.jasper.runtime.HttpJspBase {

}

79

JSP Basics 2: Generalized Templating and Server Scripting

07_57485x ch03.qxd 1/14/05 10:12 PM Page 79

TEAM LinG - Live, Informative, Non-cost and Genuine!

Creating a Simple Web Storefront
You are likely to have encountered many Web-based stores in your daily Internet surfing activities. The
example in this chapter provides a glimpse into how these stores are built. More specifically, you will
see how JSP can be used to implement navigation and presentation in the user interface of a Web-based
store. The JSP in this example makes extensive use of embedded Java coding and provides you with
hands-on experience working with scripting elements.

The first example implements a catalog of products. Within this catalog, shoppers may select a product
category, and the products in that category will be displayed on the screen with their prices.

Try It Out Creating a Products Catalog
To try out the first example, make sure Tomcat 5 is running and deploy the ch03.war file (see Chapter 1
for details if you do not remember how to use the Manager application to deploy a war file). Point your
browser to the following URL:

http://localhost:8080/ch03/example1/estore.jsp

You should see the simple catalog shown in Figure 3-2.

Figure 3-2: Catalog display of systems available for purchase

80

Chapter 3

07_57485x ch03.qxd 1/14/05 10:12 PM Page 80

TEAM LinG - Live, Informative, Non-cost and Genuine!

In Figure 3-2, the categories of products are displayed on the left side of the page. Each product category
is represented by a hyperlink. If you click the product category hyperlink, a list of products and their
prices are displayed on the right-hand side. Now try clicking the link for the Software product category.
You should see the selection of software available, as shown in Figure 3-3.

The software selection shows two Tomcat servers available and their prices. Finally, click the Books
product category. You should see the three books that are available, as shown in Figure 3-4.

This catalog application is simple and free of fancy HTML formatting so we can focus on the JSP and
scripting code. It is always a good idea to test your code before adding formatting elements. This best
practice is covered in Chapter 1.

Figure 3-3: Display of software available for purchase

81

JSP Basics 2: Generalized Templating and Server Scripting

07_57485x ch03.qxd 1/14/05 10:12 PM Page 81

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 3-4: Display of books available for purchase

How It Works
This catalog makes use of only a single JSP page. This JSP page presents the information contained in a
set of objects. These objects are already provided for us. Similar to the JavaBean used in Chapter 2, the
objects are coded in Java. In most production environments, the description of the objects that you can
use within your JSPs is provided for you. In a production environment, the objects are often called busi-
ness objects. The following table describes the available objects.

Object Name Description

EShop An object containing static convenience methods. The getCats()
method can be used to obtain the current catalog categories. The
getItems() method can be used to obtain the products in a specific
category.

Category Represents a single category and has fields containing the name,
description, and a unique category ID. This object can be accessed
as a JavaBean.

Product Represents a single product. It has a unique SKU identifier, a name, a
description, and a price. This object can be accessed as a JavaBean.

82

Chapter 3

07_57485x ch03.qxd 1/14/05 10:12 PM Page 82

TEAM LinG - Live, Informative, Non-cost and Genuine!

The compiled code for these Java objects is located in a package called com.wrox.begjsp.ch03; you
can find it under the <Tomcat Installation Directory>/webapps/WEB-INF/classes directory.
Figure 3-5 illustrates how the Java objects are used within the catalog.

Figure 3-5: Using EShop, Category, and Product objects in the catalog

In Figure 3-5, Java coded scripting elements will be used to glue the object data to the JSP template,
resulting in the generated HTML catalog page.

The code to this catalog can be located in the estore.jsp JSP page. The estore.jsp file is reproduced
here, but you can find it in the <Tomcat Installation Directory>/ch03/example1/estore.jsp file:

<%@ page language=”java”
import = “com.wrox.begjsp.ch03.*,java.util.*” %>

<%!
public void jspInit()
{

getServletContext().setAttribute(“cats”, EShop.getCats());
}

public void jspDestroy()
{

getServletContext().removeAttribute(“cats”);

ItemSystems
Software
Books

estore.jsp

renders the
categories

EShop.getCats()

EShop.getItems()

renders the
products

ArrayList of
Category

Price

ArrayList of
Product

EShop

83

JSP Basics 2: Generalized Templating and Server Scripting

07_57485x ch03.qxd 1/14/05 10:12 PM Page 83

TEAM LinG - Live, Informative, Non-cost and Genuine!

}
private String dispPrice(String price)
{

int len = price.length();
if (len <= 2)

return price;
else

return “$” + price.substring(0,len -2) + “.” + price.substring(len-2);
}

%>

<html>
<head>

<title>Wrox Shopping Mall</title>
</head>
<body>

<table width=”600”>
<tr>

<td width=”20%”>
<%

ArrayList cats = (ArrayList) application.getAttribute(“cats”);
for (int i=0; i< cats.size(); i++)
{

Category curCat = (Category) cats.get(i);
%>

<a href=”<%= request.getRequestURL() + “?catid=” + curCat.getId() %>”>
<%= curCat.getName() %>

<%

}
%>

</td>
<td>

<h1></h1>
<table border=”1”>

<tr><th align=”left”>Item</th><th align=”left”>Price</th></tr>
<%

String selectedCat = request.getParameter(“catid”);
if (selectedCat == null)

selectedCat = “1”;
ArrayList items = (ArrayList) EShop.getItems(selectedCat);
for (int i=0; i< items.size(); i++)
{

Product curItem = (Product) items.get(i);
%>
<tr>

<td><%= curItem.getName() %></td>
<td><%= dispPrice(String.valueOf(curItem.getPrice())) %></td>

</tr>

<%
}

%>

84

Chapter 3

07_57485x ch03.qxd 1/14/05 10:12 PM Page 84

TEAM LinG - Live, Informative, Non-cost and Genuine!

</table>
</td>

</tr>
</table>

</body>
</html>

Lines containing scripting elements are highlighted in the preceding code. You can see plenty of exam-
ples of all three types of scripting elements (declarations, expressions, and scriptlets).

At the top of the JSP is a <%@page> directive. This is a directive that has not appeared before:

<%@ page language=”java”
import = “com.wrox.begjsp.ch03.*,java.util.*” %>

The <%@page> directive describes certain properties of the JSP, via its attributes, to the container. For
example, this <%@page> directive is saying that the programming language used in scripting elements
is “java”, and that the classes in packages com.wrox.begjsp.ch03.* and java.util.* should be
imported. The import attribute is equivalent to the following Java code:

import com.wrox.begjsp.ch03.*;
import java.util.*;

The next section in estore.jsp is a declaration scripting element. In this case, the special jspInit()
and jspDestroy() methods are defined. Also note the declaration of a Java method called dispPrice()
that takes a string representation of a number and displays it in the dollar price $???.?? format:

<%!
public void jspInit()
{

getServletContext().setAttribute(“cats”, EShop.getCats());
}

public void jspDestroy()
{

getServletContext().removeAttribute(“cats”);
}

private String dispPrice(String price)
{

int len = price.length();
if (len <= 2)

return price;
else

return “$” + price.substring(0,len -2) + “.” + price.substring(len-2);
}

%>

The jspInit() method attaches an attribute to the servlet context of the JSP. The servlet context of a JSP
is completely equivalent to the application implicit object. However, remember from our earlier discus-
sion that implicit objects are not yet set up and are therefore not available from within the jspInit()
method. This is why it is necessary to call getServletContext() instead. getServletContext() is a

85

JSP Basics 2: Generalized Templating and Server Scripting

07_57485x ch03.qxd 1/14/05 10:12 PM Page 85

TEAM LinG - Live, Informative, Non-cost and Genuine!

method on the javax.servlet.Servlet interface, an interface that the underlying class of a JSP imple-
ments. Calling EShop.getCats() will return an ArrayList containing Category objects that describe
the categories available in the catalog. Therefore, the following line will attach an attribute with the
name “cats” to the application implicit object:

getServletContext().setAttribute(“cats”, EShop.getCats());

This means that the categories will be attached to the application implicit object when the JSP is first
used by the container, even before the first request is processed. jspInit() will never be called again,
unless the page is destroyed and recreated by the container. Should the page be destroyed to make more
room for others, the container will call the jspDestroy() method, which will in turn remove the
attribute.

Later within the JSP code, you can obtain the categories ArrayList using the following Java code:

ArrayList cats = (ArrayList) application.getAttribute(“cats”);

This is exactly what happens in the first scriptlet scripting element within the estore.jsp page. Note
the use of the application implicit object instead of the equivalent but more cumbersome
getServletContext() call.

You will frequently see this practice of attaching an attribute to an object, to be retrieved during process-
ing by the JSP. This pattern occurs regularly in JSP programming.

Attaching attributes to implicit objects
Attaching attributes to implicit objects is the primary mechanism that enables the different elements of
a JSP page to cooperate. It can also be used as a mechanism for passing information between a JSP page
and any included JSP page, or even between JSP pages within the same application. Figure 3-6 illustrates
the basic action of attaching attributes to JSP implicit objects for request processing.

In Figure 3-6, attributes attached by an element of a JSP page (for example, a declaration scripting ele-
ment) are later used by another element within the JSP page (a scriptlet element, the <jsp:UseBean>
standard action, a custom tag, and so on).

Attributes are any Java-based object that can be attached to certain implicit objects using a textual name.
JSP or scripting code can then later retrieve an attribute as long as it knows the textual name. The pri-
mary implicit objects that you can attach attributes to are the scoping objects, including the following:

❑ pageContext

❑ request

❑ session

❑ application

Each of these objects implements an interface that has the setAttribute() and getAttribute()
method, enabling you to attach Java objects as attributes.

86

Chapter 3

07_57485x ch03.qxd 1/14/05 10:12 PM Page 86

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 3-6: Attaching attributes to implicit objects

The following table shows the interfaces that enable attribute attachment for each of the implicit objects.

Implicit Object Interface/Superclass Supporting Attributes

pageContext javax.servlet.jsp.JspContext superclass

request javax.servlet.ServletRequest interface

session javax.servlet.http.HttpSession interface

application javax.servlet.ServletContext interface

Each implicit object that supports the attachment of attributes has a unique scoping. Scoping determines
how long and under what circumstances the attributes attached will be available. Scoping is explained
in detail after the next example.

Let’s turn our attention back to estore.jsp; the page is laid out into two table cells, as illustrated in
Figure 3-7.

application
(ServletContext)

"cats"

attaches
attribute

accesses
attribute

JSP Implicit Object

<%@ page language="java" import = "com.wrox.begjsp.ch03.*" %>

<%!

public void jspInit() {

}

...

...

%>

<html>

<head><title>Wrox Shopping Mall</title></head>

for (int i=0; i< cats.size(); i++) {

Category curCat = (Category) cats.get(i);

<body>

<table width="600">

<tr><td width="20%">

<%

%>

getServletContext().setAttribute("cats", EShop.getCats());

ArrayList cats = (ArrayList) application.getAttribute("cats");

87

JSP Basics 2: Generalized Templating and Server Scripting

07_57485x ch03.qxd 1/14/05 10:12 PM Page 87

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 3-7: Layout of the generated catalog page

The first cell on the left-hand side is basically a list of categories in the “cats” attribute.

Rendering the list of categories
The code that performs the rendering of the list of categories on the left side of Figure 3-7 is reproduced
here. The code involves several scriptlet scripting elements mixed among template data (HTML) and
expression scripting elements:

<td width=”20%”>
<%

ArrayList cats = (ArrayList) application.getAttribute(“cats”);
for (int i=0; i< cats.size(); i++)
{

Category curCat = (Category) cats.get(i);
%>
<a href=”<%= request.getRequestURL() + “?catid=” + curCat.getId() %>”>

<%= curCat.getName() %>

<%

}
%>

</td>

list of products
in the selected category

clickable list of categories

System
Software
Books

Item

left table cell right table cell

clickable list of categories

list of products
in the selected category

Price

88

Chapter 3

07_57485x ch03.qxd 1/14/05 10:12 PM Page 88

TEAM LinG - Live, Informative, Non-cost and Genuine!

In the highlighted scriptlet scripting element, note that the “cats” attribute is retrieved from the
application implicit object and placed into the cats ArrayList. Then the code iterates through all
the categories in this list and assigns each category to the temporary curCat variable.

The curCat variable is then used to display the category name, using the expression scripting element:

<%= curCat.getName() %>

This name is made into a hyperlink using another expression scripting element within an HTML <a>
element:

<a href=”<%= request.getRequestURL() + “?catid=” + curCat.getId() %>”>
...

The getRequestURL() method on the request implicit object obtains the URL that is used to access the
current JSP. During runtime, this may be transformed to a URL such as the following:

http://localhost:8080/ch03/example1/estore.jsp?catid=3

You may recognize this as the form submission GET method that was used in Chapter 2 to attach param-
eters to a request URL. Indeed, this is a technique frequently used in JSP programming to send parame-
ters to another JSP for processing.

While this method of creating a URL is simple and works under most circumstances, it can be problem-
atic when user sessions are used. Sessions are explained later in this chapter. Chapter 6, “JSP Tag
Libraries and JSTL,” describes some tags that can be used to create URLs that will automatically main-
tain session information.

Rendering the list of products in a given category
In the right-hand cells of the table in Figure 3-7, the products in the currently selected category are dis-
played. This cell is rendered using the following code. Note that the structure of the code is very similar
to the code presented for the categories list.

<table border=”1”>
<tr><th align=”left”>Item</th><th align=”left”>Price</th></tr>
<%

String selectedCat = request.getParameter(“catid”);
if (selectedCat == null)

selectedCat = “1”;
ArrayList items = (ArrayList) EShop.getItems(selectedCat);
for (int i=0; i< items.size(); i++)
{

Product curItem = (Product) items.get(i);
%>
<tr>

<td><%= curItem.getName() %></td>
<td><%= dispPrice(String.valueOf(curItem.getPrice())) %></td>

</tr>

89

JSP Basics 2: Generalized Templating and Server Scripting

07_57485x ch03.qxd 1/14/05 10:12 PM Page 89

TEAM LinG - Live, Informative, Non-cost and Genuine!

<%
}

%>
</table>

In the description of the previous section, you saw that clicking a category hyperlink within the left-hand
cell generates a (GET method) submit to the estore.jsp with a catid parameter.

The first scriptlet scripting element obtains this catid parameter from the request implicit object. Note
that the first time the page is displayed, there is no catid parameter included with the URL. In this case,
the default is simply set to the value of “1”.

Next, the EShop.getItems() static method call obtains all the products in a category. This is returned
in an ArrayList and assigned to a variable called items by the code:

ArrayList items = (ArrayList) EShop.getItems(selectedCat);

The rest of the code iterates through the list of products in the items ArrayList. Each product’s name
and price are printed as a table cell. Each product in the items ArrayList will cause a row in the table to
be rendered. Note the use of the dispPrice() method, defined in the declaration scripting element, to
display the price in $???.?? format.

Adding a Shopping Cart to a Catalog
After finishing the interactive catalog to display categories and products, the next step in building an
electronic storefront is adding a shopping cart. This Try It Out exercise reveals how you can add a simple
shopping cart to the product catalog example described in the preceding section.

In this example, the user will be enabled to do the following:

1. Browse through the catalog

2. Click a Buy link to place an item into her or his shopping cart

3. Increase the quantity of the product placed into the shopping cart

Try It Out Adding a Shopping Cart
Use the following URL to test the second example:

http://localhost:8080/ch03/example2/estore.jsp

You should see the new catalog page, as illustrated in Figure 3-8. It looks the same as the one in the pre-
vious Try It Out exercise except that every product displayed now has an associated Buy hyperlink.

Click the Books category on the left-hand side. The list of available books will be displayed, as shown in
Figure 3-9.

90

Chapter 3

07_57485x ch03.qxd 1/14/05 10:12 PM Page 90

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 3-8: Catalog with Buy hyperlink

Figure 3-9: Catalog showing available books for purchase 91

JSP Basics 2: Generalized Templating and Server Scripting

07_57485x ch03.qxd 1/14/05 10:12 PM Page 91

TEAM LinG - Live, Informative, Non-cost and Genuine!

To purchase the Beginning JavaServer Pages book, click the Buy hyperlink. At this point, your shopping
cart is displayed, as shown in Figure 3-10.

Figure 3-10: Shopping cart with selected book

One copy of the book has been placed into the shopping cart. In Figure 3-10, you can see that the
extended price for this order is $39.99.

Now, buy another copy of this book. Do this by clicking the Add 1 hyperlink. You should see the quan-
tity increase to 2, and a new extended price of $79.98, as shown in Figure 3-11.

If you click the Add 1 link a few more times, the quantity and price will increase accordingly.

92

Chapter 3

07_57485x ch03.qxd 1/14/05 10:12 PM Page 92

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 3-11: Shopping cart with two books

How It Works
To create the Add 1 hyperlink for each product, the estore.jsp file is modified. You can find the modi-
fied file at <Tomcat Installation Directory>/webapps/ch03/example2/estore.jsp. The content
of this file is reproduced in the following code, with modifications highlighted:

<%@ page language=”java”
import = “com.wrox.begjsp.ch03.*,java.util.*” %>

<%!
public void jspInit()
{

getServletContext().setAttribute(“cats”, EShop.getCats());
}

public void jspDestroy()
{

getServletContext().removeAttribute(“cats”);
}

private String dispPrice(String price)
{

int len = price.length();
if (len <= 2)

93

JSP Basics 2: Generalized Templating and Server Scripting

07_57485x ch03.qxd 1/14/05 10:12 PM Page 93

TEAM LinG - Live, Informative, Non-cost and Genuine!

return price;
else

return “$” + price.substring(0,len -2) + “.” + price.substring(len-2);
}

%>

<html>
<head>

<title>Wrox Shopping Mall</title>
</head>
<body>

<table width=”600”>
<tr>

<td width=”20%”>
<%

ArrayList cats = (ArrayList) application.getAttribute(“cats”);
for (int i=0; i< cats.size(); i++)
{

Category curCat = (Category) cats.get(i);
%>
<a href=”<%= request.getRequestURL() + “?catid=” + curCat.getId() %>”>

<%= curCat.getName() %>

<%

}
%>

</td>
<td>

<h1></h1>
<table border=”1”>

<tr><th align=”left”>Item</th><th align=”left”>Price</th>
<th align=”left”>Order</th></tr>

<%
String selectedCat = request.getParameter(“catid”);
if (selectedCat == null)

selectedCat = “1”;
ArrayList items = (ArrayList) EShop.getItems(selectedCat);
for (int i=0; i< items.size(); i++)
{

Product curItem = (Product) items.get(i);
%>
<tr>

<td><%= curItem.getName() %></td>
<td><%= dispPrice(String.valueOf(curItem.getPrice())) %></td>
<td><a href=”<%= request.getContextPath() +

“/example2/shopcart.jsp?action=buy&sku=” + curItem.getSku() %>”>
BUY

</td>
</tr>
<%

}
%>

94

Chapter 3

07_57485x ch03.qxd 1/14/05 10:12 PM Page 94

TEAM LinG - Live, Informative, Non-cost and Genuine!

</table>
</td>

</tr>
</table>

</body>
</html>

The highlighted code creates a hyperlink out of the word BUY. This is done via the generation of an <a>
HTML element. The URL generated for the href attribute of the <a> elements is as follows:

http://localhost:8080/ch03/example2/shopcart.jsp?action=buy&sku=511

This URL will call up the shopcart.jsp page, with two parameters. The first parameter is action, with
value “buy”. The second parameter is sku, and the value is the actual sku of the product that you have
selected.

Creating the Shopping Cart
The shopping cart is implemented in the shopcart.jsp page. The shopcart.jsp page can be located
at <Tomcat Installation Directory>/webapps/ch03/example2/shopcart.jsp. It is reproduced
here with the scripting elements highlighted:

<%@ page language=”java”
import = “com.wrox.begjsp.ch03.*,java.util.*” %>

<%!
private static String EXAMPLE = “/example2”;
private static String SHOP_PAGE = “/estore.jsp”;
private static String CART_PAGE = “/shopcart.jsp”;

private String dispPrice(String price)
{

int len = price.length();
if (len <= 2)

return price;
else

return “$” + price.substring(0,len -2) + “.” + price.substring(len-2);
}

%>

<html>
<head>

<title>Wrox Shopping Mall - Shopping Cart</title>
</head>
<body>

<%
int quan = 1;
String action = request.getParameter(“action”);
if (action.equals(“inc”))

95

JSP Basics 2: Generalized Templating and Server Scripting

07_57485x ch03.qxd 1/14/05 10:12 PM Page 95

TEAM LinG - Live, Informative, Non-cost and Genuine!

{
String oldQuan = request.getParameter(“quan”);
quan = Integer.parseInt(oldQuan);
quan++;

} // else - action=buy

%>
<table width=”600”>

<tr>
<td>

<h1></h1>
<table border=”1”>

<tr><th colspan=”5”>Your Shopping Cart</th></tr>
<tr><th align=”left”>Quantity</th><th align=”left”>Item</th>

<th align=”right”>Price</th>
<th align=”right”>Extended</th>
<th align=”left”>Add</th>

</tr>

<%
String sku = request.getParameter(“sku”);
Product item = null;
if (sku != null)

item = EShop.getItem(sku);
%>

<tr>
<td><%= quan %></td>
<td><%= item.getName() %></td>
<td align=”right”><%= dispPrice(String.valueOf(item.getPrice()))

%></td>
<td align=”right”><%= dispPrice(String.valueOf(item.getPrice() * quan))

%></td>
<td>

<a href=”<%= request.getContextPath() + EXAMPLE + CART_PAGE +
“?action=inc&quan=” + quan + “&sku=” + sku %>”>

Add 1
</td>

</tr>

<tr>
<td colspan=”5”>

<a href=”<%= request.getContextPath() + EXAMPLE + SHOP_PAGE %>”>
Return to Shopping

</td>
</tr>

</table>
</td>

</tr>
</table>

</body>
</html>

96

Chapter 3

07_57485x ch03.qxd 1/14/05 10:12 PM Page 96

TEAM LinG - Live, Informative, Non-cost and Genuine!

The initial declaration scripting element contains the same dispPrice() method for formatting the
product price. It also contains three constant declarations for EXAMPLE, SHOP_PAGE, and CART_PAGE.

Decoding incoming request parameters
The first scriptlet scripting element decodes the incoming URL parameters. This element is reproduced
here for convenience:

<%
int quan = 1;
String action = request.getParameter(“action”);
if (action.equals(“inc”))
{

String oldQuan = request.getParameter(“quan”);
quan = Integer.parseInt(oldQuan);
quan++;

} // else - action=buy

%>

The variable quan tracks the quantity of the item. It defaults to 1. The default is used when the Buy
hyperlink on the estore.jsp page is clicked. In this case, the incoming URL is similar to the following:

http://localhost:8080/ch03/example2/shopcart.jsp?action=buy&sku=511

Note that there is no quan request parameter in the URL, resulting in the use of the default quantity of 1.

If the Add 1 link on the shopcart.jsp page is clicked, the incoming URL is similar to the following:

http://localhost:8080/ch03/example2/shopcart.jsp?action=inc&quan=3&sku=511

Note that in this case, the URL has a quan request parameter. The default will not be used in this case.
The quan parameter contains the quantity displayed before the Add 1 link is clicked. The action in this
case is inc instead of buy. The preceding code ensures that the quantity is increased by 1 when the Add
1 link is clicked.

The second scriptlet scripting element in shopcart.jsp decodes the sku request parameter. This ele-
ment is reproduced here:

<%
String sku = request.getParameter(“sku”);
Product item = null;
if (sku != null)

item = EShop.getItem(sku);
%>

In this case, if an sku parameter is available, the method EShop.getItem() is called. This method will
retrieve the product associated with sku parameter. The preceding code assigns the item variable with
this product.

97

JSP Basics 2: Generalized Templating and Server Scripting

07_57485x ch03.qxd 1/14/05 10:12 PM Page 97

TEAM LinG - Live, Informative, Non-cost and Genuine!

Rendering order information
The order information is rendered as a row of the HTML table, as shown by the following code:

<tr>
<td><%= quan %></td>
<td><%= item.getName() %></td>
<td align=”right”><%= dispPrice(String.valueOf(item.getPrice())) %></td>
<td align=”right”><%= dispPrice(String.valueOf(item.getPrice() * quan)) %></td>
<td>
<a href=”<%= request.getContextPath() + EXAMPLE + CART_PAGE + “?action=inc&quan=”

+ quan + “&sku=” + sku %>”>
Add 1

</td>

</tr>

The quan variable is used within an expression scripting element to render the current quantity ordered.
It is also used within the expression scripting element that renders the extended price. The item variable
is used to access the name and price of the product (associated with the incoming sku request parame-
ter). The dispPrice() method is used for both the price and extended price cells to format the output.
The URL within the href attribute of the <a> HTML element around the Add 1 hyperlink is rendered
here. It is typically in a form similar to the following:

http://localhost:8080/ch03/example2/shopcart.jsp?action=inc&quan=3&sku=511

Rendering the Return to Shopping hyperlink
The final expression scripting element in shopcart.jsp renders an HTML row that has a hyperlink for
returning to the estore.jsp page. The code is as follows:

<tr>
<td colspan=”5”>
<a href=”<%= request.getContextPath() + EXAMPLE + SHOP_PAGE %>”>

Return to Shopping
</td>

</tr>

This code makes use of the getContextPath() method of the request implicit object. This will return a
portion of the URL used to access this page, up to the application name (ch03 in our case). The constants
EXAMPLE and SHOP_PAGE are appended, resulting in a URL similar to the following:

http://localhost:8080/ch03/example2/estore.jsp

The highlighted portion of the URL represents the portion returned by the getContextPath() method.

This concludes the coverage of how the shopping cart works in example 2. This implementation has
some major limitations, however, as described in the following section.

98

Chapter 3

07_57485x ch03.qxd 1/14/05 10:12 PM Page 98

TEAM LinG - Live, Informative, Non-cost and Genuine!

Shopping cart limitations
To observe the limitations of this shopping cart, first repeat the action of the previous Try It Out exercise.
This will result in two books in the shopping cart, similar to what is shown in Figure 3-11.

At this point, click the Return to Shopping hyperlink. This results in the display of the catalog page
(refer to Figure 3-8), showing the available systems.

Now click the Software category on the left side. The list of software products is now displayed, as
shown in Figure 3-12.

Figure 3-12: Catalog displaying software selection

Click the Buy link of the Tomcat 5 Server for Windows product. This will return you to the shopping cart,
as shown in Figure 3-13.

The limitations of this shopping cart should be evident at this point:

❑ The shopping cart displays only the most recently purchased product.

❑ The previously purchased book has disappeared forever.

The next Try It Out exercise will eliminate these limitations. However, it is important to appreciate why
these limitations exist.

99

JSP Basics 2: Generalized Templating and Server Scripting

07_57485x ch03.qxd 1/14/05 10:12 PM Page 99

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 3-13: Shopping cart after purchase of Tomcat 5 server

If you consider how the shopping cart (shopcart.jsp) page and the catalog (estore.jsp) page work
together, you will notice the following:

❑ There is no mechanism to remember what has been ordered previously.

❑ All communication and data passing between the two pages are limited to the parameters with
the URL request; namely the action, sku, and quan parameters. This mechanism does not
allow information for multiple items to be passed.

Overcoming the shopping cart limitations
Two steps are needed to overcome these limitations:

1. Create a mechanism to remember what had been ordered.

2. Use a communication mechanism that can pass an unlimited row of product and quantity
information.

The following Try It Out exercise provides both. Try the example and see for yourself.

100

Chapter 3

07_57485x ch03.qxd 1/14/05 10:12 PM Page 100

TEAM LinG - Live, Informative, Non-cost and Genuine!

Try It Out Overcoming the Shopping Cart Limitations
Access example 3 via the following URL:

http://localhost:8080/ch03/example3/estore.jsp

The catalog is displayed as shown in Figure 3-8 in the preceding Try It Out exercise.

The Systems category is displayed by default. The list of available systems are displayed on the right-
hand side of the page. Click the Buy hyperlink of the first system (Pentium 4), adding it to your shop-
ping cart. The improved shopping cart is now displayed as shown in Figure 3-14.

This new shopping cart calculates the total price of the order on a separate row of the table. It also has a
link to clear the cart.

Now, click the Add 1 hyperlink to add another Pentium system. As shown in Figure 3-15, the cart shows
two Pentium systems, and the total price is updated.

Figure 3-14: Example 3 shopping cart

101

JSP Basics 2: Generalized Templating and Server Scripting

07_57485x ch03.qxd 1/14/05 10:12 PM Page 101

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 3-15: Cart with two systems ordered

Next, click the Return to Shopping link. This will return you to the catalog.

On the left side, select Books. Once the books are displayed on the right, click the Buy link for Beginning
JavaServer Pages. This will take you back to your shopping cart. You will see that the book has been added
to the shopping cart. Unlike the cart in the previous Try It Out exercise, this time both of the Pentium
systems that you have ordered are displayed in the cart. Note that the total price has been updated to
include the 2 Pentium systems and the book. Figure 3-16 illustrates the cart, with all the line items
shown.

You may want to add other items, and try increasing their quantity.

Finally, click the Clear the Cart hyperlink. Note that all of the items in the shopping cart are now cleared,
as shown in Figure 3-17.

The next section reveals how this improved shopping cart works behind the scenes.

102

Chapter 3

07_57485x ch03.qxd 1/14/05 10:12 PM Page 102

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 3-16: Shopping cart tracking multiple line items

How It Works
To implement this improved cart, the following new pieces are needed:

❑ A Java class that represents a single line item in the cart, called LineItem

❑ A new ArrayList of LineItems objects to track the objects ordered

The LineItem class has properties called quantity, sku, description, and price. The code for this
Java class can be found in the com.wrox.begjsp.ch03 package. The source code for this package is
located in the <Tomcat Installation Directory>/webapps/WEB-INF/classes directory. You may
wish to study the source code for this class; this chapter focuses only on the JSP usage of this class.

The ArrayList to track products ordered is created within the shopping cart JSP code, presented next.

The estore.jsp for example 3, located at <Tomcat Installation Directory>/webapps/ch03/
example3/estore.jsp, is identical to estore.jsp in the second Try It Out exercise, earlier in this
chapter. This page is not presented again.

103

JSP Basics 2: Generalized Templating and Server Scripting

07_57485x ch03.qxd 1/14/05 10:12 PM Page 103

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 3-17: Shopping cart after clearing it of items

The shopcart.jsp for the current example is significantly different, and is located in
<Tomcat Installation Directory>/webapps/ch03/example3/shopcart.jsp. The code for this
shopcart.jsp is reproduced here, with major differences from the previous version highlighted:

<%@ page language=”java”
import = “com.wrox.begjsp.ch03.*,java.util.*” session=”true” %>

<%!
private static String EXAMPLE = “/example3”;
private static String SHOP_PAGE = “/estore.jsp”;
private static String CART_PAGE = “/shopcart.jsp”;

private String dispPrice(String price)
{

int len = price.length();
if (len <= 2)

return price;
else

return “$” + price.substring(0,len -2) + “.” + price.substring(len-2);
}

%>

104

Chapter 3

07_57485x ch03.qxd 1/14/05 10:12 PM Page 104

TEAM LinG - Live, Informative, Non-cost and Genuine!

<html>
<head>

<title>Wrox Shopping Mall - Shopping Cart</title>
</head>
<body>

<%
ArrayList items = (ArrayList) session.getAttribute(“lineitems”);
String action = request.getParameter(“action”);
String sku = request.getParameter(“sku”);
Product prod = null;
if (sku != null)

prod = EShop.getItem(sku);

if (items == null)
{ // add first item

items = new ArrayList();
items.add(new LineItem(1,sku,prod.getName(),

prod.getPrice()));
session.setAttribute(“lineitems”, items);

}
else if (action.equals(“clear”))

{
items.clear();

}
else
{

boolean itemFound = false;
// check to see if sku exists
for (int i=0; i<items.size(); i++)
{

LineItem curItem = (LineItem) items.get(i);
if (curItem.getSku().equals(sku))
{

itemFound = true;
curItem.setQuantity(curItem.getQuantity() + 1);
break;

} // of if
} //of for

if (!itemFound)
items.add(new LineItem(1,sku,prod.getName(),

prod.getPrice()));

} // of final else

int total = 0;
%>
<table width=”600”>

<tr>
<td>

<h1></h1>
<table border=”1” width=”600”>

<tr><th colspan=”5”>Your Shopping Cart</th></tr>
<tr><th align=”left”>Quantity</th><th align=”left”>Item</th><th

align=”right”>Price</th>

105

JSP Basics 2: Generalized Templating and Server Scripting

07_57485x ch03.qxd 1/14/05 10:12 PM Page 105

TEAM LinG - Live, Informative, Non-cost and Genuine!

<th align=”right”>Extended</th>
<th align=”left”>Add</th></tr>

<%
for (int i=0; i< items.size(); i++)
{

LineItem curItem = (LineItem) items.get(i);
int quan = curItem.getQuantity();
long price = curItem.getPrice();
long extended = quan * price;
total += extended;

%>

<tr>
<td><%= quan %></td>
<td><%= curItem.getDesc() %></td>
<td align=”right”><%= dispPrice(String.valueOf(price)) %></td>
<td align=”right”><%= dispPrice(String.valueOf(extended)) %></td>
<td>

<a href=”<%= request.getContextPath() + EXAMPLE + CART_PAGE +
“?action=inc&sku=” + curItem.getSku() %>”>

Add 1
</td>

</tr>
<%

}
%>
<tr>

<td colspan=”5”>
</td>

</tr>
<tr>

<td colspan=”3” align=”right”>Total:</td>
<td align=”right”><%= dispPrice(String.valueOf(total)) %></td>
<td> </td>

</tr>
<tr>

<td colspan=”5”>
<a href=”<%= request.getContextPath() + EXAMPLE + CART_PAGE +

“?action=clear” %>”>
Clear the cart

</td>
</tr>

<tr>
<td colspan=”5”>

<a href=”<%= request.getContextPath() + EXAMPLE + SHOP_PAGE %>”>
Return to Shopping

</td>
</tr>

</table>
</td>

106

Chapter 3

07_57485x ch03.qxd 1/14/05 10:12 PM Page 106

TEAM LinG - Live, Informative, Non-cost and Genuine!

</tr>
</table>

</body>
</html>

The first thing to note in this new shopcart.jsp is the new attribute, session, specified in the
<%@ page> directive. The directive is reproduced here for reference:

<%@ page language=”java”
import = “com.wrox.begjsp.ch03.*,java.util.*” session=”true” %>

Specifying session=”true” tells the JSP container explicitly that this page should participate in a ses-
sion. While it is stated explicitly here for learning purposes, it is not necessary because the default value,
when the attribute is not specified, is true. It is important to understand what a session is and how it is
implemented.

Sessions and JSPs
A session is a managed object that resides on the server, within the JSP container. The main purpose of a
session is to track incoming requests from the same user.

To understand the need for sessions, it is necessary to reexamine only the second Try It Out exercise.
Observe the way that request URLs are marked up to include parameters (such as action, sku, quan),
and think about what actually happens between the user’s browser and the JSP container.

When the user clicks a Buy link on the estore.jsp in this example, the browser requests a URL similar
to the following:

http://localhost:8080/ch03/example2/shopcart.jsp?action=buy&sku=511

From the perspective of the JSP container, an independent request (unrelated to the original request
for estore.jsp) is asking for the shopcart.jsp page. The only things that link the two independent
requests are the parameters encoded at the end of the URL.

From the perspective of the users, the two requests are absolutely related. When they click the Buy link,
they expect to see the product in the shopping cart. This kind of perceived relationship between inde-
pendent requests from the user perspective is the main motivation for establishing a session. A session
binds these logically related requests together.

Therefore, it should be clear that you can encode GET method parameters to a URL within a generated
page to create the illusion that two separate JSP pages belong to the same “session.”

However, this method is clearly limited. There is no easy way to encode an entire shopping cart, full of
items, to the same URL. Fortunately, this is a very common need, and the JSP container manages a ses-
sion object specifically for this purpose. Figure 3-18 illustrates the JSP managed session.

In Figure 3-18a, encoding in the URL is used to tie together requests in the same session. All the data
parameters are attached to the request by the JSPs in the application. In Figure 3-18b, the JSP container
manages the session. The application only needs to attach data to the session implicit object as attributes.
Any JSP element or JSP pages in the same session can then access these attributes for rendering.

107

JSP Basics 2: Generalized Templating and Server Scripting

07_57485x ch03.qxd 1/14/05 10:12 PM Page 107

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 3-18: Session in JSP container

Session implementation
The JSP container cooperates with the browser to implement sessions using the standard HTTP protocol.
A JSP developer never needs to implement sessions or work directly with the session implementation
mechanism. JSP developers can take advantage of sessions in the following simple ways:

❑ By specifying in a <@page> directive that the page should have a session (or leaving it unspeci-
fied and using the session=”true” default)

❑ By attaching attributes to the session implicit object, and writing rendering code that uses the
attribute

In some cases, however, it is advantageous to have an appreciation for how sessions are actually imple-
mented behind the scenes. The most common method for implementing a session is via cookies. Figure
3-19 illustrates this method of session implementation.

Browser

(a) Using URL with encoded parameters

(b) Using container-managed session

JSP Container

JSP Container

JSP

JSP

session

3. Looks up implicit
session object

using unique token

3. Decodes and
accesses parameter

1. Responds with HTML
page containing

an embedded
 URL with encoded

parameters

1. First response
includes a unique token

2. Subsequent requests
include unique token

2. Accesses URL with
encoded parameters

4. Session available
to JSPBrowser

108

Chapter 3

07_57485x ch03.qxd 1/14/05 10:12 PM Page 108

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 3-19: Session implementation using cookies

In Figure 3-19, the JSP container creates a unique token called a cookie and hands it to the browser on the
first incoming request. The browser is programmed to hand this unique token back to the JSP container on
subsequent requests (all modern browsers support cookies). Within the JSP container, a table maps the
cookie’s unique value to a session object. When a request comes into the JSP container, it is checked for a
cookie. If a cookie is found, it is used to look up the session. Because the session object can have an unlim-
ited number of attributes attached to it, the cookie (a very small token) can potentially be used to access a
very large set of session-specific data (shopping cart information, user preferences, and so on).

Using a session to track line items in a shopping cart
Let’s turn our attention back to the examination of the new shopcart.jsp; the code that maintains
the line items in the current shopping cart is the first scriptlet scripting element, reproduced here for
reference:

<%
ArrayList items = (ArrayList) session.getAttribute(“lineitems”);
String action = request.getParameter(“action”);
String sku = request.getParameter(“sku”);
Product prod = null;

5. Session available
to JSP

1b. Stores cookie in
session table1a. first response

includes a cookie

3. Subsequent requests
include cookie

2. Store cookie for
later use

5. Session available
to JSP

6. JSP attaches attributes
to session, or accesses

attached attributes

4. Looks up implicit
session object
using cookie

session

attribute

Browser

JSP Container

JSP

(manages cookies
by website hostname)

109

JSP Basics 2: Generalized Templating and Server Scripting

07_57485x ch03.qxd 1/14/05 10:12 PM Page 109

TEAM LinG - Live, Informative, Non-cost and Genuine!

if (sku != null)
prod = EShop.getItem(sku);

if (items == null)
{ // add first item

items = new ArrayList();
items.add(new LineItem(1,sku,prod.getName(),

prod.getPrice()));
session.setAttribute(“lineitems”, items);

}
else if (action.equals(“clear”))

{
items.clear();

}
else
{

boolean itemFound = false;
// check to see if sku exists
for (int i=0; i<items.size(); i++)
{

LineItem curItem = (LineItem) items.get(i);
if (curItem.getSku().equals(sku))
{

itemFound = true;
curItem.setQuantity(curItem.getQuantity() + 1);
break;

} // of if
} //of for

if (!itemFound)
items.add(new LineItem(1,sku,prod.getName(),

prod.getPrice()));

} // of final else

int total = 0;
%>

This preceding Java code handles the decoding of three different types of requests:

❑ When the user first clicks a Buy link in a session: A session attribute called lineitems does
not exist in this case. Create a new ArrayList of LineItems and attach it with the name
lineitems. The product that the user wishes to purchase should be added to this initial
ArrayList as a LineItem.

❑ When the user clicks the Clear the Cart link: The request carries an action parameter with the
clear value; delete everything in the lineitems ArrayList.

❑ When the user clicks the Add 1 link on the shopping cart for a specific line item: The request
carries an action parameter with the inc value. Go through the lineitems ArrayList and
find the LineItem with the incoming sku and increase the quantity ordered.

110

Chapter 3

07_57485x ch03.qxd 1/14/05 10:12 PM Page 110

TEAM LinG - Live, Informative, Non-cost and Genuine!

Rendering the shopping cart using a session attribute
The table of line items is rendered by the following code:

<%
for (int i=0; i< items.size(); i++)
{

LineItem curItem = (LineItem) items.get(i);
int quan = curItem.getQuantity();
long price = curItem.getPrice();
long extended = quan * price;
total += extended;

%>

<tr>
<td><%= quan %></td>
<td><%= curItem.getDesc() %></td>
<td align=”right”><%= dispPrice(String.valueOf(price)) %></td>
<td align=”right”><%= dispPrice(String.valueOf(extended)) %></td>
<td>

<a href=”<%= request.getContextPath() + EXAMPLE + CART_PAGE +
“?action=inc&sku=” + curItem.getSku() %>”>

Add 1
</td>

</tr>
<%

}
%>

The initial scriptlet scripting element contains the for loop that will render a table row for each
LineItem in the items ArrayList (previously fetched from the session). The quantity is extracted from
the LineItem to calculate the extended price. A variable called total is used to sum all the extended
prices.

Rendering the total order price and the Clear the Cart hyperlink
The final segment of new code in shopcart.jsp renders the total price and the new Clear the Cart
hyperlink, each in its own HTML table row:

<tr>
<td colspan=”3” align=”right”>Total:</td>
<td align=”right”><%= dispPrice(String.valueOf(total)) %></td>
<td> </td>

</tr>

<tr>
<td colspan=”5”>

<a href=”<%= request.getContextPath() + EXAMPLE + CART_PAGE + “?action=clear”
%>”>

Clear the cart
</td>

</tr>

111

JSP Basics 2: Generalized Templating and Server Scripting

07_57485x ch03.qxd 1/14/05 10:12 PM Page 111

TEAM LinG - Live, Informative, Non-cost and Genuine!

The Clear the Cart hyperlink has a URL with the value of the action parameter set to clear. This is
a specific case handled by the first scriptlet scripting element on this page, and will clear everything
within the lineitems session attribute.

Scoping of implicit objects in JSP
The final topic covered in this chapter is the scoping of implicit objects. Earlier in this chapter, you learned
that typical JSP programming may involve the attachment of Java object attributes to one of the four JSP
implicit objects:

❑ pageContext

❑ request

❑ session

❑ application

In Java programming terms, a reference to the attributes is maintained by one of these objects when an
attribute is attached. Because destroying an implicit object will cause all attached attributes to disappear,
the lifetime of the attributes depends on the lifetime of the object they are attached to.

The lifetime of an attribute and the accessibility of an attribute together make up the scope of the
attribute. The following table summarizes the different scopes available when attributes are attached to
the different implicit objects.

Implicit Object Scope Lifetime Accessibility

pageContext Page scope Lasts only until all the Accessible only within the
output for the current current JSP page.
request has been
rendered, or when
request processing is
passed to another JSP
page.

request Request Lasts until the end of the Accessible from all the JSP
scope processing of the current pages that service the same

request. This means that request.
the object is still valid if
the same request is being
passed to another JSP
page for processing.

session Session Lasts until the end of the Accessible from all the
scope session. Note that a session-aware JSP pages

session can last over (session attribute set to
many independent true with a <%@page>
requests. The precise directive) that are accessed
lifetime of a session within the same session.
depends on the
container.

112

Chapter 3

07_57485x ch03.qxd 1/14/05 10:12 PM Page 112

TEAM LinG - Live, Informative, Non-cost and Genuine!

Implicit Object Scope Lifetime Accessibility

application Application Lasts until the entire Accessible within all the
scope application is unloaded JSP pages within the

by the JSP container — application. This is the
for example, if the ch03 global scope.
application is stopped or
ch03.war undeployed.

In the third Try It Out exercise in this chapter, the lineitems attribute is attached to the request
implicit object and therefore has a request scope. The cats attribute, however, is attached to the appli-
cation scope within the jspInit() method in the estore.jsp page. This means that cats should be
accessible from any JSP page within the same ch03 application. To convince yourself of this, try to access
the following URL:

http://localhost:8080/ch03/examplex/showglob.jsp

You should see a list of the available categories, as shown in Figure 3-20.

Figure 3-20: Accessing the cats application-scoped attribute

113

JSP Basics 2: Generalized Templating and Server Scripting

07_57485x ch03.qxd 1/14/05 10:12 PM Page 113

TEAM LinG - Live, Informative, Non-cost and Genuine!

This shows that the cats attribute remains available, long after the earlier session testing. This global
cats attribute is attached to the application scope, and accessed by the showglob.jsp page. The
showglob.jsp file can be located at <Tomcat Installation Directory>/webapps/ch03/
examplex/showglob.jsp. It is reproduced here, with scripting elements highlighted:

<%@ page language=”java”
import = “com.wrox.begjsp.ch03.*,java.util.*” %>

<html>
<head>

<title>Show Application Scope</title>
</head>
<body>

<table width=”600”>
<tr>

<td>
<%

ArrayList cats = (ArrayList) application.getAttribute(“cats”);
for (int i=0; i< cats.size(); i++)
{

Category curCat = (Category) cats.get(i);
%>

<%= curCat.getName () %>

<%

}
%>

</td>
</tr>

</table>

</body>
</html>

The cats attribute is still available to showglob.jsp despite the following:

❑ showglob.jsp does not create the cats attribute.

❑ estore.jsp is executed before showglob.jsp.

❑ showglob.jsp is not even part of example 3.

Herein lie both the benefits and shortcomings of the application scope. The application scope is global to
the entire application, allowing its attributes to be accessed by any JSP or other Web elements within the
same application.

Summary
The JSP standard, prior to JSP 2.0, had shortcomings that necessitated the use of embedded Java pro-
gramming code. In the earliest JSP incarnation, JSP 1.0, this was absolutely necessary.

114

Chapter 3

07_57485x ch03.qxd 1/14/05 10:12 PM Page 114

TEAM LinG - Live, Informative, Non-cost and Genuine!

Due to the existence of legacy code, the practicing JSP developer must be familiar with the mechanism
and techniques used for embedding Java code within JSP. The primary mechanism for embedding Java
code within JSP is through scripting elements.

Through three successive Try It Out exercises, you have thoroughly explored scripting elements in the
form of declarations, expressions, and scriptlets.

Also presented in this chapter was an e-commerce example of an electronic storefront, which demon-
strated the following concepts:

❑ How to implement an interactive catalog showing categories of products

❑ How to implement a working shopping cart

❑ How to use Java objects as attributes to pass information between JSP elements or multiple JSP
pages

❑ How to use implicit JSP objects that support the attachment of attributes, and the lifetime of
these implicit objects

❑ The importance of scoping in JSP, and how to take advantage of it in your applications

❑ The idea of a session, and how to make use of it in e-commerce applications

Exercises
1. Modify the shopcart.jsp in the third Try It Out exercise to calculate an 8 percent sales tax and

print the grand total.

2. Modify shopcart.jsp in the third Try It Out exercise to include adding a link on each line item
to subtract 1 from the displayed quantity.

115

JSP Basics 2: Generalized Templating and Server Scripting

07_57485x ch03.qxd 1/14/05 10:12 PM Page 115

TEAM LinG - Live, Informative, Non-cost and Genuine!

07_57485x ch03.qxd 1/14/05 10:12 PM Page 116

TEAM LinG - Live, Informative, Non-cost and Genuine!

4
CSS, JavaScript,

VBScript, and JSP

You can use JSP as the vehicle to provide an interactive user experience over the Web. The previ-
ous chapter illustrated how this might be accomplished in an e-commerce environment. Creating a
dynamic Web-based user interface is the primary way in which the JSP technology is used within
Web-based applications.

Knowing that JSP can be used to generate the HTML-based user interface, readers who are
Webmasters or Web site designers may have another question on their minds. If JSP is such a flexi-
ble dynamic presentation environment, maybe it can be used to generate some of the client-side
user interface elements too. More specifically, it is very interesting to consider what can be
achieved when JSP is used to generate client-side Web page elements, including the following:

❑ Cascading Stylesheet coding

❑ JavaScript coding

❑ VBScript coding

This chapter explores the exciting possibilities that are available when JSP is used in generating
these elements. Unlike JSP logic, these elements have the unique property that they are interpreted
and executed by the Web browser on the client side. Because it is possible to use JSP to generate
code that will be executed on the client side, developers can enjoy features and capabilities beyond
anything achievable via plain HTML and stylesheets.

In this chapter, two examples are presented. The first example shows how to implement a cus-
tomizable user preference selector using JSP. Using this technique, you can enable your users to
customize the style and look of their interactive experience. Behind the scenes, JSP is used to
dynamically generate the Cascading Stylesheets (CSS) script that affects the look of the pages
displayed by the browser.

The second example illustrates a technique to customize an interactive drop-down menu, enabling
the user to control the selections on the menu. HTML designers will recognize this as a DHTML
(Dynamic HTML) menu. Using JSP, a portion of the JavaScript code of the menu is generated on
the fly, resulting in DHTML that is customized to the application’s need or the user’s preference.

08_57485x ch04.qxd 1/14/05 10:26 PM Page 117

TEAM LinG - Live, Informative, Non-cost and Genuine!

After reading this chapter and going through these examples, you will:

❑ Understand how you can use JSP to gain fine-grain control over the look-and-feel of the interac-
tive Web-based user interface

❑ Appreciate how JSP can be used to generate CSS and JavaScript/VBScript elements that will be
executed on the client’s browser

❑ Learn one way to customize user preferences for your own Web application using JSP

❑ Learn how to implement a JSP-based customizable DHTML menu for your Web applications

❑ Appreciate how JSP can be effective in generating user interface elements beyond simple HTML

Code Elements That Execute
on the Client Side

The template data in the JSP pages within the examples thus far have been HTML. However, modern
Web pages contain more that just HTML. In fact, most Web pages contain non-HTML elements that may
include some of the following:

❑ CSS (Cascading Stylesheets)

❑ JavaScript or VBScript code

All of the elements listed are sent to the browser with the HTML page. These elements are then pro-
cessed by the client’s browser. Figure 4-1 illustrates this.

Figure 4-1: Elements that execute on the client side

Server

Browser (Client)

HTML sent with CSS and JavaScript/VBScript code

HTML
Page

HTML rendered
with CSS styling

JavaScript/
VBScript

executed here

JavaScript/
VBScript

CSS
Stylesheets

118

Chapter 4

08_57485x ch04.qxd 1/14/05 10:26 PM Page 118

TEAM LinG - Live, Informative, Non-cost and Genuine!

In Figure 4-1, the CSS stylesheets are sent to the browser, and used by the browser’s CSS processor to
stylize the HTML rendering. The JavaScript or VBScript code is also sent to the browser. This code will
be executed by the JavaScript or VBScript interpreter within the browser. Almost all modern browsers,
including the most popular Internet Explorer 6.x and Netscape 7.x versions, support CSS and JavaScript.
VBScript is unique to Microsoft’s browsers.

The CSS, JavaScript, and VBScript elements originate from the server, and are often embedded as a part
of the base HTML page. Because JSP is frequently used to generate HTML, these elements are also sub-
jected to dynamic generation using JSP. Figure 4-2 shows JSP being used to generate these elements
dynamically.

Figure 4-2: Using JSP to dynamically generate CSS, JavaScript, or VBScript

In Figure 4-2, CSS and JavaScript/VBScript coding are all template data within a JSP. Portions of the
resulting JSP output are generated upon the receipt of an incoming request by the JSP container. This
allows for the customization of the output depending on the incoming request. JSP scoping mechanisms,
including sessions, may also be used to customize the generated output.

Cascading Stylesheets
A Cascading Stylesheet (CSS) is a set of style descriptions that can be used to affect how the browser dis-
plays (renders) specific HTML elements. Some versions of CSS may also be used to format XML data,
rendering it as HTML formatted data.

CSS Stylesheets
as

template data in JSP

JavaScript/VBScript
as

template data in JSP

Generated CSS Stylesheets, JavaScript/
VBScript, or HTML

JSP Container/Engine

HTML
as

template data in JSP

119

CSS, JavaScript, VBScript, and JSP

08_57485x ch04.qxd 1/14/05 10:26 PM Page 119

TEAM LinG - Live, Informative, Non-cost and Genuine!

Individual HTML elements can be associated with style elements in a CSS. The style elements describe
how the associated HTML element should appear on the page. Note that any single CSS style element
can be associated with many HTML elements. CSS enables a Web designer to separate the HTML struc-
tural layout from the formatting and styling. If the CSS element is changed, the corresponding HTML
element will be rendered with the modified style, without affecting the HTML structure.

CSS elements can be included within an HTML page using the <style> element. For example, the fol-
lowing HTML segment embeds a CSS style class definition called .boxTitle into the page:

<style>
.boxTitle
{

font-size : 22;
font-weight : bold;
color : #ffffff;
background-color: blue;

}
</style>

An external file containing CSS styling elements can be included in the <head> section of an HTML page
using the <link> element:

<link rel=stylesheet type=”text/css” href=”portal.css”>

The preceding code will include all the CSS styling elements in the external portal.css file in the cur-
rent HTML file.

JavaScript
JavaScript is a programming language that may be used to access the object model presented by the
browser. This object model includes all the static and dynamic elements of the displayed/rendered page,
enabling JavaScript to access data input from the user, change the rendered HTML output, or even sub-
mit custom data back to the server.

Frequently, JavaScript coding is used in validating the user input data values or when implementing
dynamic behavior on a displayed Web page.

JavaScript has a turbulent history. During the early years of the browser wars, competing browser ven-
dors (Netscape, Microsoft, and so on) supported different dialects of JavaScript and browser object
models that were basically incompatible. Fortunately, the emergence of an ECMA (European Computer
Manufacturers Association) standard JavaScript subset, coupled with the reduced competition in the
browser space, has resulted in more compatible JavaScript dialects in modern versions of browsers. Even
today, it is not uncommon to see scripting code that will detect a specific version of a browser, and then
branch to version-specific coding.

JavaScript code can be included in an HTML page via the <script> HTML element. For example, the
following HTML fragment embeds some JavaScript declarations into the page:

<script language=”JavaScript”>
var keepstatic=1

120

Chapter 4

08_57485x ch04.qxd 1/14/05 10:26 PM Page 120

TEAM LinG - Live, Informative, Non-cost and Genuine!

var menucolor=”green”
var submenuwidth=150

</script>

In addition, a file consisting of JavaScript code can be included inline into an HTML page using the fol-
lowing variant of the <script> element:

<script language=”JavaScript” src=”menu.js”></script>

The preceding code will include the JavaScript code within the menu.js file at the location where the
<script> element is placed.

VBScript
VBScript is a Microsoft-specific scripting language that may be used on Microsoft browsers, instead of
JavaScript. Unlike JavaScript, VBScript has a syntax that is familiar to Microsoft’s Visual Basic develop-
ers. Microsoft also provides extensive debugging and tool support for this dialect of scripting language.
Unfortunately, using VBScript to write client-side code restricts one’s choice of browser to only Microsoft
Internet Explorer.

However, because all modern versions of Microsoft browsers also support JavaScript, most professional
developers code to JavaScript and avoid maintaining multiple versions of the same client-side coding.

User Preference Implementation
Some Web sites enable users to customize their look and feel. For example, a user may choose the color
or the font that will be used to display the pages in a portal. Of course, this customization applies only to
the individual user. A Web site supports multiple users, and this means that each user will be viewing
the same Web site with his/her customizations applied. Figure 4-3 depicts this customization.

Figure 4-3: User preference implementation

JSP-based
webpage supporting

user preference

User 1 sees blue color
theme with sans-serif font.

Server

User 1

User 2

User 2 sees red color
theme with serif font.

121

CSS, JavaScript, VBScript, and JSP

08_57485x ch04.qxd 1/14/05 10:26 PM Page 121

TEAM LinG - Live, Informative, Non-cost and Genuine!

In Figure 4-3, user 1 customized to a blue-colored theme and a sans serif font, whereas user 2 cus-
tomized to a red-colored theme and a serif font. In this case, user 1 and user 2 can be simultaneously
accessing the same data on the Web site, but each user will have a customized view of the site according
to his or her preferences.

You can use JSP to implement this kind of customization. The first example in this chapter reveals how.

Try It Out Customizing User Preferences
First, make sure your Tomcat 5 server is running. Next, deploy the ch04.war file on your Tomcat 5
server. If you do not remember how to deploy a Web application, revisit Chapter 1.

Now, try to access the following URL:

http://localhost:8080/ch04/example1/

This brings up the portal home page. You will recall this portal example from Chapter 2. Figure 4-4 illus-
trates this new portal home page.

Figure 4-4: Portal home page enhanced with user preference options

122

Chapter 4

08_57485x ch04.qxd 1/14/05 10:26 PM Page 122

TEAM LinG - Live, Informative, Non-cost and Genuine!

This example is built on top of the Chapter 2 example to keep the additional details simple and familiar.
Unlike the Chapter 2 example, however, there are two new selection boxes in Figure 4-4:

❑ One for color scheme selection

❑ One for font selection

These two selections enable users to customize the look of the portal on a per-user basis.

Key in the following values on the selection page:

❑ In the Name field, type Joe.

❑ In the Color field, select blue.

❑ In the Font field, select sans-serif

❑ In the Portal field, select news.

Now, click the Select button. You should see a customized portal, as shown in Figure 4-5.

In Figure 4-5, the page is now customized with the user’s name, and is displayed in a blue color theme
(not visible) with a sans-serif font face.

Figure 4-5: Portal page displayed with user preferences

123

CSS, JavaScript, VBScript, and JSP

08_57485x ch04.qxd 1/14/05 10:26 PM Page 123

TEAM LinG - Live, Informative, Non-cost and Genuine!

To see how a different user of the portal may have a totally different visual experience, start another
browser instance without closing the first one. Again, with the new browser instance, access the
following URL:

http://localhost:8080/ch04/example1/

This time, enter the following values and selections:

❑ In the Name field, type Mark.

❑ In the Color list, select red.

❑ In the Font list, select serif.

❑ In the Portal list, select news.

This time, the news portal page is displayed with Mark’s name, as shown in the bottom window of
Figure 4-6.

Figure 4-6: Separate browser instance with different portal color and font preference

124

Chapter 4

08_57485x ch04.qxd 1/14/05 10:26 PM Page 124

TEAM LinG - Live, Informative, Non-cost and Genuine!

In Figure 4-6, the same news portal page is now displayed in a red-colored theme, using a serif font.
Using this technique, each user can set his or her own preferences, and view the portal pages according
to the preferred look.

To show that the user preferences selected work on all the portal pages of the application, start yet
another browser instance. Access the following portal URL:

http://localhost:8080/ch04/example1/

This time, enter the following values and data.

❑ In the Name field, type John.

❑ In the Color list, select green.

❑ In the Font list, select serif.

❑ In the Portal list, select weather.

Click Select; the resulting weather portal page should look like the one shown in Figure 4-7.

Figure 4-7: A weather portal page viewed with active user preferences

125

CSS, JavaScript, VBScript, and JSP

08_57485x ch04.qxd 1/14/05 10:26 PM Page 125

TEAM LinG - Live, Informative, Non-cost and Genuine!

In Figure 4-7, the color scheme used is green, and a serif font is used as the per-user preference. As you
can see, the customized user preferences worked across the news and weather portal pages (you can try
the entertainment page on your own).

How It Works
The JSP pages in this application implement a simple user-preference selection mechanism. It enables
the selection of only a color scheme and a font. The same mechanism, however, can readily be extended
to support a larger set of user preferences.

In a nutshell, the user-specified color and font are passed as form submission parameters to a processing
JSP. This JSP then modifies the content of a CSS on the fly, depending on the parameter values. The
browser on the client then renders the HTML page according to this modified CSS, resulting in the
customized look of the portal page.

Adding user preference form fields
The application’s initial Web page contains an HTML form; the page is called index.jsp, and is located
at <Tomcat Intallation Directory>/webapps/ch04/example1/index.jsp. Two new parameters
are introduced: color and font. The color parameter contains the color selected by the user, and font
contains the font type. The index.jsp page is reproduced in the following code, with modifications
made to the original index.jsp highlighted:

<html>
<head>

<link rel=stylesheet type=”text/css” href=”portal.css”>
<title>Select Your Portal</title>

</head>
<body>

<table class=”mainBox” width=”400”>
<tr><td class=”boxTitle” colspan=”2”>

Wrox JSP Portal Selector
</td></tr>
<tr><td colspan=”2”> </td></tr>
<tr><td>

<form action=”showportal.jsp” method=”get”>
<table>

<tr>
<td width=”200”>

Your First Name: </td>
<td><input name=”username” type=”text” size=”25”/></td>

</tr>
<tr>

<td width=”200”>Color Theme</td><td>
<select name=”color”>

<option>blue</option>
<option>red</option>
<option>green</option>

</select>
</td>

</tr>

<tr>
<td width=”200”>Font</td><td>

126

Chapter 4

08_57485x ch04.qxd 1/14/05 10:26 PM Page 126

TEAM LinG - Live, Informative, Non-cost and Genuine!

<select name=”font”>
<option>sans-serif</option>
<option>serif</option>

</select>
</td>

</tr>

<tr>
<td width=”200”>Portal Selection</td><td>

<select name=”portchoice”>
<option>news</option>
<option>weather</option>
<option>entertainment</option>

</select>
</td>

</tr>
<tr><td colspan=”2”> </td></tr>
<tr><td colspan=”2” align=”center”>

<input type=”submit” value=”Select”/>
</td></tr>

</table>
</form>

</td></tr>
</table>

</body>
</html>

The two new parameters, color and font, will be available to the form processing JSP when this form
is submitted. The form processing JSP will be showportal.jsp, as specified in the action attribute of
the <form> HTML element.

Dynamic generation of CSS stylesheet content
The look of the pages is predicated on a CSS, as was the case with the original Chapter 2 example. This
stylesheet is called portal.css, and its content is reproduced here:

.tableCell
{

font-family : Verdana, Geneva, Arial, Helvetica, sans-serif;
font-size : 16;
font-weight : bold;
color : #0f7fcf;
background-color: #ffffff;

}

.valueCell
{

font-family : Verdana, Geneva, Arial, Helvetica, sans-serif;
font-size : 16;
color : #000000;
background-color: #fefefe;

}
.headLine

127

CSS, JavaScript, VBScript, and JSP

08_57485x ch04.qxd 1/14/05 10:26 PM Page 127

TEAM LinG - Live, Informative, Non-cost and Genuine!

{
font-family : Verdana, Geneva, Arial, Helvetica, sans-serif;
font-size : 18;
font-weight : bold;
color: #000000;

}

.newsText
{

font-family : Verdana, Geneva, Arial, Helvetica, sans-serif;
font-size : 10;
color: #000000;

}
.boxTitle
{

font-family : Arial, Helvetica, sans-serif;
font-size : 22;
font-weight : bold;
color : #ffffff;
background-color: #0F7ACA;

}
.mainBox
{

font-family : Verdana, Geneva, Arial, Helvetica, sans-serif;
font-size : 12;
color : #ffffff;
background-color: #eeeeee;

}

To see how the preceding stylesheet affects the news portal page, examine the HTML template data
within the news.jsp portal page, which remains unchanged in this application. The news.jsp page is
found in <Tomcat Installation Directory>/ch04/example1/news.jsp, and is reproduced here:

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<title>News Portal</title>
</head>
<body>

<table class=”mainBox” width=”600”>
<tr><td class=”boxTitle” >

Welcome to the News Portal, ${param.user}!
</td></tr>
<tr><td>

<jsp:useBean id=”newsfeed” class=”com.wrox.begjsp.ch2.NewsFeed”

scope=”request” >
<jsp:setProperty name=”newsfeed” property=”topic” value=”news”/>
<jsp:getProperty name=”newsfeed” property=”value”/>

</jsp:useBean>

<jsp:include page=”dummytext.html” />

</td></tr>
</table>

128

Chapter 4

08_57485x ch04.qxd 1/14/05 10:26 PM Page 128

TEAM LinG - Live, Informative, Non-cost and Genuine!

The highlighted class attributes throughout the HTML template data control the way the final page is
displayed. This includes both color and font used. For example, in the .boxTitle class, font is specified
to be Arial, Helvetica, sans-serif, and the foreground color is specified as an RGB value of
#ffffff (white), while background color is specified as an RGB value of #0f7aca (a shade of blue):

.boxTitle
{

font-family : Arial, Helvetica, sans-serif;
font-size : 22;
font-weight : bold;
color : #ffffff;
background-color: #0F7ACA;

}

To change the appearance of the resulting HTML page, it is necessary to change the highlighted
attributes in the preceding code. One way to do this within a JSP is to introduce some EL expressions:

.boxTitle
{

font-family : ${selfont};
font-size : 22;
font-weight : bold;
color : #ffffff;
background-color: ${selcolor};

}

Now, the color and font that will be used in the style, and thus in the output HTML, will depend on the
values of the selfont and selcolor variables. The only work remaining is to set the value of these vari-
ables according to the user-selected font and color parameters. This is done within the showportal.
jsp page, the form processor in this application.

Decoding form parameters and setting style variables
The showportal.jsp file found in <Tomcat Installation Directory>/webapps/ch04/example1/
showportal.jsp contains the code to set the selfont and selcolor variables. The entire showportal.
jsp file is reproduced here, with the code for decoding the form parameters and setting the selfont/
selcolor variables highlighted:

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<html>
<head>

<c:choose>
<c:when test=”${param.color == ‘blue’}”>

<c:set var=”selcolor” value=”blue”/>
</c:when>
<c:when test=”${param.color == ‘red’}”>

<c:set var=”selcolor” value=”red” />
</c:when>
<c:when test=”${param.color == ‘green’}”>

<c:set var=”selcolor” value=”green” />
</c:when>

</c:choose>

<c:choose>

129

CSS, JavaScript, VBScript, and JSP

08_57485x ch04.qxd 1/14/05 10:26 PM Page 129

TEAM LinG - Live, Informative, Non-cost and Genuine!

<c:when test=”${param.font == ‘sans-serif’}”>
<c:set var=”selfont” value=”Verdana, Geneva, Arial, Helvetica, sans-serif”/>

</c:when>
<c:when test=”${param.font == ‘serif’}”>

<c:set var=”selfont” value=”’Times New Roman’,Times,serif” />
</c:when>

</c:choose>

<style>
.tableCell
{ font-family : ${selfont};

font-size : 16;
font-weight : bold;
color : #0f7fcf;
background-color: #ffffff;

}

.valueCell
{

font-family : ${selfont};
font-size : 16;
color : #000000;
background-color: #fefefe;

}
.headLine
{

font-family : ${selfont};
font-size : 18;
font-weight : bold;
color: #000000;

}

.newsText
{
font-family : ${selfont};
font-size : 10;
color: #000000;

}
.boxTitle
{
font-family : ${selfont};
font-size : 22;
font-weight : bold;
color : #ffffff;
background-color: ${selcolor};
}

.mainBox
{

font-family : ${selfont};
font-size : 12;
color : #ffffff;
background-color: #eeeeee;

}

130

Chapter 4

08_57485x ch04.qxd 1/14/05 10:26 PM Page 130

TEAM LinG - Live, Informative, Non-cost and Genuine!

</style>

<c:choose>
<c:when test=”${param.portchoice == ‘news’}”>

<jsp:include page=”news.jsp” >
<jsp:param name=”user” value=”${param.username}”/>

</jsp:include>
</c:when>
<c:when test=”${param.portchoice ==’weather’}”>

<jsp:include page=”weather.jsp” >
<jsp:param name=”user” value=”${param.username}”/>

</jsp:include>
</c:when>
<c:when test=”${param.portchoice == ‘entertainment’}”>

<jsp:include page=”entertain.jsp” >
<jsp:param name=”user” value=”${param.username}”/>

</jsp:include>
</c:when>
<c:otherwise>

<head><title>System Portal</title></head>
<body>

<h1>Application logic problem detected!</h1>
</body>

</c:otherwise>
</c:choose>

</body>
</html>

In the highlighted section of the preceding code, a JSTL <choose> construct is used to decode the incom-
ing form parameters. The value of the selcolor variable is set according to the following table.

Incoming Color Parameter Value of selcolor

red red

blue blue

green green

It so happens that the color constants used in the CSS are exactly the same as the form selection values.
Another JSTL <choose> construct is used to decode the incoming font parameter. The value of the
selfont variable is set according to the following table.

Incoming Font Parameter Value of selfont

serif ‘Times New Roman’,Times,serif

sans-serif Verdana, Geneva, Arial, Helvetica, sans-serif

131

CSS, JavaScript, VBScript, and JSP

08_57485x ch04.qxd 1/14/05 10:26 PM Page 131

TEAM LinG - Live, Informative, Non-cost and Genuine!

Note that in showportal.jsp, the entire portal.css stylesheet is included as a <style> HTML ele-
ment. Embedding the CSS makes it possible to use EL expressions and other JSP facilities to dynamically
modify the stylesheet content. For example, if the user selects serif as the font and green as the color,
the following .boxTitle style will be generated:

.boxTitle
{

font-family : ‘Times New Roman’,Times,serif;
font-size : 22;
font-weight : bold;
color : #ffffff;
background-color: green;

}

The content of the other JSPs within the application remains the same as the original Chapter 2 example.
By using CSS to abstract the appearance of the portal pages, it is possible to customize the final appear-
ance of your page without modifying the underlying pages themselves (by just modifying the CSS
classes).

Creating a User-Customizable DHTML Menu
One of the most common applications of client-side scripting, using JavaScript or VBScript, is the cre-
ation of a DHTML menu. A DHTML menu provides a menu with a drop-down submenu via a highly
familiar, non-Web-style, interactive interface. This interface is familiar because all standard Windows-
based GUIs use a similar menu structure. Figure 4-8 illustrates one such menu.

Unlike regular HTML-based menus, the menu in DHTML is not constructed out of hyperlink or HTML
form elements. Instead, HTML code is modified on the fly using style and positioning elements to create
a highly interactive experience for the end user.

Combining JSP with DHTML enables user-specific customization that is otherwise unachievable with
client-side scripting alone. For example, JSP can be used to generate the scripting code that sets up the
individual menu and submenu items. This enables an application to present a different menu to each
user, customized to their needs.

The example in the next Try It Out exercise builds on the first, and shows how to add a customized
DHTML menu using JSP.

Try It Out Adding a Customized DHTML Menu
Before you can try out this example, you will need to download the code for the DHTML menu. The
URL for the download is as follows:

http://www.dynamicdrive.com/dynamicindex1/sm/index.htm

132

Chapter 4

08_57485x ch04.qxd 1/14/05 10:26 PM Page 132

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 4-8: A DHTML menu in action

Make sure you download Top Nav Bar script version 2.1 or later. Dynamic drive is a resource center for
client-side scripting programmers. You will find a wide selection of handy scripts that you can use on
your own Web site.

This specific DHTML menu will self-adapt to work with all major browsers, including Internet Explorer
6 and Netscape 7.

The file that you will need is menu.js. Place this in the <Tomcat Installation Directory>/
webapps/ch04/example2 directory. Now, you are ready to try out the customized dynamic menu.
Access the following URL:

http://localhost:8080/ch04/example2/

The familiar portal selection form is displayed (see Figure 4-9), but this time with an additional menu
selection.

133

CSS, JavaScript, VBScript, and JSP

08_57485x ch04.qxd 1/14/05 10:26 PM Page 133

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 4-9: Portal selection form with an additional customized menu selection

In Figure 4-9, you can select either the news-only or all-menu option. First, try entering the following
data into the form:

❑ In the Name field, type Joe.

❑ In the Color list, select blue.

❑ In the Font list, select sans-serif.

❑ In the Menu list, select news-only.

❑ In the Portal Selection list, select news.

Click Select. You should see the news portal screen with the DHTML menu, as shown in Figure 4-10.

134

Chapter 4

08_57485x ch04.qxd 1/14/05 10:26 PM Page 134

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 4-10: News portal with “news-only” DHTML menu

Although you can’t see it in the black-and-white screenshot, the menu’s color is consistent with the
user-specified color — blue in this case. Note also that the font used in the menu is also consistent with
the user preference — a sans-serif font.

Move your cursor over the DHTML menu and notice the selections that are available. They are all news-
related sites. (The links do not actually work, of course; they will simply redirect you back to the exam-
ple.) Figure 4-11 shows the same page with another menu selected.

135

CSS, JavaScript, VBScript, and JSP

08_57485x ch04.qxd 1/14/05 10:26 PM Page 135

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 4-11: News portal page with alternative menu selection

Now, to test DHTML customization using JSP, start another instance of a Web browser without closing
the first. With the new browser instance, access the following URL:

http://localhost:8080/ch04/example2/

Enter the following data into the portal selection form:

❑ In the Name field, type Mark.

❑ In the Color list, select green.

❑ In the Font list, select serif.

❑ In the Menu list, select all.

❑ In the Portal Selection list, select news.

Click Select. You should see the green news portal page with a different DHTML menu, similar to what
is shown in Figure 4-12.

136

Chapter 4

08_57485x ch04.qxd 1/14/05 10:26 PM Page 136

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 4-12: News portal with the “all” DHTML menu

Figure 4-12 shows how the same JSP page can be used to display different DHTML menus to different
users. The menu color is now green, and the font used in the menu is a serif style, again consistent
with the user’s preferences. This is an example of how the menu’s appearance can be controlled by a
JSP-generated stylesheet.

Move the cursor over the different menu selections, and note how this menu is very different from the
news-only selection.

To focus on the concepts and keep the code simple, the JSP code in this example is used to generate one
of only two different DHTML menus. Using the same technique, it is possible to allow fine-grained user
customization down to a single menu item, enabling users to completely customize their menus. This
possibility is left as an area of further exploration for you.

How It Works
To support the additional form field, index.jsp is modified. The new index.jsp can be located at
<Tomcat Installation Directory>/webapps/ch04/example/index.jsp. The modification is
highlighted in the following index.jsp listing:

<html>
<head>

137

CSS, JavaScript, VBScript, and JSP

08_57485x ch04.qxd 1/14/05 10:26 PM Page 137

TEAM LinG - Live, Informative, Non-cost and Genuine!

<link rel=stylesheet type=”text/css” href=”portal.css”>
<title>Select Your Portal</title></head>

<body>
<table class=”mainBox” width=”400”>

<tr><td class=”boxTitle” colspan=”2”>
Wrox JSP Portal Selector

</td></tr>
<tr><td colspan=”2”> </td></tr>
<tr><td>

<form action=”showportal.jsp” method=”get”>
<table>

<tr>
<td width=”200”>

Your First Name: </td>
<td><input name=”username” type=”text” size=”25”/></td>

</tr>
<tr>

<td width=”200”>Color Theme</td><td>
<select name=”color”>

<option>blue</option>
<option>red</option>
<option>green</option>

</select>
</td>

</tr>

<tr>
<td width=”200”>Font</td><td>

<select name=”font”>
<option>sans-serif</option>
<option>serif</option>

</select>
</td>

</tr>

<tr>
<td width=”200”>Menu</td><td>

<select name=”menuchoice”>
<option>news-only</option>
<option>all</option>

</select>
</td>

</tr>

<tr>
<td width=”200”>Portal Selection</td><td>

<select name=”portchoice”>
<option>news</option>
<option>weather</option>
<option>entertainment</option>

</select>
</td>

</tr>

<tr><td colspan=”2”> </td></tr>
<tr><td colspan=”2” align=”center”>

138

Chapter 4

08_57485x ch04.qxd 1/14/05 10:26 PM Page 138

TEAM LinG - Live, Informative, Non-cost and Genuine!

<input type=”submit” value=”Select”/>
</td></tr>

</table>
</form>

</td></tr>
</table>

</body>
</html>

The new form parameter is called menuchoice. This form parameter is passed into showportal.jsp,
the form processor JSP. showportal.jsp can be found in <Tomcat Installation Directory>/
webapps/ch04/showportal.jsp.

showportal.jsp does not directly work with the menuchoice parameter. Instead, news.jsp is where
the DHTML menu is generated, and the menuchoice parameter processed.

Customizing the DHTML menu with user color and font preferences
The showportal.jsp file, however, has several new stylesheet and script elements that affect the DHTML
menu. This enables us to customize the color and font used in the DHTML menu. The following is a listing
of the new showportal.jsp, with the DHTML’s stylesheet and script elements highlighted:

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<html>
<head>

<c:choose>
<c:when test=”${param.color == ‘blue’}”>

<c:set var=”selcolor” value=”blue”/>
</c:when>
<c:when test=”${param.color == ‘red’}”>

<c:set var=”selcolor” value=”red” />
</c:when>
<c:when test=”${param.color == ‘green’}”>

<c:set var=”selcolor” value=”green” />
</c:when>

</c:choose>

<c:choose>
<c:when test=”${param.font == ‘sans-serif’}”>

<c:set var=”selfont” value=”Verdana, Geneva, Arial, Helvetica, sans-serif”/>
</c:when>
<c:when test=”${param.font == ‘serif’}”>

<c:set var=”selfont” value=”’Times New Roman’,Times,serif” />
</c:when>

</c:choose>

<style>
.tableCell
{

font-family : ${selfont};
font-size : 16;
font-weight : bold;
color : #0f7fcf;

139

CSS, JavaScript, VBScript, and JSP

08_57485x ch04.qxd 1/14/05 10:26 PM Page 139

TEAM LinG - Live, Informative, Non-cost and Genuine!

background-color: #ffffff;
}

.valueCell
{

font-family : ${selfont};
font-size : 16;
color : #000000;
background-color: #fefefe;

}
.headLine
{

font-family : ${selfont};
font-size : 18;
font-weight : bold;
color: #000000;

}

.newsText
{

font-family : ${selfont};
font-size : 10;
color: #000000;

}
.boxTitle
{

font-family : ${selfont};
font-size : 22;
font-weight : bold;
color : #ffffff;
background-color: ${selcolor};

}
.mainBox
{

font-family : ${selfont};
font-size : 12;
color : #ffffff;
background-color: #eeeeee;

}
all.clsMenuItemNS, .clsMenuItemIE
{

text-decoration: none;
font: bold 12px;
font-family: ${selfont};
color: white;
cursor: hand;
z-index:100

}
</style>
<script language=”JavaScript”>

var keepstatic=1
var menucolor=”${selcolor}”
var submenuwidth=150

</script>

140

Chapter 4

08_57485x ch04.qxd 1/14/05 10:26 PM Page 140

TEAM LinG - Live, Informative, Non-cost and Genuine!

<c:choose>
<c:when test=”${param.portchoice == ‘news’}”>

<jsp:include page=”news.jsp” >
<jsp:param name=”user” value=”${param.username}”/>

</jsp:include>
</c:when>
<c:when test=”${param.portchoice ==’weather’}”>

<jsp:include page=”weather.jsp” >
<jsp:param name=”user” value=”${param.username}”/>

</jsp:include>
</c:when>
<c:when test=”${param.portchoice == ‘entertainment’}”>

<jsp:include page=”entertain.jsp” >
<jsp:param name=”user” value=”${param.username}”/>

</jsp:include>
</c:when>
<c:otherwise>

<head><title>System Portal</title></head>
<body>

<h1>Application logic problem detected!</h1>
</body>

</c:otherwise>
</c:choose>

</body>
</html>

Generating JavaScript code with JSP for the DHTML menu
The news.jsp file has the embedded DHTML menu and the code that configures it. This file is located
in <Tomcat Install Directory>/webapps/ch04/news.jsp and is reproduced as follows. The high-
lighted code is the JSP construct that generates the JavaScript code to configure the menu. Note that it
will construct two very different menus depending on the value of the menuchoice form parameter.

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<title>News Portal</title>

</head>
<body>

<script language=”JavaScript” src=”menu.js”></script>
<script language=”JavaScript”>

function showToolbar()
{
menu = new Menu();

<c:choose>
<c:when test=”${param.menuchoice == ‘news-only’}”>

menu.addItem(“newsportalid”, “News Portal”, “News Portal”, null, null);
menu.addItem(“otherportalid”, “Other Portals”, “Other Portals”,

null, null);
menu.addSubItem(“newsportalid”, “World News”, “World News”,

“http://localhost:8080/ch04/example2/”,””);
menu.addSubItem(“newsportalid”, “American News”, “American News”,

“http://localhost:8080/ch04/example2/”,””);
menu.addSubItem(“newsportalid”, “UK News”, “UK News”,

141

CSS, JavaScript, VBScript, and JSP

08_57485x ch04.qxd 1/14/05 10:26 PM Page 141

TEAM LinG - Live, Informative, Non-cost and Genuine!

“http://localhost:8080/ch04/example2/”,””);

menu.addSubItem(“otherportalid”, “Yahoo News”, “Yahoo News”,
“http://localhost:8080/ch04/example2/”,””);

menu.addSubItem(“otherportalid”, “CNN News”, “CNN News”,
“http://localhost:8080/ch04/example2/”,””);

</c:when>
<c:when test=”${param.menuchoice == ‘all’}”>

menu.addItem(“newsid”, “News”, “News”, null, null);
menu.addItem(“weatherid”, “Weather”, “Weather”, null, null);
menu.addItem(“entid”, “Entertainment”, “Entertainment”, null, null);
menu.addItem(“lotid”, “Lotteries”, “Lottories”, null, null);
menu.addSubItem(“newsid”, “World News”, “World News”,

“http://localhost:8080/ch04/example2/”,””);
menu.addSubItem(“newsid”, “American News”, “American News”,

“http://localhost:8080/ch04/example2/”,””);
menu.addSubItem(“newsid”, “UK News”, “UK News”,

“http://localhost:8080/ch04/example2/”,””);

menu.addSubItem(“newsid”, “Yahoo News”, “Yahoo News”,
“http://localhost:8080/ch04/example2/”,””);

menu.addSubItem(“newsid”, “CNN News”, “CNN News”,
“http://localhost:8080/ch04/example2/”,””);

menu.addSubItem(“weatherid”, “Accurate Weather”, “Accurate Weather”,
“http://localhost:8080/ch04/example2/”,””);

menu.addSubItem(“weatherid”, “Weather Central”, “Weather Central”,
“http://localhost:8080/ch04/example2/”,””);

menu.addSubItem(“entid”, “E Motion”, “E Motion”,
“http://localhost:8080/ch04/example2/”,””);

menu.addSubItem(“entid”, “Hollywood on the Run”, “Hollywood on the Run”,
“http://localhost:8080/ch04/example2/”,””);

menu.addSubItem(“lotid”, “Lucky 9”, “Lucky 9”,
“http://localhost:8080/ch04/example2/”,””);

menu.addSubItem(“lotid”, “Mega Fortune”, “Mega Fortune”,
“http://localhost:8080/ch04/example2/”,””);

</c:when>
</c:choose>

menu.showMenu();
}

showToolbar();

function UpdateIt()
{

if (ie&&keepstatic&&!opr6)
document.all[“MainTable”].style.top = document.body.scrollTop;
setTimeout(“UpdateIt()”, 200);

142

Chapter 4

08_57485x ch04.qxd 1/14/05 10:26 PM Page 142

TEAM LinG - Live, Informative, Non-cost and Genuine!

}
UpdateIt();

</script>

<table class=”mainBox” width=”600”>
<tr><td class=”boxTitle” >

Welcome to the News Portal, ${param.user}!
</td></tr>
<tr><td>

<jsp:useBean id=”newsfeed” class=”com.wrox.begjsp.ch2.NewsFeed”

scope=”request” >
<jsp:setProperty name=”newsfeed” property=”topic” value=”news”/>
<jsp:getProperty name=”newsfeed” property=”value”/>

</jsp:useBean>

<jsp:include page=”dummytext.html” />

</td></tr>
</table>

Note that the code generated by the JSTL <choose> construct is not a complete JavaScript function. Rather,
it is a code fragment within the showToolBar() function that is used to generate the DHTML menu.

Summary
You can use JSP to dynamically generate textual output within any template data. While previous exam-
ples have been focused on HTML template data, this chapter explores two alternatives:

❑ Cascading Stylesheets (CSS)

❑ Client-side scripting code (JavaScript)

JSP can be used to dynamically generate CSS code. With CSS, you can

❑ Affect how HTML elements are displayed by the browser

❑ Directly control the appearance of the page to the end user

By using JSP to dynamically generate CSS elements, it is possible to customize the look of the final page
programmatically. One application area is customizing the look of Web pages according to specific user
preferences.

In this chapter, the first Try It Out and How It Works sections reveal how user preferences may be imple-
mented using JSP to generate request-dependent CSS code on-the-fly.

143

CSS, JavaScript, VBScript, and JSP

08_57485x ch04.qxd 1/14/05 10:26 PM Page 143

TEAM LinG - Live, Informative, Non-cost and Genuine!

Another non-HTML template data that JSP can work with is client-side scripting code. Client-side script-
ing code is

❑ Typically JavaScript or VBScript code that is part of the HTML page served by the server

❑ Executed on the client side by the browser

A common use of client-side scripting code is the implementation of a DHTML menu. DHTML menus
typically provide a familiar drop-down menu to the user of a Web application.

This chapter’s second Try It Out and How It Works sections demonstrate how you can use JSP to generate
JavaScript code on-the-fly, which can be used to customize a DHTML menu depending on application
needs.

Creatively combining JSP’s data-driven dynamic generation capability with non-HTML template data
can result in exciting new application possibilities.

Exercises
1. Modify the code in the first Try It Out exercise to enable users to select the style of font used:

either normal or italic.

2. Add customized DHTML menu support to the weather (weather.jsp) and entertainment
(entertain.jsp) portal pages in the second Try It Out exercise.

144

Chapter 4

08_57485x ch04.qxd 1/14/05 10:26 PM Page 144

TEAM LinG - Live, Informative, Non-cost and Genuine!

5
JSP and EL

The previous chapters in this book demonstrated the breadth of JSP technology and introduced
some basic techniques of JSP development. The aim thus far has been to provide you with some
fast, hands-on experience with the JSP technology. The working examples in these earlier chapters
enabled you to try out real JSP code, and see what JSP can be used for in the real world.

Unlike the earlier chapters, this chapter provides a more in-depth exploration of a cornerstone
element of the JSP standard: JSP’s Expression Language, or EL for short.

In this chapter, you will discover the following:

❑ Why EL is an indispensable part of JSP 2.0

❑ How to use EL named variables

❑ How to perform type conversion and coercion in EL

❑ How to handle null values in EL

❑ How to work with arithmetic, logical, comparison, and other operators in EL

❑ The different ways of accessing members of a collection in EL

❑ How to access properties of objects in EL

❑ How to access nested object properties in EL

❑ How to use implicit objects in EL

❑ How to define and access functions in EL

❑ How to use a namespace when referencing EL functions

This chapter covers a lot of ground, and includes five separate examples. By the end of the chapter,
you should be very familiar with EL, and be comfortable using it in your own applications.

09_57485x ch05.qxd 1/14/05 10:09 PM Page 145

TEAM LinG - Live, Informative, Non-cost and Genuine!

EL and Its Vital Role in JSP
EL was not part of the JSP standard prior to 2.0. One of the main reasons for creating EL was to ensure
that presentation-level JSP pages could be created without relying on scripting elements. Chapter 3, “JSP
Basics 2: Generalized Templating and Server Scripting,” covered the use of scripting elements (typically
code written in Java) that are embedded within a JSP page.

The need for scripting elements within JSP is typically driven by the requirements of an application.
Major application requirements that demand the use of scripting elements include the following:

❑ To provide control-flow for JSP execution

❑ To set, and subsequently access, variables that are local to the JSP page

❑ To render a value from a complex expression that involves Java objects

❑ To access properties of an arbitrary Java object

❑ To call methods of JavaBeans or other Java objects

Unfortunately, experience has shown that the use of scripting elements in JSPs makes large projects diffi-
cult to maintain over the long term. It also encourages programming practices that may tightly couple
the presentation (user interface) of an application to its business logic, reducing its flexibility and scala-
bility. This is a highly undesirable practice in the creation of Web applications and services. Ideally, JSPs
should be created free of scripting elements if at all possible.

In order to create a JSP version that can work completely free of scripting elements, it is essential that all
five of the application requirements can be satisfied without the use of embedded Java coding. JSP 2.0
satisfies these requirements. The first two items are handled by JSTL (explored in detail in Chapter 6,
“JSP Tag Libraries and JSTL”), while the last three requirements are handled by EL.

EL is independent of JSP 2.0. Despite the vital role of EL in JSP 2.0, the use of EL is not exclusive to
JSP containers. The EL parser is also not tightly integrated into the JSP parser, but can be detached and
reused for other purposes. In fact, EL is incorporated into both Java Server Faces (JSF, a server-side GUI
construction kit technology; see Chapter 21, “JavaServer Faces,” for more information), and JSTL.
Therefore, becoming familiar with EL will save you time when exploring these other technologies.

EL Named Variables
When working with EL (and JSTL), you will frequently work with named variables. Named variables in
EL refer to attributes attached to JSP scoping objects. For example, the following EL expression will ren-
der the value of the named variable called bearCount:

There are ${bearCount} bears in the cave.

The EL parser will search for the attribute through the various JSP scoping objects in the following order:

1. Page

2. Request

146

Chapter 5

09_57485x ch05.qxd 1/14/05 10:09 PM Page 146

TEAM LinG - Live, Informative, Non-cost and Genuine!

3. Session (if currently valid)

4. Application

In practice, this is equivalent to a call to the Java PageContext.findAttribute() method. If you are
maintaining legacy JSP code with embedded Java, you may see this call. You can consult the JSP
Javadocs (API documentation) to see how this method works.

Figure 5-1 illustrates the search for an EL named variable.

Figure 5-1: Order of search for an EL named variable

In Figure 5-1, you can see the search order for an EL named variable: First the set of EL implicit objects is
searched for a matching name (EL implicit objects are covered later in this chapter), and then the four
scopes. If the named variable is not found, some action may create it.

If the attribute with the specified name cannot be located in any scope, a null value is returned. The null
value will render as a “” (empty string) in the output, and will not trigger any error.

Search for
named
variable

1. Name of implicit object

2. Looks for attribute

3. Looks for attribute

4. Looks for attribute

5. Looks for attribute

EL Implicit Objects

page
scope

request
scope

session
scope

application
scope

147

JSP and EL

09_57485x ch05.qxd 1/14/05 10:09 PM Page 147

TEAM LinG - Live, Informative, Non-cost and Genuine!

Applying EL
As the name implies, the Expression Language works with expressions. It is a programming language
used in the construction of expressions. All EL expressions are enclosed in the ${...} notation. The
expression is evaluated before the rest of the JSP is evaluated. You can place EL expressions in two
places within a JSP:

❑ Inline with template data

❑ Within attributes of JSP actions, standard or custom

Using EL expressions inline with template data
The most typical use of EL expressions is to render a textual string inline with template data. For example,
consider the following JSP fragment:

There are ${5 + 1} bears in the cave.

In this case, the EL expression is placed inline with the HTML template data. At JSP processing time, the
expression ${5+1} will evaluate to 6, and be placed at the same position as the original expression. This
will result in the following HTML:

There are 6 bears in the cave.

Using EL expressions in attribute values
The other place where you will see EL expressions used is within the attributes of certain tags, including
JSTL tags, standard JSP actions, and custom tags.

For example, consider the following JSP fragment using JSTL:

<c:if test=”${salary > 100000}”>
Rich cousin!

</c:if>

In this case, the EL expression ${salary > 100000} is used to conditionally render the body of the JSTL
tag. It is placed in the test attribute of the <c:if> custom JSTL action. This will cause the EL expression
to be evaluated before the JSTL custom action is evaluated. The HTML Rich cousin!

will be rendered only if the named variable called salary is greater in value than 100,000.

For example, consider the following JSP fragment featuring the JSTL <c:set> tag:

<c:set var=”datetime” val=’${dateNow} - ${timeNow}’/>

If the dateNow named variable contains the string “May 1, 2005” and timeNow contains “11:00 AM”,
then the resulting datetime named variable will contain “May 1, 2005 - 11:00 AM”.

As shown in the preceding section, an EL expression can be an arithmetic expression, or an expression
featuring a comparison. The following Try It Out section explores some of these EL expressions.

148

Chapter 5

09_57485x ch05.qxd 1/14/05 10:09 PM Page 148

TEAM LinG - Live, Informative, Non-cost and Genuine!

Try It Out Applying EL Expressions
To try out the first example, deploy ch05.war to your Tomcat 5 server. Review Chapter 1 if you do not
remember how to deploy a WAR file.

Access the following URL using your browser to see the example’s output:

http://localhost:8080/ch05/example1/

You should see something similar to what is shown in Figure 5-2.

Figure 5-2: Output result of EL expressions

The output in Figure 5-2 is the result of a collection of different EL expressions. The following How It
Works section examines the EL expressions used to generate this output.

How It Works
The JSP used to generate the output shown in Figure 5-2 is located at <Tomcat Installation
Directory>/webapps/ch05/example1/index.jsp. The code in this index.jsp is reproduced here:

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<%@ taglib prefix=”fmt” uri=”http://java.sun.com/jsp/jstl/fmt” %>

<html>

149

JSP and EL

09_57485x ch05.qxd 1/14/05 10:09 PM Page 149

TEAM LinG - Live, Informative, Non-cost and Genuine!

<head>
<title>EL Expression Examples</title>

</head>
<body>

<h1>EL Expression Examples</h1>

<h2>Arithmetic Expressions</h2>
There are ${1 + 2 * 4 - 6 / 2} apples on the table.

There are

<fmt:formatNumber pattern=”#####”/>${1 + 2 * 4 - 6 / 2}</fmt:formatNumber>
apples on the table.

It feels like ${-4 - 8} degrees today.

<c:set var=”myGrade” value=”11”/>

The average grade is ${(myGrade == 10) ? “perfect” : “good”}.

There are ${23/54} remaining.

There are ${6 div 2} apples on the table.

There are ${2003 div 8} apples on the table.

There are ${2003 mod 8} apples on the table.

There are ${2003 % 8} apples on the table.

<h2>Logical Operators </h2>
<c:set var=”guess” value=”12”/>
Your guess is ${guess}.

<c:if test=”${(guess >= 10) && (guess <= 20)}”>
You’re in range!

</c:if>
<c:if test=”${(guess < 10) || (guess > 20)}”>

Try again!

</c:if>

<c:set var=”guess” value=”1”/>
Your guess is ${guess}.

<c:if test=”${(guess >= 10) and (guess <= 20)}”>
You’re in range!

</c:if>
<c:if test=”${(guess < 10) or (guess > 20)}”>

Try again!

</c:if>

<h2>Comparison Operators </h2>

4 > ‘3’ ${4 > ‘3’}

‘4’ > 3 ${‘4’ > 3}

‘4’ > ‘3’ ${‘4’ > ‘3’}

4 >= 3 ${4 >= 3}

4 <= 3 ${4 < 3}

4 == ‘4’ ${4 == 4}

<h2>empty Operator</h2>
empty “” ${empty “”}

empty “sometext” ${empty “sometext”}

150

Chapter 5

09_57485x ch05.qxd 1/14/05 10:09 PM Page 150

TEAM LinG - Live, Informative, Non-cost and Genuine!

empty Junk ${empty Junk}

empty guess ${empty guess}

<h2>Boolean and Null Values</h2>

<c:set var=”StrVar” value=”true”/>
<c:if test=”${StrVar}”>

equal!
</c:if>

null == null ${null == null}

“null” == null ${“null” == null}

</body>
</html>

The page consists of many different EL expressions. The highlighted code shows the two major uses of
EL expressions in JSP: inline with template data, and within attributes of tags.

The first highlighted line shows the EL expression ${1 + 2 * 4 - 6 / 2} used inline with the HTML
template data:

There are ${1 + 2 * 4 - 6 / 2} apples on the table.

The second highlighted line shows the same EL expression in the value attribute of the JSTL
<fmt:formatNumber> tag:

<fmt:formatNumber pattern=”#####”/>${1 + 2 * 4 - 6 / 2}</fmt:formatNumber>

Operators
The expressions in index.jsp are created using operators available within EL. These operators include
the following:

❑ Arithmetic operators

❑ Logical operators

❑ Comparison operators

❑ The empty prefix operator

The preceding example contains expressions using every one of these operators. An explanation of these
expressions used in the index.jsp file follows.

Arithmetic operators
All the basic arithmetic operators that you are familiar with are available within EL expressions. This
includes addition, subtraction, multiplication, division, and modulus. For example, consider this line in
index.jsp:

There are ${1 + 2 * 4 - 6 / 2} apples on the table.

151

JSP and EL

09_57485x ch05.qxd 1/14/05 10:09 PM Page 151

TEAM LinG - Live, Informative, Non-cost and Genuine!

This results in the following HTML:

There are 6.0 apples on the table.

Note that operator precedence has caused the multiplication and division to be executed first. Furthermore,
the calculation has caused a decimal to appear in the output. You can use the numeric formatting tags in
JSTL to eliminate this. For example, the following JSP fragment in index.jsp renders the same result with-
out the decimal point:

There are
<fmt:formatNumber value=”${1 + 2 * 4 - 6 / 2}” pattern=”#####”/>
apples on the table.

The formatNumber JSTL tag is used to format the numerical output, using a pattern that specifies no
decimal point should be displayed. This results in the following output:

There are 6 apples on the table.

Note that the set of JSTL formatting tags must be included with the <taglib> directive at the top of
index.jsp:

<%@ taglib prefix=”fmt” uri=”http://java.sun.com/jsp/jstl/fmt” %>

This <taglib> directive also associates the namespace fmt with these formatting tags. Formatting tags
and JSTL are covered extensively in Chapter 6, “JSP Tag Libraries and JSTL.”

The div operator is another way to specify the divide (/) operator, and may be used interchangeably.
Therefore, the following two lines are completely equivalent:

There are ${1 + 2 * 4 - 6 div 2} apples on the table.
There are ${1 + 2 * 4 - 6 / 2} apples on the table.

The mod operator, sometimes expressed by using the symbol %, may be used to obtain the remainder
after a division. For example, consider the following EL expressions in index.jsp:

There are ${2003 div 8} apples on the table.
There are ${2003 mod 8} apples on the table.
There are ${2003 % 8} apples on the table.

The following code shows the resulting HTML output:

There are 250.375 apples on the table.
There are 3 apples on the table.
There are 3 apples on the table.

You can also work with negative numbers, using the unary operator, as in the following fragment from
index.jsp:

It feels like ${-4 - 8} degrees today.

152

Chapter 5

09_57485x ch05.qxd 1/14/05 10:09 PM Page 152

TEAM LinG - Live, Informative, Non-cost and Genuine!

This will result in the following HTML output:

It feels like -12 degrees today.

Floating-point numbers are also supported; the following calculation from index.jsp results in a frac-
tional number:

There are ${23/54} remaining.

This renders the following HTML output:

There are 0.42592592592592593 remaining.

The conditional operator can also be used:

<c:set var=”myGrade” value=”10”/>
The average grade is ${(myGrade == 10) ? “perfect” : “good”}.

The JSTL <c:set> custom action is used to create a named variable. It is an attribute (by default, created
in page scope) called myGrade with the integer value 10. The EL expression will render “perfect” if the
grade is 10, or “good” otherwise. If myGrade is 10, as in the case of index.jsp, the following HTML is
rendered:

The average grade is perfect.

Logical operators
Logical operators can be used to combine multiple Boolean expressions. The two logical operators sup-
ported by EL are && and ||. Alternatively, the textual form and and or may also be used. For example,
consider the following JSP segment from index.jsp:

<h2>Logical Operators </h2>
<c:set var=”guess” value=”12”/>
Your guess is ${guess}.

<c:if test=”${(guess >= 10) && (guess <= 20)}”>
You’re in range!

</c:if>
<c:if test=”${(guess < 10) || (guess > 20)}”>

Try again!

</c:if>

The JSTL <c:if> custom action is used to implement a simple “guess the number” game. If the guess is
between 10 and 20 inclusive, the message “You’re in range!” is printed; otherwise, the player is asked to
“Try again!” Because guess in this case is set to 12, the resulting output is as follows:

Your guess is 12.
You’re in range!

153

JSP and EL

09_57485x ch05.qxd 1/14/05 10:09 PM Page 153

TEAM LinG - Live, Informative, Non-cost and Genuine!

The following is the same expression, using the textual form of the logical operators:

<c:set var=”guess” value=”1”/>
Your guess is ${guess}.

<c:if test=”${(guess >= 10) and (guess <= 20)}”>
You’re in range!

</c:if>
<c:if test=”${(guess < 10) or (guess > 20)}”>

Try again!

</c:if>

Comparison operators
EL supports the entire range of comparison operators found in most programming languages. Each of
the operators has a symbolic form and an abbreviated textual form. The following table enumerates the
available operators.

Operator Alternate Form Description

> Gt Greater than

>= Ge Greater than or equal to

< Lt Less than

<= Le Lesser than or equal to

== Eq Equal to

!= Ne Not equal to

The following fragment of index.jsp tests some of these comparison operators:

<h2>Comparison Operators </h2>

4 > ‘3’ ${4 > ‘3’}

‘4’ > 3 ${‘4’ > 3}

‘4’ > ‘3’ ${‘4’ > ‘3’}

4 >= 3 ${4 >= 3}

4 <= 3 ${4 < 3}

4 == ‘4’ $(4 == 4}

The resulting output is shown here:

4 > ‘3’ true
‘4’ > 3 true
‘4’ > ‘3’ true
4 >= 3 true
4 <= 3 false
4 == ‘4’ true

154

Chapter 5

09_57485x ch05.qxd 1/14/05 10:09 PM Page 154

TEAM LinG - Live, Informative, Non-cost and Genuine!

Note that in the previous comparison EL always attempts to convert the type of the data being com-
pared “in the right way.” That is, the character data is converted to numeric value before being com-
pared, except in the case where two characters are compared.

XML document validity

The >, >=, <, and <= operators contain the < and > special symbols. These symbols typically need to be
escaped if the template text is an XML document. For example, consider the following expression:

<bucketLevel>
<c:if test=”${appleCount >= 100}”>

full
</c:if>

</bucketLevel>

The preceding JSP fragment is not valid XML due to the > character in the expression. Instead, you
should use the alternate form, as follows:

<bucketLevel>
<c:if test=”${appleCount ge 100}”>
full

</c:if>
</bucketLevel>

Using this alternate form enables the gt, ge, lt, and le operators to be used without affecting the valid-
ity of the surrounding XML template text.

The empty operator
The empty operator is a prefix operator, meaning that it takes only one single operand on its right. It can
be used to test for a null value. For example, consider the following JSP fragment from index.jsp in the
previous Try It Out exercise:

<h2>empty Operator</h2>
empty “” ${empty “”}

empty “sometext” ${empty “sometext”}

empty Junk ${empty Junk}

empty guess ${empty guess}

The resulting output is as follows:

empty Operator
empty “” true
empty “sometext” false
empty Junk true
empty guess false

In the previous example, the empty string “” is considered empty while any other string value is not. A
nonexistent variable, Junk, is given a null value in EL. This null value is considered empty when tested
with the empty operator. On the other hand, the guess variable exists (used earlier) and therefore is not

155

JSP and EL

09_57485x ch05.qxd 1/14/05 10:09 PM Page 155

TEAM LinG - Live, Informative, Non-cost and Genuine!

empty. In other words, depending on the data type of the operand, the empty operator can also be used
to test for the conditions shown in the following table.

Operand Data Type Empty Value

String “”

Any named variable Null

Array no elements

Map no elements

List no elements

An ambiguity exists if a named variable is tested to be empty, as it can either contain the null value or
the empty string “”.

Boolean variables and nulls
The following JSP fragment from index.jsp of the previous Try It Out exercise illustrates some interest-
ing conversion properties to Boolean types and working with null values.

<h2>Boolean and Null Values</h2>
<c:set var=”StrVar” value=”true”/>
<c:if test=”${StrVar}”>

equal!
</c:if>

null == null ${null == null}

“null” == null ${“null” == null}

The resulting output is as follows:

equal!
null == null true
“null” == null false

The named variable StrVar is initially set to the string true. This is a variable of type String. However,
because the test attribute of the JSTL <c:if> tag requires a Boolean expression, it is automatically con-
verted to a Boolean by EL before use. This causes the printing of the “equal!” message.

Finally, the comparison operator is being used on the special null value. It is shown here that while a
null value can be successfully compared to another null value, the string “null” is not considered equal
to the null value.

This concludes the coverage of the first example in this chapter. The next section takes a more detailed
look at automatic type conversion, encountered earlier.

156

Chapter 5

09_57485x ch05.qxd 1/14/05 10:09 PM Page 156

TEAM LinG - Live, Informative, Non-cost and Genuine!

Coercion: Automatic Type Conversion
Programming in JSP in general, and in EL in particular, tends to be rather weakly typed. It is not necessary
to declare the type of a variable before using it. This is rather unlike the Java programming language,
where the data type and name of each variable must be declared before use.

The advantage of a weakly typed language such as EL is the ease of programming with it. The JSP/EL
developer does not have to worry about declaring every variable used and figuring out the most appro-
priate type for each variable. Further adding to the ease of programming, the developer usually does not
need to call any type of data-type conversion functions. Instead, developers can completely rely on a set
of built-in rules, EL’s type coercion rules in this case, to take care of type coercion for them.

The disadvantage of a weakly typed approach is that in some programming situations, you may need
finer control over the data type conversion outcome. In these cases, you will need to understand differ-
ent built-in rules and how they may affect the output.

Boxing and unboxing
The basic type conversion is based on boxing. Boxing is simply the action of creating an associated Java
object from a primitive type. The following table shows the common Java primitive types and their
boxed form.

Primitive Type Boxed Type

int Integer

long Long

double Double

char Character

boolean Boolean

To box an int variable means to wrap it in an Integer. To box a long, wrap it up in a Long instance.
The action of converting a wrapped value to its associated primitive value is called unboxing. For exam-
ple, unboxing a Boolean means obtaining the primitive boolean value from a Boolean instance.

Coercion, or automatic type conversion, occurs when the required type does not match the type of the
incoming value/variable. For example, the attribute of a tag may require an Integer value, but the
input value is a String. Before this conversion can happen, EL will always box a primitive type. The
following sections take a look at the most commonly used coercions to examine what goes on under the
hood.

Coercion to a string
Variable values are coerced to a String type as follows:

1. Box the variable if it is primitive.

2. Use the toString() method of the wrapping object to obtain the String equivalent.

157

JSP and EL

09_57485x ch05.qxd 1/14/05 10:09 PM Page 157

TEAM LinG - Live, Informative, Non-cost and Genuine!

Note that null values are returned as a null string, “”. This ensures that nothing is rendered in the out-
put if the object value is null. An error will result if the call of toString() throws an exception.

Coercion to a number
Number types include short, int, float, double, and their boxed types.

Variables of any type are coerced to number types by first boxing them if necessary; then, follow these
steps:

1. If the type is String, use the valueOf() method to get its value; “” (empty string) will return 0.

2. If the type is Character, use new Short((short) v.charValue()), assuming the Character
variable is called v.

3. Unbox the variable if necessary.

Null values in this case are returned as 0. If the type is a Boolean, an error will result. Numbers can
always be converted successfully among themselves (for example, Integer to Float). If the call to
valueOf() throws an exception, it results in an error.

Coercion to a character
Variable values are coerced to Character type by the following rules:

1. If the type is a Number type, first it is coerced to the type Short; then a Character is returned
that is numerically equivalent to the short value.

2. If the type is String, the method charAt(0) is used to obtain the Character. This is essen-
tially the first character of the string.

A null value causes a result of (char) 0. A Boolean incoming type will cause an error.

Best attempt to “do the right thing” without error
It should be clear that the automatic type conversion rules are designed to “do the right thing” in most
circumstances. They will always try directing conversion if possible — for example, converting directly
between the numeric data types.

Null values will always be converted to trivial type-correct values. For example, a null value for a
String type is converted to an empty string, “”. Null is converted to 0 for Numeric type, and (char) 0
to Character type. This enables a JSP to render a null value in most cases, without resulting in an error.

The following Try It Out exercise shows this automatic type conversion in action.

Try It Out Automatic Type Conversion
With ch05.war deployed, access the following URL with your browser:

http://localhost:8080/ch05/example2/

158

Chapter 5

09_57485x ch05.qxd 1/14/05 10:09 PM Page 158

TEAM LinG - Live, Informative, Non-cost and Genuine!

The output of this example is illustrated in Figure 5-3.

Figure 5-3: EL type conversion examples

In Figure 5-3, each line is the output of a custom tag from a custom tag library. These tags all have a val
attribute that is a different data type. By supplying EL expressions of varying data types for the value of
these attributes, the automatic type conversion feature of EL can be observed.

How It Works
You can find the JSP that produced the output in Figure 5-3 in <Tomcat Installation
Directory>/webapps/ch05/example2/index.jsp. The content of this file is reproduced here:

<%@ taglib prefix=”wroxtags” tagdir=”/WEB-INF/tags” %>

<html>
<head>

<title>EL Type Conversion Examples</title>
</head>
<body>

<h1>EL Type Conversion Examples</h1>

<wroxtags:CharacterType val=”this is it”/>
<wroxtags:CharacterType val=”8”/>

159

JSP and EL

09_57485x ch05.qxd 1/14/05 10:09 PM Page 159

TEAM LinG - Live, Informative, Non-cost and Genuine!

<wroxtags:CharacterType val=”3.0001”/>

<wroxtags:DoubleType val=””/>
<wroxtags:DoubleType val=”-3”/>

<wroxtags:BooleanType val=””/>
<wroxtags:BooleanType val=”true”/>
<wroxtags:BooleanType val=”t”/>
<wroxtags:BooleanType val=”3.1”/>

</body>
</html>

The custom tags are included in the wroxtags namespace using the initial taglib directive:

<%@ taglib prefix=”wroxtags” tagdir=”/WEB-INF/tags” %>

All the tags are implemented using the JSP 2.0 tag file mechanism. This allows custom tags to be created
using JSP coding. Tags and tag files are covered in Chapter 11, “Building Your Own Custom JSP Tag
Library.” For now, focus your attention on the type of the tag attribute.

The first tag, <wroxtags:CharacterType>, requires a Character typed val attribute. In the
index.jsp code, a String, an int, and a float value are supplied:

<wroxtags:CharacterType val=”this is it”/>
<wroxtags:CharacterType val=”8”/>
<wroxtags:CharacterType val=”3.0001”/>

This will trigger the EL coercion. In the case of the String “this is it”, the charAt(0) method is used,
resulting in a value of ‘t’. See the earlier section entitled “Coercion to a character” for details. The cor-
responding output from the tag is as follows:

The Character value is ‘t’.

In the case of the int 8, the number is boxed into an Integer object and coerced into a Short, and then a
Character numerically equal to the Short is returned. The corresponding output from the tag follows:

The Character value is ‘8’.

In the case of the float 3.001, the number is boxed into a Float object and coerced into Short, and
then a Character numerically equal to the Short is returned. The corresponding output from the tag
follows:

The Character value is ‘3’.

The next tag is called <wroxtags:DoubleType> and requires a Double typed attribute. The following
JSP code fragment from index.jsp tries to supply the value of various data types:

<wroxtags:DoubleType val=””/>
<wroxtags:DoubleType val=”-3”/>

160

Chapter 5

09_57485x ch05.qxd 1/14/05 10:09 PM Page 160

TEAM LinG - Live, Informative, Non-cost and Genuine!

The first line supplies an empty string as the value. According to the “Coercion to number” section ear-
lier, an “” (empty string) will result in a numeric value of 0. The resulting output is as follows:

The Double value is 0.0.

The second line supplies an integer value of -3. This Numeric type is boxed and converted to Double,
resulting in the following output:

The Double value is -3.0.

The last tag is called <wroxtags:BooleanType> and requires a Boolean typed attribute. The code in
index.jsp tries to assign the attribute with values of different data types:

<wroxtags:BooleanType val=””/>
<wroxtags:BooleanType val=”true”/>
<wroxtags:BooleanType val=”t”/>
<wroxtags:BooleanType val=”3.1”/>

If you consult the JSP 2.0 specification, you will find that the coercion uses the Boolean.valueOf()
method to obtain the value. The API documentation of this method basically says that only the text
string “true” can be coerced into the Boolean value of true. Any other data type (except boolean or
Boolean, of course) or value will result in false. Therefore, the following output results from the
preceding JSP fragment:

The Boolean value is false.
The Boolean value is true.
The Boolean value is false.
The Boolean value is false.

For completeness, and the more curious readers, the rest of this section examines the tag’s source code.

The source code to the tag files can be located at <Tomcat Installation
Directory>/webapps/ch05/WEB-INF/tags. The CharacterType.tag file contains the following
source code:

<%@attribute name=”val” type=”java.lang.Character” %>
The Character value is ‘${val}’.

The DoubleType.tag file contains this source code:

<%@ attribute name=”val” type=”java.lang.Double” %>
The Double value is ${val}.

The BooleanType.tag file contains this source code:

<%@ attribute name=”val” type=”java.lang.Boolean” %>
The Boolean value is ${val}.

This concludes our examination of the second Try It Out exercise and EL’s automatic type conversions.

161

JSP and EL

09_57485x ch05.qxd 1/14/05 10:09 PM Page 161

TEAM LinG - Live, Informative, Non-cost and Genuine!

The EL named variables refer to scoped attributes. Frequently, these attributes are Java objects or beans
that have various properties. Occasionally, an attribute may be a Java collection that can be iterated
through to obtain contained values. The following section examines how EL can be used to access prop-
erties of Java objects and collections.

Accessing Object Properties
and Collections

When using EL to address the properties of a named variable, the “.” or “[]” (square brackets) opera-
tors are used. For example, consider the following JSP fragment:

You must earn ${member.minQual} points to maintain your membership.

If the member named variable refers to a JavaBean, its minQual property is read and substituted. Of
course, the property must exist and be readable. The getMinQual() method of the underlying JavaBean
will be invoked to obtain the property value.

With EL, the preceding syntax is completely interchangeable with the following:

You must earn ${member[“minQual”]} points to maintain your membership.

In addition to JavaBeans, the preceding syntax can also be used to address the following Java object
types:

❑ Map

❑ List

❑ Array

For example, the expression ${pointsArray[8]} refers to the ninth element of the pointsArray array.

For a more complex data structure, consider a named variable (a JavaBean) called car that has a prop-
erty called door, which is in turn a JavaBean that has a property called color that is a String type. The
EL expression that accesses the color of the door will be ${car.door.color}. The “.” operator can be
used to access nested properties in this way.

For another example, consider a named variable (a JavaBean) called newsfeed. This named variable has
a property (a Java HashMap) called temp containing world temperatures. This map consists of entries
that map city names to their current temperatures. For example, {“Hong Kong” , “28 C”} may be an
entry in this map, and {“Mumbai”, “30 C”} may be another. Using EL, the temperature of Hong Kong
can be referred to via ${newsfeed.temp [“Hong Kong”]}. The temperature of Mumbai can be accessed
via the EL expression ${newsfeed.temp.Mumbai}.

Occasionally, you may need to work with an attribute attached to a JSP implicit scope object that may
have a name containing the “.” character, other special characters, or even characters from foreign

162

Chapter 5

09_57485x ch05.qxd 1/14/05 10:09 PM Page 162

TEAM LinG - Live, Informative, Non-cost and Genuine!

character sets. In this case, the [] notation is your only choice. For example, to obtain the value of an
attribute named “javax.security.password” attached to the request scope, you must use the EL
expression ${requestScope[“javax.security.password”]}. The EL implicit object,
requestScope, will be covered shortly in this chapter.

Time to see this in action. The next Try It Out example illustrates nested property access and the equiva-
lence of the “.” and “[]” notations.

Try It Out EL Access to Nested Properties
With ch05.war deployed, point your browser to the following URL:

http://localhost:8080/ch05/example3/

This example uses a NewsFeed Java object similar to the one used in the Chapter 2 portal example. EL is
used to access the properties of this newsfeed object. The output of this page is shown in Figure 5-4.

Figure 5-4: EL property access and nested properties examples

In Figure 5-4, the news headline and entertainment headline are shown, as well as the current tempera-
ture in three cities.

163

JSP and EL

09_57485x ch05.qxd 1/14/05 10:09 PM Page 163

TEAM LinG - Live, Informative, Non-cost and Genuine!

How It Works
The index.jsp that produced the output in Figure 5-4 is located at <Tomcat Installation
Directory>/webapps/ch05/example3/index.jsp. The content of this file is reproduced here:

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<jsp:useBean id=”newsfeed” class=”com.wrox.begjsp.ch5.NewsFeed” scope=”page” />
<html>
<head>

<title>EL Property Access and Nested Properties Examples</title>
</head>
<body>

<h1>EL Property Access and Nested Properties Examples</h1>

<jsp:setProperty name=”newsfeed” property=”topic” value=”news”/>
News headline is ${newsfeed.value}.

<jsp:setProperty name=”newsfeed” property=”topic” value=”entertainment”/>
Entertainment headline is ${newsfeed[“value”]}.

<jsp:setProperty name=”newsfeed” property=”topic” value=”weather”/>
The weather in Tokyo right now is ${newsfeed.values.Tokyo}.

The weather in Mumbai right now is ${newsfeed[“values”].Mumbai}.

The weather in Hong Kong right now is ${newsfeed.values[“Hong Kong”]}.

</body>
</html>

As a refresher, recall from Chapter 2 that the NewsFeed object can be used as follows:

❑ First set the topic property to either news or entertainment, and then read the value prop-
erty for the headline of the news or entertainment section.

❑ First set the topic property to weather, and then read the values property for the tempera-
ture of various cities.

In this case, the values property for reading the weather information is actually a Java Map, with the
name of the city as the key and the temperature of the city as the value.

First, an instance of the NewsFeed object is created by the standard <jsp:useBean> action:

<jsp:useBean id=”newsfeed” class=”com.wrox.begjsp.ch5.NewsFeed” scope=”page” />

This action creates a page scoped attribute that is accessible as an EL named variable, via the name
newsfeed. The newsfeed named variable can immediately be used in EL expressions.

To print out the news headline, first the topic property of newsfeed is set to news; then the value
property is read to get the headline. This is done via the following JSP code, involving the
<jsp:setProperty> standard action and an inline EL expression:

<jsp:setProperty name=”newsfeed” property=”topic” value=”news”/>
News headline is ${newsfeed.value}.

164

Chapter 5

09_57485x ch05.qxd 1/14/05 10:09 PM Page 164

TEAM LinG - Live, Informative, Non-cost and Genuine!

Note that the ${newsfeed.value} expression is used to access the value property of the newsfeed
JavaBean. The resulting HTML output is as follows:

News headline is JSP Programmer Won 10 Million in Lottery.

To print out the entertainment headline, the exact same approach is used. This time, the topic property
is set to entertainment and the value property is read to get the headline. The following JSP code
from index.jsp is responsible for this:

<jsp:setProperty name=”newsfeed” property=”topic” value=”entertainment”/>
Entertainment headline is ${newsfeed[“value”]}.

Note that the ${newsfeed[“value”]} EL expression is used to access the entertainment headline. As
mentioned earlier, this is entirely equivalent to the expression ${newsfeed.value} used to fetch the
news headline. The resulting HTML output is as follows:

Entertainment headline is Reality TV Show Ratings Falling.

To access the weather information, a more complex data structure needs to be accessed. This is the
values property of the newsfeed object. Figure 5-5 shows this Java data structure.

Figure 5-5: Newsfeed data structure

In Figure 5-5, the values property is a readable property of the newsfeed JavaBean. This property is
accessible only after the topic is set to weather. The property itself is a Map. The key of the map is the
name of the cities, and the associated value is the temperature.

newsfeed
(JavaBean)

topic
write only property

..has property..

..is a..

value
read only property

value
read only property

HashMap

Key Value

Hong Kong 28 C

Mumbai 30 C

Toyko 18 C

165

JSP and EL

09_57485x ch05.qxd 1/14/05 10:09 PM Page 165

TEAM LinG - Live, Informative, Non-cost and Genuine!

The following code in the index.jsp file used in this example will access and print out the cities and
their temperature:

<jsp:setProperty name=”newsfeed” property=”topic” value=”weather”/>
The weather in Tokyo right now is ${newsfeed.values.Tokyo}.

The weather in Mumbai right now is ${newsfeed[“values”].Mumbai}.

The weather in Hong Kong right now is ${newsfeed.values[“Hong Kong”]}.

The EL expression ${newsfeed.values.Tokyo} is used to access the temperature in Tokyo; note the
nested property access using the . operator. As a variation, the temperature of Mumbai is accessed using the
EL expression ${newsfeed[“values”].Mumbai}; of course, this is entirely equivalent to the EL expression
${newsfeed.values.Mumbai}. You may want to try changing it and see for yourself. Finally, the tempera-
ture in Hong Kong is displayed using the EL expression ${newsfeed.values[“Hong Kong”]}. Because
there is a space character in the city name, this is the most convenient way of accessing the temperature
value. Executing the previous JSP fragment will result in all the temperatures being displayed via the
following HTML:

The weather in Tokyo right now is 18 C.

The weather in Mumbai right now is 30 C.

The weather in Hong Kong right now is 28 C.

For those curious to see the Java source code of NewsFeed.java, especially the complex values property,
it is located at <Tomcat Installation Directory>/webapps/ch05/WEB-INF/classes/com/wrox/
begjsp/ch5/NewsFeed.java, and is reproduced here:

package com.wrox.begjsp.ch5;

import java.beans.*;
import java.util.*;

public class NewsFeed extends Object implements java.io.Serializable
{

private String topic;
private String value;
private HashMap values;

public NewsFeed()
{
}

public void setTopic(String topic)
{

value = “”;
values = null;
if (topic.equals(“news”))
{

value = “JSP Programmer Won 10 Million in Lottery”;
}

166

Chapter 5

09_57485x ch05.qxd 1/14/05 10:09 PM Page 166

TEAM LinG - Live, Informative, Non-cost and Genuine!

if (topic.equals(“entertainment”))
{

value = “Reality TV Show Ratings Falling”;
}
if (topic.equals(“weather”))
{

values = new HashMap();
values.put(“Mumbai”, “30 C”);
values.put(“Tokyo”, “18 C”);
values.put(“Hong Kong”, “28 C”);

}
}

public String getValue()
{

return this.value;
}

public Map getValues()
{

return this.values;
}

}

This concludes the coverage of this Try It Out example and EL-based property access.

When named variables were discussed earlier, you learned that EL will first try to match a name to EL
implicit objects before attributes attached to scoping objects are checked. Now is a good time to take a
look at the set of available EL implicit objects and how you can use them.

Implicit EL Objects in JSP 2.0
Implicit objects in EL are available to the JSP developer, within an EL expression, without any explicit
coding or declarations. Implicit objects are designed to facilitate JSP programming and make the most
common aspects of a JSP page immediately available to code written in EL.

There are a total of 11 implicit objects. These 11 implicit objects can be classified into five major categories:

❑ JSP implicit object

❑ Convenience scoping access implicit objects

❑ Convenience parameter access implicit objects

❑ Convenience header access implicit objects

❑ The convenience initialization parameter access implicit object

167

JSP and EL

09_57485x ch05.qxd 1/14/05 10:09 PM Page 167

TEAM LinG - Live, Informative, Non-cost and Genuine!

The only EL implicit object in the JSP implicit object category is the pageContext implicit object. This is
the very same object as the JSP implicit object of the same name (JSP implicit objects and their use are
covered later in Chapter 9, “JSP and JavaBeans”). The rest of the EL implicit objects are Java maps, and
they simply provide easier means for accessing certain properties of the pageContext implicit object.

There are four convenience scoping access implicit objects, called pageScope, requestScope,
sessionScope, and applicationScope. These are maps that enable easy access to scoped attributes.
For example, an attribute called username attached to the request scope can be accessed directly via
the EL expression ${requestScope.username}.

There are two convenience parameter access implicit objects for accessing the HTTP request parameters
(the form submission parameters): param and paramValues. The param is a map used to access single-
valued parameters, and paramValues can be used to access parameters that may contain multiple val-
ues. The next Try It Out example shows how this is handled.

There are three convenience header access implicit objects for accessing the HTTP headers: header,
headerValues, and cookie. These are maps that are useful in cases where you may need raw access to
HTTP header and/or cookies.

There is one convenience initialization parameter access implicit object, initParam. This map can be
used to access the value of initialization parameters, typically set in web.xml.

Any information obtainable using a convenience object may also be obtained via the pageContext
implicit object, although the access may involve complex nested property access.

If you use one of the names mentioned in this section for any attributes that you attach to scoping objects,
the attribute may become inaccessible. The names provided here always return the implicit object instead
of any attributes. For example ${param} always refers to the EL implicit object, and not a named
attribute called param.

The next Try It Out example shows how to work with several of the EL convenience access implicit
objects.

Try It Out EL Implicit Objects
With ch05.war deployed, access the following URL to try out example 4:

http://localhost:8080/ch05/example4/

This JSP page presents a Design a Cake form, as shown in Figure 5-6.

168

Chapter 5

09_57485x ch05.qxd 1/14/05 10:09 PM Page 168

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 5-6: Implicit object example: a cake creation form

In Figure 5-6, you can select the shape of the cake that you want to make, and up to three toppings for
the cake.

When you click the Send button, the form parameters are sent to another JSP called formproc.jsp for
processing. The resulting page is displayed in Figure 5-7. In this case, the square cake is selected with all
three of the toppings.

Note that in Figure 5-7, the incoming form parameters are printed out. This includes the shape, and the
ingredients, which can have multiple values. In addition, the identifier of the user’s browser is also dis-
played. This browser information is obtained from the HTTP header of the incoming request.

169

JSP and EL

09_57485x ch05.qxd 1/14/05 10:09 PM Page 169

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 5-7: Implicit object example output

How It Works
The index.jsp that creates the cake creation form in Figure 5-6 is located at <Tomcat Installation
Directory>/webapps/ch05/example4/index.jsp. The content of this JSP is reproduced here:

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>

<html>
<head>

<title>EL Implicit Object Example</title>
</head>
<body>

<h1>EL Implicit Object Examples</h1>
<form action=”formproc.jsp” method=”post”>

<table>
<tr>

<td colspan=”2”><h3>Design a Cake</h3></td>
</tr>
<tr>

<td>Cake shape:</td>
<td>

<select name=”shape”>

170

Chapter 5

09_57485x ch05.qxd 1/14/05 10:09 PM Page 170

TEAM LinG - Live, Informative, Non-cost and Genuine!

<option>round</option>
<option>square</option>
<option>heart</option>

</select>
</td>

</tr>
<tr>

<td valign=”top”>Toppings</td>
<td>

<input type=”checkbox” name=”topping” value=”choc”>Chocolate</input>

<input type=”checkbox” name=”topping” value=”cane”>Candy Cane</input>

<input type=”checkbox” name=”topping” value=”flower”>Flower</input>

</td>

</tr>

<tr>
<td colspan=”2”>
<center><input type=”submit” value=”Send”/></center>
</td>

</tr>
</table>

</form>
</body>
</html>

This JSP page has no active JSP code, just an HTML form. The shape selection is offered through a
<select> HTML tag. Upon form submission, this will result in an HTTP request parameter (form
submission) called shape, with a value of round, square, or heart:

<select name=”shape”>
<option>round</option>
<option>square</option>
<option>heart</option>

</select>

The selection of toppings is provided through a series of HTML check boxes. This allows for the selec-
tion of multiple values:

<input type=”checkbox” name=”topping” value=”choc”>Chocolate</input>

<input type=”checkbox” name=”topping” value=”cane”>Candy Cane</input>

<input type=”checkbox” name=”topping” value=”flower”>Flower</input>

Upon form submission, this will result in an HTTP request parameter called topping that can contain
zero or more of choc, cane, and/or flower.

When the form is submitted, the POST method is used to send the request parameters via an HTTP
header back to the server. The attributes of the HTML <form> tag specified this:

<form action=”formproc.jsp” method=”post”>

171

JSP and EL

09_57485x ch05.qxd 1/14/05 10:09 PM Page 171

TEAM LinG - Live, Informative, Non-cost and Genuine!

The form processing JSP is formproc.jsp, located at <Tomcat Installation Directory>/webapps/
ch05/example4/formproc.jsp and reproduced here:

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>

<html>
<head>

<title>EL Implicit Object Example Form Processor</title>
</head>
<body>

<h1>EL Implicit Object Example Form processor</h1>

Shape of cake selected: ${param.shape}

Toppings selected:

<c:forEach var=”aTopping” items=”${paramValues.topping}”>
 ${aTopping}

</c:forEach>

Browser: ${header[“user-agent”]}

<small>back to form</small>

</body>
</html>

The convenience access implicit object, param, is used to render the value of the cake’s shape. This is
done in formproc.jsp via the following code:

Shape of cake selected: ${param.shape}

Note how easy it is to access form submission parameters through the param implicit object. In this case,
this will result in the following output:

Shape of cake selected: square

Because the topping parameter may have multiple values, it is necessary to access it through the
paramValues implicit object. The following code in formproc.jsp renders all the selected toppings:

Toppings selected:
<c:forEach var=”aTopping” items=”${paramValues.topping}”>

 ${aTopping}
</c:forEach>

The JSTL <c:forEach> iterator tag is used to go through each value of the paramValues.topping
request parameter. Note that the paramValues implicit object has made the processing of multivalued
form parameters quite simple. In this case, all toppings are selected, with the resulting HTML:

Toppings selected:
 choc
 cane
 flower

172

Chapter 5

09_57485x ch05.qxd 1/14/05 10:09 PM Page 172

TEAM LinG - Live, Informative, Non-cost and Genuine!

Last but not least, the final active line in formproc.jsp accesses the HTTP header called user-agent,
which contains an identifier to the browser being used by the client. The following code renders this
identifier:

Browser: ${header[“user-agent”]}

Note the use of the EL implicit header object. The EL expression ${header[“user-agent”]} accesses
the HTTP header called user-agent directly. When Internet Explorer 6 on Windows XP is used to
access this Try It Out example, the following browser identifier is rendered:

Browser: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)

This concludes our coverage of the Try It Out example and EL implicit objects.

User-Supplied Functions within EL
When you are using JSP to create your application’s Web user interface, you may need to transform,
manipulate, or format the data that you are rendering. Typically, a custom tag library can be used to
achieve this. However, you may occasionally have a need to do this at the EL expression level.
Unfortunately, EL has no built-in function library for this purpose. Thankfully, EL does support the
notion of user-supplied EL functions.

Namespace and EL functions
The EL syntax to access a user-supplied function includes the use of a namespace. This is a borrowed
concept from tags. In fact, EL functions are described in the Tag Library Descriptors (TLD) file. Creating
tags and TLDs is covered in detail in Chapter 11. The information provided here will enable you to cre-
ate some EL-accessible functions.

For example, to use an EL function that returns the absolute value of a number, called abs(), you may
use the following EL expression: ${wf:abs(num)}.

This means that the wf namespace is defined in a <taglib> directive earlier — for example, a <taglib>
directive similar to the following:

<%@ taglib prefix=”wf” uri=”http://www.wrox.com/begjsp/el-functions-taglib” %>

This syntax enables you to use functions with the same name, but with totally different implementa-
tions, using different namespace prefixes. For example, wf:abs() may have a completely different
implementation than wroxdp:abs() has.

Static methods of a Java class
EL functions are static methods defined in Java code. They can return the value of any data type,
although the String return type is most useful when rendering in EL expressions. These methods may
also have any number of arguments. The TLD must describe the return data type and the arguments’

173

JSP and EL

09_57485x ch05.qxd 1/14/05 10:09 PM Page 173

TEAM LinG - Live, Informative, Non-cost and Genuine!

data types of the methods. For example, the following TLD fragment describes a function that returns a
String and takes a String and an int as arguments:

<function>
<description>Repeat String Function</description>
<name>rep</name>
<function-class>com.wrox.begjsp.ch05.ElFuncs</function-class>
<function-signature>String rep(String, int)</function-signature>

</function>

The final Try It Out example in this chapter shows how to expose a couple of java.lang.Math methods
for use in EL expressions.

Try It Out Your Own EL Functions
With ch05.war deployed, point your browser to the following URL to try out example 5:

http://localhost:8080/ch05/example5/

This example utilizes two EL functions: One function takes the absolute value of an integer and the other
function rounds a float number to an integer. The result is shown in Figure 5-8.

Figure 5-8: EL function examples

174

Chapter 5

09_57485x ch05.qxd 1/14/05 10:09 PM Page 174

TEAM LinG - Live, Informative, Non-cost and Genuine!

In Figure 5-8, the absolute value of –500 is obtained using the EL absolute value function, while a long
float number is rounded up using the EL round function.

How It Works
Instead of coding our own static methods in our own Java classes, the code in this Try It Out example
simply exposes the abs() and round() static methods from the java.lang.Math Java library package.

The index.jsp that exercises the two functions, as in Figure 5-8, can be located at <Tomcat
Installation Directory>/webapps/ch05/example5/index.jsp. The content of this JSP is repro-
duced here:

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<%@ taglib prefix=”wf” uri=”http://www.wrox.com/begjsp/el-functions-taglib” %>

<html>
<head>

<title>EL Function Examples</title>
</head>
<body>

<h1>EL Function Examples</h1>
<c:set var=”num” value=”-500”/>
The absolute value of ${num} is ${wf:abs(num)}.

<c:set var=”calc” value=”${1 + 2 * 3 + 4 div 6}”/>
The rounded value of ${calc} is ${wf:round(calc)}.

</body>
</html>

Note that the namespace used to map the functions is wf, and is defined by the <taglib> directive:

<%@ taglib prefix=”wf” uri=”http://www.wrox.com/begjsp/el-functions-taglib” %>

The abs() function is called in the following code from the index.jsp:

<c:set var=”num” value=”-500”/>
The absolute value of ${num} is ${wf:abs(num)}.

The function is invoked in the EL expression ${wf:abs(num)}. The resulting output, after the abs()
function is called, is as follows:

The absolute value of -500 is 500.

The round() function is called in the following code from the index.jsp:

<c:set var=”calc” value=”${1 + 2 * 3 + 4 div 6}”/>
The rounded value of ${calc} is ${wf:round(calc)}.

The round function is invoked in the EL expression ${wf:round(calc)}. The resulting output is as
follows:

The rounded value of 7.666666666666667 is 8.

175

JSP and EL

09_57485x ch05.qxd 1/14/05 10:09 PM Page 175

TEAM LinG - Live, Informative, Non-cost and Genuine!

The <taglib> directive in index.jsp uses a URI of http://www.wrox.com/begjsp/el-functions-
taglib to select the TLD to use. The following section shows how this is mapped to the java.lang.Math
methods.

Deployment descriptor entries
The first file to look at is the ch05 application’s web.xml file, its deployment descriptor. You can locate
this file at <Tomcat Installation Directory>/webapps/ch05/example5/WEB-INF/web.xml. This
file is reproduced here, with the tag library declaration entry highlighted:

<?xml version=”1.0” encoding=”ISO-8859-1”?>
<web-app xmlns=”http://java.sun.com/xml/ns/j2ee”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd”
version=”2.4”>

<description>
Wrox Beginning JSP Examples - Chapter 5

</description>
<display-name>Chapter 5 Example (Wrox Beginning JSP)</display-name>

<taglib>
<taglib-uri>

http://www.wrox.com/begjsp/el-functions-taglib
</taglib-uri>
<taglib-location>

/WEB-INF/jsp/function-taglib.tld
</taglib-location>

</taglib>

</web-app>

The URI http://www.wrox.com/begjsp/el-functions-taglib is mapped to a TLD file, located at
WEB-INF/jsp/function-taglib.tld as indicated by the <taglib> declaration in the preceding code.

TLD function definitions
The EL functions are declared within the function-taglib.tld file. This file is located at <Tomcat
Installation Directory>/webapps/ch05/example5/WEB-INF/jsp/function-taglib.tld. This
TLD file is reproduced here, with the function declarations highlighted:

<?xml version=”1.0” encoding=”UTF-8” ?>

<taglib xmlns=”http://java.sun.com/xml/ns/j2ee”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”http://java.sun.com/xml/ns/j2ee web-jsptaglibrary_2_0.xsd”
version=”2.0”>

<description>A taglib to define some EL accessible functions.</description>
<tlib-version>1.0</tlib-version>
<short-name>ELFunctionTaglib</short-name>
<uri>/ELFunctionTagLibrary</uri>

176

Chapter 5

09_57485x ch05.qxd 1/14/05 10:09 PM Page 176

TEAM LinG - Live, Informative, Non-cost and Genuine!

<function>
<description>Exposes the abs() function from java.lang.Math

package</description>
<name>abs</name>
<function-class>java.lang.Math</function-class>
<function-signature>int abs(int)</function-signature>

</function>

<function>
<description>Exposes the round() function from java.lang.Math

package</description>
<name>round</name>
<function-class>java.lang.Math</function-class>
<function-signature>int round(double)</function-signature>

</function>
</taglib>

Note how the class implementing the function is specified within the <function-class> sub-element, and
the signature of the function is declared in the <function-signature> sub-element of the declaration.

This concludes our coverage of the final Try It out example and EL functions.

Summary
This chapter covered the JSP Expression Language (EL) in detail. EL is essential to JSP 2.0 because it
enables the creation of scriptless JSP applications. Scriptless JSPs focus on the presentation of the data,
do not contain embedded Java language elements, and are easier to maintain for the long term.

To summarize what we covered:

❑ EL expressions may be used inline with template data, or within certain attributes of standard
or custom actions.

❑ EL provides a rich set of operators, including arithmetic operators, logical operators, the com-
parison operator, and the empty prefix operator.

❑ Working together with JSTL custom tags, EL expressions can be used in the flow control of JSP
logic, eliminating the need for scriptlets.

❑ Named variables in EL are scoped attributes. The properties of any JavaBean-based object can
be accessed via the “.” operator, and this can be applied in a nested fashion. The “.” operator is
equivalent to the “[..]” operator. Either notation can be used.

❑ EL features 11 implicit objects that can be used to access the PageContext, attributes attached to
JSP scoping objects, HTTP headers, request parameters, JSP initialization parameters, and HTTP
cookies.

❑ EL programming is weakly typed. The developer relies on the automatic type conversion pro-
vided by EL to coerce data into the required data type. The automatic type conversion provided
by EL is well documented. It will attempt to do the right thing most of the time. However,
understanding how this conversion takes place can be useful in certain uncommon program-
ming situations.

177

JSP and EL

09_57485x ch05.qxd 1/14/05 10:09 PM Page 177

TEAM LinG - Live, Informative, Non-cost and Genuine!

❑ Whenever possible, null values are converted into the appropriate type (for example, null
strings or zero value) to avoid errors during JSP processing.

❑ Static functions of Java classes can be mapped via a Tag Library Descriptor to functions that can
be accessed through EL expressions. This can be used to extend EL’s functionality.

Exercises
1. Create a JSP-based application that takes a number between 1 to 10 as input, and then prints a

simple multiplication table. For example, if the number 5 is entered, the following should
appear in the output page:

5 times 1 is 5.

5 times 2 is 10.

5 times 3 is 15.

5 times 4 is 20.

5 times 5 is 25.

5 times 6 is 30.

5 times 7 is 35.

5 times 8 is 40.

5 times 9 is 45.

5 times 10 is 50.

Use EL and EL expressions wherever possible in your solution.

2. Write code to expose the following additional functions from the java.lang.Math package to
EL expressions:

min()

max()

sin()

cos()

sqrt()

3. Create a JSP page to test the functions.

178

Chapter 5

09_57485x ch05.qxd 1/14/05 10:09 PM Page 178

TEAM LinG - Live, Informative, Non-cost and Genuine!

6
JSP Tag Libraries

and JSTL

During the detailed examination of JSP’s expression language (EL) in the last chapter, you saw that
it is almost impossible not to use JSTL in conjunction with EL. In fact, the JSP Standard Tag Library
(JSTL) and EL are so highly integrated that they are almost always mentioned as one entity by
developers.

JSP developers can readily extend the capability of their Web applications by making use of tag
libraries. A tag library makes a set of new tags available to your JSP programs. JSTL is the most
commonly used library by JSP developers. It adds essential features to JSP, such as conditional flow
control and iteration, that enable JSP programming without the need for embedded Java code.

This chapter introduces the basics of the tag library extension mechanism in JSP. It also examines
JSTL in detail. The chapter explains the following concepts:

❑ What a tag library is

❑ Why you need tag libraries

❑ How to use a tag library

❑ Tag library packaging

❑ The Tag Library Descriptor (TLD)

❑ JSTL named variables

❑ JSTL control flow

❑ JSTL iteration

❑ JSTL formatting tags

❑ JSTL custom functions

To provide some hands-on experience with JSTL, the chapter features a real-world example. The
example involves the conversion of an e-commerce site originally programmed using extensive

10_57485x ch06.qxd 1/14/05 10:07 PM Page 179

TEAM LinG - Live, Informative, Non-cost and Genuine!

scripting (embedded Java code) to one that uses only JSTL. This is a very common activity in production
JSP programming. Developers are frequently asked to maintain or migrate legacy JSP code to the new
JSP 2.0 standard. Due to the complexity of this example, it is presented in two separate parts.

By the end of this chapter, you will understand the role of tag libraries, and appreciate their importance
for JSP development. In addition to becoming very familiar with the most frequently used tags in JSTL,
you will learn many techniques used by production developers when converting legacy scripting-based
JSP pages to JSTL-based ones.

The Vital Role of JSP Tag Libraries
JSP tag libraries are collections of custom actions (tags) that can be made available in JSP pages. Once a
tag library is added to a JSP page, all its tags are available for programming.

Tag libraries provide additional functionality above and beyond that provided by the standard actions
and implicit objects of JSP. Tag libraries are typically created to be portable between different JSP con-
tainers. This portability ensures that JSP code created using the tag library can be deployed across all
JSP containers.

The wide availability and standardization of tag libraries makes it possible to create JSP pages without the
need for scripting elements (embedded Java language coding within a JSP). Before the availability of tag
libraries, JSP programmers were forced to embed Java code within JSP to access additional functionality.

As you learned in Chapter 3, “JSP Basics 2: Generalized Templating and Server Scripting,” using script-
ing elements (embedding Java programming language code) within JSP is now a practice that is highly
discouraged. Included among the many reasons for this are the following:

❑ Using Java coding, the developer is exposed to the entire API set, and it is easy to create non-
portable code that has dependencies on a specific machine and/or system configuration.

❑ Having the capability to access system elements via the Java programming language encourages
the mixing of application business logic within the JSP, potentially polluting the presentation
layer with it.

❑ Embedded Java code mixed with JSP is difficult to read and debug, and therefore difficult to
maintain.

❑ In production projects, UI/visual layout of a Web page is usually created and modified by Web
designers, who are generally not Java developers. Tag libraries, with their HTML-like syntax,
are easier for them to handle than embedded Java scriptlets.

180

Chapter 6

10_57485x ch06.qxd 1/14/05 10:07 PM Page 180

TEAM LinG - Live, Informative, Non-cost and Genuine!

Without adequate basic tag library support, it is impossible not to use scripting elements in JSPs. The
basic set of standard actions and implicit objects falls short of the capabilities of a general programming
language. Among the missing features are the following:

❑ Capability to work with data of different types

❑ Capability to work with arithmetic and logical expressions

❑ Capability to work with properties of Java objects

❑ Capability to create variables that can be associated with different scopes

❑ Control flow constructs (if...then...else, and so on)

❑ Iterative constructs

❑ Functions to convert and work with strings

❑ Functions to format data of different types

❑ Capability to flexibly work with URLs

❑ Capability to access a database

All of these missing capabilities are frequently needed by JSP developers. They can be added by using a
tag library. In fact, the demand for these features is so high that a standard tag library, eventually to be
made a part of standard JSP, has been created to fulfill the void.

The JSP Standard Tag Library
JSTL is the most frequently used JSP tag library. The latest available version is JSTL 1.1. This tag library
includes a set of useful tags that address the following programming areas:

❑ General tags to set scoped variables, display expressions and values, remove scoped variables,
and catch exceptions

❑ Conditional flow control tags, including if and a switch...case-like construct

❑ An iteration tag for iteration through elements in a collection or counted iterations

❑ URL tags for working with URLs within your JSP, and for loading resources via a URL

❑ Tags to support the internationalization of your application

❑ Tags to format numbers and dates

❑ Tags to access a relational database

❑ A set of EL accessible functions for string manipulation

The syntax of these tags and functions is described in detail in Appendix C, “JSTL Reference.” These
descriptions are mentioned only briefly in this chapter. The focus of this chapter is on examples that
demonstrate how the tags may be used in actual applications.

181

JSP Tag Libraries and JSTL

10_57485x ch06.qxd 1/14/05 10:07 PM Page 181

TEAM LinG - Live, Informative, Non-cost and Genuine!

Anatomy of a Tag Library
Figure 6-1 illustrates the code and description files that make up a tag library.

Figure 6-1: The code and descriptors in a tag library

Figure 6-1 shows that a Tag Library Descriptor file (TLD) is included with most tag libraries. The content
of this file describes the tags and their parameterization to the container (or a development tool). TLD
files are text files created in the XML format.

The Tag Library Descriptor
When tags are used in JSP, a TLD is always involved. However, it may not be necessary to explicitly cre-
ate a TLD file under certain circumstances. For example, a development tool or IDE may generate the
TLD automatically. Also, when creating tags using JSP — a feature of JSP 2.0 called tag files (covered in
Chapter 11, “Building Your Own Custom JSP Tag Library”) — the container can create a TLD internally.

Note also in Figure 6-1 that the actual implementation of the tags can reside in the <application
directory>/WEB-INF/lib directory, the <application directory>/WEB-INF/classes directory,
or in JSP-based tag files residing in a directory below <application directory>/WEB-INF.

Tag Library
Descriptor

web.xml

Taglib map

JSP
JAR archive

Tags
(Custom
Actions)

Taglib directive

Tag
usage

TLD location

<<maps to TLD>>

<<describes>>

<%@ taglib prefix=…uri="…">

<c:tag1>....</c:tag1>

URI
XML

182

Chapter 6

10_57485x ch06.qxd 1/14/05 10:07 PM Page 182

TEAM LinG - Live, Informative, Non-cost and Genuine!

A JSP page declares (to the JSP container) that it needs a specific tag library by using a <taglib> direc-
tive. The <taglib> directive refers to a URI that designates the tag library that will be used. In addition,
the <taglib> directive also associates a prefix, called a namespace, with the tags in a tag library. For
example, consider the following JSP fragment:

<%@ taglib prefix=”wxshop” uri=”http://www.wrox.com/begjsp/eshop-functions-taglib” %>

The preceding <taglib> directive declares the use of tags in the tag library associated with the URI
http://www.wrox.com/begjsp/eshop-functions-taglib. It also declares that all tags in this tag
library should be prefixed with wxshop:.

The URI can be any valid URL. It is never used directly to access the tag library over a network. Rather,
it is a means for mapping a unique string to the actual TLD.

The taglib map in the web.xml deployment descriptor
Additional mapping information is required to locate the actual TLD file. The mapping is called the
taglib map. The taglib map consists of a <taglib> element in the application’s web.xml deployment
descriptor file. For example, the following is a <taglib> element:

<taglib>
<taglib-uri>

http://www.wrox.com/begjsp/eshop-functions-taglib
</taglib-uri>
<taglib-location>

/WEB-INF/jsp/eshop-taglib.tld
</taglib-location>

</taglib>

The previous taglib map specifies that the URI http://www.wrox.com/begjsp/eshop-functions-
taglib should map to the taglib described by the /WEB-INF/jsp/eshop-taglib.tld TLD file. The
path specified in the <taglib-location> element is relative to the Web application’s main directory
(with Tomcat 5, this is the <Tomcat Installation Directory>/webapps/<application name>
directory).

Through the taglib map in the web.xml file, the JSP container locates the actual TLD file. The container
can then read the TLD file and determine the following:

❑ The location of the implementation code for the tags

❑ The name of the tags

❑ The attributes of each tag and their expected data type

❑ Whether the attribute can be dynamic (and take runtime expressions, such as an EL expression)

❑ Information interesting to the container, including how to load and run the tags, and whether
certain tags work in collaboration with others

The content of the TLD, therefore, is interesting mostly to containers and development tools. Anyone
who writes his or her own tags must also know the format intimately. Chapter 11 explores the format
when you create your own custom tag library.

183

JSP Tag Libraries and JSTL

10_57485x ch06.qxd 1/14/05 10:07 PM Page 183

TEAM LinG - Live, Informative, Non-cost and Genuine!

Locating JSTL and understanding tag library packaging
As with Tomcat, the reference JSTL implementation can be downloaded from the Jakarta project:

http://jakarta.apache.org/site/binindex.cgi

Finding the actual download is not quite straightforward. First, look for the Taglibs binaries on this
page. You will then be directed to a directory with many different tag libraries. All of these libraries are
maintained by the Jakarta folks. JSTL is in the standard directory. You should find the latest version of
JSTL in this directory (JSTL 1.1 in this case).

When you extract the download, you will find two JAR files: jstl.jar and standard.jar. To use JSTL
with your JSPs, you need only to place these two JAR files into your application’s WEB-INF/lib direc-
tory. The container will load any JAR files placed into this directory and make their classes available to
the JSPs.

You may wonder where the TLD files for the JSTL tags are and why you don’t need to create a taglib
map for JSTL in the application’s web.xml. The TLD files are actually inside the JAR files. All JSP con-
tainers will check the JAR file (under the META-INF directory within the JAR, to be exact) for TLD files.
Because the container can locate the JSTL TLD files without using a taglib map, there is no need to keep
the location information in web.xml. The mapping URI information, however, still exists and is actually
an element within the TLD file itself.

In summary, tag libraries can be packaged in many different ways, as described in the following table.

Tag Library Packaging Description

In JAR archives TLD expected under the META-INF directory;
the URI used to map the taglib should be speci-
fied in the TLD; all implementations for the tags
should be included.

Binaries under the WEB-INF/classes The taglib maps in web.xml that specify the
directory URI used to access the taglib, and specify the

location of the TLD file.

Tag files under the WEB-INF The taglib directive inside the JSP page directly
subdirectories specifies the directory in which the tag files

reside; no need for the TLD or taglib map in
web.xml.

JSTL tags
There are many very useful tags in JSTL 1.1. These tags can be classified, according to their functions,
into four groups that can be used when creating a JSP page:

❑ Core tags

❑ Formatting tags

184

Chapter 6

10_57485x ch06.qxd 1/14/05 10:07 PM Page 184

TEAM LinG - Live, Informative, Non-cost and Genuine!

❑ XML tags

❑ SQL tags

The following sections briefly describe some of the more frequently used tags in each of these groups.
See Appendix C, “JSTL Reference,” for a more complete description of JSTL tags and their syntax.

Core tags
The core group of tags are the most frequently used JSTL tags. Some useful core tags include the following:

❑ <c:if> for conditional flow

❑ <c:forEach> and <c:forTokens> for iteration

❑ <c:choose>...<c:when>....<c:otherwise> for selective flow between mutually exclusive
code

❑ <c:set> and <c:remove> for working with scoped variables

❑ <c:out> for rendering the value of variables and expressions

❑ <c:catch> for working with Java exceptions

❑ <c:url> for creating and working with URLs

Formatting tags
The JSTL formatting tags are used to format and display text, the date, the time, and numbers. More
specifically, they can be used to create internationalized Web applications. Internationalization is the
ability to adapt an application for use in different part of the world — using different languages, charac-
ter sets, input methods, date and time conventions, and so on. Internationalization is the subject of
Chapter 13, “Internationalization and Localized Content.”

Tags from this library that are frequently used in JSP include the following:

❑ <fmt:formatNumber>: To render numerical value with specific precision or format

❑ <fmt:formatDate>: To render date and time values in a specific format (and according to
international locale-specific conventions)

❑ <fmt:message>: To display an internationalized message (for example, a message in a different
language using a different character set)

See Appendix C for a more comprehensive reference to the tags in this group. Consult Chapter 13 to see
how to use these tags to create internationalized applications.

XML tags and SQL tags
The JSTL XML tags are designed to process XML data. It includes tags that support XML data-parsing,
transforming XML, plus data and flow control based on XPath expressions. These tags are used only
when you need to work directly, within the JSP, with XML data.. See Appendix C for more information.

185

JSP Tag Libraries and JSTL

10_57485x ch06.qxd 1/14/05 10:07 PM Page 185

TEAM LinG - Live, Informative, Non-cost and Genuine!

The JSTL SQL tags are designed to work directly with relational databases for rapid prototyping or
proof-of-concept purposes. Chapter 23, “Access to Databases,” shows many of these tags in action.
While useful, these tags are not recommended for general production use. This is because accessing rela-
tional databases at the JSP presentation layer is not an encouraged programming practice. See Appendix
C for more information on the detailed syntax of these tags.

The example in this chapter uses many of the JSTL tags from the core and formatting groups in very
practical ways. There are two JSPs in the example application. The next section takes a look at only the
first JSP page in the application.

Try It Out Converting a Legacy Scripting Application to JSTL
To try out the example, first deploy ch06.war on your Tomcat 5 server. Review Chapter 1 if you do not
remember how to deploy a WAR file.

Access the following URL with your browser to see the output of the example:

http://localhost:8080/ch06/example1/estore.jsp

You should see the welcome screen of the e-commerce application, similar to the window shown in
Figure 6-2.

Figure 6-2: E-commerce application welcome screen

186

Chapter 6

10_57485x ch06.qxd 1/14/05 10:07 PM Page 186

TEAM LinG - Live, Informative, Non-cost and Genuine!

The Web store shown in Figure 6-2 looks just like the one in Chapter 3, “JSP Basics 2: Generalized
Templating and Server Scripting.” In fact, the logic is identical. However, this Web store is implemented
completely script-free — without any embedded Java code. All of the logic is implemented using
JSTL/EL and JSP standard actions. In addition, a stylesheet has been added to improve the appearance
of the Web store.

Figure 6-2 shows the computer systems in the store available by default. Try clicking the Software cate-
gory link on the left. You should end up with the software products being displayed, as shown in
Figure 6-3.

Figure 6-3: Display of the products in the Software category

Next, click the Books category link on the left. The page should display all the books available, as shown
in Figure 6-4.

Do not click any Buy links for now.

How It Works
This application is converted from the e-store application from Chapter 3. The original JSP made exten-
sive use of scripting elements. Several very interesting issues arise when conversion to JSTL is
attempted. The following discussion contrasts the original code with the new JSTL-based code, section
by section. It also provides a detailed discussion of the problems encountered, along with their solutions.

187

JSP Tag Libraries and JSTL

10_57485x ch06.qxd 1/14/05 10:07 PM Page 187

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 6-4: Display of the products in the Books category

The JSP used to create the e-store can be located at <Tomcat Installation Directory>/webapps/
ch06/example1/estore.jsp. The code in this estore.jsp page is reproduced here:

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<%@ taglib prefix=”fmt” uri=”http://java.sun.com/jsp/jstl/fmt” %>
<%@ taglib prefix=”wxshop” uri=”http://www.wrox.com/begjsp/eshop-functions-taglib” %>

<%@ page session=”true” %>
<c:if test=”${empty cats}”>

<c:set var=”cats” value=”${wxshop:getCats()}” scope=”application”/>
</c:if>

<html>
<head>

<title>Wrox Shopping Mall</title>
<link rel=stylesheet type=”text/css” href=”store.css”>

</head>
<body>

<table width=”600”>
<tr><td colspan=”2” class=”mainHead”>Wrox JSP Web Store</td></tr>

<tr>
<td width=”20%”>

<c:forEach var=”curCat” items=”${cats}”>
<c:url value=”/example1/estore.jsp” var=”localURL”>

<c:param name=”catid” value=”${curCat.id}”/>
</c:url>

188

Chapter 6

10_57485x ch06.qxd 1/14/05 10:07 PM Page 188

TEAM LinG - Live, Informative, Non-cost and Genuine!

${curCat.name}

</c:forEach>
</td>
<td width=”*”>

<h1></h1>
<table border=”1” width=”100%”>

<tr><th align=”left”>Item</th><th align=”left”>Price</th><th
align=”left”>Order</th></tr>

<c:set var=”selectedCat” value=”${param.catid}”/>
<c:if test=”${empty selectedCat}”>

<c:set var=”selectedCat” value=”1”/>
</c:if>
<c:forEach var=”curItem” items=”${wxshop:getItems(selectedCat)}”>

<tr>
<td>${curItem.name}</td>
<td align=”right”>

<fmt:formatNumber value=”${curItem.price / 100}” type=”currency”/>
</td>
<td>

<c:url value=”/example1/shopcart.jsp” var=”localURL”>
<c:param name=”action” value=”buy”/>
<c:param name=”sku” value=”${curItem.sku}”/>

</c:url>
BUY

</td>
</tr>

</c:forEach>
</table>

</td>
</tr>

</table>
</body>
</html>

Eliminating scripting declarations
The original estore.jsp, located at <Tomcat Installation Directory>/webapps/ch03/example3/
estore.jsp, starts with the following declarations and scripting elements:

<%@ page language=”java”
import = “com.wrox.begjsp.ch03.*,java.util.*” session=”true” %>

<%!
public void jspInit()
{

getServletContext().setAttribute(“cats”, EShop.getCats());
}

public void jspDestroy()
{

getServletContext().removeAttribute(“cats”);
}

private String dispPrice(String price)
{

189

JSP Tag Libraries and JSTL

10_57485x ch06.qxd 1/14/05 10:07 PM Page 189

TEAM LinG - Live, Informative, Non-cost and Genuine!

int len = price.length();
if (len <= 2)

return price;
else

return “$” + price.substring(0,len -2) + “.” + price.substring(len-2);
}

%>

In the new estore.jsp, the code becomes the following:

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<%@ taglib prefix=”fmt” uri=”http://java.sun.com/jsp/jstl/fmt” %>
<%@ taglib prefix=”wxshop” uri=”http://www.wrox.com/begjsp/eshop-functions-taglib” %>

<%@ page session=”true” %>
<c:if test=”${empty cats}”>

<c:set var=”cats” value=”${wxshop:getCats()}” scope=”application”/>
</c:if>

The next section explains this new code.

Declaring taglib usage
The <%@page> directive in the preceding new code is significantly simpler, and it no longer directly
imports the Java classes because the new code has no scripting elements. The new <%@ taglib> direc-
tives declare the use of two JSTL sublibraries. The first one is the core, referenced by the URI
http://java.sun.com/jsp/jstl/core. This library contains the general-purpose tag, control flow
tags, and so on. The second tag library is referenced by the URI http://java.sun.com/jsp/
jstl/fmt. This is the formatting library of JSTL. Note the dispPrice() Java method in the original
estore.jsp. This method is used to format the price into dollars and cents. This is no longer necessary.
The JSTL formatting library has tags that can be used to perform the same task.

The third <%@taglib> directive references the URI wrox.com/begjsp/eshop-functions-taglib,
which is mapped via a taglib map in web.xml to a TLD file called eshop-taglib.tld. This file contains
declarations for several EL-accessible functions. This TLD file is examined later.

Converting static method calls to EL accessible functions
The original estore.jsp hooks into the jspInit() method and calls the static EShop.getCats()
method. This method returns an ArrayList of the category names. The old code then attaches this
ArrayList as a named attribute called cats at the application scope.

The converted code uses an EL-accessible function, and JSTL’s <c:set> tag, to accomplish the same
thing:

<c:if test=”${empty cats}”>
<c:set var=”cats” value=”${wxshop:getCats()}” scope=”application”/>

</c:if>

190

Chapter 6

10_57485x ch06.qxd 1/14/05 10:07 PM Page 190

TEAM LinG - Live, Informative, Non-cost and Genuine!

Note the use of EL’s empty operator to determine whether cats is null (or empty). The EShop.getCats()
method is wrapped by the wxshop:getCats() function, enabling it to be accessed from an EL expression.
The scope attribute of the JSTL <c:set> tag is used to create a scoped variable (at the application scope).

Scoped variables are objects that are attached as named attributes to the various scoping implicit objects.
This needs to be differentiated from scripting variables. Scripting variables are not objects attached as
attributes, but are actual Java source code variables. If a JSP is script-free, there is usually no need for
scripting variables.

To call the getCats() static methods from JSTL code, it is necessary to map them to EL-accessible
functions. No general mechanism exists in JSP or JSTL to directly invoke a method of a Java class.
The <%@ taglib> directive maps the URI wrox.com/begjsp/eshop-functions-taglib to the tag
library. The mapping is specified in the taglib map in the web.xml file. The web.xml file, located at
<Tomcat Installation Directory>/webapps/ch06/WEB-INF/web.xml, is reproduced here with the
taglib map highlighted:

<?xml version=”1.0” encoding=”ISO-8859-1”?>
<web-app xmlns=”http://java.sun.com/xml/ns/j2ee”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd”
version=”2.4”>

<description>
Wrox Beginning JavaServer Pages Examples - Chapter 6

</description>
<display-name>Chapter 6 Example (Wrox Beginning JavaSever Pages)</display-name>

<taglib>
<taglib-uri>

http://www.wrox.com/begjsp/eshop-functions-taglib
</taglib-uri>
<taglib-location>

/WEB-INF/jsp/eshop-taglib.tld
</taglib-location>

</taglib>
</web-app>

Note how the <taglib-uri> element is used to specify the associated URI, while <taglib-location>
specifies where the TLD file is located. The EL function mapping to the static EShop.getCats()
method is performed within the eshop-taglib.tld file. This file, located at <Tomcat Installation
Directory>/webapps/ch06/WEB-INF/jsp/eshop-taglib.tld, is reproduced here, with the map-
ping of the getCats() method highlighted:

There is no simple way to get JSTL logic into the jspInit() and jspDestroy()
methods. Instead, the approach used here is the same as the approach for obtaining
the global category list.

191

JSP Tag Libraries and JSTL

10_57485x ch06.qxd 1/14/05 10:07 PM Page 191

TEAM LinG - Live, Informative, Non-cost and Genuine!

<?xml version=”1.0” encoding=”UTF-8” ?>

<taglib xmlns=”http://java.sun.com/xml/ns/j2ee”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”http://java.sun.com/xml/ns/j2ee web-jsptaglibrary_2_0.xsd”
version=”2.0”>
<description>A taglib for eshop functions.</description>
<tlib-version>1.0</tlib-version>
<short-name>EShopunctionTaglib</short-name>
<uri>/EShopFunctionTagLibrary</uri>
<function>

<description>Obtain the catalog categories</description>
<name>getCats</name>
<function-class>com.wrox.begjsp.ch03.EShop</function-class>
<function-signature>java.util.ArrayList getCats()</function-signature>

</function>

<function>
<description>Obtain the items in a category
</description>
<name>getItems</name>
<function-class>com.wrox.begjsp.ch03.EShop</function-class>
<function-signature>

java.util.ArrayList getItems(java.lang.String)
</function-signature>

</function>

<function>
<description>Obtain an item given an sku
</description>
<name>getItem</name>
<function-class>com.wrox.begjsp.ch03.EShop</function-class>
<function-signature>

com.wrox.begjsp.ch03.Product getItem(java.lang.String)
</function-signature>

</function>

<function>
<description>Clear a list</description>
<name>clearList</name>
<function-class>com.wrox.begjsp.ch03.EShop</function-class>
<function-signature>

void clearList(java.util.List)
</function-signature>

</function>

<function>
<description>Add an item to a list</description>
<name>addList</name>
<function-class>com.wrox.begjsp.ch03.EShop</function-class>
<function-signature>

192

Chapter 6

10_57485x ch06.qxd 1/14/05 10:07 PM Page 192

TEAM LinG - Live, Informative, Non-cost and Genuine!

void addList(java.util.List, java.lang.Object)
</function-signature>

</function>

</taglib>

Many other EL-accessible functions are declared here. They are covered later in the chapter.

Replacing scripting iteration with the JSTL iteration tag
Back to the original estore.jsp file using scripting elements, the next section prints out the list of cate-
gories as hyperlinks:

<html>
<head>

<title>Wrox Shopping Mall</title>
</head>
<body>

<table width=”600”>
<tr>

<td width=”20%”>
<%

ArrayList cats = (ArrayList) application.getAttribute(“cats”);
for (int i=0; i< cats.size(); i++)
{

Category curCat = (Category) cats.get(i);
%>

<a href=”<%= request.getRequestURL() + “?catid=” + curCat.getId() %>”>
<%= curCat.getName() %>

<%
}

%>
</td>

This section of code (highlighted in both the scripting elements and the JSTL listings) can be elegantly
replaced with the JSTL iteration tag. Because cats is a Collection and the <c:forEach> tag works
directly with any Collection, the conversion is very straightforward. The converted code is repro-
duced here:

<html>
<head>

<title>Wrox Shopping Mall</title>
<link rel=stylesheet type=”text/css” href=”store.css”>

</head>
<body>

<table width=”600”>
<tr><td colspan=”2” class=”mainHead”>Wrox JSTL Web Store</td></tr>

<tr>
<td width=”20%”>

193

JSP Tag Libraries and JSTL

10_57485x ch06.qxd 1/14/05 10:07 PM Page 193

TEAM LinG - Live, Informative, Non-cost and Genuine!

<c:forEach var=”curCat” items=”${cats}”>
<c:url value=”/example1/estore.jsp” var=”localURL”>

<c:param name=”catid” value=”${curCat.id}”/>
</c:url>
${curCat.name}

</c:forEach>
</td>

JSTL’s <c:url> tag is used to fabricate the hyperlinks, instead of manual concatenation. The use of this
tag is explained next.

JSTL’s versatile URL creation tag
It’s better to use the <c:url> tag to create hyperlinks, rather than doing manual concatenation. This is
because the tag will perform many tedious tasks for us. It knows about JSP sessions, and will ensure that
the URL created will maintain the JSP session. This tag can also take specified parameters and encode
them onto the URL for us. If necessary, this tag will also escape special characters in the URL or parame-
ters passed. Furthermore, this tag automatically appends the required context path to the value attribute.

The final section of code in estore.jsp represents a table that prints out all the products in the selected
category. The original estore.jsp contains the following:

<table border=”1”>
<tr><th align=”left”>Item</th><th align=”left”>Price</th><th

align=”left”>Order</th></tr>
<%

String selectedCat = request.getParameter(“catid”);
if (selectedCat == null)

selectedCat = “1”;
ArrayList items = (ArrayList) EShop.getItems(selectedCat);
for (int i=0; i< items.size(); i++)
{

Product curItem = (Product) items.get(i);
%>
<tr>

<td><%= curItem.getName() %></td>
<td><%= dispPrice(String.valueOf(curItem.getPrice())) %></td>
<td><a href=”<%= request.getContextPath() +

“/example3/shopcart.jsp?action=buy&sku=” + curItem.getSku() %>”>
BUY
</td>

</tr>
<%

}
%>

</table>

The new code once again uses JSTL’s <c:forEach> tag to replace the former iterative scripting element:

<table border=”1” width=”100%”>
<tr><th align=”left”>Item</th><th align=”left”>Price</th><th

align=”left”>Order</th></tr>

194

Chapter 6

10_57485x ch06.qxd 1/14/05 10:07 PM Page 194

TEAM LinG - Live, Informative, Non-cost and Genuine!

<c:set var=”selectedCat” value=”${param.catid}”/>
<c:if test=”${empty selectedCat}”>

<c:set var=”selectedCat” value=”1”/>
</c:if>
<c:forEach var=”curItem” items=”${wxshop:getItems(selectedCat)}”>

<tr>
<td>${curItem.name}</td>
<td align=”right”>

<fmt:formatNumber value=”${curItem.price / 100}” type=”currency”/>
</td>
<td>

<c:url value=”/example1/shopcart.jsp” var=”localURL”>
<c:param name=”action” value=”buy”/>
<c:param name=”sku” value=”${curItem.sku}”/>

</c:url>
BUY

</td>
</tr>

</c:forEach>
</table>

The items attribute of the <c:forEach> tag is actually a call to the static EShop.getItems() method.
This EL-accessible method is mapped in the eshop-taglib.tld file. It returns all the items associated
with a specified category.

Note the use of the JSTL number formatting tag to render the price in currency format. This tag is locale
aware and will render the correct symbol for currency:

<fmt:formatNumber value=”${curItem.price / 100}” type=”currency”/>

This eliminates the need for the old dispPrice() method.

The code also takes advantage of EL’s implicit param object, a map, to get at the incoming catid param-
eter value:

<c:set var=”selectedCat” value=”${param.catid}”/>

The <c:url> tag is once again used to create the Buy hyperlink for each product:

<c:url value=”/example1/shopcart.jsp” var=”localURL”>
<c:param name=”action” value=”buy”/>
<c:param name=”sku” value=”${curItem.sku}”/>

</c:url>
BUY

This concludes our coverage of the first JSP of the Web store application: estore.jsp. The next example
examines the conversion of the second application JSP: the shopping cart page.

Try It Out Creating a JSTL-Based Shopping Cart
With the Books category selected at the e-store, click the Buy link of the Beginning JavaServer Pages book.
This will take you to the shopping cart page, with a copy of the book in the cart. Your cart should look
like the one shown in Figure 6-5.

195

JSP Tag Libraries and JSTL

10_57485x ch06.qxd 1/14/05 10:07 PM Page 195

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 6-5: Shopping cart containing an ordered book

Click the Add 1 link of the book selected to order another one. The new shopping cart should look like
the one displayed in Figure 6-6.

Figure 6-6: Shopping cart with two books ordered

196

Chapter 6

10_57485x ch06.qxd 1/14/05 10:07 PM Page 196

TEAM LinG - Live, Informative, Non-cost and Genuine!

Note that the shopping cart has multiplied the quantity by the unit price to obtain the extended price.
The total for the entire order is also calculated.

Next, click the Return to Shopping hyperlink to return to the estore.jsp page. This time, select
Systems and order a Pentium 4 system. You now have two books and one computer in the shopping
cart, as shown in Figure 6-7.

Figure 6-7: Shopping cart with two books and one computer system ordered

Again, the cart has calculated the extended price for each item, and added the amounts for the total.
Click the Add 1 link of the Pentium 4 system and order another one. You now have two systems ordered
with the books. The cart should look like the one shown in Figure 6-8.

197

JSP Tag Libraries and JSTL

10_57485x ch06.qxd 1/14/05 10:07 PM Page 197

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 6-8: Shopping cart with two books and two computer systems

Finally, click the Clear the Cart hyperlink. Note that all items are cleared from the cart, as shown in
Figure 6-9.

Figure 6-9: Shopping cart after clicking the Clear the Cart hyperlink

198

Chapter 6

10_57485x ch06.qxd 1/14/05 10:07 PM Page 198

TEAM LinG - Live, Informative, Non-cost and Genuine!

How It Works
Following the lead of the first Try It Out section, the original shopping cart JSP using scripting elements
will be converted to a JSTL-only version.

The resulting shopping cart JSP is called shopcart.jsp, and is located at <Tomcat Installation
Directory>/webapps/ch06/example1/shopcart.jsp. The code in this shopcart.jsp page is
reproduced here in its entirety:

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<%@ taglib prefix=”fmt” uri=”http://java.sun.com/jsp/jstl/fmt” %>
<%@ taglib prefix=”wxshop” uri=”http://www.wrox.com/begjsp/eshop-functions-taglib” %>

<%@ page session=”true” %>

<c:set var=”EXAMPLE” value=”/example1”/>
<c:set var=”SHOP_PAGE” value=”/estore.jsp”/>
<c:set var=”CART_PAGE” value=”/shopcart.jsp”/>

<html>
<head>

<title>Wrox Shopping Mall - Shopping Cart</title>
<link rel=stylesheet type=”text/css” href=”store.css”>

</head>
<body>

<c:if test=”${!(empty param.sku)}”>
<c:set var=”prod” value=”${wxshop:getItem(param.sku)}”/>

</c:if>

<jsp:useBean id=”lineitems” class=”java.util.ArrayList” scope=”session”/>

<c:choose>
<c:when test=”${param.action == ‘clear’}”>

${wxshop:clearList(lineitems)}
</c:when>

<c:when test=”${param.action == ‘inc’ || param.action==’buy’}”>
<c:set var=”found” value=”false”/>

<c:forEach var=”curItem” items=”${lineitems}”>

<c:if test=”${(curItem.sku) == (prod.sku)}”>
<jsp:setProperty name=”curItem” property=”quantity”

value=”${curItem.quantity + 1}”/>
<c:set var=”found” value=”true” />

</c:if>
</c:forEach>
<c:if test=”${!found}”>

<c:remove var=”tmpitem”/>
<jsp:useBean id=”tmpitem” class=”com.wrox.begjsp.ch03.LineItem”>

<jsp:setProperty name=”tmpitem” property=”quantity” value=”1”/>
<jsp:setProperty name=”tmpitem” property=”sku” value=”${prod.sku}”/>
<jsp:setProperty name=”tmpitem” property=”desc” value=”${prod.name}”/>
<jsp:setProperty name=”tmpitem” property=”price” value=”${prod.price}”/>

199

JSP Tag Libraries and JSTL

10_57485x ch06.qxd 1/14/05 10:07 PM Page 199

TEAM LinG - Live, Informative, Non-cost and Genuine!

</jsp:useBean>
${wxshop:addList(lineitems, tmpitem)}

</c:if>
</c:when>

</c:choose>

<c:set var=”total” value=”0”/>
<table width=”640”>

<tr><td class=”mainHead”>Wrox JSTL Web Store</td></tr>
<tr>

<td>
<h1></h1>
<table border=”1” width=”640”>

<tr><th colspan=”5” class=”shopCart”>Your Shopping Cart</th></tr>
<tr><th align=”left”>Quantity</th><th align=”left”>Item</th><th

align=”right”>Price</th>
<th align=”right”>Extended</th>
<th align=”left”>Add</th></tr>
<c:forEach var=”curItem” items=”${lineitems}”>

<c:set var=”extended” value=”${curItem.quantity * curItem.price}”/>
<c:set var=”total” value=”${total + extended}”/>
<tr>

<td>${curItem.quantity}</td>
<td>${curItem.desc}</td>
<td align=”right”>
<fmt:formatNumber value=”${curItem.price / 100}” type=”currency”/>

</td>
<td align=”right”>
<fmt:formatNumber value=”${extended / 100}” type=”currency”/>

</td>
<td>

<c:url value=”${EXAMPLE}${CART_PAGE}” var=”localURL”>
<c:param name=”action” value=”inc”/>
<c:param name=”sku” value=”${curItem.sku}”/>

</c:url>
Add 1

</td>
</tr>

</c:forEach>
<tr>

<td colspan=”5”>
</td>

</tr>
<tr>

<td colspan=”3” align=”right”>Total:</td>
<td align=”right” class=”grandTotal”>

<fmt:formatNumber value=”${total / 100}” type=”currency”/>
</td>
<td> </td>

</tr>

<tr>
<td colspan=”5”>

200

Chapter 6

10_57485x ch06.qxd 1/14/05 10:07 PM Page 200

TEAM LinG - Live, Informative, Non-cost and Genuine!

<c:url value=”${EXAMPLE}${CART_PAGE}” var=”localURL”>
<c:param name=”action” value=”clear”/>

</c:url>
Clear the cart

</td>
</tr>

<tr>
<td colspan=”5”>

<c:url value=”${EXAMPLE}${SHOP_PAGE}” var=”localURL”/>
Return to Shopping

</td>
</tr>

</table>
</td>

</tr>
</table>

</body>
</html>

In the following sections, the old shopcart.jsp page from Chapter 3, located at <Tomcat
Installation Directory>/webapps/ch03/example3/shopcart.jsp, is compared with the new
JSTL version.

Declaring constants with <c:set>
The first section of the old shopcart.jsp contains some constant declarations and the declaration of the
dispPrice() method:

<%@ page language=”java”
import = “com.wrox.begjsp.ch03.*,java.util.*” session=”true” %>

<%!
private static String EXAMPLE = “/example3”;
private static String SHOP_PAGE = “/estore.jsp”;
private static String CART_PAGE = “/shopcart.jsp”;

private String dispPrice(String price)
{

int len = price.length();
if (len <= 2)

return price;
else

return “$” + price.substring(0,len -2) + “.” + price.substring(len-2);
}

%>

<html>
<head>

<title>Wrox Shopping Mall - Shopping Cart</title>
</head>

201

JSP Tag Libraries and JSTL

10_57485x ch06.qxd 1/14/05 10:07 PM Page 201

TEAM LinG - Live, Informative, Non-cost and Genuine!

The earlier example shows that the dispPrice() method can be replaced by JSTL’s
<fmt:formatNumber> tag. The JSTL version of shopcart.jsp no longer needs its definition. The only
thing left is to declare the constants using JSTL’s <c:set> tag:

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<%@ taglib prefix=”fmt” uri=”http://java.sun.com/jsp/jstl/fmt” %>
<%@ taglib prefix=”wxshop” uri=”http://www.wrox.com/begjsp/eshop-functions-taglib”
%>

<%@ page session=”true” %>

<c:set var=”EXAMPLE” value=”/example1”/>
<c:set var=”SHOP_PAGE” value=”/estore.jsp”/>
<c:set var=”CART_PAGE” value=”/shopcart.jsp”/>

<html>
<head>

<title>Wrox Shopping Mall - Shopping Cart</title>
<link rel=stylesheet type=”text/css” href=”store.css”>

</head>

Replacing complex Java scripting logic
The next section in the old shopcart.jsp has a large section of embedded Java logic:

<body>
<%

ArrayList items = (ArrayList) session.getAttribute(“lineitems”);
String action = request.getParameter(“action”);
String sku = request.getParameter(“sku”);
Product prod = null;
if (sku != null)

prod = EShop.getItem(sku);

if (items == null)
{ // add first item

items = new ArrayList();
items.add(new LineItem(1,sku,prod.getName(),
prod.getPrice()));

session.setAttribute(“lineitems”, items);
}
else if (action.equals(“clear”))

{
items.clear();

}
else
{

boolean itemFound = false;
// check to see if sku exists
for (int i=0; i<items.size(); i++)
{

LineItem curItem = (LineItem) items.get(i);
if (curItem.getSku().equals(sku))
{

202

Chapter 6

10_57485x ch06.qxd 1/14/05 10:07 PM Page 202

TEAM LinG - Live, Informative, Non-cost and Genuine!

itemFound = true;
curItem.setQuantity(curItem.getQuantity() + 1);
break;

} // of if
} //of for

if (!itemFound)
items.add(new LineItem(1,sku,prod.getName(),

prod.getPrice()));

} // of final else

int total = 0;
%>

The preceding code basically decodes the incoming parameters for the shopping cart. The action param-
eter is buy when the link is from the estore.jsp, and the sku refers to the item that the customer wants
to buy. The action parameter is inc when the Add 1 hyperlink is clicked on the cart, and the sku is the
associated product. The action can also be clear if the customer clicks the Clear the Cart hyperlink.

The new scriptless JSTL code that does the same thing is shown here:

<body>
<c:if test=”${!(empty param.sku)}”>

<c:set var=”prod” value=”${wxshop:getItem(param.sku)}”/>
</c:if>

<jsp:useBean id=”lineitems” class=”java.util.ArrayList” scope=”session”/>

<c:choose>
<c:when test=”${param.action == ‘clear’}”>

${wxshop:clearList(lineitems)}
</c:when>

<c:when test=”${param.action == ‘inc’ || param.action==’buy’}”>
<c:set var=”found” value=”false”/>

<c:forEach var=”curItem” items=”${lineitems}”>

<c:if test=”${(curItem.sku) == (prod.sku)}”>
<jsp:setProperty name=”curItem” property=”quantity”

value=”${curItem.quantity + 1}”/>
<c:set var=”found” value=”true” />

</c:if>
</c:forEach>
<c:if test=”${!found}”>

<c:remove var=”tmpitem”/>
<jsp:useBean id=”tmpitem” class=”com.wrox.begjsp.ch03.LineItem”>

<jsp:setProperty name=”tmpitem” property=”quantity” value=”1”/>
<jsp:setProperty name=”tmpitem” property=”sku” value=”${prod.sku}”/>
<jsp:setProperty name=”tmpitem” property=”desc” value=”${prod.name}”/>
<jsp:setProperty name=”tmpitem” property=”price” value=”${prod.price}”/>

</jsp:useBean>

203

JSP Tag Libraries and JSTL

10_57485x ch06.qxd 1/14/05 10:07 PM Page 203

TEAM LinG - Live, Informative, Non-cost and Genuine!

${wxshop:addList(lineitems, tmpitem)}
</c:if>

</c:when>
</c:choose>

<c:set var=”total” value=”0”/>

The items being displayed in the cart are stored in an ArrayList. This ArrayList is attached to the
session scope as a scoped variable named lineitems. To create this scoped variable, the original
embedded Java code was simply as follows:

ArrayList items = (ArrayList) session.getAttribute(“lineitems”);
...
if (items == null)
{ // add first item

items = new ArrayList();
...
session.setAttribute(“lineitems”, items);

To create the same effect without scripting elements, the <jsp:useBean> standard action is used:

<jsp:useBean id=”lineitems” class=”java.util.ArrayList” scope=”session”/>

The <jsp:useBean> tag will create a new instance of ArrayList if the session scoped variable lineitems
is not found. Otherwise, it will use the existing one. These are the exact semantics needed in our case.

To obtain the product description associated with the incoming sku, the EShop.getItem() static
method must be called. The old code uses the following:

String sku = request.getParameter(“sku”);
Product prod = null;
if (sku != null)

prod = EShop.getItem(sku);

The new code has to use an EL-accessible function. The eshop-taglib.tld file has mapped the
EShop.getItem() static method to a getItem() function. The new code is as follows:

<c:if test=”${!(empty param.sku)}”>
<c:set var=”prod” value=”${wxshop:getItem(param.sku)}”/>

</c:if>

Converting control flow
The complex Java control flow in the original code is replaced by a combination of JSTL’s <c:choose>
and <c:if> constructs. In general, <c:choose> can be used to replace the if...then...else and
switch...case Java code constructs. The resulting JSTL control flow has the following general struc-
ture in the new shopcart.jsp:

<c:choose>
<c:when test=”${param.action == ‘clear’}”>

...

204

Chapter 6

10_57485x ch06.qxd 1/14/05 10:07 PM Page 204

TEAM LinG - Live, Informative, Non-cost and Genuine!

</c:when>

<c:when test=”${param.action == ‘inc’ || param.action==’buy’}”>
...

</c:when>
</c:choose>

The construct decodes the action parameter within shopcart.jsp.

Converting method calls
The original shopcart.jsp has code that does the following:

❑ Constructs a new LineItem instance, initializes it, and adds it to an ArrayList

❑ Clears the content of an ArrayList

The code in the old shopcart.jsp for the first action is:

items.add(new LineItem(1,sku,prod.getName(),
prod.getPrice()));

The code for second action in the old shopcart.jsp is:

items.clear();

While these actions can be accomplished by using one single line of code in Java, it is not so straightfor-
ward using JSTL. This is because no generalized way to invoke an arbitrary method of a scoped variable
or Java object exists.

The only solution is to create EL-accessible functions using the JSTL 1.1 functions extension mechanism.
Unfortunately, these mapped functions must be static methods. This means that they cannot be instance
methods of objects.

To add an object to a list, an EL-accessible function called addList() is created. The code is placed as a
static function in the EShop class. It is reproduced here:

public static void addList(java.util.List list, java.lang.Object item)
{

list.add(item);
}

To clear a list, an EL-accessible function called clearList() is created. The code is in EShop as well:

public static void clearList(java.util.List list)
{

list.clear();
}

205

JSP Tag Libraries and JSTL

10_57485x ch06.qxd 1/14/05 10:07 PM Page 205

TEAM LinG - Live, Informative, Non-cost and Genuine!

These functions are mapped using <function> entries in the eshop-taglib.tld file:

<function>
<description>Clear a list</description>
<name>clearList</name>
<function-class>com.wrox.begjsp.ch03.EShop</function-class>
<function-signature>void clearList(java.util.List)</function-signature>

</function>

<function>
<description>Add an item to a list</description>
<name>addList</name>
<function-class>com.wrox.begjsp.ch03.EShop</function-class>
<function-signature>void addList(java.util.List, java.lang.Object)</function-

signature>
</function>

Note that the Java classes used to specify method return values and method parameters must include
the full class name (fully qualified) to avoid errors.

Once these EL-accessible functions are created, the new shopcart.jsp uses the following code to clear
the lineitems scoped variable (ArrayList type) when the user clicks the Clear the Cart hyperlink:

${wxshop:clearList(lineitems)}

The following code is used to construct a new LineItem instance, initialize it, and add it to the
lineitem ArrayList. Note the verbose syntax required:

<c:remove var=”tmpitem”/>
<jsp:useBean id=”tmpitem” class=”com.wrox.begjsp.ch03.LineItem”>

<jsp:setProperty name=”tmpitem” property=”quantity” value=”1”/>
<jsp:setProperty name=”tmpitem” property=”sku” value=”${prod.sku}”/>
<jsp:setProperty name=”tmpitem” property=”desc” value=”${prod.name}”/>
<jsp:setProperty name=”tmpitem” property=”price” value=”${prod.price}”/>

</jsp:useBean>
${wxshop:addList(lineitems, tmpitem)}

Observe how the <c:remove> tag is used to remove a scoped variable created by <jsp:useBean> if it
exists. This illustrates how standard JSP actions can work collaboratively (and interchangeably) with
custom actions, including the JSTL tags.

Changing the lineitems table layout
The next section of code displays the content of lineitems and calculates the extended price and total
cost. The old code is:

<table width=”600”>
<tr>

<td>

206

Chapter 6

10_57485x ch06.qxd 1/14/05 10:07 PM Page 206

TEAM LinG - Live, Informative, Non-cost and Genuine!

<h1></h1>
<table border=”1” width=”600”>

<tr><th colspan=”5”>Your Shopping Cart</th></tr>
<tr><th align=”left”>Quantity</th><th align=”left”>Item</th><th

align=”right”>Price</th>
<th align=”right”>Extended</th>
<th align=”left”>Add</th></tr>

<%
for (int i=0; i< items.size(); i++)
{

LineItem curItem = (LineItem) items.get(i);
int quan = curItem.getQuantity();
long price = curItem.getPrice();
long extended = quan * price;
total += extended;

%>

<tr>
<td><%= quan %></td>
<td><%= curItem.getDesc() %></td>
<td align=”right”><%= dispPrice(String.valueOf(price)) %></td>
<td align=”right”><%= dispPrice(String.valueOf(extended)) %></td>
<td>

<a href=”<%= request.getContextPath() + EXAMPLE + CART_PAGE +
“?action=inc&sku=” + curItem.getSku() %>”>

Add 1
</td>

</tr>
<%

}
%>
<tr>

<td colspan=”5”>
</td>

</tr>
<tr>

<td colspan=”3” align=”right”>Total:</td>
<td align=”right”><%= dispPrice(String.valueOf(total)) %></td>
<td> </td>

</tr>

<tr>
<td colspan=”5”>
<a href=”<%= request.getContextPath() + EXAMPLE + CART_PAGE +

“?action=clear” %>”>
Clear the cart

</td>

</tr>

<tr>
<td colspan=”5”>

207

JSP Tag Libraries and JSTL

10_57485x ch06.qxd 1/14/05 10:07 PM Page 207

TEAM LinG - Live, Informative, Non-cost and Genuine!

<a href=”<%= request.getContextPath() + EXAMPLE + SHOP_PAGE %>”>
Return to Shopping

</td>
</tr>

</table>
</td>

</tr>
</table>

The conversion is straightforward and very similar to the conversion performed previously with
estore.jsp (the first example). The resulting code is presented here, with corresponding sections
highlighted:

<table width=”640”>
<tr><td class=”mainHead”>Wrox JSTL Web Store</td></tr>
<tr>

<td>
<h1></h1>
<table border=”1” width=”640”>

<tr><th colspan=”5” class=”shopCart”>Your Shopping Cart</th></tr>
<tr><th align=”left”>Quantity</th><th align=”left”>Item</th><th

align=”right”>Price</th>
<th align=”right”>Extended</th>
<th align=”left”>Add</th></tr>
<c:forEach var=”curItem” items=”${lineitems}”>

<c:set var=”extended” value=”${curItem.quantity * curItem.price}”/>
<c:set var=”total” value=”${total + extended}”/>
<tr>

<td>${curItem.quantity}</td>
<td>${curItem.desc}</td>
<td align=”right”>

<fmt:formatNumber value=”${curItem.price / 100}” type=”currency”/>
</td>
<td align=”right”>

<fmt:formatNumber value=”${extended / 100}” type=”currency”/>
</td>
<td>

<c:url value=”${EXAMPLE}${CART_PAGE}” var=”localURL”>
<c:param name=”action” value=”inc”/>
<c:param name=”sku” value=”${curItem.sku}”/>

</c:url>
Add 1

</td>
</tr>

</c:forEach>
<tr>

<td colspan=”5”>
</td>

</tr>

208

Chapter 6

10_57485x ch06.qxd 1/14/05 10:07 PM Page 208

TEAM LinG - Live, Informative, Non-cost and Genuine!

<tr>
<td colspan=”3” align=”right”>Total:</td>
<td align=”right” class=”grandTotal”>

<fmt:formatNumber value=”${total / 100}” type=”currency”/>
</td>
<td> </td>

</tr>

<tr>
<td colspan=”5”>

<c:url value=”${EXAMPLE}${CART_PAGE}” var=”localURL”>
<c:param name=”action” value=”clear”/>

</c:url>
Clear the cart

</td>
</tr>

<tr>
<td colspan=”5”>

<c:url value=”${EXAMPLE}${SHOP_PAGE}” var=”localURL”/>
Return to Shopping

</td>
</tr>

</table>
</td>

</tr>
</table>

The conversion uses a JSTL <c:forEach> tag to replace scripting iteration. It also uses the <c:url> tag
to build the Add 1 hyperlinks. The <fmt:formatNumber> tag is once again used to convert the prices
into currency format.

A common JSTL coding error
Before wrapping up this chapter, you should know about a very common error that is often made when
coding JSTL. This error occurs when you specify the name of a scoped variable in error.

For example, see if you can identify the error in the following code segment:

<c:forEach var=”curItem” items=”lineitems”>
<c:set var=”extended” value=”${curItem.quantity * curItem.price}”/>
...

</c:forEach>

When the preceding JSP segment is executed, you will get an error similar to the following:

javax.servlet.ServletException: Unable to find a value for “quantity” in object of
class “java.lang.String” using operator “.”
org.apache.jasper.runtime.PageContextImpl.doHandlePageException(PageContextImpl.

java:825)

209

JSP Tag Libraries and JSTL

10_57485x ch06.qxd 1/14/05 10:07 PM Page 209

TEAM LinG - Live, Informative, Non-cost and Genuine!

org.apache.jasper.runtime.PageContextImpl.handlePageException(PageContextImpl.
java:758)
org.apache.jsp.example1.shopcart_jsp._jspService(shopcart_jsp.java:199)
org.apache.jasper.runtime.HttpJspBase.service(HttpJspBase.java:94)
...

Note that the error is associated with the use of the quantity property. Its source is actually quite far
away from the area identified as the cause of the problem.

The cause of the problem is actually the mistaken use of the string “lineitem” in place of the EL
expression ${lineitems} for the items attribute of the <c:forEach> action. The correct form would
be as follows:

<c:forEach var=”curItem” items=”${lineitems}”>

If you encounter a similar error message, instead of looking at the code identified by the error, try exam-
ining all the attributes used in the enclosing tags and ask yourself whether you wanted an expression or
a constant.

Summary
This chapter examined the role of tag libraries and JSTL. Some interesting discoveries about tag libraries
include the following:

❑ A tag library is a collection of related custom actions. Tag libraries provide JSP developers with
new functionality that is easily integrated into their applications.

❑ All tag libraries have tag implementation code and a Tag Library Descriptor (TLD). In some
cases, the TLD can be automatically generated by the container or a tool.

❑ Tag libraries are typically distributed as JAR files that you placed into your application’s
WEB-INF/lib directory. The TLD should be included in the JAR file.

JSTL is one of the most important tag libraries to JSP developers and a standard part of JSP 2.0–compliant
platforms. Some reasons for this include the following:

❑ JSTL provides tags that are essential to application programming using JSP.

❑ JSTL is tightly integrated with EL.

❑ Finally, JSTL (along with EL) enables the creation of script-free JSP pages, leading to more main-
tainable, portable, and scalable code.

Conversion from legacy scripting-based code to script-free JSTL/EL–based code is an art. The Web store
example in this chapter illustrated several conversion and mapping techniques and pointed out common
pitfalls.

210

Chapter 6

10_57485x ch06.qxd 1/14/05 10:07 PM Page 210

TEAM LinG - Live, Informative, Non-cost and Genuine!

Exercises
1. From the estore.jsp page, make each product description a hyperlink. The target of the

hyperlink should be a product.jsp page. This page takes a sku as a parameter and displays
the detail specification of a product. Make sure that you can order (and go to the shopcart.jsp
page) from this page, and that you can go back to the estore.jsp from this page.

2. Modify the shopcart.jsp page to perform the following:

a. Add 7 percent regional sales tax.

b. Add 8 percent federal sales tax.

c. Add a shipping charge of $10 for each item ordered.

211

JSP Tag Libraries and JSTL

10_57485x ch06.qxd 1/14/05 10:07 PM Page 211

TEAM LinG - Live, Informative, Non-cost and Genuine!

10_57485x ch06.qxd 1/14/05 10:07 PM Page 212

TEAM LinG - Live, Informative, Non-cost and Genuine!

7
JSP Directives

It is almost impossible to create a Web-based application using JSPs without the use of JSP direc-
tives. Yet, JSP directives do not generate code. They are not part of the logic within the JSP code.
Rather, JSP directives provide directions and instructions to the container, telling it how to handle
certain aspects of JSP processing.

JSP developers should have an intimate understanding of the following JSP directives and when
they should be used:

❑ The page directive

❑ The taglib directive

❑ The include directive

This chapter presents the most common usage of each of the directives, together with other fre-
quently used variations. Important attributes associated with each directive are also discussed. In
some cases, the discussion leads to some more obscure uses of the directives.

Other topics relating to the use of JSP directives are also explored. These topics include the following:

❑ How a JSP is processed by the container

❑ JSP container processing and interactions with JSP directives

❑ How to use the XML representation of the directives

❑ Different ways of including JSP fragments

By the end of this chapter, you will have a thorough understanding of each JSP directive. You will
be able to determine the situations under which a directive should be used. You will also be famil-
iar with possible attribute values and their effect on JSP processing. Most important, you will be
able to use the JSP directives productively in your daily JSP development.

11_57485x ch07.qxd 1/14/05 10:07 PM Page 213

TEAM LinG - Live, Informative, Non-cost and Genuine!

Directive Basics
JSP directives can be found in almost every JSP page. Directives always appear as follows:

<%@ directive name [... one or more attributes...] %>

Directives, like actions, can have a number of attributes. The blanks between the @ symbol and the direc-
tive name, and between the last attribute and the closing %>, are optional.

You have already seen the <%@ page %> directive and the <%@ taglib %> directive used in many exam-
ples in previous chapters. These directives do not by themselves perform any action when a request is
processed. Instead, they provide directions and instructions to the container.

Directives as instructions for the container
For example, consider the frequently seen taglib directive shown here:

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>

This taglib directive does not perform any specific action during request processing. Rather, it tells the
JSP container the following:

❑ This page will use the JSTL core tag library, associated with the URI http://java.sun.com/
jsp/jstl/core.

❑ The tags from this JSTL core tag library will all be prefixed with the c: namespace within the JSP.

The container follows these instructions during the processing of the JSP page. Because JSP directives are
specified per JSP page, each JSP page can have a different set of directives, and hence provide different
instructions to the container.

Alternative XML syntax for directives
Because JSPs are frequently used to present XML data, especially in Web services (see Chapter 27, “JSP
Project I: Personalized Portal,” for an example), it is important that JSP pages can be created in the XML
format. However, some elements of the standard JSP notation break XML compatibility, and a directive
is one of them.

Directives are not XML elements, as their standard notation violates the XML syntax. However, JSP 2.0
has defined an XML-compatible format for all the directives. For example, the directive

<%@ page %>

can be alternatively specified in the XML-compatible form as follows:

<jsp:directive.page ... />

Also, the directive

<%@ include %>

214

Chapter 7

11_57485x ch07.qxd 1/14/05 10:07 PM Page 214

TEAM LinG - Live, Informative, Non-cost and Genuine!

can alternatively be specified in the XML-compatible form as follows:

<jsp:directive.include .../>

Available JSP directives
As mentioned earlier, you can use three directives within a JSP page:

❑ The page directive

❑ The taglib directive

❑ The include directive

Each of these directives can have a number of attributes. Each attribute gives different directions to the
container.

There are additional directives that can be used only within tag files (tags written in JSP), but they are
covered in Chapter 11, “Building Your Own Custom JSP Tag Library.” Using these “tag files only”
directives in standard JSP files will result in an error.

The following sections examine each of these directives, describe the most commonly used attributes,
and demonstrate some examples. First, however, you should have a basic understanding of how a JSP
container processes a JSP page.

Processing a JSP page: the container’s perspective
The JSP directives give instructions to the container about how the JSP should be processed. The container
is responsible for the processing of a JSP page. Figure 7-1 illustrates what happens under the hood.

In Figure 7-1, the processing performed by the container is divided into different stages, or phases.

In the first phase, the JSP page is actually first converted to Java source code. This is called the translation
phase. In this phase, the JSP page is said to be translated into Java source code. The Java source code is
generated in plain text format, and is human-readable. Anything that happens during this phase is said
to have occurred during translation time.

During the second phase, the Java source code is compiled into executable byte code. This is called the
compilation phase. The resulting executable byte code is in binary format and can be executed by any Java
Virtual Machine (JVM). Anything that happens during this phase of the processing is said to have
occurred during compilation time.

It is this compiled binary byte code that is actually executed when an incoming request arrives at the
server. It is the container’s responsibility to pass the request to the compiled binary code for execution.
When the compiled JSP binary executes, it processes the incoming request. This phase is called the
request phase. Anything that happens during this phase is said to have occurred during request time.

215

JSP Directives

11_57485x ch07.qxd 1/14/05 10:07 PM Page 215

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 7-1: Processing of JSP directives

Once translated and compiled, the JSP binary is reused for every incoming request. This avoids the need
for translation and compilation phases for each request. However, if the JSP is modified, the container
must recognize the change and retranslate and recompile the page.

You will see these different phases mentioned throughout this book and in most JSP development text
and documentation.

The container will automatically translate and compile JSP pages every time they are modified. There is
a technique called JSP precompilation that can be used to optimize the performance of JSP in Web appli-
cations. This technique is covered in Chapter 25, “Performance.”

This brief description of the JSP processing phases is sufficient for our discussion of JSP directives. A
more in-depth exploration of the different phases is presented in Chapter 25 when JSP performance
enhancements are discussed.

Returning to the discussion of the available JSP directives, we first examine the page directive.

JSP file .java Source Code Binary Bytecode

<%@include %> <%@include %>

JSP fragment

Incoming
request

Outgoing
response

translation compilation

JSP fragment

Translation Phase Compilation Phase Request Phase

216

Chapter 7

11_57485x ch07.qxd 1/14/05 10:07 PM Page 216

TEAM LinG - Live, Informative, Non-cost and Genuine!

The page Directive
The page directive is used to provide instructions to the container that pertain to the current JSP page.
From the perspective of the container, each JSP page (together with any included JSP fragments at trans-
lation time) is a separate translation unit. Each JSP page in the same application can have its own page
directive, resulting in a different set of instructions for each translation unit.

The instructions are specified using the attributes of the page directive. Frequently used attributes of the
page directive are described in the following sections. Attributes of the page directive are optional; the
default values will be used if you do not specify them.

The language attribute
The language attribute specifies the scripting languages used when scripting elements are used within
the JSP. For example, consider the following directive:

<%@ page language=”java” %>

This specifies that the scripting language to be used on the page should be the Java programming lan-
guage. This attribute is almost always java. While the JSP specification is written to enable other script-
ing languages, the only one implemented by today’s containers is the Java programming language.

The extends attribute
In the translation phase, the container converts a JSP into a Java-language source program. In fact, each
JSP page is translated into a Java class. The extends attribute enables you to specify the superclass that
the container will use during this translation phase. For example, consider the following usage:

<%@ page language=”java” extends=”com.wrox.begjsp.ch07.EShop” %>

After translation by the container, this will result in a line of translated Java source code similar to the
following:

...
public final class my_jsp extends com.wrox.begjsp.ch07.EShop implements
org.apache.jasper.runtime.JspSourceDependent
{
...

Because the JSP is inheriting from com.wrox.begjsp.ch07.Eshop, scripting elements within the page
will have access to the protected and public members (both methods and fields) of the superclass.

The default value is “java” if the attribute is not specified. Therefore, it is not nec-
essary to specify this attribute.

217

JSP Directives

11_57485x ch07.qxd 1/14/05 10:07 PM Page 217

TEAM LinG - Live, Informative, Non-cost and Genuine!

The import attribute
The import attribute is used to specify the library classes that will be used within the JSP page by the
scripting elements. Each fully qualified library class name (i.e., the full name, starting with the package
name) is separated by comma. When the container translates the JSP into Java source code, the value of
this attribute is translated to one or more import declarations in the Java programming language. For
example, consider the following example:

<%@ page language=”java” import=”com.wrox.begjsp.ch07.*,java.util.*” %>

This attribute tells the container to create import statements in the translation phase. After translation,
the following Java source code statements will be created in the source code:

import com.wrox.begjsp.ch07.*;
import java.util.*;

Scripting elements within the JSP can then utilize any classes that are imported via this attribute.

The session attribute
Unlike the attributes seen thus far, this attribute gives the container directions that refer to request-time
behavior. All the previously described attributes are instructions for translation-time behavior.

In the e-commerce example in Chapter 3, “JSP Basics 2: Generalized Templating and Server Scripting,”
a lineitems attribute attached to the session JSP implicit object is used to track the content of the shop-
ping cart. The JSP container creates and maintains an HTTP session using cookies or other means (see
Chapter 3 for more details).

The session attribute is a boolean-valued attribute. It can contain either a true or a false value. If
true, the container will create and maintain an HTTP session:

<%@ page session=”true” %>

The JSP code in the page with the preceding directive can then access the session implicit JSP scoping
object. If this value is false, no session will be created by the container. Any access to the session
object in JSP that has session=”false” will result in an error.

The default value for the session attribute is true. Therefore, it is not necessary to
specify this attribute if you need session handling.

This technique, using the page directive’s extends attribute to specify the super-
class, should be used only if there are no other means of implementing the same
functionality. Not only does using a superclass tie the JSP code to the Java code, it
also encourages the use of scripting elements.

218

Chapter 7

11_57485x ch07.qxd 1/14/05 10:07 PM Page 218

TEAM LinG - Live, Informative, Non-cost and Genuine!

The info attribute
The info attribute can be used to specify information about the page. Any value you specify here is
available to JSP developer tools. For example, a tool may use this information to display a list of pages,
as shown by the following typical usage:

<%@ page info=”Beginning JavaServer Pages - Chapter 7 Example” %>

The isELIgnored attribute
The isELIgnored attribute is a boolean attribute with either a true or a false value. If this attribute is
set to true, as in

<%@ page isELIgnored=”true” %>

then any EL expression within the JSP page will be ignored. Any template text or attribute values with
the ${...} notation will not be considered an EL expression, and will be rendered as is.

This attribute provides a mean of maintaining backward compatibility for JSP pages. In almost all new
JSP pages, you will want to set this attribute to false. On legacy JSP pages that do not use EL and may
contain the ${...} notation, you can set this attribute to true.

The isErrorPage attribute
This is a boolean attribute that can have a true or false value. When handling JSP errors, you will be
using this attribute as well as the errorPage attribute that is described next.

If this attribute is true, it tells the container that this JSP page is used by other JSP pages to handle errors.
At request time, the container will make available a special implicit variable, called exception. This
scoped variable is actually an attribute attached to the JSP request implicit object. The JSP code within this
page can use the exception variable to access the information regarding the error that has occurred.

For example, consider the following directive:

<%@ page isErrorPage=”true” %>

A JSP page with the preceding directive will be used by the container to handle exceptions. The implicit
exception variable will be made available within the page for access to exception information.

More information on JSP error handling is provided in Chapter 10, “Error Handling.”

The default for isErrorPage is false, as most JSP pages are not error-handling
pages.

For JSP 2.0, the default value of this attribute is false, and EL expressions are evalu-
ated at request time.

219

JSP Directives

11_57485x ch07.qxd 1/14/05 10:07 PM Page 219

TEAM LinG - Live, Informative, Non-cost and Genuine!

The errorPage attribute
This attribute is used in conjunction with the isErrorPage to handle errors in JSP. The value of the
errorPage attribute is a URL to a JSP that will be executed when an error occurs that is not handled in
the current page. For example, consider the following directive:

<%@ page errorPage=”showerr.jsp” %>

This will tell the container that any unhandled errors in the current JSP should be handed to the
shower.jsp page for handling. In practice, one single error-handling page can be used to handle errors
for many JSP pages. This means that many JSPs will have the errorPage attribute set to the same URL
value. You can find more details on how to handle errors in JSP in Chapter 10.

The contentType attribute
The contentType attribute tells the container what format the output of the JSP represents. This is very
important for the container at request time. The container needs to generate the correct HTTP header,
with a description of the content type, to the requesting browser for proper display. For example, con-
sider this directive:

<%@ page contentType=”text/html” %>

This directive tells the container that the response created by this JSP represents an HTML page. This
information is used by the container to generate an HTTP header that tells the client browser to display
the page as HTML.

The most common values for contentType are text/html for an HTML response, or text/xml for
an XML response, although you can specify any MIME type and an optional character encoding for its
value. MIME is an industry-standard way of describing Web content; see http://www.iana.org/
assignments/media-types/index.html for a list of MIME types.

The example in the following Try It Out exercise uses the contentType attribute of the <%@ page %>
directive to show how a directive gives request-time instructions to the container.

By default, if you created your JSP in standard syntax, contentType has the default
value text/html. If you have created your JSP in an XML-compatible syntax, then
contentType will have the default value text/xml.

There is no default value for errorPage. If not specified, the error not handled in
this page will be reported by the container as an uncaught exception.

220

Chapter 7

11_57485x ch07.qxd 1/14/05 10:07 PM Page 220

TEAM LinG - Live, Informative, Non-cost and Genuine!

Try It Out The <%@ page %> Directive
To try out the first example, make sure you have deployed ch07.war on your Tomcat 5 server. Review
Chapter 1, “Getting Started with JavaServer Pages,” if you do not remember how to deploy a WAR file.

Access the following URL using your browser to see the output of the first example:

http://localhost:8080/ch07/example1/index.jsp

The output of this page should be similar to Figure 7-2.

Figure 7-2: A JSP with text/html content type

Now, try accessing another URL using your browser. The second page in this example can be accessed
through the following:

http://localhost:8080/ch07/example1/index2.jsp

Even though this page contains exactly the same HTML code as the first, it is displayed completely dif-
ferently. This page has the content type set to text/xml. It is displayed as shown in Figure 7-3.

221

JSP Directives

11_57485x ch07.qxd 1/14/05 10:07 PM Page 221

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 7-3: Display of a JSP with text/xml content type

In Figure 7-3, using Internet Explorer as the browser, the page is displayed as an XML document in a col-
lapsible format. You can try expanding and collapsing the elements of the XML document by clicking
the little icons on the page.

How It Works
The first page displayed in this example is called index.jsp, and can be located at <Tomcat
Installation Directory>/webapps/ch07/example1/index.jsp. This page displays a line of
HTML text and a simple HTML table. The code in this index.jsp page is reproduced here:

<%@ page language=”java” contentType=”text/html” %>
<html>
<head>
</head>
<body>

<h1> This is an HTML page. </h1>
<table border=”1”>

<tr>
<td>This is a HTML table.</td>

</tr>

222

Chapter 7

11_57485x ch07.qxd 1/14/05 10:07 PM Page 222

TEAM LinG - Live, Informative, Non-cost and Genuine!

</table>
</body>
</html>

The highlighted line in the preceding code is the page directive, giving instruction to the container. In
this case, the container is told that the scripting language is Java (via the language attribute) and that
the page contains HTML (via the contentType attribute).

Because both attributes specified in the page directive are set to their default value, it isn’t necessary to
use the page directive for this page. You can confirm this yourself by removing the page directive from
the page, which will be rendered the same.

The effect of varying content type
When you access index2.jsp, the corresponding JSP file is located at <Tomcat Installation
Directory>/webapps/ch07/example1/index2.jsp. This JSP contains the following code:

<%@ page language=”java” contentType=”text/xml” %>
<html>
<head>
</head>
<body>

<h1> This is an HTML page. </h1>
<table border=”1”>

<tr>
<td>This is a HTML table.</td>

</tr>
</table>

</body>
</html>

The difference between this page and index.jsp is highlighted above. The only change is in the value
of the contentType attribute of the page directive. It has changed from “text/html” in index.jsp to
“text/xml” in index.jsp.

Remember that the contentType attribute in the page directive actually tells the container that the
response of the JSP should be considered an XML document. The container in turn sends an HTTP
header to the browser indicating that the content of text/xml is MIME type. Internet Explorer has the
capability to display an XML page using a specialized interactive collapsible stylesheet, which is why
the second page is displayed differently.

The taglib Directive
The second directive to discuss here is the familiar taglib directive. This directive, as illustrated in
many examples throughout earlier chapters, is used to tell the container which tag library a specific JSP
requires. It is also used to assign a prefix that is used within the JSP page to identify tags from a specific
tag library. After receiving this information, the container must locate the code for these tag libraries and
get them ready for use by the JSP page.

223

JSP Directives

11_57485x ch07.qxd 1/14/05 10:07 PM Page 223

TEAM LinG - Live, Informative, Non-cost and Genuine!

Two general usage forms for the taglib directive
The taglib directive has two general usage forms. The first one specifies the uri and prefix attributes,
and the second specifies the tag files.

Using a URI to map to the tag library
An example of this form is as follows:

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>

This form is typically used for tag libraries that have a URI associated with them. In this case, it is the
JSTL core tag library.

The taglib directive tells the container that the tag library associated with the URI http://java.sun.
com/jsp/jstl/core will be used within this JSP. It also tells the container that all of the tags used from
this tag library will be prefixed with the c: namespace within this JSP. Using this namespace prefix
enables you to use tags from different tag libraries having the same name.

This URI can be associated with a tag library through a TLD file. The TLD can be mapped using a taglib
map in the web.xml file, or via specific placement under the META-INF directory within a JAR archive.
For more information on tag libraries and URI mapping, see Chapter 6, “JSP Tag Libraries and JSTL.”

Specifying the directory of the tag files directly
The second usage form of the <%@ taglib %> directive is specific to tag files. Tag files are tag libraries
that are implemented using JSP. Their usage is covered in Chapter 11, “Building Your Own Custom JSP
Tag Library.” This form specifies a tagdir attribute instead of the uri attribute (you may recall its usage
in the very first example in Chapter 1):

<%@ taglib prefix=”wroxtags” tagdir=”/WEB-INF/tags” %>

Instead of using a URI to map to a specific tag library, the actual directory that contains the tag files is
specified directly. This form is very handy for testing and for the rapid development of tag files.

The taglib directive in this case tells the container that this JSP uses tag files residing at the relative
path /WEB-INF/tags (relative to the root directory of the application). It also tells the container that all
tags used from this tag library will be prefixed with wroxtags within this JSP.

In JSP 2.0, the tagdir attribute must contain a value that starts with /WEB-INF/tags. This means
that all tag files should be placed in subdirectories under the /WEB-INF/tags directory.

224

Chapter 7

11_57485x ch07.qxd 1/14/05 10:07 PM Page 224

TEAM LinG - Live, Informative, Non-cost and Genuine!

Attributes of the taglib directive
The following table describes the three possible attributes for the taglib directive.

Attribute Description

uri This is a URI that will be used by the container to locate a
TLD file that describes the tag library. The URI can be abso-
lute, as in http://java.sun.com/jsp/jstl/core, or rel-
ative, as in /tags/core. The URI is just used as a unique
identifier, and is not accessed directly.

tagdir This attribute tells the container to look in the specified
directory to find the tag files implementation for a tag
library. This attribute must contain a path that begins with
/WEB-INF/tags. This means that the tag files implementa-
tion specified with this attribute must reside under subdi-
rectories of WEB-INF/tags.

prefix This attribute tells the container that all tags of the associ-
ated tag library will be prefixed by the value of this attribute
when used within the current JSP. For example, if the prefix
specified is c, a tag from this tag library may appear as
<c:forEach>.

The following Try It Out section illustrates how the <%@ taglib %> directive can affect JSP operations.

Try It Out The <%@ taglib %> Directive
Make sure that you have ch07.war deployed. To see the output for this example, access the following
URL using your browser:

http://localhost:8080/ch07/example2/index.jsp

The output of this page should be similar to what is shown in Figure 7-4.

225

JSP Directives

11_57485x ch07.qxd 1/14/05 10:07 PM Page 225

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 7-4: Example 2 JSP output with no request parameter

This JSP makes use of both forms of the taglib directive. It has a JSTL <c:choose> construct that will
conditionally generate different output depending on the value of a pg request parameter. Try setting the
parameter using the following URL:

http://localhost:8080/ch07/example2/index.jsp?pg=mines

The resulting output should be similar to what is shown in Figure 7-5.

In Figure 7-5, the output has changed because the pg request parameter is set to a value of news.

Next, try this URL:

http://localhost:8080/ch07/example2/index2.jsp

Satisfy yourself that index2.jsp works in exactly the same way as index.jsp. Try also supplying a pg
parameter:

http://localhost:8080/ch07/example2/index2.jsp?pg=mine

It may come as a surprise to find out that index.jsp contains no <%@ taglib %> directive.

226

Chapter 7

11_57485x ch07.qxd 1/14/05 10:07 PM Page 226

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 7-5: Example 2 JSP output with a pg request parameter

How It Works
The first page displayed in this example is called index.jsp, and can be located at <Tomcat
Installation Directory>/webapps/ch07/example2/index.jsp.

This JSP page uses both forms of the <%@ taglib %> directive. The code in this index.jsp page is repro-
duced here:

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<%@ taglib prefix=”wt” tagdir=”/WEB-INF/tags/wroxtags” %>

<html>
<head>
</head>
<body>

<c:choose>
<c:when test=”${param.pg == ‘mine’}”>

<wt:myPage/>
</c:when>
<c:otherwise>

<wt:yourPage/>
</c:otherwise>

227

JSP Directives

11_57485x ch07.qxd 1/14/05 10:07 PM Page 227

TEAM LinG - Live, Informative, Non-cost and Genuine!

</c:choose>
</body>
</html>

The first form of the taglib directive, highlighted in the preceding code, tells the container to use the c
prefix for the URI http://java.sun.com/jsp/jstl/core, referencing the JSTL core tags.

The second occurrence of the taglib directive in the preceding code is as follows:

<%@ taglib prefix=”wt” tagdir=”/WEB-INF/tags/wroxtags” %>

This tells the container to use the prefix wt for all the tags contained in the tag files under the <Tomcat
Installation Directory>/webapps/ch07/WEB-INF/tags/wroxtags directory. If you browse to this
directory, you will find two tag files:

❑ myPage.tag

❑ yourPage.tag

The myPage.tag tag file contains the following:

<h1>This is my page!</h1>

And the yourPage.tag tag file contains this:

<h1>This is your page!</h1>

Take a look at the JSTL <c:choose> construct in index.jsp, highlighted here:

<html>
<head>
</head>
<body>

<c:choose>
<c:when test=”${param.pg == ‘mine’}”>

<wt:myPage/>
</c:when>
<c:otherwise>

<wt:yourPage/>
</c:otherwise>

</c:choose>
</body>
</html>

The two tag files are used to render the HTML output. If the pg parameter has the value mine, then the
<wt:myPage/> tag is executed, resulting in This is my page! in the output; otherwise, the
<wt:yourPage/> tag is executed, resulting in This is your page! in the output.

228

Chapter 7

11_57485x ch07.qxd 1/14/05 10:07 PM Page 228

TEAM LinG - Live, Informative, Non-cost and Genuine!

A JSP using tags without the taglib directive!
Now, open the index2.jsp file. Recall that this file performed identically to the index.jsp file. You
can find this file at <Tomcat Installation Directory>/webapps/ch07/example2/index2.jsp. The
content of this index2.jsp file is reproduced here:

<html>
<head>
</head>
<body>

<c:choose>
<c:when test=”${param.pg == ‘mine’}”>

<wt:myPage/>
</c:when>
<c:otherwise>

<wt:yourPage/>
</c:otherwise>

</c:choose>
</body>
</html>

No, this is not a misprint. It really does not have any <%@ taglib %> directive. Otherwise, it is identical
to the index.jsp file.

Without directives telling the container to use the tag libraries and associated prefix, how did the con-
tainer know what to do?

The <include-prelude> and <include-coda> elements
The missing taglib directive, of course, is only an illusion. In fact, index2.jsp uses the exact same two
taglib directives as index.jsp uses. The only difference is that they are specified somewhere else.
They are specified in an <include-prelude> element, to be exact.

If you examine the web.xml deployment descriptor for the ch07 application, located at <Tomcat
Installation Directory>/webapps/ch07/WEB-INF/web.xml, you will find the <include-prelude>
element:

<?xml version=”1.0” encoding=”ISO-8859-1”?>
<web-app xmlns=”http://java.sun.com/xml/ns/j2ee”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd”
version=”2.4”>

<description>
Wrox Beginning JavaServer Pages Examples - Chapter 7

</description>
<display-name>Chapter 7 Example (Wrox Beginning JavaSever Pages)</display-name>

<jsp-config>

229

JSP Directives

11_57485x ch07.qxd 1/14/05 10:07 PM Page 229

TEAM LinG - Live, Informative, Non-cost and Genuine!

<jsp-property-group>
<url-pattern>/example2/index2.jsp</url-pattern>
<include-prelude>/WEB-INF/jspf/pre1.jspf</include-prelude>

</jsp-property-group>
</jsp-config>

</web-app>

The <include-prelude> element is a sub-element of the <jsp-property-group> element (specifying
properties for a group of JSPs related to a URL pattern), which in turn is a sub-element of the
<jsp-config> element (a configuration element for JSP) within the web.xml file. Therefore, to use
the <include-prelude> element, you must make sure you have the other two elements enclosing it
(as shown in the previous web.xml listing). See Chapter 16, “The Role of JSP in the Wider Context: Web
Applications,” for a description of the possible sub-elements of <jsp-config> and how they are used.

The typical use of the <include-prelude> element is to facilitate the implicit automatic inclusion of
commonly used JSP lines in a project. For example, if you are in a project that uses ten different tag
libraries on every JSP, specifying ten taglib directives at the top of every page can become tedious.

Instead, you can define an <include-prelude> element with an associated <url-pattern> element to
apply the ten taglib directives to every JSP page.

The body of the <include-prelude> tag should be a jsp or jspf (JSP fragment) file that contains the
lines to be included. If you take a look at the <Tomcat Installation Directory>/webapps/ch07/
WEB-INF/jspf/pre1.jspf file, you will find the two missing <%@ taglib %> directives:

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<%@ taglib prefix=”wt” tagdir=”/WEB-INF/tags/wroxtags” %>

If you take a look at the <url-pattern> associated with this <include-prelude> element, it is as follows:

<url-pattern>/example2/index2.jsp</url-pattern>

This pattern uniquely specifies one JSP, the index2.jsp file. In practice, since you will likely want to
apply the directives to a set of JSPs, you may use a more general <url-pattern>, such as the following:

<url-pattern>*.jsp</url-pattern>

Using this <url-pattern> instead will add the content of pre1.jspf to every JSP.

Note that there is an <include-coda> element. The <include-coda> element works identically to
the <include-prelude> element, except that it will place the specified JSP fragment at the end of the
JSPs matching the <url-pattern>.

The action of <include-prelude> or <include-coda> is called implicit include. This is because these
tags include extra content in the JSP implicitly. This is in contrast to the explicit include mechanism: the
<%@ include %> directive, discussed next.

230

Chapter 7

11_57485x ch07.qxd 1/14/05 10:07 PM Page 230

TEAM LinG - Live, Informative, Non-cost and Genuine!

The include Directive
The last directive to cover is the <%@ include %> directive. The general usage form of this directive is as
follows:

<%@ include file=”news.jsp” %>

Here the file attribute is specified using a relative URL. For example, the news.jsp file is in the same
directory as the JSP including it. This directive has only a single mandatory file attribute.

This directive tells the container to merge the content of other external files with the current JSP during
the translation phase.

The include performed at translation time
It is very important to reiterate that the merging of the included files occurs at translation time, and not
at request time. This means the following:

❑ None of the included JSP code is executed; it is not even compiled yet.

❑ The files are first merged and then the entire merged output is translated as a unit.

❑ If the included files are ever changed, there is no general way for the container to know and
recompile the entire translation unit.

The standard <jsp:include> action occurs at request time and can overcome all of the preceding lim-
itations. This action, along with others, is covered in detail in the next chapter.

Try It Out The <%@ include %> Directive and XML Representation
The last example in this chapter works with the <%@ include %> directive. To try it out, first make sure
you have ch07.war deployed.

With a browser, access the following URL:

http://localhost:8080/ch07/example3/index.jsp

The output of this page should be similar to Figure 7-6.

231

JSP Directives

11_57485x ch07.qxd 1/14/05 10:07 PM Page 231

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 7-6: Testing the <%@ include %> directive

Try supplying a pg request parameter as in the previous Try It Out exercise. Try setting the parameter to
news using the following URL:

http://localhost:8080/ch07/example3/index.jsp?pg=news

The resulting output should be similar to Figure 7-7.

Instead of a data page, a news page is now displayed. The logic of this page is very similar to the logic in
the previous Try It Out exercise. Unlike that example, this example actually uses the <%@ include %>
directive instead of custom tag files.

Finally, try to access this URL:

http://localhost:8080/ch07/example3/xindex.jsp

232

Chapter 7

11_57485x ch07.qxd 1/14/05 10:07 PM Page 232

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 7-7: Using the <%@ include %> directive to include a news page

This is a JSP created as an XML document, using the alternative XML syntax. Note that the output is
identical to index.jsp.

Now set the pg request parameter to mines, using the following URL:

http://localhost:8080/ch07/example3/xindex.jsp?pg=news

Again, even though it is using completely different notation, xindex.jsp works exactly the same way
as index.jsp.

How It Works
The two JSP pages that are included by index.jsp and xindex.jsp are called news.jsp and
data.jsp.

The news.jsp file, located at <Tomcat Installation Directory>/webapps/ch07/example3/
news.jsp contains the following code:

<h2>This is the news page!</h2>

233

JSP Directives

11_57485x ch07.qxd 1/14/05 10:07 PM Page 233

TEAM LinG - Live, Informative, Non-cost and Genuine!

The second included file, called data.jsp, is located at <Tomcat Installation Directory>/
webapps/ch07/example3/data.jsp and contains the following code:

<h2>This is the data page!</h2>

The index.jsp file is coded in regular JSP syntax:

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<html>
<head>
</head>
<body>

<c:choose>
<c:when test=”${param.pg == ‘news’}”>

<%@ include file=”news.jsp” %>
</c:when>
<c:otherwise>

<%@ include file=”data.jsp” %>
</c:otherwise>

</c:choose>
</body>
</html>

There is nothing new or surprising on this index.jsp page. The first taglib directive’s URI references
the JSTL library:

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>

Then the rendering of the HTML page starts, and a JSTL <c:choose> logical flow control construct is
used to select one of two <%@ include %> directives. These directives are highlighted in the following
code:

<c:choose>
<c:when test=”${param.pg == ‘news’}”>

<%@ include file=”news.jsp” %>
</c:when>
<c:otherwise>

<%@ include file=”data.jsp” %>
</c:otherwise>

</c:choose>

The first include directive tells the container to insert the contents of the news.jsp file into the
index.jsp file at translation time, and the second include directive does the same for the data.jsp
file.

How the include directive and the <jsp:include> standard action differ
Note that unlike the <jsp:include> standard action, the include directive is evaluated at page trans-
lation time. This means that the preceding JSP fragment actually becomes the following JSP fragment for
translation purposes:

234

Chapter 7

11_57485x ch07.qxd 1/14/05 10:07 PM Page 234

TEAM LinG - Live, Informative, Non-cost and Genuine!

<c:choose>
<c:when test=”${param.pg == ‘news’}”>

<h2>This is the news page!</h2>
</c:when>
<c:otherwise>

<h2>This is the data page!</h2>
</c:otherwise>

</c:choose>

The content of both news.jsp and data.jsp is inserted into the JSP before the page is compiled by the
container.

Figure 7-8 illustrates the translation-time operation of the include directive, as contrasted with the
request-time execution of a <jsp:include> action.

Figure 7-8: Translation-time operation of include versus the request-time execution of <jsp:include>

In Figure 7-8, the top flow shows what happens when the include directive is used. In this flow, both
data.jsp and news.jsp are merged into the index.jsp before the entire JSP is translated into Java
source code and then compiled into Java-executable code.

translate
and

compile

news.jsp

index.jsp

index.jsp

Using <%@ include %> Directive:

Using <jsp:include /> Action:

binary
bytecode

request and response

data.jsp

translate
and

compile

binary
bytecode

translate
and

compile

bytecode

bytecode

news.jsp

either one
depending on

request
parameter pg

data.jsp
translate

and
compile

request and response

235

JSP Directives

11_57485x ch07.qxd 1/14/05 10:07 PM Page 235

TEAM LinG - Live, Informative, Non-cost and Genuine!

The bottom flow shows the sequence when the <jsp:include> standard action is used. In this case,
both data.jsp and news.jsp are string attributes of the action that will not be evaluated during trans-
lation or compilation. This means that neither file will be accessed until the compiled code of index.jsp
is executed at request time. When a request comes into the index.jsp binary, the <c:choose> control
flow construct ensures that only one of the two alternatives will be included. At this time, either the
news.jsp or data.jsp will be translated into Java source code, compiled into executable bytecode,
and then executed.

Translation-time detection of errors versus request-time detection of errors
If the data.jsp and news.jsp files are missing, and the <%@ include %> directive is used, the error will
be detected at translation time. If the <jsp:include> standard action is used, however, the error will
not be detected until a request for service is received. In fact, if either news.jsp or data.jsp is missing
and the branch is not taken, the use of the <jsp:include> action will not detect the missing JSP file at
all. For example, consider the following JSP code:

<c:choose>
<c:when test=”${param.pg == ‘news’}”>

<jsp:include page=”news.jsp” />
</c:when>
<c:otherwise>

<jsp:include page=”data.jsp” />
</c:otherwise>

</c:choose>

If the pg input parameter contains the value news, then only news.jsp will be accessed. In this situa-
tion, the code will not produce an error even if data.jsp does not exist. This is because the compiled
code will not try to access data.jsp.

Converting the index.jsp file into XML form
xindex.xml contains the XML form of index.jsp. It is identical to xindex.jsp. The content of the file
is reproduced here:

<jsp:root
xmlns:c=”http://java.sun.com/jsp/jstl/core”
xmlns:jsp=”http://java.sun.com/JSP/Page”
version=”2.0”>
<jsp:directive.page contentType=”text/html”/>
<html>
<head>
</head>
<body>

<c:choose>
<c:when test=”${param.pg == ‘news’}”>

<jsp:directive.include file=”news.jsp” />
</c:when>
<c:otherwise>

<jsp:directive.include file=”data.jsp” />
</c:otherwise>

</c:choose>
</body>

236

Chapter 7

11_57485x ch07.qxd 1/14/05 10:07 PM Page 236

TEAM LinG - Live, Informative, Non-cost and Genuine!

</html>
</jsp:root>

Note the addition of a <jsp:root> element. This element is discussed in the next section.

The original page directive is now converted to its XML syntax:

<jsp:directive.page contentType=”text/html”/>

Note the use of the contentType attribute here. If the container is not explicitly asked to render the
response as “text/html” type via this directive, it will render it as an XML document by default.

The two include directives are also converted to their equivalent XML syntax:

<jsp:directive.include file=”news.jsp” />
...

<jsp:directive.include file=”data.jsp” />

You can use your browser to open this xindex.xml file directly. If you are using Internet Explorer, open
the xindex.xml file directly by clicking File ➪ Open, and then selecting the file, as shown in Figure 7-9.

Figure 7-9: Opening xindex.xml for viewing

237

JSP Directives

11_57485x ch07.qxd 1/14/05 10:07 PM Page 237

TEAM LinG - Live, Informative, Non-cost and Genuine!

After you have loaded the XML file, Internet Explorer will display it in the collapsible format, as shown
in Figure 7-10.

Figure 7-10: Display of xindex.xml using Internet Explorer

Converting directives to XML syntax
Unlike the page and include directives, the taglib directive has no associated <jsp:directive.
taglib /> directive. Instead, a tag library directive will convert to an XML namespace specification.

In the case of xindex.xml, a new <jsp:root> element is introduced:

<jsp:root
xmlns:c=”http://java.sun.com/jsp/jstl/core”
xmlns:jsp=”http://java.sun.com/JSP/Page”
version=”2.0”>

This element wraps the content that is to be processed by the JSP container. It also serves as an enclosing
tag to declare the XML namespaces that will be used. In this case, the prefix c is mapped to the names-
pace of the JSTL core library — via the URI http://java.sun.com/jsp/jstl/core.

238

Chapter 7

11_57485x ch07.qxd 1/14/05 10:07 PM Page 238

TEAM LinG - Live, Informative, Non-cost and Genuine!

The JSP standard actions are prefixed with jsp:. The second namespace is specified with this jsp: pre-
fix and mapped via the URI http://java.sun.com/JSP/Page. Converting <%@ taglib %> to XML
namespaces ensures that the resulting document is a well-formed XML document.

Summary
Directives are instructions for the container, embedded within a JSP page. This instruction can affect the
container’s behavior during any phase of JSP processing. This chapter covered these JSPs in detail. To
summarize what we have covered:

❑ When a JSP is processed by the container, it goes through three separate phases. In the transla-
tion phase, the JSP is translated to Java source code. In the compilation phase, the Java source
code is compiled to bytecode executable. The resulting binary is then used in the request pro-
cessing phase to handle incoming requests.

❑ There are three major JSP directives: page, taglib, and include.

❑ The page directive has many attributes that give the container instructions and information
specific to the JSP page.

❑ The taglib directive is used to declare the use of tag libraries.

❑ The include directive can be used to include external text files or JSP fragments during the
translation phase of processing. This is unlike the <jsp:include> standard action, which oper-
ates during request time.

❑ Under some circumstances, it may be necessary to have JSPs that are well-formed XML docu-
ments. JSP 2.0 supports an alternative XML syntax. This syntax enables the creation of JSPs that
are well-formed XML documents.

Exercises
1. Convert the index.jsp in example 1 to a JSP using XML syntax. Call this xindex.jsp. Test this

resulting xindex.jsp on your Tomcat 5 server to make sure it works identically.

2. For the third Try It Out exercise, apply the <include-prelude> element in web.xml to elimi-
nate the need to specify the taglib directive for index.jsp.

239

JSP Directives

11_57485x ch07.qxd 1/14/05 10:07 PM Page 239

TEAM LinG - Live, Informative, Non-cost and Genuine!

11_57485x ch07.qxd 1/14/05 10:07 PM Page 240

TEAM LinG - Live, Informative, Non-cost and Genuine!

8
JSP Standard Actions

Standard actions are tags that are built right into every JSP implementation. These tags can be used
without the addition of any additional tag libraries. These actions are very frequently used in JSP,
and earlier examples have used them repeatedly. This chapter provides a more in-depth discus-
sion of each of these standard actions, and reveals some subtlety in the usage and application of
these workhorse tags.

The standard actions covered within this chapter include the following:

❑ <jsp:useBean>

❑ <jsp:setProperty>

❑ <jsp:getProperty>

❑ <jsp:include>

❑ <jsp:forward>

❑ <jsp:param>

❑ <jsp:plugin>

❑ <jsp:params>

❑ <jsp:fallback>

While there are other standard actions in JSP, they pertain to the creation of tag files, which are
covered in more detail in Chapter 11, “Building Your Own Custom JSP Tag Library.”

This chapter presents the syntax and most common usage of each of these standard actions. A
series of four hands-on examples will guide you through their typical use.

12_57485x ch08.qxd 1/14/05 10:08 PM Page 241

TEAM LinG - Live, Informative, Non-cost and Genuine!

JSP Standard Actions Are Built-in Tags
JSP standard actions are tags that are available in all JSP implementations. This set of available tags has
not changed significantly between JSP 1.2 and JSP 2.0. Therefore, you can count on these standard
actions to be supported by all JSP containers.

All standard actions are prefixed by jsp: and have the following general form:

<jsp:tagname ... attributes />

Some standard actions also have a body that can include other tags, typically parameters. For example:

<jsp:tagname ... attributes >
<jsp:param ... attributes... />
... more parameters

</jsp:tagname>

The standard actions can be classified into six groups:

❑ Actions that work with and manipulate JavaBean instances within JSPs: This group includes
the <jsp:useBean> action, the <jsp:setProperty> action, and the <jsp:getProperty>
action.

❑ Actions that include the output from additional JSP or Web resources at request time: This
group includes the <jsp:include> standard action.

❑ Actions for forwarding the incoming request to another JSP or Web resource for further
processing: This group includes the <jsp:forward> standard action.

❑ Actions for specifying parameters within the body of other standard actions: This group
includes the <jsp:param> standard action.

❑ Actions for embedding Java objects such as applets and JavaBeans within a client’s Web
page: This group includes the <jsp:plugin>, <jsp:params>, and <jsp:fallback> standard
actions.

❑ Actions used only within tag files: This group includes the <jsp:attribute>, <jsp:body>,
<jsp:invoke>, <jsp:doBody>, <jsp:element>, <jsp:text>, and <jsp:output> standard
actions.

The following sections cover each of these groups in turn except for those actions used only within tag
files. Those actions are covered later in Chapter 11, where they are put to use within custom tag files.

The first group presented here are the standard actions that work with JavaBeans.

Actions for Working with JavaBeans
Three standard actions are used in the creation and access of JavaBeans:

❑ <jsp:useBean> for creating a JavaBean instance or associating a name with an existing
JavaBean instance

242

Chapter 8

12_57485x ch08.qxd 1/14/05 10:08 PM Page 242

TEAM LinG - Live, Informative, Non-cost and Genuine!

❑ <jsp:setProperty> to set the property of a JavaBean instance

❑ <jsp:getProperty> to render the value of a JavaBean property

JavaBeans are objects written in the Java programming language that follow a specific set of coding con-
ventions. A full description of the JavaBean conventions is beyond the scope of this book. For our pur-
pose, it is sufficient to know that JavaBeans are Java objects that have properties. These properties can be
read via a get operation, or changed via a set operation.

Before a JavaBean instance can be accessed and manipulated within a JSP page, one must use the
<jsp:useBean> standard action to make it available within the page.

The <jsp:useBean> standard action
The inconspicuous <jsp:useBean> standard action can easily be the most complex standard action in
all of JSP.

The main purpose of <jsp:useBean> can be summarized as follows:

❑ Search for a JavaBean by the name specified if available.

❑ If the bean is found, make it available to this JSP page.

❑ If the bean cannot be found, then create an instance of it.

Once the JavaBean instance is created, it will be accessible within the page using the name specified.

The exact outcome of the action depends on the attributes that you specify. There are a variety of differ-
ent ways to use this action, as shown next.

Using the <jsp:useBean> standard action
The basic usage syntax of this standard action is as follows:

<jsp:useBean id=”......” scope=”....” type=”....” />

The attributes of <jsp:useBean> are tabulated in the following table.

Attribute Name Description

id The name of the JavaBean instance to look for. It is also the name
used to refer to the new JavaBean instance if one is created.

This attribute must be unique within a JSP (and any included content
using the <%@ include %> directive). You cannot have two
<jsp:useBean> standard actions using the same id attribute.

This is a mandatory attribute.

Table continued on following page

243

JSP Standard Actions

12_57485x ch08.qxd 1/14/05 10:08 PM Page 243

TEAM LinG - Live, Informative, Non-cost and Genuine!

Attribute Name Description

class This is the full Java class name of the JavaBean. It is used to create a
new instance if the named bean cannot be found.

This is an optional attribute, but either the class or type attribute
(or both) must be specified.

type This is a Java interface that the JavaBean instance implements, or a
superclass that the JavaBean instance extends. This type is used in
the generation of Java source code during the translation phase. The
first Try it Out exercise will clarify the use of this attribute.

This is an optional attribute, but either the class or type attribute
(or both) must be specified.

scope Specifies the scope in which the standard action will attempt to find a
scoped attribute with the name corresponding to the id attribute.

This is an optional attribute. The default value when not specified is
the page scope.

Alternatively, this tag can have a body:

<jsp:useBean id=”......” scope=”....” type=”....”>

... content of body
</jsp:useBean>

When using this syntax, the body of the tag will be evaluated only if the <jsp:useBean> executes suc-
cessfully and a JavaBean instance has been located or created.

Using two <jsp:useBean> standard actions with the same id attribute within the same JSP is consid-
ered an error.

The following Try It Out example provides a chance to see how this standard action actually works.

Try It Out The <jsp:useBean> and <jsp:setProperty> Standard Actions
The examples are bundled in the deployable ch08.war. First make sure that your Tomcat 5 server is
running and then deploy ch08.war to the server. Review Chapter 1, “Getting Started with JavaServer
Pages,” if you do not remember how to deploy a WAR archive.

Because the id attribute is used to generate a Java variable, you must ensure that the
attribute follows Java variable naming conventions. This includes the following
restrictions: the id must begin with a letter, $, or “_”, but not a number or other sym-
bol, and the id must not be a Java keyword, Boolean literal (true or false), or null.

244

Chapter 8

12_57485x ch08.qxd 1/14/05 10:08 PM Page 244

TEAM LinG - Live, Informative, Non-cost and Genuine!

Open your browser, and access the following URL:

http://localhost:8080/ch08/example1/index.jsp

The page displays a simple table (see Figure 8-1) with two values from a Product JavaBean.

Figure 8-1: Displaying properties of a product JavaBean

The Product JavaBean instance is created using a <jsp:useBean> standard action. However, the sku
property of this JavaBean instance is printed using embedded Java code within a scripting element; and
the name of the product is printed using an EL expression.

How It Works
The only page displayed in this example is index.jsp, which is located at <Tomcat Installation
Directory>/webapps/ch08/example1/index.jsp. This page uses the <jsp:useBean> standard
action to create a JavaBean instance. The JavaBean instance created is an instance of the com.wrox.
begjsp.ch03.Product class from the e-store example in Chapter 3, “JSP Basics 2: Generalized
Templating and Server Scripting.” This instance is then used by both scripting elements in the Java pro-
gramming language, as well as the EL expression. The code in this index.jsp page is reproduced here:

<html>
<head>
</head>

245

JSP Standard Actions

12_57485x ch08.qxd 1/14/05 10:08 PM Page 245

TEAM LinG - Live, Informative, Non-cost and Genuine!

<body>
<jsp:useBean id=”myProduct” class=”com.wrox.begjsp.ch03.Product”>

<jsp:setProperty name=”myProduct” property=”sku” value=”12345”/>
<jsp:setProperty name=”myProduct” property=”name” value=”DSL Modem”/>

</jsp:useBean>
<table border=”1”>

<tr>
<td>Sku:</td><td><%= myProduct.getSku() %></td>

</tr>
<tr>

<td>Name:</td><td>${myProduct.name}</td>
</tr>

</table>

<jsp:useBean id=”myMap” class=”java.util.HashMap” />
<jsp:useBean id=”myMap2” class=”java.util.HashMap” type=”java.util.Map”/>

</body>
</html>

The highlighted code in the preceding listing shows the creation and usage of the Product JavaBean
instance.

Searching for a scoped named attribute
The <jsp:useBean> standard action is used to create the Product instance with the following code:

<jsp:useBean id=”myProduct” class=”com.wrox.begjsp.ch03.Product”>
<jsp:setProperty name=”myProduct” property=”sku” value=”12345”/>
<jsp:setProperty name=”myProduct” property=”name” value=”DSL Modem”/>

</jsp:useBean>

Note first that this tag has a body. The body has two <jsp:setProperty> standard actions (examined
in the next section) that set the sku and name properties. sku is set to 12345, while the name property is
set to “DSL Modem”. This body will be executed only if the <jsp:useBean> can locate or create the
myProduct instance successfully.

In the <jsp:useBean> standard action, only the id and class attributes are specified. The other two
attributes, scope and type, are not specified. This will first cause a search for a named attribute called
myProduct in the default page scope.

If an attribute named myProduct can be located in the page scope, it will be made available within the
current JSP page. If the attribute cannot be found in any page scope, then an instance of the class
com.wrox.begjsp.ch03.Product is created. This instance is then attached to the page scope as an
attribute named myProduct.

Note that if the attribute with the name myProduct is found, but it is not of the com.wrox.begjsp.
ch03.Product class, an error will occur.

246

Chapter 8

12_57485x ch08.qxd 1/14/05 10:08 PM Page 246

TEAM LinG - Live, Informative, Non-cost and Genuine!

In this particular case, myProduct cannot be found, and a new instance of the com.wrox.begjsp.ch03.
Product JavaBean is created.

Container-generated Java source code
That’s not all that this <jsp:useBean> standard action does. The complexity of this tag is evident when
you consider the following:

❑ There is scriptlet code (i.e., embedded Java code) that needs to use the JavaBean.

❑ EL expressions also need to access the JavaBean.

The code that prints out the sku property of the Product is written in embedded Java code:

<td>Sku:</td><td><%= myProduct.getSku() %></td>

The code that prints the name property of the Product instance is coded as an EL expression:

<td>Name:</td><td>${myProduct.name}</td>

To make the JavaBean easy to access for both the embedded Java code writer and the EL expression user,
the <jsp:useBean> standard action must do both of the following:

❑ Create a Java variable that references the JavaBean instance; this will enable any embedded
Java code to access a property using the invocation of the myProduct.get<property name>()
getter method

❑ Attach the JavaBean instance as an attribute named myProduct to the page scope; this will
enable EL expressions to access a property of the bean using the simple myProduct
.<property name> notation

If you specify the scope attribute, it will change the scoping parameter passed into the PageContext
.getAttribute() call, causing it to search for the attribute only in the specified scope.

Figure 8-2 illustrates the operation of the <jsp:useBean> standard action in this example.

As shown in Figure 8-2, to create the Java language–accessible JavaBean reference called myProduct, it is
necessary to generate custom code during the translation phase of JSP processing.

You can actually see this generated code in your installation of Tomcat 5. Locate the file called
index_jsp.java at <Tomcat Installation
Directory>/work/Catalina/localhost/ch08/org/apache/jsp/example1/index_jsp.java.

This is the result of the translation phase. When you first access your JSP after a change, the container
will retranslate your JSP page into this Java source code file.

247

JSP Standard Actions

12_57485x ch08.qxd 1/14/05 10:08 PM Page 247

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 8-2: Operation of the <java:useBean> standard action

If you look inside this index_jsp.java file, the Java source code that the container will generate for the
<jsp:useBean> standard action is similar to the following:

com.wrox.begjsp.ch03.Product myProduct = null;
synchronized (_jspx_page_context)
{

myProduct = (com.wrox.begjsp.ch03.Product)
jspx_page_context.getAttribute(“myProduct”, PageContext.PAGE_SCOPE);

if (myProduct == null)
{

myProduct = new com.wrox.begjsp.ch03.Product();
_jspx_page_context.setAttribute(“myProduct”, myProduct,

PageContext.PAGE_SCOPE);
out.write(“\n”);
out.write(“ “);
org.apache.jasper.runtime.JspRuntimeLibrary.introspecthelper(

_jspx_page_context.findAttribute(“myProduct”),
“sku”, “12345”, null, null, false);

out.write(“\n”);
out.write(“ “);
org.apache.jasper.runtime.JspRuntimeLibrary.introspecthelper(_

JSP File .java Source File

JSP Container

<jsp:useBean> java variable

translation

compilation

2) Attaches an attribute
 called myProduct
 to the page scope

1) Generates a Java
 variable called myProduct

Java
bytecode

page
scope
object

Translation Phase Compilation Phase Request Phase

248

Chapter 8

12_57485x ch08.qxd 1/14/05 10:08 PM Page 248

TEAM LinG - Live, Informative, Non-cost and Genuine!

_jspx_page_context.findAttribute(“myProduct”), “name”,
“DSL Modem”, null, null, false);

out.write(‘\n’);
out.write(‘ ‘);
out.write(‘ ‘);

}
}

In the highlighted source code, a Java variable called myProduct of the com.wrox.begjsp.ch03.Product
class is first declared. Next, a synchronized block is defined. This block contains the code that searches for a
named attribute in the page scope by calling the PageContext’s getAttribute() method.

Synchronizing a Java reference with an attached attribute
If the myProduct attribute can be found in the page scope, it is assigned to the newly created myProduct
Java variable. This enables the Java code generated to access this JavaBean instance through the myProduct
variable. The page scope attribute is already accessible to EL expressions.

If the PageContext’s getAttribute() method returns null, an attribute named myProduct cannot be
found in the page scope. In this case, a new Product instance is created and attached to the page scope
as the myProduct attribute, via the PageContext’s setAttribute() method. The same instance is also
assigned to the Java myProduct variable.

The value for the attribute named “myProduct” and the Java variable named myProduct are assigned
within the same synchronized block. This is necessary to ensure that the two values act as one from the
perspective of the JSP developer. The synchronized block ensures that no other concurrently executing
JSP code can modify the values during the assignment.

Using a JavaBean in scripting elements
In index.jsp, the following JSP code renders the sku property value of Product:

<td>Sku:</td><td><%= myProduct.getSku() %></td>

In index_jsp.java, it is translated into the following Java source code:

out.write(“ <td>Sku:</td><td>”);
out.print(myProduct.getSku());
out.write(“</td>\n”);

Because myProduct is a Java language variable that refers to the newly instantiated Product object (cre-
ated by the <jsp:useBean> standard action), the call to myProduct.getSku() will yield the value of
this property.

Using a JavaBean in an EL expression
In index.jsp, the following JSP code renders the name property value of Product:

<td>Name:</td><td>${myProduct.name}</td>

249

JSP Standard Actions

12_57485x ch08.qxd 1/14/05 10:08 PM Page 249

TEAM LinG - Live, Informative, Non-cost and Genuine!

In index_jsp.java, the corresponding Java source code generated during the translation phase is as
follows:

out.write(“ <td>Name:</td><td>”);
out.write((java.lang.String)
org.apache.jasper.runtime.PageContextImpl.proprietaryEvaluate(

“${myProduct.name}”, java.lang.String.class,
(PageContext)_jspx_page_context, null, false));

out.write(“</td>\n”);

The EL expression parser is called to evaluate ${myProduct.name}. In Chapter 5, “JSP and EL,” you
saw that this will cause a search through the four scoping implicit objects to find an attribute with the
name myProduct. This attribute will be found immediately at the page scope. The <jsp:useBean>
standard action has attached it there previously. The “.” operator on the myProduct JavaBean will cause
the getName() method of the bean to be invoked, rendering the value of the property.

Effect of the type attribute in <jsp:useBean>
The last two JSP code lines within the HTML <body> in the index.jsp page are as follows:

<jsp:useBean id=”myMap” class=”java.util.HashMap” />
<jsp:useBean id=”myMap2” class=”java.util.HashMap” type=”java.util.Map”/>

These two lines will each create an instance of a Java HashMap. Both instances are attached to page scope
as named attributes. The first one will be named “myMap” and the second one will be named “myMap2”.

Two Java language variables will also be created when the JSP is translated to Java source code. These
two JSP lines will translate to very different Java code.

The reason they are different is the use of the type attribute in the second line. The type attribute
actually specifies the type of the Java language variable to create. In the case of myMap2, it is not the
java.util.HashMap class, but the java.util.Map interface.

If you take a look at the generated code in index_jsp.java, you will see that the useBean tag without
the type attribute generates:

java.util.HashMap myMap = null;
synchronized (_jspx_page_context)
{

myMap = (java.util.HashMap) _jspx_page_context.getAttribute(

“myMap”, PageContext.PAGE_SCOPE);

if (myMap == null)
{

myMap = new java.util.HashMap();
_jspx_page_context.setAttribute(

“myMap”, myMap, PageContext.PAGE_SCOPE);
}

}

The highlighted lines show that the myMap Java variable is declared to be of type java.util.HashMap.

250

Chapter 8

12_57485x ch08.qxd 1/14/05 10:08 PM Page 250

TEAM LinG - Live, Informative, Non-cost and Genuine!

The generated code for the second JSP line, the one that specifies a type attribute, is as follows:

java.util.Map myMap2 = null;
synchronized (_jspx_page_context)
{

myMap2 = (java.util.Map) _jspx_page_context.getAttribute(“myMap2”,
PageContext.PAGE_SCOPE);

if (myMap2 == null)
{

myMap2 = new java.util.HashMap();
_jspx_page_context.setAttribute(“myMap2”, myMap2,

PageContext.PAGE_SCOPE);
}

}

The highlighted lines in the preceding code show that the myMap2 Java variable is declared to be of type
java.util.Map. This is the type that is specified in the type attribute of the <jsp:useBean> custom
action.

The <jsp:setProperty> standard action
In index.jsp, within the body of the <jsp:useBean> standard action, you can find two <jsp:
setProperty> standard actions. These actions are used to set the properties of the newly created
JavaBean instance; they will be executed only if the instance is created successfully.

The general usage form of this standard action is as follows:

<jsp:setProperty name=”.. JavaBean name...” property=”.. property name ...” [
value=”..value to set..” | param=”... parameter name...”] />

This standard action does not support a body.

The following can be used to set the value(s) of a JavaBean via the <jsp:setProperty> standard
action:

❑ A string constant

❑ A request parameter

❑ An expression (for example, an EL expression)

The attributes of this standard action are discussed in the following sections.

The name attribute

The specified name attribute is used to search through the scopes for an attached attribute, for a
JavaBean instance with the same name. The scope search order is as follows:

1. Page scope

2. Request scope

3. Session scope (if a session has been created by the container)

4. Application scope

251

JSP Standard Actions

12_57485x ch08.qxd 1/14/05 10:08 PM Page 251

TEAM LinG - Live, Informative, Non-cost and Genuine!

If an attribute with the specified name cannot be found in any of the scopes, an error will be issued dur-
ing runtime.

The attribute found must have been previously made visible within the page by a <jsp:useBean>
standard action.

The property attribute

The property attribute is used to set a property of the JavaBean that can be set (i.e., not a read-only
property). The property attribute can also contain the special “*” notation. This will cause the container
to match each request parameter against the properties of the JavaBean, and perform an assignment for
each property with a corresponding request parameter name. The upcoming Try It Out example shows
how this can be very useful for form processing.

The value or param attribute

Either the value or the param attribute need to be specified. If a value is specified, it is used to set the
specified property directly. If a param attribute is specified, the request parameter with the correspond-
ing name is used to set the value of the property.

Java code generated from <jsp:setProperty>

In index.jsp, within the body of the <jsp:useBean> standard action, are two <jsp:setProperty>
standard actions:

<jsp:setProperty name=”myProduct” property=”sku” value=”12345”/>
<jsp:setProperty name=”myProduct” property=”name” value=”DSL Modem”/>

The corresponding generated Java source code, after translation to index_jsp.java, is as follows:

org.apache.jasper.runtime.JspRuntimeLibrary.introspecthelper(_
_jspx_page_context.findAttribute(“myProduct”), “sku”, “12345”, null, null, false);

out.write(“\n”);
out.write(“ “);
org.apache.jasper.runtime.JspRuntimeLibrary.introspecthelper(

jspx_page_context.findAttribute(“myProduct”), “name”, “DSL Modem”, null,

null, false);

The Java language’s introspection feature is used here to set the actual property value. The PageContest.
findAttribute() method is used to locate the JavaBean. As mentioned earlier, this method will search
through the four different scopes — –page, request, session, and application — in an attempt to find the
named attribute.

Try It Out The <jsp:setProperty> and <jsp:getProperty> Standard Actions
This second example shows how the <jsp:setProperty> standard action can simplify form process-
ing. To access this example, make sure that your Tomcat 5 server is running, with ch08.war deployed.
Access the following URL with your browser:

http://localhost:8080/ch08/example2/index.jsp

252

Chapter 8

12_57485x ch08.qxd 1/14/05 10:08 PM Page 252

TEAM LinG - Live, Informative, Non-cost and Genuine!

This will display an HTML form (see Figure 8-3) for you to enter some product details.

Figure 8-3: Product information entry form

Enter the following information for this product:

❑ For SKU, enter 32727.

❑ For Name, enter LCD TV - 21 inch.

❑ For Description, enter Excellent Picture!

❑ For Price, enter 99999.

Next, click the Submit Query button.

This will submit the form for processing. The JSP processing the form is called procprod.jsp. It uses
the <jsp:setProperty> standard action to pass all the incoming request parameters to a JavaBean. In a
production environment, this bean may be passed to a framework or back-end business logic for further
processing. In this case, procprod.jsp simply uses the <jsp:getProperty> standard action to render
the property values of the bean in a table. Figure 8-4 reveals the output of procprod.jsp.

253

JSP Standard Actions

12_57485x ch08.qxd 1/14/05 10:08 PM Page 253

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 8-4: Using <jsp:setProperty> and <jsp:getProperty> to process requests

How It Works
The HTML form for data input is displayed by the index.jsp page. This page can be located at
<Tomcat Installation Directory>/webapps/ch08/example2/index.jsp. Reproduced here,
it is all HTML template text:

<html>
<head>

<title>Product Information Entry</title>
<style>

.label { font-weight: bold; }
</style>

</head>
<body>

<h1> Enter Product Information</h1>
<form action=”procprod.jsp” method=”post”>

<table border=”1”>
<tr>

<td class=”label”>SKU:</td> <td><input name=”sku” type=”text” width=”40”/>
</td>

</tr>

<tr>

254

Chapter 8

12_57485x ch08.qxd 1/14/05 10:08 PM Page 254

TEAM LinG - Live, Informative, Non-cost and Genuine!

<td class=”label”>Name:</td> <td><input name=”name” type=”text”
width=”40”/>

</td>
</tr>
<tr>

<td class=”label”>Description:</td> <td><input name=”desc” type=”text”
width=”40”/>

</td>
</tr>
<tr>

<td class=”label”>Price:</td> <td> <input name=”price” type=”text”
width=”40”/>

</td>
</tr>

<tr>
<td colspan=”2”> <input type=”submit”/>
</td>

</tr>
</table>

</form>
</body>
</html>

This index.jsp page contains a form with four request parameters: sku, name, desc, and price. When
this form is submitted, it uses the HTTP POST method to submit the data to the procprod.jsp page.
This is specified in the HTML <form> element:

<form action=”procprod.jsp” method=”post”>

Expediting form processing with <jsp:setProperty>
The procprod.jsp page processes the incoming form data. It can be located at <Tomcat Installation
Directory>/webapps/ch08/example2/procprod.jsp. The content of procprod.jsp is reproduced
here:

<%@ taglib prefix=”fmt” uri=”http://java.sun.com/jsp/jstl/fmt” %>
<html>
<head>

<title>Processing Product Information</title>
<style>

.label { font-weight: bold; }
</style>

</head>

<body>
<jsp:useBean id=”localProd” class=”com.wrox.begjsp.ch03.Product” />
<jsp:setProperty name=”localProd” property=”*” />
<h1>Information Received</h1>
<table border=”1”>

<tr>
<td class=”label” >SKU:</td> <td><jsp:getProperty name=”localProd”

property=”sku”/>
</td>

</tr>

255

JSP Standard Actions

12_57485x ch08.qxd 1/14/05 10:08 PM Page 255

TEAM LinG - Live, Informative, Non-cost and Genuine!

<tr>
<td class=”label”>Name:</td> <td><jsp:getProperty name=”localProd”

property=”name”/> </td>
</tr>
<tr>

<td class=”label”>Description:</td> <td><jsp:getProperty name=”localProd”
property=”desc”/> </td>

</tr>
<tr>

<td class=”label”>Price:</td>
<td>

<fmt:formatNumber value=”${localProd.price / 100}” type=”currency”/>
</td>

</tr>

</table>
</body>
</html>

The highlighted lines work with the JavaBean. A <jsp:useBean> standard action creates the JavaBean
instance. There is one single <jsp:setProperty> standard action for the assignment of the incoming
parameters to the JavaBean’s properties. Finally, several <jsp:getProperty> standard actions render
the bean’s property.

Using the “*” special value for the <jsp:setProperty> standard action
If we look at the code of procprod.jsp, the <jsp:useBean> standard action is used to create an
instance of a com.wrox.begjsp.ch03.Product JavaBean. This instance is associated with an attribute
(and a Java variable) with the name “localProd”:

<jsp:useBean id=”localProd” class=”com.wrox.begjsp.ch03.Product” />

Immediately after, all the incoming parameters are assigned to the properties of localProd with one
single <jsp:setProperty> standard action:

<jsp:setProperty name=”localProd” property=”*” />

The use of the property=”*” notation will cause the action to attempt to match incoming parameter
names with bean property names and perform the assignment of values from each of the incoming
parameters to its matching property.

In this case, the incoming request parameters are called sku, name, desc, and price, respectively. The
com.wrox.begjsp.ch03.Product JavaBean has properties named sku, name, desc, and price. This is
a one-to-one match, and the <jsp:setProperty> standard action will transfer all the request parameter
values to the bean’s property.

The rest of the code for this JSP accesses the JavaBean instance and prints out the property values.

In a production environment, the property=”x” technique can be very handy when
passing incoming form data to back-end business logic components for further
processing.

256

Chapter 8

12_57485x ch08.qxd 1/14/05 10:08 PM Page 256

TEAM LinG - Live, Informative, Non-cost and Genuine!

The <jsp:getProperty> standard action
The <jsp:getProperty> standard action is used to print out the property of a JavaBean. The general
form is as follows:

<jsp:getProperty name=”...javabean name...” property=”...property name...” />

The two attributes of this tag are shown in the following table.

Attribute Name Description

name The name of the JavaBean whose property is to be rendered,
typically made available by an earlier <jsp:useBean>
standard action

The name of the property to render

property The name of the property to render

This standard action will first locate the named object. As with the <jsp:setProperty> standard action,
it will search through all four scopes for the named attribute. Once the object is located, the specified
property is read and converted to type String. This string is then output at the location of the tag itself.

In procprod.jsp, the values of the product’s first three properties are rendered using the
<jsp:setProperty> standard actions. The JSP code is as follows:

<tr>
<td class=”label” >SKU:</td> <td><jsp:getProperty name=”localProd”

property=”sku”/> </td>
</tr>

<tr>
<td class=”label”>Name:</td> <td><jsp:getProperty name=”localProd”

property=”name”/> </td>
</tr>
<tr>

<td class=”label”>Description:</td> <td><jsp:getProperty name=”localProd”
property=”desc”/> </td>
</tr>

Rendering property values using EL expressions
You are probably thinking about EL already. The more compact notation to render the value of a bean’s
property is the EL expression:

${attribute_name.property}

Because the EL interpreter will also look through the four scopes for a named attribute, and then
the “.” operator will result in a getXX() call, this notation is equivalent to the more verbose
<jsp:getProperty> alternative.

257

JSP Standard Actions

12_57485x ch08.qxd 1/14/05 10:08 PM Page 257

TEAM LinG - Live, Informative, Non-cost and Genuine!

In procprod.jsp, the very last property of the localProd instance is rendered using an EL expression.
The JSP code is as follows:

<td class=”label”>Price:</td>
<td>

<fmt:formatNumber value=”${localProd.price / 100}” type=”currency”/>
</td>

In fact, the JSTL formatting tag is used to render the property in proper currency format.

It is clear from the previous discussion that

❑ <jsp:getProperty> and <jsp:setProperty> standard actions do not depend on the gener-
ated Java variable

❑ EL expressions do not depend on the generated Java variable

In fact, only embedded Java code in JSP as scripting elements will ever depend on the generated Java
variable.

The existence of the Java variable, and the maintenance of it, may create a tricky synchronization prob-
lem because there are two references to the same object.

If you follow our recommendation and write new JSP code without scripting elements, there will be no
need for the container to create and maintain the Java variable, alleviating the burden. This is one reason
why scriptless JSP code is preferred.

How <jsp:useBean> and JSTL <c:set> Differ
Before we leave the discussion of standard actions that work with JavaBean instances, the following
table compares the <jsp:useBean> standard action with the JSTL’s <c:set> action.

Their functionality actually overlaps for many programming scenarios. However, they each have some
unique behaviors that make one or the other more appropriate for certain tasks. The following table will
help with your decision when selecting between the two.

Feature <jsp:useBean> <c:set>

Searches for a named attribute in a specified Yes Yes
scope (the default scope is page)

Creates a new object instance if the named Yes No, unless the value
attribute does not exist contains an EL expression

that creates a new object

Needs to know the specific class/type of the Yes No, will work with
object instance any type

Creates a scripting variable by generating Yes No
the Java language source code to declare
the Java variable

258

Chapter 8

12_57485x ch08.qxd 1/14/05 10:08 PM Page 258

TEAM LinG - Live, Informative, Non-cost and Genuine!

Feature <jsp:useBean> <c:set>

Works with scripting elements written in Yes Not directly, but Java
the Java programming language code can use the

findAttribute() method
of the PageContext to get
the scoped variable

Has the special ability to work with a No Yes
java.util.Map

Including JSP Output via <jsp:include>
The <jsp:include> standard action is a request-time action that will include the output of another JSP
at the location of the tag within the calling JSP.

The general syntax for this standard action is as follows:

<jsp:include page=”...url..” flush=”true or false”/>

The tag can optionally contain a body:

<jsp:include page=”...url...” flush=”true or false”>
<jsp:param/>

</jsp:include>

In this usage, there are one or more <jsp:param> standard actions within the body of <jsp:include>.
These <jsp:param> standard actions specify additional request parameters that will be available within
the JSP whose output is being included.

This standard action has two attributes:

❑ page: A URL that is relative to the current JSP page at request time

❑ flush: Determines if the buffer for the output is flushed immediately, before the included
page’s output

The following Try It Out example puts the <jsp:include> standard action to work.

Try It Out The <jsp:include> Standard Action
This exercise shows the usage of the <jsp:include> standard action. It also contrasts its use with the
<%@ include %> directive. To access this example, make sure that your Tomcat 5 server is running with
ch08.war deployed.

The page attribute contains a URL, and not a file specification. URLs are subject to
<url-pattern> mappings within the web.xml deployment descriptor.

259

JSP Standard Actions

12_57485x ch08.qxd 1/14/05 10:08 PM Page 259

TEAM LinG - Live, Informative, Non-cost and Genuine!

Access the following URL with your browser:

http://localhost:8080/ch08/example3/index.jsp

The output will be several news headlines, as shown in Figure 8-5.

Figure 8-5: Example of the <jsp:include> standard action vs. the
<%@ include %> directive

While the output in Figure 8-5 may not seem immediately interesting, quite a bit is going on behind the
scenes.

How It Works
Quite a few JSP pages are involved in the information displayed in Figure 8-5. Figure 8-6 illustrates these
JSP pages.

In Figure 8-6, the main JSP page is called index.jsp. Within index.jsp, the news1.jsp page from the
items subdirectory is included. Within the news1.jsp page, the news2.jsp page is included. Note that
there are two different copies of news2.jsp, one residing in the same directory as index.jsp, the other
one in the items subdirectory.

260

Chapter 8

12_57485x ch08.qxd 1/14/05 10:08 PM Page 260

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 8-6: Operation of the <jsp:include> example

The main JSP, index.jsp, is located at <Tomcat Installation Directory>/webapps/ch08/exam-
ple3/index.jsp. This page is reproduced here:

<html>
<head>

<title>The News</title>
</head>
<body>

<h1> Latest News</h1>
<table>

<tr>
<td><h3><%@include file=”items/news1.jsp” %></h3></td>

</tr>
<tr>

<td><h3><jsp:include page=”items/news1.jsp”/></h3></td>
</tr>
<tr>

include

include

include

include

news.jsp

items subdirectory

news2.jsp
news1.jsp

news3.jsp

news2.jsp

261

JSP Standard Actions

12_57485x ch08.qxd 1/14/05 10:08 PM Page 261

TEAM LinG - Live, Informative, Non-cost and Genuine!

<td><h3>
<jsp:include page=”items/news3.jsp”>

<jsp:param name=”survivor” value=”shark”/>
</jsp:include>

</h3></td>
</tr>

</table>

</body>
</html>

The first highlighted line contains an <%@ include %> directive. This directive will include the content of
the items/news1.jsp during the translation phase.

The second highlighted line contains the <jsp:include> standard action. This will include the output
from executing the news1.jsp at request time.

The third set of highlighted lines is an <jsp:include> standard action with a body, specifying addi-
tional request parameters that will be available to the included items/news3.jsp page at request time.

How the <%@ include %> directive and the <jsp:include> action differ
The first two includes in index.jsp are as follows:

<tr>
<td><h3><%@include file=”items/news1.jsp” %></h3></td>

</tr>
<tr>

<td><h3><jsp:include page=”items/news1.jsp”/></h3></td>
</tr>

Under the items directory, news1.jsp contains the news headline, with more includes:

Sharks attacked <%@ include file=”news2.jsp” %>, <jsp:include page=”news2.jsp”/>
survived!

There are two versions of news2.jsp, in different directories. At the top-level directory, the news2.jsp
file contains the following:

nobody

In the items subdirectory, the news2.jsp file contains this:

swimmers

Within the news1.jsp page, the first occurrence of news2.jsp is included and uses a <%@ include %>
directive, while the second occurrence uses the <jsp:include> standard action.

Note at this point that while both index.jsp and news1.jsp contain the same included files (using dif-
ferent mechanisms), the final output from these two lines in Figure 8-5 is different:

Sharks attacked swimmers, nobody survived!
Sharks attacked swimmers, swimmers survived!

262

Chapter 8

12_57485x ch08.qxd 1/14/05 10:08 PM Page 262

TEAM LinG - Live, Informative, Non-cost and Genuine!

Effects of nested includes
Here is what happened. Following is the first <%@ include %> directive within index.jsp:

<tr>
<td><h3><%@include file=”items/news1.jsp” %></h3></td>

</tr>

The entire content of items/news1.jsp is included at translation time. However, because the news1.jsp
has another <%@include %> directive, that content must also be included at translation time. This will
first result in news2.jsp being included within news1.jsp. At translation time, the line becomes the
following:

<tr>
<td><h3> Sharks attacked swimmers, <jsp:include page=”news2.jsp”/> survived!
</h3></td>

</tr>

Now, at request time, the <jsp:include> standard action will be executed at the top-level directory.
This will include the request-time output of the news2.jsp in this directory, resulting in the following:

<tr>
<td><h3> Sharks attacked swimmers, nobody survived!
</h3></td>

</tr>

In the second case, in index.jsp, the <jsp:include> standard action is not triggered until an incom-
ing request arrives:

<tr>
<td><h3><jsp:include page=”items/news1.jsp”/></h3></td>

</tr>

At request time, the output from items/news1.jsp is rendered. This forces the translation of items/
news1.jsp. Then, items/news1.jsp will go through a translation phase, followed by compilation and
execution. At translation time, the <%@ include %> directive merges with the content of news2.jsp, in the
items directory. Following is the result after the translation phase, for news1.jsp in the items directory:

Sharks attacked swimmers, <jsp:include page=”news2.jsp”/> survived!

Next, the page must be compiled and executed. At this point, the <jsp:include> standard action exe-
cutes, still relative to the items directory. This will result in the inclusion of the following output from
the execution of items/news2.jsp:

Sharks attacked swimmers, nobody survived!

Last but not least, the top-level index.jsp file will include this output via its <jsp:include> standard
action, resulting in the following final output:

<tr>
<td><h3> Sharks attacked swimmers, nobody survived!</h3></td>

</tr>

263

JSP Standard Actions

12_57485x ch08.qxd 1/14/05 10:08 PM Page 263

TEAM LinG - Live, Informative, Non-cost and Genuine!

Adding parameters to a <jsp:include> action
One remaining set of lines in index.jsp uses the <jsp:include> action. This set of lines includes the
output of items/news3.jsp at request time. This usage of the action also features a <jsp:param>
standard action within the tag body:

<tr>
<td><h3><jsp:include page=”items/news3.jsp”>

<jsp:param name=”survivor” value=”shark”/>
</jsp:include>

</h3></td>
</tr>

The <jsp:param> standard action is used here to add a request parameter called survivor. This
request parameter will be available within news3.jsp when it is executed during request time.

The content of items/news3.jsp is as follows:

Sharks attacked swimmer, ${param.survivor} survived!

This JSP prints the message and the value of the survivor parameter using an EL expression.

At request time, the <jsp:include> in index.jsp will cause the translation and execution of the
items/news3.jsp. During its execution, it will have access to the survivor parameter. This will result
in the following news3.jsp output:

Sharks attacked swimmer, shark survived!

This output is included at request time by the index.jsp <jsp:include> standard action, resulting in
the following final output:

<tr>
<td><h3> Sharks attacked swimmer, shark survived! </h3></td>

</tr>

Transferring Control Between JSPs
In the design of Web-based systems, there is often a need to transfer control between different JSPs. For
example, a customer at an e-commerce site may want to place an order. But if the customer has not yet
registered with the system, the shopping cart may need to transfer control to the JSP form that performs
registration. The <jsp:forward> standard action is created specifically to satisfy this need.

The <jsp:forward> standard action
When the <jsp:forward> standard action is executed at request time, the current request is forwarded
to another JSP page. The processing of the current JSP is terminated.

264

Chapter 8

12_57485x ch08.qxd 1/14/05 10:08 PM Page 264

TEAM LinG - Live, Informative, Non-cost and Genuine!

Following is the basic form of the <jsp:forward> standard action:

<jsp:forward page=”...url...” />

In yet another form, you might see a body consisting of <jsp:param> standard actions:

<jsp:forward page=”..url...”>
<jsp:param/>

</jsp:forward>

This second form can be used to add parameters to the request. Then, they will be available within the
JSP to which they are being forwarded.

The single attribute, page, is a request-time attribute. This attribute is interpreted relative to the URL to
which the request will be forwarded. Like the page attribute in the <jsp:include> standard action, this
URL may be mapped by entries in the web.xml file.

The JSP output buffer, if used, will be cleared prior to the forwarding. If the JSP uses a buffer, it must not
be flushed prior to the forwarding. If the JSP does not use a buffer, it is illegal for the forwarding JSP to
write any output before forwarding. Essentially, all output should be performed by the JSP being for-
warded to.

The next Try It Out exercise in this chapter provides a hands-on example of using the <jsp:forward>
standard action.

Specifying Parameters for Other Actions
Within the optional bodies of several standard actions (<jsp:include>, <jsp:forward>,
<jsp:params>, and so on), parameters can be specified via the <jsp:param> standard action.

The <jsp:param> standard action
This action can appear in the body of the <jsp:include> and <jsp:forward> standard action. It can
also be used within the <jsp:params> standard action (covered in the next section).

The general form of the <jsp:param> standard action is as follows:

<jsp:param name=”...name...” value=”...value...”/>

Note that <jsp:forward> can actually be used to forward the incoming request to
non-JSP resources. For example, the request may be forwarded to a servlet written in
the Java programming language, or it may just be forwarded to a static HTML page.
(See Chapter 15, “JSP and Servlets.”)

265

JSP Standard Actions

12_57485x ch08.qxd 1/14/05 10:08 PM Page 265

TEAM LinG - Live, Informative, Non-cost and Genuine!

Each <jsp:param> standard action creates a parameter that has a name and a value. Exactly how these
parameters will be used depends on the tag for which the parameters are specified.

For example, both the <jsp:include> and <jsp:forward> parameters are request parameters avail-
able for the JSP page being included (or being forwarded to).

Working with Plug-ins
Three standard actions are used to work with plug-ins. Plug-ins are embedded Java objects that are
placed on a Web page. Figure 8-7 illustrates a plug-in.

Figure 8-7: How a Java plug-in works

Note the following important points illustrated in Figure 8-7:

❑ The plug-in resides on the client, together with the browser.

❑ The plug-in requires a Java VM running on the client’s PC.

❑ The Java code that is executing as the plug-in must be downloaded from the server (where JSP
is executing) to the client.

Remote Tomcat Server

JSP

Client Browser Displaying Web Page

Plugin
excecuting
on clientJSP output is a

dynamically genterated
HTML page

Java applet
code

Downloaded from server
and executed on client

266

Chapter 8

12_57485x ch08.qxd 1/14/05 10:08 PM Page 266

TEAM LinG - Live, Informative, Non-cost and Genuine!

The following standard actions work with plug-ins:

❑ <jsp:plugin> for specifying the attributes of the plug-in

❑ <jsp:params> for passing parameters to the plug-in on the HTML page

❑ <jsp:fallback> for specifying what happens if the client does not support Java plug-ins

The following sections describe each of these actions, followed by an example that uses them all together.

The <jsp:plugin> standard action
The <jsp:plugin> standard action will generate the HTML code to embed a Java object on the page.
This is typically a Java applet (although it can also be an arbitrary JavaBean).

The general usage of the <jsp:plugin> standard action is as follows:

<jsp:plugin type=”... applet or bean...” code=”...” codebase=”...” archive=”...”
....>

...
</jsp:plugin>

The type attribute is either an applet or bean, and specifies the type of Java object that will be embedded
on the HTML page. Applets typically have a GUI or display on the page. The rest of the attributes are
HTML attributes for the <OBJECT> or <EMBED> tag. See the HTML, XHTML, and CSS Bible, Third Edition,
by Bryan Pfaffenberger, et al. (Wiley, ISBN: 0-7645-5739-4), for more information on these HTML attributes.

Some of the more commonly used HTML attributes for the <OBJECT> or <EMBED> tag are name, code,
codebase, archive, align, width, height, jreversion, and title. These attributes can be specified
with the <jsp:plugin> standard action, and will be passed on to the generated <OBJECT> or <EMBED>
HTML tag.

The body of this standard action can contain <jsp:params> and <jsp:fallback> standard actions.

The <jsp:params> standard action
The <jsp:params> standard action can occur only within the body of the <jsp:plugin> tag. It is used
to group <jsp:param> entries into a set. Its basic usage syntax is as follows:

<jsp:params>
<jsp:param/>
<jsp:param/>

....
</jsp:params>

There can be any number of <jsp:param> standard actions in the body of the <jsp:params> tag. Each
of these will be translated to a parameter for the applet and/or bean embedded on the Web page.

267

JSP Standard Actions

12_57485x ch08.qxd 1/14/05 10:08 PM Page 267

TEAM LinG - Live, Informative, Non-cost and Genuine!

The <jsp:fallback> standard action
The <jsp:fallback> standard action can be used only within the body of the <jsp:plugin> tag. This
standard action is used to specify HTML that will be rendered (or JSP code that will be executed) if the
browser does not support the plug-in.

Following is the basic syntax for <jsp:fallback>:

<jsp:fallback>
... HTML or JSP that will be rendered if the browser does not support plugin ...

</jsp:fallback>

The final Try It Out example shows how to use JSP to generate code that will dynamically change the
appearance of a visual Java applet embedded within a Web page on the client’s Web browser. It makes
use of the <jsp:plugin> and associated actions.

Try It Out The <jsp:plugin> and Associated Standard Actions
To access this example, make sure that your Tomcat 5 server is running with ch08.war deployed.

Access the following URL with your browser:

http://localhost:8080/ch08/example4/index.jsp

This page shows a red circle, as shown in Figure 8-8. The red color is not visible in the black-and-white
figure, but you would be able to confirm it on your monitor.

Figure 8-8: A Java applet shown using the <jsp:plugin> standard action268

Chapter 8

12_57485x ch08.qxd 1/14/05 10:08 PM Page 268

TEAM LinG - Live, Informative, Non-cost and Genuine!

In Figure 8-8, the circle is actually created by an embedded applet on the Web page that draws circles of
a specified size, in a specified color. There is also a drop-down list for selecting a color, and a Color It!
button.

Try selecting the color blue, and then clicking the Color It! button. The circle immediately changes to a
blue color, as shown in Figure 8-9.

Figure 8-9: The applet changes color to blue

How It Works
The plug-in in this case is an applet that draws a circle on its display area. The color and radius are two
properties that can be set on this applet. These two properties affect the appearance of the circle drawn
by the applet.

The code of this applet is in com.wrox.begjsp.ch08.CircleApplet. It can be located at
<Tomcat Installation Directory>/webapps/ch08/WEB-INF/classes/com/wrox.begjsp/
ch08/CircleApplet.java. The Java source code content of this class is reproduced here:

package com.wrox.begjsp.ch08;
import java.awt.*;
import java.applet.*;
public class CircleApplet extends java.applet.Applet
{

private Color circColor = null;

269

JSP Standard Actions

12_57485x ch08.qxd 1/14/05 10:08 PM Page 269

TEAM LinG - Live, Informative, Non-cost and Genuine!

private int radius = 5;
public void init()
{

circColor = Color.decode(this.getParameter(“color”));
radius = Integer.parseInt(this.getParameter(“radius”));

}
public void paint(Graphics gr)
{

gr.setColor(circColor);
gr.fillOval(10, 10, radius * 2, radius * 2);

}
}

In the preceding code, the applet’s init() method is invoked when it starts operating on the Web page.
Here, the two parameters are read via the Applet.getParameter() method, and stored in the
circColor and radius fields of the applet. The paint() method is called anytime the applet requires
painting or re-painting. Here, the code will draw a solid circle with the specified radius using the values
from the circColor and radius fields.

The HTML page that displays this applet is index.jsp, which is located at <Tomcat Installation
Directory>/webapps/ch08/example4/index.jsp. The content of index.jsp is reproduced here,
with the <jsp:plugin> standard action highlighted:

<head>
<title>Embedded Java Applet </title>

</head>
<body>

<c:set var=”myColor” value=”${param.selcolor}”/>
<c:if test=”${empty myColor}”>

<c:set var=”myColor” value=”0xff0000”/>
</c:if>
<h1> Embedded Java Applet</h1>
<form action=”index.jsp” method=”get”>

<table width=”500”>
<tr>

<td>
<select name=”selcolor”>

<option value=”0xff0000”>red</option>
<option value=”0xffff00”>yellow</option>
<option value=”0x00ff88”>green</option>
<option value=”0x0000ff”>blue</option>

</select>
</td>

</tr>
<tr>

<td><input type=”submit” value=”Color it!”/></td>
</tr>

</table>
</form>
<jsp:plugin type=”applet” code=”com.wrox.begjsp.ch08.CircleApplet”

archive=”ch08obj.jar” >
<jsp:params>

270

Chapter 8

12_57485x ch08.qxd 1/14/05 10:08 PM Page 270

TEAM LinG - Live, Informative, Non-cost and Genuine!

<jsp:param name=”radius” value=”50”/>
<jsp:param name=”color” value=”${myColor}”/>

</jsp:params>

<jsp:fallback>

This browser does not support the object.

</jsp:fallback>
</jsp:plugin>

</body>
</html>

In <jsp:plugin> in the preceding code, the type has been set to applet, and the code attribute is set to
the class of the applet. The archive attribute is used to point to a JAR file that contains the required applet
class. This JAR file must be created separately and placed into the same directory as the JSP page. In our
case, the JAR archive is called ch08obj.jar. It is located at <Tomcat Installation Directory>/
webapps/ch08/example4/ch08obj.jar. ch08obj.jar is created by making an archive of the
WEB-INF/classes directory from the source code distribution. This JAR file will be downloaded from
the Tomcat server to your browser during the testing. The applet is fetched from the downloaded JAR and
executed on the client side by the browser.

Generating parameters for the applet
The <jsp:params> and <jsp:param> standard actions are used to generate parameters for the applet.
In this example, they specify the color and radius of the circle being drawn. The code from index.jsp is
as follows:

<jsp:params>
<jsp:param name=”radius” value=”50”/>
<jsp:param name=”color” value=”${myColor}”/></jsp:params>

While the radius is fixed at 50 pixels, the color parameter is set via an EL request-time expression,
${myColor}. This parameter is the color selected by the user. The selection process is described in the
following section.

Handling user color selection
The user selects a color by using a drop-down list on a form. This form is displayed within index.jsp
using the following HTML/JSP code:

<form action=”index.jsp” method=”get”>
<table width=”500”>

<tr>
<td>

<select name=”selcolor”>
<option value=”0xff0000”>red</option>
<option value=”0xffff00”>yellow</option>
<option value=”0x00ff88”>green</option>
<option value=”0x0000ff”>blue</option>

</select>

271

JSP Standard Actions

12_57485x ch08.qxd 1/14/05 10:08 PM Page 271

TEAM LinG - Live, Informative, Non-cost and Genuine!

</td>
</tr>
<tr>

<td><input type=”submit” value=”Color it!”/></td>
</tr>

</table>
</form>

The drop-down list is created by the <select> HTML element. The value of each color option is the cor-
responding RGB value in hexadecimal form. The user’s selection is reflected in the selcolor parameter.
Note that the form parameter is submitted using the get method, and the form is processed by
index.jsp itself.

Processing the color parameter
The index.jsp uses a JSTL <c:if> action to set the value of the selcolor parameter to red if it doesn’t
exist. The selcolor parameter will have a value if index.jsp is currently processing the form, and will not
exist if it is called up directly by a browser. The following code from index.jsp handles this processing:

<c:set var=”myColor” value=”${param.selcolor}”/>
<c:if test=”${empty myColor}”>

<c:set var=”myColor” value=”0xff0000”/>
</c:if>

Rendering alternative output for browsers without applet support
The <jsp:fallback> standard action is used within the <jsp:plugin> to specify the HTML to render
if the client’s browser cannot display the applet. The code within index.jsp for this is as follows:

<jsp:fallback>

This browser does not support Java applets.

</jsp:fallback>

In this case, a simple message is rendered to tell the user that her or his browser does not support the use
of Java applets.

HTML generated by <jsp:plugin>
You can view the code that is generated by the entire <jsp:plugin> tag if you select View Source from
your browser’s menu. The generated code is an HTML <embed> or <object> tag. The generated HTML
tag should be similar to the one shown here:

<OBJECT classid=”clsid:8AD9C840-044E-11D1-B3E9-00805F499D93”
codebase=”http://java.sun.com/products/plugin/1.2.2/jinstall-1_2_2-
win.cab#Version=1,2,2,0”>

<PARAM name=”java_code” value=”com.wrox.begjsp.ch08.CircleApplet”>
<PARAM name=”java_archive” value=”ch08obj.jar”>
<PARAM name=”type” value=”application/x-java-applet;”>
<PARAM name=”radius” value=”50”>
<PARAM name=”color” value=”0xff0000”>
<COMMENT>

272

Chapter 8

12_57485x ch08.qxd 1/14/05 10:08 PM Page 272

TEAM LinG - Live, Informative, Non-cost and Genuine!

<EMBED type=”application/x-java-applet;”
pluginspage=”http://java.sun.com/products/plugin/”
java_code=”com.wrox.begjsp.ch08.CircleApplet”
java_archive=”ch08obj.jar” radius=”50” color=”0xff0000”/>
<NOEMBED>

This browser does not support Java applets.

</NOEMBED>
</COMMENT>

</OBJECT>

The <jsp:plugin> action has generated code for the HTML <object> tag and for its tedious and often
browser-dependent syntax.

Practical real-world use of <jsp:plugin>
The <jsp:plugin>standard action is frequently used in production environments. While the example
reveals a simplified scenario to facilitate understanding, consider the following real-world examples
where <jsp:plug-in> may be applied:

❑ The applet is a mapping applet. After the user selects different areas of a region using a form,
the JSP processes the form and fetches the coordinates from a large database and feeds them to
the applet for map display.

❑ The applet is a video viewer for movie playback. The user logs in and selects different pro-
grams via the JSP forms, checking against database information and processing payment, and
finally enabling the applet to show a certain video.

Standard Actions Specific to Tag Files
JSP 2 includes a set of standard actions that can be used only within tag files. Recall that tag files are a
means of creating your own custom tag libraries using JSP as the programming language. This special-
ized set of standard actions includes the following:

❑ <jsp:attribute>

❑ <jsp:body>

❑ <jsp:invoke>

❑ <jsp:doBody>

❑ <jsp:element>

❑ <jsp:text>

❑ <jsp:output>

The syntax and use of these tag-file-only standard actions is covered in Chapter 11, “Building Your Own
Custom JSP Tag Library,” where you will be using these actions to build your very own tag library.

273

JSP Standard Actions

12_57485x ch08.qxd 1/14/05 10:08 PM Page 273

TEAM LinG - Live, Informative, Non-cost and Genuine!

Summary
JSP standard actions are built-in tags that can be used within JSP code. They are all prefixed by jsp:.
This chapter covered all of the JSP standard actions. Some interesting discoveries in the chapter include
the following:

❑ The flexible syntax of the <jsp:useBean> standard action enables you to use it in many differ-
ent ways.

❑ After the successful execution of <jsp:useBean>, a JavaBean instance will be associated with a
name within the specified scope; a Java scripting variable is also generated at the translation phase.

❑ The <jsp:setProperty> action can be used to set the properties of the scoped instance.

❑ The <jsp:getProperty> tag can be used to render the value of a property on the JavaBean.

❑ The property=”*” syntax of the <jsp:setProperty> standard action can be used to assign
request parameters to the correspondingly named properties of a corresponding JavaBean. This
can be handy for form processing.

❑ The <jsp:param> standard action is used to specify parameters for the <jsp:include>,
<jsp:forward>, or <jsp:params> standard actions.

❑ The <jsp:plugin>, <jsp:params>, and <jsp:fallback> standard actions are used to embed
Java applets or JavaBeans into the Web page displayed on the client’s browser. These applets or
JavaBean code is downloaded from the server to the client’s machine for execution on the client.

❑ The <jsp:plugin> standard action will generate the required <object> or <embed> HTML
tags to render the object.

Exercises
1. The Java classes from the e-store example in Chapter 3 are included within ch08.war. This means

that the static EShop.getCats() method can be used to obtain a list of product categories.
Modify example1/index.jsp to print out the categories by performing the following actions:

a. Use a scripting element to attach the categories JavaBean to the page context as an
attribute called “myCats”.

b. Make this JavaBean instance available to the JSP page using a <jsp:useBean> standard
action.

c. Use JSTL and EL to print out the category values.

d. Browse the generated source code after translation to show that a Java variable called
myCats is created by the <jsp:useBean> standard action, and determine its type.

2. Modify the example3/index.jsp to accept an additional drop-down list that enables the user
to select either HTML or XML. Modify example3/procprod.jsp to use the <jsp:forward>
standard action and forward the request to either a prodhtml.jsp or prodxml.jsp page. The
prodhtml.jsp page should render the product information in HTML format and the
prodxml.jsp page should render the product information in XML format.

274

Chapter 8

12_57485x ch08.qxd 1/14/05 10:08 PM Page 274

TEAM LinG - Live, Informative, Non-cost and Genuine!

9
JSP and JavaBeans

JSP is a presentation technology. Unlike a programming language such as Java, JSP does not have
any built-in capability to access features offered by the underlying operating system or environ-
ment. JSP’s capabilities are focused mainly around the generation of dynamic Web content.

JavaBeans are software components written in the Java programming language. JSP has built-in
capabilities to work with JavaBeans. These capabilities are provided by the JSP standard actions
and EL expressions. Because of this, JavaBeans have become the main mechanism for passing data
and custom behavior between the JSP logic and the rest of the system in large Web applications.

In this chapter, this intimate relationship between JSP and JavaBeans is explored fully. The key
topics covered in the chapter include the following:

❑ Anatomy of a JavaBean

❑ Packaging JavaBeans

❑ JavaBean usage within JSPs

❑ Accessing JavaBeans with standard actions

❑ Accessing JavaBeans with EL

❑ Accessing JavaBeans from scriptlets

❑ Difference between a JavaBeans and an EJB

Two hands-on examples will clarify many of the concepts introduced. JavaBeans have already
been used in the examples of previous chapters; most of the integration and application tech-
niques are reviewed in this chapter.

Additional topics that are covered in the chapter include the following:

❑ The use of a front-end JSP page (often called a front controller) to handle common tasks
such as data validation. A front controller is a common design pattern for Web presentation
layers. These and other common design patterns are discussed in Chapter 26, “Best
Practices and Tools.”

13_57485x ch09.qxd 1/14/05 10:10 PM Page 275

TEAM LinG - Live, Informative, Non-cost and Genuine!

❑ The typical flow of data, in a JSP Web application, using JavaBeans. The JavaBean used to collect
and pass data across layers in your Web application is sometimes referred to as a transfer object
or a data transfer object. This is another design pattern explained in more detail in Chapter 26.

By the end of this chapter, you will be familiar with JavaBeans as a software component, and their usage
and application within JSPs. This will prepare you to work with the various JSP frameworks, where
JavaBeans are used extensively to transport data between the business logic engine and the JSP-based
presentation layer.

Anatomy of a JavaBean
A JavaBean is a specially constructed class written in the Java programming language. All JavaBeans are
coded according to the JavaBeans API 1.0 Specifications for SUN (with a minor update to 1.01).

JavaBeans are reusable software components that can be wired together to create component-based
applications. JavaBeans were originally designed for rapid application development environments. In
these environments, visual JavaBeans can be dragged and dropped in the creation of user interfaces as
well as application logic. All modern-day IDEs support the building of componentized applications
using JavaBeans. The Swing API components are a good example of reusable JavaBean components.

Other than visual application design, JavaBeans are finding their way into many other uses, including
the building of Web applications using JSP. In fact, even the earliest version of JSP had built-in standard
actions that take advantage of JavaBeans.

The unique characteristics that distinguish a JavaBean from other Java classes include the following:

❑ It must have a default constructor (i.e., no argument).

❑ It may have a number of properties, the value of which can be read or written to.

❑ It may have a number of methods that can be invoked.

❑ Some JavaBeans are visual (i.e., AWT or Swing-based) and can be placed into an IDE during
the design of a user interface.

❑ It is designed to be a self-contained component, used in assembling a components-based
application.

Figure 9-1 illustrates these interesting characteristics of a JavaBean.

Every JavaBean should also be serializable (and implement the Serializable inter-
face). This is necessary because the state of visual JavaBeans may be serialized by its
container (i.e., an IDE during development, or a framework during runtime).
However, many nonvisual JavaBeans (and even some visual JavaBeans) do not
conform to this requirement.

276

Chapter 9

13_57485x ch09.qxd 1/14/05 10:10 PM Page 276

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 9-1: Characteristics of JavaBeans

Of the aforementioned unique characteristics of JavaBeans, the first three (constructor, properties, and
methods) are the most important to JSP developers. The next two characteristics (events and visual
design interface) are gaining relevance as sophisticated frameworks based on JavaBeans, such as
JavaServer Faces (JSF), become available. JSF is covered in Chapter 21, “JavaServer Faces.” The final
characteristic is also important architecturally — a JavaBean adds incremental and reusable functional-
ity to applications built using JSP, and thus enable the application to be built based on the assembly of
software components.

JavaBean Properties
A JavaBean property is a named attribute that can be accessed by the user of the component. The
attribute can be of any Java data type, including classes that you define. For example, the firstName
property of a Customer JavaBean (for an auction Web site, for example) may be of type String, while
the lastOrder property of the same JavaBean may be of a custom Java type called Order. Figure 9-2
shows such a Customer JavaBean with its properties.

The property of a JavaBean may be read/write, read only, or write only.

A read/write property is accessed through two methods in the JavaBean’s implementation class:

❑ get<PropertyName>() method

❑ set<PropertyName>() method

JavaBean

"A reusable software component"

Set and get value of property

Invoking method
methods

properties

events

277

JSP and JavaBeans

13_57485x ch09.qxd 1/14/05 10:10 PM Page 277

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 9-2: Customer JavaBean properties

For example, if the firstName property of the Customer JavaBean is read/write, then the firstName
property can be accessed in one of the two following ways:

❑ getFirstName() method to obtain its value

❑ setFirstName() method to set its value

A read-only attribute will have only a get<PropertyName>() method, and a write-only attribute will
have only a set<PropertyName>() method.

Coding JavaBean properties
The Customer JavaBean mentioned previously may have the following Java coding:

public class Customer
{

private String firstName = null;
private String lastName = null;
private Order lastOrder = null;

There is an exception to this rule: By JavaBean convention, a property of boolean
primitive type is not obtained by a get<PropertyName>() method. The read access
is implemented by a is<PropertyName>() method instead. For example, if the
property called goldMember exists on the customer, then the boolean property can
be tested with Customer.isGoldMember().

Customer

properties
firstName: String
lastName: String
lastOrder: Order
goldMember: boolean

(read/write)
(read/write)
(read/write)
(read/write)

methods

278

Chapter 9

13_57485x ch09.qxd 1/14/05 10:10 PM Page 278

TEAM LinG - Live, Informative, Non-cost and Genuine!

private boolean goldMember = false;

public Customer()
{
}

public long getFirstName()
{

return this.firstName;
}

public void setFirstName(String inName)
{

this.firstName = inName;
}

public long getLastName()
{

return this.lastName;
}

public void setLastName(String inName)
{

this.lastName = inName;
}

public Order getLastOrder()
{

return this.lastOrder;
}

public void setLastOrder(Order inOrder)
{

this.lastOrder = inOrder;
}

public boolean isGoldMember()
{

return this.goldMember;
}

public void setGoldMember(boolean inGoldMember)
{

this.goldMember = inGoldMember;
}

}

In the preceding code for the Customer JavaBean, all of the firstName, lastName, goldMember, and
lastOrder properties have read/write access. As a result, there is a get<PropertyName> () method,
and a set<PropertyName>() method associated with each property. For example, the firstName

279

JSP and JavaBeans

13_57485x ch09.qxd 1/14/05 10:10 PM Page 279

TEAM LinG - Live, Informative, Non-cost and Genuine!

property has getFirstName() for reading and setFirstName() for writing. The only exception is the
goldMember property. goldMember is a boolean typed property and its getter method is called
isGoldMember() instead of getGoldMember().

JavaBean methods
A method exported by a JavaBean is simply a public method within the Java class. For example, a Shop
JavaBean may export a method called CalculateShipping. It may be coded as follows:

public class Shop
{
.....

public long CalculateShipping(String sourceZIP, String destinationZIP, long
shipBy)

{
...

}
.....

}

Invoking JavaBean methods using scriptlets
Methods of JavaBeans may be invoked within a JSP page using scriptlets. Scriplets enable you to embed
Java code within a JSP page. Chapter 3, “JSP Basics 2: Generalized Templating and Server Scripting,”
covers the use of scriptlets. For example, to invoke the preceding method on a JavaBean instance called
MyShop, the following scriplet code may be used:

<%
long shippingCharges = MyShop.CalculateShipping(“32231”, “32718”, ShipBy.UPS);

%>

This code assumes that the result is stored in a Java variable called shippingCharges, to be used later
in the JSP. It also assumes that the ShipBy.UPS constant is a long value that the CalculateShipping()
method understands.

Scriptless JSP and EL functions
Scriplets and scripting elements are presented in Chapter 3. The main purpose of that coverage is to
ensure that you will be able to maintain legacy code that contains embedded Java coding. Chapter 3 is
explicit in its recommendation to not use scripting elements for any new JSP code if possible. The cre-
ation of scriptless JSP code leads to code that is easier to maintain in the long term.

280

Chapter 9

13_57485x ch09.qxd 1/14/05 10:10 PM Page 280

TEAM LinG - Live, Informative, Non-cost and Genuine!

Without scriplets, there is no direct way for a JSP to invoke methods of a JavaBean. This is a good feature
if you consider the role of JSP within a Web application. JSP should be used for presentation only. This
means that it should not be allowed to access any random method in an arbitrary Java class. Allowing
such behavior can encourage the bundling of application logic within JSP coding. Bundling application
logic with the JSP presentation layer leads to code that is hard to maintain, and applications that cannot
scale to a large number of users.

Common JavaBean packaging
JavaBeans are compiled into Java classes and just like the other Java classes in your application, they can
be packaged into a JAR file and placed into the WEB-INF/lib directory of your application.

During development, however, it is usually more convenient to place the individual class files, unar-
chived, under the WEB-INF/classes directory. If you are using an IDE, you can conveniently do this by
setting your compilation target directory to the WEB-INF/classes directory. Doing this helps provide a
faster modify-recompile cycle during development.

The following Try It Out example illustrates a technique for performing form input validation. It demon-
strates one of the most typical uses of JavaBeans in JSPs: to carry data between pages (or between busi-
ness logic and the presentation layer). This example presents the user interface of a very simple auction.

Try It Out Using JavaBeans in JSP
This auction example is contained in ch09.war. First make sure that your Tomcat 5 server is running
and then deploy ch09.war to the server. Review Chapter 1, “Getting Started with JavaServer Pages,” if
you do not remember how to deploy a WAR archive.

Open your browser and access the following URL:

http://localhost:8080/ch09/example1/index.jsp

You will be greeted by the Enter Your Bid screen, as shown in Figure 9-3.

While scriptless JSP cannot invoke a JavaBean method directly, useful functions
such as the CalculateShipping() shown earlier can be wrapped up as an EL func-
tion. EL functions are a feature of EL that enables you to extend its capability via the
definition of pubic static functions in a Java class. See Chapter 5, “JSP and EL,” for
more information on EL and how to create EL functions.

281

JSP and JavaBeans

13_57485x ch09.qxd 1/14/05 10:10 PM Page 281

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 9-3: Enter Your Bid screen

Select one of the items to bid on. In Figure 9-3, the DVD Player is selected. Also enter an invalid bid
amount, 0, to show that the data validation code is working.

Click the Bid Now! button. At this point, the invalid input value will be detected, and you will be
prompted to enter the bid again. You are returned to the Enter Your Bid page, which displays the invalid
input message, as shown in Figure 9-4.

282

Chapter 9

13_57485x ch09.qxd 1/14/05 10:10 PM Page 282

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 9-4: Invalid input message

Now, select the DVD Player again, but this time enter 199 for the bid price. Click the Bid Now! button
again.

This time, the bid is within range, and the validation succeeds. The system will then display the item
you bid on and the price that you have bid, as shown in Figure 9-5.

283

JSP and JavaBeans

13_57485x ch09.qxd 1/14/05 10:10 PM Page 283

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 9-5: Successful bid

How It Works
During the experimentation in the previous section, you may have noticed one unusual browser behav-
ior. Unlike the examples in previous chapters, all the screens in this example have the same URL:

http://localhost:8080/ch09/example1/index.jsp

If you look back at Figure 9-3, Figure 9-4, and Figure 9-5, you will notice that they all appear to be using
the preceding URL, yet the screens being rendered and the functions being performed are definitely
different.

Switching requests through a front controller
Indeed, every single request of this Try It Out application is first sent to the index.jsp page. The
index.jsp page is then responsible for the following:

❑ Performing some common tasks such as input form data validation

❑ Redirecting the request to the appropriate JSP page

Figure 9-6 reveals this application’s architecture.

284

Chapter 9

13_57485x ch09.qxd 1/14/05 10:10 PM Page 284

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 9-6: Front controller architecture

In Figure 9-6, index.jsp forwards the requests to one of two different JSP pages:

❑ enterbid.jsp

❑ showbid.jsp

In production, index.jsp may actually forward requests to many different JSPs depending on applica-
tion requirements. The major benefits delivered by this architecture include the following:

❑ Application URL hiding: The user sees only the index.jsp URL.

❑ Factoring of reusable code/logic: index.jsp does form data validation that may be required
by many different forms within the application.

❑ Elimination of hard-wired relationships between JSP pages: This makes the application easier
to maintain; the actual flow between pages in the application is determined by index.jsp, and
not hard-coded in URL links within the JSP pages themselves.

In this capacity, the index.jsp page acts as controller (or front controller). It is easy to see how both the
appearance and interactions of the entire application are controlled through the logic in index.jsp.

index.jsp

"Front controller"

Incoming requests

<jsp:forward> <jsp:forward>

enterbid.jsp showbid.jsp

285

JSP and JavaBeans

13_57485x ch09.qxd 1/14/05 10:10 PM Page 285

TEAM LinG - Live, Informative, Non-cost and Genuine!

The key enabling technical component for the operation of this architecture is the JavaBean. Without the
use of JavaBeans, designing JSP applications using this architecture would not be possible. To see why,
consider Figure 9-7.

Figure 9-7: JavaBeans and the front controller

In Figure 9-7, the front controller (index.jsp) is viewed as a switch for the incoming requests. This is
another common way to view the architecture. The incoming requests are processed by the front con-
troller and then switched to one of the presentation processors (JSP) to display the output of the pro-
cessed request. The only data element that is passed between the front controller and a JSP is the
incoming request itself. To pass information between the front controller and the presentation JSPs,
JavaBeans are attached as named attributes (attached data in Figure 9-7) to the request. The JavaBeans
enable arbitrarily complex data elements to be passed between the front controller and the presentation
JSPs — this is the vital role of JavaBeans in the architecture.

You will see this use of JavaBeans again and again in your daily JSP development. Almost all modern
Web application frameworks deploy JavaBeans in this fashion.

The index.jsp front controller
Let’s now examine the code that implements this. The index.jsp front controller can be located at
<Tomcat Installation Directory>/webapps/ch09/example1/index.jsp. The entire index.jsp
code is reproduced here:

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<c:choose>

<c:when test=”${empty param.action}”>
<jsp:forward page=”enterbid.jsp”/>

</c:when>
<c:when test=”${param.action eq ‘bid’}”>

<c:if test=”${(param.price <= 0) || (param.price >= 999)}”>
<jsp:useBean id=”biderror” class=”com.wrox.begjsp.ch09.BidError”

scope=”request”>

Front Controller

"Switches requests"

JSP JSP

286

Chapter 9

13_57485x ch09.qxd 1/14/05 10:10 PM Page 286

TEAM LinG - Live, Informative, Non-cost and Genuine!

<jsp:setProperty name=”biderror” property=”msg” value=”Sorry, your bid is
not in range. Please enter again.”/>

</jsp:useBean>
<jsp:forward page=”enterbid.jsp”/>

</c:if>

<jsp:useBean id=”bidinfo” class=”com.wrox.begjsp.ch09.Bid” scope=”request”>
<jsp:setProperty name=”bidinfo” property=”*”/>

</jsp:useBean>

<jsp:forward page=”showbid.jsp”/>
</c:when>

</c:choose>

You can see that index.jsp consists of one JSTL <c:choose> construct. This construct is used to switch
the incoming request to different presentation JSPs. In this case, it will be either enterbid.jsp or
showbid.jsp. The incoming request parameter that the switching is dependent on is called action.
The following code shows the <c:choose> construct used to switch the request based on the value of
the action parameter:

<c:choose>
<c:when test=”${empty param.action}”>

...
</c:when>
<c:when test=”${param.action eq ‘bid’}”>

....
</c:when>

</c:choose>

Initially, when the index.jsp page is called up, there will be no action parameter. In this case, the
code in the first <c:when> tag is executed. When the bid form is submitted, the value of the action
parameter will be set to ‘bid’, and the code in the second <c:when> will be executed. For any specific
incoming request, only one of the <c:when> tags will be executed.

Forwarding to different targets
The code in the first <c:when> is quite straightforward. This code is executed when the index.jsp URL
is first accessed:

<c:when test=”${empty param.action}”>
<jsp:forward page=”enterbid.jsp”/>

</c:when>

The EL empty operator is used determine that the action parameter is null (i.e., has not been defined).
The action performed here is a forward of the request to the enterbid.jsp form for input of bid data.

The role of the action parameter in this architecture is called the forward. The
front controller switches requests to different targets (JSP pages) depending on the
forward (different value of the action parameter).

287

JSP and JavaBeans

13_57485x ch09.qxd 1/14/05 10:10 PM Page 287

TEAM LinG - Live, Informative, Non-cost and Genuine!

The code in the second <c:when> is also quite straightforward. This code is executed when the
enterbid.jsp form is submitted to the front controller (index.jsp). Within enterbid.jsp, a hidden
parameter with the name action is set to the value of ‘bid’. This signals index.jsp to perform data
validation and then forward the request accordingly. Figure 9-8 shows the action performed by the code
in this second <c:when> construct.

Figure 9-8: Front controller forwarding requests depending on the action parameter

In Figure 9-8, the request is forwarded to one of two targets:

❑ Back to enterbid.jsp if the bid is out of range (input data validation fails)

❑ To showbid.jsp if the bid is in the valid range (greater than 0 and less than 999)

JavaBean flow for validation error reporting
The code for this second <c:when> construct is as follows:

<c:when test=”${param.action eq ‘bid’}”>
<c:if test=”${(param.price <= 0) || (param.price >= 999)}”>

<jsp:useBean id=”biderror” class=”com.wrox.begjsp.ch09.BidError”
scope=”request”>

enterbid.jsp Submits
form data

action='bid'

action-'bid'
or

vaidation succeed

action=null
or

validation failed

index.jsp

"Front controller"

enterbid.jsp showbid.jsp

288

Chapter 9

13_57485x ch09.qxd 1/14/05 10:10 PM Page 288

TEAM LinG - Live, Informative, Non-cost and Genuine!

<jsp:setProperty name=”biderror” property=”msg”
value=”Sorry, your bid is not in range. Please enter again.”/>

</jsp:useBean>
<jsp:forward page=”enterbid.jsp”/>

</c:if>

<jsp:useBean id=”bidinfo” class=”com.wrox.begjsp.ch09.Bid” scope=”request”>
<jsp:setProperty name=”bidinfo” property=”*”/>

</jsp:useBean>

<jsp:forward page=”showbid.jsp”/>
</c:when>

First, an EL expression is used to determine that the action parameter has the value bid:

<c:when test=”${param.action eq ‘bid’}”>

Next, the incoming request parameter called price is validated to be within the allowed range:

<c:if test=”${(param.price <= 0) || (param.price >= 999)}”>
...
</c:if>

Accessing JavaBeans using standard actions
The code in this <c:if> tag will be executed only if the price is out of range. It is in this code that an
error message JavaBean is created and sent back to the enterbid.jsp to be displayed to the user. The
code in the <c:if> tag is reproduced here:

<jsp:useBean id=”biderror” class=”com.wrox.begjsp.ch09.BidError” scope=”request”>
<jsp:setProperty name=”biderror” property=”msg”

value=”Sorry, your bid is not in range. Please enter again.”/>
</jsp:useBean>
<jsp:forward page=”enterbid.jsp”/>

The <jsp:useBean> standard action is used to create an instance of the BidError JavaBean and attach
it to the request scope. If you need a review of the <jsp:useBean> tag and how it creates new
instances of JavaBeans, see Chapter 8, “JSP Standard Actions.” This newly created instance of the
JavaBean is attached to the request implicit object as an attribute named biderror. Because the
request is passed during a <jsp:forward>, it will be available within the target enterbid.jsp.

Within the <jsp:useBean> tag, the msg property of the JavaBean is set to the required error message
using the <jsp:setProperty> standard action. In this case, the error message is as follows:

Sorry, your bid is not in range. Please enter again.

The code within the <jsp:useBean> standard action will execute only if the named JavaBean is created
successfully.

289

JSP and JavaBeans

13_57485x ch09.qxd 1/14/05 10:10 PM Page 289

TEAM LinG - Live, Informative, Non-cost and Genuine!

The validation error information JavaBean
The BidError JavaBean is created to carry error information between the front controller’s form valida-
tion logic and the presentation JSPs. You can find the code at <Tomcat Installation Directory>/
webapps/ch09/example1/WEB-INF/classes/com/wrox/begjsp/ch09/BidError.java. The source
code of the BidError.java JavaBean is reproduced here:

package com.wrox.begjsp.ch09;
public class BidError
{

private String msg;
public BidError()
{
}
public String getMsg()
{

return this.msg;
}

public void setMsg(String msg)
{

this.msg = msg;
}

}

This BidError JavaBean has only a single read/write property called msg. The getMsg() method is
implemented for the reading of this property, and the setMsg() method is implemented for writing this
property. Internally, the value of the property is kept in a String typed private field also called msg.

The enterbid.jsp target
The form that takes bids from the user is enterbid.jsp. It is located at <Tomcat Installation
Directory>/webapps/ch09/example1/enterbid.jsp. The content of enterbid.jsp is reproduced
here:

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<html>
<head>

<link rel=stylesheet type=”text/css” href=”auction.css”>
<title>Enter Your Bid</title></head>

<body>
<table class=”mainBox” width=”400”>

<tr><td class=”boxTitle” colspan=”2”>
Wrox JSP Auction

</td></tr>
<c:if test=”${!(empty biderror)}”>
<tr>

<td class=”errorText” colspan=”2”>
${biderror.msg}

</td>
</tr>
</c:if>

290

Chapter 9

13_57485x ch09.qxd 1/14/05 10:10 PM Page 290

TEAM LinG - Live, Informative, Non-cost and Genuine!

<tr><td colspan=”2”> </td></tr>
<tr><td>

<form action=”index.jsp” method=”get”>
<table>

<tr>
<td width=”200”>Item to bid on</td><td>

<select name=”item”>
<option>27 inch TV</option>
<option>DVD Player</option>
<option>Digital Camera</option>

</select>
<input type=”hidden” name=”action” value=”bid”/>

</td>
</tr>
<tr>

<td>Bid Price:</td>
<td><input name=”price” type=”text” width=”10”/>
</td>

</tr>
<tr><td colspan=”2”> </td></tr>
<tr><td colspan=”2” align=”center”>

<input type=”submit” value=”Bid now!”/>
</td></tr>

</table>
</form>

</td></tr>
</table>

</body>
</html>

It is an HTML form with a <select> form element and a text typed <input> form element. The high-
lighted portion in the preceding code checks for and prints any validation error message if it exists. The
biderror JavaBean from index.jsp, transported as an attribute attached to the request, is used to
determine whether a validation has occurred. This JavaBean is accessed through the EL in this case.

Accessing JavaBeans through EL

The validation error message rendering code in the enterbid.jsp uses EL to access the biderror
JavaBean. It adds an additional row to the table if an error occurred:

<c:if test=”${!(empty biderror)}”>
<tr>

<td class=”errorText” colspan=”2”>
${biderror.msg}

</td>
</tr>

</c:if>

First, the empty EL operator determines whether the biderror attribute is available. The biderror
attribute will not exist if enterbid.jsp is accessed for the first time because index.jsp forwards to the
page without creating any JavaBean. Only if the biderror attribute is found will the extra row in the table
be rendered. Note the very simple access to the msg property value of the biderror JavaBean using EL:

${biderror.msg}

291

JSP and JavaBeans

13_57485x ch09.qxd 1/14/05 10:10 PM Page 291

TEAM LinG - Live, Informative, Non-cost and Genuine!

Using EL to render a JavaBean property value is simple and concise.

Displaying bid information via a JavaBean
If the bid price entered by the user is within the allowable range, the front controller index.jsp will for-
ward the request to the showbid.jsp target. The code to do this is in the second <c:when> tag within
index.jsp, after the <c:if> check for bid price validity:

<jsp:useBean id=”bidinfo” class=”com.wrox.begjsp.ch09.Bid” scope=”request”>
<jsp:setProperty name=”bidinfo” property=”*”/>

</jsp:useBean>
<jsp:forward page=”showbid.jsp”/>

The preceding code creates a new Bid JavaBean instance and calls it bidinfo, using the <jsp:useBean>
tag. Note that the special “*” value is used to assign the incoming input form data value to the properties
of the bean.

Filling JavaBean properties with incoming request parameters

When the special “*” value for the property attribute is included in a standard <jsp:setProperty>
action, the JSP runtime will match the name of the request parameter against the name of the properties
of the JavaBean referenced. (For a discussion of this special value, see Chapter 8.) In this case, the
JavaBean is called bidinfo and is an instance of the Bid JavaBean. This JavaBean has two properties:

❑ item

❑ price

This matches the incoming form parameters, filled out using enterbid.jsp, exactly. This will result in
the assignment of the item parameter to the item property of bidinfo, and the assignment of the
price parameter to the price property of bidinfo. Because the <jsp:useBean> created the bidinfo
attribute in the request scope, the bidinfo JavaBean instance will travel with the forwarded request to
showbid.jsp.

The Bid JavaBean

The code for the Bid JavaBean can be found at <Tomcat Installation Directory>/webapps/ch09/
WEB-INF/classes/com/wrox/begjsp/ch09/Bid.java. The Bid.java code is reproduced here:

package com.wrox.begjsp.ch09;
public class Bid
{

private long price;
private String item;

public Bid()
{
}

public long getPrice()

292

Chapter 9

13_57485x ch09.qxd 1/14/05 10:10 PM Page 292

TEAM LinG - Live, Informative, Non-cost and Genuine!

{
return this.price;

}

public void setPrice(long price)
{

this.price = price;
}

public String getItem()
{

return this.item;
}

public void setItem(String item)
{

this.item = item;
}

}

This JavaBean has two properties: price and item. They are both read/write properties. A
get<PropertyName> () and a set<PropertyName>() method are created for each property.

The showbid.jsp target

Back in index.jsp, after creating the Bid JavaBean instance and setting its property values, the request
is forwarded to the showbid.jsp target via a <jsp:forward> standard action:

<jsp:useBean id=”bidinfo” class=”com.wrox.begjsp.ch09.Bid” scope=”request”>
<jsp:setProperty name=”bidinfo” property=”*”/>

</jsp:useBean>
<jsp:forward page=”showbid.jsp”/>

The code for showbid.jsp can be located at <Tomcat Installation Directory>/webapps/
ch09/example1/showbid.jsp. The content of showbid.jsp is presented here:

<html>
<head>

<link rel=stylesheet type=”text/css” href=”auction.css”>
<title>Show the Bid</title>

</head>
<body>

<table class=”mainBox” width=”600”>
<tr><td class=”boxTitle” colspan=”2”>

Your Auction Bid
</td></tr>
<tr><td colspan=”2”> </td></tr>
<tr>

<td class=”tableLabel” width=”30%”>
Item bid for

</td>

293

JSP and JavaBeans

13_57485x ch09.qxd 1/14/05 10:10 PM Page 293

TEAM LinG - Live, Informative, Non-cost and Genuine!

<td class=”tableCell”>
${bidinfo.item}

</td>
</tr>
<tr>

<td class=”tableLabel”>
Bid price

</td>
<td class=”tableCell”>

${bidinfo.price}
</td>

</tr>
</table>

</body>
</html>

This JSP page renders the property values of the bidinfo JavaBean instance using EL. The two lines ren-
dering the values are highlighted in the preceding code.

Formatting auction output pages with a CSS stylesheet
Both enterbid.jsp and showbid.jsp use a CSS stylesheet to format the HTML output. The stylesheet
is called auction.css and can be located at <Tomcat Installation
Directory>/webapps/ch09/example1/auction.css.

The content of this stylesheet is shown here:

.tableCell
{

font-family : Verdana, Geneva, Arial, Helvetica, sans-serif;
font-size : 16;
font-weight : bold;
color : #0f7fcf;
background-color: #ffffff;

}

.resultCell
{

font-family : Verdana, Geneva, Arial, Helvetica, sans-serif;
font-size : 16;
font-style: italic;
font-weight : bold;
color : #000000;
background-color: #ffffff;

}

.tableLabel
{

294

Chapter 9

13_57485x ch09.qxd 1/14/05 10:10 PM Page 294

TEAM LinG - Live, Informative, Non-cost and Genuine!

font-family : Verdana, Geneva, Arial, Helvetica, sans-serif;
font-size : 18;
color : #000000;
background-color: #ffffff;

}

.errorText
{

font-family : Verdana, Geneva, Arial, Helvetica, sans-serif;
font-size : 16;
font-weight : bold;
color : #ffffff;
background-color: #ff0000;

}

.boxTitle
{

font-family : Arial, Helvetica, sans-serif;
font-size : 22;
font-weight : bold;
color : #ffffff;
background-color: #0F7ACA;

}
.mainBox
{

font-family : Verdana, Geneva, Arial, Helvetica, sans-serif;
font-size : 12;
color : #ffffff;
background-color: #eeeeee;

}

This completes the coverage of the first example. The next Try It Out exercise is built on the first, and
shows how you can use JavaBeans to carry information from custom application logic to the JSP pages.

Try It Out Using JavaBeans to Display the Auction Result
First make sure that your Tomcat 5 server is running and then deploy ch09.war to the server.

Next, using your browser, access the following URL:

http://localhost:8080/ch09/example2/index.jsp

Enter the bid information shown in Figure 9-9.

295

JSP and JavaBeans

13_57485x ch09.qxd 1/14/05 10:10 PM Page 295

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 9-9: Bid Information for the DVD player

In Figure 9-9, you are bidding for the DVD Player, with a bid price of $90. Click the Bid Now! button.
Because the input price is within range, the index.jsp routes the request to showbid.jsp. However, in
this case, showbid.jsp also shows the bid result. Figure 9-10 displays the new showbid.jsp.

While the bid result here is simulated, the same technique can be used to display an actual bid result
from a live production system.

How It Works
This example consists of the same three JSP pages as the first example:

❑ index.jsp

❑ enterbid.jsp

❑ showbid.jsp

296

Chapter 9

13_57485x ch09.qxd 1/14/05 10:10 PM Page 296

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 9-10: Bid result displayed by the new showbid.jsp

Only enterbid.jsp and showbid.jsp have been modified. The example also makes use of the
JavaBeans shown in the following table.

JavaBean Usage Description

Bid Used to carry bid information from the front controller index.jsp to
the showbid.jsp presentation page

BidError Used to carry error information from the front controller index.jsp to
the enterbid.jsp when a validation error occurs

Bidder Used to simulate the action of bidding

The Bidder JavaBean
The new Bidder JavaBean is located at <Tomcat Installation Directory>/webapps/ch09/
WEB-INF/classes/com/wrox/begjsp/ch09/Bidder.java.

297

JSP and JavaBeans

13_57485x ch09.qxd 1/14/05 10:10 PM Page 297

TEAM LinG - Live, Informative, Non-cost and Genuine!

The code is reproduced here:

package com.wrox.begjsp.ch09;

public class Bidder
{

private String item;
private long price;
private String result;

public Bidder()
{
}

public String getItem()
{

return this.item;
}

public void setItem(String item)
{

this.item = item;
}

public long getPrice()
{

return this.price;
}

public void setPrice(long price)
{

this.price = price;
}

public String getResult()
{

/* simulate bid result */
this.result = “Sorry your bid did not win. The successful bidder was

joe1233.”;
return this.result;

}
}

This Bidder JavaBean simulates the bidding action. You need to do the following:

❑ Set the value of the item and price properties.

❑ Read the value of the result property.

The result property value contains a string that indicates the result of the bid.

In production, this method can access a back-end network to determine the actual result of the bid.

298

Chapter 9

13_57485x ch09.qxd 1/14/05 10:10 PM Page 298

TEAM LinG - Live, Informative, Non-cost and Genuine!

Modifying the controller to fetch bidding results
The index.jsp front controller page is modified to fetch the bidding result in an instance of the Bidder
JavaBean before forwarding the request to the showbid.jsp page.

You can find the modified index.jsp at <Tomcat Installation Directory>/webapps/ch09/
example2/index.jsp. The code of this modified page is presented here, with the modifications
highlighted:

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<c:choose>

<c:when test=”${empty param.action}”>
<jsp:forward page=”enterbid.jsp”/>

</c:when>
<c:when test=”${param.action eq ‘bid’}”>

<!-- validation code -->
<c:if test=”${(param.price <= 0) || (param.price >= 999)}”>

<jsp:useBean id=”biderror” class=”com.wrox.begjsp.ch09.BidError”
scope=”request”>

<jsp:setProperty name=”biderror” property=”msg” value=”Sorry, your bid is
not in range. Please enter again.”/>

</jsp:useBean>
<jsp:forward page=”enterbid.jsp”/>

</c:if>
<!-- data validated -->
<jsp:useBean id=”bidinfo” class=”com.wrox.begjsp.ch09.Bid” scope=”request”>

<jsp:setProperty name=”bidinfo” property=”*”/>
</jsp:useBean>

<!-- perform bidding -->
<jsp:useBean id=”bidder” class=”com.wrox.begjsp.ch09.Bidder” scope=”request”>

<jsp:setProperty name=”bidder” property=”item”/>
<jsp:setProperty name=”bidder” property=”price”/>

</jsp:useBean>
<c:set var=”bidresult” value=”${bidder.result}” scope=”request”/>
<jsp:forward page=”showbid.jsp”/>

</c:when>
</c:choose>

The <jsp:useBean> standard action is used here to create an instance of the Bidder JavaBean, attach-
ing it as a request scoped attribute called bidder. The <jsp:setProperty> standard action is used to
set the item and price property of the bidder JavaBean instance. Note that this could also have been
done using the single <jsp:setProperty> action and the special “*” value:

<jsp:setProperty name=”bidder” property=”*”/>

Using JSTL to access a JavaBean

The last lines highlighted in the new index.jsp controller are as follows:

<c:set var=”bidresult” value=”${bidder.result}” scope=”request”/>
<jsp:forward page=”showbid.jsp”/>

Here, the JSTL <c:set> custom action is used to retrieve a JavaBean’s property value. The value
obtained is the value of the result property; it is of type String. This value is then attached to the

299

JSP and JavaBeans

13_57485x ch09.qxd 1/14/05 10:10 PM Page 299

TEAM LinG - Live, Informative, Non-cost and Genuine!

request scope as a scoped variable called bidresult. This technique can be used to access an attribute
of a JavaBean regardless of its data type. The resulting bidresult request scope variable will be avail-
able within the showbid.jsp target, together with the bidinfo JavaBean instance.

Presenting bid results in showbid.jsp

One other element changed from the showbid.jsp page of the last Try It Out exercise. This page has
been modified to show the bid results. The new showbid.jsp is located at <Tomcat Installation
Directory>/webapps/ch09/example2/showbid.jsp. The page is shown here, with modifications
highlighted:

<html>
<head>

<link rel=stylesheet type=”text/css” href=”auction.css”>
<title>Show the Bid</title></head>

<body>
<table class=”mainBox” width=”600”>

<tr><td class=”boxTitle” colspan=”2”>
Your Auction Bid

</td></tr>
<tr><td colspan=”2”> </td></tr>
<tr><td class=”tableLabel” width=”30%”>

Item bid for
</td>
<td class=”tableCell”>

${bidinfo.item}</td>
</tr>
<tr>

<td class=”tableLabel”>
Bid price

</td>
<td class=”tableCell”>

${bidinfo.price}
</td>

</tr>
<tr>

<td class=”tableLabel”>
Bid result

</td>
<td class=”resultCell”>

${bidresult}
</td>

</tr>

</table>
</body>
</html>

One of the main purposes of a front controller in a system is to manage communica-
tions with back-end application logic. This communication can result in multiple
JavaBeans attached to the requests, forwarded to the presentation JSP for rendering.
In the preceding Try It Out exercise, this is exemplified by the data carrying both
bidinfo and bidresult JavaBeans.

300

Chapter 9

13_57485x ch09.qxd 1/14/05 10:10 PM Page 300

TEAM LinG - Live, Informative, Non-cost and Genuine!

Because the bidresult attribute is already of String data type, it is simply rendered within a new
table row using the EL expression:

${bidresult}

This concludes the coverage of using JavaBeans to carry information between custom application logic
and the JSP presentation layer.

How JavaBeans and EJBs Differ
The JavaBeans covered in this chapter are Java classes coded according to the JavaBeans API specifica-
tion. They are reusable software components that expose properties, methods, and events for external
access. The JSP usage of these JavaBeans is focused around the transfer of data between different JSP
pages. In this chapter, JavaBeans are used to transfer data between a single front controller and many
different presentation JSPs.

JSP is a technology residing exclusively in the presentation layer (of the Web tier) within the J2EE (Java 2
Enterprise Edition) architecture. J2EE is a large specification that encompasses many aspects of enter-
prise application building using Java as the programming language.

Enterprise JavaBeans, or EJBs for short, reside within the business logic tier of an enterprise system. This
tier is completely separate and independent from the Web tier in which the JSP resides. In fact, it is
entirely possible to create JSP-based applications without the use of EJB.

Unlike the JavaBeans presented here, EJBs execute within their own highly specialized container. The
container will have access to an enterprise’s database, communications, and security resources.

The J2EE architecture is covered in Chapter 22, “JSP in J2EE,” and you will learn a little about EJB in that
chapter. A thorough coverage of J2EE and/or EJB is beyond the scope of this book. The important thing
to realize at this point is that the JavaBeans used in this chapter are not EJBs, and that EJBs are not essen-
tial to creating applications using JSPs. In fact, even within enterprise Java applications, JSP as a presen-
tation technology seldom has access to EJBs. Instead, EJBs are usually accessed via code written in the
Java programming language called a servlet. Servlets are covered in Chapter 15, “JSP and Servlets.”

Summary
JavaBeans are software components created using the Java programming language that expose proper-
ties, methods, and events. JavaBeans . . .

❑ Play a vital role in the creation of applications using JSP.

❑ Are used to transfer complex data with the incoming request.

❑ Can be used in JSP via the built-in standard actions <jsp:useBean>, <jsp:setProperty>, and
<jsp:getProperty>.

301

JSP and JavaBeans

13_57485x ch09.qxd 1/14/05 10:10 PM Page 301

TEAM LinG - Live, Informative, Non-cost and Genuine!

❑ Can be accessed using raw Java language code in the form of embedded scriplets scripting ele-
ments. This practice is now discouraged, although you might come across such JSPs while
maintaining legacy code.

❑ Can be packaged into JAR files and placed into the application’s lib directory.

❑ Can be placed under the WEB-INF/classes directory for a faster modify-recompile cycle dur-
ing development.

❑ Can be manipulated readily using JSTL/EL, especially when used as scoped variables. The JSTL
<c:set> tag can be used to attach a JavaBean-based attribute to the request implicit object. EL
expressions can be used to render JavaBean property values.

JavaBeans are not the same as, and should not be confused with, Enterprise JavaBeans (EJBs). EJBs run
in their own special container, and are in a different architectural tier than JSPs.

The chapter also explored the front controller design pattern. Having a front controller in a JSP applica-
tion, you learned the following:

❑ By using a front controller to forward incoming requests to different JSPs, you can isolate com-
mon functions such as form data validation in one place.

❑ Using such a front controller enables you to write JSP applications in which the pages are not
hard-wired to one another, leading to better maintainability.

Exercises
1. Modify the first Try It Out exercise to do the following:

a. Remember the selected bid item when the enterbid.jsp is re-displayed during
a validation error

b. Remember the bid price entered when the enterbid.jsp is re-displayed

c. Highlight the bid price label in red, emphasizing that the value is invalid

2. Modify the second Try It Out exercise to

a. Include a new winner.jsp page

b. Remove the upper bid limit of $999

c. Forward to this new winner.jsp page if the incoming bid price is over $1,000

302

Chapter 9

13_57485x ch09.qxd 1/14/05 10:10 PM Page 302

TEAM LinG - Live, Informative, Non-cost and Genuine!

10
Error Handling

In an ideal world, you would be able to design a JSP-based application, code the pages, and have
the system up and running in one single try. In the real world, however, there are many opportuni-
ties to make mistakes. Design and coding mistakes will result in errors. This chapter focuses on the
different types of errors that you may encounter, and how to handle them using JSP.

The JSP error-handling mechanism is intimately tied to the exception handling mechanism of the
Java programming language. This chapter explains this relationship, and also shows how you can
use JSP to handle exceptions originating from Java code within the application.

This chapter covers the following topics:

❑ Coding and syntax errors in the Java programming language

❑ JSP coding errors

❑ Logical errors

❑ User data-entry errors

❑ Translation-time errors

❑ Request-time errors

❑ Handling errors using the JSTL <c:catch> action

❑ Handling errors using the JSP error page mechanism

Understanding the Origin of Errors
Developers often talk about error handling as if it were a very simple matter, and assume that code
can be easily added to handle errors after the completion of a project. This is far from the truth. A
usable and robust application relies on an a priori design, and the thought given to the source and
handling of possible error conditions.

14_57485x ch10.qxd 1/14/05 10:04 PM Page 303

TEAM LinG - Live, Informative, Non-cost and Genuine!

It is very important to appreciate that there are different sources of error. Each source can also emit
errors at different times during the development and deployment cycle.

When you are writing JSP code, coding errors can occur at different parts of your code. Because a JSP
page is made up of so many separate elements, errors can be introduced by any of these components.

Some of the possible sources of errors include the following:

❑ In the coding of your JavaBeans or Java classes

❑ Within scripting elements

❑ In JSP directives and actions

❑ In JSTL and EL coding

❑ Within template data

The sections in this chapter examine these possibilities one by one, and discuss how the errors may be
handled in each case.

Errors in Java language coding
JSP uses custom JavaBeans to transport data between JSP pages and back-end elements such as business-
logic Java code or servlets. The JavaBeans and custom Java classes are coded and tested separately from
the JSP pages.

JavaBeans and/or classes are code written in the Java programming language. Java code is compiled
before the beans or classes are executed. For this code, errors may be caught when you compile the code
or when you run and test the code.

Syntax errors in coding will be caught by the compiler when the code is compiled. For example, the fol-
lowing code to add up 50 numbers will result in a compilation error:

int sum = 0;
for {int i=0; i< 50; i++}

sum = sum + i;

When the code is compiled with a Java compiler, you will get an error message similar to the following:

classname.java:4: ‘(‘ expected
for {int i=0; i< 50; i++}

^
classname.java:6: illegal start of expression

Custom tag libraries are constructed out of the same five types of elements listed in
this section. Older tag libraries tend to use a lot of custom Java language coding,
whereas newer tag libraries tend to make more use of JSP-based tag files.

304

Chapter 10

14_57485x ch10.qxd 1/14/05 10:04 PM Page 304

TEAM LinG - Live, Informative, Non-cost and Genuine!

This is a syntax error, and you must correct the code and recompile until there are no more syntax errors.
Once the compiler successfully compiles the source code into bytecode, the code is free of syntax errors.
However, logic errors may still remain in the compiled code.

Errors in logic within JavaBeans/Java classes should be detected and corrected during the unit testing
and debugging of the component. Coverage of testing and debugging techniques for Java programs is
beyond the scope of this book.

Errors in scripting elements
Like JavaBeans and custom Java classes, scripting elements are also code written in the Java program-
ming language. Unlike their cousins, however, the developer need not compile, test, and debug these
embedded Java language fragments separate from the JSP pages.

Instead, the Java code embedded within scripting elements is compiled and executed together with the
rest of the JSP page. This typically occurs when the JSP page is first accessed by a request. Figure 10-1
illustrates the compilation and execution of scripting element Java coding.

Figure 10-1: Compilation and execution of scripting elements

scriptlet

Translation

JSP

jspc javac

Java source code
Java executable
binary bytecode

scriptlet

scriptletscriptlet

Translation (Compilation)

Triggered by the first request to a JSP (unless precompiled)

The execution of compiled code (JavaBeans/Java classes) is orchestrated by the JSP
that uses them (for example, by a <jsp:useBean> action). During the execution
phase, runtime errors can still occur. These runtime errors result in Java exceptions
being thrown. A later section in this chapter will show how JSP can handle these
Java language runtime exceptions.

305

Error Handling

14_57485x ch10.qxd 1/14/05 10:04 PM Page 305

TEAM LinG - Live, Informative, Non-cost and Genuine!

Because the Java code in scripting elements is not compiled and tested separately, any syntax error in the
coding will show up only after compilation — at request time (unless the JSPs are precompiled; see
Chapter 25, “Performance,” for more information on precompilation). In practice, you will be debugging
both the JSP program logic and the embedded Java code at the same time. This increased complexity in
debugging (and maintenance) is one reason why the use of scripting elements is discouraged in new
JSP code.

The following Try It Out exercise shows a coding error within a scripting element.

Try It Out Catching Errors in Scripting Elements
This first example shows how the Tomcat 5 server displays a Java syntax error within a scripting
element.

The example is contained in ch10.war. First make sure that your Tomcat 5 server is running and then
deploy ch10.war to the server. Review Chapter 1 if you do not remember how to deploy a WAR
archive.

Open your browser and access the following URL:

http://localhost:8080/ch10/example1/index.jsp

The screen you will see is an error-reporting screen generated by the Tomcat 5 server. The returned
HTTP status code is 500. The screen will look similar to what is shown in Figure 10-2.

The HTTP protocol is used to send the response from the server to the client. A sta-
tus code may be returned with the response. A status code of 500 indicates to the
client (browser) that an internal server error has occurred.

Other than returning an HTTP 500 status code, the JSP specification does not specify
how errors from scripting elements should be displayed or handled. The behavior
will be container-specific. If you are not using Tomcat as your server, the diagnosis
and debugging process for scripting elements may be different from the one in the
Try It Out exercise.

306

Chapter 10

14_57485x ch10.qxd 1/14/05 10:04 PM Page 306

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 10-2: JSP page with a syntax error in a scripting element

How It Works
The index.jsp page in this example is coded to include a syntax error in the Java coding embedded
within a scripting element. The JSP page is located at <Tomcat Installation Directory>/webapps/
ch10/example1/index.jsp. The index.jsp code is reproduced here:

<html>
<head>

<title>Error in Scripting Element</title>
</head>

307

Error Handling

14_57485x ch10.qxd 1/14/05 10:04 PM Page 307

TEAM LinG - Live, Informative, Non-cost and Genuine!

<body>
<h1>Page with error in scripting element</h1>

<%
int sum= 0;
for { int i=0; i<50; i++ }

sum = sum + i;

%>
</body>
</html>

The title and heading of this page are actually not too important because the page is never rendered.
Instead, an error report (refer to Figure 10-2) is displayed as a response by the Tomcat 5 server.

The highlighted code in the preceding code snippet is the embedded error. The Java for statement
should use standard parentheses “(“ instead of the curly brackets “{.” Because JSP need not be precom-
piled, this embedded error will not be detected until the page is accessed for the first time (and the
Tomcat 5 server attempts to compile this code).

In Figure 10-2, you can see the exception report. A fragment of this report is reproduced here:

org.apache.jasper.JasperException: Unable to compile class for JSP
An error occurred at line: 8 in the jsp file: /example1/index.jsp

Generated servlet error:
[javac] Compiling 1 source file

C:\jdk1.3\tc5025\work\Catalina\localhost\ch10\org\apache\jsp\example1\index_jsp.
java:51: ‘(‘ expected
for { int i=0; i<50; i++ }

^

The highlighted lines in the preceding report pinpoint the Java syntax error. First, note that the error is
reported as follows:

org.apache.jasper.JasperException: Unable to compile class for JSP

This clearly states that something has gone wrong while trying to compile the code generated for the JSP.
Next, this is confirmed by the compiler’s status message:

[javac] Compiling 1 source file

Finally, the exact offending line and syntax error are pointed out. The wrong use of a curly bracket is
pinpointed by the compiler. It even indicates that the round bracket “(“ is expected.

C:\jdk1.3\tc5025\work\Catalina\localhost\ch10\org\apache\jsp\example1\index_jsp.
java:51: ‘(‘ expected
for { int i=0; i<50; i++ }

^

308

Chapter 10

14_57485x ch10.qxd 1/14/05 10:04 PM Page 308

TEAM LinG - Live, Informative, Non-cost and Genuine!

In general, Java syntax errors within embedded scripting elements are caught and displayed as an
exception report in the translation phase by the Tomcat server. The diagnostic message provided by the
javac compiler is typically very helpful in isolating the cause of the syntax error.

These syntax errors, of course, should be corrected in the testing and debugging phase of a typical JSP
application.

Errors in JSP directives and actions
Another source of common errors is syntax or typographical mistakes in standard JSP directives and
actions.

For example, consider the following JSP directive:

<%@page lang=”java” %>

The page directive gives instructions to the container. In this case, the developer wanted to tell the con-
tainer that the page uses Java as the scripting language. However, an error is made because the attribute
used to specify the scripting language is language, not lang.

The container should catch this error at the JSP page’s translation time and issue an error report.

For another example, consider the following JSP standard action:

<jsp:include bad=”abc” page=”nosuch.jsp” />

This action contains two errors:

❑ The attribute bad is not a valid attribute for the <jsp:include> standard action.

❑ The page nosuch.jsp does not exist.

While a container is expected to catch the first error during the translation phase of processing (when the
JSP code is translated to Java code), the second error cannot be detected until request processing time. In
fact, the semantics of the <jsp:include> tag states that no error should be generated if the page to be
included is not found.

The next Try It Out exercise shows the output of Tomcat when errors are detected in JSP directives and
standard actions.

Coding syntax errors must be corrected before the application can be deployed.
These errors are corrected in the debugging phase of the development cycle.
Chapter 14, “JSP Debugging Techniques,” describes in detail how to track down
development-time errors and correct them.

309

Error Handling

14_57485x ch10.qxd 1/14/05 10:04 PM Page 309

TEAM LinG - Live, Informative, Non-cost and Genuine!

Try It Out Catching Errors in JSP Directives and Actions
This example reveals how the Tomcat 5 server deals with common JSP coding errors in directives and
standard actions.

Make sure ch10.war is deployed on your Tomcat 5 server. Then, open your browser and access the fol-
lowing URL:

http://localhost:8080/ch10/example2/index.jsp

This will cause an error-reporting screen to be displayed, similar to Figure 10-3. The error being reported
to the browser is again HTTP status 500, an internal server error.

Figure 10-3: JSP page with errors in actions and directives

In Figure 10-3, the error report is specifying an invalid attribute called lang.

310

Chapter 10

14_57485x ch10.qxd 1/14/05 10:04 PM Page 310

TEAM LinG - Live, Informative, Non-cost and Genuine!

How It Works
The index.jsp page in this example has multiple coding errors in JSP directives and standard actions.
The index.jsp page is located at <Tomcat Installation Directory>/webapps/ch10/example2/
index.jsp. The code of index.jsp is reproduced here:

<%@page lang=”java” %>
<html>
<head>

<title>Error in JSP directives and actions</title>
</head>
<body>

<h1>Page with error in JSP directive and actions</h1>

<jsp:include page=”nosuch.jsp” bad=”abc” />
<jsp:setProperty name=”errobj” property=”nosuch” value=”This is invalid” />

</body>
</html>

The first highlighted line is the page directive. The lang attribute is a valid attribute for the <%@ page %>
directive:

<%@page lang=”java” %>

The second highlighted line is a <jsp:include> standard action. The bad attribute is an invalid
attribute. In addition, nosuch.jsp does not exist, although that is not considered an error:

<jsp:include page=”nosuch.jsp” bad=”abc” />

The last highlighted line is a <jsp:setProperty> standard action that does not contain a syntax error.
This means that it should translate to proper Java code. However, there will still be an error when the
code is executed because the JavaBean called errobj does not exist:

<jsp:setProperty name=”errobj” property=”nosuch” value=”This is invalid” />

Errors in the <%@page %> directive
When the page is first accessed, the error report in Figure 10-3 is displayed. Note that even though the
page contains multiple errors, only the first one is caught and displayed by the error report. This behav-
ior enables you to fix coding errors one by one.

This initial error report clearly identifies the culprit — the invalid lang attribute of the page directive:

org.apache.jasper.JasperException: /example2/index.jsp(1,1) Page directive has
invalid attribute: lang
org.apache.jasper.compiler.DefaultErrorHandler.jspError(DefaultErrorHandler.java:39)

org.apache.jasper.compiler.ErrorDispatcher.dispatch(ErrorDispatcher.java:376)
org.apache.jasper.compiler.ErrorDispatcher.jspError(ErrorDispatcher.java:200)
org.apache.jasper.compiler.JspUtil.checkAttributes(JspUtil.java:304)

org.apache.jasper.compiler.Validator$DirectiveVisitor.visit(Validator.java:100)

311

Error Handling

14_57485x ch10.qxd 1/14/05 10:04 PM Page 311

TEAM LinG - Live, Informative, Non-cost and Genuine!

To fix the problem, edit the index.jsp file — located at <Tomcat Installation Directory>/
webapps/ch10/example2/index.jsp — by changing the lang attribute of the <%@page %> directive
to language. This eliminates the first error:

<%@page language=”java” %>

Next, access the following URL again using your browser:

http://localhost:8080/ch10/example2/index.jsp

Make sure you force a reload of the page on your browser if you already have it displayed.

Errors in the <jsp:include> action
The new error report, generated by Tomcat 5, now points to the invalid attribute called bad in the
<jsp:include> action:

org.apache.jasper.JasperException: /example2/index.jsp(9,0) Include action has
invalid attribute: bad

org.apache.jasper.compiler.DefaultErrorHandler.jspError(DefaultErrorHandler.java:39)
org.apache.jasper.compiler.ErrorDispatcher.dispatch(ErrorDispatcher.java:376)
org.apache.jasper.compiler.ErrorDispatcher.jspError(ErrorDispatcher.java:200)
org.apache.jasper.compiler.JspUtil.checkAttributes(JspUtil.java:304)

Now, again modify index.jsp, located at <Tomcat Installation Directory>/webapps/ch10/
example2/index.jsp, to correct this second error.

Remove the bad attribute from the <jsp:include> directive:

<jsp:include page=”nosuch.jsp” />

Try accessing the following URL again using your browser:

http://localhost:8080/ch10/example2/index.jsp

Translation-time errors versus request-time errors
Unlike the previous error report, the resulting error report this time is quite cryptic. It is partially repro-
duced here:

org.apache.jasper.JasperException
org.apache.jasper.runtime.JspRuntimeLibrary.internalIntrospecthelper(JspRuntimeLibr
ary.java:359)
org.apache.jasper.runtime.JspRuntimeLibrary.introspecthelper(JspRuntimeLibrary.

java:306)
org.apache.jsp.example2.index_jsp._jspService(index_jsp.java:53)
org.apache.jasper.runtime.HttpJspBase.service(HttpJspBase.java:94)
javax.servlet.http.HttpServlet.service(HttpServlet.java:810)
org.apache.jasper.servlet.JspServletWrapper.service(JspServletWrapper.java:298)
org.apache.jasper.servlet.JspServlet.serviceJspFile(JspServlet.java:292)

312

Chapter 10

14_57485x ch10.qxd 1/14/05 10:04 PM Page 312

TEAM LinG - Live, Informative, Non-cost and Genuine!

org.apache.jasper.servlet.JspServlet.service(JspServlet.java:236)
javax.servlet.http.HttpServlet.service(HttpServlet.java:810)

root cause
java.lang.NullPointerException
org.apache.jasper.runtime.JspRuntimeLibrary.internalIntrospecthelper(JspRuntime

Library.java:320)
org.apache.jasper.runtime.JspRuntimeLibrary.introspecthelper(JspRuntimeLibrary.

java:306)
org.apache.jsp.example2.index_jsp._jspService(index_jsp.java:53)
org.apache.jasper.runtime.HttpJspBase.service(HttpJspBase.java:94)
javax.servlet.http.HttpServlet.service(HttpServlet.java:810)
org.apache.jasper.servlet.JspServletWrapper.service(JspServletWrapper

The main differences to note in this error report are as follows:

❑ This error is a runtime error.

❑ It has a root cause of NullPointerException.

The fact that this is a runtime error indicates that the translation and compilation phases have completed
successfully.

The main thing to keep in mind is that a translation-time error occurs while the container is translating
the JSP code to Java source code. A request-time error occurs when the compiled Java bytecode is exe-
cuted to process an incoming request.

This request-time error is caused by the <jsp:setProperty> standard action:

<jsp:setProperty name=”errobj” property=”nosuch” value=”This is invalid” />

This is a request-time error because the specified errobj JavaBean instance does not exist on the JSP
page. The generated JSP code will search for this scoped variable during request time.

If you examine the Java code generated during the translation phase, located at <Tomcat Installation
Directory>/work/Catalina/localhost/ch10/org/apache/jsp/example2/index_jsp.java, you
can find the corresponding generated Java code:

out.write(‘\n’);

org.apache.jasper.runtime.JspRuntimeLibrary.introspecthelper(_jspx_page_context.fin
dAttribute(“errobj”), “nosuch”, “This is invalid”, null, null, false);
out.write(“\r\n”);

The highlighted code indicates where the exception occurred. Setting a property for a non-existent bean
has caused the request-time error.

While runtime error is Java programming terminology, JSP developers call these
errors request-time errors because they occur while JSP is processing a request.

313

Error Handling

14_57485x ch10.qxd 1/14/05 10:04 PM Page 313

TEAM LinG - Live, Informative, Non-cost and Genuine!

Handling request-time errors in JSP
While the JSP specification does not specify what a container must do for translation-time errors, it spec-
ifies two mechanisms to deal with request-time errors:

❑ Through JSTL, the <c:catch> action for dealing with errors to be handled within a JSP page

❑ Through an error page forwarding mechanism

Both of these mechanisms are very useful in the implementation of your own error-handling code.
Writing your own error-handling code in JSP, you can detect errors and provide graceful recovery or dis-
play useful information to the end user.

Handling errors locally using the JSTL <c:catch> action

The JSTL <c:catch> action has the following general form:

<c:catch [var=”...var name...”]>
... other JSP code that may cause request time error ...

</c:catch>

The only allowed attribute, if specified, is the var attribute.

This <c:catch> action will catch any errors that occur in the JSP code residing within its body. For
example, consider the following JSP fragment:

<c:catch>
<jsp:setProperty name=”errobj” property=”nosuch” value=”This is invalid” />

</c:catch>

In this case, if the errobj JavaBean instance cannot be found, the <jsp:setProperty> will cause a
request-time error to occur. This error will be caught by the <c:catch> action. However, the action does
not do anything with the error information. When the optional var attribute for <c:catch> is not speci-
fied, the <c:catch> action will simply ignore the error.

If you specify the var attribute, it will be assigned with an object that contains information on the error
that has occurred. You can then use EL to query or render properties of this object. This object is always
of a type derived from java.lang.Throwable. You can check the Javadocs for java.lang.Throwable
to find the properties that can be accessed. The following examples involve some of the most frequently
used properties. Assuming that the var attribute in the <c:catch> phase is set to localerr, and that
an error has occurred, consider the following EL expression:

${localerr}

314

Chapter 10

14_57485x ch10.qxd 1/14/05 10:04 PM Page 314

TEAM LinG - Live, Informative, Non-cost and Genuine!

This expression will display the error being caught. An error output rendered by this expression may be
similar to the following:

org.apache.jasper.JasperException org.apache.jasper.runtime.JspRuntimeLibrary.
internalIntrospecthelper(JspRuntimeLibrary.java:359)

The stackTrace property of the object can be accessed to obtain an array of trace elements. Each ele-
ment contains information on a nested call within the Java Virtual Machine stack at the time the error is
detected. This trace information may be useful for automated error interpretation and recovery, or gen-
eral debugging. This array can be easily handled using JSTL. For example, the following code will print
out each element in the stack trace (assuming again that localerr contains the error object):

<c:forEach var=”trace” items=”${localerr.stackTrace}”>
<p> ${trace} </p>

</c:forEach>

A sample of output from this code is a detailed trace of the stack:

org.apache.jasper.runtime.JspRuntimeLibrary.internalIntrospecthelper(JspRuntime
Library.java:359)
org.apache.jasper.runtime.JspRuntimeLibrary.introspecthelper(JspRuntimeLibrary.
java:306)
org.apache.jsp.example3.index_jsp._jspx_meth_c_catch_0(index_jsp.java:108)
org.apache.jsp.example3.index_jsp._jspService(index_jsp.java:63)
org.apache.jasper.runtime.HttpJspBase.service(HttpJspBase.java:94)
...

Last but not least, you can use the class property of the object to determine the exact Java type of the
error. This will enable you to handle each type of request-time error using different code. For example,
the following JSP fragment will render the phrase bad code in HTML if a request-time error has the type
org.apache.jasper.JasperException:

<c:if test=”${localerr.class eq ‘class org.apache.jasper.JasperException’}”>
<h2>bad code!</h2>

</c:if>

The <c:catch> action is ideal for handling errors that occur within a page when using a page-specific
error treatment strategy. Using <c:catch>, you can provide a different way of handling errors for each
page. Another error-handling mechanism that will be covered in the “Handling errors using JSP error
page forwarding” section will show you how to use the same error-handling scheme for a large set
of pages.

The following Try It Out exercise demonstrates how to use the <c:catch> JSTL action to catch and
handle local errors within a JSP page.

315

Error Handling

14_57485x ch10.qxd 1/14/05 10:04 PM Page 315

TEAM LinG - Live, Informative, Non-cost and Genuine!

Try It Out Handling Request-Time Errors Using the JSTL <c:catch> Action
This example is contained in ch10.war. Make sure that your Tomcat 5 server is running and then
deploy ch10.war to the server.

Open your browser and access the following URL:

http://localhost:8080/ch10/example3/index.jsp

The initial index.jsp contains a <jsp:setProperty> standard action that refers to a non-existent
JavaBean instance. This should generate a request-time error. However, no error is reported by
index.jsp. The screen looks similar to the one shown in Figure 10-4.

Figure 10-4: Handling errors with the JSTL <c:catch> action

316

Chapter 10

14_57485x ch10.qxd 1/14/05 10:04 PM Page 316

TEAM LinG - Live, Informative, Non-cost and Genuine!

How It Works
The index.jsp page in this example is coded using the JSTL <c:catch> action. The initial version
catches the error but does not perform additional handling or processing. This has the effect of ignoring
the error and stopping it from propagating beyond this page.

This index.jsp page is located at <Tomcat Installation Directory>/webapps/ch10/example3/
index.jsp. The code is the same as the last modified version of the index.jsp from the previous Try It
Out exercise. The index.jsp code is reproduced here with additional lines highlighted:

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<%@page language=”java” %>
<html>
<head>

<title>Error in JSP directives and actions</title>
</head>
<body>

<h1>Page with error in JSP directive and actions</h1>
<c:catch>

<jsp:include page=”nosuch.jsp” />
<jsp:setProperty name=”errobj” property=”nosuch” value=”This is invalid” />

</c:catch>
</body>
</html>

Because the <c:catch> action is used without a var attribute, the error is caught but not available for
further processing. As a result, no further error processing or handling is possible.

To make this code a little more useful, a var attribute can be added and the error information printed
out. To try this, modify the index.jsp file (<Tomcat Installation
Directory>/webapps/ch10/example3/index.jsp) to contain the following:

<c:catch var=”localerr”>
<jsp:include page=”nosuch.jsp” />
<jsp:setProperty name=”errobj” property=”nosuch” value=”This is invalid” />

</c:catch>
${localerr}

Save the modified file. Try accessing the example URL again:

http://localhost:8080/ch10/example3/index.jsp

The output this time should be similar to Figure 10-5.

317

Error Handling

14_57485x ch10.qxd 1/14/05 10:04 PM Page 317

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 10-5: Reporting the source exception

In this case, the cause of the request-time error is rendered using the following EL expression:

${localerr}

Using the stackTrace property of the localerr object, a Java VM stack trace at the time of the error
can be obtained. The EL <c:forEach> iterative action can be used to access this trace information
programmatically. Modify the example to show this stack of nested method calls. Edit the index.jsp
file (<Tomcat Installation Directory>/webapps/ch10/example3/index.jsp) to contain the
following:

<c:catch var=”localerr”>
<jsp:include page=”nosuch.jsp” />
<jsp:setProperty name=”errobj” property=”nosuch” value=”This is invalid” />

</c:catch>
<c:forEach var=”trace” items=”${localerr.stackTrace}”>

<p>${trace}</p>
</c:forEach>

318

Chapter 10

14_57485x ch10.qxd 1/14/05 10:04 PM Page 318

TEAM LinG - Live, Informative, Non-cost and Genuine!

Save the modified file. Try accessing the example URL again:

http://localhost:8080/ch10/example3/index.jsp

The output is similar to Figure 10-6.

Figure 10-6: Reporting error with a trace of the stack

In Figure 10-6, the stack trace elements are iterated through using JSTL, and each element is rendered
using an EL expression:

<c:forEach var=”trace” items=”${localerr.stackTrace}”>
<p>${trace}</p>

</c:forEach>

Finally, modify the example code to test for the type of error. Change index.jsp (<Tomcat
Installation Directory>/webapps/ch10/example3/index.jsp) to contain the following:

319

Error Handling

14_57485x ch10.qxd 1/14/05 10:04 PM Page 319

TEAM LinG - Live, Informative, Non-cost and Genuine!

<c:catch var=”localerr”>
<jsp:include page=”nosuch.jsp” />
<jsp:setProperty name=”errobj” property=”nosuch” value=”This is invalid” />

</c:catch>
<c:if test=”${localerr.class eq ‘class org.apache.jasper.JasperException’}”>

<h2>bad code!</h2>
</c:if>

This will cause the phrase bad code! to be printed if the error is an org.apache.jasper.Jasper
Exception. Otherwise, no message will be printed.

Save the modified file. Try accessing the example URL again:

http://localhost:8080/ch10/example3/index.jsp

The output is similar to Figure 10-7.

Figure 10-7: Error reporting with custom diagnosis

In Figure 10-7, the phrase bad code! is printed because the error is of type org.apache.jasper
.JasperException. This technique can be used to write error-handling code that depends on a specific
aspect of the detected error.

320

Chapter 10

14_57485x ch10.qxd 1/14/05 10:04 PM Page 320

TEAM LinG - Live, Informative, Non-cost and Genuine!

Handling errors using JSP error page forwarding

The JSP error page forwarding mechanism enables you to use a specific JSP page to handle or display
errors. This provides for a more global error-handling mechanism than the JSTL <c:catch> action pre-
sented earlier. It also enables a large set of JSP pages to use the same JSP error page for handling the
error.

Figure 10-8 illustrates the flow of the error page forwarding mechanism.

Figure 10-8: Flow of the JSP error page forwarding mechanism

In Figure 10-8, a JSP page can be associated with an error-handling page by specifying an errorPage
attribute within a <%@ page %> directive. For example, to specify that the showerr.jsp page will be
used for error handling, use the following code:

<%@page errorPage=”showerr.jsp” %>

It is possible to create an error-handling JSP page that services many JSP pages. A JSP page is designated
as an error-handling page by specifying an isErrorPage attribute in its <%@page %> directive. For
example, the showerr.jsp error-handling page may have the following directive:

<%@page isErrorPage=”true” %>

index.jsp

<%@ page errorPage="showerr.jsp"%>

Upon error, container sets up
error information objects.

When error occurs,
container forwards request

When error occurs,
container forwards request

otherpg.jsp

<%@ page errorPage="showerr.jsp"%>

showerr.jsp
<%@ page isErrorPage="true" %>

pageContext.exception

pageContext.errorData

321

Error Handling

14_57485x ch10.qxd 1/14/05 10:04 PM Page 321

TEAM LinG - Live, Informative, Non-cost and Genuine!

322

Chapter 10

Also in Figure 10-8, the incoming request is forwarded from the page causing the error to the error-
handling page. The container will also make information regarding the request-time error available to
the error-handling page. The pagecontext.exception object will be available in the page for this
purpose.

For example, use the following EL expression to render the error message:

${pagecontext.exception}

The pagecontext.exception object is a subclass of java.lang.Throwable. As a result, the same
techniques used earlier for the <c:catch> JSTL coding can also be used here to decode the error.

Note that the error-handling JSP page will have a usable instance of the pagecontext.exception
object only if it is executed (forwarded to as a result of an error on another page) by the container
during error handling. If you load the page directly, this object will not be available.

Within the error-handling page, you can also access the pagecontext.errorData object during error
handling. This object is of the type javax.servlet.jsp.ErrorData. Check the JSP Javadoc API docu-
mentation for the properties available with this class. The following table describes the useful properties
for writing error-handling code.

EL Expression Description

pageContext.errorData.status The HTTP status code returned by the error

pageContext.errorData.requestURI The original URL of the page that caused the error

The following Try It Out exercise shows the use of the JSP error page forwarding mechanism.

Try It Out Handling Request-Time Errors via JSP Error Pages
This example consists of two JSP pages (one to generate the error, and the other to handle it), as well as a
custom JavaBean for on-demand error generation. The following table describes the associated files.

File Description

index.jsp The page that will cause an error to occur

showerr.jsp The error-handling page for index.jsp

ErrorGenerator.java The JavaBean used to generate the error at any time

This example is contained in ch10.war. Make sure that your Tomcat 5 server is running and that
ch10.war is deployed.

Open your browser and access the following URL:

http://localhost:8080/ch10/example4/index.jsp

14_57485x ch10.qxd 1/14/05 10:04 PM Page 322

TEAM LinG - Live, Informative, Non-cost and Genuine!

The index.jsp page actually has an error in it. This error is generated by an ErrorGenerator
JavaBean. This request-time error will cause the container to forward the page to an error-handling JSP.
The result is displayed as shown in Figure 10-9.

Figure 10-9: Error handling using a designated error-handling JSP page

How It Works
The index.jsp page in this example is code that uses showerr.jsp as its error page. The showerr.jsp
error-handling page will use the pagecontext.exception object to print some information about
the error.

This index.jsp is located at <Tomcat Installation Directory>/webapps/ch10/example4/
index.jsp, and is reproduced here:

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<%@page errorPage=”showerr.jsp” %>
<html>
<head>

<jsp:useBean id=”errgen” class=”com.wrox.begjsp.ch10.ErrorGenerator” />

<title>Error Generating page</title>
</head>

323

Error Handling

14_57485x ch10.qxd 1/14/05 10:04 PM Page 323

TEAM LinG - Live, Informative, Non-cost and Genuine!

<body>
<h1>Page to Generate Error</h1>
<table>

<tr>
<td><h3>${errgen.divideByZero}</h3></td>

</tr>
</table>

</body>
</html>

The JSTL <jsp:useBean> standard action is used to create an instance of the com.wrox.begjsp
.ch10.ErrorGenerator class. The divideByZero property of this instance is then accessed. This
instance is designed to generate a Java divide-by-zero arithmetic exception when the property is
accessed.

Note that at the top of the page, the <%@page %> directive specifies the error-handling page using the
errorPage attribute:

<%@page errorPage=”showerr.jsp” %>

Java exceptions and JSP error handling
The ErrorGenerator JavaBean is coded completely in the Java programming language. The source
code of this bean can be found at <Tomcat Installation Directory>/webapps/ch10/WEB-INF/
classes/com/wrox/begjsp/ch10/ErrorGenerator.java and is reproduced here:

package com.wrox.begjsp.ch10;
public class ErrorGenerator
{

private Integer[] tpArray = new Integer[3];

public ErrorGenerator()
{
}

public String getOutOfRange()
{

tpArray[3] = tpArray[2];
return “”;

}
public String getDivideByZero()
{

tpArray[3] = new Integer(1/0);
return “”;

}
}

Both the getOutOfRange() and getDivideByZero() method return an empty string, “”. In addition,
they will cause a runtime error to occur in the Java code. The getOutOfrange() method will generate a

324

Chapter 10

14_57485x ch10.qxd 1/14/05 10:04 PM Page 324

TEAM LinG - Live, Informative, Non-cost and Genuine!

common “array index out of range” runtime exception. The getDivideByZero() method will generate
a divide-by-zero arithmetic exception at runtime. These methods are designed to be accessed as proper-
ties of the bean, facilitating their usage from JSP and EL.

Note that the errors generated here are Java runtime exceptions. One is
java.lang.ArrayIndexOutOfBoundsException, and the other one is
java.lang.ArithmeticException. Because these exceptions are not caught within the JavaBean itself,
they are propagated to the JSP execution environment provided by the container. The container ensures
that the JSP error-handling mechanism will see these exceptions.

Therefore, at request time, any unhandled exceptions from JavaBeans, custom Java coding, or scriptlets
are propagated to the enclosing JSP for error handling. This very intimate relationship ties the compiled
Java code with the JSP code.

Accessing error information in an error-handling page
The showerr.jsp page is located at <Tomcat Installation Directory>/webapps/ch10/
example4/showerr.jsp.

This page is used for error handling. The container will make a pagecontext.exception object and a
pagecontext.errorData object available. The incoming request is also routed to this error-handling
JSP, enabling it to access properties and attributes of the incoming requests. The code of showerr.jsp is
reproduced here:

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<%@page isErrorPage=”true” %>

<html>
<head>

<title>An Error is detected</title>
</head>
<body>

<h1>Error Detected</h1>
<table width=”600” border=”1”>

<tr valign=”top”>
<td width=”250”>Error:</td>
<td>${pageContext.exception}</td>

</tr>

<tr valign=”top”>
<td>URI:</td>
<td>${pageContext.errorData.requestURI}</td>

</tr>

<tr valign=”top”>
<td>Status code:</td>
<td>${pageContext.errorData.statusCode}</td>

</tr>

325

Error Handling

14_57485x ch10.qxd 1/14/05 10:04 PM Page 325

TEAM LinG - Live, Informative, Non-cost and Genuine!

<tr valign=”top”>
<td>Stack trace:</td>

<td>
<c:forEach var=”trace” items=”${pageContext.exception.stackTrace}”>

<p>${trace}</p>
</c:forEach>

</td>
</tr>

</table>
</body>
</html>

In the preceding code, the error itself is rendered using the following EL expression:

<td>${pageContext.exception}</td>

The other object that is available is pageContext.errorData, and it can be used to obtain the incoming
URI that contains the error:

<td>${pageContext.errorData.requestURI}</td>

The pageContext.errorData object is also used to render the HTTP status code that is returned to the
browser:

<td>${pageContext.errorData.statusCode}</td>

The stack trace is accessed via the stackTrace property of the pageContext.exception object. This
object is a subclass of java.lang.Throwable. This is the same technique used in the third Try It Out
exercise in this chapter:

<c:forEach var=”trace” items=”${pageContext.exception.stackTrace}”>
<p>${trace}</p>

</c:forEach>

Continuing the exploration of the different types of errors that can occur with JSP programming, the fol-
lowing section briefly examines JSTL errors and EL errors.

JSTL errors and EL errors
JSTL tags are custom actions and will generate code during the translation phase. This means that JSTL
coding syntax errors will be detected at translation time. Like JSP standard actions, JSTL actions work
with dynamic parameters and attribute values. This means JSTL actions are also subjected to request-
time errors. Any request-time error from JSTL can also be caught and handled using the JSP error-
handling mechanism described in the preceding sections.

EL expressions are code that is evaluated only at request time. This means that any EL-originated error is
request-time in nature. These errors can also be caught and handled using the JSP error-handling mecha-
nisms described in the preceding sections.

326

Chapter 10

14_57485x ch10.qxd 1/14/05 10:04 PM Page 326

TEAM LinG - Live, Informative, Non-cost and Genuine!

User data-input errors
Data-input errors cannot be detected by the JSP container. In most cases, they are dependent on the logic
of the application itself. For example, a user being asked to enter a bid for an auction may only be
allowed to enter a numeric value between 1 and 100.

To enforce this range of input values, the code to check the input must be implemented as part of the JSP
logic. This checking is called input validation.

In Chapter 9, “JSP and JavaBeans,” the bidding example implements data validation for the bid input.
Instead of using the JSP error-handling mechanism, the application logic sends the bid information to
the data entry screen, informing the user that his or her input is out of the allowable range.

Errors found in JSP template data
The most typical template data within JSP pages is HTML. Errors in HTML, or any other template data,
are not detected by the container. Because the container cannot detect the errors, JSP-based error-
handling mechanisms cannot be used for these errors.

In fact, these errors will be evident only during the rendering phase on the client. However, any error in
the rendered template data can adversely affect the user experience. For example, if badly formed, the
HTML page may be completely unusable when rendered on a browser.

This again reinforces the importance of testing when developing JSP-based applications.

In all of the examples in this chapter, application error details and stack traces are displayed using the
error-handling page(s). This is very useful in the development and debugging phase of a project. When a
well-designed project goes into production, request-time errors should not occur. In the unlikely case
that they do occur, the error should be handled gracefully. For example, provide more information and
ask the user to retry at a later time, or show a page with a support phone number for the user to call. In
either case, the Web application should log enough information about the error to enable developers to
debug and fix the problem. More on debugging and logging from Web applications is covered in
Chapter 14, “JSP Debugging Techniques.”

This completes the discussion of the final Try It Out exercise and error-handling in general using JSP.

Note that when an error occurs within an EL expression, the type of error object is
always javax.servlet.jsp.el.ELException. To get the underlying cause, you
should access the rootCause property of this object. The property can be accessed
using the following EL expression: pageContext.exception.rootCause.

327

Error Handling

14_57485x ch10.qxd 1/14/05 10:04 PM Page 327

TEAM LinG - Live, Informative, Non-cost and Genuine!

Summary
Errors can occur at any time during application development. With JSP development, they can also be
caused by coding mistakes in any of its components. The iterative act of coding, testing, and debugging
in application development should eliminate all syntax errors before deployment. Other errors include
the following:

❑ Translation-time errors occur when the JSP code is translated to Java by the container, or when
the generated code is compiled into executable bytecode.

❑ Request-time errors occur during the processing of the request when the compiled JSP code is
executed.

❑ User data-input errors are logical errors specific to the requirements of an application. These
errors are detected and presented to the user for correction using application logic code.

❑ Errors in template data cannot be detected by the container, and can only be corrected through
vigorous testing.

The following points concerning handling errors in JSP were discussed:

❑ Translation-error presentation and handling is container-dependent. The Tomcat 5 server typi-
cally reports an HTTP 500 – internal server error, and provides an error report that can help
track down the source of the error.

❑ JSTL’s <c:catch> action can be used to handle request-time errors, and it is possible to catch
errors within a JSP page and process them locally.

❑ The errorPage and isErrorPage attributes of the <%@page %> directive can also handle
request-time errors. They can be used to specify JSP pages for handling errors. An error occur-
ring within a JSP will cause the request to be forwarded to the associated error page.

❑ The exception mechanism in the Java programming language is intimately tied to JSP error han-
dling. Exceptions that are thrown in Java coding, such as JavaBeans and scriptlets, are passed to
the JSP error-handling mechanism by the container.

Exercises
1. The ErrorGenerator JavaBean in the fourth Try It Out exercise can be used to generate two

different types of Java runtime exceptions. These exceptions are propagated by the container
and can be handled using the JSP error-handling mechanism.

Modify index.jsp from this example to use the JSTL <c:catch> mechanism instead of error
pages. Add code to check for the type of error. If it is an “array out of range” error, print the mes-
sage “Fix array index!” If it is a divide-by-zero error, print the message “Do not divide by zero!”

Test your code against both types of errors.

2. Modify the index.jsp in example 3 to use an error-handling JSP page instead of the JSTL
<c:catch> action. Name the error-handling page disperr.jsp. Within disperr.jsp, make
sure you print out the error (the actual root cause), the status code, and the URI of the original
request.

328

Chapter 10

14_57485x ch10.qxd 1/14/05 10:04 PM Page 328

TEAM LinG - Live, Informative, Non-cost and Genuine!

11
Building Your Own Custom

JSP Tag Library

JSP tag libraries were introduced in JSP 2.0. Before that, custom tag development was the domain
of experienced Java developers. Custom JSP tags can now be developed to encapsulate pieces of
repeatable JSP code without the need to program in Java.

This chapter introduces custom tags (also referred to as custom actions) developed as text files,
explains their semantics, and provides some examples along the way that illustrate what an
extremely powerful addition they are to the J2EE architecture. The chapter concludes with a short
discussion about how you decide when to use Java custom tags and JSP custom tags.

Specifically, this chapter covers the following areas:

❑ Creating a simple JSP tag file

❑ Understanding the advantages of tag files

❑ Developing tag files

❑ Packaging tag files

What Is a Tag File?
A tag file is a special kind of custom action that is developed much like a JSP page. Unlike JSP
pages, tag files can be invoked from within JSP pages in the same way Java Standard Tag Library
(JSTL) tags are used. Tag files, for instance, can be passed parameters to use, and they can expose
values to the calling JSP page, and invoke fragments of JSP code.

A developer implements a tag file using a text file and places it within a special directory of the
Web application. From there, its invocation and usages are much like any other custom tag an
application may use.

15_57485x ch11.qxd 1/14/05 10:06 PM Page 329

TEAM LinG - Live, Informative, Non-cost and Genuine!

In contrast, custom tags have usually been developed using Java classes that comply with a set of inter-
faces that the servlet container recognizes. Java custom tags are also accompanied by a Tag Library
Descriptor (TLD) file that informs the container of how the tag behaves and should be invoked. This
form of custom tag caters to complex scenarios, as its internal logic can be implemented using Java. For
instance, a Java custom tag might be used to produce a paged and formatted table using a collection of
objects. More simple tasks can be undertaken with tags developed as tag files, the subject of this chapter.

A Simple Tag File: Displaying Today’s Date
To give you some context for understanding this chapter, we are going to begin with a simple demonstra-
tion of how a tag file is created and invoked in a JSP page; call it the “Hello World” of tag files.

The tag demonstrated here will display a message and the current date in the format day/month/year.
Its output will look something like the following:

Today’s date is: 9 / 5 / 2005

The JSP page that invokes the tag file will appear as follows:

<%@ taglib prefix=”beginjsp” tagdir=”/WEB-INF/tags” %>

<beginjsp:todaysdate/>

First, the taglib JSP directive is used to define the tags that will be used on this page. In this case, the
prefix used is beginjsp. The taglib directive also identifies the folder in which the tag files can be
found: /WEB-ING/tags, using the tagdir attribute. For instance, if your application were on your
computer as C:\mywebsite\, the tagdir attribute used above would be the directory located at
C:\mywebsite\WEB-INF\tags.

The invocation of the tag is like any other custom tag invocation you have seen throughout this book:
<beginjsp:todaysdate/>.

To create the tag itself, a file called todaysdate.tag is placed in the /WEB-INF/tags folder of the
Web application. All tag files must be placed in this directory or a directory below it. The content of
todaysdate.tag is as follows:

<%@ tag body-content=”empty” %>
<jsp:useBean id=”today” scope=”page” class=”java.util.Date”/>
Today’s date is: ${today.date} / ${today.month} / ${today.year + 1900}

As you can see, the content of the tag file is very simple. The tag directive is first defined in order to
declare some properties of the tag. Various attributes can be used in this directive, but for this example
only the body-content attribute is required. This and other attributes are defined later in this chapter.

After the tag directive, the logic of the tag itself begins. jsp:useBean is used to define a new instance
of the java.util.Date object. By default, this native Java object is instantiated with the current system
date. Perfect for our purposes!

330

Chapter 11

15_57485x ch11.qxd 1/14/05 10:06 PM Page 330

TEAM LinG - Live, Informative, Non-cost and Genuine!

The output is then prepared in the tag file to display the properties of the Date object. For this we have
used Expression Language (EL) to access the getDate() (today.date), getMonth() (today.month),
and getYear() (today.year) methods. You saw examples of this in Chapter 9. The todaysdate action
can now be used throughout the application wherever the output of the current date is needed. This
example shows the simplicity with which tag files can be created and invoked.

Behind the scenes, the tag file is converted by the servlet container (for instance, Tomcat) into a more
useable form. Tomcat converts the tag file into a Java source file, and then compiles it, much as it would
a normal JSP page.

Advantages of Tag Files
The advantages of using tags, in general, over alternative methods are obvious. Generally, these advan-
tages apply as much for normal Java-developed custom tags as they do for tag files. Briefly, the advantages
are as follows:

❑ Code reuse

❑ Hiding complexity

❑ Separation of concerns

❑ Simplicity

❑ Flexible packaging

Code reuse
The example in the preceding section illustrated the simplicity with which JSP code can be encapsulated
and used in many parts of an application. This is code reuse. However, sometimes it is not that easy to
ensure that a piece of code is reusable. Simple scenarios, like printing content or individual values, are
easy to achieve, but it may be more difficult to make a complicated tag generic enough for the entire
application to use. A good rule of thumb might be that if what you are trying to encapsulate is very com-
plicated, perhaps a tag file is not an ideal solution. Nevertheless, tag files can be designed to cater to gen-
eralized situations that occur more than once in a Web application. For instance, formatting output is an
excellent example of the type of code reuse provided by tag files.

Hiding complexity
Custom tags, of all types, are excellent tools to hide complexity away from the view components of an
application. Mixing Java scriptlets with HTML can result in some fairly ugly and highly complicated
pages. If properly designed, such HTML generation can be moved to a tag file, to hide the complexity
and make the application more modular.

Separation of concerns
Separation of concerns is a principle of application design that states that structures should be as indepen-
dent of other structures in an application as possible. This ensures that they are decoupled from other

331

Building Your Own Custom JSP Tag Library

15_57485x ch11.qxd 1/14/05 10:06 PM Page 331

TEAM LinG - Live, Informative, Non-cost and Genuine!

things. Decoupling ensures that a change in one part of an application has little or no effect on other
parts of the application.

In the context of tag files, this principle is especially applicable. If a tag file deals with an individual
function such as formatting text or generating an HTML table given a generic set of attributes, it is far
less likely to require changes should the invoking JSP files change. In this way, the tag file “does one
thing and does it well.”

Simplicity
The implementation of custom tag files is generally a simple process, depending on how complicated the
file needs to be. This simplicity means that non-Java programmers can implement reusable functionality
within an application. This sophisticated concept is now accessible by more and more people involved in
making Web applications.

The importance of the addition of tag files to the JSP specification cannot be understated. They effectively
place within the grasp of non-Java programmers a powerful tool that does not compromise the relatively
simple implementation that should accompany display-level development. Introducing this further level
of separation within the display layer of J2EE applications will hopefully enhance their maintainability
and provide more robust applications as a result.

Flexible packaging
Custom actions developed as tag files are simple to deploy either within the file system or as a packaged
JAR file, much like custom actions developed in Java. This makes the transition from one method to the
other less of a headache, as its effect on other parts of an application is minimal, if present at all.

Developing Tag Files
Now that you understand the importance of tag files and have seen a simple example showing the place
they take within JSP development, this chapter will discuss the semantics of implementing custom
actions using tag files.

Scope and implicit objects
It is important to have an understanding of the scope that tag files, and the values used by them, have
within the application.

JSP files and the tag files they invoke share the application, session, and request scopes, while each
has their own page scope. In an encapsulation sense, application, session, and request scopes pro-
vide global variables, common to both the tag and the JSP file, and the page scope provides only local vari-
ables to each. The page scope variables of the JSP page cannot be used inside the tag file, and vice versa.

To illustrate this important point, the following example uses a JSP page to set some variables in all four
scopes. These variables will be displayed from the JSP page. Then a simple tag will create a page scope
variable of the same name as the JSP page scope variable and display it and the variables in the other

332

Chapter 11

15_57485x ch11.qxd 1/14/05 10:06 PM Page 332

TEAM LinG - Live, Informative, Non-cost and Genuine!

scopes. The session scoped variable will then be changed from within the tag. The JSP page will then
display all four variables again showing that the page scope variable contains the same value it con-
tained before the tag was invoked, and that the session scope variable changed.

Therefore, the JSP page to construct this chain of events is as follows:

<%@ taglib prefix=”beginjsp” tagdir=”/WEB-INF/tags” %>
<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>

<c:set var=”appVar” value=”this is an application variable” scope=”application”/>
<c:set var=”sessVar” value=”this is a session variable” scope=”session”/>
<c:set var=”rVar” value=”this is a request variable” scope=”request”/>
<c:set var=”pVar” value=”this is a page variable set in the JSP” scope=”page”/>

Calling in the JSP page:
<p>
Application: ${applicationScope.appVar}

Session: ${sessionScope.sessVar}

Request: ${requestScope.rVar}

Page: ${pageScope.pVar}
<p>

<beginjsp:scope/>

<p>
Calling in the JSP page after the tag:
<p>
Application: ${applicationScope.appVar}

Session: ${sessionScope.sessVar}

Request: ${requestScope.rVar}

Page: ${pageScope.pVar}

The scope.tag file contains code to create its own page scope variable (pVar) and display all variables.
It will then change the session scope variable sessVar:

<%@ tag body-content=”empty” %>

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>

<c:set var=”pVar” value=”this is a page variable set in the Tag File”
scope=”page”/>

Calling in the Tag File:
<p>
Application: ${applicationScope.appVar}

Session: ${sessionScope.sessVar}

Request: ${requestScope.rVar}

Page: ${pageScope.pVar}

<c:set var=”sessVar” value=”this is a changed session variable” scope=”session”/>

The effect of this example is to show the page scope variable in the JSP page not changing as a result of
the tag file implementing a variable of the same name and scope, whereas the session scope variable
has changed. Figure 11-1 shows the output in a browser.

333

Building Your Own Custom JSP Tag Library

15_57485x ch11.qxd 1/14/05 10:06 PM Page 333

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 11-1: Scope changes between JSP and custom actions

Note the inherent danger in using global variables (application, session, request) inside the tag
file. Doing so tightly couples the tag file with the application and the existence of that variable. As you
will see later in the chapter, certain tag file directives can be used to pass values to and from the tag file
and the JSP page.

Within a tag file, as in a JSP page, certain objects are implicitly available for use. The most commonly
used objects are defined in the following table.

Implicit Object Description

request Represents the request from the client invoking the JSP page in its browser
(javax.servlet.http.HttpServletRequest)

response Represents the response being prepared for the user’s browser
(javax.servlet.http.HttpServletResponse)

session Represents the user session that invoked the request for this JSP page
(javax.servlet.http.HttpSession)

out An instance of JspWriter allowing output to be written to the response

jspContext An object representing the JspContext of the calling JSP page

334

Chapter 11

15_57485x ch11.qxd 1/14/05 10:06 PM Page 334

TEAM LinG - Live, Informative, Non-cost and Genuine!

Therefore, within a tag file, the out implicit object can be invoked as follows:

<%@ tag body-content=”empty” %>
<jsp:useBean id=”today” scope=”page” class=”java.util.Date”/>
<%

out.println(“Today’s date is: “
+ today.getDate() + “/”
+ today.getMonth() + “/”
+ (today.getYear() + 1900));

%>

Other implicit objects include config and application.

Using directives in tag files
A number of directives can be used within JSP tag files, such as tag, taglib, include, attribute, and
variable.

As in normal JSP files, directives are included to affect the overall processing of the page being constructed.
You have already seen the tag directive being used in a preceding example. You will notice that some of
the directives explained here are used in standard JSP pages; others, such as attribute and variable,
can only be used within tag file custom actions. The following sections describe the directives for tag files,
with appropriate examples for each.

tag
The tag directive plays a similar role to the page directive used in normal JSP pages. It handles a number
of useful attributes that affect the processing and presentation of the tag file generally, and how it is used
in a JSP file. Its usage is shown here:

<%@ tag body-content=”empty” import=”java.util.ArrayList” %>

The attributes in the following table apply to the tag directive.

Attribute Description

body-content Indicates the nature of the body of the tag when it is invoked. Values
here can be empty, tagdependent, or scriptless. This attribute is
optional. The default is scriptless.

description An optional description for the tag.

display-name An optional simple name for the tag. May be used by IDE or XML tools.
The default value is the name of the file without the .tag extension.

example A simple illustration of how the tag functions.

import An optional attribute used to import packages or classes into the scope
of the tag.

Table continued on following page

335

Building Your Own Custom JSP Tag Library

15_57485x ch11.qxd 1/14/05 10:06 PM Page 335

TEAM LinG - Live, Informative, Non-cost and Genuine!

Attribute Description

isElIgnored Indicates that Expression Language (EL) expressions will be ignored.
The default is false.

language The scripting language used in the tag. The default is the only avail-
able option: Java.

large-icon Optional attribute that can be used to relate an image file with the tag.

pageEncoding The character encoding for this file. IANA encoding names must be used.

small-icon Optional attribute used to relate an image file with the tag.

dynamic-attributes Indicates that dynamic attributes can be passed to this tag, and the
value of this attribute names a page scope Map object where their
name and value pairs are stored. This attribute is explained in more
detail later in the chapter.

The body-content attribute indicates if the tag, when invoked, will contain body content, and if so,
what type. This attribute can be used to enforce a certain usage in this sense. For instance, empty means
that the tag must not have a body, and would therefore be of the following form:

<beginjsp:sometagname />

and not:

<beginjsp:sometagname>
</beginjsp:sometagname>

The preceding code would cause an exception. A value of scriptless indicates that the tag should not
contain any Java code, but you can use standard and custom actions within the body. With a value of
tagdependent, the body content is treated as plain text.

taglib
A tag file can also make use of the taglib directive in order to make use of other custom actions. This is
extremely useful where you need to use JSTL custom tags within a tag file. You can see the taglib direc-
tive used in many places throughout this book where JSTL tags are used.

The use here is no different. To illustrate, the following tag file makes use of a tag file developed earlier
in this chapter to display today’s date: todaysdate.tag.

This new tag file is called taglibuser.tag and has the following content:

<%@ tag body-content=”empty” %>
<%@ taglib prefix=”beginjsp” tagdir=”/WEB-INF/tags” %>

<beginjsp:todaysdate/>

336

Chapter 11

15_57485x ch11.qxd 1/14/05 10:06 PM Page 336

TEAM LinG - Live, Informative, Non-cost and Genuine!

As you can see, the taglib directive is used to give a prefix to the collection of tags within the /WEB-
INF/tags directory, specifically for the todaysdate tag. The JSP page to invoke taglibuser.tag is as
follows:

<%@ taglib prefix=”beginjsp” tagdir=”/WEB-INF/tags” %>
<beginjsp:taglibuser/>

The result of this is to simply display the current date in the browser, as shown in Figure 11-2.

Figure 11-2: Using a custom action within a custom action
using the taglib directive

include
The include directive works in much the same way as the include directive in a normal JSP file. It is
used to include static and dynamic content. For instance, within a tag file, the include directive could
be used to include the content from an HTML file, or the dynamic result of a tag file fragment.

For example, if a tag file (includeresources.tag) were to include the result of an HTML page
(includeme.html) and a tag file fragment (includedmetoo.tagf— note the recommended .tagf
extension for tag file fragments), it would appear as follows:

<%@ tag body-content=”empty” %>

<%@ include file=”/includeme.html” %>
<P>
<%@ include file=”/WEB-INF/tagf/includedmetoo.tagf” %>

Each of these files would be included in turn and represent the output of the tag file. The tag file frag-
ment, includedresource.tagf, is treated as a segment of the tag file; it can therefore include any part
of the tag file as long as the result of the tag file itself and its fragments make up a legitimate tag file. For
instance, tag file fragments can also use the include directive to include other fragments, and so on.

attribute
The attribute directive allows tag files to be passed values from the invoking JSP page. This gives real
power to the use of tag files, as it does to other custom actions. When a tag file uses the attribute direc-
tive, JSP pages can pass values through to the tag file for processing. A simple “hello, world” example here
can illustrate the basic use of the attribute directive.

337

Building Your Own Custom JSP Tag Library

15_57485x ch11.qxd 1/14/05 10:06 PM Page 337

TEAM LinG - Live, Informative, Non-cost and Genuine!

The following code represents the content of a new tag file called printstring.tag. As the name
suggests, this tag file will simply print the value of the attribute it has been passed:

<%@ tag body-content=”empty” %>
<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>

<%@ attribute name=”value” required=”true”%>
<c:out value=”${value}”/>

The third line of this tag file makes use of the attribute directive to force invoking JSP files to pass a
value in an attribute named value. An invoking JSP file may appear as follows:

<%@ taglib prefix=”beginjsp” tagdir=”/WEB-INF/tags” %>

<beginjsp:printstring value=”hi there”/>

This will output the message “hi there” in the browser window.

The attribute directive can use several attributes. For instance, in the preceding example the required
attribute was used to enforce the use of the value attribute in the invoking JSP page; therefore, if the
printstring tag was invoked with just <beginjsp:printstring/>, an exception would be thrown,
informing the developer that the value attribute is required. The default for the required attribute is
false.

The following table explains the other attributes that can be used with the attribute directive.

Attribute Description

description A description of the attribute for this tag file. This attribute is optional.

fragment This attribute indicates whether the attribute being passed is a fragment
attribute (true). Fragment attributes are explained later in the chapter. The
default value of this optional attribute is false.

name The name that the value this attribute represents will take within the tag file’s
scope. Within the tag file, the value of this attribute is referred to by this name.
It must be unique. This value also forms the name of the tag attribute that will
provide the value to the tag file when it is called in the JSP page. This attribute
is required.

required Indicates that the attribute is required (true) when the custom action is being
invoked in the JSP page. The default value of this optional attribute is false.

rtexprvalue Whether real-time expressions are available for this attribute, the default is
true. This attribute is optional.

type The type of the attribute that is being passed. The value of this attribute is a
fully qualified class name. The default is java.lang.String. This attribute
is optional.

338

Chapter 11

15_57485x ch11.qxd 1/14/05 10:06 PM Page 338

TEAM LinG - Live, Informative, Non-cost and Genuine!

variable
The variable directive is used to expose values of the tag file to the calling JSP page. This of course
becomes extremely useful when the result of a tag file is not to be simply displayed, as it might be in a
simple formatting tag. Think of the variable directive as similar to a value being returned from the
tag file, much like a value is returned from a normal Java method. The attributes for this directive are
described in the following table.

Attribute Description

description A simple description of the variable. This attribute is optional.

name-given

or

name-from-attribute One of these tags must be used in the variable directive, but they can-
not be used together.

The name-given attribute gives the returning value a name that the
calling JSP page can use when referencing it.

The name-from-attribute attribute also gives the returning value a
name the calling JSP page can use when referencing it, but the name is
that of an attribute for this custom action.

alias Used in conjunction with the name-from-attribute attribute to syn-
chronize names used between a tag file and a JSP page. The alias forms
the tag’s name for the variable, as opposed to the name provided by
the attribute in name-from-attribute. This attribute is required
when name-from-attribute is used.

variable-class The class name of the variable being returned. This attribute is
optional and its default value is java.lang.String.

declare A message to the container to declare the returning value in the JSP
page. The default is true. This attribute is optional.

scope The scope of the returning variable, with respect to the tag itself. Val-
ues here are AT_BEGIN, NESTED, and AT_END. The default is NESTED.
This attribute is optional.

To illustrate the simplest example of this directive in action, a String will be created in a tag file and dis-
played on the calling JSP page. The calling JSP page will use the variable name given by the tag file to
display its value.

The tag file returnvalue.tag contains the following:

<%@ tag body-content=”empty” %>
<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<%@ variable name-given=”foo” scope=”AT_END”%>

<c:set var=”foo” value=”this is from the tag”/>

339

Building Your Own Custom JSP Tag Library

15_57485x ch11.qxd 1/14/05 10:06 PM Page 339

TEAM LinG - Live, Informative, Non-cost and Genuine!

The variable directive here defines the variable that will be provided to the calling JSP page. This vari-
able, foo, will be available to the JSP page after the tag has been executed due to the scope attribute
value of AT_END. This is not scope in the sense that you are probably used to (application, session,
request, and page). The scope value here refers to the scope of the variable with respect to the tag itself
and its invocation on the calling JSP page. This is explained at the end of this section.

The variable foo is then declared and assigned a value using the JSTL c:set tag. By default, variables
created with the c:set tag are placed in the page scope. As the variable directive has been used here,
and the declare attribute has been left as true (the default), the container has declared a variable
named foo in the page scope of the JSP page, returning it, so to speak. It would perhaps be more accu-
rate to say that the tag file has in fact exported the variable to the scope of the JSP page. The JSP page can
then print out this value using the following:

<%@ taglib prefix=”beginjsp” tagdir=”/WEB-INF/tags” %>

<beginjsp:returnvalue/>

This is the value of foo:${pageScope.foo}

This would output the following message in the browser:

This is the value of foo: this is from the tag

Variable scope
As mentioned earlier, the scope attribute of the variable directive denotes the scope of the variable
value with respect to the invocation of the tag file on the calling JSP page. This is sometimes referred to
as the synchronization of variables between the tag file and its calling JSP page.

Its potential values are as follows:

❑ AT_BEGIN: The variable is available as soon as the tag has been invoked; therefore, for a tag
with a body, this could mean within the body of the tag. The variable will also be available after
the tag invocation.

❑ NESTED: The variable is available only between the opening and closing lines of the tag invocation,
not after the tag has been invoked.

❑ AT_END: The variable is available only after the tag has been invoked.

As an example, consider a random-number generator tag. This tag returns a variable named
randomNumber and will be used to illustrate different values of the scope attribute and their effect on
where this variable can be referenced.

The variable is declared in the randomnumber tag with a scope of AT_BEGIN:

<%@ variable name-given=”randomNumber” variable-class=”java.lang.Integer”
scope=”AT_BEGIN”%>

340

Chapter 11

15_57485x ch11.qxd 1/14/05 10:06 PM Page 340

TEAM LinG - Live, Informative, Non-cost and Genuine!

The value of randomNumber can be referenced as soon as the first line of the tag has been called, within
the body of the tag and after the tag has been completed:

<beginjsp:randomnumber>
AT_BEGIN:${randomNumber}

</beginjsp:randomnumber>
after tag:{$randomNumber}

Here, the variable is declared in the randomnumber tag with a scope of NESTED:

<%@ variable name-given=”randomNumber” variable-class=”java.lang.Integer”
scope=”NESTED”%>

The value of randomNumber can be referenced only within the opening and closing lines of the tag:

<beginjsp:randomnumber>
NESTED:${randomNumber}

</beginjsp:randomnumber>

Next, the variable is declared in the randomnumber tag with a scope of AT_END:

<%@ variable name-given=”randomNumber” variable-class=”java.lang.Integer”
scope=”AT_END”%>

The value of randomNumber can be referenced only after the tag has been invoked:

<beginjsp:randomnumber/>
AT_END: ${randomNumber}

Which scope you decide to use will depend largely on how you intend the tag to be used.

Body processing
In most of the examples in this chapter so far, the tag directive has forbidden tag body content (by using
a value of empty). For instance, given the returnvalue tag file in the previous section, with a body-
content value of empty, we could not do the following:

<beginjsp:returnvalue>
there is no spoon.

</beginjsp:returnvalue>

Doing so would cause an exception to be thrown when the servlet container attempts to process the JSP
page because the tag invocation contains a body. This section illustrates how content that is placed in the
body of a tag can be processed.

Conveniently, a handy action is available that can be used only inside a tag file. This action allows the
body content of the tag’s invocation to be accessed. Therefore, we could get the value there is no
spoon from the preceding example and process it in some way inside the tag. We can do this using the
jsp:doBody action.

341

Building Your Own Custom JSP Tag Library

15_57485x ch11.qxd 1/14/05 10:06 PM Page 341

TEAM LinG - Live, Informative, Non-cost and Genuine!

jsp:doBody
The jsp:doBody action evaluates the body of a tag for all values of the body-content attribute in the
tag directive. Therefore, a value of empty wouldn’t evaluate much, whereas a value of scriptless
(the default) would process the standard, custom actions and plain text that was found.

The output of this processing can be simply output to the calling page or assigned to a variable using
the var or varReader attributes of the jsp:doBody action. The var and varReader attributes merely
create a different type of object when assigning the variable to the tag body’s output. var creates a
java.lang.String object, whereas varReader creates a java.io.Reader object for processing results
that are generally considered large. var will suffice in almost all cases.

In the following Try It Out example, we will develop a custom tag to make use of the jsp:doBody stan-
dard action in processing the body of a tag.

Try It Out Developing a Custom Tag with the jsp:doBody Standard Action
This exercise creates a tag that searches through the text placed in the body of the tag and allows only
certain known HTML elements to be rendered correctly. We will allow only bold () and italic
(<i></i>) HTML elements to be rendered; everything else will be disabled and just rendered as it
appears. Therefore, if the tag invocation contains

<beginjsp:cleanhtml>

</beginjsp:cleanhtml>

it will display:

rather than rendering the image at that location. But

This is in bold

would display as

This is in bold

We achieve this by replacing every < character with <, the character code for that character. When a
browser comes across this, it will simply display the < character instead of performing whatever the
HTML tag would do. The same will apply for > characters, which will be replaced with > characters.
The JSTL function escapeXML performs all this for us.

We will then replace all instances of with and all instances of <i> with <i>.
To close these tags, instances of will be replaced with , and instances of </i>
will be replaced with </i>. All this logic will be implemented in the tag file.

342

Chapter 11

15_57485x ch11.qxd 1/14/05 10:06 PM Page 342

TEAM LinG - Live, Informative, Non-cost and Genuine!

We start off the tag by creating a cleanhtml.tag file in the /WEB-INF/tags directory of the Web appli-
cation. We don’t need any attributes or variable directives for this tag, as the only input will be the body
of the tag itself. Therefore, the tag will begin with the tag directive, indicating that the body content is to
be scriptless, and two taglib directives to provide the required standard tag libraries:

<%@ tag body-content=”scriptless” %>
<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<%@ taglib prefix=”fn” uri=”http://java.sun.com/jsp/jstl/functions” %>

We now need to assign the body of the tag to a page scope variable (only to the page scope of the tag,
though), so enter the following code:

<jsp:doBody var=”content” scope=”page”/>

The page scope variable content now contains the body that has been placed in the body of the tag
invocation. Standard JSTL actions will now be used to parse this variable and produce a String that has
had all HTML disabled, except the bold and italic HTML tags:

<c:set var=”content” value=”${fn:escapeXml(content)}”/>

<c:set var=”enabledSomeHTML”
value=”${fn:replace(content, ‘’,’’)}”/>

<c:set var=”enabledSomeHTML”
value=”${fn:replace(enabledSomeHTML, ‘’,’’)}”/>

<c:set var=”enabledSomeHTML”
value=”${fn:replace(enabledSomeHTML, ‘<i>’,’<i>’)}”/>

<c:set var=”enabledSomeHTML”
value=”${fn:replace(enabledSomeHTML, ‘</i>’,’</i>’)}”/>

The result of this processing is a variable named enabledSomeHTML that can be simply output to the
screen with the following:

${enabledSomeHTML}

To illustrate the use of this tag, the following JSP page will display the result of this tag’s processing:

<%@ page contentType=”text/html” %>
<%@ taglib prefix=”beginjsp” tagdir=”/WEB-INF/tags” %>

<html>
<head>
<title>beginjsp:cleanhtml example</title>
</head>
<body>

<beginjsp:cleanhtml>
This is bold

</beginjsp:cleanhtml>
<p>
<beginjsp:cleanhtml>

343

Building Your Own Custom JSP Tag Library

15_57485x ch11.qxd 1/14/05 10:06 PM Page 343

TEAM LinG - Live, Informative, Non-cost and Genuine!

<i>This is italic</i>
</beginjsp:cleanhtml>
<p>
<beginjsp:cleanhtml>

</beginjsp:cleanhtml>

</body>
</html>

The output of this JSP page in the browser would therefore be displayed as desired, as shown in
Figure 11-3.

Figure 11-3: Output of the cleanhtml tag

As we told the tag directive in the tag that the body content was to be scriptless, the tag could also
be invoked with the following, using EL in the body:

<c:set var=”unclean”
value=”This is in verdana”
scope=”page”/>

<beginjsp:cleanhtml>
${unclean}

</beginjsp:cleanhtml>

How It Works
The example described in the preceding section shows how a tag file can be used to format content to suit
the requirements of the view layer of the application. The tag that was created receives some text and dis-
ables the HTML content it may contain. Certain HTML tags are then enabled in the text — specifically, the
bold tag and the italic tag. This simple yet effective task was achieved using the fn:escapeXML and
fn:replace JSTL functions.

What results from the processing within the custom tag file is specially formatted output to the browser.
All HTML tags, except the bold and italic tags, are rendered as their source code, rather than the Web
site visitor’s browser interpreting them and producing formatted output.

344

Chapter 11

15_57485x ch11.qxd 1/14/05 10:06 PM Page 344

TEAM LinG - Live, Informative, Non-cost and Genuine!

Attributes
Attributes enable values to be passed to custom actions to be used in processing. A simple example ear-
lier in the chapter printed a message to the screen through a tag file. That example used a simple String
object to illustrate this concept. This section will build on that example, providing more complex exam-
ples using some of the more advanced features of attributes with custom tag files.

Simple attributes revisited
To illustrate the use of more complex objects used as attributes to custom actions, the following Try It Out
exercise illustrates a custom tag generating a table from any java.util.Map object it is passed. In simple
terms, a Map object is a list of unique key/value pairs that are based on the value of the key. For instance, a
Map object may contain the entries shown in the following table.

Key Value

Australia Canberra

United States Washington DC

France Paris

Germany Berlin

The tag developed in this example will display something similar to the preceding table, listing the con-
tents of a java.util.Map object.

Try It Out Generating a Table Using Custom Tags
We start off by creating a new tag file in the /WEB-INF/tags directory called simpletable.tag.

This new tag will accept four attributes:

❑ A java.util.Map object representing the data to be displayed. This attribute is required.

❑ A String object representing the title of the table. This attribute is optional.

❑ A String object representing the title of the first column (the keys). This attribute is optional.

❑ A String object representing the title of the second column (the values). This attribute is
optional.

In developing this tag, our first step is to deal with the required directives. In addition to the compulsory
tag directive and access to the core standard tag library, each attribute will require its own directive, so
enter the following code at the top of the simpletable.tag file that was just created:

<%@ tag body-content=”empty” %>
<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>

<%@ attribute name=”data” required=”true” type=”java.util.Map” %>
<%@ attribute name=”title” required=”false” %>
<%@ attribute name=”columnOne” required=”false” %>
<%@ attribute name=”columnTwo” required=”false” %>

345

Building Your Own Custom JSP Tag Library

15_57485x ch11.qxd 1/14/05 10:06 PM Page 345

TEAM LinG - Live, Informative, Non-cost and Genuine!

The name attribute to the attribute directive forms the name of the attribute when invoking the tag
from the JSP page, as shown here:

<beginjsp:simpletable data=”someData” title=”My Data”/>

As we have indicated that the columnOne and columnTwo attributes are optional, enter the following
code to provide some default values should they be empty:

<c:if test=”${empty columnOne}”>
<c:set var=”columnOne” value=”Key”/>

</c:if>

<c:if test=”${empty columnTwo}”>
<c:set var=”columnTwo” value=”Value”/>

</c:if>

This will ensure that if the first column attribute value is empty, then the table will display Key in its place,
and Value for the second column.

The tag can now set about generating the table itself, using the data provided. The following code is now
entered in the simpletable.tag:

<table cellspacing=0 cellpadding=0 border=1>
<c:if test=”${not empty title}”>
<tr>

<td colspan=”3”><h1>${title}</h1></td>
</tr>
</c:if>
<tr>

<th>Count</th>
<th>${columnOne}</th>
<th>${columnTwo}</th>

</tr>
<c:forEach items=”${data}” var=”thisElement” varStatus=”status”>

<tr>
<td>${status.count}</td>
<td>${thisElement.key}</td>
<td>${thisElement.value}</td>
</tr>

</c:forEach>
</table>

As the title attribute is optional, the tag conditionally displays it along the top row of the table. Each
column is then defined with the appropriate value. A Count column has been added to provide an index
against each element that is displayed. Finally, the data Map object is iterated over, using the core
forEach tag. You have seen this tag in Chapter 6, “JSP Tag Libraries and JSTL.”

346

Chapter 11

15_57485x ch11.qxd 1/14/05 10:06 PM Page 346

TEAM LinG - Live, Informative, Non-cost and Genuine!

The simpletable tag was created with flexibility in mind. Given any java.util.Map object (Map is
in fact an interface, so any object that implements this interface can be used), this tag will display each
element, as well as a descriptive title and column information, these being optional.

Therefore, the following JSP page will execute this tag in two ways: first to display a list of countries and
capitals, and second to display the list of request parameters passed to the page. The following code
could be entered into a JSP page to use the simpletable.tag file we have just created:

<%@ page import=”java.util.HashMap” %>
<%@ page import=”java.util.Map” %>
<%@ taglib prefix=”beginjsp” tagdir=”/WEB-INF/tags” %>

<%
HashMap values = new HashMap();
values.put(“Australia”,”Canberra”);
values.put(“United States”,”Washington DC”);
values.put(“France”,”Paris”);
values.put(“Germany”,”Berlin”);
values.put(“Russia”,”Moscow”);
values.put(“Egypt”,”Cairo”);

pageContext.setAttribute(“values”, values);
%>

<beginjsp:simpletable title=”Countries and their capitals”
columnOne=”Country”
columnTwo=”Capital”
data=”${pageScope.values}”/>

<P>
<beginjsp:simpletable title=”Request Parameters” data=”${param}”/>

How It Works
The first invocation of the custom action simpletable uses a Map object with Country/Capital pairs.
This invocation uses all the attributes available to the simpletable tag. The second invocation uses a Map
object that is implicit in any JSP page: param. This Map object lists the GET request parameters (i.e., from
the query string). For instance, if you were to request http://localhost:8080/tagfile/example-
simpletable.jsp?color=red&size=large, the param object would contain two entries:

Key Value

Color red

Size large

You can see the result of this JSP page using the simpletable tag in Figure 11-4.

347

Building Your Own Custom JSP Tag Library

15_57485x ch11.qxd 1/14/05 10:06 PM Page 347

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 11-4: simpletable tag results

You can see that this simple tag provides a reusable component to display the contents of a Map object.

Fragment attributes
Fragment attributes passed to custom actions effectively enable the developer to pass a fragment of JSP
to a tag file. This fragment can then be invoked within the custom action using a special standard action
called jsp:invoke. jsp:invoke can only be used inside a tag file. Like all standard actions, certain
attributes can be used with it. The following table describes the attributes for the jsp:invoke action.

Attribute Description

fragment Name of the fragment of JSP code that is being invoked.

Var Similar to the var attribute used in the jsp:doBody action described earlier.
When used, the result of the invocation can be stored as a String object
under the name provided by this attribute.

varReader Similar to the varReader attribute used in the jsp:doBody action described
earlier. When used, the result of the invocation is stored as a java.io.Reader
object under the name provided by this attribute.

Scope Used in conjunction with the var or varReader attributes. Defines the scope
where those variables will be placed: application, session, request or
page. This attribute is optional, and the default is page.

jsp:invoke is used much like jsp:doBody; however, jsp:invoke is specifically targeted at a named seg-
ment of JSP code that is passed to the custom action as an attribute, rather than the body of the tag itself.

348

Chapter 11

15_57485x ch11.qxd 1/14/05 10:06 PM Page 348

TEAM LinG - Live, Informative, Non-cost and Genuine!

The following Try It Out example builds on the simpletable tag developed earlier to illustrate the
power of jsp:invoke and fragment attributes.

Try It Out Highlighting a Search Result
The simpletable tag displayed the contents of a java.util.Map object. To enhance this tag, this
example will send a search String to the tag and highlight elements of the Map that match the search.
Elements of the Map that match the search String will be displayed in a different color. The color to high-
light a hit against an element of the Map will be passed as a jsp:attribute within the body of the tag
invocation. An example of an invocation of this new tag is as follows:

<beginjsp:highlighttable title=”Countries and their capitals”
search=”ia”
columnOne=”Country”
columnTwo=”Capital”
data=”${pageScope.values}”>

<jsp:attribute name=”highlight”>
orange

</jsp:attribute>

<jsp:attribute name=”lolight”>
white

</jsp:attribute>

</beginjsp:highlighttable>

This example will create a new tag based on the simpletable tag created earlier. This new tag is called
highlighttable. This tag is simply a copy of the simpletable tag with some additional changes to
implement the new functionality. The preceding JSP code shows that this new tag has a search attribute
that is used to specify the search string that it is passed. jsp:attribute elements are then used to spec-
ify the colors that the highlighting will use.

To make things simpler, we’re going to create a copy of the simpletable tag file and call it the
highlighttable tag (highlighttable.tag). As usual, you place this file in the /WEB-INF/tags
directory of the Web application directory structure. The following explanation highlights the important
changes from the simpletable tag.

This new tag will require three extra attribute directive entries: one for the search String, and two
more — the highlight and lolight [sic] fragments that the tag will be passed:

<%@ tag body-content=”empty” %>
<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<%@ taglib prefix=”fn” uri=”http://java.sun.com/jsp/jstl/functions” %>

<%@ attribute name=”data” required=”true” type=”java.util.Map” %>
<%@ attribute name=”search” required=”true” %>
<%@ attribute name=”highlight” fragment=”true” required=”true” %>
<%@ attribute name=”lolight” fragment=”true” required=”true” %>
<%@ attribute name=”title” required=”false” %>
<%@ attribute name=”columnOne” required=”false” %>
<%@ attribute name=”columnTwo” required=”false” %>

349

Building Your Own Custom JSP Tag Library

15_57485x ch11.qxd 1/14/05 10:06 PM Page 349

TEAM LinG - Live, Informative, Non-cost and Genuine!

You’ll notice that another taglib directive has been added so that JSTL functions can be used. The
search attribute is much like the other attributes you have already seen for custom tag files. The big
change is in the addition of the highlight and lolight attributes. Notice that the fragment attribute
for these attributes is set to true. This indicates that these items can be used in jsp:invoke invocations
within the tag file. The required attribute has been set to true for these attributes, as they are required
for the tag to function properly.

The rest of the tag appears as follows. The changes are highlighted to show the differences between this
new tag and the simpletable tag presented earlier. If you are creating this new tag, these are the changes
you should make to the highlighttable copy of the simpletable tag:

<c:if test=”${empty columnOne}”>
<c:set var=”columnOne” value=”Key”/>

</c:if>

<c:if test=”${empty columnTwo}”>
<c:set var=”columnTwo” value=”Value”/>

</c:if>

<table cellspacing=0 cellpadding=0 border=1>
<c:if test=”${not empty title}”>
<tr>

<td colspan=”3”><h1>${title}</h1></td>
</tr>
</c:if>
<tr>

<th>Count</th>
<th>${columnOne}</th>
<th>${columnTwo}</th>

</tr>
<c:forEach items=”${data}” var=”thisElement” varStatus=”status”>

<c:choose>
<c:when test=”${fn:containsIgnoreCase(thisElement.key, search) or

fn:containsIgnoreCase(thisElement.value, search)}”>
<tr bgcolor=”<jsp:invoke fragment=”highlight”/>”>

</c:when>
<c:otherwise>

<tr bgcolor=”<jsp:invoke fragment=”lolight”/>”>
</c:otherwise>

</c:choose>
<td>${status.count}</td>
<td>${thisElement.key}</td>
<td>${thisElement.value}</td>
</tr>

</c:forEach>
</table>

How It Works
As you can see, the new tag is not very different from the original simpletable tag, with the exception
of the c:choose added within the forEach loop. The logic here tests the value of the search attribute
against both the key and value of each entry in the data object using the JSTL function

350

Chapter 11

15_57485x ch11.qxd 1/14/05 10:06 PM Page 350

TEAM LinG - Live, Informative, Non-cost and Genuine!

containsIgnoreCase. If either the key or the value of the entry contains the value of the search
attribute, the row will be built using the highlight fragment:

<tr bgcolor=”<jsp:invoke fragment=”highlight”/>”>

This effectively places the resulting JSP contained in the fragment as the background color on the row.
If neither the key nor the value is matched to the search attribute, the lolight attribute is used in the
same way instead. Figure 11-5 shows you how this tag invocation would be displayed on the screen with
a search attribute of ia (so that we get a couple of hits).

Figure 11-5: Results from the highlighttable tag

This is a very simple example; the fragments invoked within the tag contained only plain text. It is possi-
ble to include dynamic content within each fragment, to be evaluated as part of its processing. The next
example illustrates this.

The following Try It Out example enhances the highlighttable tag to display the number of hits that
the search has resulted in. It highlights two features of tag files:

❑ The ability to specify the name of a variable exported by a tag file

❑ The ability to use EL in JSP fragment attributes

The output of these enhancements will be a new tag called highlighttableext.

Try It Out Search Results Counter
The enhancements we make here will enable the JSP developer to access a variable that contains the
number of hits that have resulted from the tag invocation, and to use this variable to display a hit result

351

Building Your Own Custom JSP Tag Library

15_57485x ch11.qxd 1/14/05 10:06 PM Page 351

TEAM LinG - Live, Informative, Non-cost and Genuine!

row at the bottom of the table. It also enables the developer to specify the name of the variable accessible
in the JSP page.

The example discussed here is an extension of the highlighttable tag explained in the preceding sec-
tion. This new tag would be a copy of the highlighttable.tag file called highlighttableext.tag.
This section explains the changes that need to be made to this copy in order to fulfill the functionality
described.

The first change to be made is the addition of another fragment attribute to the tag’s directive list. This
optional fragment will form the bottom row of the table that is generated, with the intention that it will
contain the result of the search. The new attribute is shown highlighted:

<%@ tag body-content=”empty” %>
<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<%@ taglib prefix=”fn” uri=”http://java.sun.com/jsp/jstl/functions” %>

<%@ attribute name=”data” required=”true” type=”java.util.Map” %>
<%@ attribute name=”search” required=”true” %>
<%@ attribute name=”highlight” fragment=”true” required=”true” %>
<%@ attribute name=”lolight” fragment=”true” required=”true” %>
<%@ attribute name=”result” fragment=”true” required=”false” %>
<%@ attribute name=”title” required=”false” %>

The result fragment has been made optional, as the developer may not want to display the result row
on the table. The next change is required to set up the variable that will be used to hold the number of
hits that is recorded against items in the list. The following code continues the new tag, highlighting the
changes that need to be made:

<%@ attribute name=”columnOne” required=”false” %>
<%@ attribute name=”columnTwo” required=”false” %>
<%@ attribute name=”countVar” required=”true” rtexprvalue=”false” %>
<%@ variable name-from-attribute=”countVar”

alias=”counter”
variable-class=”java.lang.Integer” scope=”NESTED”%>

<c:set var=”counter” value=”0”/>
...

The countVar attribute will contain the name of the variable the developer wishes to use in the JSP page.
This attribute must be required and have a false value for the rtexprvalue attribute so that it can be
referenced in the variable directive. The variable directive sets up this variable for the tag. It uses the
name-from-attribute attribute in order to assign itself to the name specified by the developer in the
countVar attribute. The alias attribute is used to give this value an internally scoped variable name
(counter) that can be used as the tag is processed. The counter variable is then initialized to 0.

The final modification to the tag is to increment the counter variable when a record is matched with
the search criteria and to display the result row at the bottom of the table. The following code listing
completes the changes that need to be made to this new tag:

<table cellspacing=0 cellpadding=0 border=1>
<c:if test=”${not empty title}”>
<tr>

352

Chapter 11

15_57485x ch11.qxd 1/14/05 10:06 PM Page 352

TEAM LinG - Live, Informative, Non-cost and Genuine!

<td colspan=”3”><h1>${title}</h1></td>
</tr>
</c:if>
<tr>

<th>Count</th>
<th>${columnOne}</th>
<th>${columnTwo}</th>

</tr>
<c:forEach items=”${data}” var=”thisElement” varStatus=”status”>

<c:choose>
<c:when test=”${fn:containsIgnoreCase(thisElement.key, search) or

fn:containsIgnoreCase(thisElement.value, search)}”>
<tr bgcolor=”<jsp:invoke fragment=”highlight”/>”>
<c:set var=”counter” value=”${counter + 1}”/>

</c:when>
<c:otherwise>

<tr bgcolor=”<jsp:invoke fragment=”lolight”/>”>
</c:otherwise>

</c:choose>
<td>${status.count}</td>
<td>${thisElement.key}</td>
<td>${thisElement.value}</td>
</tr>

</c:forEach>
<tr>

<td colspan=”3”><jsp:invoke fragment=”result”/></td>
</tr>
</table>

The JSP page to invoke this new tag is much like the invocation of the highlighttable tag:

<beginjsp:highlighttableext title=”Countries and their capitals”
search=”ia”
columnOne=”Country”
columnTwo=”Capital”
data=”${pageScope.values}”
countVar=”foo”>

<jsp:attribute name=”highlight”>
orange

</jsp:attribute>
<jsp:attribute name=”lolight”>

white
</jsp:attribute>
<jsp:attribute name=”result”>

Total hits found: ${foo}
</jsp:attribute>

</beginjsp:highlighttableext>

How It Works
The countVar attribute specifies that a variable called foo will have NESTED scope within this tag and
can therefore be used, as foo, in the result attribute that has also been added. The result is a single row
at the bottom of the generated table that contains the number of hits recorded, as displayed in Figure 11-6.

353

Building Your Own Custom JSP Tag Library

15_57485x ch11.qxd 1/14/05 10:06 PM Page 353

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 11-6: Final modification of the highlighttableext tag

The use of the name-from-attribute attribute in the variable directive can be a little confusing. Using
the variable directive in this way is simply a way for the JSP developer to name the variable the tag
returns, rather than it being given an explicit name inside the tag with name-given.

Dynamic attributes
Tag files also enable developers to pass unspecified attributes to a tag in its invocation. This is handy
where a large number of attributes are required or where the attributes themselves may change or are
unknown and need to be dynamic. These ad-hoc attributes added to a tag’s invocation deliver a Map of
name-value pairs to the tag’s page scope. Take the following tag invocation:

<beginjsp:dynalist favColor=”blue” name=”Rupert” address=”123 Foo Avenue”/>

The attributes here have not been specifically declared with attribute directives within the tag file;
rather, these names and values are available within the tag via a Map object that can be queried, looped
over, or whatever else a Map object allows you to do.

Tag files won’t allow such dynamic attributes by default; the tag directive must specify that such
attributes be allowed using the dynamic-attributes attribute to the tag directive. The tag directive
within this tag is as follows:

<%@ tag body-content=”empty” dynamic-attributes=”mapData” %>

If you don’t declare the dynamic-attributes attribute, the server will throw an exception when
unspecified attributes are used. With this attribute added to the tag directive, a variable named
mapData is now available within the page scope of the tag. This Map object can now be accessed

354

Chapter 11

15_57485x ch11.qxd 1/14/05 10:06 PM Page 354

TEAM LinG - Live, Informative, Non-cost and Genuine!

to retrieve the name-value pairs that were entered as dynamic attributes. Given the preceding example,
mapData would contain the entries shown in the following table.

Name Value

favColor Blue

name Rupert

address 123 Foo Avenue

The content of the tag file that iterates over this Map of dynamic attributes is as follows:

<%@ tag body-content=”empty” dynamic-attributes=”mapData” %>
<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>

<c:forEach items=”${mapData}” var=”thisElement”>
${thisElement.key} = ${thisElement.value}

</c:forEach>

Of course, this is no different from providing a single Map attribute to the tag as a normal attribute to
perform the same function. Dynamic attributes make a key difference when the name of the attribute is
also dynamic and has meaning in itself. An excellent example of where this can be beneficial is in the
formatting of HTML elements that have many optional formatting attributes as part of their syntax.

This concludes the description and illustration of attributes and tag files. The Try It Out examples pro-
vided in this section were deliberately designed to provide basic illustrations of the many flavors of
attribute usage that tag files support.

Packaging Tag Files
You’ve just developed a large collection of highly useful tag files that developers of all skill levels can
use their current projects. Each tag was created with a *.tag file in the /WEB-INF/tags directory of
your Web application.

This section explains how to take these tag files and package them into a single JAR file that can be
included in the /WEB-INF/lib directory just like other resources an application may use. You may be
asking why such packaging may be necessary. Sure, the tags directory is a simple and accessible place
for them to be stored, but when your project is completed and you wish to deploy all these tags with
your application, handling as few files as possible is optimal. Packaging files in this way also reduces
the complexity of the environment and makes the files less accessible; it is hoped that the temptation
to manipulate them outside of your development environment will be reduced. And as we shall see,
packaging tag files in this way can reduce application-wide changes if any of the tags are redeveloped
as Java custom actions.

But first, let’s review some context that is important for this discussion. When custom tags are developed
using Java, a Tag Library Descriptor (TLD) file is created that defines the tag (or tags) and their usage for
the container. The TLD file is simply an XML file that conforms to a predefined schema (structure) and is

355

Building Your Own Custom JSP Tag Library

15_57485x ch11.qxd 1/14/05 10:06 PM Page 355

TEAM LinG - Live, Informative, Non-cost and Genuine!

referenced in the uri attribute of the taglib directive used in JSP files. Doing so identifies the set of tags
defined in the TLD under a common name, or prefix.

So far, we have not had to create a TLD file for custom tags in this chapter; however, when packaging
them into a single JAR file, a TLD file must be created. Once this file is created, the JAR file can be gener-
ated containing the TLD file and each *.tag file. These files must conform to a certain directory structure
inside the JAR file:

/META-INF/*.tld

/META-INF/tags/*.tag

The TLD file is placed in the /META-INF directory, and the associated tag files are placed in the /META-
INF/tags/ directory (or a subdirectory). Once this structure has been set up, the JAR file can be created
at the command line, or with a build tool such as Ant, and placed in the /WEB-INF/lib directory of the
application, where it can be used by the application. In order for JSP files to reference the tags contained
in the JAR file, the associated taglib directives must be changed to use the uri attribute, rather than
tagdir.

The following Try It Out exercise walks you through these steps in detail, packaging three tag files cre-
ated during this chapter, and then illustrates a JSP page invoking one of them. If you haven’t created tag
files during the course of the chapter but want to follow along with this example, just use the example
code available from the Wrox Web site at www.wrox.com/.

Try It Out Packaging Tag Files
Create a file called beginjsptags.tld in the /META-INF directory discussed earlier. As mentioned,
this file defines the tags that the JAR file will contain. For our purposes, it has a fairly straightforward
structure, but it can get decidedly more complex when defining custom actions developed in Java.

The JAR file will contain the cleanhtml, simpletable, and highlighttable tags, and the TLD file
must have entries for each. Add the following content to the beginjsptags.tld file:

<?xml version=”1.0” encoding=”UTF-8” ?>

<taglib xmlns=”http://java.sun.com/xml/ns/j2ee”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”http://java.sun.com/xml/ns/j2ee web-

jsptaglibrary_2_0.xsd”
version=”2.0”>

<description>Beginning JSP Tag Files</description>
<tlib-version>1.0</tlib-version>
<short-name>beginjsp</short-name>
<uri>beginjsptags</uri>

<tag-file>
<name>cleanhtml</name>
<path>/META-INF/tags/cleanhtml.tag</path>

356

Chapter 11

15_57485x ch11.qxd 1/14/05 10:06 PM Page 356

TEAM LinG - Live, Informative, Non-cost and Genuine!

</tag-file>

<tag-file>
<name>simpletable</name>
<path>/META-INF/tags/simpletable.tag</path>

</tag-file>

<tag-file>
<name>highlighttable</name>
<path>/META-INF/tags/highlighttable.tag</path>

</tag-file>
</taglib>

As you can see, the TLD file conforms to a fairly simple structure. The important content here is within
the taglib element. First, some descriptive elements are defined, as shown in the following table.

Element Description

description Brief description of the tag library.

tlib-version Version of the tag library.

short-name Prefix used for this tag library. The value here is merely a suggested pre-
fix; the developer can define a prefix to use in the prefix attribute of
the taglib directive in the JSP that uses this tag library.

uri The URI (Universal Resource Identifier) for this tag library. Used in the
uri attribute of the taglib directive on a JSP page that will use this
library.

Below these are tag-file elements for each of the tags being added to this package. The name attribute
merely provides an alias to be used when invoking the tag. Although the convention is to assign a name
value in accordance with the tag file’s actual filename (less the .tag extension), the name value could be
anything you like; it will, however, identify the name of the tag when used within the JSP page, so it
should at least be somewhat appropriate. The path attribute points to the path of the tag file itself
within the JAR file. Note that the path to each tag file uses the directory structure defined earlier, i.e.,
using META-INF, not WEB-INF.

Once you have copied the appropriate tag files into the /META-INF/tags directory, the JAR file can be
generated. The following instructions apply to a Microsoft Windows environment.

Start up a command-line prompt by clicking the Start button and then clicking Run. Type cmd in the
Open input field. A command-line prompt should open. Change to the directory above the META-INF
directory created for this example and type the following command at the prompt:

jar –cvf beginjsptags.jar META-INF

A JAR file named beginjsptags.jar should have been generated in the current directory. Place this
JAR file in the /WEB-INF/lib directory of your Web application.

357

Building Your Own Custom JSP Tag Library

15_57485x ch11.qxd 1/14/05 10:06 PM Page 357

TEAM LinG - Live, Informative, Non-cost and Genuine!

How It Works
Once you have restarted your servlet container, you should be able to use the tags contained in this JAR
file from your JSP pages.

The taglib directive used in JSP pages will now use a uri attribute when using tag files packaged in a
JAR file, instead of the tagdir attribute used throughout this chapter. The uri attribute should match
the uri value placed in the beginjsptags.tld file created earlier:

<%@ taglib prefix=”beginjsp” uri=”beginjsptags”%>

<beginjsp:simpletable title=”Request Parameters” data=”${param}”/>

The preceding code would invoke the simpletable tag file packaged in the JAR file. Of course, we had
to make a change to the JSP files that reference the tag files formerly placed directly in the file system.
In a large application, this could become quite hazardous, as it may not be feasible to ensure that every
page is configured correctly once the change has been made.

A safer method of transition from file system–based tag files to JAR file–based tag files would have been
to use the uri attribute in the JSP files all along, rather than the tagdir attribute. In order to achieve
this central referencing of the tag files, a TLD file would be created in the /WEB-INF/ directory (or a
subdirectory) of the Web application, with each tag’s path attribute pointed to the tag files in the /WEB-
INF/tags directory. JSP pages would then be free to use the value of the uri element in the TLD file as
their uri value. No change to JSP files would be necessary when moving from one method to another. If
the custom actions were then redeveloped in Java, as long as their usage was the same, the JSP files that
referenced them would require no changes at all.

Java custom actions versus tag file custom actions
Should you develop your custom actions as simple tag files or as Java class files? As with many technical
decisions, the answer depends on a consideration of several factors. The following sections examine
these factors.

Complexity of the problem
Most of the examples presented in this chapter have been deliberately simple in order to convey basic syn-
tax and patterns of usage. The use of tag files for each of them is entirely appropriate. However, real-life
applications often involve situations where a tag has a very complex task to perform, usually in order to
display some formatted output from the system. Developers should consider moving these tags to Java as
soon as the complexity of the logic they contain gets unwieldy and difficult to maintain. Tags developed in
Java can take advantage of Java’s object-oriented nature, with a capability to solve complex problems in a
more structured way.

Team skills and alien artifacts
The skills available in a software development team should, to a certain extent, dictate the technology
and techniques being used in development. Sometimes specialist “niche” software developers are tem-
porarily hired to solve a particular problem, using a technology that no one else on the team has any

358

Chapter 11

15_57485x ch11.qxd 1/14/05 10:06 PM Page 358

TEAM LinG - Live, Informative, Non-cost and Genuine!

experience with. The contractor is then sent on his or her way when the project comes to an end. The
remaining staff is left to maintain a system they may not understand, at least not without some training,
and even then, it may not be enough to provide commercially viable support.

Elements of systems that are developed in this way are sometimes referred to as alien artifacts. The mys-
terious, magical thing that the specialist contractor created cannot be touched or managed in any reason-
able way for fear of it breaking. Custom tags developed in Java run the risk of becoming alien artifacts
should the skills of the team be unable to support them. A software team should have the skills available
to develop, manage, and maintain all aspects of the system.

In short, there is no definitive answer regarding which method should be used. An “as required” approach
should be taken, moving tags that require the sophistication of Java to Java-developed tags and, conversely,
moving tags from Java-developed code to tag files if it is appropriate given the level of complexity
involved and team-related factors.

Summary
This chapter has covered the syntax and basic usage patterns of custom actions developed as tag files.
This powerful mechanism included in the JSP 2.0 specification provides more power in the hands of JSP
developers, who are now better able to modularize components of their applications. Tag files also benefit
Java developers, who can now rapidly implement simple tags if Java-developed tags are inappropriate or
considered overkill.

The first part of the chapter provided a simple example and looked at the advantages that tag files
specifically provide for developers:

❑ Code reuse

❑ Hiding complexity

❑ Separation of concerns

❑ Simplicity

❑ Flexible packaging

Developing tag files was then discussed at length; we first investigated each of the important directives
available in tag files and then looked in more detail at tag body processing and the various attributes
that can be used. In the closing sections, we looked at tag file packaging, and briefly discussed the choice
between custom actions developed in Java or as tag files.

Exercises
1. Create a tag to generate a random number. Ensure that the random number result is available

from the JSP page. Add an attribute to the tag to specify the maximum value of the random
number, i.e., between 0 and n.

359

Building Your Own Custom JSP Tag Library

15_57485x ch11.qxd 1/14/05 10:06 PM Page 359

TEAM LinG - Live, Informative, Non-cost and Genuine!

2. Create a tag that formats the display of a Calendar object using two attributes. One is the
Calendar instance; the other is the pattern with which to display the date. The output on the
page should just be the result of the formatting. Output the current date in the following format:

Tuesday 3 June 2005 AD

You will find valid patterns to use in the Javadocs for the SimpleDateFormat class. See
http://java.sun.com/j2se/1.4.2/docs/api/index.html.

360

Chapter 11

15_57485x ch11.qxd 1/14/05 10:06 PM Page 360

TEAM LinG - Live, Informative, Non-cost and Genuine!

12
Advanced Dynamic Web

Content Generation

At this point in the book, you have examined and worked with every single aspect of JavaServer
Pages. The knowledge that you have gained thus far can be put immediately to use in creating
new Web applications using JSP technology, or in the maintenance of existing JSP projects.
Although most of the projects in this book work mainly with the dynamic generation of HTML
template data, creating interactive Web-based interfaces, this chapter focuses on the dynamic
generation of content that is not HTML. While using exactly the same set of JSP techniques, the
dynamic content generated will be client-side scripting elements and XML documents.

Client-side scripting elements, typically coded in the JavaScript programming language, can be
used to enhance the user’s interactive experience. One very practical application of JavaScript on
the client side is for the validation of data entered within forms. The examples in this chapter
show how JSP-generated client-side scripting elements can be used to perform client-side data
validation.

Many concepts and techniques introduced in the previous chapters are put to work in this chapter.
Concepts and techniques reviewed in this chapter include the following:

❑ Standard JSP actions

❑ JSP directives

❑ JSP actions

❑ JavaBeans

❑ Custom actions in JSTL

❑ EL

❑ Use of implicit objects

❑ Alternate XML syntax for JSP

16_57485x ch12.qxd 1/14/05 10:11 PM Page 361

TEAM LinG - Live, Informative, Non-cost and Genuine!

❑ Using a front controller to forward requests

❑ Processing request parameters using JSP

❑ Creating a custom tag library using JSP tagfiles

There are three hands-on examples in the chapter, providing step-by-step illustrations of how to use JSP
in generating non-HTML Web application elements.

By the end of the chapter, you will know how to generate client-side validation code from your JSP appli-
cations. In addition, you will be familiar with the techniques used in generating XML-based content.

Data Validation in Web Applications
You already examined data validation in the first auction bidding example of Chapter 9, “JSP and
JavaBeans.” The example presents a form for users to input their bids for items. The following is a brief
review. The range of the incoming bid is checked to ensure that it is between 0 and 999, inclusive. This
check is coded in JSP. The data validation is performed by the following highlighted JSP highlighted
code in the Chapter 9 index.jsp file (the first Try It Out exercise):

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<c:choose>

<c:when test=”${empty param.action}”>
<jsp:forward page=”enterbid.jsp”/>

</c:when>
<c:when test=”${param.action eq ‘bid’}”>

<c:if test=”${(param.price <= 0) || (param.price >= 999)}”>
<jsp:useBean id=”biderror” class=”com.wrox.begjsp.ch09.BidError”

scope=”request”>
<jsp:setProperty name=”biderror” property=”msg”

value=”Sorry, your bid is not in range. Please enter again.”/>
</jsp:useBean>
<jsp:forward page=”enterbid.jsp”/>

</c:if>
<jsp:useBean id=”bidinfo” class=”com.wrox.begjsp.ch09.Bid” scope=”request”>

<jsp:setProperty name=”bidinfo” property=”*”/>
</jsp:useBean>

<jsp:forward page=”showbid.jsp”/>
</c:when>

</c:choose>

The validation is performed using the JSTL <c:if> flow control action. The test attribute is specified as
an EL expression:

${(param.price <= 0) || (param.price >= 999)}

The user will be asked to reenter his or her bid if the incoming bid is out of this range. The form input is
handled by the enterbid.jsp page.

362

Chapter 12

16_57485x ch12.qxd 1/14/05 10:11 PM Page 362

TEAM LinG - Live, Informative, Non-cost and Genuine!

While this solution works reasonably well, it is not the preferred way of performing data validation. It is
not preferred because it is inefficient, as you will see in the following section.

Server-side validation and efficient usage of resources
Figure 12-1 illustrates why data validation using JSP is rather inefficient.

Figure 12-1: JSP-based server-side data validation

In Figure 12-1, the user input data must be transmitted between a user’s browser and the server before
the data can be validated. If the data is in error, it must be reentered and retransmitted to the server for
validation. Because the JSP logic is executed in the container on the server, data validation code imple-
mented in JSP always occurs on the server side.

Server-side validation is generally inefficient for the following reasons:

❑ Each validation and retry sequence requires a separate network call.

❑ The bandwidth and processing power of the server may be burdened by the validation task.

❑ The user may have to wait a significant amount of time before the data can be validated, espe-
cially if the server is clogged with validation requests from other users.

There is a lot of computing power on modern client computers. Current versions of popular browsers
(such as Microsoft Internet Explorer 6.x and Netscape 7.x) are feature-rich and support powerful script-
ing languages that can be used to write client-side programs. You can exploit this combination of com-
puting power and browser scripting capability to perform data validation on the client side. Figure 12-2
illustrates client-side validation.

Data validation implemented using JSP logic occurs on the server side.

Client

User data
entry and

corrections

Browser

Server

Multiple validation errors,
each time requiring a

network round trip

Final data submission

Container

JSP
Server side

validation code

363

Advanced Dynamic Web Content Generation

16_57485x ch12.qxd 1/14/05 10:11 PM Page 363

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 12-2: Operation of client-side data validation

In Figure 12-2, the user input is validated on the client side by script code executed on the browser. If a
validation error is detected, the user is immediately prompted to correct the input. There is no network
access during this entire phase. Data is transmitted between the client and the server only when it is val-
idated successfully on the client.

Client-side data validation
Performing data validation on the client side has the following advantages:

❑ The server does not have the burden of low-level data validation.

❑ Bandwidth between client and server is conserved by eliminating the need to transmit poten-
tially invalid input to the server.

❑ The user always experiences a fast response because the validation code executes on the power-
ful client hardware.

Because client-side validation is generally more efficient than server-side validation, one might imagine
that all data validation should be performed on the client side. This is not possible in practice, and you
will learn the reason why in the next section.

The need for server-side validation
It is not possible to perform all data validation on the client side because some validation work requires
access to server resources. For example, an application may need to verify that an item is in stock before
an order can be placed. The client’s browser cannot determine this information alone.

Client-side data validation is generally more resource-efficient than server-side
validation.

Client

User data entry
and corrections

Browser

Server

Final data submission
Displays input form

and
performs client-side

data validation

Validation performed here

JavaScript code

Container

JSP
Code to

process form

364

Chapter 12

16_57485x ch12.qxd 1/14/05 10:11 PM Page 364

TEAM LinG - Live, Informative, Non-cost and Genuine!

Another less common reason why server-side validation is necessary occurs in networks where a user’s
legacy browser may not support the execution of scripting code. In these cases, the implementation of
client-side data validation is not possible.

Common client-side validation scenarios
Certain types of data validation tasks can be, and should be, performed on the client. They include the
following:

❑ Verifying that numerical values are valid numbers

❑ Verifying the length of textual input data

❑ Verifying that input data is in particular textual formats (for example, an all-numeric serial
number, a telephone number, a credit card number, an e-mail address, or a postal code)

❑ Checking the value range of numeric data (if the range is fixed and does not depend on server
information)

The common characteristic of all the items in the preceding list is that they can all be accomplished
independently, without accessing server-side data or information.

Therefore, in a typical Web application, data validation is separated into two stages. The client-side vali-
dation checks input for allowable range, data format, and type validity. The server-side validation, if it
exists, performs checks that require access to server side resources, such as databases.

Operation of client-side validation
Figure 12-3 shows the components that are involved in client-side validation.

In Figure 12-3, the client-side validation code is embedded in the HTML page. This code is transmitted
from the server to the client when the HTML page is fetched. The user then enters data into the form
presented by the HTML. When the user clicks a button to submit the form, the client-side validation
script code is executed. If errors are detected, the data is not submitted to the server.

The user is requested to correct any error and resubmit the form. The data is transmitted to the server
only when all the client-side validation is performed successfully.

In most real-world applications, data validation is performed both on the client and
on the server.

Not all validation tasks can be performed on the client side.

365

Advanced Dynamic Web Content Generation

16_57485x ch12.qxd 1/14/05 10:11 PM Page 365

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 12-3: Components of client-side validation

The client-side scripting language
The client-side validation code is written in an interpreted script language. The interpreter for this
scripting language is embedded in the browser. There are two very popular scripting languages:

❑ JavaScript (sometimes referred to as ECMAScript)

❑ VBScript

ECMAScript is a standard scripting language that is actually a subset of JavaScript. Scripting code
written in the ECMAScript subset is most portable across different browsers.

VBScript has a syntax that is similar to Microsoft’s Visual Basic programming language. VBScript is
supported only by the Microsoft Internet Explorer browser. JavaScript is supported by both Netscape
and Microsoft browsers. In order to write client-side validation code that will work on both Internet
Explorer and Netscape, JavaScript should be used.

The following Try It Out exercise shows how JavaScript can be used for client-side data validation.

Try It Out Client-Side Validation
This first example enables a user to enter information for a product offered by an e-commerce store. The
form is generated and processed by JSPs. The form uses client-side JavaScript code to perform client-side
data validation for the form. To try out this example, you will need the ch12.war archive.

BROWSER

HTML Page (a Form)

Embedded JavaScript
Validation Code

User interacts with form and
JavaScript code Page fetched from server

Validated data sent to server

366

Chapter 12

16_57485x ch12.qxd 1/14/05 10:11 PM Page 366

TEAM LinG - Live, Informative, Non-cost and Genuine!

Make sure that your Tomcat 5 server is running and then deploy ch12.war to the server. Review
Chapter 1 if you do not remember how to deploy a WAR archive.

Open your browser and access the following URL:

http://localhost:8080/ch12/example1/index.jsp

A form similar to the one shown in Figure 12-4 will be displayed, enabling you to enter the product
information.

Figure 12-4: Product information entry form with client-side data validation

Enter the following values into the form:

❑ For the sku field, enter 3212a.

❑ For the name field, enter 2 Beginning JavaServer Pages.

❑ For the desc field, enter Excellent book to learn JSP with.

❑ For the price field, enter M39.

367

Advanced Dynamic Web Content Generation

16_57485x ch12.qxd 1/14/05 10:11 PM Page 367

TEAM LinG - Live, Informative, Non-cost and Genuine!

By design, the previous input values contain several errors. These errors should be caught by the valida-
tion code.

Click the Add Product button. This will start the client-side validation code. The errors are detected and
you should see a pop-up dialog box, as shown in Figure 12-5.

Figure 12-5: Pop-up box announcing data entry errors

Click the OK button to dismiss the dialog box. The errors are now highlighted in the form. No data has
been sent to the server yet at this point. Your form now looks similar to Figure 12-6.

Figure 12-6: Data entry errors detected by client-side data validation

368

Chapter 12

16_57485x ch12.qxd 1/14/05 10:11 PM Page 368

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 12-6 shows that three errors were detected. The first one is in the value entered for sku. The
sku format should contain all numeric digits, and does not allow any characters. To fix this, delete
the trailing a character. Click the Add Product button again. The resulting screen is shown in Fig-
ure 12-7.

Figure 12-7: Form display after one entry error has been corrected

Note in Figure 12-7 that the sku is now valid, and only two errors remain. To correct these errors:

1. Remove the leading 2 in the name field, as this field must begin with an alpha character.

2. Remove the leading M in the price field, as this field must contain the numeric dollar
value only.

Click the Add Product button again.

This time, all the values pass validation, and the form data is finally submitted to the server. The
form data is processed by a server-side JSP. This JSP simply displays the values of the form fields.
The resulting display should be similar to Figure 12-8.

369

Advanced Dynamic Web Content Generation

16_57485x ch12.qxd 1/14/05 10:11 PM Page 369

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 12-8: Successful entry of product data with all errors corrected

How It Works
This example uses a front controller page, index.jsp, to forward the requests to different JSP pages.
Figure 12-9 shows the architecture.

In Figure 12-9, the request attribute called action is used to determine where to forward the request.
When index.jsp is first accessed, the action attribute will have no value. In this case, the request is
forwarded to the prodform.jsp page. The prodform.jsp page prompts for the entry of product
information. The prodform.jsp page also has client-side validation built in. When the data from
prodform.jsp is submitted, the action attribute has the value prodsubmit. When the action
attribute has the value of prodsubmit, index.jsp forwards the request to procprod.jsp. The
procprod.jsp page renders the values entered for the product.

370

Chapter 12

16_57485x ch12.qxd 1/14/05 10:11 PM Page 370

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 12-9: Application flow with front controller

Using a front controller to forward requests
The front controller in this example is the index.jsp page. The index.jsp page is located at
<Tomcat Installation Directory>/webapps/ch12/example1/index.jsp. It is reproduced
here:

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<c:choose>

<c:when test=”${empty param.action}”>
<jsp:forward page=”prodform.jsp”/>

</c:when>

<c:when test=”${param.action eq ‘prodsubmit’}”>
<jsp:forward page=”procprod.jsp”/>

</c:when>
</c:choose>

A JSTL <c:choose> construct is used to forward incoming requests depending on the action
request attribute. If the action attribute does not exist, the request is forwarded to the prodform.
jsp page by the following code:

<c:when test=”${empty param.action}”>
<jsp:forward page=”prodform.jsp”/>

</c:when>

index.jsp

Front controller

prodform.jsp

Displays form and performs
client-side validation

action is empty action = "prodsubmit"

procprod.jsp

Processes form by rendering
the information received

371

Advanced Dynamic Web Content Generation

16_57485x ch12.qxd 1/14/05 10:11 PM Page 371

TEAM LinG - Live, Informative, Non-cost and Genuine!

If the action attribute has the value prodsubmit, the request is forwarded to the procprod.jsp page
for processing:

<c:when test=”${param.action eq ‘prodsubmit’}”>
<jsp:forward page=”procprod.jsp”/>

</c:when>

JavaScript for client-side validation
The prodform.jsp page, located at <Tomcat Installation Directory>/webapps/ch12/
example1/prodform.jsp, contains the code for client-side validation. It is presented here, with
JavaScript coding highlighted:

<html>
<head>

<title>Product Information Entry Form</title>
<script language=”JavaScript”>

function isDigitsOnly(inParam)
{

var chkExp = /^\d+$/;
return (chkExp.test(inParam));

}
function isTextOnly(inParam)
{

var chkExp = /^[a-z][a-z\d]+$/i;
return (chkExp.test(inParam));

}
function validateForm()
{

var formValid = true;
if (!isDigitsOnly(document.prodform.sku.value))
{

document.getElementById(“skuError”).style.visibility = “visible”;
formValid = false;

}
else

document.getElementById(“skuError”).style.visibility = “hidden”;

if (!isTextOnly(document.prodform.name.value))
{

document.getElementById(“nameError”).style.visibility = “visible”;
formValid = false;

}
else

document.getElementById(“nameError”).style.visibility = “hidden”;

if (!isTextOnly(document.prodform.desc.value))
{

document.getElementById(“descError”).style.visibility = “visible”;
formValid = false;

372

Chapter 12

16_57485x ch12.qxd 1/14/05 10:11 PM Page 372

TEAM LinG - Live, Informative, Non-cost and Genuine!

}
else

document.getElementById(“descError”).style.visibility = “hidden”;

if (!isDigitsOnly(document.prodform.price.value))
{

document.getElementById(“priceError”).style.visibility = “visible”;
formValid = false;

}
else

document.getElementById(“priceError”).style.visibility = “hidden”;

if (!formValid)
alert(“Some values you entered are invalid, please correct the entries

marked in red.”);

return formValid;
}

</script>

<style>
span.validateError
{

color: red;
visibility: hidden;

}
</style>

</head>
<body>

<h1>Enter Product Information</h1>
<form name=”prodform” action=”index.jsp” method=”post”

onsubmit=”return validateForm()”>
<table border=”0” >

<tr>
<td>SKU:</td>
<td>

<input name=”sku” type=”text” width=”40”/>

<-- please enter digits only

</td>
</tr>

<tr>
<td>Name:</td>
<td>

<input name=”name” type=”text” width=”40”/>

<-- please enter letters or numbers only, do not start with a number

</td>

373

Advanced Dynamic Web Content Generation

16_57485x ch12.qxd 1/14/05 10:11 PM Page 373

TEAM LinG - Live, Informative, Non-cost and Genuine!

</tr>
<tr>

<td>Description:</td>
<td>

<input name=”desc” type=”text” width=”40”/>

<-- please enter letters or numbers only, do not start with a number

</td>
</tr>
<tr>

<td>Price:</td>
<td>

<input name=”price” type=”text” width=”40”/>

<-- please enter price in dollars only, do not enter cents

</td>
</tr>

<tr>
<td colspan=”2”>
<input type=”submit” value=”Add Product” />
<input type=”hidden” name=”action” value=”prodsubmit”/>

</td>
</tr>

</table>
</form>

</body>
</html>

The following paragraphs provide an analysis of the client-side validation coding.

JavaScript coding is embedded in an HTML page using the <script> tag. Because browsers such as
Microsoft Internet Explorer also support VBScript, the language attribute of the <script> tag is used
to specify JavaScript as the scripting language:

<script language=”JavaScript”>

Only two validation functions are necessary in this example. The first utility validation function,
isDigitsOnly(), verifies that an incoming parameter consists of all numeric digits. Embedded charac-
ter or blanks are not allowed in this case. The isDigitsOnly() function is implemented as follows:

function isDigitsOnly(inParam)
{

var chkExp = /^\d+$/;
return (chkExp.test(inParam));

}

374

Chapter 12

16_57485x ch12.qxd 1/14/05 10:11 PM Page 374

TEAM LinG - Live, Informative, Non-cost and Genuine!

In the isDigitsOnly() function, a JavaScript regular expression object called chkExp is used to per-
form the validation. The test() method of a JavaScript regular expression is used to determine if the
inParam parameter matches the specified expression. The test() method will return a Boolean true
value if a match is determined, or false if no match is found. This expression matches only runs of
numeric digits.

A detailed description of the JavaScript programming language, and the associated regular expression
engine, is beyond the scope of this book. Interested readers are encouraged to consult Beginning
JavaScript, 2nd Edition (ISBN 0-7645-5587-1).

A JavaScript regular expression is framed by the slash (/) character. The following table describes the
symbols used in this expression.

Symbol Matches

^ The beginning of the string to match

\d Matches a single numeric digit

$ The end of the string to match

+ One or more occurrences of the matched character immediately before

The second and last utility validation function, isTextOnly(), checks to see if the incoming parameter
contains alphanumeric characters or blanks. The incoming parameter must start with a letter and not a
numeric character or a blank:

function isTextOnly(inParam)
{

var chkExp = /^[a-z][a-z\d]+$/i;
return (chkExp.test(inParam));

}

In isTextOnly(), a JavaScript regular expression object is also used. The trailing i at the end of the
expression indicates that the expression match should be performed without consideration to uppercase
or lowercase. The i stands for insensitive, as in case-insensitive. The following table describes two
other new matching symbols in the expression.

Symbol Matches

[a-z] A single alphabet letter

[a-z\d] A single alphabet letter, a numeric digit, or a blank

chkExp.test() will attempt a match of the regular expression against the incoming parameters, and
return a Boolean true if a match is found (or false otherwise).

375

Advanced Dynamic Web Content Generation

16_57485x ch12.qxd 1/14/05 10:11 PM Page 375

TEAM LinG - Live, Informative, Non-cost and Genuine!

Following the isTextOnly() utility function, the next function is the actual function used to validate
the form. This function is called validateForm(). The first thing that it does is to set a Boolean
JavaScript variable called formValid to the true value. This variable will be returned to the caller. It is
set to false if any validation error is detected.

function validateForm()
{

var formValid = true;

Next in the validateForm() function is a series of checks that access the value of the form fields. When
using JavaScript, the form fields can be accessed through the object model provided by the browser.
Roughly speaking, each HTML or form element can be given an ID. The element can then be accessed in
the scripting language to modify its properties or attributes. For example, in the first set of validation
codes, the value of the sku field can be accessed via the JavaScript expression document.prodform.
sku.value. This expression will access the sku value just entered by the user. In this case, the value is
passed to isDigitsOnly() to ensure that the sku consists of all numeric digits:

if (!isDigitsOnly(document.prodform.sku.value))
{

document.getElementById(“skuError”).style.visibility = “visible”;
formValid = false;

}
else

document.getElementById(“skuError”).style.visibility = “hidden”;

Note that the document.getElementById() method (a method provided by the Document Object
Model, or DOM, and supported by the browser) is used to modify the CSS style of an element called
skuError. This element is used to render the validation error.

Using the hidden tag to reveal multiple validation errors
When a validation error is detected, it is possible to

❑ Immediately ask the user to correct it

❑ Remember it and continue with validation

The first Try It Out example uses the second alternative, which provides a less cumbersome user experi-
ence because multiple errors will be detected at one time. This enables the user to correct multiple errors
without being repeatedly bothered by the notification pop-up window.

The validation error message appears right next to the field in which the error occurs. Refer to Figure 12-6
to see where the error messages are displayed.

These error messages are actually rendered as part of the table, but they are made invisible using CSS
properties within a tag. The style under which each error message is created is defined in the
validateError CSS class. This is embedded as a <style> element within index.jsp:

376

Chapter 12

16_57485x ch12.qxd 1/14/05 10:11 PM Page 376

TEAM LinG - Live, Informative, Non-cost and Genuine!

...
<style>

span.validateError
{

color: red;
visibility: hidden;

}
</style>
</head>
<body>

Note that the visibility attribute is set to hidden, which makes the error messages invisible initially.

For example, the row containing the validation error for the sku field is pre-rendered as follows:

<tr>
<td>SKU:</td>
<td>

<input name=”sku” type=”text” width=”40”/>

<-- please enter digits only
</td>

</tr>

Because the error message is specified to have the validateError style class, it is initially invisible.

Upon validation, the visibility of this tag is toggled to visible if an error occurs. During the
validation process, the following highlighted code is responsible for turning the visibility of this tag on
and off:

if (!isDigitsOnly(document.prodform.sku.value))
{

document.getElementById(“skuError”).style.visibility = “visible”;
formValid = false;

}
else

document.getElementById(“skuError”).style.visibility = “hidden”;

Note that it is necessary to turn the visibility off for the fields that have valid data. This is because a user
may not have corrected all the errors before attempting to submit the form again.

Client-side validation prior to form submission
When the user submits the form, the browser will send the data to the server. However, if a JavaScript
onsubmit handler is specified, it will be called before the actual submission. This allows for hooking in
the data validation code as a handler. The following form element, from index.jsp, calls this handler:

<form name=”prodform” action=”index.jsp” method=”post”
onsubmit=”return validateForm()”>

377

Advanced Dynamic Web Content Generation

16_57485x ch12.qxd 1/14/05 10:11 PM Page 377

TEAM LinG - Live, Informative, Non-cost and Genuine!

The action attribute of the form specifies that index.jsp should be used to process the form. Recall
that index.jsp is actually a front controller. It will forward the request to procprod.jsp for pro-
cessing because a request attribute called action is set to the value prodsubmit within the form.

Note the use of a JavaScript code segment in the onsubmit attribute:

return validateForm()

If the onsubmit handler returns true, the form data is sent to the server for further processing. If the
onsubmit handler returns false, the original form is displayed and no data will be sent to the server.

The validateForm() method uses its own formValid Boolean variable to determine whether any vali-
dation error occurred. This variable is returned to the caller, which means that the form will not submit
any data to the server until all validation errors are corrected.

Displaying product data
The form data is finally submitted back to index.jsp and the request is forwarded to procprod.jsp
for processing. procprod.jsp is located at <Tomcat Installation Directory>/webapps/ch12/
example1/procprod.jsp. The content of procprod.jsp is reproduced here:

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<html>
<head>

<title>Processing Product Information</title>
</head>
<body>

<jsp:useBean id=”localProd” class=”com.wrox.begjsp.ch03.Product” />
<jsp:setProperty name=”localProd” property=”*” />
<h1>Product Information Received</h1>
<table border=”1”>

<tr>
<td>SKU:</td> <td><jsp:getProperty name=”localProd” property=”sku”/> </td>

</tr>

<tr>
<td>Name:</td> <td><jsp:getProperty name=”localProd” property=”name”/> </td>

</tr>
<tr>

<td>Description:</td>
<td><jsp:getProperty name=”localProd” property=”desc”/>
</td>

</tr>
<tr>

<td>Price:</td> <td> ${localProd.price}</td>
</tr>

</table>
</body>
</html>

378

Chapter 12

16_57485x ch12.qxd 1/14/05 10:11 PM Page 378

TEAM LinG - Live, Informative, Non-cost and Genuine!

This code is taken directly from the first example in Chapter 9. It creates an instance of the com.wrox.
begjsp.ch03.Product JavaBean. The properties of this JavaBean are set with the values entered by the
user. These property values are subsequently rendered using a mixture of <jsp:getProperty> standard
actions and EL expressions.

This concludes the coverage of the Try It Out exercise. While the index.jsp in this first example imple-
mented client-side data validation JavaScript code, the code was not generated dynamically using JSP.
Instead, the entire JSP acted more like a static HTML page.

Dynamic generation of client-side JavaScript code
Instead of placing the client-side validation code in the JSP file as static template text, it is possible to cre-
ate a JSP tag library that generates this code.

Using JSP to generate the client-side validation code has the following advantages:

❑ It reduces the amount of complex coding required in the main JSP page, simplifying long-term
maintenance.

❑ It enables easy reuse of the JavaScript code and validation mechanism.

❑ It enables developers who are not fluent in JavaScript coding to implement client-side valida-
tion, by simply using the JSP tag library.

The last advantage is very important indeed. In fact, modern JSP-based frameworks, such as JSF
(JavaServer Faces, covered in Chapter 21, “JavaServer Faces”), makes extensive use of this capability to cre-
ate highly interactive user interface components.

The next Try It Out exercise performs exactly the same function as the first one. However, a custom tag
library is used to dynamically generate the client validation code.

Try It Out Dynamic Generation of Client Data Validation Code
The important thing to realize about this example is that it works identically to the first example.

The flow of code is identical: index.jsp acts as a front controller, the action forward is used to direct
requests to either prodform.jsp for entry of product data or to procprod.jsp for display of the form
entry data. The main difference lies in how prodform.jsp is created, which is examined in detail after
this example.

First ensure that the ch12.war archive is deployed on your Tomcat 5 server. Of course, make sure that
the server is up and running as well.

Point your browser to the following URL:

http://localhost:8080/ch12/example2/index.jsp

The form displayed should be identical to the one shown in Figure 12-4.

379

Advanced Dynamic Web Content Generation

16_57485x ch12.qxd 1/14/05 10:11 PM Page 379

TEAM LinG - Live, Informative, Non-cost and Genuine!

Enter the following values into the form:

❑ For the sku field, enter 3212a.

❑ For the name field, enter 2 Beginning JavaServer Pages.

❑ For the desc field, enter Excellent book to learn JSP with.

❑ For the price field, enter M39.

These input values contain several errors that will be caught by the validation code.

Click the Add Product button. This will start the client-side validation code. The errors are detected and
you should see a pop-up dialog box, as shown in Figure 12-5.

Click the OK button to dismiss the dialog box. The errors are now highlighted in the form. No data has
been sent to the server yet at this point. Your form now looks similar to Figure 12-6.

In Figure 12-6, three errors are detected. The first one is in the value entered for sku. The sku format
should contain all numeric digits, and does not allow any characters. To fix this, delete the trailing a
character. Click the Add Product button again. The resulting screen is shown in Figure 12-7.

Note in Figure 12-7 that the sku is now valid, and only two errors remain. To correct these errors:

1. Remove the leading 2 in the name field, as this field must begin with an alpha character.

2. Remove the leading M in the price field, as this field must contain the numeric dollar value
only.

Click the Add Product button again.

This time, all the values pass validation, and the form data is finally submitted to the server. The form
data is processed by a server-side JSP. This JSP simply displays the values of the form fields. The result-
ing display should be similar to Figure 12-8.

Notice that the client-side data validation code worked identically to the code in the first example. Any
validation error is flagged with a red highlighted message next to the error. The client-side validation
code will allow submission of form data only if there is no further validation error.

Despite the fact that this new prodform.jsp is created using a custom tag library, and not raw
JavaScript coding, there is no observable difference in its behavior when compared to the raw JavaScript
version.

How It Works
Because the index.jsp and procprod.jsp pages in this example remain unchanged from those in the
previous example, they are not revisited here.

The major difference between the two examples is in the prodform.jsp page, located at <Tomcat
Installation Directory>/webapps/ch12/example2/prodform.jsp. It is reproduced here:

380

Chapter 12

16_57485x ch12.qxd 1/14/05 10:11 PM Page 380

TEAM LinG - Live, Informative, Non-cost and Genuine!

<%@ taglib prefix=”my” tagdir=”/WEB-INF/tags/wroxtags” %>
<html>
<head>

<title>Product Information Entry Form</title>
<my:validateFunctions>

<my:checkField name=”sku” type=”digits”/>
<my:checkField name=”name” type=”alphanum”/>
<my:checkField name=”desc” type=”alphanum”/>
<my:checkField name=”price” type=”digits”/>

</my:validateFunctions>
</head>
<body>

<h1>Enter Product Information</h1>
<form name=”prodform” action=”index.jsp” method=”post”

onsubmit=”return validateForm()”>
<table border=”0” >

<tr>
<td>SKU:</td>
<td>

<input name=”sku” type=”text” width=”40”/>
<my:validateErrMsg name=”sku”

msg=”<-- please enter digits only”/>
</td>

</tr>

<tr>
<td>Name:</td>
<td>
<input name=”name” type=”text” width=”40”/>
<my:validateErrMsg name=”name”

msg=”<-- please enter letters or numbers only, do not start with a
number”/>

</td>
</tr>
<tr>

<td>Description:</td>
<td>

<input name=”desc” type=”text” width=”40”/>
<my:validateErrMsg name=”desc”

msg=”<-- please enter letters or numbers only, do not start with a
number”/>

</td>
</tr>
<tr>

<td>Price:</td>
<td>

<input name=”price” type=”text” width=”40”/>
<my:validateErrMsg name=”price”

msg=”<-- please enter price in dollars only, do not enter cents”/>
</td>

</tr>

381

Advanced Dynamic Web Content Generation

16_57485x ch12.qxd 1/14/05 10:11 PM Page 381

TEAM LinG - Live, Informative, Non-cost and Genuine!

<tr>
<td colspan=”2”>

<input type=”submit” value=”Add Product” />
<input type=”hidden” name=”action” value=”prodsubmit”/>

</td>
</tr>

</table>
</form>

</body>
</html>

Compare this to the prodform.jsp from the first example. You will notice the improvements.

Using a custom tag library for client-side data validation
Instead of the embedded JavaScript code, this new prodform.jsp page contains the following set of tags:

<my:validateFunctions>
<my:checkField name=”sku” type=”digits”/>
<my:checkField name=”name” type=”alphanum”/>
<my:checkField name=”desc” type=”alphanum”/>
<my:checkField name=”price” type=”digits”/>

</my:validateFunctions>

The my prefix is used to address a custom tag library. This custom tag library is included using the
<%@ taglib %> directive:

<%@ taglib prefix=”my” tagdir=”/WEB-INF/tags/wroxtags” %>

This usage of the <%@ taglib %> directive specifies that the tag files making up the tag library can be found
in the <Tomcat Installation Directory>/webapps/ch12/WEB-INF/tags/wroxtags directory.

There are three custom tags in this tag library. The following table describes the usage of each tag.

Tag Description

validateFunctions Used to wrap a set of checkField tags.

checkField Each checkField tag has a name attribute, which should be the
name of the <input> element that contains the user input. It also
has a type attribute. This attribute can contain either alphanum to
validate against alphanumeric input (with a leading letter), or
digits to validate against only numeric digits input.

validateErrMsg Used to render an error message that will be visible only when the
associated field validation fails. The name attribute should be the
name of the <input> element that contains the user input to be
validated. The msg attribute should contain the error message to
display when validation fails.

382

Chapter 12

16_57485x ch12.qxd 1/14/05 10:11 PM Page 382

TEAM LinG - Live, Informative, Non-cost and Genuine!

Using these tags, a JSP developer can

❑ Provide client-side data validation, without knowing anything about the coding of JavaScript
functions

❑ Easily add new validated fields to the form

To render a validation error, the <my:validiateErrMsg> tag is used. For example, the following code
renders the validation error for the sku field:

<tr>
<td>SKU:</td>
<td>

<input name=”sku” type=”text” width=”40”/>
<my:validateErrMsg name=”sku”

msg=”<-- please enter digits only”/>
</td>

</tr>

The highlighted code is the <my:validateErrMsg> tag that renders the validation error message.

Tag library implementation details
If we look inside the tag files that implement this library, it is evident that the very same JavaScript code
used in the first example is at work.

The <my:validateFunctions> custom tag

First, the <my:validateFunctions> tag, contained in the <Tomcat Installation Directory>/
webapps/ch12/WEB-INF/tags/wroxtags/validateFunctions.tag file, is reproduced here:

<script language=”JavaScript”>
function isDigitsOnly(inParam)
{

var chkExp = /^\d+$/;
return (chkExp.test(inParam));

}
function isTextOnly(inParam)
{

var chkExp = /^[a-z][a-z\d]+$/i;
return (chkExp.test(inParam));

}
function validateForm()
{

var formValid = true;
<jsp:doBody/>
return formValid;

}
</script>

383

Advanced Dynamic Web Content Generation

16_57485x ch12.qxd 1/14/05 10:11 PM Page 383

TEAM LinG - Live, Informative, Non-cost and Genuine!

<style>
span.validateError
{

color: red;
visibility: hidden;

}
</style>

This tag contains the embedded JavaScript code, with an embedded <jsp:doBody> standard action. The
body content of this <my:validateFunctions> tag will be rendered at the location of this tag.

First, this tag defines the utility JavaScript functions:

<script language=”JavaScript”>
function isDigitsOnly(inParam)
{

var chkExp = /^\d+$/;
return (chkExp.test(inParam));

}
function isTextOnly(inParam)
{

var chkExp = /^[a-z][a-z\d]+$/i;
return (chkExp.test(inParam));

}

Next, the tag defines the validateForm() function, but without the actual code to do the validation.
This is because that code will be generated by a separate <my:checkField> tag for each field on the
form. The output from these <my:checkField> tags will be rendered at the location of the
<jsp:dobody/> tag:

function validateForm()
{

var formValid = true;
<jsp:doBody/>
return formValid;

}
</script>

Last but not least, this tag also uses the <style> element to define the CSS style for the validation error
message:

<style>
span.validateError
{

color: red;
visibility: hidden;

}
</style>

384

Chapter 12

16_57485x ch12.qxd 1/14/05 10:11 PM Page 384

TEAM LinG - Live, Informative, Non-cost and Genuine!

The <my:checkField> custom tag

The second tag, <my:checkField>, is used to generate the code that performs the validation using the
utility JavaScript functions; it takes two attributes as parameters. This tag, contained in the <Tomcat
Installation Directory>/webapps/ch12/WEB-INF/tags/wroxtags/checkField.tag file, is
reproduced here:

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<%@attribute name=”name” type=”java.lang.String” %>
<%@attribute name=”type” type=”java.lang.String” %>

<c:choose>
<c:when test=”${type eq ‘alphanum’}”>

if (!isTextOnly(document.prodform.${name}.value))
{

</c:when>

<c:when test=”${type eq ‘digits’}”>
if (!isDigitsOnly(document.prodform.${name}.value))
{

</c:when>
</c:choose>
document.getElementById(“${name}Error”).style.visibility = “visible”;
formValid = false;

}
else

document.getElementById(“${name}Error”).style.visibility = “hidden”;

This tag uses the JSTL library. The two attributes, name and type, are both declared as of type String
using the <jsp:attribute> directive:

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<%@ attribute name=”name” type=”java.lang.String” %>
<%@ attribute name=”type” type=”java.lang.String” %>

A JSTL <c:choose> construct is used to generate either a call to isTextOnly() or the isDigitsOnly()
utility validation function. The decision is made based on the value of the type attribute of this
<my:checkField> tag. Note the use of the EL expression, ${name}, in rendering the value of the
name parameter:

<c:choose>
<c:when test=”${type eq ‘alphanum’}”>

if (!isTextOnly(document.prodform.${name}.value))
{

</c:when>

<c:when test=”${type eq ‘digits’}”>
if (!isDigitsOnly(document.prodform.${name}.value))
{

</c:when>
</c:choose>

385

Advanced Dynamic Web Content Generation

16_57485x ch12.qxd 1/14/05 10:11 PM Page 385

TEAM LinG - Live, Informative, Non-cost and Genuine!

The last part of this tag file contains the rest of the validation logic, setting the visibility of the hidden
error message element, and the value of the formValid Boolean variable:

document.getElementById(“${name}Error”).style.visibility = “visible”;
formValid = false;

}
else

document.getElementById(“${name}Error”).style.visibility = “hidden”;

In the preceding code, again note the use of the EL expression, ${name}, to render the actual name of the
field to be validated.

The <my:validateErrMsg> custom tag

The last tag in the library, the <my:validateErrMsg> tag, is used to render the that contains
the validation error message. This <my:validateErrMsg> tag, contained in the <Tomcat
Installation Directory>/webapps/ch12/WEB-INF/tags/wroxtags/validateErrMsg.tag file,
is reproduced here:

<%@attribute name=”name” type=”java.lang.String” %>
<%@attribute name=”msg” type=”java.lang.String” %>
${msg}

This tag is very straightforward. The two attributes are both of type String. They are rendered into the
HTML code fragment using EL expressions. The resulting tag is initially invisible, but will be
made visible if a validation error occurs with the associated field.

This concludes our coverage of the second example, and of dynamically generating client-side
JavaScript code.

Another interesting non-HTML content type that JSP often generates is XML. The last example of this
chapter works with the generation of XML data.

Dynamic generation of XML using JSP
The examples in Chapter 7, “JSP Directives,” explored the generation of XML documents using JSP. This
section reviews some of the techniques and concepts, and continues the exploration.

Remember the following points when using JSP to generate XML:

❑ JSP can be used to generate any textual data; XML is just another textual data type.

❑ Use the contentType attribute of the <%@page %> directive and set it to text/xml for maximal
browser/application compatibility.

❑ All JSP 2.x pages can also be expressed in an XML view, where the entire unprocessed JSP page
is in a well-formed XML document.

The last point is less important for most developers, but important for vendors who create tools. Having
a JSP in a pure XML format enables development tools to easily parse and work with the page.

386

Chapter 12

16_57485x ch12.qxd 1/14/05 10:11 PM Page 386

TEAM LinG - Live, Informative, Non-cost and Genuine!

The last Try It Out exercise in this chapter examines a very common problem with the generation of
XML documents using JSP.

Try It Out Generating XML
This chapter’s last Try It Out example is a JSP that generates an XML document. This XML document
displays a programming tip of the day for the user, presumably retrieved from a database, although in
the example, a custom tag is used to generate the data for display.

To view the generated XML document, you can use your browser. If you are using the Microsoft Internet
Explorer browser, it can display a well-formed XML file in a collapsible view.

To try out this example, make sure that the ch12.war archive is deployed on your running Tomcat 5
server, and then access the following URL:

http://localhost:8080/ch12/example3/index.jsp

If you are using Internet Explorer as a browser, you will see that the resulting XML file has an error.
Figure 12-10 illustrates what you will see.

Figure 12-10: Error encountered during XML document generation

387

Advanced Dynamic Web Content Generation

16_57485x ch12.qxd 1/14/05 10:11 PM Page 387

TEAM LinG - Live, Informative, Non-cost and Genuine!

The resulting XML document is not valid because certain XML reserved characters conflict with the
characters in the printed code. For example, the characters & and < are reserved in XML.

To see a properly working JSP without this problem, try the following URL:

http://localhost:8080/ch12/example3/index1.jsp

This time, the JSP generates a well-formed XML and the browser displays it in a collapsible view (if you
are using Microsoft Internet Explorer). Figure 12-11 illustrates the well-formed document.

Figure 12-11: XML document generated after correction of error

How It Works
First, take a look at the JSP page that generated the bad XML document. This is the index.jsp page,
located at <Tomcat Installation Directory>/webapps/ch12/example3/index.jsp. It is repro-
duced here:

388

Chapter 12

16_57485x ch12.qxd 1/14/05 10:11 PM Page 388

TEAM LinG - Live, Informative, Non-cost and Genuine!

<%@ taglib prefix=”my” tagdir=”/WEB-INF/tags/wroxtags” %>
<%@page contentType=”text/xml” %>
<?xml version=”1.0”?>
<entry>

<my:getInfo/>
<name>

${name}
</name>
<comment>

${comment}
</comment>
<code>

${code}
</code>

</entry>

First, the <%@ taglib %> directive associates the my prefix with the tag files in the <Tomcat
Installation Directory>/webapps/ch12/WEB-INF/tags/wroxtags directory:

<%@ taglib prefix=”my” tagdir=”/WEB-INF/tags/wroxtags” %>

Next, the <%@ page %> directive is used to set the generated content type to XML. This directive is fol-
lowed immediately by the obligatory XML declaration:

<%@page contentType=”text/xml” %>
<?xml version=”1.0”?>

After the XML declaration, the root element <entry> starts. One of the tags in the tag library is called.
This tag is named <my:getInfo>. This tag retrieves the details of the “programming tip of the day.”
When invoked, this tag simply sets three scoped variables called name, comment, and code, respectively.

The values of these variables are rendered using EL expressions within the XML template data. The EL
expressions that render the variables are highlighted here:

<entry>
<my:getInfo/>
<name>

${name}
</name>
<comment>

${comment}
</comment>
<code>

${code}
</code>

</entry>

While everything looks okay, it was observed earlier that this JSP will produce a bad XML document.

389

Advanced Dynamic Web Content Generation

16_57485x ch12.qxd 1/14/05 10:11 PM Page 389

TEAM LinG - Live, Informative, Non-cost and Genuine!

Escaping reserved characters when generating XML
The culprit is within the code variable. This variable contains the following code fragment:

if ((!playLevel) && (retries < 3))
{

var int = playLevel.probe();
}

Both the & character and the < character are reserved, and have special meanings in XML documents. To
use them in other parts of the XML document, they must be escaped. The following table shows the cor-
responding escaped characters.

Character XML Escape

& &

< <

Therefore, for a well-formed XML document, the code fragment must be expressed as follows:

if ((!playLevel) && (retries < 3))
{

var int = playLevel.probe();
}

Unfortunately, simply using EL expressions is not sufficient. Thankfully, however, the JSTL output tag,
<c:out>, will escape XML by default.

Therefore, it is a simple matter of replacing the EL expressions with the <c:out> JSTL action. This is
exactly what happened in index1.jsp, located at <Tomcat Installation Directory>/webapps/
ch12/example3/index1.jsp. The content of this XML file is reproduced here, with the new
<c:out> tags highlighted:

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<%@ taglib prefix=”my” tagdir=”/WEB-INF/tags/wroxtags” %>
<%@page contentType=”text/xml” %>
<?xml version=”1.0”?>
<entry>

<my:getInfo/>
<name>

<c:out value=”${name}”/>
</name>
<comment>

<c:out value=”${comment}”/>
</comment>
<code>

<c:out value=”${code}”/>
</code>

</entry>

390

Chapter 12

16_57485x ch12.qxd 1/14/05 10:11 PM Page 390

TEAM LinG - Live, Informative, Non-cost and Genuine!

An EL function called escapeXml() can also be used instead of JSTL <c:out>. For example, you can
use ${fn:escapeXml(name)} to achieve the same effect.

When working with XML data, it is very important to know if the dynamically generated data is
escaped for the XML special characters, and to perform the required escape if necessary. This awareness
will help you avoid common programming mistakes such as the following:

❑ Using un-escaped text in XML document, as shown in the preceding example

❑ Showing escaped text when displaying a non-XML document

The <my:getInfo> custom tag
The <my:getInfo> custom tag is the only thing remaining in this example that has not been discussed.
This tag generating the data for the XML file is called <my:getInfo>. The code for this tag can be found
in the <Tomcat Installation Directory>/webapps/ch12/WEB-INF/wroxtags/getInfo.tag file.
The content of this file is shown here:

<%@ tag body-content=”empty” %>
<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<%@ variable name-given=”code” variable-class=”java.lang.String” scope=”AT_END” %>
<%@ variable name-given=”name” variable-class=”java.lang.String” scope=”AT_END” %>
<%@ variable name-given=”comment” variable-class=”java.lang.String”
scope=”AT_END” %>
<c:set var=”code”>

if ((!playLevel) && (retries < 3))
{

var int = playLevel.probe();
}

</c:set>
<c:set var=”name”>

Joe Malone
</c:set>
<c:set var=”comment”>

This code can be used to determine the level of play.
</c:set>

First, the <%@ tag %> directive is used to specify that the tag cannot have a body:

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>

Next, the JSTL tag library is included and the three variables are defined using the <%@ variable %>
directive. All of them are of type String, and they are synchronized at the end, making them available
to the calling JSP page at the end of the tag’s appearance:

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<%@ variable name-given=”code” variable-class=”java.lang.String” scope=”AT_END” %>
<%@ variable name-given=”name” variable-class=”java.lang.String” scope=”AT_END” %>
<%@ variable name-given=”comment” variable-class=”java.lang.String”
scope=”AT_END” %>

391

Advanced Dynamic Web Content Generation

16_57485x ch12.qxd 1/14/05 10:11 PM Page 391

TEAM LinG - Live, Informative, Non-cost and Genuine!

The value for the code variable is set to the following code fragment:

<c:set var=”code”>
if ((!playLevel) && (retries < 3))
{

var int = playLevel.probe();
}

</c:set>

Finally, the value of the name and comment variables is also set:

<c:set var=”name”>
Joe Malone

</c:set>
<c:set var=”comment”>

This code can be used to determine the level of play.
</c:set>

Upon the execution of this tag, the three variables will be available within the calling page, containing
the desired data.

Summary
JSP, as a presentation technology, is not restricted to the dynamic generation of HTML content. It can be
used to generate any type of dynamic textual content. One common alternative content type is XML.
When generating XML, be careful of the need to escape certain reserved special characters. Careful use
of the JSTL <c:out> tag in generating dynamic XML output can help alleviate any problems.

This chapter used JSP to generate validation code for execution on the user’s browser. This code is cre-
ated in the JavaScript programming language. Also explored was the possibility for JSP to dynamically
generate executable code. The process of client-side data validation is simplified when JSP is used to
generate the code. The following validation topics are covered:

❑ Form data validation can be performed on the server-side (i.e., via JSP) or on the client-side
(using JavaScript code).

❑ Server-side data validation is generally inefficient, requiring network access and server-side
CPU time. However, it is absolutely necessary for certain validation tasks.

❑ A well-designed Web application will take advantage of client-side validation wherever possi-
ble but may still have server-side data validation logic.

❑ By encapsulating the dynamic generation of client-side executable JavaScript code in a custom
tag library, it is possible to reuse the logic. This enables even developers with no knowledge of
JavaScript coding to create JSP code that takes advantage of client-side validation.

392

Chapter 12

16_57485x ch12.qxd 1/14/05 10:11 PM Page 392

TEAM LinG - Live, Informative, Non-cost and Genuine!

Exercises
1. Using the custom tag library in the second Try It Out exercise, create a form that will accept the

following user input for an auction:

Name: The name of the bidder; should be an alphanumeric input

Item Number: The number of the item to bid on; should be a numeric value

Bid Price: The bid in dollars; should be a numeric value

Test the client-side data validation using this new form thoroughly.

2. Modify index1.jsp from the third Try It Out exercise to use the EL function escapeXml() to
render a well-formed XML document.

393

Advanced Dynamic Web Content Generation

16_57485x ch12.qxd 1/14/05 10:11 PM Page 393

TEAM LinG - Live, Informative, Non-cost and Genuine!

16_57485x ch12.qxd 1/14/05 10:11 PM Page 394

TEAM LinG - Live, Informative, Non-cost and Genuine!

13
Internationalization and

Localized Content

In popular media, it is often said that the Internet has created a “global village.” For the first time
in history, anyone with Internet access is connected to everyone else. Interestingly enough, after
everyone was connected, it became apparent that the “global village” concept isn’t entirely accu-
rate unless everyone speaks the same language. The fact is, they don’t.

Even before the Internet phenomenon, creators of software products discovered the need to
create software that can be sold and used internationally. When creating such applications, care
must be taken not to assume or hard-code certain user interface conventions (such as English as
the only language). The act of readying a software product for adaptation internationally is called
internationalization. Because internationalization is such a long word, it is often just called i18n for
short (there are 18 characters between the beginning i and the final n).

I18n is the main topic of this chapter. You will learn how to i18n-enable your JSP applications so
that they can be used by people whose native language may not be English. More specifically, you
will discover the following:

❑ Two main methods of internationalizing any text within your application

❑ Why and when one method is preferred over the other

❑ How to use internationalized resource bundles in JSP

❑ How a family of JSTL tags greatly simplifies i18n in your JSP programs

❑ Some of the quirks that you will encounter when attempting to internationalize
your JSP application

17_57485x ch13.qxd 1/14/05 10:10 PM Page 395

TEAM LinG - Live, Informative, Non-cost and Genuine!

About Internationalization-Ready
Applications

Before an i18n-ready application can be sold to, and used in, a different region of the world, it must be
localized. Localization is the act of adapting an i18n-ready application for use in a specific region.
Localization is sometimes called l10n (10 characters between the first l and the final n). The act of local-
ization may involve the following:

1. Translating the text to the local language.

2. Changing numeric formatting to the local convention — for example, the separator for
thousands.

3. Changing currency symbols used — for example, using the euro symbol versus the dollar
symbol as per the local convention.

4. Changing the date formatting to the local convention.

5. Other changes in the application to make it usable locally, such as adaptation to local input
method editors (a system software utility used to enter the symbols of the local language).

This chapter includes four complete examples that describe in detail how you can perform actions 1 to 4
using JSP, while action 5 will depend on the region involved and cannot be easily generalized.

The client-server nature of JSP and Web application operation has created i18n and l10n requirements
that are different from standard Java requirements. For example, a standalone application can always
depend on the local Java VM that it is running on to tell it what region the user is operating in (usually
via the underlying operating system settings). A Web application running on a server, on the other hand,
may have one request coming in from an English-speaking user, and immediately service any user from
the Far East, requiring completely different localization.

This chapter fully explores the set of unique i18n and l10n requirements of Web/JSP applications, clari-
fying how they differ from standalone applications.

While not every JSP developer will need to code and create new i18n-ready code, it is a valuable asset to
understand how these very important concepts work. In fact, if you ever need to modify or maintain
commercial or open-source software, you will very likely need to have i18n and l10n knowledge in order
to understand the coding style of i18n-ready applications.

Internationalization and Localization
Internationalization is the act of creating code, applications, or systems that can be customized for use in
different countries and regions. Back in the days when applications ran only on a client PC, this meant
that software vendors would have to create a master copy of a software project that could be customized
by their branch offices around the world for local use. This typically required that all text strings used in
the program be isolated, and that the date, number, and currency format be customizable for each local
market. Figure 13-1 illustrates this.

396

Chapter 13

17_57485x ch13.qxd 1/14/05 10:10 PM Page 396

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 13-1: Localization of i18n-ready software

The branch offices, in turn, must perform localization on the master software. The act of localization is to
take an i18n-ready piece of software and customize it for the local market. This typically means translat-
ing and replacing all textual strings, and making sure that formats such as date, number, and currency
are consistent with the locally accepted convention. In practice, localization may involve intricate and
specific customization aspects other than those described here.

I18n deals with the preparation of an application for international distribution. L10n is the actual work
that needs to be performed in adapting an i18n-ready application for a particular local market.

The unique i18n requirements of
a Web-based JSP application

In a client/server environment, the picture shown in Figure 13-1 is slightly different. The line between
i18n and l10n may also blur in some scenarios involving a server and many clients.

Central Software
Development

Team
in

United States

Internationalized
Software
"master
copy"

Localized
software

Localization

Branch Office in China

Localized
softwareLocalization

Branch Office in France

Localized
softwareLocalization

Branch Office in Egypt

397

Internationalization and Localized Content

17_57485x ch13.qxd 1/14/05 10:10 PM Page 397

TEAM LinG - Live, Informative, Non-cost and Genuine!

Generally, the scenario can be classified along one of the following lines:

1. This is an extension of the old “standalone” model in which you create a Web application that is
used throughout the local offices in your enterprise. You make sure that the application is i18n-
ready, but the local offices in each region perform the localization and then run your application
over their own intranets.

2. You create an Internet-based service, which must be usable by users in their own native lan-
guage. In this scenario, not only must you ensure that i18n is built into your application, but
you must also perform the localization work for each of your potential markets.

3. You create a Web-based application in your enterprise’s intranet. This application is used by
divisions throughout the world. In this scenario, just like the second case, you must ensure that
the application is i18n-ready and you must also localize the application for each of the foreign
divisions.

Figure 13-2 illustrates the situation described in the second and third scenario.

Figure 13-2: Performing per-request localization on the server

Internationalized
JSP based

Web Application

Localized user interface in English

Localized user
interface in Chinese

Localized user
interface in French

Localization must be performed
on the server on a per-request basis

Localized user interface in Arabic

Central Web Applications Server
(United States)

Browser user
from division

in China

Browser user
from

United States

Browser user
from division

in France

Browser user
from division

in Egypt

398

Chapter 13

17_57485x ch13.qxd 1/14/05 10:10 PM Page 398

TEAM LinG - Live, Informative, Non-cost and Genuine!

In Figure 13-2, each incoming request may have different l10n requirements, as every incoming request
may be from a different region. However, if the server is keeping track of user sessions, each session will
represent the request for one single user. All the requests in the same user session should have the same
l10n requirement because they would be from the same location. This sort of i18n and l10n requirement
is unique to Web-based applications. Essentially, even though the application is located at one central-
ized server, it must present a different user interface to each user depending on where they are located.

Building on the Java Platform’s
i18n Capabilities

The Java 2 platform’s i18n features form the foundation of the i18n capabilities of a Web application.
However, this is not to say that the i18n requirements of a standalone Java application running on a
client’s PC are the same as those of a Web application. Common elements between them exist, including
the following:

❑ The existence and determination of locales

❑ The use of different character encoding depending on the requirements

❑ The use of i18n resource bundles

The concept of a locale
The Java 2 platform uses the concept of a locale to represent a specific set of localization requirements. A
locale is specified using a string in the following format:

xx_YY

where

❑ xx is a language code. It is specified as an ISO-639 code; see http://ftp.ics.uci.edu/pub/
ietf/http/related/iso639.txt for a list. This language code is always two characters and
in lowercase.

❑ YY is a code for the country that uses the language. It is specified as ISO-3166 code, and a list can
be located at www.iso.ch/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/
list-en1.html. This country code is always two characters and in uppercase.

For example, for the en_US locale, American-English is the language used, while currency is USD
(U.S. dollar) and date is displayed in the American-style date format. However, even though the United
Kingdom also uses English for the language, the currency convention (British Pounds) is completely
different.

Of course, the set of localization requirements will be completely different for international locales such
as zh_CN, where Chinese is the language used, currency is RMB (Chinese yuan), and the date format is
displayed in Chinese.

399

Internationalization and Localized Content

17_57485x ch13.qxd 1/14/05 10:10 PM Page 399

TEAM LinG - Live, Informative, Non-cost and Genuine!

The following table describes some typical locales.

Locale Description

en_US The English language, with localization for the United States

en_GB The English language, with localization for the United Kingdom

es_MX The Spanish language, with localization for Mexico

es_ES The Spanish language, with localization for Spain

fr_FR The French language, with localization for France

zh_CN The Chinese language, with localization for China

zh_TW The Chinese language, with localization for Taiwan

You may note elsewhere that the language and country code of the locale are sometimes separated by a
hyphen (-), instead of the underscore (_). For example: en-US. Both formats are equivalent. However,
this chapter uses only the underscore separator.

Maintaining locale information
On a standalone Java application running on a single system, the locale can be set by the underlying
operating system. This system locale information can be passed into the Java VM that is running the
application, and this locale will never change in the execution lifetime of the standalone application.

When operating a server such as Tomcat 5, running Web applications and JSP pages, the locale of the
server’s JVM is of no interest to the application. Each and every incoming request can be from a different
locale. This means that localization must be reflected on a per-request basis.

The Java 2 locale mechanism is used for localization of JSP applications. Unlike a standalone application,
where the locale of the JVM is always the locale of the application and does not change, the locale of a
JSP application must be determined and handled on a per-request basis.

Still unanswered are the questions regarding how one goes about determining the locale of a request
and how one may maintain this information. The first Try It Out exercise demonstrates one method that
can be used to determine the locale and handle l10n.

Try It Out Explicit Locale Determination and l10n for JSPs
This first example presents a form to the user for data input. The data the user entered is then displayed.
Unlike earlier similar examples, this one will handle two extremely different locales:

❑ English for the U.S.

❑ Chinese for Hong Kong SAR

400

Chapter 13

17_57485x ch13.qxd 1/14/05 10:10 PM Page 400

TEAM LinG - Live, Informative, Non-cost and Genuine!

To try out this example, you need the ch13.war archive. Make sure that your Tomcat 5 server is running
and then deploy ch13.war to the server. Review Chapter 1 if you do not remember how to deploy a
WAR archive.

Working with the English localization
Open your browser and access the following URL:

http://localhost:8080/ch13/example1/index.jsp

The main screen will present a selection of two languages to use for the application, either English or
Chinese. Each selection is presented in its own language. The display for this main screen is similar to
Figure 13-3.

Figure 13-3: Selecting English or Chinese for the localized user interface

Click the English selection. This will display an HTML form (the Application Form) in English, as shown
in Figure 13-4.

401

Internationalization and Localized Content

17_57485x ch13.qxd 1/14/05 10:10 PM Page 401

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 13-4: An English Application Form

Enter the following data into this form, and then click the Submit Application button.

Data Field Value

Last Name Smith

First Name Bob

Postal or Zip Code 32817

Password basepass1

After the Submit Application button is clicked, the data is submitted to the processor, which simply
prints it out within an HTML table in this case. The resulting output is similar to what is shown in
Figure 13-5.

402

Chapter 13

17_57485x ch13.qxd 1/14/05 10:10 PM Page 402

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 13-5: Successful submission of English form

The table in Figure 13-5 is simply a direct display of the data entered. This first portion shows the
English localization for the application. The next section presents the localized Chinese user interface.

Working with the Chinese localization
Select the same URL with the browser again:

http://localhost:8080/ch13/example1/index.jsp

You will again see the language selection screen (refer to Figure 13-3). This time, click the Chinese char-
acter (the selection on the bottom). You will see the application form presented in Chinese characters.
There are over 30,000 uniquely different characters, based on ideograms, in the Chinese character set.
The form you will see is shown in Figure 13-6.

403

Internationalization and Localized Content

17_57485x ch13.qxd 1/14/05 10:10 PM Page 403

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 13-6: A localized Chinese application form

You should be able to figure out what the various fields in Figure 13-6 represent by comparing them to
the English form (unless you can read Chinese, of course!).

Unless you are on a computer system that is Chinese-enabled (the most popular input method editor
uses a pen and a writing tablet), you will not be able to enter Chinese characters into the fields.
However, it is possible to cut and paste to take some text from the label and enter it into the fields.

To test Chinese character submission, using the browser’s cut-and-paste feature, cut the label for Last
Name and paste it into the first two fields. You should also use the symbols as a part of the password,
as detailed in the following table.

Data Field Value

32817

404

Chapter 13

17_57485x ch13.qxd 1/14/05 10:10 PM Page 404

TEAM LinG - Live, Informative, Non-cost and Genuine!

Of course, if you know Chinese and have the input mechanism, you can enter actual Chinese data for
this test.

Now, click the Submit Application button. This button is also labeled in Chinese. The Chinese data is
submitted to a form processor. This form processor simply prints the submitted data values — in
Chinese, of course. The final screen you should see is similar to Figure 13-7.

Figure 13-7: Successful submission of the Chinese form

In Figure 13-7, notice that all the information that has been submitted is received by the form processor
as Chinese characters.

This JSP-based form application is i18n-ready; it currently supports English and Chinese, but can readily
be expanded to support many more languages. The next section explores how the application is made
i18n-ready, and how user interface language localization for both English and Chinese is performed.

How It Works
This first example uses a very direct and reliable way to determine the locale of the user: It simply asks
the users which locale they wish to use.

405

Internationalization and Localized Content

17_57485x ch13.qxd 1/14/05 10:10 PM Page 405

TEAM LinG - Live, Informative, Non-cost and Genuine!

Explicit user selection of locale
The first page, index.jsp, presents two languages for the user to select from. Each language selection is
in turn written in the respective language. The English selection is in English, and the Chinese selection
is in Chinese.

Because it is not possible to know whether the user has the capability to display any special language at
this point, it is not possible to assume that the user’s browser can display Chinese characters correctly.
Therefore, the selection actually makes use of two graphical GIF files:

❑ english.gif with the text English

❑ chinese.gif with the Chinese characters representing “Chinese”

This method of selection can be used to enable the user the select a specific locale. In this first example,
however, only the selection of the language will be offered.

When presenting a user with the initial locale selection, you should not assume that the user can
display text in any other language. The use of a graphical image, such as the flag of the country,
is recommended.

This index.jsp file is located at <Tomcat Installation Directory>/webapps/ch13/example1/
index.jsp. It is reproduced here:

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<html>
<head>

<title>Select a language</title>
</head>
<body>

<h1>Please select a language:</h1>
<c:url value=”en/application.jsp” var=”engURL”/>

<c:url value=”zh/application.jsp” var=”chineseURL”/>

</body>
</html>

406

Chapter 13

17_57485x ch13.qxd 1/14/05 10:10 PM Page 406

TEAM LinG - Live, Informative, Non-cost and Genuine!

Linking to the English form
Examining the code, you can see that the JSTL <c:url> tag is being used to generate a URL variable. For
the English application form, the code is as follows:

<c:url value=”en/application.jsp” var=”engURL”/>

The <c:url> tag is used to ensure that special URL characters are escaped and that sessions are main-
tained in all cases. You may want to revisit Chapter 6, “JSP Tag Libraries and JSTL,” if you want more
information on the <c:url> action.

The link generated in ${engURL} is essentially as follows:

http://localhost:8080/ch13/example1/en/application.jsp

Linking to the Chinese form
Similar to the English application form, a JSTL <c:url> tag is being used to generate the link, as shown
by the following code:

<c:url value=”zh/application.jsp” var=”chineseURL”/>

The link generated when you click the Chinese selection is essentially as follows:

http://localhost:8080/ch13/example1/zh/application.jsp

When you compare this to the English example, you can see that the English and Chinese forms are
actually stored under different directories in the Web application. For many production scenarios, main-
taining duplicate sets of translated JSP and HTML pages (one for each language supported) is a practical
way of managing i18n-ready content.

Handling i18n using duplicated sets of translated pages
Figure 13-8 shows the JSP pages that are involved within this i18n-ready application.

Two sets of JSP application pages are shown in Figure 13-8. The application.jsp and procform.jsp
pages exist under both the en directory and the zh directory.

The set of JSP pages in the en directory is in English, and the set under the zh directory is pre-translated
into Chinese. This scheme can obviously be extended. For example, Spanish support can be added by
creating an es directory, and pre-translating the JSP pages to Spanish.

407

Internationalization and Localized Content

17_57485x ch13.qxd 1/14/05 10:10 PM Page 407

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 13-8: Supporting i18n using duplicated JSP pages

The main advantages of this approach are as follows:

❑ If there is only a small probability that the application will require internationalization in the
future, this approach requires the least amount of additional work.

❑ If the JSP pages have heavily stylized layouts and have complex client-side scripting elements,
this approach enables the pages to be localized and customized for the best look in every
language that is supported.

Following are the main disadvantages of this approach:

❑ All the JSP pages need to be duplicated for each supported language/locale, increasing the
number of files that needs to be managed.

❑ Any code change must be made identically to each set of language/locale-specific pages.

❑ For JSP pages that are code-heavy, this approach is not practical.

You can create an i18n-ready application by simply creating a separate set of JSP pages for each locale
that is supported. Each localized set of pages should be pre-translated into the associated language.

English
selected

Chinese
selected

en directory zh directory

Extendable to
other languages

Other localization directories

index.jsp

application.jsp
(English)

procform.jsp
(English)

application.jsp
(Chinese)

procform.jsp
(Chinese)

408

Chapter 13

17_57485x ch13.qxd 1/14/05 10:10 PM Page 408

TEAM LinG - Live, Informative, Non-cost and Genuine!

The localized English pages
For the English pages, the form resides in the en directory as application.jsp. It is located at
<Tomcat Installation Directory>/webapps/ch13/example1/en/application.jsp and is repro-
duced here:

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<html>
<head>

<title>Application Form</title>
</head>
<body>

<h1>Application Form</h1>

<c:url value=”procform.jsp” var=”actionURL”/>
<form action=”${actionURL}” method=”post”>

<table>
<tr>

<td>Last Name</td>
<td><input type=”text” name=”lastname” size=”40”/></td>

</tr>
<tr>

<td>First Name</td>
<td><input type=”text” name=”firstname” size=”40”/></td>

</tr>
<tr>

<td>Postal or Zip Code</td>
<td><input type=”text” name=”postcode” size=”40”/></td>

</tr>
<tr>

<td>Password</td>
<td><input type=”password” name=”pass” size=”40”/></td>

</tr>
<tr>

<td colspan=”2” align=”center”>
<input type=”submit” value=”Submit Application”/>

</td>
</tr>

</table>

</form>

</body>
</html>

This page simply presents the HTML form. The JSTL <c:url> tag is once again used to generate the
URL that is used for the HTML <form> tag’s action attribute. This is the JSP page that will be used to
process the form, as shown in the following code:

<c:url value=”procform.jsp” var=”actionURL”/>
<form action=”${actionURL}” method=”post”>

409

Internationalization and Localized Content

17_57485x ch13.qxd 1/14/05 10:10 PM Page 409

TEAM LinG - Live, Informative, Non-cost and Genuine!

The ${actionURL} request scoped variable is used to temporarily hold the form processor’s URL.
Essentially it will contain the following:

http://localhost:8080/ch13/example1/en/procform.jsp

Because this is under the en directory, it is a version of the form processor that is localized for the
English locale.

The English form processor

The localized English form processor page resides in the en directory and is called procform.jsp. It is
located at <Tomcat Installation Directory>/webapps/ch13/example1/en/procform.jsp and is
reproduced here:

<html>
<head>

<title>Applicant Information</title>
</head>
<body>

<h1>Applicant Information</h1>

<table border=”1”>
<tr>

<td>Last Name</td>
<td>${param.lastname}</td>

</tr>

<tr>
<td>First Name</td>
<td>${param.firstname}</td>

</tr>

<tr>
<td>Postal or Zip Code</td>
<td>${param.postcode}</td>

</tr>

<tr>
<td>Password</td>
<td>${param.pass}</td>

</tr>

</table>
</body>
</html>

This is basically an HTML table that prints out the submitted request parameters for the form. The val-
ues of the request parameters are obtained via EL expressions highlighted in the preceding listing. Note
that all the EL expressions use the param implicit object in EL to directly access the request parameters.
If you need a refresher on EL expressions and EL implicit objects, see Chapter 5, “JSP and EL.”

410

Chapter 13

17_57485x ch13.qxd 1/14/05 10:10 PM Page 410

TEAM LinG - Live, Informative, Non-cost and Genuine!

The localized Chinese pages
The Chinese application form page resides in the zh directory as application.jsp. zh is the ISO-639
two-letter code for the Chinese language. Although you can use any directory name, using the ISO-639
letter code is recommended to facilitate long-term maintenance of your application.

The localized application.jsp is located at <Tomcat Installation Directory>/webapps/
ch13/example1/zh/application.jsp and is reproduced here, with the translated localized code
highlighted:

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<html>
<head>

<meta http-equiv=”Content-Type” content=”text/html;charset=utf-8” >
<title> </title>

</head>
<body>

<h1> </h1>

<c:url value=”procform.jsp” var=”actionURL”/>
<form action=”${actionURL}” method=”post”>

<table>
<tr>

<td> </td>
<td><input type=”text” name=”lastname” size=”40”/></td>

</tr>

<tr>
<td> </td>
<td><input type=”text” name=”firstname” size=”40”/></td>

</tr>

<tr>
<td> </td>
<td><input type=”text” name=”postcode” size=”40”/></td>

</tr>

<tr>
<td> </td>
<td><input type=”password” name=”pass” size=”40”/></td>

</tr>

<tr>
<td colspan=”2” align=”center”>

<input type=”submit” value=” ”/>
</td>

</tr>

</table>
</form>

</body>
</html>

411

Internationalization and Localized Content

17_57485x ch13.qxd 1/14/05 10:10 PM Page 411

TEAM LinG - Live, Informative, Non-cost and Genuine!

The thing to notice in the preceding code is that all the contained text has been translated to Chinese.
However, to ensure that the Chinese characters are displayed and stored properly, you must ensure the
following:

❑ That your system has the appropriate font installed; on Win32 systems this will require the
installation of an update.

❑ That you create and edit this file using only a Unicode-capable editor. The Notepad editor on
most Win32 systems is Unicode-capable, as are many editors on Linux systems. When in doubt,
check the documentation of the text editor to make sure.

❑ That when you save these files, you save them as UTF-8 files (UTF-8 being the Unicode format
that has the widest and most robust Web support at this time).

To represent the 30,000 characters in the Chinese language, the character encoding used for the text file
must be able to handle and represent them. The Unicode character set is a single character set that can be
used to represent most written languages in the world. The use of Unicode is highly recommended in
any new projects. Unicode is supported by all Win32-based operating systems, as well as UNIX operat-
ing systems. Unicode is also well supported by the latest version of all major browsers.

Many different character encodings are available. Very old legacy browsers running on 16-bit operating
systems used restrictive code pages-based character sets to support foreign languages. There existed a
large number of these character sets, each accommodating only a few languages (English is a common
factor of every character set).

With the availability of 32-bit microprocessors, the Unicode character encodings have become the most
popular because the Unicode character set can represent most languages in the world without the need
to switch character sets.

Unicode itself can be encoded in either an 8-bit or 16-bit format. The most common and widely sup-
ported Unicode encoding format at this time is UTF-8, which is an 8-bit encoding of the Unicode char-
acters. UTF-8 uses multiple 8-bit characters to encode a single character, if necessary.

For this Chinese application.jsp page, the encoding is specified to be UTF-8 for the browser using a
<meta> header tag:

<meta http-equiv=”Content-Type” content=”text/html;charset=utf-8” >

Browsers that support UTF-8 will honor this header, ensuring that the characters being sent are decoded
properly and displayed properly using the appropriate Unicode font. All major browsers support UTF-8
encoding on Win32 or UNIX systems.

To save runtime memory, and disk storage space, many operating systems do not pre-install the fonts
necessary to display foreign character sets. This is especially true with the very large Far Eastern char-
acter sets. The browsers on most operating systems do not manage their own fonts and rely on the oper-
ating system to supply the font. This means that while most browsers support Unicode, they may not
display the correct character if the necessary font is not available. You will need to make sure that you
have installed the Chinese Big5 font support update to see this example properly. On Win32 systems
with Internet Explorer, this update can be automatically performed online when the page using the
characters is first accessed.

412

Chapter 13

17_57485x ch13.qxd 1/14/05 10:10 PM Page 412

TEAM LinG - Live, Informative, Non-cost and Genuine!

The Chinese form processor

The JSP page used to process the form data, and display the input data, has also been localized to the
Chinese language. The page resides in the zh directory, and is called procform.jsp. It is located at
<Tomcat Installation Directory>/webapps/ch13/example1/zh/procform.jsp and is repro-
duced here (the localized, translated, text lines are highlighted):

<html>
<head>

<meta http-equiv=”Content-Type” content=”text/html;charset=utf-8” >
<title> </title>

</head>
<body>

<h1> </h1>

<table border=”1”>
<tr>

<td> </td>
<td>${param.lastname}</td>

</tr>

<tr>
<td> </td>
<td>${param.firstname}</td>

</tr>

<tr>
<td> </td>
<td>${param.postcode}</td>

</tr>

<tr>
<td> </td>
<td>${param.pass}</td>

</tr>

</table>

</body>
</html>

Once again, notice the use of the <meta> tag in the <head> section to specify UTF-8 as the character set
encoding for this page. As with the Chinese application.jsp page, this file must be created and
edited with an editor that supports Unicode. Most modern IDEs include built-in editors that work well
with Unicode files.

This concludes our coverage of the first example. The next example shows another way to make your
JSP application i18n-ready without the need to replicate all of the JSP pages in the application.

413

Internationalization and Localized Content

17_57485x ch13.qxd 1/14/05 10:10 PM Page 413

TEAM LinG - Live, Informative, Non-cost and Genuine!

Try It Out L10n Using Java 2’s Resource Bundles
This example provides the same dual-locale form submission function as the first example. However,
instead of replicating the set of JSP pages for each supported language, this example uses only one set
of JSP pages.

To try out this example, make sure that your Tomcat 5 server is running and that ch13.war is currently
deployed. Access the following URL with a browser:

http://localhost:8080/ch13/example2/index.jsp

Trying out the English pages
The initial welcome screen that you see at this point should be identical to the one from the first example
(refer to Figure 13-3).

Select the English pages by clicking the English selection. Verify that you have the English form dis-
played, similar to the one shown in Figure 13-4. One thing that you may notice, however, is that the base
URL accessing the form is no longer under the en subdirectory as it was in example 1, but simply:

http:// localhost:8080/ch13/example2/application.jsp

Now, enter the data that you see in the following table into the form.

Data Field Value

Last Name Smith

First Name Bob

Postal or Zip Code 32817

Password basepass1

Click the Submit Application button, and the procform.jsp page will be called to process the form.
This page, exactly like that in the previous example, will print out the submitted information. This will
result in a final display similar to what is shown in Figure 13-5 earlier. Again, note that the base URL to
access this final page is no longer in an en subdirectory.

Trying out the Chinese localization
Now, to try out the Chinese pages, access this URL again:

http://localhost:8080/ch13/example2/index.jsp

414

Chapter 13

17_57485x ch13.qxd 1/14/05 10:10 PM Page 414

TEAM LinG - Live, Informative, Non-cost and Genuine!

This time, click the Chinese selection. You should see the localized, translated, Chinese welcome screen,
as shown in Figure 13-6. Note that for this page, the base URL is no longer in the zh directory. In fact, it
is the same base URL that displayed an English form just a little earlier:

http:// localhost:8080/ch13/example2/application.jsp

Using the cut-and-paste feature of your browser, cut out the text of the Chinese label for Last Name and
paste it into the form as input values. Use the following table as a guide.

Data Field Value

32817

To submit the form’s data, click the Submit Application button. This button is localized to Chinese. Upon
clicking, the Chinese data is submitted to the form processor. The form processor is localized to Chinese
and displays the data as shown in Figure 13-7 (from the first example).

Overall, the operation of this second example is indistinguishable from that of the first example.
However, the actual i18n preparation is quite different.

How It Works
This example uses the Java 2 platform’s ability to support i18n resource bundles.

Java 2 resource bundles
A resource bundle is an i18n mechanism that is delivered as part of the Java 2 platform. Resource bun-
dles enable Java applications to use locale-sensitive text string resources. Figure 13-9 shows how
resource bundles work.

In Figure 13-9, the application does not contain any text strings that may need to be translated. Instead,
specific names are given to each of these strings, and a resource bundle can be created. The bundle can
contain multiple sets of translated strings for each name, one set for each language that is supported by
the application. The name for a string can be used to fetch the corresponding internationalized text from
a resource bundle. To illustrate how this works, a hypothetical function called getLocalizedText() is
used. The actual text retrieved from the resource bundle will be sensitive to the locale that is in effect.
The Java 2 platform provides an actual API to set the current locale, and to retrieve locale-sensitive
strings from the resource bundle.

415

Internationalization and Localized Content

17_57485x ch13.qxd 1/14/05 10:10 PM Page 415

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 13-9: Using Java 2 resource bundles for i18n

For example, in Figure 13-9, if the current locale is en_US, then calling getLocalizedText
(“LastName”) will obtain the English text string “Last Name”. However, if the locale is zh_HK,
then calling getLocalizedText(“LastName”) will obtain the Chinese text string.

Creating a resource bundle
Java 2 resource bundles can be implemented either as properties files or Java classes. The easiest way to
include i18n strings is via the use of properties files. Each line of a property file for Java 2 has the follow-
ing general format:

<property name>=<property value>

For example, the property file that contains the English i18n text strings is the app.properties file
(located at <Tomcat Installation Directory>/webapps/ch13/example2/WEB-INF/classes/app.
properties). It has the following content:

newTitle=Application Form
lastName=Last Name
firstName=First Name
postalCode=Postal or Zip Code
password=Password
submitForm=Submit Form
appInfo=Applicant Information

Java 2 Resource Bundle Handling

app_en.properties

(English text messages)

getLocalizedText("LastName")
locale=en_US

English Resource Bundle

app_zh.properties

(Translated Chinese
text messages)

All resource bundles contain the same set of keyed properties, but translated accordingly.

app_fr.properties

(Translated French
text messages)

Chinese Resource Bundle French Resource Bundle

getLocalizedText("LastName")
locale=fr_FR

Text for
LastName

from
English
Bundle

Text for
LastName

from
French
Bundle

Text for
LastName

from
Chinese
Bundle

getLocalizedText("LastName")
locale=zh_HK

416

Chapter 13

17_57485x ch13.qxd 1/14/05 10:10 PM Page 416

TEAM LinG - Live, Informative, Non-cost and Genuine!

In order for resource bundles to be available to the application, the server must be able to locate the
property files and load them. For Web applications running on Tomcat 5 servers, this means that they
must be found in the Web application’s classpath. Each Web application running on a Tomcat 5 server
can have its own independent classpath. One beneficial side-effect of this per-application partitioning
is the ability to keep the internationalized strings of one application separate from those of another.

Because the resource bundle must be in the classpath, the i18n properties files are typically

❑ Placed under the WEB-INF/classes directory during development, which enables them to be
quickly modified during testing

❑ Archived into JAR files and placed into the WEB-INF/lib directory of the application during
production deployment

In order to make the properties files easy to access and modify, they are placed under the application’s
WEB-INF/classes directory for this example. That is why the app.properties file shown earlier is
placed in the <Tomcat Installation Directory>/webapps/ch13/example2/WEB-INF/classes
directory.

How Java 2 selects i18n strings
Each set of locale-specific strings is stored in a separate properties file. The Java 2 runtime will select
the string to use based on the current locale. For example, the properties file containing the localized
Chinese string is called app_zh.properties. This file is located in the same <Tomcat Installation
Directory>/webapps/ch13/example2/WEB-INF/classes directory, and its contents are
reproduced here:

newTitle=\u7533\u8acb\u8868\u683c
lastName=\u59d3
firstName=\u540d\u5b57
postalCode=\u90f5\u653f\u7de8\u865f
password=\u5bc6\u78bc
submitForm=\u63d0\u4ea4\u8868\u683c
appInfo=\u7533\u8acb\u4eba\u8cc7\u6599

You will immediately note the following:

❑ The names of the properties are exactly the same as the properties in the English app.
properties file.

❑ There are no UTF-8 Chinese characters in this file.

The first point comes as no surprise. When the locale is set to zh_HK or another locale with zh Chinese
language, then the string from app_zh.properties will be used. If the locale is set to anything else,
then the default app.properties file will be used. If the application were to be modified to support
another language, say French, you’d need to create a new app_fr.properties file containing the trans-
lated strings.

The second point, however, is quite surprising. Why is the property file not a UTF-8 file with all the
Chinese characters in it? On the Java 2 platform, a restriction on properties files specifies that they must
contain only ASCII characters.

417

Internationalization and Localized Content

17_57485x ch13.qxd 1/14/05 10:10 PM Page 417

TEAM LinG - Live, Informative, Non-cost and Genuine!

Creating the Chinese l10n properties file
Because Java 2 can work only with ASCII-based properties files, any Unicode-encoded file will need to
be converted to use ASCII escape codes.

If you are working with an IDE or specialized resource editor, you may be able to generate these files
directly using those tools.

If you do not have a resource editor that will produce ASCII properties directly, you can use a Unicode
editor together with a utility called native2ascii— supplied in the bin directory of the Java 2 SDK.

For example, consider the following Unicode properties file, called app_zh.ucd. You can find this file at
<Tomcat Installation Directory>/webapps/ch13/example2/WEB-INF/classes/app_zh.ucd.
The content is reproduced here:

newTitle=
lastName=
firstName=
postalCode=
password=
submitForm=
appInfo=

This file can be created and modified using the Notepad editor on Windows XP or Windows 2000 (or
any Unicode editor on UNIX/Linux). The file is then saved as type “Unicode Big Endian.”

Next, using the native2ascii utility from JDK 1.4 SDK, you can use the following command to convert
this file to an ASCII file:

native2ascii -encoding UnicodeBig app_zh.ucd app_zh.properties

The resulting output app_zh.properties file will contain the required escape code, shown previously
as app_zh.properties.

When using Java 2 properties-based resource bundles for i18n, any properties files that contain non-
ASCII Unicode characters must first be converted to escape notation in an ASCII file.

The Locale selection page
Looking back at the example, the first JSP page of the application is again index.jsp, located at
<Tomcat Installation Directory>/webapps/ch13/example2/index.jsp. The content is repro-
duced here, with differences from the first example highlighted:

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<html>
<head>

<title>Select Language</title>
</head>

418

Chapter 13

17_57485x ch13.qxd 1/14/05 10:10 PM Page 418

TEAM LinG - Live, Informative, Non-cost and Genuine!

<body>
<h1>Please select language:</h1>
<c:url value=”application.jsp” var=”engURL”>

<c:param name=”locale” value=”en_US”/>
</c:url>

<c:url value=”application.jsp” var=”chineseURL”>

<c:param name=”locale” value=”zh_HK”/>
</c:url>

</body>
</html>

If you select the English language, the <c:url> tag will create a hyperlink to the application.jsp
form. However, it will also add a request parameter called locale, with the value en_US. This will be
used to set the locale of the user to use the English language. The actual URL produced will be as
follows:

http://localhost:8080/ch13/example2/application.jsp?locale=en_US

If you select the Chinese language, the <c:url> tag will assign the value zh_HK to the locale request
parameter. The resulting URL will be as follows:

http://localhost:8080/ch13/example2/application.jsp?locale=zh_HK

Generating a localized form using JSP
The application.jsp page is used to display the input form. The application.jsp page must gen-
erate a form in a different language depending on the value of the incoming locale request parameter.
The page is located at <Tomcat Installation Directory>/webapps/ch13/example2/
application.jsp.

Here is the content of application.jsp, with the i18n coding highlighted:

<%@ page pageEncoding=”UTF-8” %>
<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<%@ taglib prefix=”fmt” uri=”http://java.sun.com/jsp/jstl/fmt” %>
<html>
<c:set var=”loc” value=”en_US”/>
<c:if test=”${!(empty param.locale)}”>

<c:set var=”loc” value=”${param.locale}”/>
</c:if>

419

Internationalization and Localized Content

17_57485x ch13.qxd 1/14/05 10:10 PM Page 419

TEAM LinG - Live, Informative, Non-cost and Genuine!

<fmt:setLocale value=”${loc}” />

<fmt:bundle basename=”app”>
<head>

<title><fmt:message key=”newTitle”/></title>
</head>
<body>

<h1><fmt:message key=”newTitle”/></h1>

<c:url value=”procform.jsp” var=”formActionURL” />

<form action=”${formActionURL}” method=”post”>
<table>

<tr>
<td><fmt:message key=”lastName”/></td>
<td>

<input type=”hidden” name=”locale” value=”${loc}”/>
<input type=”text” name=”lastname” size=”40”/></td>

</tr>

<tr>
<td><fmt:message key=”firstName”/></td>
<td><input type=”text” name=”firstname” size=”40”/></td>

</tr>

<tr>
<td><fmt:message key=”postalCode”/></td>
<td><input type=”text” name=”postcode” size=”40”/></td>

</tr>

<tr>
<td><fmt:message key=”password”/></td>
<td><input type=”password” name=”pass” size=”40”/></td>

</tr>

<tr>
<td colspan=”2” align=”center”>

<input type=”submit” value=”<fmt:message key=’submitForm’/>”/></td>
</tr>

</table>
</form>

</body>
</fmt:bundle>
</html>

Note that there is absolutely no locale-specific text in the application.jsp file. Instead,
<fmt:setLocale>, <fmt:bundle>, and <fmt:message> are used to access the i18n resource bundle.

420

Chapter 13

17_57485x ch13.qxd 1/14/05 10:10 PM Page 420

TEAM LinG - Live, Informative, Non-cost and Genuine!

JSTL tags that support i18n
The JSTL tags that support i18n are contained in the fmt subset of the tag library. This subset can be
included via the following <%@ taglib %> directive. This directive also specifies that the prefix to use for
these tags is fmt:

<%@ taglib prefix=”fmt” uri=”http://java.sun.com/jsp/jstl/fmt” %>

The <fmt:setLocale> tag is used to set the current locale, which is a configuration variable called
javax.servlet.jsp.jstl.fmt.locale. This variable is maintained by the JSP runtime, and is used
to determine the locale to use for various JSTL tags.

The syntax of the <fmt:setLocale> tag is as follows:

<fmt:setLocale value=”...locale value...” [variant=”...variant value...”]
[scope=”...scope of var...”] />

The attributes are described in the following table.

Attribute Name Mandatory/Optional Description

value Mandatory The value attribute is typically set with the
locale name — for example, en_US or zh_HK.

variant Optional The variant attribute is optional and only
rarely used for specialized locales that have a
browser-specific variant value in addition to
the language and country components.

scope Optional The scope attribute, if specified, determines
the scope of the application-based locale vari-
able. By default, this is assumed to be page
scoped. Some applications may want to set
scope to session, for all the requests from the
same user to track the locale.

Once the application locale is set, the <fmt:bundle> tag can be used to frame a set of <fmt:message>
tags that will display localized text. The <fmt:bundle> tag has the following syntax:

<fmt:bundle basename=”...the bundle’s base name” [prefix=”...prefix name...”]/>

This tag sets the resource bundle to be used for all the <fmt:message> tags within its body (unless
specifically overridden). Its attributes are described in the following table.

421

Internationalization and Localized Content

17_57485x ch13.qxd 1/14/05 10:10 PM Page 421

TEAM LinG - Live, Informative, Non-cost and Genuine!

422

Chapter 13

Attribute Name Mandatory/Optional Description

basename Mandatory The base name of the resource bundle. For our
example, the base name is app. The Chinese
localized bundle can be accessed as app_zh.
properties.

prefix Optional If specified, a prefix that is prepended to
nested <fmt:message> tags within the body.

Within the <fmt:bundle> tag, you can have several <fmt:message> tags. Each <ftm:message> tag
will render a local specific string. The most common syntax of <fmt:message> is as follows:

<fmt:message key=”...name of property...” [bundle=”...resourceBundle....”] [var=”..
variable name..”] [scope=”... scope of var...”]/>

This tag renders a localized text string by extracting a property from the properties file. The current
locale is used, along with the key attribute (reflecting the name of the property), to find the string to use.
The attributes for this tag are shown in the following table.

Attribute Name Mandatory/Optional Description

key Mandatory The name of the key used to find a string
in the l10n properties file.

bundle Optional If specified, the resource bundle used to
extract the localized string. If not specified,
but if the tag is within a <fmt:bundle>
tag, the resource bundle specified by the
<fmt:bundle> tag will be used.

var Optional If specified, creates a String variable with the
specified name to contain the localized string.

scope Optional If specified, determines the scope of the
variable created by the var attribute. The
default is page scope.

Applying the JSTL i18n tags
In applicaton.jsp, the first few lines declare the use of both the core and the i18n JSTL tag libraries.
These lines are highlighted here:

<%@ page pageEncoding=”UTF-8” %>
<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<%@ taglib prefix=”fmt” uri=”http://java.sun.com/jsp/jstl/fmt” %>

Note the use of the pageEncoding attribute of the <%@ page %> directive to specify that the response
generated by this JSP page is encoded as UTF-8. This ensures that both the container and the user’s
browser expect to work with a UTF-8-encoded Unicode page.

17_57485x ch13.qxd 1/14/05 10:10 PM Page 422

TEAM LinG - Live, Informative, Non-cost and Genuine!

To set the application locale, the incoming request parameter called locale is used. This parameter is
set as a result of the user’s selection from the index.jsp page. The code in application.jsp ensures
that the default locale is set to en_US even if the locale parameter is not set:

<c:set var=”loc” value=”en_US”/>
<c:if test=”${!(empty param.locale)}”>

<c:set var=”loc” value=”${param.locale}”/>
</c:if>
<fmt:setLocale value=”${loc}” />

The application locale is now set to the same value of the incoming locale parameter.

In the next statement, the <fmt:bundle> tag will select the resource bundle to use depending on the
application locale. This <fmt:bundle> tag specifies that the resource bundle has a basename of “app”.
The server will look for app.properties and app_zh.properties for localized strings. Because the
<fmt:bundle> tag is not closed until the end of the JSP page, all of the <fmt:message> actions will use
the selected resource bundle:

<fmt:bundle basename=”app”>

For example, in the <title> tag shown next, the <fmt:message> tag is used to obtain the locale-specific
“myTitle” string. If the locale selected by the user is “en_US”, then the string “Application Form”
will be used. If the locale selected by the user is “zh_HK”, then the Chinese Unicode string will be used.

<head>
<title><fmt:message key=”newTitle”/></title>

</head>

The rest of the JSP page contains other <fmt:message> tag instances that are processed in a similar
fashion.

A hidden field is used to pass the locale information on to the form processing JSP. It is specified by
using the value of the incoming locale parameter (value assigned earlier to the loc variable):

<input type=”hidden” name=”locale” value=”${loc}”/>

Creating an i18n-ready form processing JSP
The procform.jsp in this example will display in different languages, depending on the incoming
request parameter: locale. This page is located at <Tomcat Installation Directory>/webapps/
ch13/example2/procform.jsp.

The listing of procform.jsp is shown here, with the i18n coding highlighted:

<%@ page pageEncoding=”UTF-8” %>
<%@ taglib prefix=”fmt” uri=”http://java.sun.com/jsp/jstl/fmt” %>
<fmt:requestEncoding value=”UTF-8” />
<html>
<fmt:setLocale value=”${param.locale}” />
<head>

<fmt:bundle basename=”app”>
<title><fmt:message key=”appInfo”/></title>

423

Internationalization and Localized Content

17_57485x ch13.qxd 1/14/05 10:10 PM Page 423

TEAM LinG - Live, Informative, Non-cost and Genuine!

</head>
<body>

<h1><fmt:message key=”appInfo”/></h1>

<table border=”1”>
<tr>

<td><fmt:message key=”lastName”/></td>
<td>${param.lastname}</td>

</tr>

<tr>
<td><fmt:message key=”firstName”/></td>
<td>${param.firstname}</td>

</tr>

<tr>
<td><fmt:message key=”postalCode”/></td>
<td>${param.postcode}</td>

</tr>

<tr>
<td><fmt:message key=”password”/></td>
<td>${param.pass}</td>

</tr>

</table>

</body>
</fmt:bundle>

</html>

Some of the preceding code is very similar to application.jsp shown earlier. The application’s
locale is set via the hidden form request parameter in the application.jsp called locale:

<fmt:setLocale value=”${param.locale}” />

A <fmt:bundle> action is used to set the resource bundle that is used by all the enclosed
<fmt:message> actions:

<fmt:bundle basename=”app”>
<title><fmt:message key=”appInfo”/></title>

</head>
<body>

<h1><fmt:message key=”appInfo”/></h1>

...
</body>

</fmt:bundle>
</html>

One new JSTL tag used in this JSP is the <fmt:requestEncoding> action. This tag is essential for sub-
mitting form data that may be Unicode-encoded.

424

Chapter 13

17_57485x ch13.qxd 1/14/05 10:10 PM Page 424

TEAM LinG - Live, Informative, Non-cost and Genuine!

Setting request parameter encoding
Incoming request parameters to a JSP form processor cannot be decoded correctly if the JSP container
does not know what type of encoding is used on the parameters.

In the case of our example, the browser submits the parameter using the same encoding as the
application.jsp page. This means that the parameters are submitted using UTF-8 encoding but the
server/container will have no way of knowing this unless explicitly told. Therefore, it is necessary to
specify to the container that the request encoding is UTF-8 in the procform.jsp page:

<fmt:requestEncoding value=”UTF-8” />

According to the HTTP protocol specification, the browser is supposed to have set an HTTP header,
called Content-Type, that will describe the encoding. Unfortunately, even the latest browsers do not
seem to do this. That is why the <fmt:requestEnconding> tag is used frequently.

To see the vital role that the <fmt:requestEncoding> tag plays, you may want to try removing it from
the procform.jsp page and submit the form data again. When you submit Chinese characters again,
you will see that the request parameters are decoded incorrectly. Your window may look similar to the
one displayed in Figure 13-10.

Figure 13-10: Result of incorrect request parameter encoding

425

Internationalization and Localized Content

17_57485x ch13.qxd 1/14/05 10:10 PM Page 425

TEAM LinG - Live, Informative, Non-cost and Genuine!

In Figure 13-10, the incoming request parameters are decoded incorrectly because the JSP container does
not know that they are encoded in Unicode.

The first two Try It Out exercises ask the user explicitly for the locale that they want to use for the ses-
sion, but there is another way that an application can determine the user locale.

Determining a user’s locale automatically (almost!)
When an HTML request comes into the server, the HTTP headers supplied by the browser can indicate a
set of preferred locales that the user wants to use. This list is carried in the Accept-Language HTTP
header. The JSP container has access to this header information, and the JSTL tags will use the preferred
locale on this list if the application locale is not explicitly specified using the <c:setLocale> action.

Unfortunately, this is a highly unreliable approach to determine the locale that a user wants to use, for
the following reasons:

❑ Different browsers configure this list of preferred locales differently.

❑ Most users never configure their browser’s preferred locales.

❑ Some users may want to access pages using a different locale than the configured preferred
locales.

❑ Some users may open multiple browser instances (supported by all modern browsers) but want
a different locale to be used in each instance.

Because of these uncontrollable factors, it is recommended that you always ask users for the locale they
want to use for Web applications that are used internationally.

The next example that you will examine shows the effect of locale on currency formatting.

Try It Out Formatting Currency
Many countries in the world use different currencies and different number formatting conventions. An
important part of localization is the ability to format and display currency correctly for a specific locale.

The Java 2 platform provides locale-sensitive number and currency formatting APIs. These APIs are
encapsulated by JSTL i18n tags. These tags can be used to display locale-sensitive currencies and
numbers.

To see this in action, make sure that your Tomcat 5 server is running and that ch13.war is currently
deployed. Access the following URL with a browser:

http://localhost:8080/ch13/example3/index.jsp

You should see a page with the currency from many different locales displayed, similar to Figure 13-11.

426

Chapter 13

17_57485x ch13.qxd 1/14/05 10:10 PM Page 426

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 13-11: Currency formatting for different locales

In Figure 13-11, the current locale is set to a different value while a currency amount is printed. This
shows how JSTL tags can be used to control the currency symbol and numeric format that is used during
localization activities.

How It Works
This example uses the JSTL’s <fmt:formatNumber> tag to display currency values and shows how the
resulting format is affected by the current application locale.

The code is in the index.jsp file. You can find it at <Tomcat Installation Directory>/webapps/
ch13/example3/index.jsp. The code is listed here:

<%@ page pageEncoding=”UTF-8” %>
<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<%@ taglib prefix=”fmt” uri=”http://java.sun.com/jsp/jstl/fmt” %>
<html>
<head>

<title>Currency Formatting</title>
</head>

427

Internationalization and Localized Content

17_57485x ch13.qxd 1/14/05 10:10 PM Page 427

TEAM LinG - Live, Informative, Non-cost and Genuine!

<body>
<h1>Currency Formatting and locale</h1>

<h3>English, Great Britain</h3>
<fmt:setLocale value=”en_GB” />
<fmt:formatNumber type=”currency” value=”80000” />

<h3>English, USA</h3>
<fmt:setLocale value=”en_US” />
<fmt:formatNumber type=”currency” value=”80000” />

<h3>French, France</h3>
<fmt:setLocale value=”fr_FR” />
<fmt:formatNumber type=”currency” value=”80000” />

<h3>Japanese, Japan</h3>
<fmt:setLocale value=”ja_JP” />
<fmt:formatNumber type=”currency” value=”80000” />

<h3>Korean, Korea</h3>
<fmt:setLocale value=”ko_KR” />
<fmt:formatNumber type=”currency” value=”80000” />

<h3>Spanish, Spain</h3>
<fmt:setLocale value=”es_ES” />
<fmt:formatNumber type=”currency” value=”80000” />

<h3>Arabic, Egypt</h3>
<fmt:setLocale value=”ar_EG” />
<fmt:formatNumber type=”currency” value=”80000” />

<h3>Using Local Numeric Formatting for Different Currency</h3>
<h4>English, Great Britain</h4>
<fmt:setLocale value=”en_GB” />

<fmt:formatNumber type=”currency” value=”80000” />

<fmt:formatNumber type=”currency” value=”80000” currencyCode=”EUR”/>

</body>
</html>

In the preceding code, first the container is told to generate UTF-8 encoded output using the
<%@ page %> directive. This ensures that foreign characters will show up properly. The JSTL core
and fmt tags are then included using <%@ taglib %> directives:

<%@ page pageEncoding=”UTF-8” %>
<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<%@ taglib prefix=”fmt” uri=”http://java.sun.com/jsp/jstl/fmt” %>

428

Chapter 13

17_57485x ch13.qxd 1/14/05 10:10 PM Page 428

TEAM LinG - Live, Informative, Non-cost and Genuine!

To render the $80,000 currency using conventions in different locales, code similar to the following is
used throughout the JSP:

<h3>English, Great Britain</h3>
<fmt:setLocale value=”en_GB” />
<fmt:formatNumber type=”currency” value=”80000” />

The <fmt:setLocale> action is first used to set the locale. In the preceding case, the locale is set to
“en_GB”. The JSTL <fmt:formatNumber> action is used to print the number 80,000 as currency. This
tag will render the number as a local currency value with the proper currency symbol, decimal, and
thousand separators. For the preceding code, this results in currency formatted with the British pound
symbol:

£ 80,000.00

Later in the JSP, <fmt:setLocale> is used to set the application locale to “fr_FR”:

<h3>French, France</h3>
<fmt:setLocale value=”fr_FR” />
<fmt:formatNumber type=”currency” value=”80000” />

In this case, the currency symbol is the euro, and the numeric format displayed is quite differently:

80 000,00 €

The last <fmt:formatNumber> tag is of special interest. In this case, the locale is “en_GB”, English in
Great Britain (United Kingdom). The currency used in the UK at this time is the pound. However, the
euro is commonly used throughout Europe, and occasions often arise when an amount in euros must be
displayed. It is preferable that the number format remain the same (thousand separator, decimal separa-
tor, and so on) while only the currency symbol is changed.

In order to achieve this, the currencyCode attribute of the <fmt:formatNumber> action is used to spec-
ify the euro, “EUR”, without any change to the locale. Because the locale stays the same, the number for-
matting will remain the same:

<h3>Using Local Numeric Formatting for Different Currency</h3>
<h4>English, Great Britain</h4>
<fmt:setLocale value=”en_GB” />

<fmt:formatNumber type=”currency” value=”80000” />

<fmt:formatNumber type=”currency” value=”80000” currencyCode=”EUR”/>

The value of the currencyCode attribute must be an ISO-4217 currency code. A table of these three-
letter (all uppercase) currency codes can be found at unece.org/cefact/rec/cocucod.htm. However,
not all codes are supported in all locales. The support is highly dependent on the Java 2 platform imple-
mentation that you are using.

The next example in this chapter shows how locales can affect the way date and time information is
formatted.

429

Internationalization and Localized Content

17_57485x ch13.qxd 1/14/05 10:10 PM Page 429

TEAM LinG - Live, Informative, Non-cost and Genuine!

Try It Out Formatting Dates
Like numeric and currency formatting, the locale used also affects the way date and time are rendered.
Different regions in the world have different time-telling conventions and may use different languages
in describing time.

To see locale-sensitive date formatting in action, make sure that your Tomcat 5 server is running and that
ch13.war is currently deployed. Access the following URL with a browser:

http://localhost:8080/ch13/example4/index.jsp

You should see a Web page displaying the date formatted in accordance to the convention of several dif-
ferent locales, as shown in Figure 13-12.

Figure 13-12: Date formatting for different locales

In Figure 13-12, the locale is set to a different value while the current date is printed. This shows how
JSTL tags can be used to control the date format being rendered with a JSP page.

430

Chapter 13

17_57485x ch13.qxd 1/14/05 10:10 PM Page 430

TEAM LinG - Live, Informative, Non-cost and Genuine!

How It Works
The code for this page is in the index.jsp file. You can find it at <Tomcat Installation Directory>/
webapps/ch13/example4/index.jsp. The code is listed here, with the date formatting code highlighted:

<%@ page pageEncoding=”UTF-8” %>
<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<%@ taglib prefix=”fmt” uri=”http://java.sun.com/jsp/jstl/fmt” %>

<html>
<head>

<title>Date Formatting</title>
</head>
<body>

<h1>Date Formatting and locale</h1>
<fmt:timeZone value=”EST”>

<jsp:useBean id=”currentTime” class=”java.util.Date”/>

<h3>English, Great Britain</h3>
<fmt:setLocale value=”en_GB” />
<fmt:formatDate type=”both” dateStyle=”full”

timeStyle=”full” value=”${currentTime}” />

<h3>English, USA</h3>
<fmt:setLocale value=”en_US” />
<fmt:formatDate type=”both” dateStyle=”full”

timeStyle=”full” value=”${currentTime}” />

<h3>French, France</h3>
<fmt:setLocale value=”fr_FR” />
<fmt:formatDate type=”both” dateStyle=”full” timeStyle=”full”

value=”${currentTime}” />

<h3>Japanese, Japan</h3>
<fmt:setLocale value=”ja_JP” />
<fmt:formatDate type=”both” dateStyle=”full” timeStyle=”full”

value=”${currentTime}” />

<h3>Korean, Korea</h3>
<fmt:setLocale value=”ko_KR” />
<fmt:formatDate type=”both” dateStyle=”full” timeStyle=”full”

value=”${currentTime}” />

<h3>Spanish, Spain</h3>
<fmt:setLocale value=”es_ES” />
<fmt:formatDate type=”both” dateStyle=”full” timeStyle=”full”

value=”${currentTime}” />

<h3>Arabic, Egypt</h3>
<fmt:setLocale value=”ar_EG” />
<fmt:formatDate type=”both” dateStyle=”full” timeStyle=”full”

value=”${currentTime}” />

431

Internationalization and Localized Content

17_57485x ch13.qxd 1/14/05 10:10 PM Page 431

TEAM LinG - Live, Informative, Non-cost and Genuine!

</fmt:timeZone>
</body>
</html>

In addition to setting a locale, it is also important to set a time zone for the user before printing the time.
Just rendering the time in the server’s time zone is usually meaningless for applications that may be
accessed internationally. Ideally, the time zone should also be selected by the user, in a manner similar to
that used to select the locale.

In this example, the time zone is set to Easter Standard Time. It is performed using the JSTL
<fmt:timeZone> tag:

<fmt:timeZone value=”EST”>
...

</fmt:timeZone>

The value attribute is set with a time zone ID. The <fmt:timeZone> tag makes use of the
java.util.TimeZone API to work with time zones. You can consult the Javadoc for this API to find out
the values that you may specify.

In this example, the time zone will be set to EST within the body of the <fmt:timeZone> tag. It is within
this body that the <fmt:setLocale> calls are made to change the application locale.

An instance of the java.util.Date class is created as a JavaBean, using the standard <jsp:useBean>
action, in order to access the current time (on the server). Note that the Date JavaBean instance is
assigned to a page scoped variable called currentTime:

<jsp:useBean id=”currentTime” class=”java.util.Date”/>

To render the date in a specific locale and time zone format, the <fmt:formatDate> action is used. Here
is the first set of <fmt:setLocale> and <fmt:formatData> tags:

<h3>English, Great Britain</h3>
<fmt:setLocale value=”en_GB” />
<fmt:formatDate type=”both” dateStyle=”full” timeStyle=”both”
value=”${currentDate}” />

The attributes that are used in this example are described in the following table.

Attributes Description

type Can be time, date, or both. Controls if only the time is rendered, only the
date, or both the time and date. In this example, both will be rendered.

dateStyle Can be short, medium, long, or full (or default). Controls the actual for-
mat used to print the date.

timeStyle Can be short, medium, long, or full (or default). Controls the actual for-
mat used to print the time.

value A java.util.Date typed value that will be used to render the date and time.

432

Chapter 13

17_57485x ch13.qxd 1/14/05 10:10 PM Page 432

TEAM LinG - Live, Informative, Non-cost and Genuine!

The resulting time and date rendered for the English, Great Britain locale is as follows:

02 August 2005 11:32:28 o’clock EDT

The other <fmt:setLocale> and <fmt:formatDate> action pairs work similarly. For example, the
date and time are rendered in Japanese for the Japanese, Japan locale using the following:

<h3>Japanese, Japan</h3>
<fmt:setLocale value=”ja_JP” />
<fmt:formatDate type=”both” dateStyle=”full” timeStyle=”full”
value=”${currentTime}” />

The resulting localized Japanese date and time rendered are:

Summary
Internationalization, or i18n for short, deals with the actions necessary to prepare an application for
world-wide distribution. The application must be able to work with different languages, date formats,
number and currency formats, and other local idiosyncrasies.

Localization, or l10n, is the act of adapting an i18n-ready application for use in a specific locality or
region. This will inevitably include translating all text messages, customizing date, number and currency
formats, as well as any other required customizations.

The i18n and l10n requirements of Web-based applications vary greatly and depend on your specific
application distribution and deployment scenario:

❑ If you are creating a Web application for use at one single location, such as a departmental
computer, there may be no i18n requirements at all.

❑ If the same application may be accessed by users from different regions across the world, you
may need to perform l10n on every incoming request.

The Java 2 platform supports an i18n concept known as a locale, which represents a language and a
country/region where a specific set of l10n features will apply. It includes the following points:

❑ The most reliable way of establishing locales is to explicitly ask users what locale they want
to use.

❑ While it is also possible to determine the user’s locale by using the preferred locales specified by
the HTTP Accept-Languages header in a browser’s request, this method is not robust because it
depends on the user’s specific browser and operating system settings.

❑ The locale can be stored with the user’s session or passed from one request to another using
hidden form fields.

433

Internationalization and Localized Content

17_57485x ch13.qxd 1/14/05 10:10 PM Page 433

TEAM LinG - Live, Informative, Non-cost and Genuine!

To localize an application, any text in the user interface must be translated to the locale’s language. It is
possible to do the following:

❑ Keep multiple translated sets of JSP pages, and select between them as the user selects different
locales. This results in a duplicate set of pages for each language supported.

❑ Take advantage of the Java 2 platform’s resource bundles and retrieve different text strings
according to the current locale selected. The JSTL tags <fmt:setLocale>, <fmt:message>, and
<fmt:bundle> can be used for this technique.

Choosing a specific locale also influences how date, number, and currency are displayed by the Java
runtime. Using the JSTL formatting actions such as <fmt:timeZone>, <fmt:formatNumber>, and
<fmt:formatDate>, you can control on a fine-grained level the different formats that are displayed in
a JSP application.

In addition to the JSTL tag library, other mechanisms support internationalization in Web applications.
In Chapter 19 and in the two project chapters (Chapter 27 and Chapter 28), you will see examples of how
Struts handles internationalization.

Exercises
1. The first Try It Out exercise used duplicated sets of JSP pages in separate directories to make the

application i18n-ready. Using the same approach, extend the example to support French. The
following translation table is provided to assist you in the implementation.

Text Translated Text in French

Application Form Formulaire de Demande

Last Name Prénom

First Name Nom

Postal Code Code postal

Password Mot de passé

Submit Form Valider

Applicant Information L’information de demadeur

2. The second Try It Out exercise used the Java 2 platform’s support for i18n resource bundles to
make the application i18n-ready. Using the same approach, extend this example to support
French.

434

Chapter 13

17_57485x ch13.qxd 1/14/05 10:10 PM Page 434

TEAM LinG - Live, Informative, Non-cost and Genuine!

14
JSP Debugging Techniques

Once a programmer I knew was asked how he approached the problem of debugging his soft-
ware. He responded, “I try not to put the bugs in in the first place.” This is wise and sage advice.
Good design and careful review of your code can minimize the need for debugging. However,
even the most experienced developer makes coding mistakes. Furthermore, what happens when
you are called upon to repair code written by someone else? Some mistakes are obvious and easy
to find; others can be much more subtle and offer a real challenge. Many real-world projects miss
their deadlines because problems are encountered that are difficult to find and fix. In this chapter,
we cover methods and techniques that you can use to find and fix problems in your JSP code.

Problems in code are referred to as bugs. The story behind this term is that in 1945, Grace Hopper,
a pioneer computer scientist, found a moth trapped in the relays of one of the earliest computers.
She removed the moth and fixed the computer. Thus, the term debugging was coined and has been
used to describe fixing computer problems ever since.

Debugging an application involving JSP can be quite a challenge. Developers often need to have
an understanding of the various layers that make up the JSP application they are working on, and
they need to understand how multiple languages, HTML, Java, JavaScript, and JSP combine to
create the page on the browser.

Many people consider debugging to be an art, but as you shall see, it is really a science.

This chapter explores the science of debugging as it specifically applies to JavaServer Pages. Some
of the key topics covered include the following:

❑ Catching bugs at compile time

❑ Instrumenting code

❑ Using logging systems

❑ Using debugging tools

❑ Debugging code in production environments

❑ Finding intermittent problems

18_57485x ch14.qxd 1/14/05 10:11 PM Page 435

TEAM LinG - Live, Informative, Non-cost and Genuine!

The Science of Debugging
The scientific method provides us with a solid process that can be used for debugging. The scientific
method consists of the following steps:

1. Observation: An observation is made that the program does not work as expected.

2. Hypothesis: A guess is made about what causes the unexpected behavior.

3. Prediction: A prediction is made about how a change in the code or the data will affect the
observation.

4. Test: The prediction is tested by making the change and observing the results.

This process is then repeated until the problem has been fixed. Let’s try this out on a simple example.

Try It Out Debugging with the Scientific Method
For this example, the following JSP code is supposed to print the numbers from –5 to +5,
incrementing by 1:

<%@page contentType=”text/html”%>
<%@page pageEncoding=”UTF-8”%>
<%@taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<html>
<head><title>JSP Page</title></head>
<body>
<c:forEach var=”counter” begin=”1” end=”10” step=”1” >

<c:out value=”${counter-5}”/>

</c:forEach>
</body>
</html>

For this chapter, we assume that you have a basic standard Web application directory structure estab-
lished for these examples and that the JSP files will be stored in the root directory of the Web application
or WAR file. If you are unsure about how to set this up, then see Chapter 16, “Role of JSP in the Wider
Context: Web Applications,” to create the directory structure.

You will also need to have the jstl jar and standard.jar files installed in the WEB-INF/lib
directory along with the supporting tld files in the WEB-INF/tld directory. The web.xml file should
be configured to find the tag library descriptors. Configuring a Web application to use JSTL is covered
in Chapter 6, “JSP Tag Libraries and JSTL.”

You can also just copy the directory structure and its contents from the source code file that can be
downloaded for the book.

If you are running Tomcat with this setup, then you should be able to edit the examples in place inside
this directory. If you are using an IDE, then you should be able to execute the files from within the IDE.

436

Chapter 14

18_57485x ch14.qxd 1/14/05 10:11 PM Page 436

TEAM LinG - Live, Informative, Non-cost and Genuine!

Name this Example1.jsp. When you execute the JSP, you get the following output:

-4
-3
-2
-1
0
1
2
3
4
5

It is hoped that you have observed that something is wrong. The output begins at –4 and not at –5 as
required. Our guess or hypothesis about why this does not work correctly is that there is something
wrong with the forEach loop, or something wrong with the math in the c:out statement. By examining
the code, you can see that when counter=1, then counter-5 = -4. So the next step is to create an exper-
iment to see what happens when the beginning value is set to 0 instead of 1.

Change the following line:

<c:forEach var=”counter” begin=”1” end=”10” step=”1” >

to

<c:forEach var=”counter” begin=”0” end=”10” step=”1” >

Now when the code is executed you should get the desired result.

How It Works
While this was a simple example, all debugging basically follows this same process. As problems
become more complex, the ability to observe the problem or predict correctly the causes becomes more
difficult. The challenge becomes one of getting more information or a better understanding about what
is happening within the code being tested.

Catching Bugs at Compile Time
The previous example is what we call a runtime bug. A runtime bug is apparent only when the program
executes. Java programs are compiled before they are executed. The compiler provides messages describ-
ing mistakes in the code that prevent it from compiling and being executed. The programmer must fix
these mistakes before the program will compile and execute. A JSP, however, is often compiled for the
first time when it is being executed. If the JSP fails to compile, the servlet container often returns a mes-
sage to the browser explaining the problem. Let’s look at an example in the next Try It Out exercise.

437

JSP Debugging Techniques

18_57485x ch14.qxd 1/14/05 10:11 PM Page 437

TEAM LinG - Live, Informative, Non-cost and Genuine!

Try It Out Debugging at Compile Time
First we modify the preceding example to introduce an error that will prevent it from compiling:

<%@page contentType=”text/html”%>
<%@page pageEncoding=”UTF-8”%>
<%@taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/bore” %>
<html>
<head><title>JSP Page</title></head>
<body>
<c:forEach var=”counter” begin=”0” end=”10” step=”1” >

<c:out value=”${counter-5}”/>

</c:forEach>
</body>
</html>

In the preceding example code, we have changed core so that it now reads bore on the shaded line. If
we deploy and try to run this JSP, we get the response shown in Figure 14-1.

Figure 14-1: Response for JSP that failed to compile

438

Chapter 14

18_57485x ch14.qxd 1/14/05 10:11 PM Page 438

TEAM LinG - Live, Informative, Non-cost and Genuine!

The problem is marked on the following line, which was wrapped to fit the page, but is a single line in
the browser window:

org.apache.jasper.JasperException: The absolute uri: http://java.sun.com/jsp/jstl/
bore cannot be resolved in either web.xml or the jar files deployed with this
application

How It Works
Tomcat is telling us it can’t find whatever is referenced by http://java.sun.com/jsp/jstl/bore.
Think of this as an observation in our scientific method. Now examine the code and find the line that
matches what Tomcat is complaining about. This is of course the highlighted line from the example. The
hypothesis is that bore should be core. Now you can create an experiment by changing the line so that
bore is replaced by core. When you run the experiment, you’ll notice that the problem has been
repaired.

Let’s look at another example that illustrates a common error when using scriptlets with a JSP.

Try It Out Debugging When Using Scriptlets in a JSP
The following JSP is supposed to print a single random integer from 1 to 6. Call this Example2.jsp.

<%@page contentType=”text/html”%>
<%@page pageEncoding=”UTF-8”%>
<html>
<head><title>JSP Page</title></head>
<body>

<% Random r = new Random();
int i = r.nextInt(6)+1;
out.println(“value=”+i);

%>
</body>
</html>

When the JSP is executed, we get a page that returns the following errors:

org.apache.jasper.JasperException: Unable to compile class for JSP

An error occurred at line: 6 in the jsp file: /Sample2p1.jsp

Generated servlet error:
[javac] Compiling 1 source file

C:\Documents and Settings\jtbell\.netbeans\3.6\jakarta-tomcat-
5.0.19_base\work\Catalina\localhost\begjsp\org\apache\jsp\Sample2p1_jsp.java:48:
cannot resolve symbol
symbol : class Random
location: class org.apache.jsp.Sample2p1_jsp
Random r = new Random();
^

439

JSP Debugging Techniques

18_57485x ch14.qxd 1/14/05 10:11 PM Page 439

TEAM LinG - Live, Informative, Non-cost and Genuine!

An error occurred at line: 6 in the jsp file: /Sample2p1.jsp

Generated servlet error:
C:\Documents and Settings\jtbell\.netbeans\3.6\jakarta-tomcat-5.0.19_base\work\
Catalina\localhost\begjsp\org\apache\jsp\Sample2p1_jsp.java:48: cannot resolve
symbol
symbol : class Random
location: class org.apache.jsp.Sample2p1_jsp
Random r = new Random();

^

An error occurred at line: 6 in the jsp file: /Sample2p1.jsp

Generated servlet error:
C:\Documents and Settings\jtbell\.netbeans\3.6\jakarta-tomcat-5.0.19_base\work\
Catalina\localhost\begjsp\org\apache\jsp\Sample2p1_jsp.java:49: incompatible types
found : java.lang.String
required: int

int i = r.nextInt(6)+1;
^

3 errors

The response has been edited and reformatted to fit the page.

How It Works
Again, the program did not compile, but this time it is because we have a Java error in the servlet code
that was generated by the JSP. Remember that the JSP is compiled into a Java servlet, and that servlet is
then compiled into Java bytecode. The first few lines, repeated here, tell us that something went wrong:

org.apache.jasper.JasperException: Unable to compile class for JSP

An error occurred at line: 6 in the jsp file: /Sample2p1.jsp

Generated servlet error:
[javac] Compiling 1 source file

The JSP compiler (named Jasper) was unable to compile the JSP; the error occurred on line 6 of the JSP,
and it is an error with the generated servlet.

The next lines provide specific information about the error. The line that follows tells us that the problem
was found on line 48 of the generated servlet and that the Java compiler cannot resolve a symbol:

C:\Documents and Settings\jtbell\.netbeans\3.6\jakarta-tomcat-
5.0.19_base\work\Catalina\localhost\begjsp\org\apache\jsp\Sample2p1_jsp.java:48:
cannot resolve symbol

The next lines tell us that the symbol that cannot be resolved is class Random:

symbol : class Random
location: class org.apache.jsp.Sample2p1_jsp
Random r = new Random();

^

440

Chapter 14

18_57485x ch14.qxd 1/14/05 10:11 PM Page 440

TEAM LinG - Live, Informative, Non-cost and Genuine!

The caret (^) shown on the last line points to the place in the code that caused the error. In this case, it
points to the first time Random is used.

This sequence is repeated three times because the Java compiler is reporting what it recognizes as three
separate errors. Often when multiple errors are reported it is because of a single root error, so the best
approach is to tackle the first error and then test the code again to determine whether the other errors are
cleared up. In this case, the error in the second stanza points to the second use of Random on the same
line. The third error does at first glance seem to be related, so we will address it later.

Our observation now is that we have an error on line 6 of the JSP. We need to make an educated guess
about how to fix the problem. If the compiler does not recognize a class, that normally means that we
either omitted an import statement or the import statement or class was misspelled. A quick review of
the code shows that we did indeed forget any import statements. Our experiment is to add the appro-
priate import statement and retry the code. Modify the code by adding the shaded line as shown:

<%@page contentType=”text/html” %>
<%@page pageEncoding=”UTF-8” %>
<%@page import=”java.util.Random” %>
<html>
<head><title>JSP Page</title></head>
<body>

<% Random r = new Random();
int i = r.nextInt(6)+1;
out.println(“value=”+i);

%>
</body>
</html>

This time the code should compile and execute as expected. We didn’t have to deal with the third error
because it was really just an artifact of the previous errors.

It would be nice if we could precompile our JSP so that we could find errors before the JSP were com-
piled by the container. Another advantage of precompiling JSPs is better performance. Chapter 26, “Best
Practices and Tools,” illustrates how this can be done.

Using a Debugging System versus
a Production System

It would be nice if every bug could be caught at compile time. Unfortunately, bugs are often discovered
only after the software is already deployed onto a production system. The production system is where the
software is published or installed so that the end users, the people who use the software, can access and
use it. Normally, production systems can be used to observe the problem, but they can’t be used to fix
the problem. This is because finding and fixing a bug usually requires the developers to run experiments
to test their guesses about the problems, and a production system is normally busy serving users, and
therefore not normally available for running experiments. For this reason, debugging most often occurs
on a system other than the one on which the bug was observed.

441

JSP Debugging Techniques

18_57485x ch14.qxd 1/14/05 10:11 PM Page 441

TEAM LinG - Live, Informative, Non-cost and Genuine!

Using a different system for debugging purposes has a number of advantages:

❑ Debugging won’t affect the performance of the production system.

❑ A wider variety of tools may be available on the debugging system to help find the problem.

❑ Experiments can be conducted more quickly because they don’t require coordination with the
production system and its users.

❑ Variables that might affect the outcome of the experiment are easier to control.

There are, however, some disadvantages that must be overcome. The most important of these is that it
can be difficult to replicate a problem observed in production on a debugging system. To overcome this
limitation, it is often necessary to collect additional information from the production system in order to
improve our observations and create a better laboratory.

Even when working on a debugging system, we will often want to collect more information than is
returned directly by the JSP. To do this, we instrument our code. An instrument is something that logs or
measures. In this case, you will be adding code to report on or log the state of the system as it goes
through its various steps and processes.

Using System.out.println()
to Instrument Code

Java programmers since the earliest days of the language have used a built-in feature of Java to print
messages relating to the status of their programs. The System object in Java provides two separate
PrintStreams, out and err, that can be used to print messages on the console. Out is normally
mapped to standard out and err is mapped to standard err. If an application is being run from the
command line, both standard err and out are normally sent to the console. The console is a text win-
dow like the example Tomcat 4.1 console output shown in Figure 14-2. Instead of displaying these mes-
sages in the console window, many Web containers capture these streams and send the output to log
files. This is the default behavior in Tomcat 5. If you are running in an Integrated Development
Environment (IDE), then normally the IDE provides a window to display the console streams. We can
use this feature to instrument our JSP code.

Figure 14-2: Tomcat 4.1 output in the console window

442

Chapter 14

18_57485x ch14.qxd 1/14/05 10:11 PM Page 442

TEAM LinG - Live, Informative, Non-cost and Genuine!

In the following Try It Out exercise, we will use the example of printing the numbers from –5 to 5.

Try It Out Instrumenting Code with System.out.println()
This time, add a println statement inside the forEach loop to expose what is going on with the value
we care about:

<%@page contentType=”text/html”%>
<%@page pageEncoding=”UTF-8”%>
<%@taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<html>
<head><title>JSP Page</title></head>
<body>
<c:forEach var=”counter” begin=”1” end=”10” step=”1” >

<c:out value=”${counter-5}”/></br>
<% System.out.println(“counter=”+pageContext.findAttribute(“counter”)); %>

</c:forEach>
</body>
</html>

Call this Example3.jsp and note the added line (shown shaded) in the listing. This line is a scriptlet
that sends the value of the counter to standard out each time the loop is repeated. The counter is stored
as an attribute within the pageContext of the JSP, so we have to use the call to
pageContext.findAttribute() to print the value.

While the output displayed in the Web browser still shows the numbers from –4 to 5, the console now
shows the following:

counter=1
counter=2
counter=3
counter=4
counter=5
counter=6
counter=7
counter=8
counter=9
counter=10

If you are using Tomcat, you will also find these lines appended to the end of stdout.log in the logs
directory.

Make the following changes to your code to get a better view of exactly what is happening:

<%@page contentType=”text/html”%>
<%@page pageEncoding=”UTF-8”%>
<%@taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<html>
<head><title>JSP Page</title></head>
<body>

443

JSP Debugging Techniques

18_57485x ch14.qxd 1/14/05 10:11 PM Page 443

TEAM LinG - Live, Informative, Non-cost and Genuine!

<c:forEach var=”loopCount” begin=”1” end=”10” step=”1” >
<c:set var=”myCount” value=”${loopCount-5}” />
<c:out value=”${myCount}”/></br>
<%

System.out.println(
“loopCount=”
+ pageContext.findAttribute(“loopCount”)
+ “ myCount=”
+ pageContext.findAttribute(“myCount”)

);
%>

</c:forEach>
</body>
</html>

How It Works
Call this new version Example4.jsp. This time, you made a number of changes. Some of these will help
with the debugging and readability of your code. You first added the following line:

<c:set var=”myCount” value=”${loopCount-5}” />

This stores the value of loopCount-5 into a variable so that you can easily log it. It is often a good idea
to store intermediate calculations in variables that can be examined when needed. To make it easier to
distinguish between variable names, you changed the loop variable from count to loopCount and then
used myCount for the value that should range from –5 to 5. Finally, you enhanced the println state-
ment so that it prints both the loop counter and the myCount value of interest. When you run the pro-
gram this time, the console output looks like this:

loopCount=1 myCount=-4
loopCount=2 myCount=-3
loopCount=3 myCount=-2
loopCount=4 myCount=-1
loopCount=5 myCount=0
loopCount=6 myCount=1
loopCount=7 myCount=2
loopCount=8 myCount=3
loopCount=9 myCount=4
loopCount=10 myCount=5

Now it should be obvious that loopCount needs to start at 0 and not 1 if we need to go from –5 to 5.

You may wonder why the subtraction wasn’t done in the scriptlet. The value returned by pageContext
.findAttribute() is of type Object. These objects would have to be converted into numeric types
before they could be used in arithmetic operations. It is easier to perform the operations using the
built-in expression language and JSTL than it is to do them in the Java scriptlet.

The tags c:out and c:set are a standard part of the core JSTL tags covered in Chapter 6. By using
these tags and limiting our EL expressions (covered in Chapter 5, “JSP and EL”) to attributes of the
tags, we can make this example compatible with both the JSP 1.1 and JSP 2 specifications.

444

Chapter 14

18_57485x ch14.qxd 1/14/05 10:11 PM Page 444

TEAM LinG - Live, Informative, Non-cost and Genuine!

Println is a way to instrument the code to make better observations about what is occurring as the
code executes. It is hoped that by this point you can see some of the value in using println statements
to help debug your code. However, println is a very primitive feature. There are better ways to instru-
ment a JSP and log actions as they occur.

Using a Logging System
While System.out.println provides a basic capability to output information, it is often not the best
choice to use for this purpose. To use println, you must create all of the information that will be
logged, including timestamps, filenames, and other things that you might want to standardize for all
messages. Nor do you have an easy to way to enable the messages when you need them and disable
them when you don’t need them. In general, you don’t want to leave println statements in the code
when you put it into production. This makes them useful mostly for rapid turnaround types of experi-
ments and not something that can be used to enhance the long-term ability to observe what is going on
within the code. A logging system addresses these issues.

Logs are regularly recorded information. For centuries, ship captains kept logs recording the events that
occurred on the ship, recording the ships location, temperature, and weather at regular intervals, and
special events as they happened. Logs serve a similar function for computers. A log is used to record the
state of the program and the events that occur as the program executes. Logging is the process of creating
and writing to the logs.

Logging through the servlet container
System.out.println provides a very primitive logging capability. However, every servlet container is
required to provide a standard logging service that can be used to log messages. This logging service is
available from a servlet simply by calling the log() method on the servlet, as you will see in the next
Try It Out.

Try It Out Calling the log Method
Because a JSP is compiled into a servlet, you can send messages to the container-provided logging facil-
ity, as illustrated in the following JSP:

<%@page pageEncoding=”UTF-8”%>
<%@taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<html>
<head><title>JSP Page</title></head>
<body>
<c:forEach var=”loopCount” begin=”1” end=”10” step=”1” >

<c:set var=”myCount” value=”${loopCount-5}” />
<c:out value=”${myCount}”/></br>
<% String message = “loopCount=”

+ pageContext.findAttribute(“loopCount”)
+ “ myCount=”
+ pageContext.findAttribute(“myCount”);

this.log(message);
%>

445

JSP Debugging Techniques

18_57485x ch14.qxd 1/14/05 10:11 PM Page 445

TEAM LinG - Live, Informative, Non-cost and Genuine!

</c:forEach>
</body>
</html>

Enter the code and name it Example5.jsp. This is basically the same code used previously with
System.out.println, but instead of sending the messages to standard out, they are sent to the con-
tainers log file. You use the following line to do this:

this.log(message);

The example output from the Tomcat 5 log file is shown here:

2004-07-12 21:51:17 StandardContext[/BegJsp]jsp: loopCount=1 myCount=-4
2004-07-12 21:51:17 StandardContext[/BegJsp]jsp: loopCount=2 myCount=-3
2004-07-12 21:51:17 StandardContext[/BegJsp]jsp: loopCount=3 myCount=-2
2004-07-12 21:51:17 StandardContext[/BegJsp]jsp: loopCount=4 myCount=-1
2004-07-12 21:51:17 StandardContext[/BegJsp]jsp: loopCount=5 myCount=0
2004-07-12 21:51:17 StandardContext[/BegJsp]jsp: loopCount=6 myCount=1
2004-07-12 21:51:17 StandardContext[/BegJsp]jsp: loopCount=7 myCount=2
2004-07-12 21:51:17 StandardContext[/BegJsp]jsp: loopCount=8 myCount=3
2004-07-12 21:51:17 StandardContext[/BegJsp]jsp: loopCount=9 myCount=4
2004-07-12 21:51:17 StandardContext[/BegJsp]jsp: loopCount=10 myCount=5

The Tomcat log file can be found in the logs directory of your Tomcat installation and will normally be
named localhost_log.<<date_string>>.txt. Now you have date and timestamp information, as
well as context information that was prepended to each log entry by Tomcat’s logging system.

How It Works
Calling the log method inside a JSP works because a Web-based JSP is compiled into a servlet that imple-
ments (or extends) the same contract as an HttpServlet. HttpServlet extends GenericServlet,
which exposes a set of log functions provided by the container. The log functions are also accessible
using the ServletContext.

Two log methods are available from the container. The method signatures are as follows:

❑ void ServletContext.log(String msg)

❑ void ServletContext log(String msg, Throwable throwable)

You have already seen the first method. The second method provides a way to log exceptions when they
occur. As a general rule, exceptions should be logged only if they are being handled and not re-thrown.

Using the logging system provided by the container offers some improvement over using println
statements. The container-based logging system is limited. For example, it does not give us much control
over determining when messages should be logged. To get that kind of control, we need a logging
framework.

446

Chapter 14

18_57485x ch14.qxd 1/14/05 10:11 PM Page 446

TEAM LinG - Live, Informative, Non-cost and Genuine!

Logging with the JDK logger
In the J2SE 1.4 release, a logging framework was introduced as a standard part of the Java language. This
logging framework is designed to provide logging services for any class running in the JVM. This means
that it is available for use by servlets and JSPs as well.

Try It Out Using the JDK Logger
Let’s start by reviewing a code sample that uses the logging framework:

<%@page pageEncoding=”UTF-8”%>
<%@page import=”java.util.logging.Logger” %>
<%@taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<html>
<head><title>JSP Page</title></head>
<body>
<% Logger logger = Logger.getLogger(this.getClass().getName()); %>
<c:forEach var=”loopCount” begin=”1” end=”10” step=”1” >

<c:set var=”myCount” value=”${loopCount-5}” />
<c:out value=”${myCount}”/></br>
<% String message = “loopCount=”

+ pageContext.findAttribute(“loopCount”)
+ “ myCount=”
+ pageContext.findAttribute(“myCount”);

logger.info(message);
%>

</c:forEach>
</body>
</html>

Name this example Example6.jsp.

How It Works
This example is similar to the preceding example except for the highlighted lines. The import statement
imports the class we need to use the JDK logging system:

<%@page import=”java.util.logging.Logger” %>

The next line gets an instance of the logger class for us to use:

<% Logger logger = Logger.getLogger(this.getClass().getName()); %>

When you get the logger, you also pass in the name of the class that will be generating the log messages
by calling this.getClass().getname(). This name is used to name the logger. After a logger has been
created with that name, later calls to getLogger() with the same name will return the same logger
instance.

447

JSP Debugging Techniques

18_57485x ch14.qxd 1/14/05 10:11 PM Page 447

TEAM LinG - Live, Informative, Non-cost and Genuine!

Using the LogManager class
The class name does not have to be used to name the logger, but often it is a good idea. The logger is
managed by a class called the LogManager, which controls a hierarchy of loggers. This class does not
show up in our code, but it is working behind the scenes. The LogManager uses dot-separated names to
control and structure the hierarchy. In other words, the hierarchy is based on dot-separated names. A
logger inherits it properties from its parent logger in the hierarchy, as shown in Figure 14-3. A logger
named examples.webapps.HelloJsp inherits its properties first from examples.webapps, then from
examples, and finally from the root logger, as shown in the highlighted path in the figure.

Figure 14-3: Example logger hierarchy and inheritance

Loggers and logging levels
Each logger has a level associated with it. The level controls what messages the logger will log. Loggers
only log messages sent at or above the associated logging level. If the logging level is not set for a logger,
then the level is inherited from its parent logger in the logger hierarchy. The level is set by calling the
logger.setLevel() method.

The supported logging levels for JDK loggers are shown in the following table.

Logging Level Description

SEVERE The highest value, used for the most important messages, such as fatal
program errors.

WARNING Used for sending warning messages.

INFO Default level, unless properties have been changed. Used for informa-
tional messages.

CONFIG Used to report configuration settings as they are set or changed.

FINE Used to provide more detail. Normally used when diagnosing or
debugging problems.

root
("")

examples

webapps

HelloJspHelloServlet

swing awt

org

apache

jsp

Sample5.jsp
HelloAwtHelloSwing

448

Chapter 14

18_57485x ch14.qxd 1/14/05 10:11 PM Page 448

TEAM LinG - Live, Informative, Non-cost and Genuine!

Logging Level Description

FINER Provides even greater detail than FINE.

FINEST The lowest level for the most detailed messages.

There are two other levels: ALL, which enables all logging levels, and OFF, which disables all logging
levels. These are provided as utility levels to control logging output and can’t be used to send messages.

If a message is sent at a level below the level set for the logger, then the message is not sent to the han-
dler (which we will discuss shortly in this section) and is not written to the console, a file, or any other
output device.

Messages can be sent at various levels by using the convenience functions severe(), warning(),
info(), config(), fine(), finer(), and finest(), or by using the method log(Level, message).
Functions are also provided to aid in logging exceptions and using resource bundles.

The line of code in our example that sends the log message is shown here:

logger.info(message);

This line logs a message at the INFO level. If we had used

logger.fine(message);

instead, the message would have been logged at the FINE level.

In the example JSP, the message is sent at the INFO level. This was done because INFO is the default level
configured for the root logger when the JVM is installed as part of the SDK. The intention was to make
the example simple so it would work without changing the properties of the logger and without making
any configuration changes. In the absence of any set properties, the logger inherits the properties of its
parents. If the properties are not set on the parents, then this inheritance continues through the hierarchy
until ultimately the properties are set to the values of the root logger.

As stated earlier, the logger is configured to accept messages at or above a certain level. By default, the
logger is configured to accept messages logged at the INFO level or above. If we don’t change the
defaults but use logger.fine() to log our messages, then the logged messages will not appear in the
logs because they were sent at a level below the level currently associated with the logger instance.
Therefore, using the default settings, a message logged at the FINE level will not appear in the logs. This
feature provides the capability to control the level of output we desire from the logging system without
requiring the code to be changed.

In general, debugging messages should be printed at one of the FINE levels. When the code is being exe-
cuted during testing and debugging, the loggers would be configured to accept messages logged at the
FINE levels or above. When the code is placed into production, the loggers would be reconfigured to
ignore anything below the INFO level. The levels FINE, FINER, and FINEST provide three different levels
of detail that we can use for debugging purposes. Often, only one of these levels is required.

449

JSP Debugging Techniques

18_57485x ch14.qxd 1/14/05 10:11 PM Page 449

TEAM LinG - Live, Informative, Non-cost and Genuine!

Handlers
We have now looked at two of the three primary classes that need to be understood in order to grasp
how the JDK logging system works. Recall the three classes:

❑ java.util.logging.Logger

❑ java.util.logging.LogManager

❑ java.util.logging.Handler

Loggers provide methods for logging messages at various levels of detail. The LogManager manages
loggers based on a hierarchy of names. Loggers are created with a name to place them within the hierar-
chy managed by the LogManager. This allows them to inherit properties from their parents and other
ancestor loggers in the path within the hierarchy.

The third class we have hinted at but now needs to be discussed in more detail. This piece, the handler,
determines how a log message is sent to an output device. When a logger gets a message, it calls one or
more handlers. Each handler sends the message to an output device. The output device may be the con-
sole, a file, or even a database, but the output device is determined by the handler. Each logger may have
many handlers allowing each message to be logged into multiple places with a single call to the logger.
Loggers inherit handlers from their parent loggers just as they inherit level settings from their parents.
Each handler can be configured to accept or ignore messages logged at or below a set logging level, just
as the loggers can. The settings for the handlers are independent of the settings for the loggers.

The consequence of these characteristics is that if we were to set the logger at the FINE level instead of
the INFO level and then log the messages using logger.fine(), the messages would still not be logged
unless a handler was also configured to accept messages at the FINE level or above. For a message to be
logged, both a logger and a handler used by that logger must have the level set at or below the level of
the logged message.

The logging level on both the logger and a handler must be set to a level that is the same or lower than
the level of the desired messages if those messages are to appear in the log output.

This means that you can have one handler that sends all messages at or above the WARNING level to a file,
but also have a different handler connected to the same logger that sends messages logged at or above
the FINE level to the console.

Three handler classes are commonly used:

❑ ConsoleHandler: Sends output to System.err

❑ FileHandler: Sends output to a file

❑ SocketHandler: Sends output to a network stream connection

ConsoleHandler is configured as the default handler when the SDK is installed.

450

Chapter 14

18_57485x ch14.qxd 1/14/05 10:11 PM Page 450

TEAM LinG - Live, Informative, Non-cost and Genuine!

Configuring the SDK logging framework
By default, the SDK logging framework is configured by reading a properties file. The default file is
found in the <JAVA_HOME>/jre/lib directory and is called logging.properties. Changes to this file
affect every program that runs using that JVM; therefore, it is recommended that you make a backup
copy of this file before you edit it. The properties file used to configure the logger can be changed from
the default by adding a command-line parameter when starting the JVM, as shown in the following
example:

java -Djava.util.logging.config.file=mylog.properties MyClass

A simple example configuration file follows:

##
Global properties
##
handlers= java.util.logging.ConsoleHandler
.level= INFO

Sends all log messages to the console
java.util.logging.ConsoleHandler.level = ALL
java.util.logging.ConsoleHandler.formatter = java.util.logging.SimpleFormatter

##
Logger Specific properties
##
org.apache.jsp.level = FINE

This is in the format of a normal Java properties file. Lines starting with # are comments. The line

handlers= java.util.logging.ConsoleHandler

is a comma-separated list of handler classes that will be used. In this case, only the Consolehandler is
being used.

.level= INFO sets the default logging level for loggers (the root of the LogManager hierarchy to INFO.
Do not forget the leading dot.

The following line configures the ConsoleHandler to accept messages from ALL logging levels:

java.util.logging.ConsoleHandler.level = ALL

Formatters have not been discussed and are beyond the scope of this chapter. By default, a
SimpleFormatter is associated with the ConsoleHandler. We explicitly set it here using the following
line (shown primarily for documentation purposes):

java.util.logging.ConsoleHandler.formatter = java.util.logging.SimpleFormatter

451

JSP Debugging Techniques

18_57485x ch14.qxd 1/14/05 10:11 PM Page 451

TEAM LinG - Live, Informative, Non-cost and Genuine!

There are a number of other formatters that are available, too, such as the XMLFormater that formats log
messages in an XML format:

The last line, which follows, specifically configures the sample JSP and all other JSP files that use loggers
in the org.apache.jsp hierarchy (the default for JSP files in Tomcat) to log at the FINE level:

org.apache.jsp.level = FINE

This setting overrides the default setting of INFO set for the root logger.

In the next Try It Out exercise, you will need to make several changes to existing files.

Try It Out Logging with the SDK Logging Framework
First, make a copy of the logging.properties file and replace the original with the file listed previ-
ously. You will have to stop and restart Tomcat so the new logging.properties file can be read. Next,
you will change the JSP file named example6.jsp that we used previously. Change the line that reads

logger.info(message);

so that it now reads

logger.fine(message);

and save the JSP file.

When you run the JSP file this time, you should see the following lines in the console output or in the
Tomcat stderr.log file:

Jul 16, 2004 12:33:26 AM org.apache.jsp.Sample5_jsp _jspService
FINE: loopCount=1 myCount=-4
Jul 16, 2004 12:33:26 AM org.apache.jsp.Sample5_jsp _jspService
FINE: loopCount=2 myCount=-3
Jul 16, 2004 12:33:26 AM org.apache.jsp.Sample5_jsp _jspService
FINE: loopCount=3 myCount=-2
Jul 16, 2004 12:33:26 AM org.apache.jsp.Sample5_jsp _jspService
FINE: loopCount=4 myCount=-1
Jul 16, 2004 12:33:26 AM org.apache.jsp.Sample5_jsp _jspService
FINE: loopCount=5 myCount=0
Jul 16, 2004 12:33:26 AM org.apache.jsp.Sample5_jsp _jspService
FINE: loopCount=6 myCount=1
Jul 16, 2004 12:33:26 AM org.apache.jsp.Sample5_jsp _jspService
FINE: loopCount=7 myCount=2
Jul 16, 2004 12:33:26 AM org.apache.jsp.Sample5_jsp _jspService
FINE: loopCount=8 myCount=3
Jul 16, 2004 12:33:26 AM org.apache.jsp.Sample5_jsp _jspService
FINE: loopCount=9 myCount=4
Jul 16, 2004 12:33:26 AM org.apache.jsp.Sample5_jsp _jspService
FINE: loopCount=10 myCount=5

452

Chapter 14

18_57485x ch14.qxd 1/14/05 10:11 PM Page 452

TEAM LinG - Live, Informative, Non-cost and Genuine!

How It Works
The replacement logging.properties file directed the log messages to be sent to the console. Tomcat
displays these messages on the console and logs them to its logging files. The logging level is set to FINE
so that all of the messages generated by the JSP are logged. To try this out, you will need to make several
changes to existing files. To disable the output, change the last line in logging.properties from

org.apache.jsp.level = FINE

to

org.apache.jsp.level = INFO

and restart your servlet container.

Stopping and restarting the servlet container each time you want to make a change to the logging config-
uration can be inconvenient. In the Next Try It Out exercise, you learn to change the log settings without
restarting the container.

Try It Out Changing the Log Settings without Restarting the Container
The following script demonstrates one way to force the configuration file to be reread without restarting
the JVM. Enter this code:

<%@page pageEncoding=”UTF-8”%>
<%@page import=”java.util.logging.LogManager” %>
<%@page import=”java.util.logging.Logger” %>
<%@taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<html>
<head><title>Log Reset</title></head>
<body>

<%
LogManager lm = LogManager.getLogManager();
lm.readConfiguration();
Logger logger = Logger.getLogger(“org.apache.jsp”);
out.println(“Logger(“+logger.getName()+”) is now set to “+logger.getLevel());

%>
</body>
</html>

Save this file as ResetLogger.jsp. To enable the output again, change the last line in logging
.properties from

org.apache.jsp.level = INFO

to

org.apache.jsp.level = FINE

Now, instead of restarting the container, execute the ResetLogger.jsp to start logging messages again.

453

JSP Debugging Techniques

18_57485x ch14.qxd 1/14/05 10:11 PM Page 453

TEAM LinG - Live, Informative, Non-cost and Genuine!

How It Works
The lines

LogManager lm = LogManager.getLogManager();
lm.readConfiguration();

retrieve the instance of the LogManager and tell it to reread the configuration file. The lines

Logger logger = Logger.getLogger(“org.apache.jsp”);
out.println(“Logger(“+logger.getName()+”) is now set to “+logger.getLevel());

get the org.apache.jsp logger instance and report the current setting for the logger level. If the level is
null, then the settings are being inherited from the parent logger. Try this out by leaving the last line of
the logging.properties file set to:

org.apache.jsp.level = INFO

and executing the sample.jsp. No log messages should appear on the console. Next, edit this line in
logging.properties so it now reads as follows:

org.apache.jsp.level = FINE

Now execute the ResetLogger.jsp. The output should look like this:

Logger(org.apache.jsp) is now set to FINE

If you rerun the original JSP, the logger output should now appear on the console (and/or in
stderr.log).

Logging with Log4j
Log4j is an open-source logging framework. It has been around for several years, and until the SDK log-
ging framework came along it was considered by many to be the standard logging framework for Java
applications. Most developers still prefer using Log4j over the built-in SDK Logger system because Log4j
is extremely flexible and powerful. Log4j provides at least one major advantage for Web applications
over the built-in SDK logging system. The Log4j JAR file can be deployed and configured as part of the
Web application and does not have to be globally configured like the SDK Logger.

The following code for Eample7.jsp shows our sample file modified to use Log4j:

<%@page pageEncoding=”UTF-8”%>
<%@page import=”org.apache.log4j.Logger” %>
<%@taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<html>
<head><title>JSP Page</title></head>
<body>
<%

454

Chapter 14

18_57485x ch14.qxd 1/14/05 10:11 PM Page 454

TEAM LinG - Live, Informative, Non-cost and Genuine!

Logger logger = Logger.getLogger(this.getClass().getName());
%>
<c:forEach var=”loopCount” begin=”1” end=”10” step=”1” >

<c:set var=”myCount” value=”${loopCount-5}” />
<c:out value=”${myCount}”/></br>
<% String message = “loopCount=”

+ pageContext.findAttribute(“loopCount”)
+ “ myCount=”
+ pageContext.findAttribute(“myCount”);

logger.info(message);
%>

</c:forEach>
</body>
</html>

You will need to copy the Log4j JAR file into the WEB-INF/lib directory of the Web application
and a log4j.properties file in the WEB-INF/classes directory to run this JSP. The log4j
.properties file settings are covered later in this section.

The shaded line is the only line that has changed from our previous example. Like the SDK Logger dis-
cussed in the previous section, Log4j maintains a hierarchy of loggers. The hierarchy is represented as
dot-separated lists of logging category names. Loggers inherit configuration information from their
ancestors within the tree. When a logger is retrieved, a category name is used to retrieve it. In the follow-
ing line of code, the string passed to the getLogger method represents the category:

Logger logger = Logger.getLogger(“org.apache.jsp.TryLog4j.jsp”);

The same instance of the logger is always returned for the same category name. The ancestors of the cat-
egory used to retrieve the logger in this example are as follows:

❑ org.apache.jsp

❑ org.apache

❑ org.apache

❑ org

❑ root (nameless)

These are shown in the order of inheritance. The root of the tree does not have a name, but can be
retrieved by calling Logger.getRootLogger().

Each logger may have a logging level associated with it. If there is no logging level, then the logger
inherits the logging level of the nearest ancestor that does have a logging level. The root logger is guar-
anteed to have a logging level that can be inherited by loggers in the hierarchy.

455

JSP Debugging Techniques

18_57485x ch14.qxd 1/14/05 10:11 PM Page 455

TEAM LinG - Live, Informative, Non-cost and Genuine!

The logging level is used to prevent messages from being logged. The default logging levels are shown
in the following table.

Logging Levels Description

FATAL The highest value, used when the program is likely to abort.

ERROR Severe error, but the program may be able to continue running.

WARN Used for sending warning messages.

INFO Used for informational messages.

DEBUG The lowest level, used for debugging.

Two additional levels, ALL for enabling all log messages and OFF for disabling all messages, are also pro-
vided for configuring loggers. Messages logged at or above the effective level for the current message
will be sent to Appenders (described in the following section). Messages logged at a level below the set
level for the logger will be dropped.

Appenders and Layouts
There are three primary components to the Log4j framework: loggers, Appenders, and Layouts. Loggers
were discussed earlier. Log4j also defines Appenders and Layouts. Appenders determine the output des-
tinations of the log entries. They are similar to handlers in the SDK Logger. Each logger may have many
Appenders attached to the logger. The logger will send messages to all of the Appenders attached to that
logger and to all of the Appenders attached to its ancestor loggers. Appenders do not have level settings
like the handlers of the SDK logging system. Once a message is sent to the Appender, the Appender will
send it to the output device.

Log4j provides a much wider selection of pre-created Appenders than the SDK provides for handlers. In
addition to file, console, and socket Appenders, Log4j provides Appenders that log records to databases,
to JMS-based messaging systems, to GUI-based console systems, to NT event logs, and to UNIX syslogs.
There are also several different types of file-based loggers that can handle file rollover and other com-
mon log file issues.

Each Appender is associated with a Layout. A Layout object determines the format of the message
records that will be logged. While this is the same role as a formatter in the SDK Logger, Log4j provides
a much richer set of layouts. The SimpleLayout class provides the same basic logging features as the
SimpleFormatter in the SDK Logger. It is more common for the PatternLayout to be used.
PatternLayout accepts a pattern or template that is used to format the log messages. Patterns are built
using a series of tokens, each preceded by a percent sign (%). Many tokens can be followed by an
optional precision specifier inside of curly braces. The tokens available to create the patterns are described
in the following table.

456

Chapter 14

18_57485x ch14.qxd 1/14/05 10:11 PM Page 456

TEAM LinG - Live, Informative, Non-cost and Genuine!

Token Effect

%c{1} Outputs the category of the logger. Precision specifier is a constant inte-
ger. If the precision specifier is given, then only the rightmost category
names will be printed. For example, given the category “a.b.c”, %c{2}
would print “b.c”.

%C{1} Outputs the fully qualified class name of the caller issuing the logging
request. If the precision specifier is given, then only the rightmost por-
tion of the class name will be printed. For example, given the class
“com.wrox.jsp.MyServlet”, %C{1} would print “MyServlet”.

%d{ISO8601} Used to output the date. The date conversion specifier may be followed
by a date format specifier enclosed between braces. For example,
%d{HH:mm:ss,SSS} or %d{dd MMM yyyy HH:mm:ss,SSS}. If no date
format specifier is given, then ISO8601 format is assumed.

%f Outputs the filename from which the logging request was issued.

%l Used to output the location information of the caller that generated the
logging event. Location normally includes filename, method, and line
number. This operation can be extremely slow.

%L Outputs the line number from which the logging request was issued.
This operation can be extremely slow.

%m Outputs the message sent to the logger.

%M Outputs the method name that the message was logged from. This can
be a slow operation.

%n Outputs the platform-dependent line-separator character (newline or
end of line sequence).

%p Outputs the priority of the logging event. Priority is the level at which
the event was logged: FATAL, ERROR, WARN, and so on.

%r Outputs milliseconds elapsed since the start of the application until the
logging event.

%t Outputs the name of the thread that generated the event.

%x Outputs a nested diagnostic context (NDC) associated with the thread
that created the event.

%X{mapkey} Outputs a mapped diagnostic context (MDC) associated with the thread
that created the event. The key for the map must be in the braces follow-
ing the token.

%% Outputs a single percent sign.

457

JSP Debugging Techniques

18_57485x ch14.qxd 1/14/05 10:11 PM Page 457

TEAM LinG - Live, Informative, Non-cost and Genuine!

More detail about these tokens is available in the Javadocs for the PatternLayout class. The concepts of
nested and mapped diagnostic contexts are discussed later in this chapter. There are also format specifiers
that can be included between the percent sign and the token. These control padding, truncation, and jus-
tification for the value output by the tokens. A minus sign, for example, will left-justify the field.

Configuring Log4j
Log4j will try to automatically configure itself by looking for a file called log4j.properties in its
classpath. For a Web application, you can place the log4j.properties file in the WEB-INF/classes
directory of the Web application. Here is a sample configuration file:

Set root logger level to INFO and its only Appender to ConsoleOut.
log4j.rootLogger=INFO, ConsoleOut

ConsoleOut is set to be a ConsoleAppender.
log4j.appender.ConsoleOut=org.apache.log4j.ConsoleAppender

ConsoleOut is set to use PatternLayout.
log4j.appender.ConsoleOut.layout=org.apache.log4j.PatternLayout
log4j.appender.ConsoleOut.layout.ConversionPattern=%-5p: %d [%t] %c{1} - %m%n

The comments explain most of what this configuration file does. First the rootLogger is set to default at
the INFO level and has a single Appender, named ConsoleOut, associated with it. Appenders form a
comma-separated list after the logger’s level has been set. If additional Appenders are needed they can
be added after the ConsoleOut Appender.

The class used to implement the ConsoleOut Appender is ConsoleAppender. The ConsoleOut
Appender is assigned the PatternLayout to use as its layout class. The instance of PatternLayout is
provided with a pattern to use in the following line:

log4j.appender.ConsoleOut.layout.ConversionPattern=%-5p: [%d] %c{1} - %m%n

This pattern will print the priority of the logged message, left-justified in a field five characters wide. It
then prints a colon and the date and time inside square brackets and formatted in ISO8601 format. This
is followed by the last element of the logging category. If the class name is used to establish the logging
category, then this will be the class name. This is followed by a dash and then the logged message is
printed, followed by a line termination character.

Try It Out Logging with Log4j
Assuming that you have created the Example7.jsp file and provided the Log4j configuration file previ-
ously described, then you are ready to run the example and observe the logging. Running the example
JSP with this configuration provides log entries like the following:

INFO : [2004-07-16 23:00:35,828] TryLog4j_jsp - loopCount=1 myCount=-4
INFO : [2004-07-16 23:00:35,828] TryLog4j_jsp - loopCount=2 myCount=-3
INFO : [2004-07-16 23:00:35,828] TryLog4j_jsp - loopCount=3 myCount=-2
INFO : [2004-07-16 23:00:35,828] TryLog4j_jsp - loopCount=4 myCount=-1
INFO : [2004-07-16 23:00:35,828] TryLog4j_jsp - loopCount=5 myCount=0

458

Chapter 14

18_57485x ch14.qxd 1/14/05 10:11 PM Page 458

TEAM LinG - Live, Informative, Non-cost and Genuine!

INFO : [2004-07-16 23:00:35,828] TryLog4j_jsp - loopCount=6 myCount=1
INFO : [2004-07-16 23:00:35,828] TryLog4j_jsp - loopCount=7 myCount=2
INFO : [2004-07-16 23:00:35,828] TryLog4j_jsp - loopCount=8 myCount=3
INFO : [2004-07-16 23:00:35,921] TryLog4j_jsp - loopCount=9 myCount=4
INFO : [2004-07-16 23:00:35,921] TryLog4j_jsp - loopCount=10 myCount=5

You can change the logging level for the JSP you are testing by adding a line to the configuration file.
Because you are logging at the INFO level, you should also change the example to log at the DEBUG level.
Change the original line in the same JSP that reads

logger.info(message);

so that it now reads

logger.debug(message);

This change will send the messages out at the DEBUG level. Next add the following line to the end of the
log4j.properties configuration file and restart your container:

log4j.logger.org.apache.jsp=DEBUG

Now re-execute the example JSP. The JSP-generated log entries should now be logged at the DEBUG level.
But log entries for classes that are not created by the JSP compiler will still be logged at the INFO level.

How It Works
The logger methods info() and debug() send the messages to the logger at the corresponding priority
levels. The Logger.getLogger() line in the JSP established that the messages would be sent through a
category below org.apache.jsp. The final change made to the configuration file instructed the logger
to log messages in all categories at or below the org.apache.jsp category at the DEBUG priority level.
Messages for other classes are logged at the root logger configuration, which is set to the INFO level.

Changing the Log4j configuration without restarting the container
Again, it would be nice to be able to change the Log4j configuration settings without restarting the con-
tainer. The following JSP named ResetLog4j.jsp rereads the log4j.properties file and then dis-
plays the new settings:

<%@page contentType=”text/html”%>
<%@page pageEncoding=”UTF-8”%>
<%@page import=”java.net.URL” %>
<%@page import=”java.io.PrintWriter” %>
<%@page import=”org.apache.log4j.*” %>
<%@page import=”org.apache.log4j.config.PropertyPrinter” %>
<%@taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<html>
<head><title>Log Reset</title></head>
<body>
<pre>
<%

459

JSP Debugging Techniques

18_57485x ch14.qxd 1/14/05 10:11 PM Page 459

TEAM LinG - Live, Informative, Non-cost and Genuine!

LogManager.resetConfiguration();
ClassLoader cl = this.getClass().getClassLoader();
URL log4jprops = cl.getResource(“log4j.properties”);
if (log4jprops != null)
{

PropertyConfigurator l4jconfig = new PropertyConfigurator();
l4jconfig.configure(log4jprops);

}
out.println(“#Log4j configuration”);
PrintWriter pw = new PrintWriter(out);
PropertyPrinter pp = new PropertyPrinter(pw);
pp.print(pw);
out.println(“#End of Config”);

%>
</pre>
</body>
</html>

The line

LogManager.resetConfiguration();
URL log4jprops = cl.getResource(“log4j.properties”);

resets the Log4j configuration and then looks for the configuration file along the classpath. The follow-
ing lines then reconfigure Log4j using the properties file:

PropertyConfigurator l4jconfig = new PropertyConfigurator();
l4jconfig.configure(log4jprops);

Finally, these lines use a Log4j-provided utility to print the current configuration:

PrintWriter pw = new PrintWriter(out);
PropertyPrinter pp = new PropertyPrinter(pw);
pp.print(pw);

We have to create a PrintWriter to pass to the PropertyPrinter constructor and to the
PropertyPrinter.print method because the out object in a JSP is not really a PrintWriter. It is
instead a JspWriter, which does not extend the PrintWriter class, and the methods expect a
PrintWriter. The output is enclosed within a <pre> element because it is not formatted as HTML text.

Logging with tag libraries
All of the logging examples up to this point have required the use of scriptlets. Many development
shops do not like or allow the use of scriptlets in new code. The preference is to use tag libraries, so that
there is no mixing of business logic with presentation logic and markup. Fortunately, the Jakarta taglibs
project provides a tag library specifically designed to enable logging from with JSP pages. The project
can be found at http://jakarta.apache.org/taglibs/doc/log-doc/intro.html. The tag library
supports the Log4j logging framework, so configuration of the logging framework is the same as that
for Log4j.

460

Chapter 14

18_57485x ch14.qxd 1/14/05 10:11 PM Page 460

TEAM LinG - Live, Informative, Non-cost and Genuine!

To set up the tag library so it can be used in your application, you need to copy the JAR file into the WEB-
INF/lib directory of the Web application. You will also need to have the log4j.jar file in the WEB-
INF/lib directory or in a common library directory shared by all of the Web applications. Next, you
copy the tag library descriptor (.tld file) into the WEB-INF/tld directory. Finally, you add the following
lines to the <jsp-config> section of the web.xml file:

<taglib>
<taglib-uri>http://jakarta.apache.org/taglibs/log-1.0</taglib-uri>
<taglib-location>/WEB-INF/tld/log.tld</taglib-location>

</taglib>

The log tag library provides six tags that can be used to log from within a JSP:

❑ fatal

❑ error

❑ warn

❑ info

❑ debug

❑ dump

Most of these tags correspond to Log4j logging levels. All but the dump tag support the attributes
described in following table.

Attribute Name Required Runtime Expression Evaluation

category: The Log4j category name used No Yes
for logging this message. If not specified,
the default Log4j category is used.

message: The message to log. If this is not No Yes
specified, the body of the tag is used instead.

Dump is a special tag. It has a single required attribute, scope. The scope attribute can be set to one of
the following values:

❑ page

❑ request

❑ session

❑ application

The dump tag sends all of the objects in the specified scope to its output.

461

JSP Debugging Techniques

18_57485x ch14.qxd 1/14/05 10:11 PM Page 461

TEAM LinG - Live, Informative, Non-cost and Genuine!

Try It Out Coding with Log Tags
The following code demonstrates the use of these tags:

<%@page contentType=”text/html”%>
<%@page pageEncoding=”UTF-8”%>
<%@taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<%@taglib prefix=”log” uri=”http://jakarta.apache.org/taglibs/log-1.0” %>
<html>
<head><title>JSP Log Tags Page</title></head>
<body>

<c:set var=”myvar” value=”Message comes from an EL expression” scope=”page” />
<c:set var=”logCat” value=”${pageContext.page.class.name}” scope=”page” />
<log:debug>It is bad practice to log messages without a category</log:debug>
<log:debug category=”${logCat}” >

This should appear in the logs if DEBUG is enabled.
</log:debug>
<log:info category=”${logCat}” message=”${myvar}” />
<log:warn

category=”${logCat}”
message=”URI is ${pageContext.request.requestURI}”

/>
<log:error category=”${logCat}”>

This is logging body content as the message
</log:error>
<log:fatal category=”${logCat}” message=”fatal message” />

You should see output in the info logs now.
<log:dump scope=”application” />

</body>
</html>

When we run the JSP with the log4j.properties file previously configured, we should see something
like what follows in the logs:

DEBUG: [2004-08-07 23:18:26,140] LogTags_jsp - This should appear in the logs if
DEBUG is enabled.
INFO : [2004-08-07 23:18:26,140] LogTags_jsp - Message comes from an EL expression
WARN : [2004-08-07 23:18:26,140] LogTags_jsp - URI is /begjsp/LogTags.jsp
ERROR: [2004-08-07 23:18:26,140] LogTags_jsp - This is logging body content as the
message
FATAL: [2004-08-07 23:18:26,140] LogTags_jsp - fatal message

The browser should display something like the following:

You should see output in the info logs now.
org.apache.catalina.jsp_classpath
/C:/mysrc/BegJsp/WEB-INF/classes/;/C:/mysrc/BegJsp/WEB-INF/lib/jstl.jar;/C:/mysrc/
BegJsp/WEB-INF/lib/log4j-1.2.8.jar;/C:/mysrc/BegJsp/WEB-INF/lib/standard.jar;/C:/
mysrc/BegJsp/WEB-INF/lib/taglibs-log.jar;C:/openjava/NetBeans3.6/jakarta-tomcat-
5.0.19/common/classes/;C:/openjava/NetBeans3.6/jakarta-tomcat-5.0.19/common/endorse
d/xercesImpl.jar;C:/openjava/NetBeans3.6/jakarta-tomcat-5.0.19/common/endorsed/
xmlParserAPIs.jar;C:/openjava/NetBeans3.6/jakarta-tomcat-5.0.19/common/lib/ant.jar;

462

Chapter 14

18_57485x ch14.qxd 1/14/05 10:11 PM Page 462

TEAM LinG - Live, Informative, Non-cost and Genuine!

C:/openjava/NetBeans3.6/jakarta-tomcat-5.0.19/common/lib/commons-collections.jar;
C:/openjava/NetBeans3.6/jakarta-tomcat-5.0.19/common/lib/commons-dbcp-1.1.jar;C:/
openjava/NetBeans3.6/jakarta-tomcat-5.0.19/common/lib/commons-el.jar;C:/openjava/
NetBeans3.6/jakarta-tomcat-5.0.19/common/lib/commons-pool-1.1.jar;C:/openjava/
NetBeans3.6/jakarta-tomcat-5.0.19/common/lib/httpmonitor.jar;C:/openjava/
NetBeans3.6/jakarta-tomcat-5.0.19/common/lib/jasper-compiler.jar;C:/openjava/
NetBeans3.6/jakarta-tomcat-5.0.19/common/lib/jasper-runtime.jar;C:/openjava/
NetBeans3.6/jakarta-tomcat-5.0.19/common/lib/jmx.jar;C:/openjava/NetBeans3.6/
jakarta-tomcat-5.0.19/common/lib/jsp-api.jar;C:/openjava/NetBeans3.6/jakarta-
tomcat-5.0.19/common/lib/naming-common.jar;C:/openjava/NetBeans3.6/jakarta-tomcat-5
.0.19/common/lib/naming-factory.jar;C:/openjava/NetBeans3.6/jakarta-tomcat-
5.0.19/common/lib/naming-java.jar;C:/openjava/NetBeans3.6/jakarta-tomcat-5.0.19/com
mon/lib/naming-resources.jar;C:/openjava/NetBeans3.6/jakarta-tomcat-5.0.19/
common/lib/schema2beans.jar;C:/openjava/NetBeans3.6/jakarta-tomcat-5.0.19/common/
lib/servlet-api.jar;/C:/j2sdk1.4.2_04/lib/tools.jar;/C:/openjava/NetBeans3.6/
jakarta-tomcat-5.0.19/bin/bootstrap.jar;/C:/j2sdk1.4.2_04/jre/lib/ext/dnsns.jar;
/C:/j2sdk1.4.2_04/jre/lib/ext/ldapsec.jar;/C:/j2sdk1.4.2_04/jre/lib/ext/localedata.
jar;/C:/j2sdk1.4.2_04/jre/lib/ext/sunjce_provider.jar
javax.servlet.context.tempdir
C:\Documents and Settings\jtbell\.netbeans\3.6\jakarta-tomcat-5.0.19_base\work\
Catalina\localhost\begjsp
org.apache.catalina.resources
org.apache.naming.resources.ProxyDirContext@6c5356
org.apache.catalina.WELCOME_FILES
[Ljava.lang.String;@1d349e2

How It Works
If we examine the JSP to understand what is happening, we see the following first line of interest enables
access to the tag library by using the prefix log:

<%@taglib prefix=”log” uri=”http://jakarta.apache.org/taglibs/log-1.0” %>

A page variable is then set with the class name to use as a logging category:

<c:set var=”logCat” value=”${pageContext.page.class.name}” scope=”page” />

We didn’t have to do this, but it makes the code easier to read when we use the expression ${logCat} in
the tags instead of ${pageContext.page.class.name}. The following line demonstrates that it is pos-
sible to use the tags without a logging category. In this case, the messages will be logged using the set-
tings of the root logger:

<log:debug>It is bad practice to log messages without a category</log:debug>

The next lines of interest demonstrate using EL expressions for the log message. When using JSP 2.0, the
EL expressions can appear as part of the body content of the tag as well:

<log:info category=”${logCat}” message=”${myvar}” />
<log:warn

category=”${logCat}”
message=”URI is ${pageContext.request.requestURI}”

/>

463

JSP Debugging Techniques

18_57485x ch14.qxd 1/14/05 10:11 PM Page 463

TEAM LinG - Live, Informative, Non-cost and Genuine!

Finally, we send some text back to the browser and dump the application context using the dump tag
and send it to the browser:

You should see output in the info logs now.
<log:dump scope=”application” />

This example has demonstrated how the log tag library provides convenient access to Log4j logging
functions from within the JSP page simply by using JSP tags.

Debugging with Tools
Logging provides a good way to improve the quality of the observations we make about the code. As
you will see later in the chapter, effective use of logging is the best way to identify bugs when working
within a production environment. However, it would also be nice to watch a JSP as it works and be able
to step through each action, as is commonly done when debugging Java programs. Fortunately, most
development environments that support JSP development also support a JSP debugger. A debugger is a
tool that enables code to be monitored as it executes.

All of the code for this chapter has been created with the NetBeans IDE (version 3.6). NetBeans is a free
and open-source Java Integrated Development Environment that supports the development of stand-
alone Java applications and Web applications supporting the JSP and servlet specifications. NetBeans
includes a JSP debugger. The concepts covered in this section, however, apply to all of the development
environments that support J2EE development. These include IntelliJ, JBuilder, and WebSphere
Application Developer, for example. It may also be possible to use Eclipse with appropriate plug-ins.

This section covers three primary concepts:

❑ Breakpoints

❑ Stepping through code

❑ Watchpoints

These are common concepts for all debuggers.

Setting breakpoints
A breakpoint marks a location within the code where you want execution of the code to pause or stop.
By pausing the execution of the code, you can gain control over the code to start single-stepping through
it or to examine the state of the system. In most environments, breakpoints are set by placing the cursor
on a line of code and selecting an item from a menu to toggle or set a breakpoint. With NetBeans, for
example, you set a breakpoint by double-clicking the line of code or by right-clicking and selecting
Toggle Breakpoint from the context menu. Figure 14-4 shows source code in NetBeans with two break-
points set.

When the program is paused at a breakpoint, it is not sending a response to the browser. The browser
may time out, which can affect the behavior of the program you are testing. This is one of the known
limitations of using debuggers in a Web application environment.

464

Chapter 14

18_57485x ch14.qxd 1/14/05 10:11 PM Page 464

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 14-4: NetBeans with breakpoints set in JSP

Try It Out Using the Debugger
The following code example demonstrates the use of the debugger:

<%@page contentType=”text/html”%>
<%@page pageEncoding=”UTF-8”%>
<%@taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<%@taglib prefix=”log” uri=”http://jakarta.apache.org/taglibs/log-1.0” %>
<html>
<head><title>Debugger Exercise</title></head>
<body>
<%

int dice = 0;
java.util.ArrayList imageNames = new java.util.ArrayList(5);
java.util.Random rnd = new java.util.Random();
for (int i = 0; i < 5; i++)
{

dice = rnd.nextInt(6)+1;
imageNames.add(new String(“dice128_”+dice+”.gif”));

}

465

JSP Debugging Techniques

18_57485x ch14.qxd 1/14/05 10:11 PM Page 465

TEAM LinG - Live, Informative, Non-cost and Genuine!

pageContext.setAttribute(“dice”, imageNames);
%>
<table>

<tbody align=”center”>
<tr>
<c:forEach var=”imageName” items=”${dice}” >

<td></td>
</c:forEach>
</tr>

</tbody>
</table>

</body>
</html>

Call this program RollDice.jsp. This JSP rolls five dice and then displays them graphically in the
browser. The scriptlet handles randomly generating the values for the dice and creating an array map-
ping the rolls to image files in the Web application. The names of the selected images files are placed
in an array list, which is then placed into the page context. In a Model-, View-, or Controller-based appli-
cation, the scriptlet could be moved to the Controller. The rest of the JSP creates a table, loading the
appropriate image into each element of the table. The images are included in the source code file that
can be downloaded for this book. You may use your own images as long as you name them
dice128_1.gif through dice128_6.gif. When the JSP is executed, the output resembles what
is shown in Figure 14-5.

Figure 14-5: Result of running RollDice.jsp

Each time the JSP is run, a different set of dice will be shown. Set a breakpoint at the line that reads as
follows:

<table>

466

Chapter 14

18_57485x ch14.qxd 1/14/05 10:11 PM Page 466

TEAM LinG - Live, Informative, Non-cost and Genuine!

After the breakpoint is set, start running the application in the debugger. Look for a menu item in the
Debug or Run menu that enables you to run the application in the debugger. For NetBeans, select
Debug ➪ Start Session ➪ Run in Debugger, which can also be accessed using Alt+F5. If your environ-
ment doesn’t automatically open a browser, then open a browser window and provide it with the URL
of the RollDice.jsp file within the application. On my system, this is http://localhost:8084/
chapt14/RollDice.jsp.

When the container in the IDE encounters the breakpoint, it will pause the execution. Your browser may
appear to be hung. This is normal. Now we are ready to move on to the next topic, examining variables
and setting watchpoints.

Examining variables and setting watchpoints
Once the code has been paused, you can examine the state of the system. Mostly this means looking at
variables and their values. In our example, we can see the current values for dice and imageNames.
The variables that are created as a part of the servlet generated by the JSP are also visible. Remember
that variables accessed through EL expressions are really contained within the page, request, session,
or application contexts. These are all available to browse. Figure 14-6 shows the object browser win-
dow of NetBeans. To see the dice attribute in the pageContext, we need to open pageContext, exam-
ine the HashMap for an entry with the key “dice”, and then finally open the value for that entry.

Figure 14-6: NetBeans object browser

467

JSP Debugging Techniques

18_57485x ch14.qxd 1/14/05 10:11 PM Page 467

TEAM LinG - Live, Informative, Non-cost and Genuine!

Watchpoints provide an easier way to monitor the variables that are important to us. A watchpoint is a
variable that the debugger has been asked to watch. Normally, these variables are tracked in a different
window so they can be monitored and viewed as needed. In the case of NetBeans, when you have
browsed to the expression you are interested in, you can right-click to make it a watchpoint. As you are
stepping through the code, the watchpoints update as the values of the variables that are watching are
changed by the code.

One final note: Many debuggers will not only allow you to examine the variables, but also to change
their values. This can be a very useful way to create a quick experiment to check a hypothesis.

Stepping through code
After we have paused at a breakpoint we can step through the code one line at a time. Most debuggers
provide at least the following functions for stepping through code:

❑ Step Over: Executes the next single line of code without stepping into other methods or func-
tions that might be called on the current line, and then pauses again.

❑ Step Into: Executes the next single line of code but steps into each function or method called on
the line of code and pauses at the first executable line within the method. From this pause you
can continue to single-step inside the stepped-into function.

❑ Step Out: Continues running the current function until the function or method returns. This is
useful if you stepped into an uninteresting function.

❑ Continue: Continues running the program at full speed until the next breakpoint is
encountered.

❑ Terminate: Ends the program without completing it. This is often useful if you know the pro-
gram will not complete successfully because of a bug.

With each step command, the watchpoints are updated and the variables can be examined. The result of
these commands is to allow the programmer to watch the program execute one line at a time. When the
interesting portion of the code has executed, the programmer can then allow the program to continue at
full speed.

Remote debugging
Tomcat can be started in a way that supports remote debugging of Web applications. If your IDE does
not have an integrated Web development environment, this might be a useful option. Debugging
remotely is essentially the same as debugging in an integrated environment except that the server can be
on a separate machine. To start Tomcat and prepare it for remote debugging on Windows, follow the
these steps:

1. Make sure that Tomcat starting as a service is disabled. On Windows, this is done by using the
service applet from the Control Panel. Find the Apache Tomcat service (if it isn’t there you can
skip this step) and double-click to get to the properties screen. From properties, select Stop and
then set the startup type to Manual. This will prevent Tomcat from starting each time the
machine restarts.

468

Chapter 14

18_57485x ch14.qxd 1/14/05 10:11 PM Page 468

TEAM LinG - Live, Informative, Non-cost and Genuine!

2. Open a command-line window and navigate to the directory \bin below where Tomcat is
installed. The default installation directory for Tomcat 5 on Windows is C:\Program
Files\Apache Software Foundation\Tomcat 5.0.

3. Enter the following commands to start Tomcat:

SET JPDA_TRANSPORT=dt_socket
SET JPDA_ADDRESS=8000
Catalina jpda start

These lines will configure Tomcat to listen for a debugger on port 8000 and start Tomcat in
debugging mode.

4. To attach a remote debugger, provide it with the machine name and the debugging port for the
Tomcat instance. For example, using NetBeans, select Debug ➪ Start Session ➪ Attach and fill
in the Attach dialog as shown in Figure 14-7.

Figure 14-7: NetBeans remote debugging Attach dialog box

The settings should be as follows:

❑ Debugger: Default Debugger (JPDA)

❑ Connector: SocketAttach (Attaches by Socket to other VMs)

❑ Transport: dt_socket

❑ Host: localhost or host name of your remote machine

❑ Port: 8000

After this is done, you can start debugging the program just as if it were running in the IDE.

Debugging Code in Production
Environments

Normally, it is not possible to use debuggers in production environments. If the site gets a lot of traffic,
it is often not possible to store all of the log messages that can be generated. The next few paragraphs

469

JSP Debugging Techniques

18_57485x ch14.qxd 1/14/05 10:11 PM Page 469

TEAM LinG - Live, Informative, Non-cost and Genuine!

discuss issues with debugging in production, and techniques that you can use to help find and fix
problems discovered in a production environment. The first production issue we will examine is
precompiled JSPs.

The best tool for debugging production systems is often a good logging environment and good logging
messages generated by the code. Of the logging solutions examined, Log4j combined with the log tag
library provides the most flexibility and is the most useful in production. The other logging solutions
are useful, but are better in those cases where quick experiments need to be conducted, such as when
code is first being developed. The rest of this discussion assumes that you will be using Log4j or a logger
with similar capabilities.

Debugging when the JSP is precompiled
It is common to precompile each JSP before it is deployed in a production environment. Precompiling
prevents the long delay encountered when a JSP is first accessed. Precompilation, however, can take on
several forms. Some Web servers, such as WebSphere, provide an option to precompile pages as they are
deployed. The JSP spec requires that a container support a precompiler hint to indicate that the page
should be precompiled. If a JSP is accessed with the parameter ?jsp_precompile=true, then the con-
tainer is not supposed to execute the JSP but instead may compile the JSP. The servlet container is free to
ignore the request and not compile the page, but it cannot pass the request to the JSP for processing.

Another approach to precompiling pages is to use an Ant script and the Jasper JSP compiler task to com-
pile the pages into servlets. The servlets are then compiled and installed into the web.xml file and are
handled just like any other servlet in the Web application. If this approach is used, you must remember
that when using a debugger, you will be debugging the generated servlet and not looking at the JSP file
itself. More details on JSP precompilation can be found in Chapter 25, “Performance.”

As far as log messages are concerned, they are always generated from the compiled servlet and not the
JSP. When using the logging tag library, the category name should be set to something that is recogniz-
able. The sample code demonstrated how to use an EL expression to get the fully qualified name of the
class to use as the category name. That sample code is repeated here:

<c:set var=”logCat” value=”${pageContext.page.class.name}” scope=”page” />
<log:info category=”${logCat}” message=”informational log message” />

The expression ${pageContext.page.class.name} will uniquely identify each JSP in the logs and
allow the logs to be configured separately for individual JSPs if needed. If the name of the JSP changes,
the catalog name will change automatically. Another approach might be to use the request URL for the
category name, but this requires a function to replace the / characters with dots.

Debugging under load
In general, you don’t want to debug in a production environment, but you must often have a laboratory
environment that is as close to the production system as possible. The goal in the production environ-
ment to is gather enough information and make enough observations so that you can reproduce the
problem in a debugging or laboratory environment. But what happens if the problem is only observed
when a certain number of users are accessing the system?

470

Chapter 14

18_57485x ch14.qxd 1/14/05 10:11 PM Page 470

TEAM LinG - Live, Informative, Non-cost and Genuine!

The amount of use a system gets is often called the load. There are many ways to express this value,
but often it is expressed as a number of concurrent users. Concurrent users are users that are accessing
the system simultaneously. When looking for problems that are load-related, it is important to be able
to apply to the debug system (scaled if needed) the same load that is represented on the actual produc-
tion system.

The debugging system does not have to be the same as the production system but you need to consider
the differences when accounting for the load. For example, if the production system is made up of a clus-
ter of 8 machines and handles 6,000 concurrent users, then a debug system of 2 machines should handle
at least 1,500 users.

Normally, a load generator is used to simulate large numbers of users. Several free and commercial
products are available for load generation. Examples include Load Runner from Mercury Interactive,
Jakarta JMeter, and Apache Flood.

It is easy to see that the log files are likely to become very large when a system has the type of load we
are discussing. Even if the files can be stored on the system, there is still the problem of finding the infor-
mation you need within millions of lines of log files.

Adding contextual information to log files
You can use several techniques to help isolate the specific log messages you are interested in. Most of
these are based on adding specific information to each log entry. We have already seen time stamps
added to log entries. A timestamp can be used to maintain the order of entries as they are examined and
to limit the entries examined to those that occurred near the event of interest.

Now let’s examine some other common use cases:

❑ Find all log entries related to a specific application

❑ Find all log entries related to a specific user

❑ Find all log entries from a specific IP address

❑ Find all log entries related to a specific session

The first case would seem to be pretty easy based on what we already know about the logging frame-
work. We just need to enable logging for those classes that make up the application. But what happens
for classes that are shared between multiple applications? Do we want those instances to log their mes-
sage, too? The other cases are a little more difficult. How can a logger in a class that doesn’t even know
that it is part of a Web application log user and session information?

The solution for all of these problems is the Nested Diagnostic Context, or NDC. An NDC is a mechanism
that helps you to distinguish interleaved log messages from different sources. Log4j provides a class
called NDC that supports adding and removing thread-specific information that can be logged as a part
of the logging record. For a Web application, the best way to use this is to add the NDC information in a
filter and then remove the information using the same filter. A sample filter that adds the session ID to
each log message is as follows:

471

JSP Debugging Techniques

18_57485x ch14.qxd 1/14/05 10:11 PM Page 471

TEAM LinG - Live, Informative, Non-cost and Genuine!

package com.wrox.book.chapt14;

import java.io.IOException;
import javax.servlet.*;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpSession;
import org.apache.log4j.NDC;

public class NdcFilter implements Filter
{

private FilterConfig filterConfig = null;

public NdcFilter()
{
}

public void init(FilterConfig fc)
{

filterConfig = fc;
}

public void doFilter(ServletRequest request,
ServletResponse response, FilterChain chain)

throws IOException, ServletException
{

// adds the session ID to the NDC
HttpServletRequest hreq = null;
if(request instanceof HttpServletRequest)
{

hreq = (HttpServletRequest)request;
HttpSession session = hreq.getSession();
if(session != null)

NDC.push(session.getId());
else

NDC.push(“No session present”);
}
else

NDC.push(“Not an HttpServlet request!”);
chain.doFilter(request, response);
NDC.pop();

}

public void destroy()
{
}

}

The line

if(request instanceof HttpServletRequest)

472

Chapter 14

18_57485x ch14.qxd 1/14/05 10:11 PM Page 472

TEAM LinG - Live, Informative, Non-cost and Genuine!

ensures that the request is an HttpServletRequest before we cast it to one. We need an
HttpServletRequest in order to get the session. In this case, we always want a session ID so we allow
hreq.getSession() to create a session if one does not exist. We can change this behavior by replacing

HttpSession session = hreq.getSession();

with

HttpSession session = hreq.getSession(false);

Once we have the session, we push the session ID onto the NDC stack. Now this value is available to
every logger called in this thread of execution. The line

chain.doFilter(request, response);

allows the filter chain to continue processing if needed and will eventually lead to our Web application
being called. When we again get control after the servlets and JSP and other filters have processed the
request and response, the context is popped off the NDC stack with this line:

NDC.pop();

We need to configure the filter in the web.xml file by adding the following lines below the <web-app>
element:

<filter>
<filter-name>NdcFilter</filter-name>
<filter-class>com.wrox.book.chapt14.NdcFilter</filter-class>

</filter>
<filter-mapping>

<filter-name>NdcFilter</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>

The url-pattern element in the previous XML matches all URLs for this Web application. If we want
to do this only for a subset of the URLs, then we can change the pattern accordingly.

We also need to make a configuration change to the logj.properties file to see the NDC context.
Replace the following line from the sample log4j.properties file earlier in this chapter:

log4j.appender.ConsoleOut.layout.ConversionPattern=%-5p: [%d] %c{1} - %m%n

with the following:

log4j.appender.ConsoleOut.layout.ConversionPattern=%-5p: [%d] %x %c{1} - %m%n

The %x will print the current NDC context on each log line. Once this has been done, every method that
logs a message will also log the session ID, even if the method is unaware that it is running as a part of a
Web application and knows nothing about sessions.

473

JSP Debugging Techniques

18_57485x ch14.qxd 1/14/05 10:11 PM Page 473

TEAM LinG - Live, Informative, Non-cost and Genuine!

We hope you can see how this feature can be used to track an individual user or to track other
application-specific information. Once this information is in the logs, it is easy to extract it using a
command-line tool such as grep.

Adding log filters
The previous discussion assumes that we will capture all of the log entries and then filter them as part of
the analysis. It has also been pointed out that it might not be viable to collect all of the log entries gener-
ated due to the volume in a high load environment. There are a couple of potential solutions to this
problem, but the most common one is to use log filtering. We have already seen how both Log4j and the
SDK Logger provide the capability to limit the number of log messages that are generated by using log-
ging levels or priorities combined with the practice of naming the loggers with the fully qualified class
names. Both frameworks also provide a filter capability to further restrict log messages from being
logged. The SDK Logger supports the creation of filters for both the logger and the handler, whereas
Log4j supports filters on the Appenders. The SDK does not provide any filters. If you need one, you
must provide it. Log4j provides four filters:

❑ DenyAll: Blocks all log messages

❑ LevelMatch: Logs or blocks only messages logged at a specific level

❑ LevelRange: Logs or blocks messages logged within a defined range of levels

❑ StringMatch: Logs or blocks messages based on matching strings in the message text

Log4j filters are extended from the abstract org.apache.log4j.spi.Filter class and must implement
a single method, called decide().

Finding the Intermittent Problem
Intermittent problems are problems that seem to come and go and are difficult to pinpoint and repro-
duce. Finding an intermittent problem is really similar to any other debugging task: Apply the scientific
method. It is critical, however, to make as many observations and collect as many data points as possi-
ble. The following sections describe a few techniques that help add critical information that may be help-
ful in finding the problem.

Adding information as response comments
Because most intermittent problems are difficult to reproduce until you understand them, one technique
that is often useful is to add information as comments into the HTML document created as a part of the
HTTP response. These comments can be used as clues to help find the problem. One approach to doing
this is to create an ArrayList of strings and place them into the request. When the JSP renders the page,
it appends the list of strings to the end of the resulting HTML document as comments. When the prob-
lem is encountered by a user, ask the user to click View ➪ Source in the browser and read the comments
back to you or cut and paste them into an e-mail message. Be careful that no sensitive information is
placed in these comment blocks.

474

Chapter 14

18_57485x ch14.qxd 1/14/05 10:11 PM Page 474

TEAM LinG - Live, Informative, Non-cost and Genuine!

Snoop application
Another technique is to have the user access a snoop application. There are many variations on snoop
applications; Tomcat even comes with a very lightweight snoop.jsp. The basic premise is that the
application echoes back to the user what the application knows about the current contexts. This informa-
tion is then copied from the browser and sent back to the developer to help with debugging.

The following code illustrates a servlet called SuperSnoop that prints all of the information in the
request, session, and application scopes. This servlet is more comprehensive than most of the other
snoop applications available. In some cases, you may want to customize this application to make sure
sensitive information is not revealed.

import java.io.*;
import java.net.*;
import java.text.DateFormat;
import java.util.Date;
import java.util.Enumeration;
import java.util.Properties;

import javax.servlet.*;
import javax.servlet.http.*;

public class SuperSnoop extends HttpServlet {

private String makeTitle(String title)
{

return new String(“<H2>”+title+”</H2>\n”);
}

private String makeRow(String left, String right) {
StringBuffer sb = new StringBuffer(128);
sb.append(“<tr>\n”);
sb.append(“\t<td>”+left+”</td>\n”);
sb.append(“\t<td>”+right+”</td>\n”);
sb.append(“</tr>\n”);
return sb.toString();

}

private String today()
{

Date now = new Date();
DateFormat dateFormatter = DateFormat.getDateTimeInstance();
return dateFormatter.format(now);

}

private String showHeaders(HttpServletRequest request) {
StringBuffer sb = new StringBuffer(512);
Enumeration e = request.getHeaderNames();
String key = null;
String value = null;
sb.append(makeTitle(“Request Headers”));
sb.append(“<table>”);
while(e.hasMoreElements()){

475

JSP Debugging Techniques

18_57485x ch14.qxd 1/14/05 10:11 PM Page 475

TEAM LinG - Live, Informative, Non-cost and Genuine!

key = (String)e.nextElement();
value = request.getHeader(key);
sb.append(makeRow(key, value));

}
sb.append(“</table>”);
return sb.toString();

}

private String showRequestInfo(HttpServletRequest request) {
StringBuffer sb = new StringBuffer(512);
sb.append(makeTitle(“Request Info”));
sb.append(“<table>\n”);
sb.append(makeRow(“ContextPath”, request.getContextPath()));
sb.append(makeRow(“Method”, request.getMethod()));
sb.append(makeRow(“RequestURL”, request.getRequestURL().toString()));
sb.append(makeRow(“ServletPath”, request.getServletPath()));
sb.append(makeRow(“CharacterEncoding”, request.getCharacterEncoding()));
sb.append(makeRow(“ContentType”, request.getContentType()));
sb.append(makeRow(“RemoteAddress”, request.getRemoteAddr()));
sb.append(makeRow(“RemoteHost”, request.getRemoteHost()));
sb.append(makeRow(“Scheme”, request.getScheme()));
sb.append(makeRow(“ServerName”, request.getServerName()));
sb.append(makeRow(“ServerPort”, Integer.toString(request.getServerPort())

));
sb.append(“</table>\n”);
return sb.toString();

}

private String showRequestParams(HttpServletRequest request)
{

StringBuffer sb = new StringBuffer(512);
Enumeration e = request.getParameterNames();
String key = null;
String value = null;
sb.append(makeTitle(“Request Parameters”));
sb.append(“<table>”);
while(e.hasMoreElements()){

key = (String)e.nextElement();
value = request.getParameter(key);
sb.append(makeRow(key, value));

}
sb.append(“</table>”);
return sb.toString();

}

private String showSysProps() {
StringBuffer sb = new StringBuffer(512);
Properties p = System.getProperties();
Enumeration e = p.propertyNames();
String key = null;
String value = null;
sb.append(makeTitle(“System Properties”));
sb.append(“<table>”);
sb.append(makeRow(“System Time”, today()));

476

Chapter 14

18_57485x ch14.qxd 1/14/05 10:11 PM Page 476

TEAM LinG - Live, Informative, Non-cost and Genuine!

while(e.hasMoreElements()){
key = (String)e.nextElement();
value = p.getProperty(key);
sb.append(makeRow(key, value));

}
sb.append(“</table>”);
return sb.toString();

}

private String showInitParams() {
StringBuffer sb = new StringBuffer(512);
ServletContext context = getServletContext();
Enumeration e = context.getInitParameterNames();
String key = null;
String value = null;
sb.append(makeTitle(“Initialization Parameters”));
sb.append(“<table>”);
while(e.hasMoreElements()){

key = (String)e.nextElement();
value = context.getInitParameter(key);
sb.append(makeRow(key, value));

}
sb.append(“</table>”);
return sb.toString();

}

private String showServletContextInfo()
{

StringBuffer sb = new StringBuffer(512);
ServletContext context = getServletContext();
sb.append(makeTitle(“Servlet Context”));
sb.append(“<table>”);
sb.append(makeRow(“Server Info”, context.getServerInfo()));
sb.append(makeRow(“Servlet Context Name”,

context.getServletContextName()));
sb.append(makeRow(“Real Path”, context.getRealPath(“/”)));
sb.append(“</table>”);
return sb.toString();

}

private String showContextAttributes() {
StringBuffer sb = new StringBuffer(512);
ServletContext context = getServletContext();
Enumeration e = context.getAttributeNames();
String key = null;
String value = null;
sb.append(makeTitle(“Servlet Context Attributes”));
sb.append(“<table>”);
while(e.hasMoreElements()){

key = (String)e.nextElement();
value = context.getAttribute(key).toString();
sb.append(makeRow(key, value));

}
sb.append(“</table>”);

477

JSP Debugging Techniques

18_57485x ch14.qxd 1/14/05 10:11 PM Page 477

TEAM LinG - Live, Informative, Non-cost and Genuine!

return sb.toString();
}

public void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {

response.setContentType(“text/html”);
PrintWriter out = response.getWriter();

out.println(“<html>”);
out.println(“<head>”);
out.println(“<title>SysProps Servlet</title>”);
out.println(“</head>”);
out.println(“<body>”);

out.println(today());
out.println(showHeaders(request));
out.println(showRequestInfo(request));
out.println(showRequestParams(request));
out.println(showServletContextInfo());
out.println(showContextAttributes());
out.println(showInitParams());
out.println(showSysProps());

out.println(“</table>”);
out.println(“</body>”);
out.println(“</html>”);

out.close();
}

public void doPost(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException
{

doGet(request, response);
}

public String getServletInfo() {
return “Prints Java System Properties”;

}
}

The servlet code is pretty straightforward and shouldn’t require any explanation. When the user experi-
encing the problem executes the servlet, the result can be cut and pasted into an e-mail message. The ses-
sion ID information is included, so if the NdcFilter is in place, any logged information about the user’s
session can be easily found.

Once key information has been collected from the user, the logging system can be dynamically reconfig-
ured as demonstrated earlier, to capture the specific detailed information required on the server side as
the user reproduces the bug.

478

Chapter 14

18_57485x ch14.qxd 1/14/05 10:11 PM Page 478

TEAM LinG - Live, Informative, Non-cost and Genuine!

Avoiding Concurrency Issues
A JSP is compiled into a servlet. The service method of a servlet or a JSP may be called many times
simultaneously by the container, but there may be only a single instance of the servlet. Each of these calls
represents a separate thread of execution, but within a single servlet instance. This means that class vari-
ables in a servlet are actually shared by all of the users accessing that servlet at the same time. Servlets,
and therefore JavaServer Pages, should rarely have class writable variables. On those rare occasions
when a writable class variable is warranted, access to that variable needs to be handled through syn-
chronization. Synchronization limits an object to one user at a time. Other threads that need to access a
synchronized object must wait until the previous thread has completed its access. This slows the applica-
tion down and limits the load that it can handle.

In general, if you need to do synchronization, it shouldn’t be done in a JSP. While this may seem obvi-
ous, I once spent significant time trying to figure out why a Web application that I was asked to fix
would show one user’s private registration information to other users at random. It turned out that the
programmer had placed a copy of the user’s profile object into a servlet class variable instead of
into a session or request variable. If a second user came along and completed his or her task before
the first user, then the first user would suddenly see the second user’s data.

Summary
This chapter has demonstrated that debugging is a science. Every science, however, is part art. The art of
all science is in making good hypotheses or guesses and designing the right experiments. The best way
to improve the guesses is to improve the observations. Observations are made by using tools such as
debuggers and loggers. Loggers send output that should describe what is occurring in the process to log
files, consoles, or other places where the logs can be examined. The logs provide more points of informa-
tion for the observations. In many cases, the amount of information in the logs can be overwhelming, so
you also learned techniques that you can use to better focus the information that is gathered or exam-
ined so that it is more useful for solving the problem at hand. One final thought: It is not enough to just
fix a bug. You must understand the bug in order to make sure that the bug was really fixed and is not
just masked and hiding, waiting to return at some inopportune moment. If you do not understand the
bug and it disappears, it will reappear someday to haunt you.

Exercises
1. Create a Log4j Filter class to accept or deny messages based on the NDC for the message.

2. Create a servlet filter that pushes the requesting IP address onto the NDC stack.

3. Use RollDice.jsp and insert statements to create log messages using Log4j that show the file
names of the images file that will be used. Instrument both the loop in the scriptlet and the JSTL
forEach loop, but do not add a scriptlet to the forEach loop. Log the messages at the DEBUG
priority level in the scriptlet and at the INFO priority level in the forEach loop.

479

JSP Debugging Techniques

18_57485x ch14.qxd 1/14/05 10:11 PM Page 479

TEAM LinG - Live, Informative, Non-cost and Genuine!

18_57485x ch14.qxd 1/14/05 10:11 PM Page 480

TEAM LinG - Live, Informative, Non-cost and Genuine!

Part II: JSP and Modern
Web Server Software
Development

Chapter 15: JSPs and Servlets

Chapter 16: Role of JSP in the Wider Context: Web Applications

Chapter 17: Model View Controller

Chapter 18: Web Frameworks

Chapter 19: Struts Framework

Chapter 20: Layout Management with Tiles

Chapter 21: JavaServer Faces

Chapter 22: JSP in J2EE

Chapter 23: Access to Databases

Chapter 24: Security

Chapter 25: Performance

Chapter 26: Best Practices and Tools

19_57485x pt02.qxd 1/14/05 10:14 PM Page 481

TEAM LinG - Live, Informative, Non-cost and Genuine!

19_57485x pt02.qxd 1/14/05 10:14 PM Page 482

TEAM LinG - Live, Informative, Non-cost and Genuine!

15
JSPs and Servlets

JSPs are intimately tied with servlets. In Chapter 1, it was shown that servlets provide a compo-
nentized, efficient, Java-specific way of performing server-side operations. Servlets are essentially
server-side software components. JSPs, working under the auspices of the servlet mechanism,
actually make these components easier to create, modify, and maintain.

In Chapter 3, you were shown how the getServletContext() method can be used within the
jspInit() and jspDestroy() methods to access the servlet context object. Then, in Chapter 7,
you learned how the Web container actually translates all JSP code into servlets during processing.
It is this servlet code that is finally compiled and executed.

Up until this point in the book, there has been no detailed coverage of servlets. However, it is cer-
tainly very important to have an understanding of servlets as you head toward the more advanced
application of JSPs. As a developer of Web-based applications and services using JSP, it is vital to
be familiar with servlets, as many nonpresentation tasks are better implemented using servlets
than with JSP. This difference will be highly evident in this and later chapters of the book, when
larger and more complex Web applications and frameworks are presented.

This chapter presents Java servlets in their own right. Specifically, it describes the following:

❑ How the Tomcat server treats servlets

❑ The lifecycle of a servlet

❑ Configuration of a servlet

❑ How servlets can collaborate with JSPs within a Web-based application

❑ The role of servlets as a Controller (as in a typical MVC framework)

20_57485x ch15.qxd 1/14/05 10:17 PM Page 483

TEAM LinG - Live, Informative, Non-cost and Genuine!

Two hands-on examples provide you with an opportunity to work with servlets, creating and deploying
them. Specifically, the examples show the following:

❑ How to create servlet mappings in the Web deployment descriptor. Servlet mapping can be
used to control how a server process servlets or JSPs.

❑ How to provide initialization parameters to a servlet. The same mechanism can be also be used
to provide initial parameters to a JSP.

By the end of this chapter, you will have a working knowledge of servlets and how they operate. You
will also be familiar with servlet configuration and how to productively combine the use of servlets and
JSPs within your application design. You will also understand the more advanced application of JSPs
within large Web applications and/or Web application frameworks.

A JSP Is a Servlet
Chapter 7 showed how the Tomcat server translates JSP page code to Java source code. In fact, the trans-
lated code is actually a servlet. This means that every single JSP page is, in fact, a servlet. Figure 15-1
illustrates this.

Figure 15-1: A JSP is actually a servlet

In Figure 15-1, a JSP page is translated into a Java source file by the JSP compiler (code-named Jasper for
the Tomcat 5 server). This Java source file actually contains a class that is a servlet. The JSP container
then compiles this servlet into a .class file. The .class file is executable Java bytecode, and is used by
the container to process incoming requests.

JSP File

Translation Compilation

.class
Java Byte Code

Execution in server,
to process requests

Java
Source File

(a servlet)

484

Chapter 15

20_57485x ch15.qxd 1/14/05 10:17 PM Page 484

TEAM LinG - Live, Informative, Non-cost and Genuine!

Because every JSP is a servlet, it would be very useful to learn a little more about servlets and how the
server handles them. This will shed some light on additional techniques that may also apply to JSP.

A JSP is a servlet. A servlet is a Java class representing a server-side component. The container
(application server) creates and manages instance(s) of a servlet to handle incoming requests.

The first Try It Out exercise illustrates that a JSP is just a servlet. It also shows the lifecycle of a servlet,
and some servlet configuration details

Try It Out Servlets and JSP
To try out the first example, make sure you have deployed ch15.war on your Tomcat 5 server. Review
Chapter 1 if you do not remember how to deploy a WAR file.

Access the following URL using your browser to see the output of the first example:

http://localhost:8080/ch15/

The output of this page should be similar to Figure 15-2.

Figure 15-2: A simple servlet

485

JSPs and Servlets

20_57485x ch15.qxd 1/14/05 10:17 PM Page 485

TEAM LinG - Live, Informative, Non-cost and Genuine!

Not surprisingly, the page just prints out the word “Hello!” However, unlike examples shown earlier in
the book, this display is generated by a servlet and not a JSP.

However, because a JSP is a servlet, a JSP can trivially generate the same display. To try out the JSP ver-
sion, access the following URL:

http://localhost:8080/ch15/example1/index.jsp

This is a more familiar URL, and points to a JSP page that does exactly the same thing as the servlet in
Figure 15-2, as you can see in Figure 15-3.

Figure 15-3: An equivalent JSP to the simple servlet

How It Works
The first page displayed in this example is generated by a servlet. A servlet is Java code, and as such
must be compiled before being executed. The Java class name of the servlet is BasicServlet, and the
code of this servlet is located at <Tomcat Installation Directory>/webapps/ch15/WEB-INF/
classes/com/wrox/begjsp/ch15/servlet/BasicServlet.java. In order to compile the servlet,

486

Chapter 15

20_57485x ch15.qxd 1/14/05 10:17 PM Page 486

TEAM LinG - Live, Informative, Non-cost and Genuine!

you will need the <Tomcat Installation Directory>/common/lib/servlet-api.jar JAR file
in your classpath. The following command shows this being done:

javac -classpath %TOMCAT_HOME%\common\lib\servlet-api.jar
com\wrox\begjsp\ch15\servlet*.java

If you download the code for this chapter from the Wrox Web site, it comes with the servlet already com-
piled and packaged as a WAR file, so you don’t have to do this step.

The BasicServlet servlet is a simple servlet that prints out the word “Hello.” However, it is a complete
servlet and reveals many servlet programming details. The code for this BasicServlet.java page is
reproduced here:

package com.wrox.begjsp.ch15.servlet;
import javax.servlet.*;
import javax.servlet.http.*;

public class BasicServlet extends HttpServlet
{

public void init(ServletConfig config) throws ServletException
{

super.init(config);
}

public void destroy()
{
}

protected void processRequest(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, java.io.IOException

{

try
{
response.setContentType(“text/html”);
java.io.PrintWriter out = response.getWriter();
out.write(“<html>\n”);
out.write(“<head>\n”);
out.write(“<title>Basic Servlet</title>\n”);
out.write(“</head>\n”);
out.write(“<body>\n”);
out.write(“<h1>Hello!</h1>\n”);
out.write(“</body>\n”);
out.write(“</html>”);
out.close();
}
catch(Exception e)
{

487

JSPs and Servlets

20_57485x ch15.qxd 1/14/05 10:17 PM Page 487

TEAM LinG - Live, Informative, Non-cost and Genuine!

throw new ServletException(e);
}

}

protected void doGet(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, java.io.IOException

{
processRequest(request, response);

}

protected void doPost(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, java.io.IOException

{
processRequest(request, response);

}

}

Anatomy of a servlet
Unlike its JSP cousin, BasicServlet.java is quite a bit of code. Taking a look at BasicServlet.java,
you can observe the following:

❑ It extends a class called HttpServlet.

❑ It implements four methods: init(), destroy(), doGet(), and doPost().

❑ It also implements a helper method named processRequest().

The mark of a servlet: the javax.servlet.Servlet interface
According to the Servlet 2.4 (or 2.3) specifications, the distinguishing feature that makes a Java class a
servlet is the fact that all servlets must implement the javax.servlet.Servlet interface. This interface
is the contract between the container (application server) and the servlet. All containers conforming to
the Servlet 2.4 (or 2.3) specification will use this interface to access the features provided by a servlet.
The following table describes the methods of the javax.servlet.Servlet interface that all servlets
must implement.

Method Name Description

init() Called by the container to initialize the servlet; any initial-
ization parameters should be processed here. The section
“The lifecycle of a servlet,” later in this chapter, provides
more details about this very important method.

destroy() Called by the container to indicate to the servlet that the
servlet is being put out of commission. For more informa-
tion, see “The lifecycle of a servlet,” later in this chapter.

488

Chapter 15

20_57485x ch15.qxd 1/14/05 10:17 PM Page 488

TEAM LinG - Live, Informative, Non-cost and Genuine!

Method Name Description

getServletInfo() Called by a container or a tool to get information on the
servlet. The return value is a string that may contain vendor
name, copyright notice, and so on.

getServletConfig() Called by a container to obtain the
javax.servlet.ServletConfig object associated with
this servlet instance. This object is passed into the servlet
when init() is called by the container.

service() This is the core servlet method. It is called by a container to
pass a request for a servlet to process. The servlet must pro-
cess the request and supply a response.

Implementing the Servlet interface through
the helper HttpServlet class

BasicServlet.java, like most servlets, does not implement the javax.servlet.Servlet interface
directly. Instead, it extends a helper class that implements this interface. Figure 15-4 reveals the class
hierarchy.

Figure 15-4: Using the HttpServlet helper class to implement the
servlet interface

javax.servlet.Servlet
<<interface>>

com.wrox.begjsp.ch15.servlet.BasicServlet
<<class>>

javax.servlet.GenericServlet
<<abstract class>>

<<implements>>

<<extends>>

<<extends>>

javax.servlet.HttpServlet
<<abstract class>>

489

JSPs and Servlets

20_57485x ch15.qxd 1/14/05 10:17 PM Page 489

TEAM LinG - Live, Informative, Non-cost and Genuine!

In Figure 15-4, BasicServlet.java implements the javax.servlet.Servlet interface through the
abstract javax.servlet.http.HttpServlet helper class (see the following highlighted code):

package com.wrox.begjsp.ch15.servlet;
import javax.servlet.*;
import javax.servlet.http.*;

public class BasicServlet extends HttpServlet
{

The javax.servlet.http.HttpServlet helper class provides the implementation to any of the
required methods for you. You need only to override the method that you need to change. The
javax.servlet.http.HttpServlet is an abstract Java class (i.e., you cannot create an instance of this
class directly, but you can extend it) whose sole purpose is to simplify the coding of a servlet based on
the HTTP protocol. Because almost all Web applications use servlets that process HTTP protocol requests
(i.e., the client is a Web browser), this abstract class is frequently used as the base class for servlets.

The javax.servlet.http.HttpServlet abstract base class transparently decodes the HTTP
protocol details, leaving you to focus on the core functionality of your servlet. As a subclass of the
javax.servlet.http.HttpServlet abstract class, you can override any of the methods in the
following table.

Method Name Description

doGet() Processes an incoming request that is sending data via the HTTP GET
action

doPost() Processes an incoming request that is sending data via the HTTP POST
action

doPut() Processes an incoming request that is sending data via the HTTP PUT
action (this HTTP protocol action is seldom used and outside the
scope of this book)

doDelete() Processes incoming request to delete server content via the HTTP
DELETE action (this HTTP protocol action is seldom used and outside
the scope of this book)

init() Same as the init() method of the javax.servlet.Servlet
interface

destroy() Same as the destroy() method of the javax.servlet.Servlet
interface

getServletInfo() Same as the getServletInfo() method of the
javax.servlet.Servlet interface

Overriding methods that you want to implement
Remember that any of the methods shown in the preceding table that you do not override will have
default implementation in the javax.servlet.http.HttpServlet class. Because almost all incoming

490

Chapter 15

20_57485x ch15.qxd 1/14/05 10:17 PM Page 490

TEAM LinG - Live, Informative, Non-cost and Genuine!

client requests in a Web application are performed using the HTTP GET method, the doGet() method is
usually overridden. The HTTP POST action is occasionally used for form data submission, and the
doPost() method will be overridden in this case. Referring back to our BasicServlet.java class, you
see that both the doGet() and doPost() methods are overridden. The overriding code is shown here:

protected void doGet(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, java.io.IOException

{
processRequest(request, response);

}

protected void doPost(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, java.io.IOException

{
processRequest(request, response);

}

Delegating processing to a common helper method
Both doGet() and doPost() delegate the processing to a processRequest() method. Because most
servlets will perform the same request processing logic regardless of whether the incoming HTTP
request is using a POST or GET method, the delegation of the logic to a helper method is quite a common
practice. The processRequest() method in this case creates the response, which is an HTML page with
the word “Hello.” The code to processRequest() is shown here:

protected void processRequest(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, java.io.IOException

{

try
{

response.setContentType(“text/html”);
java.io.PrintWriter out = response.getWriter();
out.write(“<html>\n”);
out.write(“<head>\n”);
out.write(“<title>Basic Servlet</title>\n”);
out.write(“</head>\n”);
out.write(“<body>\n”);
out.write(“<h1>Hello!</h1>\n”);
out.write(“</body>\n”);
out.write(“</html>”);
out.close();

}
catch(Exception e)
{

throw new ServletException(e);
}

}

491

JSPs and Servlets

20_57485x ch15.qxd 1/14/05 10:17 PM Page 491

TEAM LinG - Live, Informative, Non-cost and Genuine!

The incoming HttpServletResponse object implements the javax.servlet.ServletResponse
interface. Calling the getWriter() method of this interface will obtain a PrintWriter object that you
can use to write out the HTML document. This is how a servlet generates the response output. Of
course, a servlet is just Java code, so you can use Java language techniques and mechanisms to obtain or
transform information during the creation of the response page.

The init() and destroy() methods
The init() and destroy() methods of BasicServlet.java are shown here:

public void init(ServletConfig config) throws ServletException
{

super.init(config);
}

public void destroy()
{
}

In our example, these methods have no implementation, so they really don’t need to be overridden.
However, they are explicitly overridden to show the existence of these very important methods. In addi-
tion, they also provide a context for the following discussion of the concept of a servlet lifecycle.

The lifecycle of a servlet
A container can create an instance of a servlet for each incoming request, but this is certainly not effi-
cient. Today’s modern servers can handle thousands of requests per second. Every instance of a Java
class takes significant time to create and consumes significant memory on the server. Using this primi-
tive approach of instantiating servlets will exhaust a server’s memory and processing resources very
quickly.

To handle incoming requests in an efficient manner, the container must optimize the creation of servlet
instances. Every Servlet 2.4 (2.3) container optimizes by doing the following:

❑ Creating as few instances of the same servlet as possible (often only one instance) and reusing it
to handle all incoming requests

❑ Managing the instances of servlets created, destroying older unused ones if the server runs low
on memory

This means that every single servlet, or server-side software component, has a lifetime. It starts life when
the container creates an instance. Its life terminates when the container removes it from service and
destroys it. To describe when these very important events happen, the term servlet lifecycle is used.

A servlet lifecycle consists of the creation, initialization, and destruction of a servlet instance. It
describes precisely the manner in which the container is expected to interact with the servlet during
these important life events.

492

Chapter 15

20_57485x ch15.qxd 1/14/05 10:17 PM Page 492

TEAM LinG - Live, Informative, Non-cost and Genuine!

This lifecycle describes how the container manages instances of Java objects that represent servlets, and
can be summarized in the following steps:

1. Create an instance of a servlet the first time it is accessed.

2. Initialize the instance if necessary.

3. Keep this instance around to process future requests.

4. Destroy the instance if it is necessary to make room for new servlet instances.

Figure 15-5 shows the lifecycle of a servlet.

Figure 15-5: Lifecycle of a servlet

In Figure 15-5, a servlet instance is created by the container when the first incoming request asks for it.
After the creation of the instance, and before passing the first request to the servlet for processing, the
container initializes the servlet. The initialization should be performed only once per created servlet
instance, and is performed by calling the init() method of the servlet.

This is the most typical situation. However, this timing is not mandated by the Servlet 2.4 or 2.3 speci-
fications, and a container may choose to instantiate certain servlets well before the arrival of the first
request (to enhance system performance, for example). However, the Servlet specifications do mandate
that the servlet be initialized before the first incoming request is passed into it.

uninitialized

start
Instance not yet created

Container calls init()

Container calls destroy()

Container calls service()
to process requests,

potentially on multiple threads

Container creates new instance

ready

end
Instance may be garbage collected

493

JSPs and Servlets

20_57485x ch15.qxd 1/14/05 10:17 PM Page 493

TEAM LinG - Live, Informative, Non-cost and Genuine!

Once a servlet is initialized by the server (its init() method has been called, etc.), the servlet is in a
ready state. In this state, the servlet may be called on to process incoming requests at any time. The con-
tainer will call the servlet’s service() method any number of times during this phase of a servlet’s life-
cycle. In particular, the container may call the service() method of a single servlet many times, and
maybe even simultaneously through multiple Java threads. This is very important. The request process-
ing logic in a servlet should always be written in a thread-safe manner. This typically means that if you
are accessing any global variables and/or resources, they must be synchronized.

The requirement to ensure that servlets are thread-safe can often make the writing of servlet code quite
tricky. Fortunately, when creating JSPs that are free of scripting elements, this is almost automatic. The
EL expression parser, and the most common tag libraries, such as JSTL, are all coded to be thread-safe,
which alleviates a great deal of responsibility from you as a JSP developer.

While all tag libraries should be written in a thread-safe manner, it is important to ensure that this is
the case with third-party libraries before using them in your JSP applications. Using code that is not
thread-safe in the JSP/servlet environment can lead to unstable and inconsistent behaviors that may be
very difficult to isolate or troubleshoot.

A servlet typically spends most of its life servicing incoming requests. When a server is heavily loaded,
there may be situations when a new servlet needs to be loaded, but there aren’t enough memory
resources to do it safely. In these cases, the resource management logic in a container may elect to
remove a servlet instance from service. In almost all cases, this resource management logic will select for
removal the servlet instance least likely to be needed (how it determines which servlet is the least likely
to be needed depends on vendor-specific design). Before the servlet is removed from service, the Servlet
specification requires the container to call the destroy() method of the servlet.

The destroy() method is called by the container before a servlet is removed from service. If a server is
not heavily loaded, there may be no need to call the destroy() method instance (until server shut-
down). Putting any application logic in the destroy() method is a very bad practice and is highly dis-
couraged. It is possible, however, to use the destroy() method to release external resources acquired
by a servlet instance (for example, connections to databases).

One important thing to note in the servlet lifecycle, however, is that its description does not constrain
innovative server design. The specification only deals with how the container must interact with the
servlet. The exact strategy used in the creation, management, and destruction of a servlet is not speci-
fied. The strategy used is a highly contested area among competitive rival application server products,
as it can have a substantial impact on the overall performance of a server.

The BasicServlet.java servlet has the typical structure of a servlet. Its logic has been kept trivial in
order to focus attention on the servlet mechanism. A point that is not immediately clear is how a
server/container knows about the existence of this servlet. In addition, how did the container determine
that the URL http://localhost:8080/ch15/ corresponds to this servlet?

The answer to both of these questions lies in a Web application configuration file called the deployment
descriptor.

494

Chapter 15

20_57485x ch15.qxd 1/14/05 10:17 PM Page 494

TEAM LinG - Live, Informative, Non-cost and Genuine!

Describing servlets to containers
in the deployment descriptor

In every chapter thus far, a WAR archive file is used to deploy the examples. Inside this WAR file is a
configuration file called the deployment descriptor. The deployment descriptor is a file named web.xml
under the WEB-INF directory. The content of this file is described by the J2EE (Java 2 Enterprise Edition)
specification. This file is required for every Web application. The main purpose of this file is to describe
to the container how to deploy the Web application.

The deployment descriptor, web.xml, contains a description of the components in a Web application
(such as a servlet) and tells the container how to deploy the application.

Because the format of this web.xml file follows the J2EE specification, it is actually independent of the
container (application server) used. This means that the same web.xml file can work across containers
from different vendors. For example, the same web.xml can work on Tomcat 5, WebSphere, or BEA
WebLogic servers.

This is actually not entirely accurate. The J2EE specification does not prohibit server-specific extensions
for the deployment descriptor. This means that you can create web.xml files using server-specific
extensions that will run only within a specific container.

There are many possible descriptor elements, and this chapter discusses only frequently used elements
relating directly to the deployment of servlets (and JSPs). Further details on the deployment descriptor
are covered in Chapter 16, “Role of JSP in the Wider Context: Web Applications.”

The deployment descriptor for BasicServlet.java can be found in <Tomcat Installation
Directory>/webapps/ch15/WEB-INF/web.xml. This web.xml file has descriptor elements for both
Try It Out exercises used in this chapter. In order to focus our attention only on the elements that relate
to this example, there is another file called <Tomcat Installation Directory>/webapps/ch15/
WEB-INF/web.ex1. This file has isolated all the elements that relate to this example only. The content
of this file is reproduced here:

<?xml version=”1.0” encoding=”ISO-8859-1”?>

<web-app xmlns=”http://java.sun.com/xml/ns/j2ee”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd”
version=”2.4”>

<description>
Wrox Beginning JavaServer Pages Examples - Chapter 15

</description>
<display-name>Chapter 15 Example (Wrox Beginning JavaServer Pages)</display-name>

495

JSPs and Servlets

20_57485x ch15.qxd 1/14/05 10:17 PM Page 495

TEAM LinG - Live, Informative, Non-cost and Genuine!

<servlet>
<servlet-name>BasicServlet</servlet-name>
<servlet-class>com.wrox.begjsp.ch15.servlet.BasicServlet</servlet-class>

</servlet>

<servlet-mapping>
<servlet-name>BasicServlet</servlet-name>
<url-pattern>/</url-pattern>

</servlet-mapping>

</web-app>

As you can see, the deployment descriptor is an XML document. Its root element must be <web-app>.
Because of this, the following lines are found at the top of every compliant deployment descriptor:

<?xml version=”1.0” encoding=”ISO-8859-1”?>
<web-app xmlns=”http://java.sun.com/xml/ns/j2ee”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd”
version=”2.4”>

If you are working with an older version of Tomcat, or other application servers that support only the
Servlet 2.3 specification, you will not see the namespace and schema declaration. Servlet 2.3–compliant
servers support a deployment descriptor with an XML DTD. A typical Servlet 2.3 web.xml looks like
the following:

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE web-app PUBLIC “-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN”
“http://java.sun.com/dtd/web-app_2_3.dtd”>
<web-app>

If you are not familiar with XML DTDs and schemas, do not be concerned. This will be the only mention
of them. Basically, they enforce both the structure and format of the XML document. However, XML
schemas are a newer standard and can support more complex enforcement rules.

The <description> and <display-name> elements provide tools and the server with information
about the servlet:.

<description>
Wrox Beginning JavaServer Pages Examples - Chapter 15

</description>
<display-name>Chapter 15 Example (Wrox Beginning JavaServer Pages)</display-name>

For example, when you are using the Tomcat 5 Manager Web application to deploy the application, you
will see the application’s <display-name> element, as shown in Figure 15-6.

496

Chapter 15

20_57485x ch15.qxd 1/14/05 10:17 PM Page 496

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 15-6: The <display-name> element in Tomcat’s Manager Application list

The servlet declaration
To notify the container about the existence of the servlet, you must create a servlet declaration entry. This
maps a human-readable name to the associated Java class. For BasicServlet, the entry is as follows:

<servlet>
<servlet-name>BasicServlet</servlet-name>
<servlet-class>com.wrox.begjsp.ch15.servlet.BasicServlet</servlet-class>

</servlet>

The name BasicServlet is certainly a lot more convenient than the fully qualified class name. More
important, this name will be used within other elements in the deployment descriptor.

497

JSPs and Servlets

20_57485x ch15.qxd 1/14/05 10:17 PM Page 497

TEAM LinG - Live, Informative, Non-cost and Genuine!

The servlet mapping
The last element in web.xml is the <servlet-mapping> element. This element tells the server how to
route incoming requests to the servlet. The <servlet-mapping> element in this case is as follows:

<servlet-mapping>
<servlet-name>BasicServlet</servlet-name>
<url-pattern>/</url-pattern>

</servlet-mapping>

Here, the previously declared servlet name is used. It is mapped to incoming requests via a <url-
pattern> element. The “/” tells the container to send any requests destined for the default path of
the Web application to the servlet. Because the application is named ch15 (as in ch15.war), the servlet
will receive requests destined for the following:

http://localhost:8080/ch15/

Other URL patterns that can be used are described in the following table.

Pattern Description

/* At the end of a path; matches everything under that path; for
example, /example1/* will match every request destined for
the example1 path.

*. Beginning a URL; pattern matches extensions; for example, *.do
will match every request asking for a URL ending with .do.

Any other exact URL Matches the exact URL specified.

The equivalent JSP to BasicSerlvet is index.jsp and can be found at <Tomcat Installation
Directory>/webapps/ch15/index.jsp. The code of this JSP is shown here.

<html>
<head>

<title>Basic JSP</title>
</head>
<body>

<h1>Hello!</h1>
</body>
</html>

This is basically a static HTML page within a JSP page, and not too interesting by itself.

What is really interesting is the Java servlet that is generated when this JSP page is processed by
the JSP compiler. For the Tomcat server, you can find this translated Java source code at <Tomcat
Installation Directory>/work/Catalina/localhost/ch15/or/apache/jsp/example1/
index_jsp.java. The code is reproduced here:

498

Chapter 15

20_57485x ch15.qxd 1/14/05 10:17 PM Page 498

TEAM LinG - Live, Informative, Non-cost and Genuine!

package org.apache.jsp.example1;

import javax.servlet.*;
import javax.servlet.http.*;
import javax.servlet.jsp.*;

public final class index_jsp extends org.apache.jasper.runtime.HttpJspBase
implements org.apache.jasper.runtime.JspSourceDependent

{

private static java.util.Vector _jspx_dependants;

public java.util.List getDependants()
{

return _jspx_dependants;
}

public void _jspService(HttpServletRequest request,
HttpServletResponse response)
throws java.io.IOException, ServletException

{

JspFactory _jspxFactory = null;
PageContext pageContext = null;
HttpSession session = null;
ServletContext application = null;
ServletConfig config = null;
JspWriter out = null;
Object page = this;
JspWriter _jspx_out = null;
PageContext _jspx_page_context = null;

try
{

_ jspxFactory = JspFactory.getDefaultFactory();
response.setContentType(“text/html”);
pageContext = _jspxFactory.getPageContext(this, request,

response, null, true, 8192, true);
_ jspx_page_context = pageContext;

application = pageContext.getServletContext();
config = pageContext.getServletConfig();
session = pageContext.getSession();
out = pageContext.getOut();

_ jspx_out = out;

out.write(“<html>\r\n”);
out.write(“<head>\r\n”);
out.write(“<title>Basic JSP</title>\r\n”);
out.write(“</head>\r\n”);
out.write(“<body>\r\n”);
out.write(“<h1>Hello!</h1>\r\n”);
out.write(“</body>\r\n”);
out.write(“</html>”);

499

JSPs and Servlets

20_57485x ch15.qxd 1/14/05 10:17 PM Page 499

TEAM LinG - Live, Informative, Non-cost and Genuine!

}
catch (Throwable t)
{

if (!(t instanceof SkipPageException))
{

out = _jspx_out;
if (out != null && out.getBufferSize() != 0)

out.clearBuffer();
if (_jspx_page_context != null)

_ jspx_page_context.handlePageException(t);
}

}
finally
{

if (_jspxFactory != null)
_ jspxFactory.releasePageContext(_jspx_page_context);

}
}

}

While most of the generated code is specific to the JSP runtime, note the following:

❑ The resulting code is a servlet because it extends the abstract org.apache.jasper.runtime.
HttpJspBase class, which in turn implements the javax.servlet.Serlvet interface. This
pattern is similar to the case of the javax.servlet.http.HttpServlet helper class discussed
earlier.

❑ The servlet’s service() method is implemented here by jspService() (instead of doGet()
and doPost() in the HttpServlet case). But the internal logic, in the highlighted code, is
almost exactly identical to our BasicServlet.

This should absolutely establish the equivalence of JSP and servlets for you. At this point, you may be
wondering if it is possible to pre-translate JSP pages into servlets Java code and then use servlet declara-
tions and mappings in the deployment descriptor to deploy these generated servlets.

The answer is yes, absolutely. In fact, this is a commonly practiced technique to enhance the startup per-
formance of JSP pages, called precompilation. More details about this performance enhancement tech-
nique are provided in Chapter 25, “Performance.”

Because JSP is equivalent to a servlet, and is considerably easier to write and maintain, you may
question why servlets would be needed at all. The next Try It Out example will answer this puzzling
question.

Try It Out A Controller Servlet
Before trying this second example, confirm that you have ch15.war deployed on your Tomcat 5 server.
If you need assistance in deploying WAR files, refer to Chapter 1.

This example shows the construction of a Controller servlet. Please review Chapter 9, “JSP and
JavaBeans,” if you need some background on what a Controller is. Basically, a Controller is a front-end

500

Chapter 15

20_57485x ch15.qxd 1/14/05 10:17 PM Page 500

TEAM LinG - Live, Informative, Non-cost and Genuine!

to an application that routes incoming requests to different resources depending on application require-
ments. A Controller “controls” the general flow of a Web application. Chapter 17, “Model View
Controller,” is completely devoted to the Model-View-Controller model and has a lot more to say about
Controllers in general.

Access the following URL using your browser to see the output of this second example:

http://localhost:8080/ch15/example2/hot.do

Note that the URL does not request a JSP or servlet, but a .do action. You will see a completely red
HTML page displayed in your browser. The output of this page is similar to Figure 15-7, although you
can’t see the color in this image.

Figure 15-7: Output from the hot.do action

Next, try the following URL:

http://localhost:8080/ch15/example2/cool.do

This time, the displayed Web page in your browser should be completely blue (see Figure 15-8).

501

JSPs and Servlets

20_57485x ch15.qxd 1/14/05 10:17 PM Page 501

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 15-8: Output from the cool.do action

This application shows the power of request mapping. The action hot.do maps to a red HTML page,
whereas the cool.do maps to a blue HTML page. However, this mapping is not necessarily hard-coded
within the application. This allows for flexible modification of the “flow” of a Web application, without
having to rewrite the source code.

How It Works
Figure 15-9 illustrates the operation of this example.

In Figure 15-9, the container will send all incoming requests for a .do action to the Controller
Servlet. From the first example, you should recognize this as the work of a <servlet-mapping>
element in the deployment descriptor.

Once the ControllerServlet receives the incoming request, it will determine how to route it. It deter-
mines the routing by consulting a mapping that is loaded during servlet initialization. This mapping
specifies that hot should be routed to /example2/red.jsp, while cool should be routed to
/example2/blue.jsp.

502

Chapter 15

20_57485x ch15.qxd 1/14/05 10:17 PM Page 502

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 15-9: Action mapping via the ControllerServlet

Using servlets when JSP is available
There is one vital reason why servlets are still needed when JSPs are available, and it is a main thesis of
this book. Even though JSPs can be created, modified, and maintained easily, the following reason
explains why servlets are necessary:

❑ JSP is designed for, and should only be used in, the implementation of presentation elements in
your Web applications.

You may remember from Chapters 2, 3, 5, and 6 that JSP should be used for presentation. Any business
logic, application flow, or system access code should be relegated to other non-JSP mechanisms. Servlets
are the preferred choice in these cases.

In the second Try It Out example, a front-end component is required to flexibly route incoming requests
according to application-specific mapping. Because this is not presentation-layer functionality, a
Controller servlet is the best choice for its implementation.

ControllerServlet

red.jsp

A request for
hot.do
action

A request for
cool.do
action

Forwards
request

Initialization

action mapping configuration

hot.do =/example2/red.jsp
cool.do = /example2/blue.jsp

Forwards
request

blue.jsp

503

JSPs and Servlets

20_57485x ch15.qxd 1/14/05 10:17 PM Page 503

TEAM LinG - Live, Informative, Non-cost and Genuine!

Specifying initialization parameters
Consider the deployment descriptor for this Try It Out example, which can be located at <Tomcat
Installation Directory>/webapps/ch15/WEB-INF/web.xml. The content of this file is shown here,
with the example-specific configurations highlighted:

<?xml version=”1.0” encoding=”ISO-8859-1”?>
<web-app xmlns=”http://java.sun.com/xml/ns/j2ee”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd”
version=”2.4”>

<description>
Wrox Beginning JavaServer Pages Examples - Chapter 15

</description>
<display-name>Chapter 15 Example (Wrox Beginning JavaServer Pages)</display-name>

<servlet>
<servlet-name>BasicServlet</servlet-name>
<servlet-class>com.wrox.begjsp.ch15.servlet.BasicServlet</servlet-class>

</servlet>

<servlet>
<servlet-name>ControllerServlet</servlet-name>
<servlet-class>com.wrox.begjsp.ch15.servlet.ControllerServlet</servlet-class>

<init-param>
<param-name>hot</param-name>
<param-value>/example2/red.jsp</param-value>

</init-param>
<init-param>

<param-name>cool</param-name>
<param-value>/example2/blue.jsp</param-value>

</init-param>
</servlet>

<servlet-mapping>
<servlet-name>BasicServlet</servlet-name>
<url-pattern>/</url-pattern>

</servlet-mapping>

<servlet-mapping>
<servlet-name>ControllerServlet</servlet-name>
<url-pattern>*.do</url-pattern>

</servlet-mapping>
</web-app>

504

Chapter 15

20_57485x ch15.qxd 1/14/05 10:17 PM Page 504

TEAM LinG - Live, Informative, Non-cost and Genuine!

In this deployment descriptor, the servlet declaration for ControllerServlet is specified as follows:

<servlet>
<servlet-name>ControllerServlet</servlet-name>
<servlet-class>com.wrox.begjsp.ch15.servlet.ControllerServlet</servlet-class>

<init-param>
<param-name>hot</param-name>
<param-value>/example2/red.jsp</param-value>

</init-param>
<init-param>

<param-name>cool</param-name>
<param-value>/example2/blue.jsp</param-value>

</init-param>
</servlet>

Other than associating the ControllerServlet name with the Java class, this <servlet> element also
specifies some initialization parameters. These initialization parameters are specified in web.xml
through the use of nested <param-name> and <param-value> sub-elements inside a <init-param>
element. You can supply as many initialization parameters here as you need.

Typically, initialization parameters are used to specify the location and name of configuration files and
resources. They may also be used to specify the configuration details of external resources, such as an
external database.

Recall from our discussion of the servlet cycle that these parameters are typically accessed only once by
each servlet instance: when the init() method of the servlet is called. The init() method is always
called by the container prior to the processing of the very first incoming request by the servlet. Here, the
parameter called hot is associated with the JSP page /example2/red.jsp; while the parameter called
cool is associated with /example2/blue.jsp.

The <servlet-mapping> element tells the container when to send incoming requests to a servlet. In the
case of ControllerServlet, the servlet mapping is as follows:

<servlet-mapping>
<servlet-name>ControllerServlet</servlet-name>
<url-pattern>*.do</url-pattern>

</servlet-mapping>

This tells the container that any request for the .do action should be passed to the ControllerServlet.

The ControllerServlet is then responsible for fetching the forwarding mapping from the initializa-
tion parameters and actually forwarding the incoming request.

505

JSPs and Servlets

20_57485x ch15.qxd 1/14/05 10:17 PM Page 505

TEAM LinG - Live, Informative, Non-cost and Genuine!

Accessing initialization parameters
within the ControllerServlet

The Java code for the ControllerServlet is located at <Tomcat Installation Directory>/
webapps/ch15/WEB-INF/classes/com/wrox/begjsp/ch15/servlet/ControllerServlet.java.
The code of ControllerServlet is reproduced here, with the code to access initialization parameters
highlighted:

package com.wrox.begjsp.ch15.servlet;
import javax.servlet.*;
import javax.servlet.http.*;
import java.util.HashMap;

public class ControllerServlet extends HttpServlet
{

private HashMap forwards;
private final static String HOT=”hot”;
private final static String COOL=”cool”;

public void init(ServletConfig config) throws
ServletException

{
super.init(config);
forwards = new HashMap();
forwards.put(HOT, config.getInitParameter(HOT));
forwards.put(COOL, config.getInitParameter(COOL));

}

public void destroy()
{
}

protected void processRequest(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, java.io.IOException

{
try
{

//forward request to the associated page
ServletContext context = getServletContext();
String logicalName = request.getServletPath();
String physicalURL = “/”;
logicalName= logicalName.substring(logicalName.lastIndexOf(‘/’) + 1,
logicalName.indexOf(‘.’));

if (logicalName.equals(HOT))
physicalURL= (String) forwards.get(HOT);

if (logicalName.equals(COOL))
physicalURL= (String) forwards.get(COOL);

506

Chapter 15

20_57485x ch15.qxd 1/14/05 10:17 PM Page 506

TEAM LinG - Live, Informative, Non-cost and Genuine!

RequestDispatcher dispatcher =
context.getRequestDispatcher(physicalURL);

dispatcher.forward(request, response);
}
catch(Exception e)
{

throw new ServletException(e);
}

}

protected void doGet(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, java.io.IOException

{
processRequest(request, response);

}

protected void doPost(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, java.io.IOException

{
processRequest(request, response);

}
}

In ControllerServlet, the forward mapping is maintained in HashMap for easy access. This is shown
in the following code with definitions for the two constants, the name of the parameters:

private HashMap forwards;
private final static String HOT=”hot”;
private final static String COOL=”cool”;

The actual access to the initialization parameters is performed within the init() method, shown in the
following code:

public void init(ServletConfig config) throws
ServletException

{
super.init(config);
forwards = new HashMap();
forwards.put(HOT, config.getInitParameter(HOT));
forwards.put(COOL, config.getInitParameter(COOL));

}

When the init() method is called, the container will pass in a ServletConfig object. The
getInitParameter() method of this object can be used to access the value of any initialization param-
eter by name. If you don’t know the name of the parameters, they can also be retrieved using the
getInitParameterNames() method of the ServletConfig object. See the Javadoc for the Servlet API
for more information. The code in the init() method of ControllerServlet reads the forwarding val-
ues for the hot and cool parameters and builds a HashMap based on it. The HashMap is called forwards.
This HashMap will be used during request processing to determine the forwarding target page.

507

JSPs and Servlets

20_57485x ch15.qxd 1/14/05 10:17 PM Page 507

TEAM LinG - Live, Informative, Non-cost and Genuine!

Custom forwarding of incoming requests
via the controller servlet

Like the BasicServlet in the first Try It Out example, ControllerServlet also delegates to
processRequest() from the doGet() and doPost() methods. This delegation is shown in the
following code fragment:

protected void doGet(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, java.io.IOException

{
processRequest(request, response);

}

protected void doPost(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, java.io.IOException

{
processRequest(request, response);

}

The processRequest() method must first decode the incoming request to determine if hot or cool
is requested. The first portion of the processRequest() method, shown in the following code, accom-
plishes this:

protected void processRequest(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, java.io.IOException

{
try
{

//forward request to the associated page
ServletContext context = getServletContext();
String logicalName = request.getServletPath();
String physicalURL = “/”;
logicalName= logicalName.substring(logicalName.lastIndexOf(‘/’) + 1,

logicalName.indexOf(‘.’));

In the preceding code, first the ServletContext is obtained. Then the getServletPath() method is
called. Because it is known ahead of time that the container will send only requests matching the *.do
URL pattern to the ContollerServlet (specified by the <servlet-mapping> element in the deploy-
ment descriptor), this code extracts the string between the last “/” and the “.” in the servlet path. This
will result in either hot or cold in our tests.

The rest of the code in processRequest(), shown next, retrieves the forwarding target (assigned to
physicalURL) from the forwards HashMap. It then obtains the RequestDispatcher object from the

508

Chapter 15

20_57485x ch15.qxd 1/14/05 10:17 PM Page 508

TEAM LinG - Live, Informative, Non-cost and Genuine!

ServletContext. This object can be used to tell the container to forward a request for further process-
ing. In this case, the RequestDispatcher object is used to forward the request to the selected target.

if (logicalName.equals(HOT))
physicalURL= (String) forwards.get(HOT);

if (logicalName.equals(COOL))
physicalURL= (String) forwards.get(COOL);

RequestDispatcher dispatcher = context.getRequestDispatcher(physicalURL);
dispatcher.forward(request, response);
}
catch(Exception e)
{

throw new ServletException(e);
}

}

The forwarding targets
In ControllerServlet, requests are forwarded to either /example2/red.jsp or /example2/
blue.jsp.

The red.jsp page is located at <Tomcat Installation Directory>/webapps/ch15/example2/
red.jsp and contains the following:

<html>
<head>

<title>Red Page</title>
</head>
<body bgcolor=”red”>

<h1>Red page!</h1>
</body>
</html>

The blue.jsp page is located at <Tomcat Installation Directory>/webapps/ch15/example2/
blue.jsp and contains the code shown here:

<html>
<head>

<title>Blue Page</title>
</head>
<body bgcolor=”blue”>

<h1>Blue page!</h1>
</body>
</html>

509

JSPs and Servlets

20_57485x ch15.qxd 1/14/05 10:17 PM Page 509

TEAM LinG - Live, Informative, Non-cost and Genuine!

Summary
This chapter demonstrated the following points:

❑ Servlets are essential, non-JSP components in Web applications.

❑ All servlets implement the javax.servlet.Servlet interface.

❑ An abstract helper class called javax.servlet.http.HttpServlet from the Servlet API
library is typically used to simplify the coding of Web application servlets.

❑ The servlet container is responsible for instantiating, initializing, and managing servlets.

❑ A servlet’s init() method is called before the first request is sent to its service() method.

❑ The destroy() method will be called before a servlet instance is put out of commission.

❑ The service() method of a servlet may be concurrently called by many threads.

❑ In a servlet’s init() method, the container passes in a ServletConfig object that can be used
to fetch initialization parameters. These parameters can be specified in the deployment descrip-
tor, web.xml, within the servlet declaration element.

❑ The deployment descriptor, or web.xml file, tells the container about the servlets that are in the
application. The <servlet> element associates a name with the Java class that implements the
servlet. The <servlet-mapping> element tells the container when to send incoming requests to
the servlet for processing.

JSPs are closely related to servlets:

❑ Before a JSP can be used to process requests, the container actually translates the JSP code into
Java code. This translated Java code is in the form of a servlet.

❑ From the perspective of the container, both JSP and servlets are really the same type of server-
side software component.

❑ JSPs are best used in creating the user interface and presentation elements of an application,
whereas servlets are best suited for the nonpresentation aspects.

❑ Most available Web application frameworks make extensive use of both servlets and JSPs.

Exercises
1. Write and test a servlet called MessageServlet that prints out a message obtained from an ini-

tialization parameter. This initialization parameter should be called message and have a value
of “Hello, world!” The servlet should be executed when the user accesses the following URL:

http://localhost:8080/ch15/talktomeplease

2. Modify the second Try It Out example as follows:

a. Route requests for the target warm.do to a new JSP called example2/message.jsp.

b. Have message.jsp print a message specified in an initialization parameter named
“message” (Use “Hello, world!” for the value of this parameter).

510

Chapter 15

20_57485x ch15.qxd 1/14/05 10:17 PM Page 510

TEAM LinG - Live, Informative, Non-cost and Genuine!

16
The Role of JSP in the Wider
Context: Web Applications

This chapter will start to explore how the JSP fits within the server-side Java programming envi-
ronment. All of the previous chapters have provided a thorough background on developing and
using JSP, and this chapter takes the next step toward enlightenment, showing how the JSP com-
ponents are packaged along with other resources to form a Web archive (WAR), the standard
deployment unit for J2EE Web applications.

This chapter examines the composition of a Web archive and describes many of the likely configu-
ration options needed for JSP developers creating a Web application. This chapter also covers a
number of options available when deploying a Web archive, highlighting the differences between
development and production system requirements. Finally, the chapter provides some examples
of how to package and deploy a Web archive for the Tomcat server.

Also included in this chapter is a lot of background information about Web applications and
how they fit into the overall scheme of development. While it is not essential to read and under-
stand everything in this chapter, the contents provide another foundation stone in learning about
JSP development. It is highly recommended that readers new to JSP and Java development work
through the examples at the end of the chapter.

In particular, this chapter does the following:

❑ Examines the structure of a Web application

❑ Describes the important elements of the Web application deployment descriptor
(web.xml)

❑ Provides some examples of developing and deploying a Web application

21_57485x ch16.qxd 1/14/05 10:19 PM Page 511

TEAM LinG - Live, Informative, Non-cost and Genuine!

What Is a Web Application?
A Web application is a collection of resources bundled together in a specific structure defined by the
servlet specification. A Web application contains the JSP files, servlets, HTML pages, tag libraries, and
images that, as a group, comprise a complete application to be deployed and run by a servlet container.

That might all sound a little confusing, but in reality, it’s very simple: A Web application provides a
standard means of packaging all the JSP files and other application resources in a manner that all
J2EE-compliant Web application servers can understand.

The servlet specification (at this stage, up to version 2.4) is the document that defines all the rules and
regulations regarding how servlet containers should operate and what functionality should be provided
for servlet developers in the way of API functionality. The JSP specification works closely with the
servlet specification to define the functionality for JSP development.

Part of the servlet specification is the definition of the directory structure required for a Web application,
a topic explored in the next section.

Directory Structure for a Web Application
The following listing shows the directory and file structure for a Web application as defined by the
servlet specification:

webapp/
WEB-INF/web.xml
WEB-INF/classes
WEB-INF/lib

In addition, the JSP 2.0 specification recommends the use of a WEB-INF/tags directory for packaging
tag files. More information on creating tag libraries and using tag files can be found in Chapter 6, “JSP
Tag Libraries and JSTL.”

The webapp directory (also known as the root of the Web application) normally contains the JSP files,
images, and HTML files. The webapp directory can also contain subdirectories such as images or html
or can be organized by function, such as public or private.

The WEB-INF/web.xml file is called the deployment descriptor for the Web application. This file contains
configuration information specifying how the Web application is constructed, including the mappings of
URLs to servlets and filters. The web.xml file also contains configuration information for security, MIME
type mapping, error pages, and locale settings.

The web.xml deployment descriptor has changed for version 2.0 of the JSP specification, and is now
validated by a schema rather than the DTD that was used previously. A major source of confusion for
developers in previous versions of web.xml was the very strict ordering required within the elements of
the file. In version 2.0, this strict ordering has been relaxed for the top-level configuration items.
However, within each of the configuration elements, ordering is still important.

512

Chapter 16

21_57485x ch16.qxd 1/14/05 10:19 PM Page 512

TEAM LinG - Live, Informative, Non-cost and Genuine!

The WEB-INF/classes directory contains the class files for the servlets, JSP files, tag libraries, and any
other utility classes that are used in the Web application.

The WEB-INF/lib directory contains JAR files for libraries that are used by the Web application. These
are generally third-party libraries or classes for any tag libraries used by the Web application.

When a Web application is loaded by the server, classes are loaded from the WEB-INF/classes direc-
tory first, and then from the WEB-INF/lib directory.

In general, the Web application directory structure also defines the URL of the JSP pages and other
resources.

The Deployment Descriptor
This section describes many of the deployment descriptor elements that a JSP developer is likely to need
to understand, or change. The number of elements in the deployment descriptor is quite large, and in
many cases not all of them are needed for the development of Web applications.

The following elements are the ones most relevant for JSP developers, and while they might not appear
to be relevant in many situations, some of them are new in JSP 2.0 and provide great alternatives to
other programming techniques that have been used previously. It will be valuable for you to become
familiar with the elements outlined in the following sections, as many of them can make a hard or
time-consuming task much easier.

Deployment descriptor elements for a JSP developer
This section does not contain an exhaustive list of the elements contained in the deployment descriptor;
nor does it contain all the elements that a JSP developer might need to use. This section contains the ele-
ments that are most likely to be used when developing JSP applications.

This section is divided into two parts:

❑ Common JSP

❑ Enterprise JSP

Common JSP contains the elements that most JSP developers are likely to work with, or need to config-
ure at some stage. Enterprise JSP contains the elements needed by JSP developers who are working with
more complex systems and interacting with databases, implementing security and working with
servlets.

Keep in mind that not every element in the deployment descriptor is covered in this section, or in this
book. The detailed information provided here covers the most common cases, both for general and
enterprise JSP development. For further information on the elements not covered, see the JavaServer
Pages Specification Version 2.0 and the Java Servlet Specification Version 2.4. Alternatively, the Wrox title
Professional Apache Tomcat 5 (ISBN 0-7645-5902-8) provides extended coverage of this topic.

513

The Role of JSP in the Wider Context: Web Applications

21_57485x ch16.qxd 1/14/05 10:19 PM Page 513

TEAM LinG - Live, Informative, Non-cost and Genuine!

Common JSP
JSP developers are most likely to work with the following four elements:

❑ jsp-config

❑ context-param

❑ welcome-file-list

❑ error-page

These elements are used and modified by JSP developers in nearly every Web application.

jsp-config

The jsp-config element is a global definition for the JSP files that form part of the Web application.
This element is comprised of two sub-elements:

❑ taglib

❑ jsp-property-group

taglib

The taglib element defines the mapping for a human-understandable name of a tag library with the
actual location of the Tag Library Descriptor (TLD). This location may be an actual file or the name of the
JAR file that contains the TLD. For example:

<taglib>
<taglib-uri>mytaglib</taglib-uri>
<taglib-location>WEB-INF/lib/mytaglib-v1.jar</taglib-location>

</taglib>

The taglib-uri is the name that is used in the JSP page taglib directive.

<%@ taglib prefix=”my” uri=”mytaglib” %>

However, with the new auto-discovery of tag library features in the JSP 2.0 specification, the need to
declare tag libraries in this way has somewhat diminished.

jsp-property-group

The jsp-property-group element provides a grouping for a set of JSP files. The grouping is defined in
a similar way to servlet-mapping elements. Groups are defined by a URL pattern, which is shown in
more detail later in this section.

Any number of property-group elements may be created in the jsp-config element. A jsp-property-
group is created to provide specific configuration information about that group of JSP files.

514

Chapter 16

21_57485x ch16.qxd 1/14/05 10:19 PM Page 514

TEAM LinG - Live, Informative, Non-cost and Genuine!

Within a jsp-property-group element are a number of elements that control the configuration for
the group of JSP files specified. Unfortunately, the actual specifications have muddled the definitions
somewhat, and while it may seem sensible that the configuration within a jsp-property-group apply
only to that grouping of JSP files, that is not always the case. Where these inconsistencies occur, they are
highlighted in the text.

The elements that exist within the property-group are as follows:

❑ url-pattern

❑ el-ignored

❑ page-encoding

❑ scripting-invalid

❑ is-xml

❑ include-prelude

❑ include-coda

The url-pattern element defines the group of files that are configured by this property-group. The
url-pattern follows these rules:

❑ A pattern starting with a / and terminating with a /* is used for matching a path.

❑ A pattern starting with *. is used as extension mapping.

❑ A pattern that consists of only a / matches the default servlet.

❑ All other patterns are exact matches.

These patterns are matched against the resources in the Web application in the following order, and if a
match is found the searching ceases:

❑ Exact match: The container attempts to find an exact match.

❑ Longest path-prefix: The container attempts to find the url-pattern that matches the largest
number of common directories in the path, starting at the highest directory.

❑ Extension match: The container attempts a match using the extension.

A matched URL is then part of that jsp-property-group, and the other elements provide the configu-
ration that is applied to those URLs.

The el-ignored element controls whether the expression language should be evaluated in the JSP page.
This setting is useful when transitioning older JSP pages to run on newer JSP containers, as the expres-
sion language (EL) evaluation may conflict with patterns that look like ${expression} already in the
JSP pages. This occurs because these patterns were not designated as “reserved words” in previous ver-
sions of the JSP specification. Therefore, the developers of the JSP standard have provided an appropri-
ate mechanism for moving forward, rather than making everything developed previously break.

515

The Role of JSP in the Wider Context: Web Applications

21_57485x ch16.qxd 1/14/05 10:19 PM Page 515

TEAM LinG - Live, Informative, Non-cost and Genuine!

These patterns may have just been text that was expected to be displayed, or passed to other compo-
nents as literals. The valid values for el-ignored are true and false.

The following configuration will ignore, and therefore not evaluate, any requested EL expressions or
files that end in jsp:

<jsp-property-group>
<url-pattern>*.jsp</url-pattern>
<el-ignored>true</el-ignored>

</jsp-property-group>

The page-encoding element declares the pageEncoding property for the set of JSP files in the jsp-
property-group. This element and property are used to describe the output character set produced by
the JSP page. This is an important consideration when developing pages that will be viewed by people
speaking and reading languages other than English — for example, the multibyte character sets found in
Japanese.

<jsp-property-group>
<url-pattern>/ja/*</url-pattern>
<page-encoding>Shift_JIS</page-encoding>

</jsp-property-group>

The scripting-invalid element controls the use of JSP scripting tags within the set of JSP pages. If
the scripting-invalid element is set to true, then using <% and %> will generate an error while pro-
cessing the JSP page. The value of the scripting-invalid element defaults to false, allowing script-
ing within the JSP pages. The following jsp-property-group disallows scripting in JSP pages that
end in jsp:

<jsp-property-group>
<url-pattern>*.jsp</url-pattern>
<scripting-invalid>true</scripting-invalid>

</jsp-property-group>

When set to true, the is-xml element declares that the group of files is defined by the url-pattern
JSP documents, and must be interpreted as XML documents. The following configuration declares that
files ending in xhtml should be treated as JSP documents, and translated accordingly:

<jsp-property-group>
<url-pattern>*.xhtml</url-pattern>
<is-xml>true</is-xml>

</jsp-property-group>

The include-prelude element is used to define a path to a JSP fragment that is included as a header on
all JSP pages that match the url-pattern for the jsp-property-group. Likewise, the include-coda
element defines a footer JSP fragment. The common naming convention for the JSP fragments is to
include the file extension .jspf, These fragment files must follow the same rules as those used for stan-
dard JSP include files: start and end tags must be in the same file.

516

Chapter 16

21_57485x ch16.qxd 1/14/05 10:19 PM Page 516

TEAM LinG - Live, Informative, Non-cost and Genuine!

The include-prelude and include-coda elements work slightly differently than the other
jsp-property-group elements do. The other jsp-property-group elements are selected by the
url-pattern according to the matching criteria described previously. These will select only one of the
jsp-property-group elements. However, for the include-prelude and include-coda elements,
each matching jsp-property-group will be applied in the order it is defined in the web.xml. The
following is an example of the jsp-property-group element, showing the use of include-prelude
and include-coda elements:

<jsp-property-group>
<url-pattern>/admin/*</url-pattern>
<include-prelude>/WEB-INF/include/admin-header.jspf</include-prelude>
<include-coda>/WEB-INF/include/admin-footer.jspf</include-coda>

</jsp-property-group>

Note that these includes are done during translation of the JSP pages. This means that they occur when
the JSP pages are being parsed and compiled into servlets. Note a common trap in using the includes:
The servlet containers look for changes to the JSP files to recompile (or retranslate) the JSP page. Adding
the include-prelude and include-coda to the web.xml will not change the output for JSP pages that
have already been translated.

During development, the easiest path to take is to delete the work directory, which will cause the JSP
files to be recompiled.

context-param
The context-param element is used to provide initialization information to the Web application.
The Web application can retrieve these parameters by using the getInitParameter() and getInit
ParameterNames() methods on the ServletContext object. There can be many context-param
elements in the web.xml and they are generally used for configuring items that do not change. These
might be items such as the e-mail address of the administrator of the Web server, the name of the
Web application, or the version of the Web application:

<web-app>
<context-param>

<param-name>adminEmailAddress</param-name>
<param-value>admin@mycompany.com</param-value>

</context-param>
<context-param>

<param-name>applicationName</param-name>
<param-value>My Web Application</param-value>

</context-param>
<context-param>

<param-name>applicationVersion</param-name>
<param-value>1.0.2</param-value>

</context-param>
</web-app>

517

The Role of JSP in the Wider Context: Web Applications

21_57485x ch16.qxd 1/14/05 10:19 PM Page 517

TEAM LinG - Live, Informative, Non-cost and Genuine!

The following code shows how to obtain and use these values within a JSP page:

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>

<html>
<head><title>Parameter Listing</title></head>
<body>

<h1> Parameter Listing <h1>

<table border=1>
<tr><th>Parameter Name</th><th>Parameter Value</th></tr>
<c:forEach items=”${initParam}” var=”current” >

<tr><td>${current.key}</td><td>${current.value}</td></tr>
</c:forEach>

</table>
</body>

</html>

welcome-file-list
The welcome-file-list element is an ordered list of files that will be searched when a directory
is requested. The files are described as “partial URIs” by the servlet specification, and are really just
the last section of the URL. A request for a directory entry in the Web application using the example
welcome-file-list will search for an index.html first, a hello.jsp second, and the processor
servlet third:

<web-app>
<welcome-file-list>

<welcome-file>index.html</welcome-file>
<welcome-file>hello.jsp</welcome-file>
<welcome-file>processor</welcome-file>

</welcome-file-list>
</web-app>

If none of these partial URIs combined with the directory URL match a valid resource in the Web appli-
cation, then the results are unpredictable. For example, the Tomcat server will return a directory listing,
but this is not guaranteed behavior for all servers.

error-page
The error-page element declares a mapping between an error and a resource in the Web application
that is called when that error occurs. The errors can be caused by HTTP errors (such as 404 Not Found)
and Web application exceptions (like a ServletException). The errors can be mapped to any valid
resource in the Web application, so it may be handled by a static HTML page, a JSP page, or a servlet.

The error-page element is useful for defining error pages that are customized for the particular Web
application. The advantage of using the JSP pages and servlets is that additional information about the
error can be presented to the user for reporting the error:

518

Chapter 16

21_57485x ch16.qxd 1/14/05 10:19 PM Page 518

TEAM LinG - Live, Informative, Non-cost and Genuine!

<web-app>
<error-page>

<error-code>404</error-code>
<location>/file-not-found.html</location>

</error-page>
<error-page>

<exception-type>javax.servlet.ServletException</exception-type>
<location>/oopsy.jsp</location>

</error-page>
</web-app>

Enterprise JSP
The additional elements needed in more complex applications are as follows:

❑ login-config

❑ security-constraint

❑ security-role

❑ env-entry

❑ resource-ref

❑ servlet

❑ servlet-mapping

Other elements, such as ejb-ref, service-ref, and message-destination-ref, are used to interop-
erate with Enterprise Java Beans (EJB) systems or Web services; however, these advanced topics are not
covered in this book.

login-config
login-config declares the authentication mechanism to be used, the realm name of the Web applica-
tion, and, if required, the configuration to be used by the specific authentication mechanism.

login-config is not enough to secure a Web application; security-constraint is required to iden-
tify the resources that are secured, and login-config defines the way the resources are secured.

There is only one login-config for a Web application, so all resources identified by the security-
constraint elements will authenticate the user in the same way.

The login-config element consists of the following child elements:

❑ auth-method: This element is used to define the mechanism for the authentication scheme. The
authentication scheme can be BASIC, DIGEST, or FORM.

❑ realm-name: If the auth-method is BASIC or DIGEST, then the realm-name defines the name
of the authentication realm.

❑ form-login-config: If the auth-method is FORM, then the form-login-config defines the
parameters needed for form login configuration.

519

The Role of JSP in the Wider Context: Web Applications

21_57485x ch16.qxd 1/14/05 10:19 PM Page 519

TEAM LinG - Live, Informative, Non-cost and Genuine!

The login-config element is explored in more detail in Chapter 24, “Security.”

An example of a login-config for basic authentication follows:

<web-app>
<login-config>

<auth-method>BASIC</auth-method>
<realm-name>My Web Application</realm-name>

</login-config>
</web-app>

An example of a login-config for form authentication follows:

<web-app>
<login-config>

<auth-method>FORM</auth-method>
<form-login-config>

<form-login-page>/login.jsp</form-login-page>
<form-error-page>/fail.jsp</form-error-page>

</form-login-config>
</login-config>

</web-app>

security-constraint
The security-constraint element defines the security constraints that are applied to a group of
resources in the Web application. The resources are defined by the web-resource-collection using a
url-pattern to specify the matching pattern.

There can be many security-constraint elements in the web.xml and each can refer to a different
role, or group of roles, that may access the resources.

The security-constraint contains the following elements:

❑ web-resource-collection: Defines a subset of resources in the web application.

❑ auth-constraint: Defines the user roles that are permitted to access the resources, provided
they authenticate successfully.

❑ user-data-constraint: Defines the protection (if any) on the transmission of the resources
from the server to the client. Normally, this element is used to force the server to use SSL to
transfer the data securely.

The security-constraint element is explored in more detail in Chapter 24, “Security.”

An example of security-constraint follows:

<web-app>
<security-constraint>

<web-resource-collection>
<web-resource-name>Administration</web-resource-name>
<url-pattern>/administration/*</url-pattern>

520

Chapter 16

21_57485x ch16.qxd 1/14/05 10:19 PM Page 520

TEAM LinG - Live, Informative, Non-cost and Genuine!

<http-method>GET</http-method>
<http-method>POST</http-method>

</web-resource-collection>
<auth-constraint>

<role-name>admin</role-name>
<role-name>manager</role-name>

</auth-constraint>
<user-data-constraint>

<transport-guarantee>CONFIDENTIAL</transport-guarantee>
</user-data-constraint>

</security-constraint>
</web-app>

security-role
The security-role element defines a security role for a Web application. A security role is a name that
may be used within the role-name element of the security-constraint element, and defines a
group of users that are configured in a container-specific manner. The group identity defined by the
server and the role-name must match so that users can be associated with the correct security role.

In the basic install of the Tomcat server, conf/tomcat-users.xml is the configuration file for the roles
and users, and the roles defined in this file need to match the role-name of the security-role for the
Web application in order to authenticate the users.

Following is an example of the security-role element:

<web-app>
<security-role>

<role-name>admin</role-name>
</security-role>
<security-role>

<role-name>manager</role-name>
</security-role>

</web-app>

env-entry
The env-entry element declares an environment entry for a Web application. Like context-param,
env-entry provides a means to configure the Web application from values not in the Web application.
However, in various servers, env-entry can be changed during runtime using server-specific tools,
potentially changing the behavior of the Web application during runtime.

Following is an example of the env-entry element:

<web-app>
<env-entry>

<env-entry-name>debug</env-entry-name>
<env-entry-type>java.lang.Boolean</env-entry-type>
<env-entry-value>false</env-entry-value>

</env-entry>
<env-entry>

<env-entry-name>debugLevel</env-entry-name>

521

The Role of JSP in the Wider Context: Web Applications

21_57485x ch16.qxd 1/14/05 10:19 PM Page 521

TEAM LinG - Live, Informative, Non-cost and Genuine!

<env-entry-type>java.lang.Integer</env-entry-type>
<env-entry-value>99</env-entry-value>

</env-entry>
</web-app>

resource-ref
The resource-ref element declares an access point to a JNDI-accessible object factory. This provides
the Web application with a means of accessing external resources that can be defined during deploy-
ment. These elements are normally resources like database connections.

This element is discussed in more detail in Chapter 23, “Access to Databases.” Following is an example
of the resource-ref element:

<web-app>
<resource-ref>

<description>Asset Database</description>
<res-ref-name>jdbc/AssetDatabase</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>

</resource-ref>
</web-app>

servlet and servlet-mapping
The servlet and servlet-mapping elements are used to declare the servlets in a Web application, and
the mapping of servlets to a URL pattern, respectively.

The servlet element declares a servlet-name that is used as the link to the servlet-mapping ele-
ment and the servlet-class that is the fully qualified class name of the servlet.

The most common use of the servlet and servlet-mapping elements with JSP development is when
JSP pages are precompiled before deployment to a server. In these cases, the JSP developer needs to
declare the compiled JSP pages as servlets, and provide mappings for the original JSP name. This tech-
nique is shown in more detail in Chapter 25, “Performance.”

An example of servlet and servlet-mapping for a precompiled JSP page follows:

<web-app>
<servlet>

<servlet-name>ViewJSP</servlet-name>
<servlet-class>org.apache.jsp.View_jsp</servlet-class>

</servlet>
<servlet-mapping>

<servlet-name>ViewJSP</servlet-name>
<url-pattern>View.jsp</url-pattern>

</servlet-mapping>
</web-app>

522

Chapter 16

21_57485x ch16.qxd 1/14/05 10:19 PM Page 522

TEAM LinG - Live, Informative, Non-cost and Genuine!

This concludes the group of elements that is covered in this chapter. The information presented here
should provide a sufficient introduction for most JSP projects, with more detail to be found in other
chapters. You should explore the servlet and JSP specifications for more information on other elements.

Using a Web Archive
The most common deployment format for a Web application is called a Web archive, or WAR. A WAR is
a Java archive (JAR) file (which in turn is a ZIP file) that contains all the directories and files described
previously. The servlet specification requires that a Web application server can work with WAR files, but
many of the common servers also work with Web applications in an unpacked or open format.

The unpacked or open format of a Web application is extremely important for JSP developers. Without
it, any change to a JSP page would require the WAR file to be recreated before deploying it to a Web
application server. Even considering the increased capabilities of modern servlet and JSP containers,
needing to recreate and redeploy for each change would make development far too slow.

During development, it is most convenient to use an unpacked Web application; and during deployment
to a production system, it is best to use a WAR file. This is discussed further in the next section.

Development and Deployment Strategies
To get the most out of developing a JSP application, it is worth separating the development and deploy-
ment cycles. This is normally a very important aspect of all software development, but it has additional
benefits with Web application development.

First what is needed is a brief definition of the two terms:

❑ Development: The development process represents what occurs when the Web application is
being created. This includes the editing and debugging of JSP pages, and unit testing and con-
figuration of the Web application to ensure that all user functionality is being met. The develop-
ment stage is completed with a fully working Web application.

❑ Deployment: The deployment process occurs after completing the Web application, and repre-
sents the installation of the Web application in a production environment. The production envi-
ronment might be a test server or the production server. This process involves the configuration
and creation of a WAR file for the target environment, and the installation of the WAR file.

Although these activities as described might appear to be completely separate and linear, this is far from
the case. In reality, development occurs for a period of time, deployment occurs for more formal testing,
defects are found or enhancements are identified, and the cycle starts again.

It is useful to understand, from the descriptions, that development cycles occur very frequently; and the
“write code and then test” cycle needs to happen quickly for productivity not to suffer. If a WAR file
were created after every line of code was changed, development activities would grind to a halt.

523

The Role of JSP in the Wider Context: Web Applications

21_57485x ch16.qxd 1/14/05 10:19 PM Page 523

TEAM LinG - Live, Informative, Non-cost and Genuine!

The good news is that during development, the Web application can be left in an open, or unpacked, for-
mat (just the directories on disk); and during deployment, the Web application can be bundled up into a
WAR file for more formal treatment of release activities.

Packaging and Deploying for Tomcat
This section contains a number of practical exercises for developing and deploying simple Web applica-
tions using the Tomcat server.

Before attempting these exercises, ensure that Tomcat is installed and configured properly. As these JSP
pages use the JSTL tags, the JSTL libraries will need to be copied in the Web application lib directory for
the Web application. This is described in more detail during the exercises, but requires a JSTL-compatible
set of tag libraries, which can be downloaded from http://jakarta.apache.org/taglibs.

Try It Out Setting Up the Web Application Environment
Create a directory structure as follows:

/chapter16
/web

/WEB-INF
/lib

Copy standard.jar and jstl.jar from the taglibs distribution into the lib directory.

Create a skeleton web.xml in the WEB-INF directory containing the following:

<?xml version=”1.0” encoding=”ISO-8859-1”?>
<web-app version=”2.4” uri=”http://java.sun.com/xml/ns/j2ee” >

</web-app>

Create an index.html in the web directory containing the following:

<html>
<head>

<title> Chapter 16 Exercises </title>
</head>
<body>
<h1> Chapter 16 Exercises </h1>

 Exercise 1 - Creating and deploying the simplest web application
 Exercise 2 - Adding a JSP page
 Exercise 3 - Securing the JSP page
 Exercise 4 - Adding headers and footers

</body>

<html>

524

Chapter 16

21_57485x ch16.qxd 1/14/05 10:19 PM Page 524

TEAM LinG - Live, Informative, Non-cost and Genuine!

As this is possibly the simplest Web application that can be built, it’s a good time to install it as a Web
application in the Tomcat server.

You have several options for installing the Web application in Tomcat; for these examples, we will create
a file called chapter16.xml containing the following:

<?xml version=’1.0’ encoding=’utf-8’?>
<Context

docBase=”/path/to/myprojects/chapter16/web”
path=”/chapter16”
reloadable=”true”
workDir=”/path/to/myprojects/chapter16/work”>

</Context>

In the preceding code, /path/to/myprojects is the actual path to where the chapter16 directory has
been created.

For JSP developers using Windows, the chapter16.xml may look like the following:

<?xml version=’1.0’ encoding=’utf-8’?>
<Context

docBase=”c:/myprojects/chapter16/web”
path=”/chapter16”
reloadable=”true”
workDir=”c:\myprojects\chapter16\work”>

</Context>

Copy this file to <Tomcat Installation Directory>/conf/Catalina/localhost, where it will be
picked up by the Tomcat server. Start the Tomcat server and browse to the following URL:

http://localhost:8080/chapter16/

This should result in a screen like the one shown in Figure 16-1.

To see how easy it is to change the Web application while it is installed, edit the index.html file and
include the following list item:

 Exercise 1 - Creating and deploying the simplest web application
 Exercise 2 - Adding a JSP page
 Exercise 3 - Securing the JSP page
 Exercise 4 - Adding headers and footers
 Exercise 5 - Dynamic HTML pages

Refresh the browser. The resulting screen should look like the one shown in Figure 16-1, but with the
addition of the extra text that has been added.

525

The Role of JSP in the Wider Context: Web Applications

21_57485x ch16.qxd 1/14/05 10:19 PM Page 525

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 16-1: The simple Web application is installed

How It Works
This very simple Web application shows how to deploy during development using Tomcat. Many
servlet and JSP containers will provide similar means to allow for development in a local directory and
have the servlet container look outside the normal webapps directory for applications to be deployed.

The other interesting point is that the servlet/JSP container can act as a normal Web server and just serve
static content as the index.html page shows, reflecting changes in the content as it is modified by the
developer.

Try It Out Adding JSP Pages to a Web Application
The exercise adds a JSP to the Web application, yet another step forward to world domination and Web
application development mastery.

Create a file called showDate.jsp in the web directory with the following contents:

<%@ taglib prefix=”fmt” uri=”http://java.sun.com/jsp/jstl/fmt” %>
<jsp:useBean id=”now” class=”java.util.Date” />

526

Chapter 16

21_57485x ch16.qxd 1/14/05 10:19 PM Page 526

TEAM LinG - Live, Informative, Non-cost and Genuine!

<html>
<head><title>Current Date and Time</title></head>
<body>

<h1> Date and Time </h1>

The date and time is : <fmt:formatDate value=”${now}” type=”both” />
</body>

</html>

Make a small edit to index.html so that the JSP page can be linked from the front page. It’s not a neces-
sity, as a direct URL would work, but this makes the Web application hang together as a whole.

 Exercise 1 - Creating and deploying the simplest web application
 Exercise 2 - Adding a JSP page
 Exercise 3 - Securing the JSP page
 Exercise 4 - Adding headers and footers

Now refresh the front page and click the link for Exercise 2. This should display a screen that looks like
the one shown in Figure 16-2.

Figure 16-2: Results from showDate.jsp

527

The Role of JSP in the Wider Context: Web Applications

21_57485x ch16.qxd 1/14/05 10:19 PM Page 527

TEAM LinG - Live, Informative, Non-cost and Genuine!

How It Works
In addition to simple HTML, Web applications can contain pages with dynamic content, JSP. The JSP pages
are placed in the Web application root, or in subdirectories where they are served by the servlet container.

Introduction to Web application security
Ensuring the security of Web applications is covered in much greater detail in Chapter 24, but this short
example shows how simple it is to secure a Web application. For this exercise, the web.xml and some
Tomcat configuration files will need to be modified.

The goal of this Try It Out exercise is to prevent unauthorized users from accessing the showDate.jsp
page. The first step is to add the required authentication information to the Tomcat server.

Try It Out Preventing Unauthorized Access to showDate.jsp
Edit the <Tomcat Installation Directory>/conf/tomcat-users.xml file to add the following
entries:

<role rolename=”chapter16role” />
<user username=”chapter16” password=”chapter16” roles=”chapter16role”/>

In the web.xml file, add the following security configuration:

<?xml version=”1.0” encoding=”ISO-8859-1”?>

<web-app version=”2.4” uri=”http://java.sun.com/xml/ns/j2ee” >

<security-role>
<role-name>chapter16role</role-name>

</security-role>

<security-constraint>
<web-resource-collection>

<url-pattern>showDate.jsp</url-pattern>
</web-resource-collection>
<auth-constraint>

<role-name>chapter16role</role-name>
</auth-constraint>

</security-constraint>

<login-config>
<auth-method>BASIC</auth-method>
<realm-name>Chapter 16 Realm</realm-name>

</login-config>

</web-app>

Now restart the Tomcat server to reload the user configuration information and browse to the
following URL:

http://localhost:8080/chapter16/

528

Chapter 16

21_57485x ch16.qxd 1/14/05 10:19 PM Page 528

TEAM LinG - Live, Informative, Non-cost and Genuine!

Click the exercise 2 link, and the results should be the same as those shown in Figure 16-3. This is a basic
security login. Enter the username (chapter16) and password (chapter16) that were entered into the
tomcat-users.xml, as shown in Figure 16-2, and click the OK button. This will display the date screen.

Figure 16-3: BASIC authentication dialog

How It Works
The security-constraint defines the resources that are protected and the credentials required to
access the resources. The login-config defines the manner in which the user will authenticate. In this
case, the standard HTTP BASIC authentication scheme is selected. For many Web applications this is
sufficient protection of resources; however, Chapter 24 shows a number of additional mechanisms to
work with container-provided security.

Summary
This chapter has covered a broad range of topics regarding Web applications, including their structure,
configuration, development, and deployment.

529

The Role of JSP in the Wider Context: Web Applications

21_57485x ch16.qxd 1/14/05 10:19 PM Page 529

TEAM LinG - Live, Informative, Non-cost and Genuine!

To conclude this chapter, let’s review some of its key points:

❑ Web applications conform to a standard directory structure.

❑ Web applications can contain static and dynamic resources as part of the directory structure.

❑ The Web application can be deployed as a WAR, or installed as an open directory structure in
most JSP containers.

❑ The web.xml deployment descriptor can be used to change the behavior of many facets of a
Web application, including implementing security, control scripting, and modifying the output.

Exercises
1. Add a header and footer element to every JSP page served by the Web application. Figure 16-4

shows a sample header and footer.

Figure 16-4: Header and footer fragments added to the pages

530

Chapter 16

21_57485x ch16.qxd 1/14/05 10:19 PM Page 530

TEAM LinG - Live, Informative, Non-cost and Genuine!

2. Implement a counter that increases each time the index.html page is viewed since the Web
application has been started. An example of such a Web page is shown in Figure 16-5.

Figure 16-5: JSP page with an .html extension displaying a page counter

3. Modify exercise 2 to have a different counter for each user session.

531

The Role of JSP in the Wider Context: Web Applications

21_57485x ch16.qxd 1/14/05 10:19 PM Page 531

TEAM LinG - Live, Informative, Non-cost and Genuine!

21_57485x ch16.qxd 1/14/05 10:19 PM Page 532

TEAM LinG - Live, Informative, Non-cost and Genuine!

17
Model View Controller

While the understanding and knowledge of syntax, libraries, and configurations are very useful,
the place that effective application design takes in your arsenal of skills is many orders of magni-
tude more important. Developers who can build scalable, changeable applications that meet their
requirements are highly regarded. Developers who don’t have these skills, or simply don’t apply
them, and punch out the easiest, quickest solution are deemed to be hacks, in the derogatory sense
of the word.

This chapter introduces one of many important architectural concepts that assist in the develop-
ment of applications that have to display an interface to a user of a system. This is the Model View
Controller architecture (or MVC). MVC’s structure offers significant benefits for Web applications,
and being familiar with it will enhance your understanding of a far wider range of concepts, some
of which use or have borrowed ideas from MVC.

Specifically, this chapter covers the following:

❑ A definition of MVC

❑ An example of an MVC Model 2 implementation

❑ An explanation of the components of MVC with respect to the example

As mentioned earlier, this chapter covers the MVC architectural concepts and not specific MVC
frameworks. These frameworks are covered in Chapter 18, “Web Frameworks” (Spring and
WebWork) and Chapter 19, “Struts Framework.”

22_57485x ch17.qxd 1/14/05 10:13 PM Page 533

TEAM LinG - Live, Informative, Non-cost and Genuine!

What Is MVC?
MVC is a design concept that attempts to separate an application into three distinct parts. One part is
concerned with the actual work the application conducts, another part is concerned with displaying the
data or information of an application, and another part coordinates the former two in order to display
the correct interface or execute some work that the application needs to complete. These parts are
respectively:

❑ Model: The Model represents the part of an application that actually does the work and models
the real-world problem that the application attempts to solve. For example, a customer may be
modeled in an application, and there may be various ways to create new customers or change
information relating to a customer.

❑ View: The View is the representation of the Model that the user can see and interact with. For
example, a View might be a list of customers that have registered in an application.

❑ Controller: The Controller is the part of the application that responds to commands from the
user, deciding how the Model should be changed or retrieved and which View should be dis-
played. For example, the Controller would receive a request to display a list of customers by
interacting with the Model and delivering a View where this list could be displayed.

The logical separation of the application into these parts ensures that the Model layer knows nothing
about how it is displayed; it is restricted to just representing the component parts of the problem being
solved by the application. Likewise, the View layer is concerned only with displaying data and not with
implementing business logic, which is handled by the Model layer. The Controller, much like a traffic
officer, directs the views to be displayed and fires off data changes and retrievals from the Model layer.

The MVC approach is largely based on an event-driven environment in which the user drives the flow of
the application by using the interface. It is not surprising, therefore, to find its roots in the earliest graph-
ical user interface (GUI) developments.

Xerox PARC (Palo Alto Research Center), a highly influential research and development lab, developed
the purely object-oriented (OO) language Smalltalk in 1972. Smalltalk was the first OO language to inte-
grate a GUI, and its creation introduced the MVC design approach for implementations. The mouse-
driven, point-and-click interface we take for granted today was born with Smalltalk, which went on to
heavily influence other object-oriented languages such as C++ and Java.

MVC and Web Applications
MVC lends itself particularly well to Web-based applications, which, like traditional GUI applications,
are almost entirely user-driven and have to present some sort of interface for that to occur.

When Web applications were first being developed using CGI or servlets, there was a tendency to
embed the display logic (HTML) within the business logic of the application. Conversely, using server-
side scripting languages such as ASP, PHP, and Perl, developers embedded business logic within the
display. When JSP was first released, this pattern continued, with developers using a series of JSP
pages to implement the business logic of the application as well as to display the interface to the user.
This is referred to as a Model 1 architecture. Figure 17-1 illustrates how a Model 1 architecture may be
structured.

534

Chapter 17

22_57485x ch17.qxd 1/14/05 10:13 PM Page 534

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 17-1: Model 1 architecture

The sequence of events explained in this example is simple if you’ve done any sort of Web application
development. You can probably relate it to some of your own projects:

1. The user requests a Web page — for example, home.jsp.

2. The servlet container executes the logic contained in home.jsp as well as any include pages it
may point to. This execution may include retrieving data from a database or other functions to
satisfy the business logic. Beans provide representations of data within the JSP page.

3. Entwined within the business logic of the page are the makings of the HTML that will be pre-
sented to the user.

4. As a result of the processing, the final HTML is constructed and displayed to the user.

For a small application with limited amounts of business logic, this architecture may be more than ade-
quate. It is simple and effective. However, in a more complicated application where the business logic is
not only more in-depth but the display logic required is also significant, a Model 1 approach can lead to
an unmaintainable mess. Much of the JSP page would be fragments of Java (scriptlets) generating HTML.

The classic example of this is an application that uses only one or two pages to cover all of its functional-
ity. A massive if, else if, else construct typically surrounds the processing and display logic. You can
see the disadvantages of this and other Model 1–type approaches in the following areas:

❑ Code repetition: Code to perform certain business rules or to affect what is displayed is often
repeated. Changing multiple instances of this logic can be haphazard at best.

❑ Maintainability: If the business logic is entwined within display logic, making simple changes
can be dangerous and difficult. In addition, the person making the changes has to have experi-
ence in both the programming language used and HTML.

❑ Extensibility: A change in the business rules of the application can force major restructuring;
simple changes become expensive in a commercial environment.

browser

client side

request

response

bean

data

1
2

4

3

server side

JSP

535

Model View Controller

22_57485x ch17.qxd 1/14/05 10:13 PM Page 535

TEAM LinG - Live, Informative, Non-cost and Genuine!

❑ Testability: An application developed in such a way is very difficult to test. Applications are
most testable when each of the components can be tested individually. A highly testable applica-
tion makes maintenance much more manageable. Small changes can be evaluated quickly and
simply and the developer is not left wondering if some other part of the application has been
affected.

Challenged by these obvious disadvantages, developers identified a more sophisticated architecture
using servlets and JSP. This Model 2 architecture is based on an adaptation of the MVC architecture. In
this implementation, a servlet is used as a Controller, fielding requests from the user, effecting changes
in the Model, and providing views back to the user.

The views implemented in this architecture still used JSP pages, but the logic they contained related only
to displaying the interface to the user, rather than implementing the business logic as well. The Model
layer was encapsulated in Java objects that were unconcerned with how they were displayed.

Figure 17-2 illustrates a Model 2 architecture.

Figure 17-2: Model 2 architecture

The flow of events here is a little more complex:

1. The user requests the URL of a servlet. In the request would be some indication of the work that
is required. For example, the URL might be something like /home?action=listCustomers,
where action represents the work that the Controller should undertake.

2. The Controller receives the request and determines the work to complete based on the request.
The Controller executes calls on the Model to undertake the required business logic.

browser

client side

request

1

6

5

2

4

3

response

server side

Servlet
(Controller) data

Java objects
(Model)

JSP
bean (Model)

JSP

(View)

536

Chapter 17

22_57485x ch17.qxd 1/14/05 10:13 PM Page 536

TEAM LinG - Live, Informative, Non-cost and Genuine!

3. The Model layer is instructed to provide a list of Customer objects by the Controller. It may
access some sort of persistence layer such as a database to provide this.

4. The Controller is provided with the list of Customer objects to display in the View. The
Controller also determines the appropriate View to provide for the user. Using the request dis-
patcher, the servlet can provide the list of Customer objects to the View selected (JSP page).

5. The View now has a reference to the data provided and renders the display of the list in accor-
dance with its display logic.

6. The generated HTML as a result of this process is provided back to the user in the response.

The Model, or business logic layer, of the application is completely unconcerned with how it is dis-
played in the View; it merely responds to events triggered by the Controller. Additionally, the method of
providing data is “hidden” away from other components. The method of accessing data and preparing it
can be transparently changed without affecting the rest of the application.

Conversely, the View layer is devoid of all business logic. Its only responsibility is to render the
information it is given according to a layout, and to provide forms, links, and buttons to enable further
functionality.

Try It Out Example Model 2 Application
This section walks you through a simple application. While building the application, it illustrates the
importance of the separate components of MVC. You can download the application from the Wrox Web
site at www.wrox.com.

This application has two primary functional tasks: to list a series of Customer objects and to enable the
user to select one of these values and display it.

The following explanation examines how to implement the first piece of functionality using each of the
MVC components. The discussion concludes by adding on the second piece of functionality: selecting an
individual Customer object to display from the list.

Controller: SimpleController
As mentioned previously, the role of a Controller is to direct requests to the appropriate View and pro-
vide the required data along the way. SimpleController is a servlet that has been developed to accom-
plish this. When SimpleController is executed, it expects a parameter to identify the work that should
be completed. In Web applications, such concepts are often referred to as actions. In GUI programming,
this concept of an action may be referred to as an event. In this discussion, SimpleController has been
mapped in the servlet container as controller. It will therefore be invoked as http://localhost:
8080/mvc/controller.

SimpleController tests the value of the action parameter and performs the required work accord-
ingly. Figure 17-3 broadly illustrates this flow.

In the figure, a request to the servlet has specified that the displaylist action should be executed. A
request of this sort might be as follows:

http://localhost:8080/mvc/controller?action=displaylist

537

Model View Controller

22_57485x ch17.qxd 1/14/05 10:13 PM Page 537

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 17-3: Controller using the action parameter

The SimpleController then has the task of executing the required functions appropriate to this action.
If you look at the servlet code that does this, you can see that the evaluation of the action parameter
determines the functionality that is executed. The following is a listing of the SimpleController
servlet. The displaylist action is highlighted.

package com.wrox.begjsp.ch17.mvc;

import java.io.IOException;

import java.util.List;

import javax.servlet.RequestDispatcher;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class SimpleController extends HttpServlet
{

protected void doPost(HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException

{
String action = request.getParameter(“action”);
String jspPage = “/index.jsp”;

if ((action == null) || (action.length() < 1))
{

action = “default”;
}

if (“default”.equals(action))
{

jspPage = “/index.jsp”;
}
else if (“displaylist”.equals(action))
{

CustomerManager manager = new CustomerManager();
List customers = manager.getCustomers();
request.setAttribute(“customers”, customers);

jspPage = “/displayList.jsp”;
}
else if (“displaycustomer”.equals(action))
{

SimpleController (Servlet)

browser
request

param: action=displaylist
displayList.jsp

538

Chapter 17

22_57485x ch17.qxd 1/14/05 10:13 PM Page 538

TEAM LinG - Live, Informative, Non-cost and Genuine!

String id = request.getParameter(“id”);
CustomerManager manager = new CustomerManager();
Customer customer = manager.getCustomer(id);
request.setAttribute(“customer”, customer);

jspPage = “/displayCustomer.jsp”;
}

dispatch(jspPage, request, response);
}

protected void dispatch(String jsp, HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException

{
if (jsp != null)
{

RequestDispatcher rd = request.getRequestDispatcher(jsp);
rd.forward(request, response);

}
}

protected void doGet(HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException

{
doPost(request, response);

}
}

The displaylist action is just one of three separate actions implemented in SimpleController. The
displaylist action first instantiates a CustomerManager object in order to get the required data for
this action. From the CustomerManager, a list of Customer objects is obtained and then added to the
request. Finally, the action assigns an appropriate path to a JSP file (the View) to be displayed:
/displayList.jsp.

Model: Customer
The application needs to represent the concept of a customer for various areas of functionality that may
be required. For our purposes in this example, it is important to understand how a simple JavaBean
(Customer) is accessed by the Controller layer and displayed on the View layer.

The Customer class implemented here is nothing too exciting; it has four properties representing an
identifier, the customer’s first name, the customer’s last name, and an address. Each has associated GET
and SET methods. The code for this class is listed here:

package com.wrox.begjsp.ch17.mvc;

public class Customer
{

private String _id;
private String _firstName;
private String _lastName;
private String _address;

539

Model View Controller

22_57485x ch17.qxd 1/14/05 10:13 PM Page 539

TEAM LinG - Live, Informative, Non-cost and Genuine!

public Customer(String id, String firstName, String lastName, String address)
{

_id = id;
_firstName = firstName;
_lastName = lastName;
_address = address;

}

public String getAddress()
{

return _address;
}

public void setAddress(String address)
{

_address = address;
}

public String getFirstName()
{

return _firstName;
}

public void setFirstName(String firstName)
{

_firstName = firstName;
}

public String getLastName()
{

return _lastName;
}

public void setLastName(String lastName)
{

_lastName = lastName;
}

public String getId()
{

return _id;
}

public void setId(String id)
{

_id = id;
}

}

This class models the real-world concept of a customer. The system will display a list of these Customer
objects on one of its pages.

540

Chapter 17

22_57485x ch17.qxd 1/14/05 10:13 PM Page 540

TEAM LinG - Live, Informative, Non-cost and Genuine!

Web applications store their information in various ways. The most common method is in a database.
Although this simple example doesn’t use a database, we need to implement something that retrieves a
List of Customer objects from somewhere. That somewhere is not really important here, but the simu-
lation of that access is. We can therefore extend the Model layer to include a class whose job it is to
retrieve Customer objects and provide them to whomever calls for them — notably, the
SimpleController class.

In the SimpleController code listed previously, a CustomerManager object was instantiated and a
List of Customer objects was retrieved from it (see Figure 17-4). The CustomerManager is basically a
simulation of something that accesses a persistence service such as a database.

Figure 17-4: The SimpleController retrieves Customer objects from CustomerManager

Figure 17-3 has been enhanced in Figure 17-4 to show the interaction of the Controller with the
CustomerManager. Customer objects are obtained from this class and passed onto the JSP page within
a List object. For our purposes, the CustomerManager class is very simple:

package com.wrox.begjsp.ch17.mvc;

import java.util.ArrayList;
import java.util.List;

public class CustomerManager
{

public List getCustomers()
{

return generateCustomers();
}

private List generateCustomers()
{

List rv = new ArrayList();

for (int i = 0; i < 10; i++)
{

SimpleController (Servlet)

browser
request

param: action=displaylist
displayList.jsp

CustomerManager
(Model)

Customer
instances

541

Model View Controller

22_57485x ch17.qxd 1/14/05 10:13 PM Page 541

TEAM LinG - Live, Informative, Non-cost and Genuine!

rv.add(getCustomer(String.valueOf(i)));
}

return rv;
}

public Customer getCustomer(String id)
{

return new Customer(id, id + “First”, “Last” + id,
“123 Caroline Road Fooville”);

}
}

The CustomerManager class exposes a getCustomers method that returns a List of Customer objects
to the SimpleController. For the purposes of this demonstration, the Customer objects are created
on-the-fly to simulate some sort of data store access.

You can see from these code samples that the Model layer is very much concerned with the business
problems at hand and has nothing to do with how it is rendered in the View.

View: displayList.jsp
If you look back at the SimpleController code listing, you might notice how the SimpleController
forwards resources and the request onto an appropriate JSP page to continue processing. The following
listing has highlighted this within the SimpleController:

...
else if (“displaylist”.equals(action))
{

CustomerManager manager = new CustomerManager();
List customers = manager.getCustomers();
request.setAttribute(“customers”, customers);

jspPage = “/displayList.jsp”;
}

...
dispatch(jspPage, request, response);

}

protected void dispatch(String jsp, HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException

{
if (jsp != null)
{

RequestDispatcher rd = request.getRequestDispatcher(jsp);
rd.forward(request, response);

}
}
...

The logic to achieve this is found in the dispatch method that is called at the end of the doPost method
of the SimpleController servlet. The dispatch method uses an object called RequestDispatcher to

542

Chapter 17

22_57485x ch17.qxd 1/14/05 10:13 PM Page 542

TEAM LinG - Live, Informative, Non-cost and Genuine!

forward the HttpServletRequest and HttpServletResponse objects onto an appropriate resource —
in this case, as a JSP file.

In the action code, the Customer object List retrieved from the CustomerManager was added to the
request as an attribute called customers. The code then identified the path to the appropriate JSP file to
use: /displayList.jsp. The dispatch method was then called in turn.

The code to implement in the View now becomes very simple. Its only job is to render the list of
Customer objects that it has been provided by the SimpleController. The contents of
displayList.jsp are as follows (the code to render the table of Customer objects is shaded):

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>

<html>
<head>

<title>Display Customer List</title>
</head>
<body>

<table cellspacing=”3” cellpadding=”3” border=”1” width=”500”>
<tr>

<td colspan=”4”>Customer List</td>
</tr>
<tr>

<td>Id</td>
<td>First Name</td>
<td>Last Name</td>
<td>Address</td>

</tr>
<c:forEach var=”customer” items=”${requestScope.customers}”>
<tr>

<td>

${customer.id}

</td>
<td>${customer.firstName}</td>
<td>${customer.lastName}</td>
<td>${customer.address}</td>

</tr>
</c:forEach>
</table>
</body>
</html>

You can see that the c:forEach JSTL tag has been used. The customers List was added to the request
in the SimpleController. Accordingly, the tag to iterate over this Collection has referenced this
List from the requestScope in its items attribute. The list displayed might look something like what
is shown in Figure 17-5.

543

Model View Controller

22_57485x ch17.qxd 1/14/05 10:13 PM Page 543

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 17-5: List of customers displayed

Each customer object represented in the list has an identifier (the id property) that uniquely identifies it.
Displaying this property in the list helps to form an HTML link to the controller servlet with an
appropriate action parameter to tell the SimpleController that the displaycustomer action should
be executed. Additionally, the unique identity of the Customer object has been added as a parameter in
this link called id. This parameter will be used in SimpleController’s displaycustomer action to get
the correct Customer from the Model layer.

Selecting a single customer for display
The functionality to display a single customer record for the user in response to a selection in the cus-
tomer list follows the same pattern.

SimpleController has an appropriate action for this functionality: displaycustomer. This segment
of the SimpleController is relisted here:

...
else if (“displaycustomer”.equals(action))
{

String id = request.getParameter(“id”);
CustomerManager manager = new CustomerManager();
Customer customer = manager.getCustomer(id);
request.setAttribute(“customer”, customer);

544

Chapter 17

22_57485x ch17.qxd 1/14/05 10:13 PM Page 544

TEAM LinG - Live, Informative, Non-cost and Genuine!

jspPage = “/displayCustomer.jsp”;
}
...

First, the id parameter is retrieved from the request and used in the getCustomer(id) call to
CustomerManager to retrieve the appropriate Customer object. The retrieved value is then added to the
request as an attribute called customer. Finally, the action assigns the path to an appropriate JSP file in
order for the View to be displayed: /displayCustomer.jsp.

The displayCustomer.jsp page is listed here:

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>

<c:set var=”customer” value=”${requestScope.customer}”/>
<html>
<head>

<title>Display Customer</title>
</head>
<body>

<table cellspacing=”3” cellpadding=”3” border=”1” width=”60%”>
<tr>

<td colspan=”2”>Customer:
${customer.firstName} ${customer.lastName}

</td>
</tr>
<tr>

<td>Id</td>
<td>${customer.id}</td>

</tr>
<tr>

<td>First Name</td>
<td>${customer.firstName}</td>

</tr>
<tr>

<td>Last Name</td>
<td>${customer.lastName}</td>

</tr>
<tr>

<td>Address</td>
<td>${customer.address}”</td>

</tr>
</table>
</body>
</html>

displayCustomer.jsp is a simple JSP page along the same lines as displayList.jsp described ear-
lier. However, the single customer attribute is copied from the requestScope to the page scope to
make its accesses a little less verbose. Each of the values is then printed out in a tabular format. This JSP
page will render something similar to what is shown in Figure 17-6.

545

Model View Controller

22_57485x ch17.qxd 1/14/05 10:13 PM Page 545

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 17-6: The Display customer details JSP

This completes a simple example of an MVC architecture using servlets and JSP. This example has illus-
trated in a somewhat contrived manner the clean separation of concerns that MVC provides:

❑ Model: The Customer and CustomerManager concerned themselves with modeling the busi-
ness logic of the application.

❑ View: The two JSP pages simply displayed the Model information they were provided. The JSP
pages are simple and easy to understand.

❑ Controller: The SimpleController acted as a traffic cop, fielding requests from the user,
retrieving data from the Model, and directing traffic to the appropriate action for execution.

Summary
When learning a new language (or a new anything for that matter) developers conquer the ground-level
syntax and techniques for solving problems. Learning design techniques such as MVC is equally (if not
more) important, as developers gain a greater understanding of the implications of their decisions in
development. As developers mature, the importance of these techniques increases, as does the quality of
their applications.

MVC is just one of countless design techniques that are extremely important in Web application devel-
opment. These design techniques are often referred to as patterns. Patterns are generalized approaches to
solving design problems on a micro and macro scale.

546

Chapter 17

22_57485x ch17.qxd 1/14/05 10:13 PM Page 546

TEAM LinG - Live, Informative, Non-cost and Genuine!

This chapter has presented the following:

❑ An introduction to the MVC architecture, with a focus on Web applications

❑ Descriptions of the individual components (Model, View, and Controller) of MVC.

❑ A comparison of earlier approaches to developing Web applications with MVC approaches. The
Model 1 architecture was compared to the Model 2 implementation of MVC to illustrate the sig-
nificant advantages this approach provides.

❑ The benefits of using MVC were illustrated using a simple example application that showed the
individual components interacting to satisfy some simple functionality.

MVC is an important concept to keep in mind when embarking on the next few chapters in this book.
Chapter 18, “Web Frameworks,” introduces other tools that can be used to help develop an application
by providing important infrastructure and promoting a particular design. As you shall see, many such
frameworks promote or even enforce the use of MVC.

Exercise
1. Add a new action to the Model 2 example to present the properties of a customer ready for edit-

ing in a form. Add a link to this new action at the base of the JSP that displays customer details
(displayCustomer.jsp).

547

Model View Controller

22_57485x ch17.qxd 1/14/05 10:13 PM Page 547

TEAM LinG - Live, Informative, Non-cost and Genuine!

22_57485x ch17.qxd 1/14/05 10:13 PM Page 548

TEAM LinG - Live, Informative, Non-cost and Genuine!

18
Web Frameworks

This chapter introduces you to the world of frameworks. It first defines what a framework is and
explains why they are desirable in your application development.

The chapter then introduces some available frameworks that you can use and explains their basic
structure. This chapter will prepare you for the next chapter, which explains a Web framework in
significantly more detail. Of course, this chapter assumes you have followed the steps outlined in
Chapter 1, “Getting Started with JavaServer Pages,” about setting up Tomcat and your develop-
ment environment.

This chapter covers the following topics:

❑ A general definition of frameworks

❑ Why frameworks are generally considered a good practice

❑ Different types of Web frameworks

❑ An example using the WebWork framework

❑ An example using the MVC components of the Spring framework

This chapter will prepare you for Chapter 19 on the Struts framework and Chapter 20 on the Tiles
framework.

What Is a Framework?
As programmers, we can generally define what we do as solving problems. Every problem has
one or many solutions that we might implement to achieve our goals. (Few problems have no
solution!) These solutions can vary in any number of ways — from their complexity to their gen-
eral architecture.

Problems to be solved exist at all levels of software development, from figuring out how to struc-
ture an application to choosing between a for-loop and a while-loop. Different programmers will

23_57485x ch18.qxd 1/14/05 10:14 PM Page 549

TEAM LinG - Live, Informative, Non-cost and Genuine!

typically solve a problem differently. Give ten programmers the same problem, and you will more than
likely get ten different solutions.

Most problems encountered by programmers have been solved before. There are characteristics of
problems that generally enable them to be categorized. Sure, there may be slight differences between
any two problems in the same category, but they are generally the same, and therefore will have similar
solutions.

When someone develops a way of solving a particular type of problem that can generally be repeated
when that problem (or something like it) next appears, then we say they are using a pattern to provide a
solution to that problem. Patterns are ways of solving types of problems. Patterns can provide solutions
to problems at all levels of application development, from architectural issues to defining the relation-
ships between two classes. The use of widely accepted patterns in solving common problems is good
practice. The Model View Controller (MVC) architecture introduced in Chapter 17 is an example of a
very common pattern.

A great J2EE Web site that has a huge repository of useful patterns submitted by readers is The Server
Side (www.theserverside.com). A lot of the patterns listed in this site are extensions or variations of
some crucial cornerstone patterns that experienced developers are familiar with.

So where do frameworks fit in? Like patterns, frameworks are repeatable ways of solving a particular
problem. Frameworks are a prescriptive set of building blocks and services the developer can use to
achieve some goal; this may include developing an entire application, building part of an application,
testing an application, and so on. Basically, a framework provides the infrastructure to solve a type of
problem. A framework is not the solution to a problem; it is simply the tool with which we structure
a solution.

In terms of helping you design the solution to your problem, frameworks vary in their degree of intru-
siveness. Some frameworks dictate certain ways of structuring a solution, whereas others provide a
generic infrastructure and leave many decisions to the developer.

In providing this structure, a framework will typically use proven patterns in its architecture. For
instance, the MVC pattern is used in many Web application frameworks available today. Most MVC-
based Web frameworks have a central representation of the Controller component. Sometimes this
Controller is configurable so that requests are passed to other classes as part of the different actions it
might execute. Web frameworks may also handle the translation of HTML form parameters into fully
defined objects available for the developer to access and process data as appropriate. Validation, cen-
trally defined, may also feature in this translation. All this integration with the application means the
developer can spend more time solving business problems.

Why Frameworks Are Good
Frameworks are good for a number of reasons. First, frameworks provide a structure for our solution.
This invariably saves us time, enabling us to concentrate on solving the business problem at hand. Using
a popular framework usually means applying a structure or tools that many other developers have ana-
lyzed and improved over a period of time. Developers can rest assured that many experienced people
have developed and used the framework to provide a structure for their applications.

550

Chapter 18

23_57485x ch18.qxd 1/14/05 10:14 PM Page 550

TEAM LinG - Live, Informative, Non-cost and Genuine!

For instance, the MVC pattern has probably been applied in a hundred billion different ways for a Web
site. Yet using a strong, popular, and flexible framework to provide the structure for your MVC solution
ensures that your time isn’t spent adding yet another MVC approach to the ever-growing pile.

This is not to say that new ways of structuring an implementation of the MVC pattern are not welcome,
but when a particular framework has withstood scrutiny from developers around the world, chances are
that your application problems can be solved by it as well. As a rule of thumb, if it’s not your intention
to design a framework of your own, one of the many popular frameworks available on the Internet will
almost certainly provide 95 percent of the functionality you require, and the remaining 5 percent can be
added on by your own brilliance.

Frameworks also promote a kind of quasi-standard approach to resolving a particular problem, depend-
ing on its ubiquity within the development community. For instance, the Struts framework is a very
popular application framework, so many developers are familiar with the Struts method of structuring
an application. This has benefits in the workplace, where developers can immediately understand a part
of an application that has been developed using Struts, rather than some proprietary method that they
would have to be taught.

Types of Frameworks
As mentioned earlier, frameworks provide a structure for many types of problems, from developing part
of an application to managing a project’s documentation. Because frameworks are becoming ubiquitous
with Java development, the following sections categorize them and put them into a context that will
help you choose from the many that are now available.

Application frameworks
An application framework is a framework that provides some type of structure to an aspect of applica-
tion development. Most frameworks will provide the developer with a set of tools to use, including, but
not limited to the following:

❑ Architectural patterns

❑ Validation mechanisms

❑ Internationalization

❑ Templating

Architectural patterns
Many frameworks subscribe to an architectural pattern. Most Web application frameworks use an MVC
Model 2 architecture on which an application can be based. As discussed in Chapter 17, this allows for a
clear separation of concerns between the business and presentation layers of the application.

Validation mechanisms
Validating business rules and user input is one of the more cumbersome areas of Web application devel-
opment. Most Web application frameworks, therefore, have at least one strategy for defining validation

551

Web Frameworks

23_57485x ch18.qxd 1/14/05 10:14 PM Page 551

TEAM LinG - Live, Informative, Non-cost and Genuine!

rules and displaying appropriate messages when those rules are broken. For instance, the Struts frame-
work uses an XML file to define validation rules. Struts also enables the developer to define validation
rules in the objects that define the form or user input interface being invoked. This type of flexibility is
invaluable.

Internationalization
A growing number of Web applications need to be multilingual; after all, the Internet is a global place.
As a result, many Web frameworks provide the infrastructure to handle this. This is commonly referred
to as internationalization, or i18n for short. Many frameworks include support for internationalized
images and messages to be presented to the user.

Templating
The visual presentation of a Web page often can be organized into a number of elements that are
repeated throughout the site. A prime example of this is a menu. Templating utilities within a frame-
work enable the placement of these common elements on various pages without repeating code.

The Struts framework is packaged (as of Struts 1.1) with a templating utility called Tiles. Tiles enables
developers to segment the visual presentation of a Web page into a set of components, such as a login
form, a menu, a stock ticker, and so on. A Web page, therefore, becomes a collection of predefined “tiles,”
laid out in the manner desired. Chapter 19, “Struts Framework,” has an in-depth introduction to the use
of Struts, and Chapter 20, “Layout Management with Tiles,” focuses on Tiles.

Persistence frameworks
Other frameworks provide a structure for the interaction between an application and some sort of data
store, such as a database. This is commonly referred to as persistence. Persistence frameworks are very
popular because they attempt to abstract the relationship between an application and its data storage
medium. This means the application is less dependant on the storage medium itself. In theory, it is there-
fore possible for an application to switch between one database and another, without having to worry
about the peculiarities of any dependencies that the application may have for a particular database
provider.

Persistence frameworks also enable the developer to focus on an object-oriented view of business prob-
lems, as the framework handles the translation between the “relational” world of the database and the
object-oriented world of the application. Some persistence frameworks also provide for other conven-
iences such as query caching, connection handling, and transactions.

Many persistence-type frameworks provide some or all of the above. Probably the most common is EJB,
or Enterprise JavaBeans (EJB). EJB is a specification for a component architecture issued by Sun
Microsystems as part of the J2EE. Many implementations of the EJB specification are commonly found in
Java application servers, such as BEA Weblogic, IBM Websphere, and JBOSS.

Other persistence frameworks that are of varying popularity are Hibernate, JDO (provided by the Java
Community Process (JCP)), TopLink, and Coco Base.

EJB is covered briefly in Chapter 22, “JSP in J2EE,” and Hibernate in Chapter 23, “Access to Databases.”

552

Chapter 18

23_57485x ch18.qxd 1/14/05 10:14 PM Page 552

TEAM LinG - Live, Informative, Non-cost and Genuine!

Utility frameworks
Utility frameworks fill a variety of requirements for application development. JUnit, for instance, is a
very popular testing framework. It provides developers with an excellent framework for developing
tests of an application during development. BSF (Bean Scripting Framework) is an API that enables an
application to access Java objects within scripting languages, and enables other scripting languages to be
accessed from within Java applications.

Other frameworks, such as Forrest, are used to generate documentation based on XML (Extensible
Markup Language) and XSLT (Extensible Stylesheet Language Extensions).

As you can see, a wide variety of frameworks are available to the developer. The following table pro-
vides a list of frameworks and their associated URLs, where you can find more information. The next
section of this chapter goes into a little more depth about two of the frameworks mentioned, WebWork
and Spring, both of which are application frameworks. As mentioned earlier, Chapter 19 provides
detailed information about one of the more popular frameworks, Struts. Chapter 20 explains Tiles, a
templating framework that accompanies Struts.

Framework URL Type Description

Action Servlet http://actionframework Application An MVC framework for
.org/ building Web applications

Barracuda http://barracudamvc Application Web presentation framework
.org/Barracuda/

BSF http://jakarta.apache Utility A bean scripting framework
.org/bsf/

Coco Base http://thoughtinc.com/ Persistence An OR Mapping persistence
cber_index.html framework

Forrest http://xml.apache.org/ Utility A project documentation
forrest/ framework

Hibernate http://hibernate.org/ Persistence An object persistence
framework

Jakarta Struts http://jakarta.apache Application A very popular MVC
.org/struts framework

JUnit http://junit.source Utility A popular unit-testing
forge.net/ framework

OracleAS http://otn.oracle.com/ Persistence A persistence framework
TopLink products/ias/toplink/

Tapestry http://jakarta.apache Application A Web application frame-
.org/tapestry/ work

TeaServlet http://teatrove.source Application A templating framework for
forge.net/ developing Web applications

Table continued on following page

553

Web Frameworks

23_57485x ch18.qxd 1/14/05 10:14 PM Page 553

TEAM LinG - Live, Informative, Non-cost and Genuine!

Framework URL Type Description

Turbine http://jakarta.apache Application A servlet-based application
.org/turbine/ framework

Webwork http://opensymphony Application A Web application
.com/webwork/ development framework

Spring http://springframework Application A framework covering
.org/ many aspects of application

development

WebWork
WebWork is an open-source application framework provided by Open Symphony, which contends that
using it keeps things simple while adhering to best-practice design patterns and techniques. You can
download WebWork from the Open Symphony Web site at http://opensymphony.com/webwork/.
This chapter uses the latest version at the time of writing, 1.4.

Developers who choose to use WebWork in their application are provided with the following tools:

❑ A set of Dispatchers that act as entry points to the application. A variety of Dispatchers are pro-
vided for different requirements.

❑ A set of specific WebWork custom tags

❑ Support for different types of view technologies, such as JSP, Velocity, and Jasper reports

❑ Validation mechanisms

❑ Logging using Commons logging (http://jakarta.apache.org/commons/logging/),
which provides a wrapper over logging mechanisms such as native Java Logging or Log4J
from Jakarta

❑ A Pull HMVC (Hierarchical Model View Controller) architecture

The following section describes the items in the preceding list in the context of an application you may
build using WebWork. Although WebWork boasts an architecture that could be used in many types of
applications, we will be focusing on their use in the capacity of building an application for the Internet.

Components of WebWork
WebWork comprises two central components fulfilling the View and Controller aspects of the MVC
model: Dispatchers and Views.

Dispatchers
As described in Chapter 17, the Controller aspect of an MVC application can use servlets to define and
implement the glue between the Model layer and the View layer. Controllers act as a conduit, fielding

554

Chapter 18

23_57485x ch18.qxd 1/14/05 10:14 PM Page 554

TEAM LinG - Live, Informative, Non-cost and Genuine!

requests from somewhere (in our case, the Internet), triggering some business logic, and forwarding
resources on to other Controllers or a View technology to display to a user.

These controllers usually fulfill one or more actions in the application. For instance, a form may be
submitted to an action, or a list from the database will be displayed once a particular action has been
invoked. Actions, in turn, generally forward resources to display technologies such as JSP files. They
can even forward control to other actions.

In WebWork, Dispatchers act as facades through which all requests must pass before these action
servlets are invoked. WebWork supports three Dispatchers, developed with different scenarios in mind.

ServletDispatcher
The ServletDispatcher is a central point of invocation provided by WebWork. Requests, based on the
URL requested, are mapped to this servlet. Based on the configuration defined by the application devel-
oper, these requests are then passed on to actions that perform various tasks for the application. Actions
will typically then forward resources to a View technology for display. As you can see, this Dispatcher is
specifically designed for use in a Web application. The action described here is merely a servlet defined
and inherited from the framework.

The diagram in Figure 18-1 illustrates the interactions of the ServletDispatcher within the context of
the WebWork framework.

Figure 18-1: A request mapped through the framework to a view

As shown in Figure 18-1, the ServletDispatcher is merely a GenericDispatcher wrapped to pro-
vide a Web context. We will be concentrating only on the ServletDispatcher in this section. The other
Dispatchers provided by Web Work are described briefly in the following sections.

The mapping to the appropriate action classes is achieved by entries in the application’s view.
properties file.

GenericDispatcher
GenericDispatcher, as the name suggests, is a more generalized dispatcher that does not assume the
nature of the invocation is receives. It is invoked via a Java method call. In an architectural sense, it plays
a role similar to that of ServletDispatcher.

Action A

Action B

Action C View 2

ServletDispatcher

HTTP Request action mapping

jsp

custom
tags

Generic Dispatcher

View 1

555

Web Frameworks

23_57485x ch18.qxd 1/14/05 10:14 PM Page 555

TEAM LinG - Live, Informative, Non-cost and Genuine!

ClientDispatcher
ClientDispatcher is used for the remote invocation of ClientServletDispatchers. Using a serial-
ized request, ClientDispatcher can communicate with remote clients. These remote clients can then
map requests locally to actions, and perform them appropriately.

Views
WebWork supports a number of view technologies for the presentation of information. By view technol-
ogy, we mean a mechanism for organizing and displaying visual information to the user; that’s right,
we’re referring to the presentation tier.

JSP
At this point, you know all about JSP and its benefits in providing an extremely powerful presentation
layer to your application. What is important in the context of WebWork is the large number of custom
tags that are provided to help generate, present, and manipulate this dynamic content.

The WebWork Custom Tag Library can be broadly divided into two groups: user-interface-related and
logic-related. The user interface tags assist in the presentation of information while integrating with the
rest of the framework, providing a link between the data set up for presentation in an action and the
page on which it will be presented. More often than not, this capability is used for the presentation of
forms and validating the inputs that your users may enter into them.

Logic custom tags provided by WebWork also use resources from the Controller tier of the WebWork
MVC architecture, but are more concerned with structuring logic around the presentation, such as “only
present this table if <some rule>,” and “iterate through this list of objects and do <something> with
each one.” Custom tags in this sense enable the developer to present dynamic information without
knowing the intricacies of Java programming.

Use of these tags will become more obvious when you work with an example using WebWork. As a brief
reference, the following table describes some of the more common custom tags provided by WebWork.

Tag Name Description Used In

checkbox: <ui:checkbox.../> HTML check box form element. Forms

combobox: <ui:combobox../> HTML input form element and select Forms
box working together to present selected
items.

label: <ui:label../> HTML label tag to present information in User interface
the same format as other elements used.

password: <ui:password../> HTML input form element for password Forms
input.

radio: <ui:radio../> HTML radio button form element. Forms

select: <ui:select../> HTML select list form element. Forms

tabbedpane: <ui:tabbedpane../> Handy element to present a pane User interface
presentation of different views.

556

Chapter 18

23_57485x ch18.qxd 1/14/05 10:14 PM Page 556

TEAM LinG - Live, Informative, Non-cost and Genuine!

Tag Name Description Used In

table: <ui:table../> Tag to output an HTML table. User interface

textarea: <ui:textarea../> HTML textarea form element. Forms

action: <webwork:action../> Tag to invoke another action defined Logic
within WebWork.

append: <iterator:append../> Tag to append a series of iterations Logic
together and be treated as one.

bean: <webwork:bean../> Tag to set up a bean within the context Logic
of the JSP page. Nested param tags set
the various properties of the bean.

if, else, elseif: <webwork:if../>, Tags to provide conditional logic. Logic
<webwork:elseif../>,
<webwork:else../>

Include: <webwork:include../> Tag to include the results of another Logic
pageor action.

iterator: <webwork:iterator../> Tag to loop over a value, such as a Logic
Collection, etc.

Sort: <webwork:sort../> Tag to sort a value in an iterator tag. Logic

Text: <webwork:text../> Tag to print out a text value defined Logic
in a properties file.

Those who have read Chapter 6, “JSP Tag Libraries and JSTL,” will note a common thread of functional-
ity running through this list of custom tags and, for example, those provided by JSTL and the Custom
Tag Lib implementations from Jakarta. However, these tags are designed to integrate primarily with the
resources provided by other WebWork components such as actions, as well as others.

Velocity
Velocity is a templating engine that can be integrated with WebWork actions to provide for the visual
requirements of a Web application. Velocity specifics are not described here. What is important in the
context of our discussion is that actions invoked in WebWork can pass control and resources to Velocity
templates.

XSLT
WebWork can also convert some of the data produced by actions into XML, which, in turn can be pre-
sented to the user with the help of XSLT stylesheets. In this sense, the logic capabilities of XSLT are used
to determine which data to present and how it is presented.

Jasper Reports
Jasper Reports is a tool used to generate reports based on data sources provided to it. WebWork actions
can be integrated as these data sources, thereby providing the logic to determine which data will be

557

Web Frameworks

23_57485x ch18.qxd 1/14/05 10:14 PM Page 557

TEAM LinG - Live, Informative, Non-cost and Genuine!

included in the report. The support for the generation of Jasper Reports is fairly comprehensive but out
of the scope of this book.

WebWork example
It’s time now to actually have a go at creating something with WebWork. This section will lead you
through the steps necessary to get the example application working with the latest version of Tomcat.
The team at WebWork has kindly included with its distribution a skeleton application that serves as
an excellent starting point for enhancement and working with some of the tools that this framework
provides.

Installation
Once you have downloaded the latest version of WebWork from http://opensymphony.com/
webwork/, the first step is to extract the zip file contents into a directory of your choice. Extracting the
contents will create a directory called webwork-1.4 (lets assume it’s C:\webwork-1.4). Inside this
directory, you will find the following subdirectories.

❑ docs: WebWork documentation is found in this directory.

❑ lib: The lib directory contains some the core JAR and WAR files we will use when utilizing
WebWork in an application.

❑ etc: Here you will find some extra files for special purposes. A zip file is included in this direc-
tory containing the skeleton application. We will get to this later.

❑ src: The kind people at WebWork have packaged up the source code for us to peruse if we feel
so inclined. You will find it in this directory.

We’re now ready to start exploring this framework by installing the example application that comes
with WebWork.

Example applications
The examples that are packaged with WebWork are quite comprehensive and will give you an insight
into the possibilities now available to you when using this framework. In the C:\webwork-1.4\lib
directory, you will find a file called webwork.war. This WAR file contains an application that you can
install on your Tomcat server. Install the WAR file by following these steps:

1. Stop the Tomcat server.

2. Copy the webwork-examples.war file into the C:\Tomcat\webapps directory.

3. Start the Tomcat server.

Once Tomcat has gone through its start-up sequence, you should have a new application context avail-
able. Start your favorite browser and navigate to http://localhost:8080/webwork/.

The first section of the page presents a list of tests you can invoke to ensure that you have the applica-
tion installed correctly. However, if you scroll down a bit you will find the examples. They show some
basic, typical Web site application effects such as form validation, shopping carts, and so on. Remember
that you can look at the code for all these applications in the C:\webwork-1.4\src directory. These
examples are invaluable in confirming your understanding of WebWork when the time comes.

558

Chapter 18

23_57485x ch18.qxd 1/14/05 10:14 PM Page 558

TEAM LinG - Live, Informative, Non-cost and Genuine!

Skeleton application
Sure, the examples are great, but we assume you want to do more than just look at the results of some-
one else’s code, right? Good to hear. You can now get the skeleton application working with Tomcat. The
following steps will guide you through to this goal. These instructions assume you have set up the Ant
build tool described in Chapter 26, “Best Practices and Tools.”

1. In the C:\webwork-1.4\etc directory, locate webwork-skeleton.zip. Unzip this file into a
directory of your choice. For our purposes, we will assume this is C:\webwork-skeleton.

2. Within the directory you just created, you should now have the contents of the zip file. Among
these contents is a file called build.xml. This is an Ant build file we are going to use to build
the skeleton application to get things going. After we have made some changes to the skeleton
application, we will use the build.xml file to make them available to Tomcat.

3. Select Start ➪ Run and type cmd at the prompt. A command console will open.

Issue the following command to get to the skeleton application’s directory:

cd c:\
cd webwork-skeleton

4. From the command console, type ant compile.

Your command console should now appear something like what you see in Figure 18-2.

Figure 18-2: Console after building WebWork skeleton application

The source for the skeleton application has now been compiled and moved to an appropriate
directory for Tomcat to look at.

5. Create a new context in Tomcat by logging into the administration application. First, ensure
Tomcat is running and browse to http://localhost:8080/admin. Enter the username and
password you chose when you installed Tomcat.

6. Once logged in, make a new context for the skeleton application. Open the following nodes in
the tree on the left-hand panel: Service (Catalina) ➪ Host (localhost). Select the Host (localhost)
node. The right-hand panel should change to reflect the properties of the default host.

7. In the Available Actions box on the right side of the page, select Create New Context. Enter the
following details in the corresponding fields for the context properties:

559

Web Frameworks

23_57485x ch18.qxd 1/14/05 10:14 PM Page 559

TEAM LinG - Live, Informative, Non-cost and Genuine!

Field Value

Document Base C:\webwork-skeleton

Reloadable True

Path /skeleton

8. All other settings can be left at their default values. Now click the Save button. With any luck,
the new context will be created for the skeleton application.

9. To make sure everything is okay, browse to http://localhost:8080/skeleton/. You
should be presented with a simple link to “Form test.” Click this link and a simple form will
be displayed.

Before we get started, let’s explore how this example has been set up.

The example consists of the following:

❑ A basic Action class called FormTest. FormTest is executed when the form page is first loaded,
and then when the form is submitted.

❑ A simple JSP page called formtest.jsp, which displays the form before and after it is
submitted.

❑ Entries in web.xml to define the ServletDispatcher and map it to a URL pattern, in this case
*.action.

❑ webwork.jar in the WEB-INF/lib directory.

❑ Entries in a properties file for WebWork called webwork.properties. This file defines proper-
ties that enable WebWork to function.

❑ Entries in another properties file called views.properties. These entries define the Action
class to be invoked for the URL, as well as the JSP files to which different eventualities of the
action can pass control.

FormTest class
The FormTest class plays the action part in the application. If you look at the source code (located in
C:\webwork-skeleton\WEB-INF\src\skeleton\action), you will notice this class extends a
WebWork class called ActionSupport. This inheritance provides the very simplistic FormTest class
with methods to pass errors onto the View layer, validate user entry, and perform custom processing that
the developer may want to invoke. An important method in this class is the doExecute() method. The
return value of this method determines the next resource to which this action will pass control, usually a
JSP file. We will have a closer look at this class when we add some functionality.

formtest.jsp
formtest.jsp displays the form we see when the page loads. You will see the elements of this form
represented in the FormTest class described earlier. The form in formtest.jsp submits to an action
defined in the view.properties file.

560

Chapter 18

23_57485x ch18.qxd 1/14/05 10:14 PM Page 560

TEAM LinG - Live, Informative, Non-cost and Genuine!

web.xml
The web.xml file for this application contains some entries in order to set up WebWork’s Dispatcher
Servlet and provide an appropriate URL mapping. It also includes an entry for the WebWork tag library.

webwork.properties
This properties file includes settings that define how WebWork will function. Most important for us in
this example is the property webwork.action.packages, which defines the package in which Action
classes are found, i.e., webwork.action.packages=skeleton.action.

views.properties
views.properties contains property entries that map an action class to a URL and map different
results of those actions to various JSP files. Remember the doExecute() method in the FormTest class?
The result of that method maps to entries in this file for each action. Therefore, the property formtest.
success=formtest.jsp means that the formtest.jsp file is to be used when the FormTest class
results in success.

Enhancements
If you play with the form in the skeleton application, you will quickly discover that it does little more
than validate that something is typed into the top input box when the form is submitted. We’re going to
add the following features to this example:

❑ Show the details entered in the form on a new page that is displayed after the form is success-
fully submitted.

❑ Add a new field to the form.

❑ Add validation to ensure that the user enters something in the text box.

❑ Present a list of information on the following page. We will form the list in the action and dis-
play its contents in the JSP page using the WebWork custom tags. The values in the list should
depend on the values of another property of the form.

Try It Out Displaying Form Details on a New Page
We want a new page to be displayed when the form is successfully submitted. This mechanism is con-
trolled by the entries in the views.properties file.

In the views.properties file, change the value for the formtest.success property from
formtest.jsp to formdisplay.jsp. formdisplay.jsp is a new JSP page that will be displayed when
the form is successfully submitted. If a validation error occurs, the existing JSP page will continue to be
displayed. Now that we have defined that the formdisplay.jsp file will be used when the FormTest
doExecute() method returns success, so we had better create this file.

Create a file called formdisplay.jsp in the same directory as the formtest.jsp file. When you create
this file, add some text such as form has been submitted. Now you can issue an ant compile command
in the console, which you should still have open. Restart Tomcat, browse to the form, enter a value in
the top form element, and submit it. You should see the message you placed in the new JSP file. Easy,
wasn’t it?

561

Web Frameworks

23_57485x ch18.qxd 1/14/05 10:14 PM Page 561

TEAM LinG - Live, Informative, Non-cost and Genuine!

However, our task isn’t quite complete here. We need to display the values entered in the form on the
new page. Again, this is simple.

If you look closely at the FormTest class source code, you will notice that it contains member properties
matching the elements of the form we are dealing with. For instance, the form has an input box called
User. The FormTest class has a String property called user as well. There are also associated accessor
methods for this property in getUser and setUser. When the form is submitted, the setUser method
is invoked by the framework in order to set the value of the property in the FormTest class with the
value that was entered in the form.

Once the properties of the form have been populated in the FormTest class, the doValidation()
method is invoked. If any errors are found during the doValidation() method, the doExecute()
method is not called. When this occurs, the view mapping executed is called formtest.error. You
will see a corresponding property in the views.properties file: formtest.error=formtest.jsp.
The formtest.jsp page is then redisplayed showing an appropriate error message next to the
offending field(s).

Therefore, in order to print out the values of the form on the formdisplay.jsp page, we need to some-
how access these accessor methods in the FormTest class. WebWork’s custom tags to the rescue!

We can use the <webwork:property../> tag to print out these values for us. In the JSP file you created,
add the following code:

<%@ taglib uri=”webwork” prefix=”webwork” %>

<html>
<head>
<title>Form Results</title>
</head>
<body>

<p>
User: <webwork:property value=”user”/>

Age:<webwork:property value=”age”/>

Comments:

<webwork:property value=”comments”/>

</body>
</html>

Notice that the value property of this tag uses the same name as the property in the FormTest class.
This is deliberate. From this, the framework knows to call the getUser() method when this tag is
encountered. When you have made the preceding change, save the formdisplay.jsp file and reload
your browser. The result of this change is that now when the form is successfully submitted, the contents
are immediately displayed on the next page.

Try It Out Adding a New Field to the Form
Right now, our form is fairly dull, just a name and some comments. Let’s add a new form element to col-
lect the user’s age. The new form element will be a list of numbers from 0 to 100. We will first modify the
formtest.jsp page to display the new element. Open the file formtest.jsp and add the following
highlighted code to this file:

562

Chapter 18

23_57485x ch18.qxd 1/14/05 10:14 PM Page 562

TEAM LinG - Live, Informative, Non-cost and Genuine!

<ui:textfield label=”’User’” name=”’user’”/>
<webwork:bean name=”’webwork.util.Counter’” id=”ages”>

<webwork:param name=”’first’” value=”0”/>
<webwork:param name=”’last’” value=”100”/>
<ui:combobox label=”’Age’” size=”3” maxlength=”3” name=”’age’” list=”@ages”/>

</webwork:bean>

<ui:textarea label=”’Comments’” name=”’comments’” cols=”30” rows=”8”/>

The WebWork utility class Counter is used as a bean in this case to build our select list of user age val-
ues. We then added a WebWork combo box element in order to capture the user’s selection. When you
have saved the JSP page, your form should look like the one shown in Figure 18-3:

Figure 18-3: Form Test screen with a new field

Now that the form element has been added, we need to bind it to a value in the FormTest class. This
will enable us to display the selected value on the next page and provide for any validation we may
need. Therefore, we need to edit FormTest.java, located in the C:\webwork-skeleton\WEB-INF\
src\skeleton\action directory.

563

Web Frameworks

23_57485x ch18.qxd 1/14/05 10:14 PM Page 563

TEAM LinG - Live, Informative, Non-cost and Genuine!

First, we need to add a new property to this class:

...
String user = “”;
String comments = “”;
int age = 0;
...

We also need to add appropriate accessor methods to this class so that the framework has access to this
new property. The new methods are shown highlighted:

...
public String getComments()
{

return comments;
}

public int getAge()
{

return age;
}

public void setAge(int age)
{

this.age = age;
}

Note that the names of the methods here follow a pattern. The framework relies on the accessor of a
property to have a particular name, with appropriate uppercase and lowercase letters.

Before we go any further, you should add an appropriate <webwork:property../> tag to the form
display.jsp page in order to print out our new value. Add the highlighted code to the following
JSP page:

User: <webwork:property value=”user”/>

Age:<webwork:property value=”age”/>

Comments:

<webwork:property value=”comments”/>

Save the files you have changed and issue an ant compile command using the Ant build tool, and then
restart Tomcat. Submit the form page when you have entered a name and selected an age. The following
page will display the value for the new field below the name you entered. Note that we can pretty much
enter any numeric value we want in the age field. Try entering a letter in the input box for age, and click
Submit. That’s right, WebWork is smart enough to know that the value you enter should be a number.
Pretty nifty, eh?

Note that when you change a class file, you will have to either reload the Tomcat/skeleton context or
restart Tomcat entirely for your changes to appear.

564

Chapter 18

23_57485x ch18.qxd 1/14/05 10:14 PM Page 564

TEAM LinG - Live, Informative, Non-cost and Genuine!

However, we want to add some more validation to this field so that users can’t submit the form with an
inappropriate value. We’ll need to add some validation code to the FormTest class. If you open the
source code for this class again, you will notice a method called doValidation();.This method is
called by the framework when you submit the form to perform any validation we need on the user’s
entry. For our simple example, we will assume that the user should not be able to select any value under
18 for age. Add the highlighted code to the doValidation() method of FormTest class:

...
if (user.equals(“”))
{

addError(“user”, “Missing name”);
}

if (age < 18)
{

addError(“age”, “Age cannot be less than 18”);
}
...

You can see that we have added code to this method that tests the value of the age property of the
object. If the property has a value less than 18, we want to add an error. The addError method is then
called in order to advise WebWork that something has gone wrong and that we need to display a mes-
sage to the user to inform them of it. The first parameter passed to this method is the field that has the
associated error, and the second is the message we wish to display to the user. If you now save the
changes you have made, and deploy and re-run the application, you will notice the error message
appears just above the Age field when a value less than 18 is entered. This positioning of the message is
conveniently provided to us when we identified the erroneous field in the call to the addError method.

Try It Out Presenting a List of Things on the Page
One final requirement remains: We need to display a list of values on the formdisplay.jsp page. In
addition, the list of things we display should depend on another value selected in the form. Hmm . . .
Age looks convenient for this purpose. We start by adding the appropriate code to the FormTest class.
First create a new property called things. This property should be of type ArrayList:

int age = 0;
ArrayList things = new ArrayList();
...

We will also need an accessor method to retrieve this value to display on the page:

...
public ArrayList getThings()
{

return things;
}

Our things property is ready, but it doesn’t have anything in it; let’s add some values to it depending
on the value of the age property. Modify the getThings() method to appear as follows:

565

Web Frameworks

23_57485x ch18.qxd 1/14/05 10:14 PM Page 565

TEAM LinG - Live, Informative, Non-cost and Genuine!

...
public ArrayList getThings()
{

if (age < 25)
{

things.add(“Go to College”);
things.add(“Buy a car”);
things.add(“Travel overseas”);

}
else if (age < 35)
{

things.add(“Get a job”);
things.add(“Buy a house”);
things.add(“Get married”);

}
else
{

things.add(“Do whatever you want!”);
}

return things;
}
...

Much better. We have added items to the list dependent on the value of the age property. We now need
to ensure that the ArrayList things is listed on the displayform.jsp page, along with the results of
the form:

Now we get a chance to use the <webwork:iterator../> custom tag in order to print out the value of
the things property. Add the following highlighted code to the formdisplay.jsp page:

<webwork:property value=”comments”/>

Advice

<webwork:iterator value=”things”>

<webwork:property value=”toString”/>
</webwork:iterator>

...

Confused by the toString value in the property tag? Don’t be, we haven’t done anything magical.
Remember that we added String objects to the things ArrayList. Every String has a method called
toString; adding this value to the value attribute of the property tag just tells the framework to issue a
call to toString for every object in the ArrayList. What results is a list of items on the page that varies
depending on the value of age you selected.

You can see how the action path of this application, as well as the business logic, such as validation and
determination of data, is separated from the display or view areas. We are using only the JSP pages to
display and collect information, nothing more.

566

Chapter 18

23_57485x ch18.qxd 1/14/05 10:14 PM Page 566

TEAM LinG - Live, Informative, Non-cost and Genuine!

This section has been a very brief introduction to WebWork. Rather than showcase WebWork, it illus-
trates the position that many application frameworks occupy in an application. In the next chapter, we
will investigate another framework in significantly more detail, the Apache Struts framework.

The Spring Framework
Spring is an open-source J2EE application framework released as version 1.0 in March 2004. Spring is
really a collection of frameworks to be utilized in conjunction with each other or separately. It was
designed to assist in easing J2EE development while promoting good programming practices. Spring
also strives to make use of existing technologies, rather than reinventing the wheel. For instance, it
doesn’t provide much in the way of custom tag libraries (like WebWork or Struts); instead, it provides
a discrete set of its own tags, but promotes the use of the Standard Tag Library for most other things.
This pragmatic approach makes Spring an attractive framework to consider.

Spring covers more areas of the application pie than WebWork does. Whereas WebWork focuses on pro-
viding an MVC structure to applications, this is just a part of the Spring framework. The main areas
within Spring are as follows:

❑ Object Relational Mapping: Spring provides built-in support and further abstraction for other
technologies such as Hibernate and JDO.

❑ Data Access Objects: JDBC interface and transactional support.

❑ Aspect Oriented Programming (AOP): A programming approach to separate concepts into
aspects.

❑ Spring Context and Web: Support for the business layer requirements of an application, such as
JNDI and EJB.

❑ Spring MVC: Model View Controller facilities to abstract business rules away from the display
layer.

Of course, we are most interested in the last area, Spring MVC. The others are beyond the scope of this
book, but all are very important concepts for you to become familiar with.

Main components of the Spring MVC
The MVC section of Spring features a rich infrastructure that your application can use. The components
identified in the following sections are configured within an XML file particular to the application. This
is fine for our purposes, but a more sophisticated use of Spring will extend configuration to a number of
applicationContext.xml files.

As you will see, the configuration file contains a list of beans that define the different components your
application may use.

After looking at WebWork, the broad structure of Spring’s MVC framework will be familiar to you.

567

Web Frameworks

23_57485x ch18.qxd 1/14/05 10:14 PM Page 567

TEAM LinG - Live, Informative, Non-cost and Genuine!

Controllers and commands
Spring MVC centers around a hierarchy of Controllers that allow for differences in application require-
ments, such as wizards and Controllers than can handle more than one action (a supercontroller, if you
like). The hierarchy enables the Controllers that we create to implement or use various methods that
enhance the application’s behavior.

In terms of the application’s configuration of Controllers, the developer defines a central servlet dis-
patcher in the web.xml file in the usual manner. Controllers, via handler mappings, take responsibility
for certain URL mappings defined in a file called <centralservletname>-servlet.xml. This file has
other responsibilities for the Spring framework, but URL (handler) mapping is central to our discussion.
The sequence that arises is much like the one outlined in Figure 18-1, which describes the flow of control
from an HTTP request to an action. In a Spring context, the Controller fulfills the notion of an action.

The data we collected in forms and submitted to an application is referred to as a Command in Spring
language. A Command represents a bean that is pieced together from a request. Command objects you
implement do not extend an object or even implement an interface provided by Spring. You are free to
adopt any inheritance structure your application requires. This is a key difference from the Struts frame-
work, which enforces an inheritance relationship for form objects of this type.

Validators
Spring enables you to define objects that encapsulate validation requirements for your application.
These objects are defined by the developer and registered in the application configuration against the
Controller for which it will provide validation.

There is a significant advantage in having validation mechanisms separated from data objects
(Commands) and architecturally able to make reference to other objects that define business logic.
Validator objects in the Spring framework provide for this. You will see an example of a Validator in the
Spring framework example that follows.

Views
Views are typically defined in a simple Web application as a path to a JSP file. In addition, however,
Views can include specialist objects for such purposes as viewing a PDF or Microsoft Excel file created at
runtime. A developer would implement the View interface when creating a class to handle this. This
View can then be configured with other beans in the context of Spring.

JSP views are configured in Spring and can be referenced, by token, by the Controller, as part of its exe-
cution. This serves to decouple the name of the JSP file from the Java code in the Controller.

Unlike WebWork and Struts, Spring doesn’t provide a long list of custom tags that the developer must
use in order to satisfy the functionality of the framework. Rather, Spring provides only a modest list of
tags and relies on the Standard Tag Library for everything else.

The tags Spring provides are described in the following table.

568

Chapter 18

23_57485x ch18.qxd 1/14/05 10:14 PM Page 568

TEAM LinG - Live, Informative, Non-cost and Genuine!

Tag Name Description

<spring:hasBindErrors../> Support for determining whether binding errors are
associated with a bean, such as validation of a com-
mand object.

<spring:bind path=”somebean”../> Support for binding to a bean and evaluating its value
and any associated errors. The Status variable, which
this gives scope to, is bound to the bean defined in
path. Useful when binding validation messages and
existing values to form elements.

<spring:transform../> Used to transform an object for display purposes.

<spring:message../> Provides support for accessing a Message Source
configured for the application, such as messages.
properties. Useful for internationalization.

<spring:theme../> Looks up a message defined for a theme.

<spring:htmlEscape../> Sets the default HTML escape value for the current
page.

While our main focus is on JSP providing a view for an application, it is important to note that Spring is
view technology neutral. Developers are not forced to use a particular view technology, such as only JSP
or only Velocity. The JSP tags listed in the preceding table are provided so that JSP can be used with this
framework.

Internationalization
Spring MVC supports mechanisms that provide for the display of information in other languages, based
on the language setting of the user’s browser. This concept is extremely powerful and simple to imple-
ment. Many frameworks support this mechanism. Spring enables the developer to define a set of mes-
sages based on language preferences of the user. The JSP view can then access these messages via the
<spring:message../> tag described earlier.

In addition to this is the concept of internationalized views, which enables the developer to provide for
different view mappings based on language preferences.

An example using Spring
Much like the WebWork example discussed earlier, we are going to get a basic application up and run-
ning, have a look at the parts, and then make some enhancements. This section assumes you have set up
Tomcat and Ant as described in Chapters 1 and 26. Unlike WebWork, there is no small simple applica-
tion that comes packaged with Spring. We have prepared an application almost identical to the
WebWork skeleton application as a starting point for this example. You can download this from the
Wrox Web site at www.wrox.com.

569

Web Frameworks

23_57485x ch18.qxd 1/14/05 10:14 PM Page 569

TEAM LinG - Live, Informative, Non-cost and Genuine!

Installation
You can download the latest version of Spring from springframework.org (this book uses version 1.0).

Download the spring-base application for Spring from the Wrox Web site and unzip the contents into
a directory of your choosing; let’s assume c:\spring-base. You will notice the following directories:

❑ src: This contains all source code as well as some configuration files such as views.
properties and messages.properties.

❑ web: This contains all Web-related items.

❑ web/WEB-INF: This houses application configuration files such as web.xml and the Spring
configuration file, servlet-spring.xml.

❑ web/WEB-INF/jsp: This contains the JSP files we will be using in the application.

In the root of the spring-base directory is an Ant build file, build.xml. This file is used to build and
deploy the spring-base application. In order for you to be able to use the spring-base application,
you must have followed the steps for getting Ant installed and working on your computer.

The following instructions will enable you to build and run the spring-base application using Ant and
Tomcat.

1. Open the build.xml file and change the properties entries to reflect their correct values for
your environment. The following highlighted properties in this listing will need to be changed:

...
<property name=”app.name” value=”spring-base”/>
<property name=”app.path” value=”/${app.name}”/>
<property name=”app.version” value=”0.1-dev”/>
<property name=”build.home” value=”${basedir}/build”/>
<property name=”catalina.home” value=”c:/Tomcat”/>
<property name=”dist.home” value=”${basedir}/dist”/>
<property name=”docs.home” value=”${basedir}/docs”/>
<property name=”manager.url” value=”http://localhost:8080/manager”/>
<property name=”manager.username” value=”admin”/>
<property name=”manager.password” value=”password”/>
<property name=”src.home” value=”${basedir}/src”/>
<property name=”web.home” value=”${basedir}/web”/>

<property name=”spring.home” value=”c:/spring-framework-1.0”/>
<property name=”jstl.home” value=”c:/jakarta-taglibs”/>
...

570

Chapter 18

23_57485x ch18.qxd 1/14/05 10:14 PM Page 570

TEAM LinG - Live, Informative, Non-cost and Genuine!

The values you should change in this listing are as follows:

Property Description

catalina.home The directory in which you installed Tomcat

manager.url The URL of the Tomcat Manager application

manager.username The username for the Tomcat Manager application

manager.password The password for the Tomcat Manager application

spring.home The location at which you installed Spring

jstl.home The location at which you installed the Jakarta JSTL
implementation

This build file assumes you are using the Jakarta JSTL implementation with the appropriate
jstl.jar and standard.jar files found in the c:/jakarta-taglibs/standard/lib
directory.

2. In order for Ant to communicate with your Tomcat server, locate the file <Tomcat Installation
Directory>/server/lib/catalina-ant.jar in your Tomcat server installation and copy it

to your ANT_HOME/lib directory.

3. Ensure that Tomcat is running.

Open a command prompt to the directory in which you expanded the spring-base applica-
tion. This directory should contain the build.xml file.

4. Issue the following command in the command console: ant install. This command will perform
the following tasks for you:

a. Compile the Java source files and place them in the c:\spring-base\build\WEB-INF\
classes directory.

b. Copy the views.properties and messages.properties files to the c:\spring-
base\build\WEB-INF\classes directory.

c. Copy the following files from where you installed them to the c:\spring-base\
build\WEB-INF\lib directory:

❑ spring.jar

❑ jstl.jar

❑ standard.jar

d. Copy the spring.tld file from the Spring installation directory to the c:\spring-
base\build\WEB-INF\ directory.

e. Copy the web.xml and spring-servlet.xml files from the c:\spring-
base\web\WEB-INF directory to the c:\spring-base\build\WEB-INF\ directory.

571

Web Frameworks

23_57485x ch18.qxd 1/14/05 10:14 PM Page 571

TEAM LinG - Live, Informative, Non-cost and Genuine!

f. Copy the JSP files from the c:\spring-base\web\WEB-INF\jsp directory to the
c:\spring-base\build\WEB-INF\jsp directory.

g. Install the application in Tomcat with the context spring-base. This context is based in
the c:\spring-base\build directory.

5. If you now browse to http://localhost:8080/spring-base, you should be presented with
a rather plain form like the WebWork example presented earlier.

If you submit the form, you will see some validation occurring, and if you enter a name, a plain page is
displayed. Nothing special, but underlying this rather simple interface are some key concepts that will
help you grasp development with Spring.

Base application description
To help you understand this application so far, let’s look at the components of the base application and
how they piece together. This description simply walks through the components as they are, enhance-
ments will be made in the next section.

Our application so far consists of a simple form, which is displayed at /form.htm. The
TestFormController has been invoked by this URL, and in so doing has set up an initial value for the
data collected in the form, represented by the TestForm object. The Controller causes the appropriate
view to be rendered, /WEB-INF/jsp/form.jsp. When the form is submitted, the user’s data input is
validated by the TestFormValidator class; and if there are no validation errors, then another view is
rendered. If there are validation errors, the form is again displayed along with any validation errors. The
following sections look at each of these components in turn.

Controller: TestFormController
As discussed previously, a central servlet Dispatcher is registered with Tomcat and assigned to a URL
pattern so that various requests will be assigned to it. If you look at the WEB-INF/web.xml file for the
base application, you can see this entry:

<servlet>
<servlet-name>spring</servlet-name>
<servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class>
<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>
<servlet-name>spring</servlet-name>
<url-pattern>*.htm</url-pattern>

</servlet-mapping>

Spring’s DispatcherServlet is registered with Tomcat and assigned a URL mapping of *.htm; there-
fore, all requests pointing to http://localhost:8080/spring-base/*.htm will be processed by this
DispatcherServlet. The DispatcherServlet routes requests through to a handler registered in the
application. Notice that the servlet has been given the name spring with the servlet-mapping entry.
This name is used to specify the Spring configuration file: spring-servlet.xml. This file is located in
the /WEB-INF/ directory.

572

Chapter 18

23_57485x ch18.qxd 1/14/05 10:14 PM Page 572

TEAM LinG - Live, Informative, Non-cost and Genuine!

In the spring-servlet.xml file, two entries map requests to our TestFormController. This is a class
that will perform the Controller role in this application. The first entry establishes our Controller in the
framework:

<bean id=”testFormController”
class=”com.wrox.begjsp.ch18.spring.TestFormController”>

<property name=”sessionForm”><value>false</value></property>
<property name=”validateOnBinding”><value>true</value></property>
<property name=”bindOnNewForm”><value>false</value></property>
<property name=”commandName”><value>testForm</value></property>
<property name=”commandClass”>
<value>com.wrox.begjsp.ch18.spring.TestForm</value>

</property>
<property name=”validator”><ref bean=”testFormValidator”/></property>
<property name=”formView”><value>form</value></property>

</bean>

In addition to establishing the Controller as a bean in Spring, certain properties have been set so that the
application will behave as required. You will see the effect of these in subsequent sections.

The second entry in the spring-servlet.xml file establishes a handler bean so that requests can be
mapped to our Controller:

<bean id=”urlMapping”
class=”org.springframework.web.servlet.handler.SimpleUrlHandlerMapping”>

<property name=”mappings”>
<props>

<prop key=”/form.htm”>testFormController</prop>
</props>

</property>
</bean>

The SimpleUrlHandlerMapping object configured here is a class provided by Spring. The mapping’s
property within this definition sets up a URL mapping to our Controller. Here we are saying that URL
/form.htm should be dealt with by the testFormController bean defined earlier.

The formView property used to configure the testFormController bean tells the Controller which
view should be used to display the form — in this case, the form view.

The TestFormController class itself extends SimpleFormController provided by Spring for the sce-
nario our application fulfills. In TestFormController we override one method: onSubmit, which is
invoked by the framework when no validation errors have been found by the Validator class.
onSubmit receives an Object as its only parameter. This is the command object created by the form sub-
mission. This method returns a ModelAndView object that defines the View we want to render next. It
also has the option to provide resources to be used by the view. In this implementation so far, we are
using a ModelAndView constructor that takes a single parameter, which is the name of the View that we
intend to display:

573

Web Frameworks

23_57485x ch18.qxd 1/14/05 10:14 PM Page 573

TEAM LinG - Live, Informative, Non-cost and Genuine!

...
public class TestFormController extends SimpleFormController
{

public ModelAndView onSubmit(Object object)
{

return new ModelAndView(“success”);
}

}

Model: TestForm
The Model portion of this application appeared here and there in the previous section; it appeared in
two of the parameters with which the testFormController was configured in spring-servlet.xml
as commandClass and commandName. It also appeared as the object parameter received by the
onSubmit method of TestFormController.

The Command object here represents the data collected in the form. The class TestForm has been devel-
oped to represent this information. This Command object is a simple Java bean, with a property for each
field in the form and associated setter and getter methods for each:

package com.wrox.begjsp.ch18.spring;

public class TestForm
{

private String _name = “”;
private String _comments = “”;

public String getComments()
{

return _comments;
}

public void setComments(String comments)
{

_comments = comments;
}

public String getName()
{

return _name;
}

public void setName(String name)
{

_name = name;
}

}

The naming convention used for each of the methods is very important, as these methods are invoked
by the framework when an instance of this class is being formed by a form submission. The rule here is
that if the HTML form has an element named foo, then the GET and SET methods that will be invoked
on the command object when the framework creates one will be setFoo and getFoo, with exact
capitalization.

574

Chapter 18

23_57485x ch18.qxd 1/14/05 10:14 PM Page 574

TEAM LinG - Live, Informative, Non-cost and Genuine!

Note that Spring has not forced the developer to extend any framework class when implementing
TestForm. Having such data objects decoupled from the framework itself is a good thing, as we are free
to impose our own inheritance structure on this object.

Validator: TestFormValidator
In order to provide for the validation of the input the user enters in the form, a Validator class is
implemented. Validator is an interface provided by Spring that enforces the implementation of two
methods in our TestFormValidator class: validate and supports. validate() actually performs
the validation logic for the TestForm, whereas supports() is used by the framework to determine
whether the class being validated is appropriate for this Validator. The source code for the
TestFormValidator in the base application is as follows:

package com.wrox.begjsp.ch18.spring;

import org.springframework.validation.Errors;
import org.springframework.validation.Validator;

public class TestFormValidator implements Validator
{

public boolean supports(Class checkMe)
{

return checkMe.equals(TestForm.class);
}

public void validate(Object object, Errors errors)
{

TestForm form = (TestForm) object;

if (form == null)
{

errors.rejectValue(“testForm”, “form.error.novalue”,
“Value required.”);

}

String testName = form.getName();

if ((testName == null) || (testName.length() < 1))
{

errors.rejectValue(“name”, “form.error.name.missing”,
“Name is missing.”);

}
}

}

You can see the test on the name property of the TestForm object in the validate method. When a
validation rule has been violated, an error is created with the call to errors.rejectValue(..). This
method adds a new error to the Errors object provided by Spring. The first parameter is the name
of the property in TestForm that has caused the error, the second is the name of the message that
should be presented to the user, and the last acts as a backup message if the second parameter cannot
be found.

575

Web Frameworks

23_57485x ch18.qxd 1/14/05 10:14 PM Page 575

TEAM LinG - Live, Informative, Non-cost and Genuine!

The TestFormValidator class is registered with Spring in the spring-servlet.xml file discussed
earlier, with the following bean definition:

<bean id=”testFormValidator”
class=”com.wrox.begjsp.ch18.spring.TestFormValidator”/>

This bean was assigned to TestFormController in its bean definition:

...
<bean id=”testFormController”

class=”com.wrox.begjsp.ch18.spring.TestFormController”>
...

<property name=”validator”><ref bean=”testFormValidator”/></property>
</bean>
...

Resources: messages.properties
One way in which frameworks support internationalization of their applications is by providing a mech-
anism to render text on an interface in different languages. This enables the developer to point to a com-
mon token or pointer of the text message to be displayed. These text message definitions are defined in a
series of properties files within the classpath of the application (/WEB-INF/classes/), one for each of
the languages supported. In order to register this resource with Spring, the following definition has been
added the spring-servlet.xml file:

<bean id=”messageSource”
class=”org.springframework.context.support.ResourceBundleMessageSource”>

<property name=”basename”><value>messages</value></property>
</bean>

The basename property tells Spring the pattern of names for the internationalized message properties
files this application will support. In this case, we have defined this as messages. Examples of the file-
names Spring will use based on this basename for different languages include the following:

❑ messages.properties for the default set of messages; ours are in English.

❑ messages_fr.properties for messages in the French language.

❑ messages_de.properties for messages in the German language.

The messages file located in the /WEB-INF/src directory of the spring-base application contains
message entries for all the labels displayed on the form:

form.title=Test Form

form.error.heading=Please fix all the errors!
form.error.name.missing=The name field is missing
form.error.novalue=Value required

form.name.title=Name
form.comments.title=Comments

The property form.error.name.missing was used in the TestFormValidator class.

576

Chapter 18

23_57485x ch18.qxd 1/14/05 10:14 PM Page 576

TEAM LinG - Live, Informative, Non-cost and Genuine!

Views: form.jsp and success.jsp
The application presents two views to the user that we have seen referenced in the classes and configu-
ration file mentioned so far, form and success. In order to define these views to Spring, the spring-
servlet.xml file contains the following entry:

<bean id=”viewResolver”
class=”org.springframework.web.servlet.view.ResourceBundleViewResolver”>

<property name=”basename”><value>views</value></property>
</bean>

The viewResolver bean defined here tells Spring that the views for this DispatcherServlet are
defined in a file called views[_language code].properties within the classpath. The views
.properties file can be found in the /WEB-INF/classes/ directory.

The views.properties file contains two entries for the views discussed:

form.class=org.springframework.web.servlet.view.JstlView
form.url=/WEB-INF/jsp/form.jsp

success.class=org.springframework.web.servlet.view.JstlView
success.url=/WEB-INF/jsp/success.jsp

These views are JSP pages that will use JSTL tags, and they need the messages.properties file’s
resources exposed by Spring to be available. Therefore, the JstlView class has been used to tell Spring
what kind of views can be expected from these definitions (form.class and success.class). The
form.url and success.url properties define the location of the JSP files for these views.

The form.jsp file displays the form to the user. It also uses values from the Command object associated
with this view TestForm. The properties of this object have been associated with the form elements in
the HTML form via the Spring series of tags discussed earlier. The source code for the form.jsp file is as
follows:

<%@ taglib prefix=”spring” uri=”/spring” %>
<%@ taglib prefix=”fmt” uri=”http://java.sun.com/jsp/jstl/fmt” %>

<html>
<head>

<title><fmt:message key=”form.title”/></title>
</head>
<body>

<h1><fmt:message key=”form.title”/></h1>

<center>
<form method=”POST”>

<table width=”350” border=”0” cellpadding=”3” cellspacing=”0”>
<spring:hasBindErrors name=”testForm”>
<tr>

<td colspan=2><fmt:message key=”form.error.heading”/></td>
</tr>
</spring:hasBindErrors>

577

Web Frameworks

23_57485x ch18.qxd 1/14/05 10:14 PM Page 577

TEAM LinG - Live, Informative, Non-cost and Genuine!

<spring:bind path=”testForm.name”>
<tr>

<td colspan=2>${status.errorMessage}</td>
</tr>
<tr>

<td><fmt:message key=”form.name.title”/></td>
<td><input type=”text” name=”name” value=”${status.value}” size=”30”></td>

</tr>
</spring:bind>
<spring:bind path=”testForm.comments”>
<tr>

<td colspan=2>${status.errorMessage}</td>
</tr>
<tr>

<td valign=”top”><fmt:message key=”form.comments.title”/></td>
<td>

<textarea name=”comments” cols=”30” rows=”8”>${status.value}</textarea>
</td>

</tr>
</spring:bind>
<tr>

<td> </td>
<td align=”center”><input type=submit value=”submit”></td>

</tr>
</table>
</form>
</center>
</body>
</html>

The first two lines of the form.jsp file are directives for the tag libraries this file requires: format,
from the JSTL and spring, from the Spring framework.

The spring tags described earlier are used in this file to bind properties from the TestForm object
to HTML form elements defined in the page. For instance, the name property of the form appears
as follows:

<spring:bind path=”testForm.name”>
<tr>
<td colspan=2>${status.errorMessage}</td>

</tr>
<tr>
<td><fmt:message key=”form.name.title”/></td>
<td><input type=”text” name=”name” value=”${status.value}”

size=”30”>
</td>

</tr>
</spring:bind>

The <spring:bind../> tag has brought into scope the name value of the testForm object by using
status.value, as well as any validation messages with status.errorMessage. Notice that we are
using JSTL tags to output the messages.properties values (<fmt:message../>) and using EL for the

578

Chapter 18

23_57485x ch18.qxd 1/14/05 10:14 PM Page 578

TEAM LinG - Live, Informative, Non-cost and Genuine!

values of the TestForm object within scope. Using the EL representation as the value of the HTML form
element ensures that the field will be filled in with the current value of the object. Therefore, when vali-
dation errors occur, the form will be filled in as it was before being submitted. We can see this behavior
when we submit the form after entering only a comment. Notice that when the validation error message
appears, the content of the Comments field is still populated, as shown in Figure 18-4.

Figure 18-4: The form remembers the previous entry with validation errors.

Enhancements
Now that the base application has been installed and investigated, we can start introducing some
enhancements. Much like the WebWork example, the enhancements will be as follows:

1. Show the details entered in the form on the success page that is displayed after the form is suc-
cessfully submitted.

2. Add a new field to the form and provide some validation for it. Also ensure that the user enters
something in the Comments field.

3. Provide for French-speaking visitors to the page.

The list of things required from the Web Work example has been removed and replaced with the
capability to display the form and the success pages in another language, illustrating the effects of
internationalization.

579

Web Frameworks

23_57485x ch18.qxd 1/14/05 10:14 PM Page 579

TEAM LinG - Live, Informative, Non-cost and Genuine!

Try It Out Displaying Form Details on the Success Page
This enhancement involves two changes to the current application:

1. Change the Controller to pass the resulting TestForm object onto the rendered view, success.

2. Change the success page to display the contents of the TestForm object.

In order to achieve the first requirement, modify the TestFormController onSubmit method to invoke
a different constructor of ModelAndView as its return value. This constructor takes the expectant view
alias (success) as before, but also takes a Map of resources to be passed to the JSP page. This new Map
will contain the TestForm object constructed by the framework when the form was submitted.

This enables the TestForm bean to be passed onto the view JSP page when it is displayed. From there,
its new properties, freshly gained from the form, can be displayed. The change to the onSubmit method
of the TestFormController object has been highlighted in the following listing:

package com.wrox.begjsp.ch18.spring;

import org.springframework.web.servlet.ModelAndView;
import org.springframework.web.servlet.mvc.SimpleFormController;

import java.util.HashMap;
import java.util.Map;

import javax.servlet.ServletException;
import javax.servlet.http.HttpServletRequest;

public class TestFormController extends SimpleFormController
{

public ModelAndView onSubmit(Object object)
{

TestForm form = (TestForm) object;
Map items = new HashMap();
items.put(“testForm”, form);

return new ModelAndView(“success”, items);
}

}

Now that the TestForm bean is within the scope of the view JSP page, success.jsp, we can modify
this page to display the details of the form. The following listing shows the new content of the
success.jsp file:

<%@ taglib prefix=”fmt” uri=”http://java.sun.com/jsp/jstl/fmt” %>

<html>
<head>

<title><fmt:message key=”success.title”/></title>
</head>
<body>

580

Chapter 18

23_57485x ch18.qxd 1/14/05 10:14 PM Page 580

TEAM LinG - Live, Informative, Non-cost and Genuine!

<h1><fmt:message key=”success.title”/></h1>

<fmt:message key=”form.name.title”/>:${testForm.name}

<fmt:message key=”form.comments.title”/>

${testForm.comments}

</body>
</html>

You can see that the JSP page can access the properties of the TestForm object (testForm) via EL. In
order for the preceding page to render correctly, we also need to add a new property (success.title)
to the messages.properties file for the page title. Open this file and add the property as per the high-
lighted addition in the following listing:

form.title=Test Form

form.error.heading=Please fix all the errors!
form.error.name.missing=The name field is missing
form.error.novalue=Value required

form.name.title=Name
form.comments.title=Comments

success.title=Success Page

You can now save these files and view the effect of the changes you have made. To do this, first ensure
that Tomcat is still running and issue the following command via Ant: ant reload. This will compile
and copy the changed files into the build directory and then reload the Tomcat context. If you now
browse to the application and successfully submit the form, the contents you entered should appear on
the following page.

Try It Out Adding a New Field and Providing Validation
Adding the Age field in the WebWork example seemed to work pretty well, so we’ll do that here, too.
We need to make the following changes in order to meet this requirement:

1. Add a new property, age, to the TestForm class, along with associated get and set methods.

2. Provide a list of possible ages as reference data to the form view.

3. Change the form.jsp page to display the new field, along with possible values.

4. Add validation for the Age and Comments fields to the TestFormValidator class.

5. Change the success.jsp page to display the age selected when the form is successfully
submitted.

Adding the new field to the TestForm class is a simple matter. We need to add the new property for age
as an int, as well as associated GET and SET methods so that the value can be manipulated. Open the
TestForm.java file and modify the class to look like the following listing (specific changes have been
highlighted):

581

Web Frameworks

23_57485x ch18.qxd 1/14/05 10:14 PM Page 581

TEAM LinG - Live, Informative, Non-cost and Genuine!

package com.wrox.begjsp.ch18.spring;

public class TestForm
{

private String _name = “”;
private String _comments = “”;
private int _age = 0;

public String getComments()
{

return _comments;
}

public void setComments(String comments)
{

_comments = comments;
}

public String getName()
{

return _name;
}

public void setName(String name)
{

_name = name;
}

public int getAge()
{

return _age;
}

public void setAge(int age)
{

_age = age;
}

}

We now need to make a list of Integer objects available to the form.jsp page. This list will enable the
user of the form to select an appropriate age from a select list form element. Data such as this list of
numbers is what is called reference data. Reference data is not intended to change as part of the normal
use of the application. For example, other reference data values might be tax rates in a shopping cart
application, or even ZIP codes.

Fortunately, the SimpleFormController from Spring that was extended to create the TestForm
Controller provides a convenient method to be overridden by the subclass that can provide the form
view with this new data. We can implement the referenceData(...) method in our TestForm
Controller object so that the framework provides the appropriate reference data to the view layer.

582

Chapter 18

23_57485x ch18.qxd 1/14/05 10:14 PM Page 582

TEAM LinG - Live, Informative, Non-cost and Genuine!

Open the TestFormController.java file and add the highlighted code in the following listing:

package com.wrox.begjsp.ch18.spring;

import org.springframework.web.servlet.ModelAndView;
import org.springframework.web.servlet.mvc.SimpleFormController;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

import javax.servlet.ServletException;
import javax.servlet.http.HttpServletRequest;

public class TestFormController extends SimpleFormController
{

public ModelAndView onSubmit(Object object)
{

TestForm form = (TestForm) object;
Map items = new HashMap();
items.put(“testForm”, form);

return new ModelAndView(“success”, items);
}

protected Map referenceData(HttpServletRequest request)
throws ServletException

{
Map refData = new HashMap();
List ages = new ArrayList();

for (int i = 0; i <= 100; i++)
{

ages.add(new Integer(i));
}

refData.put(“ages”, ages);

return refData;
}

}

The framework calls this method behind the scenes. This means that the Map ages will now be available
to the JSP page under the alias ages.

Now that the TestForm has been changed to support the new form value, and a list of appropriate select
options has been provided to the view, we can set about modifying the JSP page to reflect this new func-
tionality. Open the form.jsp file and add the following highlighted code:

583

Web Frameworks

23_57485x ch18.qxd 1/14/05 10:14 PM Page 583

TEAM LinG - Live, Informative, Non-cost and Genuine!

<%@ taglib prefix=”spring” uri=”/spring” %>
<%@ taglib prefix=”fmt” uri=”http://java.sun.com/jsp/jstl/fmt” %>
<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
...
<tr>

<td><fmt:message key=”form.name.title”/></td>
<td><input type=”text” name=”name” value=”${status.value}” size=”30”></td>

</tr>
</spring:bind>
<spring:bind path=”testForm.age”>
<tr>

<td colspan=2>${status.errorMessage}</td>
</tr>
<tr>

<td><fmt:message key=”form.age.title”/></td>
<td>
<select name=”age”>
<c:forEach var=”age” items=”${ages}”>

<c:if test=”${status.value eq age}”>
<option value=”${age}” selected>${age}</option>

</c:if>
<c:if test=”${status.value ne age}”>

<option value=”${age}”>${age}</option>
</c:if>

</c:forEach>
</select>
</td>

</tr>
</spring:bind>
<spring:bind path=”testForm.comments”>
<tr>
...

The <c:forEach../> tag has been used to iterate over the ages Map provided by the TestForm
Controller. The <c:if../> tags allow the appropriate value to be selected on the form if validation
errors arise when the form is submitted. A new message property has also been added (form.age.title)
to show the name of the new field to the user. You should open the messages.properties file and add
this new message, as per the following listing:

form.title=Test Form

form.error.heading=Please fix all the errors!
form.error.name.missing=The name field is missing
form.error.novalue=Value required

form.name.title=Name
form.comments.title=Comments
form.age.title=Age

success.title=Success Page

584

Chapter 18

23_57485x ch18.qxd 1/14/05 10:14 PM Page 584

TEAM LinG - Live, Informative, Non-cost and Genuine!

Now that the new form element has been added, we can modify the success.jsp page so that the age
value can be displayed to the user when the form is successfully submitted. Open the success.jsp
page and modify it to match the following listing (changes are in bold):

<%@ taglib prefix=”fmt” uri=”http://java.sun.com/jsp/jstl/fmt” %>

<html>
<head>

<title><fmt:message key=”success.title”/></title>
</head>
<body>

<h1><fmt:message key=”success.title”/></h1>

<fmt:message key=”form.name.title”/>:${testForm.name}

<fmt:message key=”form.age.title”/>:${testForm.age}

<fmt:message key=”form.comments.title”/>

${testForm.comments}

</body>
</html>

Before the user gets to this page, however, we have to ensure that valid values for the Age and
Comments fields have been entered. A small change is required in the TestFormValidator class. Open
the TestFormValidator.java file and make the following changes, shown in bold, to the validate
method:

...
public void validate(Object object, Errors errors)
{

TestForm form = (TestForm) object;

if (form == null)
{

errors.rejectValue(“testForm”, “form.error.novalue”,
“Value required.”);

}

String testName = form.getName();
String testComments = form.getComments();
int testAge = form.getAge();

if ((testName == null) || (testName.length() < 1))
{

errors.rejectValue(“name”, “form.error.name.missing”,
“Name is missing.”);

}

if ((testComments == null) || (testComments.length() < 1))
{

errors.rejectValue(“comments”, “form.error.comments.missing”,
“Comments is missing.”);

}

585

Web Frameworks

23_57485x ch18.qxd 1/14/05 10:14 PM Page 585

TEAM LinG - Live, Informative, Non-cost and Genuine!

if (testAge < 18)
{

errors.rejectValue(“age”, “form.error.age.value”,
“Age cannot be less than 18.”);

}
}
...

The validation change ensures that the user cannot select a value less than 18 for the Age field and that
the Comments field cannot be left empty. You can also see that various messages have been referenced
when the errors are passed to the errors object. These and other new properties need to be added to the
messages.properties file. Open the messages.properties file and add the following values, shown
in bold:

form.title=Test Form

form.error.heading=Please fix all the errors!
form.error.name.missing=The name field is missing
form.error.comments.missing=The comments field is missing
form.error.age.value=Age cannot be less than 18
form.error.novalue=Value required

form.name.title=Name
form.comments.title=Comments
form.age.title=Age

success.title=Success Page

All that is left to do now is display the new property in the success.jsp page when the user success-
fully submits the form.

Once these changes have been saved, with Tomcat still running, execute the following command in Ant:
ant reload.

The result of this enhancement is a new form element with appropriate validation, with the submitted
value appearing on the success view once the form has been successfully submitted.

How It Works
This section added a new field to the form interface and added validation to the Comments field. This
involved some simple adjustments to various components. First, the TestForm object was modified to
include the new property representing the age of the user. Associated get and set methods ensure that
the framework can modify this value when the form is submitted.

We then modified the TestFormController so that a list of potential ages was passed to the JSP view.
This allowed the new select list on that page to provide various (make it 100) options to the user. This
data was provided by the referenceData(...) method used by the framework. If additional reference
data were required, another addition to this method would be required.

586

Chapter 18

23_57485x ch18.qxd 1/14/05 10:14 PM Page 586

TEAM LinG - Live, Informative, Non-cost and Genuine!

With the reference data and new property of the TestForm object, we set about modifying the form.jsp
page so that the HTML form could display the new field with the appropriate data. This involved using
the spring:bind tag to inform the framework that the form element being defined should in fact be
mapped to the TestForm object. With the object now recording this response from the user, we were also
able to present the new value when the form was successfully submitted. This involved simply referenc-
ing the age property in the success.jsp page.

To fulfill the validation requirements required here, we made a simple addition to the
TestFormValidator object to ensure that the comments and age properties contained valid values.
When invalid values were detected, errors were created via the Errors object provided by the frame-
work. The framework knows to redisplay the form page when this Errors object contains values. The
parameters of the rejectValue method identified the field that was in error and provided a key to the
message to be displayed to the user.

The messages for errors and the new field were then added to the messages.properties file. The
result of these changes is a far more intelligent form that can validate the values of all the fields accord-
ingly. Figure 18-5 shows the form after it was submitted with empty values.

Figure 18-5: Test form with a new Age field and full validation

587

Web Frameworks

23_57485x ch18.qxd 1/14/05 10:14 PM Page 587

TEAM LinG - Live, Informative, Non-cost and Genuine!

Try It Out Presenting Messages on the Form and Success Views in French
The final requirement is to present the form and result page in another language. For no particular rea-
son whatsoever, French was chosen, and with a little help from one of the language translation tools
available on the Internet, this requirement is easily achieved. We apologize in advance to any French-
speaking readers.

The application so far has strictly adhered to using the messages.properties file for all form labels
and messages for the user’s interaction with the form. This is a real advantage. In order for the form to
be presented in another language, a new messages_fr.properties file is created with entries in
French. Create this new file in the c:/spring-base/src directory, alongside the existing
messages.properties file, with the following content:

form.title=Examinez La Forme

form.error.heading=Veuillez fixer toutes les erreurs!
form.error.name.missing=La zone d’identification est absente
form.error.comments.missing=Le champ de commentaires est absent
form.error.age.value=Le champ d’âge ne peut pas être moins de 18
form.error.novalue=La valeur a exigé

form.name.title=Nom
form.comments.title=Commentaires
form.age.title=Âge

success.title=Page De Succès

Once this has been changed, execute the following command in Ant: ant reload. The new language
should now be available on the application, but how should we test it? We need to change the default
language our browser requests when visiting the site.

The following instructions for changing the default language request of your browser apply to Microsoft
Internet Explorer 6.0.28:

1. Open a new browser window and select Tools ➪ Internet Options.

2. Select the Languages button from the row of buttons on the bottom.

3. Click the Add button and select French (France) [fr] from the list; then click OK.

4. Highlight the entry for French and move it to the top of the list using the Move Up button on
the right-hand side. When French is at the top, click OK, and then OK again. You should now be
back at your browser’s window.

Once you have followed these steps, browse to the spring-base application. You should be presented
with the form with the French language entries in all the appropriate places. If you attempt to submit the
blank form, the validation messages should also be in French, as shown in Figure 18-6.

You can see how easy and effective this simple technique is. If you have finished testing, make sure you
change the default language on your browser back to its previous settings by retracing the same steps.

588

Chapter 18

23_57485x ch18.qxd 1/14/05 10:14 PM Page 588

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 18-6: Form displayed in French

This is the end of our Spring framework example. Of course, we have only scratched the surface of this
powerful framework, but a more in-depth discussion is beyond the scope and depth of this chapter.
If you are interested in learning more about Spring, you are encouraged to visit their Web site at www
.springframework.org/ and join their growing mailing list.

Summary
This chapter has introduced you to Web frameworks. Web frameworks form a particularly important
part of Web application development, as demonstrated by the recent explosion of framework solutions
available to the developer. The large number of available MVC frameworks has sometimes made imple-
mentation decisions difficult. Developers facing challenging decisions about how to architect and
develop Web sites need to consider several factors before choosing an appropriate Web framework to
use, including the following:

❑ Does the development team have the skills needed to manage and develop with the chosen
framework?

❑ Will using the framework now make replacing it with other frameworks later on more difficult?

❑ Is the framework widely recognized and used by other developers?

❑ Will the framework enable the application to scale accordingly?

589

Web Frameworks

23_57485x ch18.qxd 1/14/05 10:14 PM Page 589

TEAM LinG - Live, Informative, Non-cost and Genuine!

This chapter cannot answer these questions, but we hope that it has provided you with sufficient infor-
mation to understand the place these questions hold in Web application development.

This chapter has covered the following points with regard to Web frameworks:

❑ The definition of a framework

❑ Why using frameworks is generally considered good practice

❑ An overview of the different types of frameworks that are available

❑ Working explanations and examples of two popular frameworks available today: WebWork
and Spring

The next chapter will introduce another Web framework called Struts. Struts is one of the most popular
frameworks available today. After the chapter about Struts, the following chapter introduces Tiles, a
templating framework that has now become part of Struts.

Exercises
1. Enhance the Spring simple form application further in the following ways:

❑ When the form is submitted, add the TestForm object to a List of TestForm’s in
the session.

❑ Add a new Controller and View to display the contents of the List of TestForm
objects.

590

Chapter 18

23_57485x ch18.qxd 1/14/05 10:14 PM Page 590

TEAM LinG - Live, Informative, Non-cost and Genuine!

19
Struts Framework

This chapter builds on the experience you gained in Chapter 18, “Web Frameworks,” by looking at
a framework that has become very popular in the J2EE development community. Apache Struts
gained prominence in the J2EE community through its evolution as a Jakarta Project, and as of
early 2004 has become an official Apache Project.

This chapter will introduce Struts to you by first outlining how it fulfills the MVC Model 2 archi-
tecture for applications. As this is a JSP book, we will then look at some of the custom tags that
come with the framework.

Finally, this chapter will show you how to develop a small application along the same lines as
those in Chapter 18. Like any rapidly maturing technology, various methods become available to
solve common problems such as validation and form bean implementation. This chapter covers
these variances where space permits.

Following are the main topics of this chapter:

❑ A brief walk through the Struts framework.

❑ An explanation of Struts Actions, Forms and View components

❑ An example application using Struts

24_57485x ch19.qxd 1/14/05 10:15 PM Page 591

TEAM LinG - Live, Informative, Non-cost and Genuine!

Introducing Struts
Apache Struts assists application developers in implementing an MVC Model 2 architecture in their J2EE
applications. It provides them with a Controller-centric infrastructure that offers the usual lineup of
MVC framework features:

❑ Internationalization

❑ Various validation techniques

❑ Flexibility to interact with the model layer

❑ Templating (Tiles)

❑ Configuration infrastructure for everything from the Controller to database connections

❑ JSP custom tags to integrate with the framework

❑ Application flow control

❑ Resource bundles

What differentiates Struts from the gamut of other MVC frameworks available today are the following
important factors:

❑ A large volume of documentation available both on the Internet and in printed publications.

❑ An extremely active community. An indication of this is the amount of activity on the Struts
User and Developer mailing lists.

❑ Simple, easy-to-use (and understand) components.

❑ Its frequent use in real-world application implementations. Struts is now a common item on
many J2EE developers’ resumes.

The popularity of Struts seems self-perpetuating; the more popular it gets, the more popular it gets, and
so on. This is not to say that Struts doesn’t have its drawbacks; many developers have run into weak-
nesses and problems with the Struts implementation. These are sometimes addressed specifically in
other frameworks.

This chapter uses Struts 1.2.4, the latest production release at the time of writing. You can download
Struts from http://struts.apache.org.

The example application discussed at the end of this chapter utilizes a basic starting point that can be
downloaded from the Web site for this book. This download includes the necessary files to get this
application running, but it does not include the entire Struts installation.

592

Chapter 19

24_57485x ch19.qxd 1/14/05 10:15 PM Page 592

TEAM LinG - Live, Informative, Non-cost and Genuine!

A Struts walkthrough
After reading Chapter 18, the general plan of attack used by Struts will be somewhat familiar to you.

In simple terms, a single servlet is configured (referred to as the Struts servlet) in the container. This
servlet is configured for a certain pattern of URL that the application receives in a request from a
browser. This Struts servlet is defined in the web.xml file in the same way that other servlets of an appli-
cation are defined.

The Struts servlet is further configured via a Struts configuration file to pass control to an action. An
action represents some business functionality that the application undertakes in response to the request
from the user. Actions are implemented by the developer to respond to the request of the user and usu-
ally determine the appropriate View (usually a JSP page) or further action that will be invoked to fulfill
the business purpose.

Actions can receive input from the request in a structured format. Think of a form that is filled out on a
Web page and then submitted. A single object (usually created by the application developer) represents
the different properties of the submitted form. Each property of the HTML form is associated with a
property of this object. Struts handles the binding of the elements in the HTML form with the properties
in the object.

Depending on the logic implemented in the receiving action, a view may be displayed to complete the
response back to the client. This view may be provided by the action with resources to assist in display,
such as data. The view, in turn, makes use of the many available Struts custom tags that provide for the
following:

❑ Logic such as iteration and conditional processing.

❑ HTML elements such as forms. HTML custom tags are used by Struts to bind form elements
with properties of the aforementioned Form objects. Other HTML elements are also catered to,
such as images and links.

❑ Bean processing.

The view is then presented to the user as a result of all the processing that has occurred, providing the
response.

Validation can be invoked at different stages of the preceding process, configurable by the developer.
One strength of Struts is the various methods it provides to fulfill the validation requirements of the
application.

The diagram shown in Figure 19-1 offers a simplistic representation of this chain of events.

593

Struts Framework

24_57485x ch19.qxd 1/14/05 10:15 PM Page 593

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 19-1: Tracing a request through an application using Struts

The Struts components are configured in a specific Struts configuration file called struts-config.xml
located alongside the web.xml file in the WEB-INF directory of the Web application. You can refer to this
diagram as you continue through the chapter. It will help you to develop an understanding of how the
different pieces fit together.

Controller: actions and forms
The Struts servlet is the basis of the Controller component of the MVC framework provided by Struts.
The Struts servlet is actually an ActionServlet class provided by Struts that is configured for the
application by the developer when the application is set up. The ActionServlet is defined in the
web.xml file located in the WEB-INF directory of the application. The following code illustrates such
an entry:

Request from
browser

REQUEST
OBJECT

Configuration

Action
class

view,
eg JSP

Response to
browser

form beans

Application Business Logic
and Resources (Model

Layer)

invokes

Struts Servlet

594

Chapter 19

24_57485x ch19.qxd 1/14/05 10:15 PM Page 594

TEAM LinG - Live, Informative, Non-cost and Genuine!

...
<servlet>

<servlet-name>action</servlet-name>
<servlet-class>org.apache.struts.action.ActionServlet</servlet-class>
<init-param>

<param-name>config</param-name>
<param-value>/WEB-INF/struts-config.xml</param-value>

</init-param>
<load-on-startup>1</load-on-startup>

</servlet>
...

<servlet-mapping>
<servlet-name>action</servlet-name>
<url-pattern>*.do</url-pattern>

</servlet-mapping>
...

In this example, you can see that the <servlet-mapping> entry has provided a URL pattern to associ-
ate with the action servlet. When a request is received that matches this URL pattern, the Action
Servlet is put to work performing or delegating much of the setup work required for the application
to function correctly. In the preceding example, the action servlet is configured to respond to requests
that match the pattern: *.do; therefore, the following URL will invoke the ActionServlet configured
in this way:

http://localhost:8080/yourapplication/login.do

When this URL is received, ActionServlet will initiate the following series of steps:

1. Establish some basic information, such as the path that has been invoked, the content type, and
other request-specific information such as cache settings.

2. Determine any mappings to actions (ActionMapping) that are associated with the request that
has been received. For instance, our previous example requested a resource called login. This is
an alias to an ActionMapping that has been defined for this ActionServlet to recognize.

3. Create, populate, and validate any ActionForm objects that have been associated with the
ActionMapping, according to the Struts configuration.

4. If necessary, forward the request to a resource if this has been configured.

5. Invoke the Action class created by the application developer. The specific functionality defined
by the developer is executed here.

The following section describes actions in more detail.

Actions
Actions form the application-specific tasks that the application performs in response to requests. Action
classes are developed by the application developer. Typically, an action will be created for tasks that
represent some piece of work the application must undertake in response to the request. For instance,
when the user clicks a link on a Web page to log in, pointing to login.do, a LoginAction class will be
invoked. When the user uses some sort of search facility in an application, a DoSearchAction class

595

Struts Framework

24_57485x ch19.qxd 1/14/05 10:15 PM Page 595

TEAM LinG - Live, Informative, Non-cost and Genuine!

may be used, and so on. How does the framework know which class to use? The answer lies in the
ActionMappings we define in the Struts configuration. Each action is defined within a list of action
mappings. An action mapping is a definition of an action within the application. Each configured action
can have certain properties that are defined with the action element of the struts-config.xml file.

The following listing shows the definition for our LoginAction in the struts-config.xml file:

<struts-config>
...
<action-mappings>

<action path=”/login”
type=”com.wrox.begjsp.ch19.struts.LoginAction”
name=”loginForm”
input=”/login.jsp”
scope=”request”>
<forward name=”success” path=”/welcome.jsp”/>

</action>
...
</action-mappings>
...
</struts-config>

The order of the items added to the struts-config.xml file is very important. Placing form beans,
action mappings, and other elements in this file in an incorrect order can result in some strange errors.
The order of items must be as follows:

1. data sources

2. form beans

3. global forwards

4. action mappings

5 controller

6. message resources

7. plug-in

Nested within the Action mapping is a forward element that defines a possible result of the action. This
forward is named success and will be used in the action when determining which page to display next.

The key parameters to the action definition are as follows:

❑ path: The relative path to the action, in the context of the application; therefore, the previous
action would be invoked with the following: http://localhost:8080/yourapplication/
login.do.

❑ type: The package and class name of the action class created for this action.

❑ name: The mapping name of the form bean used for this action.

❑ validate: Whether validation is to be invoked when this action is requested.

596

Chapter 19

24_57485x ch19.qxd 1/14/05 10:15 PM Page 596

TEAM LinG - Live, Informative, Non-cost and Genuine!

❑ input: The action mapping or JSP file that provided input for this action.

❑ scope: The scope of this action, i.e., request or session scope.

❑ forward: The path to the JSP file or action that this action should forward to after processing
has completed.

Action mappings can be simple, as illustrated previously, or very sophisticated, to cater to the wide vari-
ety of possible scenarios that developers may need when defining the workflow of the application and
its interaction with the user.

These actions developed for an application are subclasses of a class provided by Struts that forms the
basis of all actions in the framework. This class is called Action (not surprisingly).

When a developer creates an action for an application, this new class extends the Action class provided
by Struts and must implement a specific method for the framework to execute. The signature of this
method is listed here:

...
public ActionForward execute(ActionMapping mapping, ActionForm form,

HttpServletRequest request, HttpServletResponse response)
throws Exception

...

The execute method receives the following parameters:

❑ ActionMapping: This represents the mapping configuration that led to this request finding its
way to this Action class.

❑ ActionForm: This represents a form bean that may have been configured to be received by this
Action.

❑ HttpServletRequest: This is an important native J2EE object that represents the HTTP request
received by the application.

❑ HttpServletResponse: This is another important native J2EE object that represents the
response to the client when all processing has been completed.

Within the execute method, the developer performs the logic required for this particular action. The
execute method then returns an ActionForward object. An ActionForward object represents another
resource configured in Struts. This usually points to a JSP file or even another Action class. For instance,
in a login scenario, there may be one ActionForward returned if the login was successful, and another
if not. The following code snippet shows a LoginAction class that might fulfill this scenario:

package com.wrox.begjsp.ch19.struts.simpleform;

import org.apache.struts.action.Action;

import org.apache.struts.action.ActionForm;
import org.apache.struts.action.ActionForward;
import org.apache.struts.action.ActionMapping;
import org.apache.struts.action.ActionMessage;
import org.apache.struts.action.ActionMessages;

597

Struts Framework

24_57485x ch19.qxd 1/14/05 10:15 PM Page 597

TEAM LinG - Live, Informative, Non-cost and Genuine!

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class LoginAction extends Action
{

public ActionForward execute(ActionMapping mapping, ActionForm form,
HttpServletRequest request, HttpServletResponse response)
throws Exception

{
ActionMessages errors = new ActionMessages();
LoginForm loginForm = (LoginForm) form;
String userName = (String) loginForm.getUsername();
String password = (String) loginForm.getPassword();

ActionForward returnForward = null;

if (“admin”.equals(userName) && “opensesame”.equals(password))
{

returnForward = mapping.findForward(“success”);
}
else
{

returnForward = mapping.getInputForward();
errors.add(ActionMessages.GLOBAL_MESSAGE,

new ActionMessage(“error.login.invalid”));
}

if (!errors.isEmpty())
{

saveErrors(request, errors);
}

return returnForward;
}

}

You can see in this simple example that we are conditionally returning one of two possible Action
Forward objects based on the success of the login (highlighted in the code example). The success
String points to an ActionForward configured by the developer in the Struts configuration file
(remember that this action was defined in the struts-config.xml file). The unsuccessful Action
Forward is found by making a call to the ActionMapping object that this method received. This is
an ActionForward configured as the input for this particular action.

It is important to note that the ActionForwards used represent other resources configured for the appli-
cation. In the preceding scenario, the success forward would point to a JSP file (using the configuration
file action mapping entry illustrated, this JSP file would be welcome.jsp) or another action, and could
be the first screen the user sees after login.

The forward used in this example is available only to the login action. There are also other types
of forwards called global forwards that are available from all actions. A typical example of one of these
is a global forward pointing to an error.jsp page. Here is the struts-config.xml mapping for
this entry:

598

Chapter 19

24_57485x ch19.qxd 1/14/05 10:15 PM Page 598

TEAM LinG - Live, Informative, Non-cost and Genuine!

<global-forwards>
<forward name=”error” path=”/error.jsp”/>

</global-forwards>

This new error global forward can now be referenced from all actions in the application. Naming these
forwards and not just using the resource name directly is an important feature of many Web frame-
works. The benefit is immediately apparent if you have ever had to change the name of a JSP page in a
large application where such abstractions are not used. For example, if error.jsp were to change its
name to, say, errorPage.jsp, only a single change would be required.

Getting back to the preceding action example, notice that there is also some validation added. When
the login is not successful, an ActionMessage is added to an ActionMessages object called errors,
instantiated at the beginning of the method. ActionMessages is simply a collection of messages that
are appropriate to the results of this action. When the next resource is displayed, the ActionMessage
objects provided for it can be displayed appropriately. The message to be displayed is a message
resource (error.login.invalid); it would be defined in a messages.properties file. Notice in
the action that the ActionMessages object is saved with a call to the saveErrors method provided by
Struts. There is a similar method called saveMessages, where normal information messages can be
saved. These methods modify a list of messages maintained by Struts that can be displayed in the view.
You will see examples of this when Struts tags are explained later on.

Other data that is not represented in the form object can also be placed within the request scope of the
JSP page referred to by this action. Providing the JSP file access to this data is simply a matter of adding
an object to the HttpServletRequest object using the setAttribute method. For instance, within the
LoginAction, a String object can be passed to the JSP page in the request scope using the following
syntax:

String exampleObject = new String(“this is my String”);
request.setAttribute(“testObject”, exampleObject);

This object could then be accessed inside the JSP page as a bean via the alias it has been given,
testObject. Similarly, the object could also be added to the session scope using the following:

HttpSession session = request.getSession();
session.setAttribute(“user”, user);

Note how Action classes enable the developer to trigger and implement business and control logic,
away from the view layer of the application. Decisions about what should happen next, which data
should be available, and whether the user has access to the application at all can all be made at this level.

Forms
HTML forms in an application can be represented by form beans. Form beans are classes implemented or
defined by the developer to represent the particular forms in the application. All such beans extend a
Struts-provided class such as ActionForm, ValidatorForm, or ValidatorActionForm, among others.

Form beans are typically a simple class with a number of properties, with each property being accessed
via a getter and setter method. Each property represents an element of the HTML form. For instance, to
continue our login example from before, a LoginForm class was used to represent the input from users
when they logged in.

599

Struts Framework

24_57485x ch19.qxd 1/14/05 10:15 PM Page 599

TEAM LinG - Live, Informative, Non-cost and Genuine!

The HTML form submitted contained a username field and a password field. These fields would be rep-
resented by equivalent properties in the LoginForm object. The translation between the HTML form and
the LoginForm object is handled by Struts. Struts matches the field names used in the HTML form with
the setter and getter methods for their equivalent properties used in the form bean class that has been
implemented.

The result of this translation is illustrated by the preceding code sample of the LoginAction. The
execute method received an ActionForm object as one of its parameters, and this was simply cast to
a LoginForm object. Getter and setter methods of this object were then used to obtain the content the
user entered when the HTML form was submitted. The diagram in Figure 19-2 illustrates this transition
for you.

Figure 19-2: Transition from an HTML form to a Struts form object

The correct object (LoginForm) was instantiated by the Struts framework because of the particular con-
figuration settings established for that action.

Like actions, form beans developed for the application must also be configured in the struts-config.
xml file. An entry for the form bean illustrated here would look like the following:

<struts-config>
...
<form-beans>

<form-bean name=”loginForm”
type=”com.wrox.begjsp.ch19.struts.LoginForm”/>

...
</form-beans>
...
</struts-config>

Note that the name given to this form bean is loginForm, which (not coincidentally) maps to the name
attribute configured for the login action defined earlier.

Notice, in an architectural sense, the place that form beans take in an application. It is better to think of
them as simply a vehicle to move data input from the HTML form to the brains of your application.
They do not represent business objects of your application, and hence they do not fit in the Model layer;
they are simply a convenient Controller layer data vehicle.

Certain JavaBean conventions must be adhered to in order for ActionForm subclasses to work consis-
tently with a Struts application. When a tag or some part of a configuration file references a property of
a form bean, it will use a name such as username. The framework then relies on this exact case-sensitive
spelling to access this property via a setter method named setUsername and a getter method called

HTML Login Form
-username
-password Struts Controller

submitted
Action class

LoginForm
object

600

Chapter 19

24_57485x ch19.qxd 1/14/05 10:15 PM Page 600

TEAM LinG - Live, Informative, Non-cost and Genuine!

getUsername. The internal name of the property is not important, only that the reference and associated
getter and setter methods are synchronized with this pattern in mind. The framework relies on this con-
vention throughout.

Our LoginForm object would appear as follows:

package com.wrox.begjsp.ch19.struts.simpleform;

import org.apache.struts.action.ActionErrors;
import org.apache.struts.action.ActionForm;
import org.apache.struts.action.ActionMapping;
import org.apache.struts.action.ActionMessage;

import javax.servlet.http.HttpServletRequest;

public class LoginForm extends ActionForm
{

private String _username;
private String _password;

public LoginForm()
{
}

public String getPassword()
{

return _password;
}

public void setPassword(String password)
{

_password = password;
}

public String getUsername()
{

return _username;
}

public void setUsername(String username)
{

_username = username;
}

}

Extending ActionForm allows the Struts framework to utilize the LoginForm class appropriately.
Contrast this with the Command objects implemented in the Spring framework in Chapter 18.
Command objects in Spring do not have to extend any framework class in order to function correctly.
This has been a criticism of Struts. It is, however, a small price to pay, and in retrospect, probably forces
the developer to structure the application in a more adept fashion. Forcing the extension of the
ActionForm class (or ValidatorForm or ValidatorActionForm) encourages developers to define

601

Struts Framework

24_57485x ch19.qxd 1/14/05 10:15 PM Page 601

TEAM LinG - Live, Informative, Non-cost and Genuine!

their own classes to represent business objects in the application, and leaves the form beans as merely
transports for data from the HTML form to the form bean, and no more.

Besides being a convenient representation of the data entered into an HTML form, ActionForm sub-
classes can also be extended to perform simple validation. You will see an example of this in the
“Validation” section of this chapter.

DynaActionForm
Implementing form beans with a concrete class for every form in an application, as just described, could
become quite cumbersome. Struts has provided a way to represent these structures for the application at
runtime by using definitions entered in the Struts configuration file. This is convenient when the classes
you would otherwise implement are only providing getter and setter methods for your form properties.

If the LoginForm discussed previously were to be implemented as a DynaActionForm, the appropriate
entry in the struts-config.xml file for this instance would be as follows:

<form-bean name=”loginForm”
type=”org.apache.struts.validator.DynaActionForm”>

<form-property name=”username” type=”java.lang.String”/>
<form-property name=”password” type=”java.lang.String”/>

</form-bean>

The form bean definition here has two major differences from the form bean definition for the custom-
made ActionForm class LoginForm. First, note that the type property now points to a Struts class
DynaActionForm, and not LoginForm. Second, note the specification of two form properties listed
within the form bean definition. These properties correspond to the elements of the HTML form this
form bean represents. Note also in the property definitions that the type of the property has been speci-
fied (java.lang.String). DynaActionForms support a range of different types in the type attribute
for properties, such as Boolean, Integer, Double, Long, Short, Byte, Character, java.util.Date,
and java.sql.Timestamp, among others. You can also place primitive types in this field, such as int,
double, long, short, and boolean.

This definition of type is very convenient for retrieving values from the object when the form it repre-
sents is submitted. Typically in Web applications, all values from the HTTP request are provided as a
string, and the developer must provide the appropriate translation into the correct type; here, Struts has
done the hard work. This is obviously also an advantage when using form beans normally.

Another difference that occurs when using DynaActionForms in an application is the technique for
accessing form properties within the action class that receives the form bean. In the LoginAction exam-
ple illustrated earlier, the properties of the LoginForm class were accessed like normal Java object
method calls:

...
public class LoginAction extends Action
{

public ActionForward execute(ActionMapping mapping, ActionForm form,
HttpServletRequest request, HttpServletResponse response)
throws Exception

{
ActionMessages errors = new ActionMessages();

602

Chapter 19

24_57485x ch19.qxd 1/14/05 10:15 PM Page 602

TEAM LinG - Live, Informative, Non-cost and Genuine!

LoginForm loginForm = (LoginForm) form;
String userName = loginForm.getUsername();
String password = loginForm.getPassword();

...

When a DynaActionForm is used, the properties entered must be accessed via a common get(String)
method. This method call retrieves an Object from an internal collection of the values defined for this
form. The preceding example would be rewritten with a DynaActionForm as follows:

...
public class DynaLoginAction extends Action
{

public ActionForward execute(ActionMapping mapping, ActionForm form,
HttpServletRequest request, HttpServletResponse response)
throws Exception

{
ActionMessages errors = new ActionMessages();
DynaActionForm loginForm = (DynaActionForm) form;
String userName = (String) loginForm.get(“username”);
String password = (String) loginForm.get(“password”);

...

You can see there is not much of a change. The internal collection of properties retained by the
DynaActionForm enables the retrieval of property values via a key, the name designated for that prop-
erty in the struts-config.xml file discussed earlier.

Model
The Model layer of an application should be notionally separated from the Controller and View aspects
of a Struts application. As you learned in Chapter 18, “Web Frameworks,” the Model layer of an applica-
tion is deliberately unaware of any of the Controller or View components that are implemented. This
provides for a simpler design with fewer couplings (dependencies) between different layers.

The View and Controller layers utilize certain resources and logic provided by the Model layer of an
application via whatever accessibility has been deemed appropriate. For instance, various Model layer
services (objects) may provide for the retrieval of data from a database. They will return Model layer
representations of the data (as objects) to the Controller and View layers; however, these layers will be
completely unaware of how they were retrieved or even where they came from.

Once a Model layer object — for instance, a Customer object — has found its way to the Controller and
View layers of the application, it may be accessed, manipulated, and displayed as the application sees fit.
The business decisions concerning the Customer object, however, are left in the hands of the Model layer.

The Model layer represents the business state and business activities of the system, and as such it is
decoupled from the View and Controller layers. Smaller, simple applications may integrate Model layer
functions within action classes, but generally it is safer to encourage a decoupled Model layer and leave
the Controller and View layers to interpret what the Model layer provides.

Struts provides a flexible infrastructure that leaves the implementation of the Model layer as a separate
concern.

603

Struts Framework

24_57485x ch19.qxd 1/14/05 10:15 PM Page 603

TEAM LinG - Live, Informative, Non-cost and Genuine!

View
JSP pages form the basis of the View layer discussed in this section. Struts provides the developer with a
rich set of tools to develop the View layer of an application:

❑ Form bean interaction

❑ Internationalization

❑ Struts Tag Library

❑ Validation

Form bean interaction
A Struts application requires some degree of structured communication between the View layer
(JSP files, etc.) and the Controller layer (actions and form beans). An HTML form designed to interact
with a form bean configured in a Struts application must use the html series of custom tags provided by
Struts. These tags enable Struts to transform the properties defined in form beans as values of the HTML
form defined in the View layer, and vice versa.

Struts provides a collection of tags designed to provide this interaction. For instance, when creating a
new form in a JSP page (such as login.jsp from the login example being used) using Struts, the
html:form tag would be used:

<html:form action=”/login” method=”POST”>
...
</html:form>

Note that the value assigned to the action attribute is the name of the action defined for our
LoginAction in the struts-config.xml file.

Struts uses the property attribute of HTML form tags to identify the property of the form bean to
retrieve and populate where appropriate. Without Struts doing this interaction for us, as well as valida-
tion that will be explained later, JSP pages would become quite complicated.

The form elements of a page are therefore displayed using a series of HTML tags provided by Struts. The
elements of the login form discussed in this chapter would be defined within login.jsp as follows:

<html:text property=”username”/>
<html:password property=”password”/>

Note that the property attribute corresponds directly to the name of the setter and getter methods defined
in the LoginForm bean. When these form elements are populated, the values contained in those proper-
ties of the form bean will be displayed. Without Struts, these form elements might appear as follows:

<input type=”text” name=”username” value=”<%=loginForm.getUsername()%>”>
<input type=”password” name=”password” value=”<%=loginForm.getPassword()%>”>

Of course, when these form elements are provided to the user’s browser in the response they are ren-
dered as standard HTML; there is no Struts magic occurring over there.

604

Chapter 19

24_57485x ch19.qxd 1/14/05 10:15 PM Page 604

TEAM LinG - Live, Informative, Non-cost and Genuine!

On the return trip, when the form is submitted, the names of the properties in the form are used to
repopulate the form bean defined for the action, and so on. In the case illustrated here, the form is sub-
mitting to the action /login.do. This action has been defined as using a form bean, loginForm.
Therefore, when the action is invoked, it will attempt to create a new LoginForm object with the appro-
priate properties contained in the request, such as username=admin and password=opensalami.

If you remember the code defined earlier for the LoginAction, the properties used in the form were
tested to determine whether a successful login occurred. If you look at the code, you can see the pass-
word opensalami is incorrect:

...
public ActionForward execute(ActionMapping mapping, ActionForm form,

HttpServletRequest request, HttpServletResponse response)
throws Exception

{
ActionMessages errors = new ActionMessages();
LoginForm loginForm = (LoginForm) form;
String userName = loginForm.getUsername();
String password = loginForm.getPassword();

ActionForward returnForward = null;

if (“admin”.equals(userName) && “opensesame”.equals(password))
{

returnForward = mapping.findForward(“success”);
}
else
{

returnForward = mapping.getInputForward();
errors.add(ActionMessages.GLOBAL_MESSAGE,

new ActionMessage(“error.login.invalid”));
}

if (!errors.isEmpty())
{

saveErrors(request, errors);
}

return returnForward;
}
...

Where the password is incorrect, the ActionForward to be displayed next is in fact the input attribute
for this action — in this case, the JSP page that has just been submitted, login.jsp. This means that the
login form will be redisplayed to the user.

Upon the second loading of this page, the LoginForm object has the values that were typed in by the
user originally, before the form was submitted. The HTML form defined for this page knows to populate
itself with values for this form bean. It will also display any errors that have been saved as a result of the
action being executed. In the preceding case, a new ActionMessage was added to an ActionMessages
collection. The error defined to display is shown as error.login.invalid. This key points to a value
in the messages.properties file associated with this application. This ActionMessages collection can

605

Struts Framework

24_57485x ch19.qxd 1/14/05 10:15 PM Page 605

TEAM LinG - Live, Informative, Non-cost and Genuine!

be displayed, as errors, on the JSP page using a Struts tag designed specifically for this purpose:
html:errors.

If this description of events seems complicated, the diagram in Figure 19-3 may help.

Figure 19-3: Login form submission and return via the LoginAction

This section has provided a brief introduction to the interaction between the form beans defined for an
application and the HTML forms they represent. You will examine a more complete example later in the
chapter.

Internationalization
Like many Web application frameworks, Struts provides for the internationalization of messages within
an application. By configuring the application to be aware of message resource files, the application is
able to request the value of messages to be displayed in a language appropriate for the user viewing the
site, based on their browser settings. You saw an example of this in the previous chapter, where a simple
form interface was displayed in French (probably bad French, but you get the idea!).

Besides the internationalization benefits this system provides, storing common labels, error messages, and
so on in central file(s) is convenient should these messages ever need to be changed. For instance, in the
action described earlier, an error message was sent to the JSP page via a Struts ActionMessage object:

errors.add(ActionMessages.GLOBAL_MESSAGE,

new ActionMessage(“error.login.invalid”));

The key used in this example is error.login.invalid, which corresponds to an entry in a properties
file defined for the application as follows:

error.login.invalid=Login invalid

http://localhost:8080/myapp/login.jsp
HTML Login Form
-username
-password

submitted:
/login.do

LoginForm
object

error

LoginAction

LoginForm
object

messages

606

Chapter 19

24_57485x ch19.qxd 1/14/05 10:15 PM Page 606

TEAM LinG - Live, Informative, Non-cost and Genuine!

When this ActionMessage is displayed on the JSP page, the text Login invalid is displayed. If we
were to simply pass the text Login invalid as a string in the action instead of referencing the messages
resource, and a change was required for this message, the class would have to be changed and then
recompiled. The class would then have to be redeployed to the live environment. In a large, important
application, the downtime associated with this interruption may be unacceptable.

Messages for internationalization are stored in properties files that are located in the classpath, much
like the class files of the application. The framework is then configured to know where these resources
are located via an entry in the struts-config.xml file:

<struts-config>
...
<message-resources parameter=”messages”/>
...
</struts-config>

This would tell the framework that the properties resource (messages.properties) is located at the
root of the classpath (the default package). The parameter value could also be
com.wrox.begjsp.ch19.Messages, which would denote the file’s location within that package. Other
properties files could be added for the various languages the application should support, using a stan-
dard file-naming structure that indicates the language for which the file is responsible. Some examples
might be messages_fr.properties for French, messages_de.properties for German, and so on.

Struts Tag Library
Some of the Struts custom tags have been explained already in form bean interactions. In that section,
you saw some of the Struts specific custom tags in action. This section examines the most commonly
used tags provided by Struts, and provides a brief explanation of their syntax and usage.

The tag libraries provided by Struts are, to say the least, extensive. They cover the following areas:

❑ html: A set of tags to render HTML elements, including HTML form elements that enable form
bean interaction and other conveniences. The explanation of these tags later in this chapter has
been separated into form tags and other tags.

❑ logic: A set of tags to provide conditional, iterative, and workflow-related tools for JSP pages.
Much of the functionality provided by this set of tags is also covered by the JSTL.

❑ bean: A set of tags to provide for the declaration and accessing of beans in various scopes. Much
of the functionality provided by this set of tags is also covered by the JSTL.

❑ tiles: Tiles is a templating tool that accompanies Struts (as of version 1.1). A set of Tiles tags is
therefore provided. These tags are not included in this discussion; please refer to Chapter 20,
“Layout Management with Tiles,” for a full discussion of Tiles.

It is worth noting that many of the attributes available to Struts tags can take runtime expressions as
their value. Consult the Struts documentation for specifics. For the examples included here, runtime
expressions are not used.

607

Struts Framework

24_57485x ch19.qxd 1/14/05 10:15 PM Page 607

TEAM LinG - Live, Informative, Non-cost and Genuine!

HTML form tags
As already noted, there are Struts tags corresponding to most if not all of the traditional HTML form ele-
ments, as well as some other HTML fragments. Listed in the following table are some of the more com-
monly used HTML form tags and their common usage. For a complete list of the many tags provided by
Struts, as well as the list of possible attributes, refer to the online documentation at http://struts.
apache.org/userGuide/index.html.

It is important to note that many of the tags included in the Struts HTML tag library have many attributes
to allow the developer full control over the functional and presentation capabilities of a JSP page employ-
ing these tags. For instance, many of the HTML tags allow the following attributes to be used:

Attribute(s) Description

onsubmit, onclick, ondblclick, For the execution of JavaScript routines as a result of
onchange, onkeypress, onkeyup, one of these events.
onmousedown, onmousemove,
onmouseup, onblur

style, styleClass For association of CSS classes with the element.

tabIndex For assigning a tag key index with the element.

titleKey, title Value of a mouse-over label for this element. Can be
either the key of a value in messages.properties or
a free-hand value.

disabled Attribute to disable a form element from user input.

All the items listed in this section must be used within the confines of an html:form element. Generally,
with HTML form tags, a property attribute denotes the associated form bean property that this element
represents.

html:form

The html:form tag, shown in the following code, defines a Struts-powered form in a JSP page and indi-
cates to the framework that this entry and its corresponding closing tag contain form elements that will
be populated by a Struts form bean object. Once processed, the tag will render a typical <form..>
HTML tag to be used appropriately by the browser. The value of the action attribute must correspond
to a defined action in struts.

<html:form action=”/login” method=”POST”>
...
</html:form>

html:text

This tag renders an input type text form element.

<html:text property=”firstName”/>

608

Chapter 19

24_57485x ch19.qxd 1/14/05 10:15 PM Page 608

TEAM LinG - Live, Informative, Non-cost and Genuine!

html:password

This tag renders an input type password form element. This tag is basically the same as the html:text
tag except that the value is not readable to the user. This element can also be set to be blanked out if the
form is redisplayed because of some validation error with the redisplay attribute.

<html:password property=”password” redisplay=”true”/>

html:textarea

This tag is used to render a text area HTML element based on the property specified.

<html:textarea property=”comments”></html:textarea>

html:hidden

This tag renders a hidden HTML form element for the specified property.

<html:hidden property=”id”/>

html:checkbox

This tag renders an HTML check box form element, with its state appropriate to the form bean property
specified. The form bean should use a boolean type property to denote such values.

An interesting problem often associated with a check box is that were it to be deselected by the user and
submitted, there would be no corresponding request attribute associated with this form element. Struts
handles this problem by advising that the property should be set to false in the form bean’s reset()
method. This enables the property to reflect the desired value when the form is submitted.

<html:checkbox property=”approved”/>

html:radio

This tag renders an HTML radio button element based on the property specified.

<html:radio property=”sex” value=”M”/>
<html:radio property=”sex” value=”F”/>

html:select and html:options
<html:select property=”name”>

<html:options collection=”myList” property=”value” labelProperty=”label”/>
</html:select>

This extremely convenient tag combination renders a select list of the objects stored in the Collection
object nominated under the collection attribute. In the preceding example, the name myList refers
to an ArrayList of LabelValueBean objects that has been added to the scope of the JSP page. The
property attribute in the html:select tag refers to the property of the form bean this select list repre-
sents, while the property and labelProperty attributes of the html:options tag represent values of
each object rendered within the select list. Therefore, you can surmise from this that each LabelValueBean

609

Struts Framework

24_57485x ch19.qxd 1/14/05 10:15 PM Page 609

TEAM LinG - Live, Informative, Non-cost and Genuine!

has at least two getter methods, getValue() and getLabel(). Using this tag enables the developer to
select the current value in the provided list, corresponding to the current value in the form.

LabelValueBean is a convenience class provided by Struts for just this purpose, but an html:select
tag could iterate over a collection of any object you nominate, as long as the property and label
Property attributes correspond to getter methods of that object. You will see an example of this tag in
the “Example application” section toward the end of this chapter.

html:submit

This tag renders an HTML Submit button for the form.

<html:submit value=”Save”/>

Other HTML tags
As well as the form elements of the HTML set of tags, Struts provides another set of tags that help ren-
der HTML elements. These tags are described in the following sections.

html:link

This is a useful tag for rendering a link to the specified URL:

<html:link page=”/somepage.jsp” name=”myMap”>my link</html:link>

Developers can dynamically provide a list of parameter name-value pairs in order to append to the link,
so the preceding example might render the following in plain HTML:

my link

where the parameter names and values are stored in a Map object added to the scope of this page, in this
case represented by the bean myMap.

html:errors

This very useful tag renders either a collection of error messages placed within the scope of the page or
an individual error message from that collection. The property attribute denotes the name of the error
to be displayed. Not using the property attribute will result in all errors being displayed. An example
of an ActionMessages collection of ActionMessage objects being placed within the scope of a JSP page
using the saveErrors method was illustrated earlier in the login form example.

<html:errors property=”name”/>

The display of this tag can be enhanced by placing some specifically named properties within the mes-
sages.properties file for this application. Including the following properties and their example val-
ues will mean that each error message displayed will be contained within an HTML unordered list, and
that each element of the list will be red:

errors.header=
errors.prefix=
errors.suffix=
errors.footer=

610

Chapter 19

24_57485x ch19.qxd 1/14/05 10:15 PM Page 610

TEAM LinG - Live, Informative, Non-cost and Genuine!

html:messages

There are two basic examples of this:

Example A:

<html:messages id=”message”>
<bean:write name=”message”/>

</html:messages>

Example B:

<html:messages id=”message” property=”welcomeNote”>
<bean:write name=”message”/>

</html:messages>

This is similar to the html:errors tag but is used to reference ActionMessages added to a scope of the
JSP page as an iterable collection (example A), or to access a specific message, as in example B, where the
ActionMessage “welcomeNote” is printed out. These messages may have been saved in a Struts action
using the saveMessages method.

html:javascript

Use this tag to render dynamic validation configured for the form bean nominated in the formName
attribute. An example of how this is configured will be introduced in the next section. The
staticJavascript attribute alerts the tag to allow the developer to include custom JavaScript entries,
in addition to the dynamic scripts generated by the framework.

<html:javascript
formName=”loginForm”
dynamicJavascript=”true”
staticJavascript=”false”/>

Logic tags
The logic tags provided by Struts offer much of the functionality provided within the JSTL. Indeed,
the Struts documentation recommends that the JSTL be used wherever possible in preference to the
Struts tags.

The logic tags provided by Struts deal with conditional and iterative operations, such as looping over a
collection of objects and testing the value of bean properties.

logic:equal

The logic:equal tags allow for the test of a property of a bean within a certain scope. In the following
example, the LoginForm bean’s username property is being tested. If the value results in “Nicholas”,
then the special message is displayed. All the attributes for this tag can utilize real-time expressions as
values. This tag is equivalent to the c:if tag in JSTL.

<logic:equal name=”loginForm”
property=”username”
scope=”request”

611

Struts Framework

24_57485x ch19.qxd 1/14/05 10:15 PM Page 611

TEAM LinG - Live, Informative, Non-cost and Genuine!

value=”Nicholas”>

This is a special message for Nicholas.

</logic:equal>

logic:notEqual

This tag is the opposite of the logic:equal tag.

<logic:notEqual name=”loginForm” property=”username” value=”Rupert”>

This is a message for people who don’t have Rupert as their username:

</logic:notEqual>

logic:match

This tag is used to test whether a property of a bean contains a substring, in this case uper. Other
attributes such as location enable a substring match to be tested at a certain point in the property.

<logic:match name=”loginForm” property=”username” value=”uper”>
This is special message for usernames with ‘uper’ in them

</logic:match>

logic:notMatch

This tag is basically the reverse of logic:match. The content is evaluated if the value being tested (in
the property attribute) does not include as a substring the value of the value attribute.

<logic:notMatch name=”loginForm” property=”username” value=”Jon”>
This is a special message for people without ‘Jon’ in their login name

</logic:notMatch>

logic:forward

This tag redirects the request to the global action forward nominated in the name attribute. The name
attribute must refer to a configured global ActionForward entry.

<logic:forward name=”error”/>

logic:redirect

This tag performs a redirect to a location it specifies. The three key attributes that specify that location
are forward, href, and page. At least one of these must be specified. Parameters can be appended to
the resulting URLs of these attributes by including a reference to a Map object of name-value pairs in the
name attribute, similar to the html:link tag described earlier.

Alternatively, a single parameter can be added by specifying the name of the parameter in the paramId
attribute and the corresponding value of the bean specified in the paramName attribute, as in the follow-
ing example. Here, favouriteColor is a String bean whose value may resolve to red or blue and so
on. The resulting URL would be /login.do?color=red.

612

Chapter 19

24_57485x ch19.qxd 1/14/05 10:15 PM Page 612

TEAM LinG - Live, Informative, Non-cost and Genuine!

<logic:redirect forward=”error”/>
<logic:redirect name=”myParameterMap” href=”http://jakarta.apache.org/index.html”/>
<logic:redirect paramId=”color” paramName=”favouriteColor” page=”/login.do”/>

logic:iterate

As the name suggests, the logic:iterate tag is used to iterate over its content for each item contained
in the collection specified. The collection specified must be one of the following:

❑ An object that implements the interface java.util.Collection, such as
java.util.ArrayList

❑ An object that implements the interface java.util.Enumeration, such as
java.util.StringTokenizer

❑ An object that implements the interface java.util.Iterator (which can be retrieved from a
Collection object)

❑ An object that implements the interface java.util.Map, such as java.util.HashMap

In the following example, the ArrayList used in the html:select example from earlier is used. The
name of the bean referring to this collection is specified in the name attribute. The id element gives each
member of the collection a name to refer to, scoped only within the boundaries of the tag. The type
parameter tells the logic:iterate tag the class of the objects the collection contains. Each object is then
accessed within the body of the tag by using the bean:write tag, which is explained in the next section.
(For now, it just means “print this.”)

<logic:iterate name=”myList”
id=”thisElement”
type=”org.apache.struts.util.LabelValueBean”>

<bean:write name=”thisElement” property=”label”/> -
<bean:write name=”thisElement” property=”value”/>

</logic:iterate>

This tag also supports various other convenient functions, such as starting the iteration at a certain index
in the collection (offset attribute) and setting a maximum for the number of items that will be iterated
over (length attribute).

logic:messagesPresent and logic:messagesNotPresent

There are two examples for this tag.

Example A:

<logic:messagesPresent property=”name” message=”false”>
<tr>

<td><html:errors property=”name”/></td>
</tr>

</logic:messagesPresent>

613

Struts Framework

24_57485x ch19.qxd 1/14/05 10:15 PM Page 613

TEAM LinG - Live, Informative, Non-cost and Genuine!

Example B:

<logic:messagesNotPresent message=”false”>
<tr>

<td>So far, there have been no errors</td>
</tr>

</logic:messagesNotPresent>

When messages are introduced to the scope of a JSP page, either as errors or as informational messages
to the user, their presence, or absence, can be tested with these two complementary tags. In example A,
the code is testing for the presence of an ActionMessage (assigned as an error —saveErrors) given
the name “name”. In example B, the code is testing for the absence of any message assigned as an error
within the scope of the page.

These two examples relate specifically to errors added to the scope of the JSP page. What if the presence
of normal informational messages (saveMessages) needs to be tested? By changing the message
attribute to true, the test would restrict itself to just these messages.

Bean tags
An additional set of tags provided by Struts relates to the manipulation of bean objects within the JSP
page. Much of the functionality provided here is also available via the JSTL tags. The Struts documenta-
tion recommends using the JSTL tags over the Struts tags wherever possible.

Strut’s bean tags provide the capability to create and access objects or beans within a JSP page. The tags
are designed to allow this interaction across the multiple scopes that are available: page, request, ses-
sion, or application. The beans these tags provide for could come from within the JSP page or as
objects made available by an action class.

bean:define

The bean:define tag is used to define and manipulate beans from or in any scope. This tag can be used
in many capacities, three of which are illustrated by the following examples.

Example A:

<bean:define id=”testVariable” value=”This is a new String”/>
<bean:write name=”testVariable” scope=”page”/>

Example B:

<bean:define id=”newSessionBean”
name=”testVariable”
scope=”page”
toScope=”session”/>

<bean:write name=”newSessionBean” scope=”session”/>

614

Chapter 19

24_57485x ch19.qxd 1/14/05 10:15 PM Page 614

TEAM LinG - Live, Informative, Non-cost and Genuine!

Example C:

<bean:define id=”customerName” name=”myCustomer” property=”name” scope=”request”/>

In the first example, a new String bean has been defined in the JSP page, and then its value has been
rendered for display to the browser in the response using the bean:write tag.

In the second example, the bean created in example A has been copied as a new bean into the session
scope, available via the id newSessionBean. It has been printed out using the bean:write tag as well,
but this time telling the tag that the bean it is looking for is in the session scope.

In the final example, a Customer object has been added to the request scope of this JSP page. A prop-
erty from this object has been defined as a new bean within the JSP page, called customerName. The use
of the property attribute tells us that there must be a getName method in the customer object for this
value to be accessed.

The bean:define tag is similar in some ways to the jsp:useBean tag.

bean:write

You saw some examples of bean:write tags in the previous set of examples. As is obvious by now, the
bean:write tag is used to render values to the browser in the response. In addition to rendering text,
this tag can also be used to format its output as desired. This is illustrated in the following example:

<bean:write name=”customerName” scope=”page”/>
<bean:write name=”money” format=”$###,###.00” ignore=”true”/>

The bean:write tag has made use of its format attribute to determine how the value of a Float object
should be displayed. If the Float object represented 100.2, then this tag would print out $100.20. The
values to place in the format attribute use a formatting syntax common to some of the formatting
objects available in the Java language. For more details on this syntax, have a look at the Java API docu-
mentation for the DecimalFormat or SimpleDateFormat classes.

This example also uses the ignore attribute. This indicates to the JSP compiler that should the money
bean not be found in the designated scope, nothing should be printed. If this were left as the default
false, a JSP compile error would result when this page first loaded and no money bean was found.

bean:include

The bean:include tag enables the response from a request to another Web resource to be the value of a
new bean; in the following example this is called theAge. The external resource can be referenced using
one of three attributes:

❑ href: A fully qualified URL, as in the preceding example

❑ forward: The response generated from a global forward ActionForward defined in the appli-
cation, such as error

❑ page: A resource located within the context of the current application, such as /error.jsp

615

Struts Framework

24_57485x ch19.qxd 1/14/05 10:15 PM Page 615

TEAM LinG - Live, Informative, Non-cost and Genuine!

<bean:include id=”theAge” href=”http://www.theage.com.au”/>
<bean:write name=”theAge”/>

bean:message

This is another tag that provides the capability to display internationalized messages from the resources
provided by the application.

<bean:message key=”application.name”/>

<bean:message key=”application.welcome” arg0=”Peter”/>

The first example has simply rendered a value from the messages.properties file for this application
called application.name. The entry in messages.properties would be something like the
following:

application.name=My Application

The second example shown also renders an entry in the messages.properties file but it adds a
parameter to the message. This way, the JSP page can display messages from the messages.
properties file with runtime data intermingled into the message. In this example, the
application.welcome message is being displayed and the parameter “Peter” is being added
using the attribute arg0. The definition of the application.welcome message in the messages.
properties file would be as follows:

application.welcome=Welcome {0} to My Application

This would render on the browser as Welcome Peter to My Application. Very handy. Up to four argu-
ments can be specified using the attributes arg0 through to arg4; these are replaced in the property
using the {0}..{3} syntax to denote each parameter.

This section has introduced you to some of the more commonly used custom tags provided by Struts. It
is by no means an exhaustive list; readers should consult the Struts documentation for that. What the
documentation doesn’t provide are clear concrete examples to solidify understanding. We hope that this
discussion has achieved that for you.

Our tour through the Struts View layer is not yet over. The next section introduces some of the valida-
tion mechanisms available to application developers.

Validation
Validation of user input is a key requirement for many Web applications and presents the developer
with many challenges. Struts provides a number of strategies to help you overcome these challenges
while keeping the implementation clear and simple. Often, hand-crafted validation techniques leave the
validation logic littered all over the application. Using a validation framework avoids this.

616

Chapter 19

24_57485x ch19.qxd 1/14/05 10:15 PM Page 616

TEAM LinG - Live, Informative, Non-cost and Genuine!

Validation can be divided into two areas:

❑ Validating the input from the user in the context of the form only. Examples might include veri-
fying the following:

❑ That the data was entered in the correct format (date, numeric, alphabetic, e-mail
addresses, passwords, and so on).

❑ That data was entered at all.

❑ That a certain combination of data was entered correctly. For example, if the user
entered a value in form element A, then form element B should be empty, and so on.

❑ Validating that the input from the user does not violate any business rules defined in the
system:

❑ If a new user is registering on a Web site, has the login name entered been used before?

❑ Does the username and password entered match a valid user record in the database?

❑ Was the credit card transaction approved?

The second category could be filled with endless business logic scenarios for which the answer lies not
only in the form the user has just filled out and submitted but also in the state of the application and its
underlying data at that time. Struts concentrates predominantly on the first category of validation, and
provides two methods for this. These methods are described in this section. This validation discussion
ends with a suggestion for how to handle business logic validation.

Generally, the goal of validation is to check the input from the user and, if a rule has been violated, dis-
play a message and redisplay the form page once again. This flow was described in the LoginAction
discussion, where the login of the user was checked and if it was found to be incorrect, the previous
page was redisplayed with an appropriate error message. Although this is an example of business logic
validation, it illustrates the flow of events that is often desirable in a Web application.

The following sections describe the strategies Struts provides to validate input from the user.

Form bean validation
Form bean validation places the validation rules within the form bean class itself (LoginForm from the
previous example). More specifically, it places it within a special method of the form bean that the Struts
framework knows to call before the execute method of the Action class. The appropriate form bean
and whether to call this special method are determined in the struts-config.xml file. Of course, this
method does not apply to DynaActionBeans.

Here we build on the LoginForm example described earlier; the validation rules we may want to imple-
ment extend only to checking that the two fields, username and password, are not empty. With this
knowledge, we can implement a validate method in the LoginForm class as follows:

617

Struts Framework

24_57485x ch19.qxd 1/14/05 10:15 PM Page 617

TEAM LinG - Live, Informative, Non-cost and Genuine!

...
public class LoginForm extends ActionForm
{

private String _username;
private String _password;

public LoginForm()
{
}

...
public ActionErrors validate(ActionMapping mapping,

HttpServletRequest request)
{

ActionErrors errors = new ActionErrors();

if ((_username == null) || (_username.length() < 1))
{

errors.add(“username”,
new ActionMessage(“error.login.username.missing”));

}

if ((_password == null) || (_password.length() < 1))
{

errors.add(“password”,
new ActionMessage(“error.login.password.missing”));

}

return errors;
}

}

This new method is executed after the form is submitted but before the execute method of the
LoginAction is invoked by the framework. If the ActionErrors object this class returns is null or
empty, then processing continues on the LoginAction class as normal. If the ActionErrors object this
method returns contains errors, then the input page that submitted the form is redisplayed and the val-
ues of the form are populated with what was originally entered. We should point out here the use of the
ActionErrors object to house ActionMessages. ActionErrors is a subclass of ActionMessages.
Some of the areas where ActionErrors have usually been used, such as in an Action class, have been
deprecated in favor of the ActionMessages collection. For the time being, though, the validate
method used here will need to return an ActionErrors collection. If you’re using an older or a future
version of Struts, make sure that you check the usage of these objects; otherwise, you may encounter
problems. The Struts documentation alludes to a general theme of not using the ActionErrors object
where possible, in favor of the ActionMessages object.

In the validate method in the previous code, the two fields _username and _password are checked
to ensure they are not null and not empty, meaning that at least something has been typed in by the user.
If either of the fields is found to be empty, a new error is added to the ActionErrors object. When
adding the error to the ActionErrors object, the add method is used. This method, in this instance,
takes two parameters. The first indicates the property for which this error applies. The second is the
ActionMessage itself. The ActionMessage object is constructed with the name of an appropriate mes-
sage property key available within the application. When the validate method returns a populated

618

Chapter 19

24_57485x ch19.qxd 1/14/05 10:15 PM Page 618

TEAM LinG - Live, Informative, Non-cost and Genuine!

ActionErrors object to the input page, these messages are available to inform the user of what hap-
pened. To show these messages to the user, the html:errors custom tag is used:

...
<html:errors property=”username”/>

Username: <html:text property=”username”/>

<P>
<html:errors property=”password”/>

Password: <html:password property=”password”/>

...

In the preceding example, the code to display the appropriate error messages above the associated form
element has been highlighted.

So how does the framework know which bean’s validate method to invoke? And where is this input
page thing? Let’s recall the action-mapping in struts-config.xml for the LoginAction:

...
<action-mappings>

<action path=”/login”
type=”com.wrox.begjsp.ch19.struts.simpleform.LoginAction”
name=”loginForm”
input=”/login.jsp”
validate=”true”
scope=”request”>

<forward name=”success” path=”/welcome.jsp”/>
</action>

</action-mappings>
...

The three attributes responsible for making this validation flow work have been highlighted. The name
attribute indicates which form-bean entry maps to this action. The input attribute indicates the path
that invoked this action (and where to go if an error occurs), and the validate attribute being set to
true tells the framework that when this action is invoked, the validate method of the form-bean
should be used.

As you can see, setting up basic form validation in this way is very simple and straightforward. It also
ensures that the logic to do this for each interface is in one place and that the workflow from form sub-
mission to form error is clear and concise when reading the code. Of course, this is not the only way to
implement framework-sponsored validation using Struts.

Struts Validator
Using the form bean validation method means that all the validation logic, and in a big application it can
be a lot of such logic, is localized in the ActionForm classes. Logic in this location is very difficult to
change in a live application, and the person changing it must be a Java programmer. In response to these
constraints, a more configurable validation mechanism has evolved.

The Struts Validator has evolved from a set of validation classes available under the Jakarta Commons
project, and it has since been adopted into Struts 1.1 with some enhancements. Struts Validator places
the validation rules for form beans inside an XML file, validation.xml. The rules defined in this XML

619

Struts Framework

24_57485x ch19.qxd 1/14/05 10:15 PM Page 619

TEAM LinG - Live, Informative, Non-cost and Genuine!

file utilize a set of predefined validation mechanisms defined in a file provided by Struts, called
validator-rules.xml. Put another way, the validation.xml file defines which rules will govern
validation for forms and how they should behave, whereas validator-rules.xml defines these rules
and references appropriate Struts objects to encapsulate the logic.

The validation provided by the Struts Validator can be called in two ways: on the client side or on the
server side. Client-side validation is made possible by the fact that the validation rules provided by
default with Struts also define equivalent JavaScript functions that can be placed on the page if required.
This JavaScript is placed on the JSP page by using the Struts html:javascript tag:

<html:javascript dynamicJavascript=”true”
formName=”loginForm”/>

You can see from the preceding example that the dyanamicJavascript attribute of true indicates to
the framework that the Validator-generated JavaScript should be placed here (you would put the tag
above the HTML <body> tag). The formName attribute identifies the form bean to which the rules apply.

Leaving the preceding tag out of the JSP page leaves the validation to occur on the server side. In simple
terms, each validation rule provided by Struts references an object that performs the validation based on
the parameters it has been provided by the validation.xml file, and in so doing behaves almost
exactly like the LoginForm validation that was implemented earlier.

The Struts Validator expects the form bean being validated to be of a certain type; therefore, the form
bean used to represent the HTML form must now extend the org.apache.struts.validator.
ValidatorForm (or org.apache.struts.validator.ValidatorActionForm) class instead of
the ActionForm class.

If a DynaActionForm is currently being used, the org.apache.struts.validator.
DynaValidatorForm (or org.apache.struts.validator.DynaValidatorActionForm) class must
now be specified as the type attribute for the form-bean entry in the struts-config.xml file instead
of the DynaActionForm class.

Defining the validation rules
So how do we actually define the validation rules? First, the Struts Validator is a plug-in to Struts, so it
must have a corresponding entry in the struts-config.xml file:

<plug-in className=”org.apache.struts.validator.ValidatorPlugIn”>
<set-property property=”pathnames”

value=”/WEB-INF/validator-rules.xml,
/WEB-INF/validation.xml”/>

</plug-in>

This entry tells the framework where these two all-important files are located. The preceding entry
places them in the /WEB-INF/ directory of the application.

As described, the validation.xml file tells the framework the rules that apply to each of the fields in
each of the forms that the application uses. Let’s look at the contents of this file for our login example.
The validation rules implemented here specify that both of the fields, username and password, cannot
be empty, i.e., that they are required:

620

Chapter 19

24_57485x ch19.qxd 1/14/05 10:15 PM Page 620

TEAM LinG - Live, Informative, Non-cost and Genuine!

<form-validation>
<formset>

<form name=”loginForm”>
<field property=”username” depends=”required”>

<msg name=”required” key=”error.login.username.missing”/>
</field>

<field property=”password” depends=”required”>
<msg name=”required” key=”error.login.password.missing”/>

</field>
</form>

</formset>
</form-validation>

The simple XML structure here is quite easy to read. The entry first defines a formset, the set of forms
that this file defines validation for, and within this structure is a corresponding entry for each form.
Within the form definition is an entry for each field of the form, and it is this entry that defines the vali-
dation rules and corresponding error messages for each of the form elements. Note the use of the
depends attribute in the form element. In plain English, this would mean that this field depends on this
rule. The depends attribute can also take a comma-separated list of rules that the field must satisfy. The
nested msg element within the field entry nominates messages to be displayed for each of the rules spec-
ified in the depends attribute. Where no message is specified for a rule, the Struts Validator will search
for a default message key in the messages.properties file. A list of these keys can be found in the
validator-rules.xml file.

The required rule is a very simple one: The field is either empty or not. Other rules need variables to
define their behavior, such as minlength. This rule ensures that the length of data placed in a field must
be at least a certain length.

So what is the minimum length and how is this specified? Let’s look at an example to explain this. If the
login form needed the password to not only be required but also to be, for example, at least six charac-
ters long, the field entry would appear as follows:

<field property=”password”
depends=”required,minlength”>

<msg name=”required” key=”error.login.password.missing”/>
<msg name=”minlength” key=”error.login.password.length”/>
<arg0 name=”minlength” key=”${var:minlength}” resource=”false”/>
<var>

<var-name>minlength</var-name>
<var-value>6</var-value>

</var>
</field>

Whoa! Our simple validation entry just got a lot more complicated. Let’s walk through this bit by bit.
The field entry now depends on two rules: required and minlength:

<field property=”password” depends=”required,minlength”>

621

Struts Framework

24_57485x ch19.qxd 1/14/05 10:15 PM Page 621

TEAM LinG - Live, Informative, Non-cost and Genuine!

A new error message has been added for cases when the minlength rule is broken:

<msg name=”required” key=”error.login.password.missing”/>
<msg name=”minlength” key=”error.login.password.length”/>

This is defined in the messages.properties file as follows:

error.login.password.length=The password must be {0} characters long

Note the parameter placeholder in the message. This is filled in by the next entry, an argument for the
minlength msg entry:

<arg0 name=”minlength” key=”${var:minlength}” resource=”false”/>

This passes a value to the error message for the minlength rule. The parameter passed to the message
is represented by the value specified in the key attribute. And as with parameters passed in the
html:message tag described earlier, up to four arg parameters (arg0 . . . arg3) can be used. In this
case, the value is actually a reference to the next entry, where the minlength rule variable is specified:

<var>
<var-name>minlength</var-name>
<var-value>6</var-value>

</var>

One of the strengths of the Struts Validator is that it allows for some very sophisticated validation logic
to be implemented, even when just using the default set of validation rules provided by Struts.
Following is a list of the other rules that can be used with the default validator-rules.xml:

❑ maxlength: Similar to minlength. It takes only one variable, the maximum length for the field.

❑ mask: Allows a validation rule to be specified with regular expressions. Regular expressions are
patterns designed to match strings of text. Regular expressions are an extremely powerful
method for identifying a particular pattern of text. For instance, the following mask example
requires that the field in question must contain only numbers and alphabetic characters, but
nothing else:

<field property=”username” depends=”mask”>
<msg name=”mask” key=”errors.login.username.mask”/>
<var>

<var-name>mask</var-name>
<var-value>^[0-9A-Za-z]*$</var-value>

</var>
</field>

The mask rule takes one variable, the mask regular expression to be tested.

❑ byte, short, integer, float, double, long: All these rules ensure that the value entered in a
field can be converted to the specified type. None of these rules require variables.

❑ date: Date validation is challenging on many levels. This rule ensures that at least what has
been entered can be converted to a java.util.Date object. The date rule uses the

622

Chapter 19

24_57485x ch19.qxd 1/14/05 10:15 PM Page 622

TEAM LinG - Live, Informative, Non-cost and Genuine!

SimpleDateFormat class to confirm that the text entered can become a Date object. It also
allows two variables to be optionally specified:

❑ dateFormat: The format in which the date should be entered

❑ datePatternStrict: This specifies whether the rule should be strictly applied, such as
cases where the dateFormat dictates that the day field in the pattern dd/MM/yyyy
should be two characters but the user enters 3/11/2005, i.e., only one character for the
day. true or false are valid values here.

❑ intRange, floatRange, and doubleRange: Tests that the field is within a specified range of
values defined by two variables. Fields that use these rules must also depend on the integer,
float and double rules, respectively. The two variables required for these rules are as follows:

❑ min: The minimum value for the field

❑ max: The maximum value for the field

❑ creditCard: Validates the format of a credit card. The Struts Validator uses the Luhn Formula to
determine whether the information is correct. The Luhn Formula is a credit card number valida-
tion technique supported by most major credit card companies.

❑ email: Validates that the field is a properly structured e-mail address. There are no guarantees,
however, that the address actually exists!

❑ requiredif: This rule enables the developer to conditionally provide validation for a field
based on conditions concerning the values of other fields. Note that this rule will be deprecated
in the first Struts release after 1.1 in favor of a new rule called validwhen, and therefore may be
removed in any future release after that.

As you can see, the validation rules provided by the Struts Validator can be very sophisticated and cover
many common scenarios required by applications. If you find that the default set of rules does not sat-
isfy your scenario, then you might consider adding your own Validator. The Struts documentation pro-
vides some brief instructions on doing this. Unfortunately, this topic is out of the scope of this book.

Business logic validation
Struts doesn’t provide a mechanism to validate the business rules of an application simply because it
shouldn’t or can’t. Rather, the breadth of validation required to ensure that the business rules of an
application are kept in check is beyond the scope of an application framework like Struts. All the frame-
work can do, and Struts does this admirably, is to provide a structure and infrastructure within which
such rules can be tested, and if broken, dealt with.

One common strategy used in Struts applications is to perform the form element validation in the ways
just described and to perform, or call on, business logic validation within the actions themselves.

Suppose you have a system dealing with new customer registration. The validation you need to imple-
ment falls into the two categories identified: The general form validation would cover problems such as
empty fields, passwords that are not complicated enough, or invalid e-mail addresses. The business
logic validation would cover more involved problems such as a login name that is already taken by
another customer, or an invalid ZIP code

623

Struts Framework

24_57485x ch19.qxd 1/14/05 10:15 PM Page 623

TEAM LinG - Live, Informative, Non-cost and Genuine!

The register customer form would submit to an appropriate action, maybe saveNewCustomer.do
(SaveNewCustomerAction class). Within the execute method of this class, other objects developed for
the application could be called to do the appropriate checks and then return a List of error message
keys back to the Action class. These error message keys would then be added to an ActionMessages
object in the way you have already seen.

The key objectives you want to achieve in structuring business logic validation in this way are as
follows:

❑ Encapsulating the business logic (away from the concerns of the front end): This helps for
reuse elsewhere in the application. Imagine if the business logic rules for what constituted a
valid new customer were locked away in the front end of an application and another mecha-
nism other than the Web site needs to create a new customer. The logic isn’t very reusable in the
Action class.

❑ Separation of concerns: You don’t want the business logic of the application to know or care
about the front end. If it is not dependent on the front end, it can be utilized from other sources,
or even separated and implemented elsewhere. This objective also promotes a clean and clearly
structured implementation of the application.

The preceding example is just one suggestion for how such validation could be dealt with; there would
literally be millions out there. It is a testament to the flexibility of Struts that it enables applications to be
implemented in many different ways.

This concludes the discussion about the different layers of an MVC application developed using the
Struts framework. A lot has been covered in this section, so it may be helpful to briefly recap the main
points before moving on to the examples.

In the Controller layer, you saw the role that the ActionServlet and Action classes play in defining
the flow of an application. You also learned how Struts encapsulates HTML forms with ActionForm and
DynaActionForm beans. The Model layer was defined within the structure of an application, and it was
ascertained that Struts doesn’t play a big part in defining its use and architecture.

In the View layer, many points were covered. You first saw how the ActionForm and DynaActionForm
beans can interact with the elements of an HTML form. Internationalization was then discussed, with
reference to messages provided to the user. You also took a look at the Struts Tag Library, and saw how
some of the more commonly used tags were applied. The View discussion was rounded off with valida-
tion techniques using Struts and a suggestion for how business logic may be implemented.

Example application
Our attention now turns to providing a simple example of a Struts application and its development.
Chapter 18 introduced a simple form submission application to illustrate WebWork and Spring. We will
continue using this example application in this section.

The following discussion details the steps involved in setting up a base version of this small application.
If you missed the discussion in Chapter 18, this application is a simple form inviting users to enter their
name and some comments into a form. The form can then be submitted. If the user has not entered a
name, the application informs the user of the error and redisplays the form.

624

Chapter 19

24_57485x ch19.qxd 1/14/05 10:15 PM Page 624

TEAM LinG - Live, Informative, Non-cost and Genuine!

Once you have established that this base application is working with Tomcat and that you can deploy
the application using Ant, you can begin to implement some enhancements.

Try It Out Setting Up the Base Application
Download the files for this chapter from the Wrox Web site at www.wrox.com. Unzip the file titled
struts-base.zip into an area on your hard drive. Let’s assume this directory is c:\struts-base. You
will notice the following directory structure within this directory:

❑ Within the root of the struts-base directory is the build.xml file. This Ant file will be used to
build the application.

❑ src holds the source files for the application, which are stored in this directory in a package
structure. There are two files within this directory:

❑ \com\wrox\begjsp\ch19\struts\TestAction.java: The action invoked when the
form is submitted

❑ \messages.properties: An internationalization file for the application

❑ web includes the JSP files for the application that have been stored in this directory. This direc-
tory will contain the following:

❑ \index.jsp: The page that displays the form

❑ \details.jsp: The page displayed once the form is submitted

❑ web\WEB-INF: The configuration for the application is located in this directory. It contains the
following files:

❑ web.xml: The configuration file for the application within the Servlet container
(Tomcat)

❑ struts-config.xml: The configuration file for Struts

❑ validation.xml and validator-rules.xml: These are files to configure the validation
requirements of the application.

Once this directory structure is in place, we can set about configuring the Ant build file to build and
deploy the application appropriately. These instructions assume you have set up Ant and Tomcat
already.

1. Download the latest binary version of Struts from http://struts.jakarta.org/. This chap-
ter uses the latest version at the time of writing, version 1.2.4.

2. Unzip (or untar) the binary file you downloaded into an appropriate directory on your com-
puter. For this illustration we will assume this is: c:\jakarta-struts-1.2.4.

3. Copy the catalina-ant.jar file from the c:\<tomcat home>\server\lib directory and
place it in the Ant lib directory, which will be something like c:\ apache-ant-1.6.2\lib.
This JAR file enables the build.xml Ant script to communicate with Tomcat.

4. Open the build.xml file and change the following highlighted properties to reflect the correct
values for your environment:

625

Struts Framework

24_57485x ch19.qxd 1/14/05 10:15 PM Page 625

TEAM LinG - Live, Informative, Non-cost and Genuine!

<property name=”app.name” value=”struts-base”/>
<property name=”app.path” value=”/${app.name}”/>
<property name=”app.version” value=”0.1-dev”/>
<property name=”build.home” value=”${basedir}/build”/>
<property name=”catalina.home” value=”c:/Tomcat5.0.27”/>
<property name=”dist.home” value=”${basedir}/dist”/>
<property name=”docs.home” value=”${basedir}/docs”/>
<property name=”manager.url” value=”http://localhost:8080/manager”/>
<property name=”manager.username” value=”admin”/>
<property name=”manager.password” value=”password”/>
<property name=”src.home” value=”${basedir}/src”/>
<property name=”web.home” value=”${basedir}/web”/>
<property name=”struts.home” value=”c:/jakarta-struts-1.2.4”/>

These properties are explained in the following table.

Property Description

catalina.home The directory in which Tomcat was installed

manager.url The URL of the Manager application for Tomcat

manager.username The username specified for the administration user when Tomcat
was set up

manager.password The password specified for the administration user when Tomcat
was set up

Struts.home The directory in which Struts was installed (step 2)

The build.xml script we are using here is provided with Tomcat and is perfect for our pur-
poses. It will automate the interaction required to control the server while changing the applica-
tion. Once you have made these property changes, you are now in a position to deploy the
application using the build.xml file.

5. Start up a command prompt and change to the directory in which the struts-base application
was installed. The directory you are now in should contain the build.xml file.

6. Start up the Tomcat server.

7. Issue the following command at the command prompt: ant install. This command will per-
form a number of important tasks that we should step through:

a. Create a new directory called c:\struts-base\build in which the application will be
compiled and copied.

b. Compile the Java source file in the application to c:\struts-base\build\WEB-
INF\classes.

c. Copy the contents of c:\struts-base\web to c:\struts-base\build.

626

Chapter 19

24_57485x ch19.qxd 1/14/05 10:15 PM Page 626

TEAM LinG - Live, Informative, Non-cost and Genuine!

d. Copy the following JAR files from the c:\jakarta-struts-1.2.4\lib directory to
the c:\struts-base\build\WEB-INF\lib directory:

❑ struts.jar

❑ commons-beanutils.jar

❑ commons-digester.jar

❑ commons-validator.jar

❑ jakarta-oro.jar

e. Copy all *.tld files from the c:\jakarta-struts-1.2.4\lib directory to the
c:\struts-base\build\WEB-INF directory.

f. Copy the validator-rules.xml file from the c:\jakarta-struts-1.2.4\lib
directory to the c:\struts-base\build\WEB-INF directory.

g. Install a new context in the Tomcat server using the c:\struts-base\build directory
as the document base.

You should now be able to point your browser at http://localhost:8080/struts-base/index.jsp
and be presented with the screen shown in Figure 19-4.

Figure 19-4: Struts base application

627

Struts Framework

24_57485x ch19.qxd 1/14/05 10:15 PM Page 627

TEAM LinG - Live, Informative, Non-cost and Genuine!

How It Works
Before we have a look at how the application has been put together, submit the form. You should be pre-
sented with a validation message just above the Name field. If you enter your name and click Submit
again, you will be presented with a mostly blank page. Pretty boring, huh?

Open the c:\struts-base\web\index.jsp file and have a look at what’s currently implemented:

<html:form action=”/test” method=”POST”>
<table width=”350” border=”0” cellpadding=”3” cellspacing=”0”>
<logic:messagesPresent message=”false”>
<tr>

<td colspan=2><bean:message key=”errors.global”/></td>
</tr>
</logic:messagesPresent>
<logic:messagesPresent property=”name”>
<tr>

<td colspan=2><html:errors property=”name”/></td>
</tr>

</logic:messagesPresent>
<tr>

<td><bean:message key=”form.name.title”/></td>
<td><html:text altKey=”form.name.title” property=”name” size=”30”/></td>

</tr>
<tr>

<td valign=”top”><bean:message key=”form.comments.title”/></td>
<td>

<html:textarea property=”comments” cols=”30” rows=”8”></html:textarea>
</td>

</tr>
<tr>

<td> </td>
<td align=”center”><html:submit/></td>

</tr>
</table>

</html:form>

You will notice a simple form that posts to an action: /test. The form also has Struts HTML tags for the
two fields, Name and Comments, as well as a placeholder for an error message for the Name field. There
is a logic:messagesPresent test around this.

This form is represented by a DynaValidatorForm configured in the struts-config.xml file:

<form-beans>

<form-bean name=”testForm”
type=”org.apache.struts.validator.DynaValidatorForm”>

<form-property name=”name” type=”java.lang.String”/>
<form-property name=”comments” type=”java.lang.String”/>

</form-bean>

</form-beans>

628

Chapter 19

24_57485x ch19.qxd 1/14/05 10:15 PM Page 628

TEAM LinG - Live, Informative, Non-cost and Genuine!

A plug-in entry has also been added to the struts-config.xml file for validation rules:

<plug-in className=”org.apache.struts.validator.ValidatorPlugIn”>
<set-property property=”pathnames”

value=”/WEB-INF/validator-rules.xml,
/WEB-INF/validation.xml”/>

</plug-in>

A messages resource has also been added:

<message-resources parameter=”messages” null=”false”/>

This denotes that a file called messages.properties will be located in the root package of the class-
path. If you open the file located at c:\struts-base\src\messages.properties you will see the
messages presented on the page, labels, the page title, and so on, as well as the error message that was
displayed.

In the validation.xml file, also located in the c:\struts-base\web\WEB-INF\ directory, rules for
the form have been added. They currently ensure only that a value is entered in the Name field:

<?xml version=”1.0” encoding=”iso-8859-1”?>
<!DOCTYPE form-validation PUBLIC

“-//Apache Software Foundation//DTD Commons Validator Rules Configuration
1.1.3//EN”

“http://jakarta.apache.org/commons/dtds/validator_1_1_3.dtd”>
<form-validation>

<formset>
<form name=”testForm”>

<field property=”name” depends=”required”>
<msg name=”required” key=”form.error.name.missing”/>

</field>
</form>

</formset>
</form-validation>

The TestAction that has been implemented is about as basic as it gets; the entire class listing is as
follows:

package com.wrox.begjsp.ch19.struts;

import org.apache.struts.action.Action;
import org.apache.struts.action.ActionForm;
import org.apache.struts.action.ActionForward;
import org.apache.struts.action.ActionMapping;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class TestAction extends Action
{

629

Struts Framework

24_57485x ch19.qxd 1/14/05 10:15 PM Page 629

TEAM LinG - Live, Informative, Non-cost and Genuine!

public ActionForward execute(ActionMapping mapping, ActionForm form,
HttpServletRequest request, HttpServletResponse response)
throws Exception

{
return mapping.findForward(“success”);

}
}

This action as well as the success forward, is configured in the struts-config.xml as follows:

...
<action-mappings>

<action path=”/test”
type=”com.wrox.begjsp.ch19.struts.TestAction”
name=”testForm”
validate=”true”
input=”/index.jsp”
scope=”request”>

<forward name=”success” path=”/details.jsp”/>
</action>

</action-mappings>
...

You can see that the testForm form bean is referenced along with the validate=true setting, ensuring
that this action validates the input as soon as it is invoked.

Adding enhancements
The discussion from here on will focus on adding some features to this simple application in order to use
some of the Struts skills you have learned in this chapter. A modest list of enhancements to implement is
as follows:

❑ Add validation for the Comments field, making sure it has a value when the form is submitted.

❑ Add validation for the Name field, making sure the name is only alphabetic characters when the
form is submitted.

❑ Add a new field to the form for the user’s e-mail address. Add validation to this field to ensure
that only a properly structured e-mail address can be entered.

❑ Add another field to the form from which users select their favorite sport from a list of possible
sports. Add validation to ensure that a sport is selected.

❑ Display all the information in the form on the following page after the form has been submitted.

The following example will lead you through making these changes to the struts-base application. If
you’d like to skip ahead, you could download the completed application in the struts-enhanced.zip
file from the Web site for this book. Simply follow the same steps as outlined previously to get it going.

630

Chapter 19

24_57485x ch19.qxd 1/14/05 10:15 PM Page 630

TEAM LinG - Live, Informative, Non-cost and Genuine!

Try It Out Adding Validation: Comments Field Required
This is a very easy enhancement to add, especially given that the Struts Validator is being used.

First open the validation.xml file located in the WEB-INF/ directory of the struts-base application.
Add a new field entry beneath the existing entry indicating that the Comments field is also required.
Allocate an appropriate comment message key:

...
<field property=”name” depends=”required,mask”>

<msg name=”required” key=”form.error.name.missing”/>
</field>
<field property=”comments” depends=”required”>

<msg name=”required” key=”form.error.comments.missing”/>
</field>
...

This addition has been highlighted. Make sure you add an appropriate message in the messages
.properties file for the error this creates called form.error.comments.missing.

Now we need to add a place for this message to appear on the form when a user doesn’t enter anything
in the Comments field. Open the index.jsp file and locate the Comments field. Place a new messages
row above the field, as shown in the following highlighted entry:

...
<logic:messagesPresent property=”comments”>
<tr>

<td colspan=2><html:errors property=”comments”/></td>
</tr>
</logic:messagesPresent>
<tr>

<td valign=”top”><bean:message key=”form.comments.title”/></td>
<td>

<html:textarea property=”comments” cols=”30” rows=”8”></html:textarea>
</td>

</tr>
...

Save the changes and, with Tomcat running, issue an ant reload command in the command console,
which you should still have open. The changes will be copied into the c:\struts-base\build direc-
tory and then the context will be reloaded within Tomcat. If you browse to the application now and try
to submit the form without entering a comment, a new validation message will appear. Job complete!

How It Works
This change simply configures the Validator to ensure that the Comments field is submitted with a
value. The JSP page was modified to ensure that an error message appears when an error for the
Comments field is detected.

631

Struts Framework

24_57485x ch19.qxd 1/14/05 10:15 PM Page 631

TEAM LinG - Live, Informative, Non-cost and Genuine!

Try It Out Adding Validation: Name Field to Be Alphabetic Only
To complete this requirement, a new rule needs to be added to the existing validation rule for the Name
field. If you remember the Struts Validator discussion, a mask rule is appropriate here. Open the
validation.xml file in the c:\struts-base\web\WEB-INF\ directory and add the highlighted
items in the following listing to the Name field’s entry:

<field property=”name” depends=”required,mask”>
<msg name=”required” key=”form.error.name.missing”/>
<msg name=”mask” key=”form.error.name.invalid”/>
<var>

<var-name>mask</var-name>
<var-value>^[a-zA-Z]*$</var-value>

</var>
</field>

Add an appropriate message to the messages.properties file for this new error (form.error.name.
invalid). Once you have saved the changed files, issue another ant reload command. If you now
browse to the form again and enter a non-alphabetic character into the Name field and click Submit,
the new error message will appear.

How It Works
In order to enforce the requirement for the name field we have used a mask validation entry to the
validation.xml file. This validation entry specifies that an error should be raised if the name field’s
value is something other than an upper- or lowercase alphabetic character. The ^ character tells the vali-
dation mechanism that errors are raised for characters not in the trailing expression [a-zA-Z]. This new
validation rule is associated with the mask msg specified in the third line of the last listing.

Try It Out Adding a Field and Validation: E-mail Address
In order to add a new e-mail address field to the form, another modification is required to the struts-
config.xml file. Modify the testForm form bean in this file as follows:

...
<form-beans>

<form-bean name=”testForm”
type=”org.apache.struts.validator.DynaValidatorForm”>

<form-property name=”name” type=”java.lang.String”/>
<form-property name=”emailAddress” type=”java.lang.String”/>
<form-property name=”comments” type=”java.lang.String”/>

</form-bean>

</form-beans>
...

To reflect this addition, changes are also required in the index.jsp file to add the input field and a
space for its validation messages. Add these to the JSP page with the following (additions have been
highlighted):

632

Chapter 19

24_57485x ch19.qxd 1/14/05 10:15 PM Page 632

TEAM LinG - Live, Informative, Non-cost and Genuine!

...
<tr>

<td><bean:message key=”form.name.title”/></td>
<td><html:text altKey=”form.name.title” property=”name” size=”30”/></td>

</tr>
<logic:messagesPresent property=”emailAddress”>
<tr>

<td colspan=2><html:errors property=”emailAddress”/></td>
</tr>
</logic:messagesPresent>
<tr>

<td><bean:message key=”form.emailaddress.title”/></td>
<td><html:text altKey=”form.emailaddress.title” property=”emailAddress”

size=”30”/></td>
</tr>
...

In addition to this change, you should add a new message for the form.emailaddress.title key in
the messages.properties file.

So far, the new form element has been defined and the JSP page has been updated to reflect the new
input required of the user. The requirement also specified that validation should ensure that the e-mail
address has been entered and that when it is entered it should be a properly structured e-mail address.
The Struts Validator provides a simple mechanism for this to occur. Open the validation.xml file and
add the following form entry to the testForm (again, the changes required have been highlighted):

...
<field property=”name” depends=”required,mask”>

<msg name=”required” key=”form.error.name.missing”/>
<msg name=”mask” key=”form.error.name.invalid”/>
<var>

<var-name>mask</var-name>
<var-value>^[a-zA-Z]*$</var-value>

</var>
</field>
<field property=”emailAddress” depends=”required,email”>

<msg name=”required” key=”form.error.emailaddress.missing”/>
<msg name=”email” key=”form.error.emailaddress.invalid”/>

</field>
...

The new field entry tells the framework that the emailAddress field is both required and should reflect
a properly structured e-mail address using the depends attribute. The appropriate error messages are
referenced within this element. Make sure you add a new entry to messages.properties for the two
e-mail address errors, form.error.emailaddress.missing and form.error.emailaddress.
invalid.

Save the changed files and issue another ant reload command. If you now browse to the application
you will notice the new e-mail address input box. If you enter something obviously incorrect in the
e-mail field and click the Submit button, an appropriate error message will be displayed, as shown in
Figure 19-5.

633

Struts Framework

24_57485x ch19.qxd 1/14/05 10:15 PM Page 633

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 19-5: New e-mail address field with validation

Requirement three is complete.

How It Works
The new field was added to the definition of the form in the struts-config.xml file. With this new
field available, we were able to add appropriate validation to the validation.xml file. In order to
ensure that a properly formed e-mail address is entered by the user, the e-mail validation setting was
used in the depends attribute for this field. The new field was also added to the index.jsp file so that
the user has somewhere to enter the value. Messages were added to the messages.properties file so
that validation and labels used in this change could be displayed where appropriate.

Try It Out Adding a Field and Validation: Favorite Sport
Our imaginary client now needs users to be able to select their favorite sport from the form. For this we
need a list of sports to display in a select list. We could simply define this list in the JSP page, but it
would be more architecturally correct to pass the JSP page a list of sports and let it deal with only the
display aspects, rather than the data as well. In order to achieve this, a new action will be required to
display the form page. Instead of browsing to the form page (index.jsp) directly, the display of the
form will become a successful ActionForward mapping from the new action. To achieve this, a series of
changes will be required.

Because a file called index.jsp is generally the entry page for any application, this page should now
become simply a redirection page to the new action that will be created. Create a new file called
form.jsp in the c:\struts-base\web directory. Move all the content of index.jsp to this new file.

634

Chapter 19

24_57485x ch19.qxd 1/14/05 10:15 PM Page 634

TEAM LinG - Live, Informative, Non-cost and Genuine!

In the index.jsp file, enter the following:

<%@ taglib uri=”/WEB-INF/struts-logic.tld” prefix=”logic” %>
<logic:redirect page=”/form.do”/>

This will redirect all requests directed at index.jsp to our new action, which will be called form.

The new action class must be created. Create a new file in the c:\struts-base\src\com\wrox\
begjsp\ch19\struts directory called FormAction.java. This new action will represent the class that
actually presents the form.jsp page to the user. In this new file, enter the following code to represent
the new class (you can pretty much just copy the content of the TestAction.java file and change the
class name):

package com.wrox.begjsp.ch19.struts;

import org.apache.struts.action.Action;
import org.apache.struts.action.ActionForm;
import org.apache.struts.action.ActionForward;
import org.apache.struts.action.ActionMapping;
import org.apache.struts.util.LabelValueBean;

import java.util.ArrayList;
import java.util.List;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class FormAction extends Action
{

public ActionForward execute(ActionMapping mapping, ActionForm form,
HttpServletRequest request, HttpServletResponse response)
throws Exception

{
return mapping.findForward(“success”);

}
}

This action is going to have to send a list of sports to the form.jsp page so that the user can select one
from a list. This is easily done. Create a new method in the FormAction class called getSports(). This
new method will return a List that will be added to the request in the execute method. An example of
this new method is as follows:

...
private List getSports()
{

List sports = new ArrayList();

sports.add(new LabelValueBean(“Tennis”, “Tennis”));
sports.add(new LabelValueBean(“Hockey”, “Hockey”));
sports.add(new LabelValueBean(“Football”, “Football”));
sports.add(new LabelValueBean(“Baseball”, “Baseball”));
sports.add(new LabelValueBean(“Soccer”, “Soccer”));

635

Struts Framework

24_57485x ch19.qxd 1/14/05 10:15 PM Page 635

TEAM LinG - Live, Informative, Non-cost and Genuine!

return sports;
}
...

Struts provides a convenient object called LabelValueBean that enables name-value pairs of strings
to be joined together. This is perfect for select lists for which the only data required is a label to be
displayed to the user, and a value is the value of each element. For our purposes though, these are the
same thing.

This new method should now be called from the execute method of the FormAction class. Add the
following highlighted code:

...
public class FormAction extends Action
{

public ActionForward execute(ActionMapping mapping, ActionForm form,
HttpServletRequest request, HttpServletResponse response)
throws Exception

{
request.setAttribute(“sports”, getSports());
return mapping.findForward(“success”);

}
...
}

With this change, the result of the getSports method is added to the request object. This places the
List in the request scope of the form.jsp page under the alias sports.

So what’s left to do? The mappings in the struts-config.xml file haven’t been changed yet, the new
field needs to be added to the form.jsp page, and we also need to add the associated validation entry.

Open the struts-config.xml file. Change the /test action mapping to appear as follows (the change
has been highlighted):

...
<action path=”/test”

type=”com.wrox.begjsp.ch19.struts.TestAction”
name=”testForm”
validate=”true”
input=”/form.do”
scope=”request”>

<forward name=”success” path=”/details.jsp”/>
</action>
...

636

Chapter 19

24_57485x ch19.qxd 1/14/05 10:15 PM Page 636

TEAM LinG - Live, Informative, Non-cost and Genuine!

With the struts-config.xml file still open, add a new action mapping to reflect the FormAction
action that has been added. Remember that this action will provide the user with a view of the
form page:

...
<action path=”/form”

type=”com.wrox.begjsp.ch19.struts.FormAction”
scope=”request”>

<forward name=”success” path=”/form.jsp”/>
</action>
...

The action mappings have now been modified to reflect the new functionality required. Now the new
field can be added to the form. Modify the form bean testForm to reflect the following (the changes
have been highlighted):

...
<form-beans>

<form-bean name=”testForm”
type=”org.apache.struts.validator.DynaValidatorForm”>

<form-property name=”name” type=”java.lang.String”/>
<form-property name=”emailAddress” type=”java.lang.String”/>
<form-property name=”favSport” type=”java.lang.String”/>
<form-property name=”comments” type=”java.lang.String”/>

</form-bean>

</form-beans>
...

Save the struts-config.xml file. The validation for this new field involves a simple addition to the
validation.xml file. Open this file and add the validation as follows:

...
<field property=”emailAddress” depends=”required,email”>

<msg name=”required” key=”form.error.emailaddress.missing”/>
<msg name=”email” key=”form.error.emailaddress.invalid”/>

</field>
<field property=”favSport” depends=”required”>

<msg name=”required” key=”form.error.favsport.missing”/>
</field>
<field property=”comments” depends=”required”>

<msg name=”required” key=”form.error.comments.missing”/>
</field>
...

637

Struts Framework

24_57485x ch19.qxd 1/14/05 10:15 PM Page 637

TEAM LinG - Live, Informative, Non-cost and Genuine!

Save the validation.xml file. Now that all the prep work has been done, the new form element can be
added to the form.jsp file.

The form.jsp page now has a List object within its request scope called sports. The html:select
tag will be used to iterate through this List and render a select list with the desired values. However, a
default value should be specified for the form as well, one that doesn’t contain a sport and instructs the
user to choose a value. This is achieved by adding a manual html:option entry to the select list.

Open the form.jsp page and make the following addition (the changes have been highlighted):

...
<logic:messagesPresent property=”favSport”>
<tr>

<td colspan=2><html:errors property=”favSport”/></td>
</tr>
</logic:messagesPresent>
<tr>

<td valign=”top”><bean:message key=”form.favsport.title”/></td>
<td>

<html:select property=”favSport”>
<html:option value=””>Please choose</html:option>
<html:options collection=”sports” property=”value”

labelProperty=”label”/>
</html:select>

</td>
</tr>
<logic:messagesPresent property=”comments”>
<tr>

<td colspan=2><html:errors property=”comments”/></td>
</tr>
</logic:messagesPresent>
<tr>
...

Save this file and then make the appropriate additions to the messages.properties file for the mes-
sages used in this change and the error added in the validation change.

Once all these changes have been made, issue another ant reload command using Ant and point your
browser to http://localhost:8080/struts-base/. The index.jsp page should be invoked, which
will redirect you to /form.do where the form will be presented. The form should now have a new select
list populated with the sports added in the FormAction. Submit the form and the validation will detect
that no sport has yet been selected and display the appropriate message. This should look something
like Figure 19-6.

638

Chapter 19

24_57485x ch19.qxd 1/14/05 10:15 PM Page 638

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 19-6: Favorite sport field with validation

Try It Out Displaying All Information Submitted on the Next Page
These changes are all very well, but once the form is successfully submitted, the user is still presented
with a mostly blank page.

In order to display the content of the form on the next page, the values of the form bean need to be out-
put using the Struts bean:write tag. Open the details.jsp file and enter the following to display the
contents of the form:

<%@ taglib uri=”/WEB-INF/struts-bean.tld” prefix=”bean” %>

<html>
<head>

<title><bean:message key=”display.title”/></title>
</head>
<body>

639

Struts Framework

24_57485x ch19.qxd 1/14/05 10:15 PM Page 639

TEAM LinG - Live, Informative, Non-cost and Genuine!

<h1><bean:message key=”display.title”/></h1>

<table cellspacing=”0” cellpadding=”0” border=”0” width=”50%” align=”center”>
<tr>

<td><bean:message key=”form.name.title”/></td>
<td><bean:write name=”testForm” property=”name”/></td>

</tr>
<tr>

<td><bean:message key=”form.emailaddress.title”/></td>
<td><bean:write name=”testForm” property=”emailAddress”/></td>

</tr>
<tr>

<td><bean:message key=”form.favsport.title”/></td>
<td><bean:write name=”testForm” property=”favSport”/></td>

</tr>
<tr>

<td><bean:message key=”form.comments.title”/></td>
<td><bean:write name=”testForm” property=”comments”/></td>

</tr>
</table>

</body>
</html>

Close this file and then add an appropriate entry for the new display.title message in the
messages.properties file. Issue another ant reload, browse to the application, and enter valid
details in all the form elements. Click the Submit button, and the results page should display all the
values you entered.

All requirements have now been met. This simple example has used many of the Struts components and
concepts described in this chapter:

❑ DynaActionForm use

❑ The Struts Validator

❑ Passing data from an action to the JSP page

❑ Using the actions to affect the flow of the application

❑ Struts Custom Tags

A real application would be immeasurably more complex, but it is easy to see how Struts has been
designed to enable variance in the complexity of an application while still keeping the different compo-
nents it provides relatively simple to use and easy to understand.

640

Chapter 19

24_57485x ch19.qxd 1/14/05 10:15 PM Page 640

TEAM LinG - Live, Informative, Non-cost and Genuine!

Summary
While a lot has been covered in this chapter, there are still more aspects of Struts that deserve attention,
including the following:

❑ Data source specification

❑ More complex validation techniques using the Struts Validator

❑ More Struts Custom Tags

❑ Struts EL

❑ Struts modules

❑ Tiles

Unfortunately, these topics are beyond the scope of this chapter. For more information on Struts, you
are encouraged to check out the voluminous documentation available at the Struts Web site (http://
jakarta.apache.org/struts/userGuide/index.html) or refer to Professional Jakarta Struts
(ISBN 0-7645-4437-3).

After working through this chapter, you should have an understanding of the following:

❑ The purpose of Struts with regard to its use as an MVC framework

❑ How Struts works and Validator configuration

❑ The role of Actions, form beans, and JSP files in a Struts application

❑ The different validation approaches available with Struts

❑ The many custom tags provided with Struts

Exercises
Further enhance the example application with the following exercises:

1. Add a new field to the form to collect the user’s age, and add validation to the field requiring a
valid numeric value that restricts the range of acceptable values to between 0 and 100, inclusive.

2. Add a login page to protect the application. An unauthenticated user should not be able to get
to any page without being logged in.

641

Struts Framework

24_57485x ch19.qxd 1/14/05 10:15 PM Page 641

TEAM LinG - Live, Informative, Non-cost and Genuine!

24_57485x ch19.qxd 1/14/05 10:15 PM Page 642

TEAM LinG - Live, Informative, Non-cost and Genuine!

20
Layout Management

with Tiles

This chapter introduces the Tiles framework and illustrates how it can provide structure and flexi-
bility in presenting an interface to customers of your Web site. The chapter also demonstrates how
to integrate Tiles with the Struts framework discussed in the last chapter.

This chapter covers the following topics:

❑ An introduction to Tiles

❑ Installing Tiles for use in a Web application

❑ Tiles definitions

❑ Tiles tags

❑ Advanced Tiles usage with parameters and inheritance

❑ The use of Tiles with Struts

Introduction to Tiles
Web developers have an awful habit of forgetting one of the most important concepts of software
development: reuse. Why do something twice when you can do it once and use it everywhere? It
has been said that some of the best software developers are essentially lazy souls who are always
trying to ensure that they develop something only once, designing it flexibly enough so that it,
whatever it is, can be used everywhere. Many of the techniques and tools explained in this book
are created with this goal in mind. The Tiles framework is no different.

Tiles was first developed as a simple templating framework called Components by Cedric
Dumoulin, and has since been renamed to Tiles to avoid the confusion that could result from using
that word. Today, Tiles has been completely integrated into the Struts framework, although it can
still be used independently.

25_57485x ch20.qxd 1/14/05 10:18 PM Page 643

TEAM LinG - Live, Informative, Non-cost and Genuine!

What is the Tiles framework?
Pages that are displayed on Web sites often contain areas that are repeated in many places; menus, head-
ers, and footers are typical examples. Web sites, therefore, are often designed in a layout or a number of
layouts that don’t change; only the content or what is actually displayed in those areas changes.
Developers have traditionally tackled this challenge by using jsp:include invocations in an attempt to
modularize these display elements. This approach, while achieving some degree of modularity, is lim-
ited because the included pages can become tightly bound to the pages in which they are used, with no
way to define them, generally, across the application.

The Tiles framework enables a developer to use templates that contain common parts of an interface,
without using includes. Tiles also organizes these templates into a series of reusable components that
can be referenced from within the application.

For example, Figure 20-1 shows a very typical Web page layout. The separate areas have been shaded
differently.

Figure 20-1: A simple Tiles template

The page displayed here uses a template (or layout in Tiles terminology) that defines four separate areas,
or regions. In the Tiles framework, these regions are referred to as tiles. A tile in this context is a simple
JSP page that displays some content: the header, some menu items, or the footer of a page. The layout
that has been developed to show this page is a JSP file as well. It makes use of the tiles that have been
provided and places them in the correct positions.

Figure 20-2 illustrates this structure of layouts and tiles being used to display a page.

644

Chapter 20

25_57485x ch20.qxd 1/14/05 10:18 PM Page 644

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 20-2: JSP page using a Tiles layout with certain Tiles pages

In this example, the index.jsp file defined which layout it will use and which tiles will be used in that
layout. The tiles are passed to the layout as parameters. Note that the names defined in the layout page
are consistent with the names of the tiles, such as header, footer, and body. When the tiles are passed
to the layout, it uses these names to determine where each should be placed.

This instance of usage could also be defined as a definition and given a name that can be referenced in the
application. Therefore, instead of the index.jsp file stipulating which tiles to use with the layout, and
other pages having to do the same, it is defined centrally in an XML configuration file or another JSP file
and called on by whatever pages require it. Each particular usage of this definition could then add special
characteristics it requires. This second level of abstraction provided by tiles is enormously powerful.

Tiles terminology
This chapter uses terms that could become confusing if not understood in the correct context. This sec-
tion defines the terms used in tiles to ensure that you understand the concepts presented in the rest of
the chapter.

Layout
A layout is a JSP page that uses tiles to create an interface. An application can make use of many different
layouts. A layout is simply a template for how a series of tiles can be placed together to form a view.

The term layout is used in this chapter instead of template, as it is consistent with Tiles terminology. In
practice, the word template is equally correct.

JSP page
(index.jsp)

uses this layout

with these tiles

Tile (menu)
(menu.jsp)

Tile (header)
(header.jsp)

Tile (body)
(body.jsp)

Tile (footer)
(footer.jsp)

header

Layout
(simplelayout.jsp)

body

footer

m
en

u

645

Layout Management with Tiles

25_57485x ch20.qxd 1/14/05 10:18 PM Page 645

TEAM LinG - Live, Informative, Non-cost and Genuine!

Tile
A tile is an element or region of a layout; it represents a section of an interface or Web page that is likely
to be reused in many layouts. Examples include menus, headers, and footers.

Definition
A definition is an instance of a usage of a layout that has been defined in the application. Separate defini-
tions can take a single layout and apply different sets of tiles to be displayed. A definition can be given a
name and reused throughout a site.

Installing Tiles
The Tiles framework is available as part of the Struts framework described in Chapter 19, “Struts
Framework,” or on its own from the Tiles Web site at http://www.lifl.fr/~dumoulin/tiles/
index.html.

This chapter uses Tiles on its own and then investigates its integration with the Struts framework. The
following steps will prepare a Web application on your computer to use the Tiles framework without
using Struts:

1. Download the latest distribution from the Tiles Web site at www.lifl.fr/~dumoulin/
tiles/index.html.

2. Extract the file you downloaded into a directory on your computer; in a Windows system
this might be C:\tiles.

3. Copy the tiles.jar file from C:\tiles\lib into the WEB-INF/lib directory of your
Web application.

4. Copy the struts-tiles.tld and tiles-config.dtd files from C:\tiles\lib into the
WEB-INF directory of your Web application.

5. Tiles also requires some commons libraries from Jakarta (http://jakarta.apache.org/
commons/). Download the following commons libraries and include the associated JAR files
in the WEB-INF/lib directory:

* Commons Digester: commons-digester.jar

* Commons BeanUtils: commons-beanutils.jar

* Commons Collections: commons-collections.jar

* Commons Logging: commons-logging.jar

6. Although this step isn’t compulsory for Tiles, the examples in this chapter use the JSTL. Place
the jstl.jar and standard.jar files from the JSTL you have used in previous chapters in the
/WEB-INF/lib directory

7. Make sure the WEB-INF/web.xml file in your Web application contains the following:

<?xml version=”1.0” encoding=”ISO-8859-1” ?>

<web-app xmlns=”http://java.sun.com/xml/ns/j2ee”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

646

Chapter 20

25_57485x ch20.qxd 1/14/05 10:18 PM Page 646

TEAM LinG - Live, Informative, Non-cost and Genuine!

xsi:schemaLocation=”http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd”

version=”2.4”>

<icon></icon>
<display-name>Tiles Examples</display-name>
<description>This is a Tiles Example</description>

<servlet>
<servlet-name>action</servlet-name>
<servlet-class>org.apache.struts.tiles.TilesServlet</servlet-class>
<init-param>

<param-name>definitions-config</param-name>
<param-value>/WEB-INF/tiles-defs.xml</param-value>

</init-param>
<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>
<servlet-name>action</servlet-name>
<url-pattern>*.do</url-pattern>

</servlet-mapping>

<welcome-file-list>
<welcome-file>index.jsp</welcome-file>

</welcome-file-list>
</web-app>

The servlet specified here is provided by the Tiles framework, and is required in order to initial-
ize the Tiles factory with the specified configuration file (tiles-defs.xml). This configuration
file will define the Tiles definitions available in the Web application. In addition to the
definitions-config parameter, the following table describes the additional parameters
that can be set.

Attribute Description

definitions-config Points to a Tiles configuration file or files. A comma
should separate multiple values.

definitions-debug Indicates the level of debugging that should be output
from Tiles. Appropriate values here are 0, 1, or 2. A value
of 2 will place Tiles in full debug mode.

definitions-parser-details Similar to debug, but this parameter outputs detailed
debugging information about parsing of the configuration
file. Again, appropriate values are 0, 1, or 2.

definitions-parser-validate Indicates that the tiles configuration file should be vali-
dated upon initialization. Values appropriate here are
true and false.

definitions-factory-class A developer can create a custom definition factory. In
order for it to be initialized, this parameter would be used.

647

Layout Management with Tiles

25_57485x ch20.qxd 1/14/05 10:18 PM Page 647

TEAM LinG - Live, Informative, Non-cost and Genuine!

8. Create a file called tiles-defs.xml in the WEB-INF directory of your Web application. Note
that the location matches the value of the init-param in the servlet definition in the previous
step. Place the following content in the tiles-defs.xml file. This content doesn’t actually do
anything yet, but it will ensure that the file can be initialized properly when the servlet con-
tainer loads it:

<!DOCTYPE tiles-definitions PUBLIC
“-//Apache Software Foundation//DTD Tiles Configuration//EN”
“http://jakarta.apache.org/struts/dtds/tiles-config.dtd”>

<tiles-definitions>
</tiles-definitions>

Your application is now ready to use Tiles in the following Try It Out exercise. The examples in this
chapter assume you are familiar with establishing an application in a servlet container such as Tomcat
and applying changes as each example is discussed.

Try It Out A Simple Tiles Example
In this example, you are going to create a page to show the view displayed in Figure 20-1. This will
involve developing a simple layout and displaying various tiles within it.

Create a file called simple-insert-index.jsp in the root of your Web application. This is the file that
will be invoked by the user of the site. Add the following to this new file:

<%@ taglib uri=”/WEB-INF/struts-tiles.tld” prefix=”tiles” %>

<tiles:insert page=”/layout/simplelayout.jsp” flush=”true”>
<tiles:put name=”header” value=”/tiles/simple-header.jsp” />
<tiles:put name=”menu” value=”/tiles/simple-menu.jsp” />
<tiles:put name=”body” value=”/tiles/simple-body.jsp” />
<tiles:put name=”footer” value=”/tiles/simple-footer.jsp” />

</tiles:insert>

Tiles uses various JSP actions, which are made available by the taglib directive in the first line of this
code fragment.

Now create a file called simplelayout.jsp in a subdirectory of the Web application called layout.
This file will form the layout or template that will be used in this example. Add the following to sim-
plelayout.jsp:

<%@ taglib uri=”/WEB-INF/struts-tiles.tld” prefix=”tiles” %>

<html>
<head>

<title>Simple Tiles Layout</title>
</head>

<body bgcolor=”white”>

<table border=”1” width=”100%” height=”100%” border=”1”>
<tr>

648

Chapter 20

25_57485x ch20.qxd 1/14/05 10:18 PM Page 648

TEAM LinG - Live, Informative, Non-cost and Genuine!

<td colspan=”2” height=”100” bgcolor=”gray”>
<tiles:insert attribute=”header”/>

</td>
</tr>
<tr>

<td width=”20%” valign=”top” bgcolor=”lightgrey”>
<tiles:insert attribute=”menu”/>

</td>
<td valign=”top” align=”left”>

<tiles:insert attribute=”body”/>
</td>

</tr>
<tr>

<td colspan=”2” height=”50” bgcolor=”gray”>
<tiles:insert attribute=”footer”/>

</td>
</tr>
</table>
</body>
</html>

This page defines the placement of each tile in the template.

You can now create the tiles themselves. Create corresponding JSP files for the four tiles that this tem-
plate expects in a tiles subdirectory of your Web application:

❑ /tiles/simple-menu.jsp

❑ /tiles/simple-header.jsp

❑ /tiles/simple-footer.jsp

❑ /tiles/simple-body.jsp

For this example, these files can contain anything you want. In Figure 20-1, some text appears in
each one to confirm that it is that tile that is being displayed. If you now send your browser to the
simple-insert-index.jsp page in your Web application — for instance, http://localhost:
8080/<application name>/simple-insert-index.jsp— you should see something like the view
displayed in Figure 20-1. The source code for this and other examples is available from the Wrox Web
site at www.wrox.com.

How It Works
Central to this example is the layout and the JSP page that uses it. The simple-insert-index.jsp
page has used the tiles:insert tag to invoke a layout:

...
<tiles:insert page=”/layout/simplelayout.jsp” flush=”true”>
...
</tiles:insert>

649

Layout Management with Tiles

25_57485x ch20.qxd 1/14/05 10:18 PM Page 649

TEAM LinG - Live, Informative, Non-cost and Genuine!

Nested within the insert tag are various put tags that define which tiles the layout will use. Each of
these put tags defines a name for the tile with the name attribute and the file that is associated with that
name in the value attribute:

...
<tiles:put name=”menu” value=”/tiles/simple-menu.jsp” />
...

We are effectively passing parameters into the layout page so that it knows which pages to use. These
parameters are placed into the tile scope of the layout page, which you will learn more about later.

The layout page itself uses the tile values passed to it in order to display the correct tiles. Each place-
holder for a tile uses the insert tag to display the page passed in the put tag from the invoking page:

...
<td><tiles:insert attribute=”menu”/></td>
...

The attribute menu was passed to this layout page as an attribute that is now within its scope. The
insert tag here inserts the content that the menu parameter represents: simple-menu.jsp.

From this simple example, you can see how the layout can be given various references for the tiles it
expects to receive. These could even be determined dynamically, changing the behavior of the layout
based on various conditions such as user preferences or internationalization settings.

Tile Scope
Throughout this book, you will have become familiar with the various scopes that are available from
within JSP pages: application, session, request, and page. The Tiles framework introduces a new
scope in order to avoid clashes with attributes that may appear in other scopes. This new scope is called
tile scope. Internally, tile scope refers to a Map of objects placed within the existing page context. Some
tags in the Tiles tag library allow you to copy values from the tile scope into the standard scopes you
are already familiar with. From there, you can use the value just like other values in JSP pages.

As you will see in the following sections, when an attribute is passed to a layout tile or standard tile, it is
placed within the tile scope of that tile only; it is not available to the other tiles that are being used.
Developers must explicitly manage the scope and delegation of values from layout to tile and so on. This
explicit declarative approach means that tiles will not become mistakenly reliant on an attribute unless it
is deliberately made available. This enhances the decoupled nature of the components of the application.

Definitions
One limitation of the previous example is that the simple-insert-index.jsp page actually stipulates
the tiles to be used, as well as the layout itself. What if this configuration were required from another
page on the site? The same insert tag would be used, with the same parameters being passed. This is
duplication, one of the many traps that Web applications fall into. Were a change to be made, such as the

650

Chapter 20

25_57485x ch20.qxd 1/14/05 10:18 PM Page 650

TEAM LinG - Live, Informative, Non-cost and Genuine!

name of the simple-menu.jsp file, then each instance would have to be separately changed and tested.
In a large system this is a serious problem, and in a smaller one it’s just annoying.

Remember the comment that some of the best programmers are lazy? Making such a site-wide change
could mean a lot of work. Thankfully, Tiles provides a way to define this instance of layout usage in a
central place so that it can be used by the entire application and changed only in one place if the need
arises.

This concept is the definition that was discussed earlier. Definitions can be stored centrally in two ways:
within a JSP file that is included on pages within the site, or within an XML configuration file that
resides in the /WEB-INF/ directory of your Web application. Once a definition is specified, JSP pages can
use the layout by using the insert tag in a slightly different way from the simple-insert-index.jsp
page in the preceding example. If the definition were defined in a Tiles configuration file, the content of
that page would appear as follows:

<%@ page language=”java” %>
<%@ taglib uri=”/WEB-INF/struts-tiles.tld” prefix=”tiles” %>
<tiles:insert definition=”simple.layout” flush=”true” />

Note that there is no reference to the specific tiles used within the JSP page anymore. The following Try
It Out exercise illustrates the use of a definition, as specified within a JSP page.

Try It Out A JSP Page Definition
Create a file called definitions.jsp in a subdirectory called definitions in your Web application’s
root directory. This file will specify the definition that will be used, and will be included on the JSP page
that is invoked. The content of this new file is as follows:

<%@ taglib uri=”/WEB-INF/struts-tiles.tld” prefix=”tiles” %>

<tiles:definition
id=”simple.include.layout”
page=”/layout/simplelayout.jsp”
scope=”request”>

<tiles:put name=”header” value=”/tiles/simple-header.jsp” />
<tiles:put name=”menu” value=”/tiles/simple-menu.jsp” />
<tiles:put name=”body” value=”/tiles/simple-body.jsp” />
<tiles:put name=”footer” value=”/tiles/simple-footer.jsp” />

</tiles:definition>

Note that you have used the definition tag to specify this definition and it has been given a name:
simple.include.layout, with the id attribute.

Now create a file called simple-incdef-index.jsp in the Web directory of your Web application. This
is the file that will make use of the new definition. Enter the following code in this file:

<%@ page language=”java” %>
<%@ include file=”definitions/definitions.jsp”%>
<%@ taglib uri=”/WEB-INF/struts-tiles.tld” prefix=”tiles” %>
<tiles:insert beanName=”simple.include.layout” beanScope=”request”/>

651

Layout Management with Tiles

25_57485x ch20.qxd 1/14/05 10:18 PM Page 651

TEAM LinG - Live, Informative, Non-cost and Genuine!

This file uses the include directive to include the definitions.jsp file that has just been created,
and calls the definitions it contains. (There’s only one at the moment, but there could be as many as the
application needs.) Note that the insert tag is used again, but this time it uses the name of the defini-
tion in the beanName attribute. If you now browse to your Web application’s simple-incdef-index.
jsp page, you should see the same screen shown in Figure 20-1.

Try It Out XML Configuration File Definition
The same result can be achieved by defining the definition in the tiles-defs.xml file that was
created when Tiles was first installed. To do so, add the following definition to this file (changes are
highlighted):

<!DOCTYPE tiles-definitions PUBLIC
“-//Apache Software Foundation//DTD Tiles Configuration//EN”
“http://jakarta.apache.org/struts/dtds/tiles-config.dtd”>

<tiles-definitions>
<definition name=”simple.xml.layout” path=”/layout/simplelayout.jsp”>

<put name=”header” value=”/tiles/simple-header.jsp” />
<put name=”body” value=”/tiles/simple-body.jsp” />
<put name=”menu” value=”/tiles/simple-menu.jsp” />
<put name=”footer” value=”/tiles/simple-footer.jsp” />

</definition>
</tiles-definitions>

You can see that the syntax used here is similar to that used when declaring the definition in the JSP
page, with the major exception of the put tag (tiles:put), which is replaced with the put XML
element.

Now that this definition (simple.xml.layout) has been defined, it can be used in JSP pages on the site.
Create a file called simple-xmldef-index.jsp in the root Web directory of your Web application. This
file will make use of the configuration file’s definition; it contains the following:

<%@ page language=”java” %>
<%@ taglib uri=”/WEB-INF/struts-tiles.tld” prefix=”tiles” %>
<tiles:insert definition=”simple.xml.layout” flush=”true” />

This will also produce the same output as Figure 20-1. Note that while the insert tag has been invoked
again, different attributes have been used.

This section has given you a brief introduction to definitions. Later in this chapter, we will expand on
this to illustrate some of their more advanced features.

Tiles Tags
In the preceding examples, you saw the use of some of the Tiles tags that are available. This section
introduces these and the remaining tags, and explains the attributes that can be used with them.

652

Chapter 20

25_57485x ch20.qxd 1/14/05 10:18 PM Page 652

TEAM LinG - Live, Informative, Non-cost and Genuine!

insert
You have seen the insert tag used in at least two capacities so far: First it was used within the nontile
JSP pages so that a layout could be inserted and various tiles passed to it as parameters with the put tag.
Second, it was used in the layout JSP page to display values it had been passed. The following table
explains the attributes available for this tag.

Attribute Description

attribute The value for this attribute is the name of an attribute, such as the
name of a tile or other component. This attribute corresponds to
the name attribute in the put tag when the parameter is specified.

beanName The name of a bean to be used. The beanScope attribute is used
to define the scope in which this bean should be retrieved. The
bean specified here could be a definition that has been declared.

beanProperty Used in conjunction with the beanName attribute. Use of this
attribute causes the value to be retrieved from this property of the
bean specified.

beanScope The scope used to retrieve the value specified in beanName. This
attribute is optional; page scope is the default value.

component Same as the page and template attributes. It represents the loca-
tion of a tile or layout.

controllerClass The Struts action class used before this insert tag is invoked. Only
one of controllerUrl or controllerClass can be used.

controllerUrl Used with Struts to specify an action used before this insert tag
is invoked.

definition Used to insert a definition defined in the tiles-defs.xml con-
figuration file. The value of this attribute would be a definition id.

flush Used to flush the body of the page to the output stream after this
tag is invoked.

ignore Used in conjunction with the name attribute. If the bean specified
in the name attribute does not exist and the ignore attribute is set
to true, no error is thrown and no value is displayed. When set to
false, a runtime error would be displayed. The default value of
this optional attribute is false.

name Used to identify a bean to be inserted by this tag.

page See component.

role Used to specify the role that a user must have in order for this tag
to be executed by the server.

template See component.

653

Layout Management with Tiles

25_57485x ch20.qxd 1/14/05 10:18 PM Page 653

TEAM LinG - Live, Informative, Non-cost and Genuine!

definition
This tag is used to establish a definition as described earlier. A corresponding definition element in a
tiles-defs.xml file performs the same basic function. This tag effectively creates a bean that can be
used with the insert tag. This tag also supports more advanced usage whereby a new definition can
inherit and add to the characteristics of another definition defined in the tiles-defs.xml file. You will
see an example of this behavior in subsequent sections. The following table describes the attributes of
the definition tag.

Attribute Description

extends The value of this optional attribute is the id of another definition defined
in the tiles-defs.xml file. This allows the new definition to assume all
the characteristics of the other definition.

id The identifying name of this definition. Used by the insert tag to insert
this definition into a page. Required.

scope As this tag effectively creates a bean to be used, this attribute specifies the
scope into which this bean will be placed. The default value of this optional
attribute is page.

template The value of this optional attribute is a path to a tile or layout to be used
with this definition.

page See template.

role This optional attribute is used to specify the role that a user must have in
order for this tag to be executed by the server.

put
This tag is used to pass parameters to components. You saw this tag used earlier where paths to tiles (JSP
pages) were passed within the confines of a definition tag and where the insert tag was used to
insert a layout for display. The put tag can only be used within the definition or insert tags.

Attribute Description

beanName This optional attribute defines the name of a bean to be passed. The
beanScope attribute is used to define the scope in which this bean should
be retrieved.

beanProperty This optional attribute is used in conjunction with the beanName attribute.
Using this attribute causes the value to be retrieved from this property of
the bean specified.

beanScope The scope used to retrieve the value specified in beanName. This attribute
is optional; page scope is the default value. Valid values here include
application, session, page, component, template, and tile. The last
three are all the same.

654

Chapter 20

25_57485x ch20.qxd 1/14/05 10:18 PM Page 654

TEAM LinG - Live, Informative, Non-cost and Genuine!

Attribute Description

content Same as value.

direct See type. Manipulates the way in which the tag handles the type attribute
when it is missing. If the type attribute is used, this attribute has no effect.
The documentation states that this is included for JSP template
compatibility.

type This defines the content type of the value being put. Valid values here are
as follows:

string: The value of the parameter is a text value and can be used directly
(see direct).

page (template): The value of the parameter is content retrieved from
another file. With type set as one of these values, the value attribute is
treated as a path, rather than as a value itself, or a definition.

definition: Used where a definition is used as a parameter. The value
here is the id or name of the definition being passed. The definition must
have been defined in a definition factory, meaning it must have been added
to the configuration XML file.

If the type attribute is not used and the direct attribute is set to true, the
value is implicitly used as though string were set here. If direct is speci-
fied as false, the value is implicitly treated as though page or template
were used here.

If the type attribute is not specified, but beanName is specified, then the
object is treated as is, meaning as an object. See beanName, beanProperty,
and beanScope.

This is an optional attribute.

name The name of this parameter. The value of this required attribute is used to
reference the value this tag represents.

value An object that is the value being put. The value of this attribute is entered
either directly as a string value, or as the name of a bean that is available
where this tag is being used. Optional, but one of beanName, value, or
content must be used.

role The role of users for which this tag will be used. If the user is not in the
specified role, this tag is ignored. This attribute is optional.

putList
The putList tag, like put, defines a parameter to be passed to another Tiles component; however,
putList creates a list of other objects as the value. This tag can be used only inside the definition or
insert tags.

655

Layout Management with Tiles

25_57485x ch20.qxd 1/14/05 10:18 PM Page 655

TEAM LinG - Live, Informative, Non-cost and Genuine!

Internally, putList represents the data created as a java.util.List object. Elements are added to the
object created by putList with nested add tags. You can use the attributes shown in the following table
with putList.

Attribute Description

name The name of this parameter. The value of this required attribute is used to
reference the value this tag represents.

role This optional attribute defines the role of users for which this tag will be
used. If the user is not in the specified role, this tag is ignored.

add
The add tag is used to add items to a surrounding putList tag. It cannot be used within any other tag.
Its behavior is identical to that of the put tag described earlier (internally, the AddTag extends the
PutTag class), except the values are added to the list being defined. All the parameters described in put
apply to this tag, with the exception of the name attribute.

get
The get tag is used to retrieve a value that has been placed within the tile scope, and either print out
its value (in the case of a string) or include it where this tag is called (in the case of a tile). Internally, the
GetTag class extends the InsertTag class. The main difference between the get tag and the insert
tag, other than the former having significantly fewer attributes, is the default value for the ignore
attribute. The following table shows the attributes available for working with the get tag.

Attribute Description

name The name of the attribute or value on which the tag will act. This is a
required attribute.

ignore If the value specified in name does not exist, this attribute determines
whether an error will be displayed. Valid values here are true and false.
The default value of this optional attribute is true.

flush Used to flush the body of the page to the output stream after this tag is
invoked. The default value of this optional attribute is true.

role The role of users for whom this tag will be used. If the user is not in the
specified role, this tag is ignored. This attribute is optional.

getAsString
The getAsString tag basically invokes a toString() method on the object it is passed, and renders it
via the JspWriter. It accepts the attributes shown in the following table.

656

Chapter 20

25_57485x ch20.qxd 1/14/05 10:18 PM Page 656

TEAM LinG - Live, Informative, Non-cost and Genuine!

Attribute Description

name This required attribute defines the name of the attribute or value on which
the tag will act.

ignore If the value specified in name does not exist, this attribute specifies whether
an error will be displayed. Valid values here are true and false. The
default value of this optional attribute is false.

role The role of users for whom this tag will be used. If the user is not in the
specified role, this tag is ignored. This attribute is optional.

useAttribute
The useAttribute tag is used to copy a value from the tile scope into a specified scope and the page
scope. If the scope attribute is not specified, the value is only exposed to the page scope. There the
value can be used like any other variable in the page. useAttribute accepts the attributes described in
the following table.

Attribute Description

id The variable name with which the value can be referenced in the page and
specified scopes. The default value of this optional attribute is the name of
the value, its existing name (specified in the name attribute).

name This required attribute specifies the name of the value to be acted on by
this tag.

scope In addition to the page scope, the value will also be placed in the scope
specified by the value of this attribute. Possible values are application,
session, request, and page. Due to this tag’s behavior, specifying page
scope here would be redundant. This attribute is optional.

ignore If the value specified in name does not exist, this attribute specifies whether
an error will be displayed. Valid values for this optional attribute are true
and false. The default value is false.

classname The class of the value being acted on by this tag. It has no impact on the
behavior of the tag.

importAttribute
This tag is used to import a single value or all values in the tile scope into a specified scope. If the name
attribute is not used, all values in the tile scope are imported. This tag accepts the attributes shown in
the following table.

657

Layout Management with Tiles

25_57485x ch20.qxd 1/14/05 10:18 PM Page 657

TEAM LinG - Live, Informative, Non-cost and Genuine!

Attribute Description

name This required attribute specifies the name of the value to be acted on by
this tag.

scope This optional attribute specifies the scope into which the value is imported.
The default is page scope.

ignore This optional attribute is relevant only when importing a single value. If the
value specified in name does not exist, this attribute indicates whether an
error will be displayed. Valid values here are true and false. The default
value is false.

initComponentDefinitions
The initComponentDefinations tag is used to initialize the definition factory with the specified XML
configuration file. The following table describes the attributes this tag accepts.

Attribute Description

file This required attribute specifies the file that contains the definition
elements.

classname This optional attribute specifies the classname of the factory to initialize.

Passing Parameters to Tiles
Earlier in this chapter, you saw how parameters were passed within the body of the insert tag and
definition tags. The parameters passed were pointers to tiles to be used in the template or layout tiles.
It is also possible to pass other values to tiles components using the put and putList tags.

A simple example of this is where a string is passed to a layout as part of a definition and then used
within the layout tile or a content tile. The following code fragment shows a definition tag being used
to pass various parameters to the layout tile, including a string that will form the title of a page:

<tiles:definition
id=”simple.include.layout.title”
page=”/layout/simplelayout-title.jsp”
scope=”request”>

<tiles:put name=”title” value=”This is my New Title” />
<tiles:put name=”header” value=”/tiles/simple-header-title.jsp” />
<tiles:put name=”menu” value=”/tiles/simple-menu.jsp” />
<tiles:put name=”body” value=”/tiles/simple-body.jsp” />
<tiles:put name=”footer” value=”/tiles/simple-footer.jsp” />

</tiles:definition>

658

Chapter 20

25_57485x ch20.qxd 1/14/05 10:18 PM Page 658

TEAM LinG - Live, Informative, Non-cost and Genuine!

The parameters passed to this layout are placed in the tile scope of the layout; they are now accessible
from within the simplelayout-title.jsp page using the getAsString tag (this tag only retrieves
values from the tile scope). You have seen in the previous examples how most of these parameters can
then be used. In the case of the title parameter, it can be displayed in the simplelayout-title.jsp
page with the following code:

<%@ taglib uri=”/WEB-INF/struts-tiles.tld” prefix=”tiles” %>

<html>
<head>

<title>
<tiles:getAsString name=”title”/>

</title>
</head>

<body bgcolor=”white”>
...

This will display the value of the title parameter in the title of the Web page. What if you wanted to
have the title parameter also within the scope of the header tile? The value would have to be specifi-
cally placed within the scope of that tile using the following addition to the insert tag of this tile in the
simplelayout-title.jsp page:

...
<td colspan=”2” height=”100” bgcolor=”gray”>

<tiles:insert attribute=”header”>
<tiles:put name=”headerTitle” beanName=”title”/>

</tiles:insert>
</td>

...

Now the value of the title parameter is within the tile scope of the header tile with an alias of
headerTitle, and can be used in the same way. A String object suited our example here, but the same
scope accessibility could be achieved with any Java object. What results from this of course is the capa-
bility to use the parameter within tiles that have been given access to it.

Advanced Tiles
The following sections build on the principles of tiles you have learned so far and introduce some
advanced topics.

Definitions and inheritance
As discussed earlier, definitions are a powerful feature of the Tiles framework. Configuring various lay-
out tiles, standard tiles, and other parameters under a common name enables them to be used every-
where in an application; reuse is a good thing.

659

Layout Management with Tiles

25_57485x ch20.qxd 1/14/05 10:18 PM Page 659

TEAM LinG - Live, Informative, Non-cost and Genuine!

Of course, there may be times when the definition used for 99 percent of a site doesn’t suit the other 1
percent. For instance, in a members only area, a different menu tile might be presented, or the same tile
with different parameters may be used. Your first approach might be to create another definition to suit
this new situation, but then you would end up just replicating all the tiles and parameters that didn’t
change. All the brownie points you got for exercising reuse are gone.

Tiles provides an excellent solution to this and other scenarios in which certain characteristics of an
existing definition need to be used in a new definition, a concept called inheritance. A cornerstone of
object-oriented software development, inheritance means that one object inherits some or all of the
characteristics of another object. The child entity may then override certain characteristics with its
own version or even add new ones. Tiles uses the inheritance principle to allow definitions to inherit
(or extend in Java speak) the characteristics of another definition. The application can then use the child
definition in special situations. Note that you can implement as many generations of inheriting defini-
tions as you want — that is, until it gets too complicated for you to understand. As always, features like
this are often overused by eager developers who end up with something that is way too complicated for
a human to understand and therefore becomes unmaintainable. Keep the structure of definitions simple
and logical, even at the expense of some reuse if it keeps things clearer.

To illustrate, the following Try It Out exercise implements two definitions to be used in two different
pages. The second page will use a definition that extends the first page by only changing some of its
defined parameters.

Try It Out Definition Inheritance
The first task is to define the parent definition and the parameters it will use. This example uses a
mother/son combination to enforce the fact that inheritance is being used. Add the following mother
definition to the tiles-defs.xml file discussed in the simple tiles example earlier:

<definition name=”inh.mother.layout” path=”/layout/inh-layout.jsp”>
<put name=”header” value=”/tiles/inh-header.jsp” />
<put name=”menu” value=”/tiles/inh-mother-menu.jsp” />
<put name=”footer” value=”/tiles/inh-footer.jsp” />

<putList name=”myMovies”>
<add value=”The Bridges Over Madison County”/>
<add value=”Steel Magnolias”/>
<add value=”What Women Want”/>
<add value=”You’ve Got Mail”/>
<add value=”Sleepless in Seattle”/>

</putList>
</definition>

As you can probably tell from the definition, the example will show header, menu, and footer tiles, as
well as make use of a list of favorite movies to display. The movies listed here (some of my mother’s
favorites!) will be displayed on the layout tile defined by the path attribute of the definition element,
/layout/inh-layout.jsp.

The son’s definition will extend the mother’s definition, making its own adjustments to suit the
audience. In doing so, the list of movies will be changed to reflect the son’s taste, and the menu tile
will change to show a different menu. The remaining elements of the definition — the header and the

660

Chapter 20

25_57485x ch20.qxd 1/14/05 10:18 PM Page 660

TEAM LinG - Live, Informative, Non-cost and Genuine!

footer tiles — will not need to be specified in the son’s definition, as they are inherited from the
mother’s definition. This is a great demonstration of reuse. The son’s definition should be added to the
tiles-defs.xml file as follows:

<definition name=”inh.son.layout”
extends=”inh.mother.layout”>

<put name=”menu” value=”/tiles/inh-son-menu.jsp” />

<putList name=”myMovies”>
<add value=”The Matrix”/>
<add value=”The Return of The King”/>
<add value=”A Midnight Clear”/>
<add value=”Apocalypse Now”/>
<add value=”Tigerland”/>
<add value=”Spaced - Series 2”/>

</putList>
</definition>

You might notice that the son’s definition doesn’t even include the path attribute to specify the name of
the layout tile to use; this has been inherited as well. Perhaps more important, this characteristic could
also be overridden by the son’s definition, using a different layout tile completely.

Now that the definitions are established, we have a few more tasks to complete. First we need the layout
tile to display the various tiles, and to list the myMovies list. The layout tile is similar to the one pre-
sented earlier, but this time we need to use the JSTL in order to iterate through the list and display each
value. For this to work, we also have to use the importAttribute tag to copy the parameters passed to
this tile from tile scope into page scope:

Create a new file called inh-layout.jsp in the /layout/ directory of your Web application and enter
the following code:

<%@ taglib uri=”/WEB-INF/struts-tiles.tld” prefix=”tiles” %>
<%@ taglib uri=”http://java.sun.com/jsp/jstl/core” prefix=”c”%>

<tiles:importAttribute />
<html>

<head>
<title>Inheritance Example</title>

</head>
<body bgcolor=”white”>

<table border=”1” width=”100%” height=”100%” border=”1”>
<tr>

<td colspan=”2” height=”100” bgcolor=”gray”>
<tiles:insert attribute=”header”/>

</td>
</tr>
<tr>

<td width=”20%” valign=”top” bgcolor=”lightgrey”>
<tiles:insert attribute=”menu”/>

</td>

661

Layout Management with Tiles

25_57485x ch20.qxd 1/14/05 10:18 PM Page 661

TEAM LinG - Live, Informative, Non-cost and Genuine!

<td valign=”top” align=”left”>
<h3>Favorite Movies</h3>

<c:forEach items=”${myMovies}” var=”thisMovie”>

${thisMovie}
</c:forEach>

</td>

</tr>
<tr>

<td colspan=”2”><center><tiles:insert attribute=”footer”/></center></td>
</tr>
</table>
</body>
</html>

In addition to the layout tile, we also need to establish common header and footer tiles that will be used
by both definitions, as well as a separate menu tile for each.

First create two files called inh-header.jsp and inh-footer.jsp in the /tiles/ directory of your
Web application. These tiles will be common to the two definitions (the son’s definition doesn’t redefine
these tiles with its own values). Add the following content to these two new files:

inh-header.jsp:

<center><h2>This is the header tile</h2></center>

inh-footer.jsp

<i>Mother and Son Web Sites Incorporated 2005</i>

Both these files will be used by both mother and son definitions. However, we require each definition to
have its own menu tile.

Create a new file called inh-son-menu.jsp in the /tiles/ directory of your Web application. This will
be the menu used by the son’s definition. Place the following in this file:

<h5>Son’s Menu</h5>

War Movies
Books
Loud Music
Parties
College Website
Fast Cars

Now create a file called inh-mother-menu.jsp in the /tiles/ directory of your Web application. This
will be the menu used by the mother’s definition. Place the following in this file:

662

Chapter 20

25_57485x ch20.qxd 1/14/05 10:18 PM Page 662

TEAM LinG - Live, Informative, Non-cost and Genuine!

<h5>Mom’s Menu</h5>

Knitting
Tennis
Weekends Away
Pottery
Cooking Ideas

We now need some files to actually use these definitions. To achieve this, we will create two files, each to
call a different definition. Create a file called inh-mother-index.jsp in the root directory of your Web
application and add the following code:

<%@ page language=”java” %>
<%@ taglib uri=”/WEB-INF/struts-tiles.tld” prefix=”tiles” %>
<tiles:insert definition=”inh.mother.layout” flush=”true” />

Create another file in the same directory called inh-son-index.jsp and add the following:

<%@ page language=”java” %>
<%@ taglib uri=”/WEB-INF/struts-tiles.tld” prefix=”tiles” %>
<tiles:insert definition=”inh.son.layout” flush=”true” />

If you now point your browser to the son’s definition index page, inh-son-index.jsp, you should see
something similar to what is shown in Figure 20-3.

Figure 20-3: The child definition inherits characteristics
from a parent definition.

As mentioned before, there is no limit to the number of generations of inherited definitions that can be
defined (grandson definitions, etc.). And while this is powerful feature, overzealous use can quickly
become unmanageable.

663

Layout Management with Tiles

25_57485x ch20.qxd 1/14/05 10:18 PM Page 663

TEAM LinG - Live, Informative, Non-cost and Genuine!

How It Works
The result of the insert tags in the inh-son-index.jsp and inh-mother-index.jsp is to display the
relevant definition elements, with the desired effect that the son definition (inh.son.layout) includes
all the elements of the mother definition (inh.mother.layout), except those that were overridden —
namely, the myMovies list and the menu tile.

Nesting tiles
In previous examples, we used a definition to render a layout with certain tile and data attributes. This
has only really defined a very simple layout pattern of two levels: the layout and the tiles used by it.
Some Web sites use more complex layouts and have features or regions of a page that can themselves
use a separate layout. To accommodate this, Tiles enables developers to insert a definition within a lay-
out. It doesn’t take long to appreciate the limitless combinations of tiles, definitions, and layouts that this
provides.

The following Try It Out exercise illustrates the use of a new definition from within a layout.

Try It Out Using a New Definition for the Menu
The new definition will use a new layout that defines only the specific region we are trying to represent.
The definition will then be used inside one of the existing layouts we have already used in this chapter. The
new layout will present a small list of menu items. The associated definition will therefore need to provide
a title tile and body tile.

The best way to approach such tasks is to design the new layout in isolation from other definitions as
much as possible; that way, the definition becomes a separate component that can be used in other defi-
nitions with a minimum of coupling. The menu we will create will comprise two regions, a small header
and the list of menu items, as shown in Figure 20-4.

Figure 20-4: Planned layout for a menu definition

As the header will display only some text, we can probably live with this being output from the layout
file itself, rather than from a separate tile. Therefore, the header will simply be a string value parameter
passed to the layout. The menu list itself will be a separate tile. The menu tile will also need a list of
items to display. This list forms the third parameter to send to the layout.

menu title

menu items list

664

Chapter 20

25_57485x ch20.qxd 1/14/05 10:18 PM Page 664

TEAM LinG - Live, Informative, Non-cost and Genuine!

Now that we have a clear specification of the layout, create a new definition in the tiles-defs.xml file
with the following content:

<definition name=”menu”
path=”/layout/menu-layout.jsp”>

<put name=”menuTitle” value=”My Menu”/>
<put name=”menuTile” value=”/tiles/menu-tile.jsp”/>
<putList name=”menuItems”>

<item value=”Home Banking” link=”http://somebank.com”/>
<item value=”Search” link=”http://goggle.com”/>
<item value=”Java” link=”http://java.sun.com”/>

</putList>
</definition>

The syntax here should be familiar to you now. The putList encloses a series of item elements, rather
than adding elements that were used in previous examples. Tiles provides this element when defining
menu items in a definition. Under the covers, each item element here places a org.apache.struts
.tiles.beans.MenuItem object in the list defined by putList. A MenuItem object contains values for
value and link properties as used here, but also for icon and tooltip, which can be used in an inter-
face. Very handy indeed!

The preceding definition places the three parameters (menuTitle, menuTile, and menuItems) within
the tile scope of the layout tile /layout/menu-layout.jsp. With this in mind, we can now set about
creating the layout itself. Remember that our goal here it to produce only the layout for the menu, noth-
ing else.

Create a new file called menu-layout.jsp in the layout directory of your Web application. To display
the layout presented in Figure 20-4, add the following code to this new file:

<%@ taglib uri=”/WEB-INF/struts-tiles.tld” prefix=”tiles” %>

<tiles:importAttribute/>

<table cellspacing=”0” cellpadding=”5” height=”200” border=”1”>
<tr height=”10”>

<td>
<tiles:getAsString name=”menuTitle”/>

</td>

</tr>
<tr>

<td valign=”top”>
<tiles:insert attribute=”menuTile”>

<tiles:put name=”menuList” beanName=”menuItems” beanScope=”tile”/>
</tiles:insert>
</td>

</tr>
</table>

665

Layout Management with Tiles

25_57485x ch20.qxd 1/14/05 10:18 PM Page 665

TEAM LinG - Live, Informative, Non-cost and Genuine!

All the parameters defined in the definition are represented here. First, the menuTitle attribute is out-
put to the screen using the getAsString tag. Second, the menuTile tile is inserted in the appropriate
place in the layout. Third, the menuItems bean is passed to the menuTile tile’s tile scope as menuList.
In order to have access to the menuItems bean, we used the importAttribute tag to place it within the
page scope.

Note that there is no formatting where the insert tag places the menu tile. This is a good thing; it means
that the menu’s display is independent of other components. Of course, in a more complicated example
where the items in the menu are provided by the Model layer of an application, the dependencies are
more involved.

Now we can create the JSP page for the menuTile tile so that it can display the items in the menuItems
bean, although it will see this value as menuList. The menuTile tile will make use of the JSTL tags to
produce the output. The file /tiles/menu-tile.jsp is created with the following content:

<%@ taglib uri=”/WEB-INF/struts-tiles.tld” prefix=”tiles” %>
<%@ taglib uri=”http://java.sun.com/jsp/jstl/core” prefix=”c”%>

<tiles:importAttribute/>

<table cellspacing=”0” cellpadding=”0” border=”0”>
<c:forEach items=”${menuList}” var=”thisItem”>

<tr>
<td>

${thisItem.value}
</td>

</tr>
</c:forEach>
</table>

Note that the importAttribute tag has been used again to place the menuList bean within the page
scope of this tile. Once this is done, the items in the list can be iterated over, outputting the link and
value properties of each.

So far, we have done nothing more than create a new, relatively simple definition, layout, and tile struc-
ture that is independent of the rest of the application. This structure can be verified independently as
well. Simply create a new JSP page to use the new definition and it will display the new menu on its
own. The new JSP file to display the definition would appear as follows:

<%@ page language=”java” %>
<%@ taglib uri=”/WEB-INF/struts-tiles.tld” prefix=”tiles” %>
<tiles:insert definition=”menu” flush=”true” />

The output of this page should look like Figure 20-5.

666

Chapter 20

25_57485x ch20.qxd 1/14/05 10:18 PM Page 666

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 20-5: New menu definition used in isolation

Our next task is to incorporate this definition inside another layout page. To achieve this, the new defini-
tion will serve to replace the menu tile in the inheritance example from earlier. In the /layout/inh-
layout.jsp file, make the following adjustment (the change is highlighted):

...
<table border=”1” width=”100%” height=”100%” border=”1”>
<tr>

<td colspan=”2” height=”100” bgcolor=”gray”>
<tiles:insert attribute=”header”/>

</td>
</tr>
<tr>

<td width=”20%” valign=”top” bgcolor=”lightgrey”>
<tiles:insert definition=”menu”/>

</td>
<td valign=”top” align=”left”>
<h3>Favorite Movies</h3>

<c:forEach items=”${myMovies}” var=”thisMovie”>

${thisMovie}
</c:forEach>

</td>

</tr>
...

We have simply changed the insert tag to use a definition named menu instead of a tile attribute. In
addition to the preceding change, you will have to remove the menu tile put element from the
inh.mother.layout and inh.son.layout definitions. The mother definition in the tiles-defs.xml
file should now appear as follows:

667

Layout Management with Tiles

25_57485x ch20.qxd 1/14/05 10:18 PM Page 667

TEAM LinG - Live, Informative, Non-cost and Genuine!

<definition name=”inh.mother.layout” path=”/layout/inh-layout.jsp”>
<put name=”header” value=”/tiles/inh-header.jsp” />
<put name=”footer” value=”/tiles/inh-footer.jsp” />

<putList name=”myMovies”>
<add value=”The Bridges Over Madison County”/>
<add value=”Steel Magnolias”/>
<add value=”What Women Want”/>
<add value=”You’ve Got Mail”/>
<add value=”Sleepless in Seattle”/>

</putList>
</definition>

Note that the menu tile put element has been removed. This works because the inh-layout.jsp file
inserts the new menu definition directly.

If you now browse to either the inh-mother-index.jsp or inh-son-index.jsp files from the inheri-
tance example, the new menu definition output will be displayed, nested within the layout, as shown in
Figure 20-6.

Figure 20-6: Menu definition nested within the inheritance layout

668

Chapter 20

25_57485x ch20.qxd 1/14/05 10:18 PM Page 668

TEAM LinG - Live, Informative, Non-cost and Genuine!

How It Works
This change we have made could be a little confusing. Let’s step through the process again. Our goal
was to replace the menus used by the mother and son definitions with a separate definition called menu,
illustrating that a separate definition can be used from within a layout.

We first created a definition in the tiles-defs.xml file called menu. This new definition was given
some data to display as menu items, defined within the definition entry of the tiles-defs.xml file. We
then created a layout for the new definition to handle the layout for the menu itself. This new layout was
provided with a new Tile called menuTile that displays the list of menu items. To verify that this
worked, we displayed the menu on its own, as shown in Figure 20-5.

To make use of the definition properly, we then changed the inh-layout.jsp page to call on this new
menu definition directly, meaning that both the mother and son definitions would now show the same
menu. As a bit of cleanup, the menu put entry for the mother and son definitions in the tiles-defs.xml
file was removed.

This is all well and good, but our layout JSP page will always display a menu in the left-hand region,
and to change it we would have to modify the inh-layout.jsp file. Instead of inserting the definition
directly in the layout file, the definition could be passed to the layout as just another attribute, config-
ured as such in the configuration file. This is the goal of the next Try It Out exercise.

Try It Out Passing a Definition as a Parameter
This change is relatively simple but will mean that the layout page we have created is almost entirely
configurable, without touching any JSP code.

In the tiles-defs.xml file, modify the inh-mother-layout definition to now pass the menu defini-
tion as a parameter to the layout tile. The following listing shows the modification, with the changes
highlighted:

<definition name=”inh.mother.layout” path=”/layout/inh-layout.jsp”>
<put name=”header” value=”/tiles/inh-header.jsp” />
<put name=”footer” value=”/tiles/inh-footer.jsp” />
<put name=”movies” value=”/tiles/inh-movies.jsp”/>
<put name=”menu.region” value=”menu”/>

<putList name=”myMovies”>
<add value=”The Bridges Over Madison County”/>
<add value=”Steel Magnolias”/>
<add value=”What Women Want”/>
<add value=”You’ve Got Mail”/>
<add value=”Sleepless in Seattle”/>

</putList>
</definition>

<definition name=”inh.son.layout”
extends=”inh.mother.layout”>

<putList name=”myMovies”>
<add value=”The Matrix”/>
<add value=”The Return of The King”/>
<add value=”A Midnight Clear”/>

669

Layout Management with Tiles

25_57485x ch20.qxd 1/14/05 10:18 PM Page 669

TEAM LinG - Live, Informative, Non-cost and Genuine!

<add value=”Apocalypse Now”/>
<add value=”Tigerland”/>
<add value=”Spaced - Series 2”/>

</putList>
</definition>

<definition name=”menu”
path=”/layout/menu-layout.jsp”>

...

Within the inh-layout.jsp page, the insert tag is used to display the parameter menu.region, just
like any other tile parameter that the layout may be passed. Modify the inh-layout.jsp file to make
use of this new parameter. Instead of appearing as

<tr>
<td width=”20%” valign=”top” bgcolor=”lightgrey”>

<tiles:insert definition=”menu”/>
</td>
<td valign=”top” align=”left”>
<h3>Favorite Movies</h3>

...

it should now appear as

<tr>
<td width=”20%” valign=”top” bgcolor=”lightgrey”>

<tiles:insert attribute=”menu.region”/>
</td>
<td valign=”top” align=”left”>
<h3>Favorite Movies</h3>

...

How It Works
In the preceding Try It Out example, we called the menu definition directly from the inh-layout.jsp
file. The change in this section involved replacing this direct call with the use of a parameter that has
been passed to the layout. This parameter just happened to be a definition, a definition to display the
menu.

This is probably a good place to summarize the last few topics; we’ve made some real progress from
some very humble beginnings.

We started with a simple mother/son definition inheritance in which a single layout was used but one
definition was set up with certain parameters and another definition inherited some of these parameters,
replacing the rest with its own version of things, such as the movie list and a menu.

We then decided that the menu itself was to be an important repeatable component and deserved its
own definition along with some menu items. We used this new menu definition in the inheritance layout
tile to show the menu in all circumstances. Now, with this latest change, the menu definition is passed as
a parameter in the mother inheritance definition, which is therefore inherited by the son definition.

670

Chapter 20

25_57485x ch20.qxd 1/14/05 10:18 PM Page 670

TEAM LinG - Live, Informative, Non-cost and Genuine!

Tiles and Struts
Tiles has now become an integral part of the Struts framework described in Chapter 19. This section
assumes you have read and understood the material presented in that chapter. If you haven’t, it would
be wise to do so now; you wouldn’t want to miss out on this very powerful duo.

Configuring Tiles with Struts
In the first part of this chapter, we initialized Tiles in our application by registering the Tiles servlet. This
initializes the definitions file, making the definitions available to the application. Within a Struts applica-
tion, Tiles is configured slightly differently. The following steps will guide you through the addition of
Tiles to an existing Struts application:

1. Ensure that the following commons JAR files are within the /WEB-INF/lib directory:

❑ Commons Digester: commons-digester.jar

❑ Commons BeanUtils: commons-beanutils.jar

❑ Commons Collections: commons-collections.jar

❑ Commons Logging: commons-logging.jar

2. Add the following plug-in entry to the struts-config.xml file:

...
<plug-in className=”org.apache.struts.tiles.TilesPlugin” >

<set-property property=”definitions-config” value=”/WEB-INF/tiles-defs.xml” />
<set-property property=”definitions-debug” value=”2” />
<set-property property=”definitions-parser-details” value=”2” />
<set-property property=”definitions-parser-validate” value=”true” />

</plug-in>
...

Note that the set-property elements within the plug-in set the same parameters used earlier
to initialize the Tiles factory in the TilesServlet.

3. Create a tiles-defs.xml file within the /WEB-INF/lib directory along the same lines as
before. There are no changes to the format of this file.

4. Ensure that the /WEB-INF directory contains the struts-tiles.tld file.

The Struts application should now be able to use Tiles as it has been used throughout this chapter.

Tiles definitions as action forwards
An action forward defined in the struts-config.xml file is typically given a name and a path that
points to a JSP file or another action, as shown in the following example:

671

Layout Management with Tiles

25_57485x ch20.qxd 1/14/05 10:18 PM Page 671

TEAM LinG - Live, Informative, Non-cost and Genuine!

...
<action-mappings>

<action path=”/mypage”
type=”com.wrox.begjsp.ch20.struts.SomeAction”
scope=”request”>

<forward name=”success” path=”/somefile.jsp”/>
</action>

</action-mappings>
...

The execute method of the action class then uses the name success to pass processing to the JSP file
and, ultimately, to be displayed as a Web page. This is very powerful, as a layer of abstraction has been
placed between the Controller portion of the application, the action, and the view portion, the JSP file.

When integrated with Tiles, a definition or tile name can be used as the value of the path attribute in the
forward element. The preceding action mapping would appear as follows:

...
<action-mappings>

<action path=”/mypage”
type=”com.wrox.begjsp.ch20.struts.SomeAction”
scope=”request”>

<forward name=”success” path=”homepage”/>
</action>

</action-mappings>
...

In the preceding code, homepage represents the name of a definition initialized by the Tiles factory (i.e.,
those definitions defined within the tiles configuration XML file, tiles-defs.xml).The following
explanation will walk you through creating a very simple Struts action to display the inheritance exam-
ple explained earlier.

The following listing shows a simple Struts action, much like the examples you have seen in the previ-
ous chapter. This action (HomePageAction) returns an ActionForward object, which has been given the
name success:

package com.wrox.begjsp.ch20.struts;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import org.apache.struts.action.Action;
import org.apache.struts.action.ActionForm;
import org.apache.struts.action.ActionForward;
import org.apache.struts.action.ActionMapping;

public class HomePageAction extends Action
{

672

Chapter 20

25_57485x ch20.qxd 1/14/05 10:18 PM Page 672

TEAM LinG - Live, Informative, Non-cost and Genuine!

public ActionForward execute(ActionMapping mapping,
ActionForm form,
HttpServletRequest request,
HttpServletResponse response)

throws Exception
{

return mapping.findForward(“success”);
}

}

Your first reaction might be, “Well, that’s no different from all the other Struts examples!” I know, isn’t
it great! The action itself just knows it has to forward processing on to something called success; it is
up to the view portion of the application, as well the application configuration, to determine exactly
what that means.

The action mapping to invoke this action is configured in the struts-config.xml file with the
following:

...
<action-mappings>

<action path=”/homepage”
type=”com.wrox.begjsp.ch20.struts.HomePageAction”
validate=”true”
scope=”request”>

<forward name=”success” path=”inh.mother.layout”/>
</action>

</action-mappings>
...

Instead of a path to a JSP file, the path attribute of the forward element now refers to the definition
described earlier (with my Mom’s favorite movies). Now browsing to /homepage.do will present the
same screen shown in Figure 20-6.

Passing values from Struts to Tiles
When an application uses Struts, typically the bulk of the data being used for content will come from a
database or some other data source to which only the Model and Controller layers have access. While
setting parameters inside configuration files is excellent for minor settings, they hardly suit the broad
content demands of a sophisticated Web site. In Chapter 19, you saw examples of data being passed
from the Controller layer to the View layer and being presented accordingly.

With Tiles, certain components (tiles, layouts, and so on) may be expecting elements of data, no matter
what the source, to be in their tile scope. The following Try It Out exercise illustrates how data can be
provided from a Struts action and used within the tiles of an application. To demonstrate the flexibility
of tiles, the menu definition from a previous example will be used to display menu items provided by
the action, rather than the definition, without changing any code.

673

Layout Management with Tiles

25_57485x ch20.qxd 1/14/05 10:18 PM Page 673

TEAM LinG - Live, Informative, Non-cost and Genuine!

Try It Out Providing Data from a Struts Action
For this example, two new definitions will be created:

❑ foo.bar: This is the general layout for the page. It will use a new layout tile as well as provide
for a header, footer, and menu tiles.

❑ foo.bar.menu: This definition will extend the previous menu definition and be used as the
menu tile for foo.bar. The layout path and menuTile values will be inherited from its parent
definition (menu), but all other characteristics will be overridden.

The action class for this example (FooBarAction) will provide the menu data for this application, as
well as a list of movies to be displayed in the body of the page.

Create these two new definitions in the tiles-defs.xml file as follows (the additions have been high-
lighted). Note that the foo.bar.menu definition extends the menu definition:

...
<definition name=”menu”

path=”/layout/menu-layout.jsp”>
<put name=”menuTitle” value=”My Menu”/>
<put name=”menuTile” value=”/tiles/menu-tile.jsp”/>
<putList name=”menuItems”>

<item value=”Home Banking” link=”http://somebank.com”/>
<item value=”Search” link=”http://goggle.com”/>
<item value=”Java” link=”http://java.sun.com”/>

</putList>
</definition>

<definition name=”foo.bar”
path=”/layout/foobar-layout.jsp”>

<put name=”header” value=”/tiles/foobar-header.jsp” />
<put name=”footer” value=”/tiles/foobar-footer.jsp” />
<put name=”foo.bar.menu.region” value=”foo.bar.menu”/>

</definition>

<definition name=”foo.bar.menu”
extends=”menu”>

<put name=”menuTitle” value=”My FooBar Menu”/>
<putList name=”menuItems”/>

</definition>
...

The foo.bar definition uses a new layout JSP page called foobar-layout.jsp. As with other layouts,
this page will be responsible for general layout and passing on data for other tiles. When the Struts
action is invoked, it will provide two values in the request scope:

❑ animatedMovies: A java.util.List of animated movie titles to display in the body of
the layout

❑ actionMenuItems: A java.util.List of SimpleMenuItem objects to be displayed by the
foo.bar.menu.region tile

674

Chapter 20

25_57485x ch20.qxd 1/14/05 10:18 PM Page 674

TEAM LinG - Live, Informative, Non-cost and Genuine!

The foo.bar definition references the foo.bar.menu definition as the value of its foo.bar.menu.region
tile. The foo.bar.menu definition, listed above, extends the menu definition created earlier. The parent
menu definition provides a number of parameters to this new subdefinition:

❑ menuTitle: This represents the title of the menu. It has been overridden with a new value in
foo.bar.menu: My FooBar Menu.

❑ menuTile: A tile presenting the body of the menu’s presentation. This will be used by the sub-
definition and not overridden.

❑ menuItems: This list will be overridden by the foo.bar.menu definition and blanked out. The
items to be presented in the menu will be provided by the Struts action.

Now that we know what needs to be done, we can create the new layout: open the foobar-layout.jsp
file in the /layout/ directory of your Web application and enter the following code:

<%@ taglib uri=”/WEB-INF/struts-tiles.tld” prefix=”tiles” %>
<%@ taglib uri=”http://java.sun.com/jsp/jstl/core” prefix=”c”%>

<tiles:importAttribute />
<html>

<head>
<title>FooBar Example</title>

</head>
<body bgcolor=”white”>

<table border=”1” width=”100%” height=”100%” border=”1”>
<tr>

<td colspan=”2” height=”100” bgcolor=”gray”>
<tiles:insert attribute=”header”/>

</td>
</tr>
<tr>

<td width=”20%” valign=”top” bgcolor=”lightgrey”>
<tiles:insert attribute=”foo.bar.menu.region”>

<tiles:put name=”menuItems”
beanName=”actionMenuItems” beanScope=”request”/>

</tiles:insert>
</td>
<td valign=”top” align=”left”>
<h3>Animated Movies</h3>

<c:forEach items=”${requestScope.animatedMovies}” var=”thisMovie”>

${thisMovie}
</c:forEach>

</td>

</tr>
<tr>

<td colspan=”2”><center><tiles:insert attribute=”footer”/></center></td>
</tr>
</table>
</body>
</html>

675

Layout Management with Tiles

25_57485x ch20.qxd 1/14/05 10:18 PM Page 675

TEAM LinG - Live, Informative, Non-cost and Genuine!

Two particular areas of interest have been highlighted in the preceding code listing. The first represents
placement of the foo.bar.menu.region tile. As discussed before, this needs to be treated just like
the menu definition in a previous example, where the menu was first introduced as an independent
definition. It needs some data to display. Previously, this was provided by some parameters using the
putList and item elements within the tiles-defs.xml file. The source of the data is not important
to this tile, however; it just knows it needs a list of SimpleMenuItem objects. The Struts action
(FooBarAction) will provide just such a list and provide it within the request scope of this page;
the highlighted section has then taken this list and placed it within the tile scope of the menu layout
JSP page (menu-layout.jsp), under the name menuItems, the name it expects. From the JSP page’s
point of view, it’s business as usual; there is no code change required.

The second highlighted area will list the animatedMovies List provided by the Struts action. It has to
retrieve the value from the request scope.

The new footer and header tiles will display just static text.

Now that the view components have been established, we can turn our attention to the Struts action
FooBarAction. This is another relatively simple action that will return an ActionForward pointing to
our foo.bar definition. It will also provide the appropriate data for the foo.bar.menu and the list of
movies to be displayed in the body of the page.

The following action mapping needs to be added to the struts-config.xml file in order to set up this
new action:

<action path=”/foobar”
type=”com.wrox.begjsp.ch20.struts.FooBarAction”
scope=”request”>

<forward name=”success” path=”foo.bar”/>
</action>

You should create a new file called FooBarAction.java in an appropriate package directory of your
application. This file will contain the following:

package com.wrox.begjsp.ch20.struts;

import java.util.ArrayList;
import java.util.List;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import org.apache.struts.action.Action;
import org.apache.struts.action.ActionForm;
import org.apache.struts.action.ActionForward;
import org.apache.struts.action.ActionMapping;
import org.apache.struts.tiles.beans.MenuItem;
import org.apache.struts.tiles.beans.SimpleMenuItem;

public class FooBarAction extends Action
{

676

Chapter 20

25_57485x ch20.qxd 1/14/05 10:18 PM Page 676

TEAM LinG - Live, Informative, Non-cost and Genuine!

public ActionForward execute(ActionMapping mapping,
ActionForm form,
HttpServletRequest request,
HttpServletResponse response)

throws Exception
{

request.setAttribute(“actionMenuItems”, getMenuItems());
request.setAttribute(“animatedMovies”, getMovies());

return mapping.findForward(“success”);
}

private List getMenuItems()
{

List menuItems = new ArrayList();
menuItems.add(getMenuItem(“http://java.sun.com/”, “Java Home”));
menuItems.add(getMenuItem(“http://www.cnn.com/”, “CNN”));
menuItems.add(getMenuItem(“http://slashdot.org/”, “Slashdot”));
return menuItems;

}

private MenuItem getMenuItem(String link, String value)
{

MenuItem item = new SimpleMenuItem();
item.setLink(link);
item.setValue(value);
return item;

}

private List getMovies()
{

List movies = new ArrayList();
movies.add(“Shrek 2”);
movies.add(“Finding Nemo”);
movies.add(“Toy Story”);
movies.add(“The Lion King”);
movies.add(“Monsters Inc.”);
return movies;

}
}

How It Works
As you can see, the menu data has been provided by two methods that construct a list of SimpleMenu
Item objects (these were discussed earlier). The movies are constructed by the getMovies() method.
The result of these methods is added to the request using the request.setAttribute method and
given the appropriate names that are expected in the foobar-layout.jsp file.

The result of this is to display a page not unlike others in this chapter, except this time the data has been
served by a Struts action and we have managed to reuse the characteristics of the menu definition that
was developed earlier. If you browsed to the action (/foobar.do), you would see a screen similar to the
one shown in Figure 20-7.

677

Layout Management with Tiles

25_57485x ch20.qxd 1/14/05 10:18 PM Page 677

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 20-7: FooBar example in a browser

You can see how relatively easy it is to replace the data provided by one source with another. In a (much)
more sophisticated application, the movie and menu data might come from a database; even so, the
view components would be unaffected.

Summary
Although the full set of features and capabilities of the Tiles framework, as well as its integration with
Struts, is beyond the scope of this chapter, the chapter has provided you with enough information to
realize their power both separately and together and to use them in some capacity in your next Web
application.

Some of the important features of Tiles that are not explained here include its capability to develop pow-
erful portals, channels, and tabs, and the capability to integrate the insert tag with Struts controller
classes, among others. Internationalization is also notably missing, but is featured in one of the exercises
for this chapter.

678

Chapter 20

25_57485x ch20.qxd 1/14/05 10:18 PM Page 678

TEAM LinG - Live, Informative, Non-cost and Genuine!

Despite these omissions, this chapter has covered a lot of ground, including the following:

❑ A definition of Tiles

❑ Installing Tiles for use in a Web application

❑ Tiles definitions and tags

❑ Advanced Tiles usage with parameters and inheritance

❑ Using Tiles with Struts

The chapter began by introducing the need for a framework like Tiles. You learned the basic way in
which Tiles is used and how its major concepts coordinate to add a level of abstraction between what is
presented and how it is presented.

After installation of Tiles was covered, a simple example was introduced. This then led to configurations
either using a JSP include file or via definitions in an XML configuration file. The intricacies of defini-
tions were then explored, including inheritance and various ways in which parameters can be passed —
as tiles, data, or even definitions themselves — to other components. The chapter then finished with two
examples of Tiles integration with the Struts framework.

Exercises
1. Create a simple definition inheritance example using three definitions. Ensure that at least one

item is overridden by the child definitions.

2. Using the Struts and Tiles resources on the Internet to help you, develop a one-page application
using Struts that will display the result of a different definition based on different locale settings
specified by the user.

679

Layout Management with Tiles

25_57485x ch20.qxd 1/14/05 10:18 PM Page 679

TEAM LinG - Live, Informative, Non-cost and Genuine!

25_57485x ch20.qxd 1/14/05 10:18 PM Page 680

TEAM LinG - Live, Informative, Non-cost and Genuine!

21
JavaServer Faces

The last few chapters introduced you to the Model View Controller (MVC) design pattern and to
the Struts, WebWork, and Spring frameworks that implement the pattern for Web-based applica-
tions. Struts has been around for some time, and is a proven framework for developing high-qual-
ity Web applications. However, the Java community has long desired a way to create components
that can be used in Web applications in a manner similar to the way in which components are used
in Swing or AWT-based applications. Enter the JavaServer Faces technology (JSF). Struts develop-
ers should feel comfortable with JSF because they share a number of similarities, as you will dis-
cover in this chapter. That is not an accident: One of the primary developers for Struts is also a
primary developer for JSF. JSF may have one long-term advantage over Struts as a framework: JSF
is to be included as part of a future J2EE standard. In this chapter, you will explore building Web
applications using JSF.

In particular you will learn the following:

❑ How to configure a JSF project

❑ The JSF lifecycle

❑ How to validate data

❑ How to convert data

❑ How to handle events with listeners

Configuring a JSF Project
Because you will be working with a JavaServer Faces application right away, you will need to have
a project set up with the correct directory structure, as shown in Figure 21-1.

26_57485x ch21.qxd 1/14/05 10:14 PM Page 681

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 21-1: Directory structure for a JavaServer Faces application

The examples are based on using the JSF 1.1 reference version. You will also need the following files
in the lib directory below WEB-INF:

❑ commons-beanutils.jar

❑ commons-collections.jar

❑ commons-digester.jar

❑ commons-logging.jar

❑ html_basic.tld

❑ jsf_core.tld

❑ jsf-api.jar

❑ jsf-impl.jar

❑ jstl.jar

❑ standard.jar

❑ web-facesconfig_1_1.dtd

The source code for the book includes a directory structure already configured with the correct files
in place.

682

Chapter 21

26_57485x ch21.qxd 1/14/05 10:14 PM Page 682

TEAM LinG - Live, Informative, Non-cost and Genuine!

Getting Star ted with JSF
JSF is an implementation of the Model View Controller design pattern. Like Struts, JSF uses a single
servlet that acts as a Controller. This servlet, known as the FacesServlet, must handle all HTTP
requests for a JSF application. Rather than providing a complete overview at this time, let’s start with a
simple sample application.

Try It Out Creating Hello JSF
Hello JSF is a simple application that prompts for a name and then simply renders a screen that says
Hello. It is very simple and provides a good place to begin understanding JSF before more challenging
topics are addressed. The first step we will take is to create the web.xml file.

As stated previously, JSF uses a single central servlet that handles all requests. This servlet needs to be
configured in the web.xml as shown here:

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE web-app PUBLIC

“-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN”
“http://java.sun.com/dtd/web-app_2_3.dtd”>

<web-app>
<context-param>

<param-name>javax.faces.application.CONFIG_FILES</param-name>
<param-value>/WEB-INF/faces-config.xml</param-value>

</context-param>

<servlet>
<servlet-name>Faces Servlet</servlet-name>
<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
<load-on-startup>1 </load-on-startup>

</servlet>
<servlet-mapping>

<servlet-name>Faces Servlet</servlet-name>
<url-pattern>*.jsf</url-pattern>

</servlet-mapping>
</web-app>

How It Works
The servlet element declares FacesServlet and then makes certain that it is loaded on startup. The
servlet is mapped to any URL within the context that has a .jsf extension. A context parameter is
provided so that FacesServlet will know where to find the faces-config.xml file. We will look at
faces-config.xml in more detail shortly, but for now you just need to know that it is similar to the
struts-cfg.xml file that you have seen in earlier chapters.

683

JavaServer Faces

26_57485x ch21.qxd 1/14/05 10:14 PM Page 683

TEAM LinG - Live, Informative, Non-cost and Genuine!

Try It Out Creating the Pages
Our next step will be to create the two pages in this application. The first page collects the user’s name.
The second page responds with a personalized greeting. The pages we will create will be using custom
tags provided by the JSF framework. Code the first page as follows and call it hello.jsp:

<%@ taglib uri=”http://java.sun.com/jsf/html” prefix=”h” %>
<%@ taglib uri=”http://java.sun.com/jsf/core” prefix=”f” %>
<html>
<head><title>HelloJSF</title></head>
<body>

<f:view>
<h:form id=”helloForm”>

Please enter your name:
<h:inputText id=”name” value=”#{HelloBean.name}” required=”true”/>
<h:commandButton action=”#{HelloBean.action}” value=”Go” id=”submit” />

<h:messages />

</h:form>
</f:view>

</body>
</html>

The following lines, which also appear at the top of the JSP file, load the two required JSF tag libraries:

<%@ taglib uri=”http://java.sun.com/jsf/html” prefix=”h” %>
<%@ taglib uri=”http://java.sun.com/jsf/core” prefix=”f” %>

The last component to be discussed is the messages component. If the application has sent any error
messages to the page, the messages component will display them. It is also possible to associate a mes-
sage with an individual component. You will see how this is done in a later example.

Add the second JSP page as follows:

<%@ taglib uri=”http://java.sun.com/jsf/html” prefix=”h” %>
<%@ taglib uri=”http://java.sun.com/jsf/core” prefix=”f” %>
<html>
<head><title>JSF Greeting</title></head>
<body>

<f:view>
Hello <h:outputText value=”#{HelloBean.name}”/>

</f:view>
</body>
</html>

The only thing new here is the outputText component, which simply renders its value as text.

684

Chapter 21

26_57485x ch21.qxd 1/14/05 10:14 PM Page 684

TEAM LinG - Live, Informative, Non-cost and Genuine!

How It Works
The HTML tag library provides access to the standard HTML render kit. A render kit determines how the
underlying components will be rendered within a specific implementation. In this case, the render kit
renders the application’s components into standard HTML tags. These tags can be found in the listing
with the prefix h. Each custom tag represents a JSF component.

The core library is traditionally accessed using the f prefix (you may remember that c: is normally used
for the JSTL core library). The core library provides tags that are used for binding objects with compo-
nents. The only core tag used in the example is the <f:view> tag. This tag is required and must be the
outermost tag of all JSF tags. In other words, all JSF tags within a JSP must be contained within the body
of the view tag.

JSF maintains a tree-structured view of all of the components on a page. The view tag serves as the root
of that tree. This is similar to the root element of an XML document. Therefore, the view tag is required
if any JSF components are used.

Each of the tags with an h: prefix represents a JSF component. An example of two of these lines follows:

<h:inputText id=”name” value=”#{HelloBean.name}” required=”true”/>
<h:commandButton action=”#{HelloBean.action}” value=”Go” id=”submit” />

The inputText component is rendered as an HTML input element of type text. The commandButton
component is rendered as an HTML input element of type submit. These are both contained within a
form component, which simply renders as an HTML form element.

In the inputText component, the value is set to #{HelloBean.name}. This is a value binding expression.
A value binding expression is used to associate the value of an attribute on a bean with the attribute of
the component. A similar expression is seen on the commandButton component. In this case, the
#{HelloBean.action} is a method binding expression. A method binding expression is used to associate
the method of a class with a component. In this case, a method called action on an instance of
HelloBean will be executed in response to the Submit button.

Binding expressions are similar in syntax to JSP EL expressions. Binding expressions use
#{expression} instead of ${expression} and do not support EL functions.

Using backing beans
JSF uses ordinary JavaBeans to do most of the interesting work. These beans are called backing beans
because they form the backbone of the application. One of the nice features of JSF is that simple Web
applications can be easily created just by creating the pages and backing beans to support them. From
the Struts point of view, a backing bean can be the action form and action class rolled into one.

685

JavaServer Faces

26_57485x ch21.qxd 1/14/05 10:14 PM Page 685

TEAM LinG - Live, Informative, Non-cost and Genuine!

Try It Out Creating the Backing Bean
The bean for our application needs to store the Name field and provide a means of navigation. The code
for HelloBean, the action bean used in the current example, follows:

package com.wrox.jsp;

import javax.faces.application.FacesMessage;
import javax.faces.context.FacesContext;

public class HelloBean
{

private String name = null;
public HelloBean()
{
}
public String getName()
{

return name;
}
public void setName(String anyname)
{

name = anyname;
}

public String action()
{

boolean success = true;
FacesContext context = FacesContext.getCurrentInstance();
if(name != null)
{

for(int i = 0; i < name.length();i++)
{

char c = name.charAt(i);

if(!Character.isLetter(c) && !Character.isSpaceChar(c))
{

FacesMessage message = new FacesMessage(
“Username must be all alphabetic characters.”);

context.addMessage(“helloForm”, message);
success = false;
break;

}
}

}
else
{

success = false;
}
return (success? “success” : “failure”);

}
}

686

Chapter 21

26_57485x ch21.qxd 1/14/05 10:14 PM Page 686

TEAM LinG - Live, Informative, Non-cost and Genuine!

How It Works
The bean has a single attribute, name, with a supporting getter and setter. The bean also has an action
method. The action method validates that the name is made up of all alphabetical characters and
returns the word success or failure depending on the outcome. In the next section, you will see how
this is used to control navigation between the pages of the application.

If the action method fails, it provides an error message that can be displayed by a message component
on the JSP page. The message is added to the FacesContext. The FacesContext is created by the
FacesServlet and provides access to all of the components that are current for the request being
processed.

Managed beans
It is necessary to define the backing beans that will be used by the application. The way this is done is
through a configuration file called faces-config.xml. This configuration file is similar in purpose to
the struts-cfg.xml file used by Struts. The section used to define our bean is as follows:

<managed-bean>
<managed-bean-name>HelloBean</managed-bean-name>
<managed-bean-class>com.wrox.jsp.HelloBean</managed-bean-class>
<managed-bean-scope>session</managed-bean-scope>

</managed-bean>

This entry names the bean HelloBean, which is how we reference the bean in the JSP pages, and associ-
ates the bean (or binds it) with the class com.wrox.jsp.HelloBean. The bean will be stored in or acces-
sible from the session scope.

Controlling navigation
The action method of our bean returns one of two string values depending on the success or failure of
the method. This return value is then used to determine which JSP will be used to render the response.
This is accomplished through a configuration file called faces-config.xml. The section of the configura-
tion file that controls the navigation is as follows:

<navigation-rule>
<from-view-id>/hello.jsp</from-view-id>
<navigation-case>

<from-outcome>success</from-outcome>
<to-view-id>/greeting.jsp</to-view-id>

</navigation-case>
<navigation-case>

<from-outcome>failure</from-outcome>
<to-view-id>/hello.jsp</to-view-id>

</navigation-case>
</navigation-rule>

687

JavaServer Faces

26_57485x ch21.qxd 1/14/05 10:14 PM Page 687

TEAM LinG - Live, Informative, Non-cost and Genuine!

The navigation-rule element is first associated with a source page — in this case, hello.jsp— and
comprises a number of navigation cases. The navigation-case element consists of two elements,
from-outcome and to-view-id. The from-outcome element matches the string returned by the
action method on the bean — in this case, success or failure. The to-view-id element describes where
to go in each navigation-case.

Try It Out Creating faces-config.xml
The two primary areas of the faces-config.xml file that are used for this application have been cov-
ered. The entire file follows:

<?xml version=”1.0”?>
<!DOCTYPE faces-config PUBLIC

“-//Sun Microsystems, Inc.//DTD JavaServer Faces Config 1.0//EN”
“http://java.sun.com/dtd/web-facesconfig_1_0.dtd”>

<faces-config>
<navigation-rule>

<from-view-id>/hello.jsp</from-view-id>
<navigation-case>

<from-outcome>success</from-outcome>
<to-view-id>/greeting.jsp</to-view-id>

</navigation-case>
<navigation-case>

<from-outcome>failure</from-outcome>
<to-view-id>/hello.jsp</to-view-id>

</navigation-case>
</navigation-rule>

<managed-bean>
<description>Hello Bean Holder</description>
<managed-bean-name>HelloBean</managed-bean-name>
<managed-bean-class>com.wrox.jsp.HelloBean</managed-bean-class>
<managed-bean-scope>session</managed-bean-scope>

</managed-bean>

</faces-config>

As you can see, there isn’t much here that hasn’t already been discussed. Based on the web.xml file pre-
sented earlier, this file needs to be placed in the WEB-INF directory of the Web application.

Try It Out Running the JSF Application
Now you should be ready to test the application. To run the application, use the following URL:
http://locahost:8080/hellojsf/hello.jsf.

Figure 21-2 shows the first page of the application.

688

Chapter 21

26_57485x ch21.qxd 1/14/05 10:14 PM Page 688

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 21-2: The first page of HelloJSF

If a name with non-alphabetic characters is entered, an error message is displayed, as shown in
Figure 21-3.

Figure 21-3: HelloJSF with an error message

The result of successfully entering the name John should simply be a screen that says “Hello John”.

How It Works
When you access the application, you do not send the request to hello.jsp. This is because the
FacesServlet must handle all requests. The FacesServlet has been configured in the web.xml file to
handle all requests ending with a .jsf extension and will find hello.jsp when hello.jsf is
requested.

689

JavaServer Faces

26_57485x ch21.qxd 1/14/05 10:14 PM Page 689

TEAM LinG - Live, Informative, Non-cost and Genuine!

The FacesServlet must handle all faces requests before they are passed to a JSP. If you see an error
message similar to “Cannot find FacesContext,” this normally means that an attempt was made to
access a faces JSP directly instead of through the servlet. This can be prevented by protecting the JSP
with a security constraint in the web.xml file.

Preventing direct access to Faces JSP files
As discussed in the previous section, all access must go through the FacesServlet. Because this is a
requirement, it is a good idea to prevent direct access to JSP files. One way to do this is to add the fol-
lowing security constraint to the web.xml file:

<security-constraint>
<display-name>Restricts access to JSP pages</display-name>
<web-resource-collection>

<web-resource-name>JSP Restriction</web-resource-name>
<url-pattern>/hello.jsp</url-pattern>
<url-pattern>/greeting.jsp</url-pattern>

</web-resource-collection>
<auth-constraint>

<description>With no roles defined, no access granted</description>
</auth-constraint>

</security-constraint>

Inserting this above the closing </web-app> tag in the web.xml file creates a security constraint requir-
ing a user to be authorized before access is granted to the pages. No authorized users can access the
pages directly because no roles are provided in the auth-constraint. The pages can still be accessed
through the FacesServlet, which is the desired behavior.

JSF Lifecycle
Now that you have seen a working JSF application, let’s examine what is going on under the hood. As
you now know, all requests must be handled by the FacesServlet. The FacesServlet is the
Controller part of the MVC pattern. It handles routing the traffic and managing the lifecycles of the
beans and user interface components.

The UI components are organized in a tree structure. The root component is the UIViewRoot class and is
represented in the JSP using the <f:view> tag. You should recall using the <f:view> tag on the page to
establish this root element. Each component may be associated with the methods and attributes of a
backing bean. While we did not use a validation method in the current example, each component may
also be associated with a validation function or class.

As shown in Figure 21-4, a JSF request has six lifecycle phases:

❑ Restore view

❑ Apply request values

690

Chapter 21

26_57485x ch21.qxd 1/14/05 10:14 PM Page 690

TEAM LinG - Live, Informative, Non-cost and Genuine!

❑ Process validations

❑ Update model values

❑ Invoke the application

❑ Render the response

Each of these phases or stages may be executed in their entirety or the process may be short-circuited to
handle errors, validation problems, or other special processing needs.

Figure 21-4: The JSF request lifecycle

The following paragraphs provide a brief explanation of each of the processing stages.

May process events here

Restore
Views

Apply
Request
Values

Process
Validations

Update
Model

Invoke
Application

Render
Response

Response
Complete

691

JavaServer Faces

26_57485x ch21.qxd 1/14/05 10:14 PM Page 691

TEAM LinG - Live, Informative, Non-cost and Genuine!

Restore view
The restore view phase associates a specific view with a request. The JSF application first determines
whether a view already exists. A view may exist, for example, if the request came from a page that had
previously been returned with validation errors or if the page posts to itself. The view itself is an
instance of the class UIViewRoot. This is the root component for the component tree that makes up the
JSF page. If a view does not exist, then one is created.

A mapping is performed on the requested URL to determine the URL to use for the view. In the case of
the example hello program, the target URL containing hello.jsf is rewritten as hello.jsp to form the
view. This is how the .jsf extension gets remapped so that the correct JSP page is found.

When the JSF implementation creates the view, it also makes the connections between the components
and the various actions, validators, and converters associated with them. Finally, the view is stored in
FacesContext along with all of the other information needed to handle the current request.

Apply request values
The apply request values stage enables each component within the view to set its value based on the val-
ues obtained in the request. These request values include request parameters, cookies, and request
header items, for example. The values are converted to their final types. For example, if the form had
included a field that was mapped to an integer type, the string content of the parameter would be con-
verted to an integer at this time. If the conversion fails, then a message is placed in FacesContext.

Certain events may also be queued in this phase — for example, components that implement
ActionSource (such as UICommand) may queue events. In general, these events are processed immedi-
ately after the stage has been completed. The FacesContext.responseComplete() method can be
called here to shortcut the rest of the processing and jump directly to the render response phase.

Process validations
Each component on the tree may be associated with validation code. During the process validations
phase, the validation code associated with each component is called. Validations that fail normally add a
message to the FacesContext that can be displayed with the rendered page. If a failure occurs, the
other phases are skipped and the processing jumps directly to the render response phase so that an input
screen can be rerendered. Any events that are queued during this phase are processed at the completion
of the phase.

Update model values
The update model values phase is reached when all of the components have had their values set and the
data has been validated. At this point, the data should be correct and the underlying model may be
updated to reflect the values in the components. The data is copied from the components in the view to
their corresponding model components. In the hello example, the model is the backing bean. Data con-
version may also occur here if the way in which the data is stored in the component differs from that of
the model. If the conversion fails, then a message is added to FacesContext and the next phase is
skipped and the render response phase is invoked instead. Again, any events that are queued are han-
dled after the phase completes.

692

Chapter 21

26_57485x ch21.qxd 1/14/05 10:14 PM Page 692

TEAM LinG - Live, Informative, Non-cost and Genuine!

Invoke application
Any remaining events are fired and handled in the invoke application phase. In our application, the
command associated with the Submit button is handled here. The action causes the “success” or “fail-
ure” event to be queued. There is a listener that handles this event by calling the default
NavigationHandler with the navigation rules from the faces-config.xml file. This in turn deter-
mines which page is used for the render response phase.

Render response
The render response phase does two things: It renders the response to the client and saves the state of
the response and the component tree to be used on subsequent requests. It renders the response by call-
ing the methods and classes in the renderer that was loaded for the current render kit. The renderer is
used to generate the required HTML for each component within the tree.

Validating Data
In the previous example, you saw one way of validating data for a JSF-created page. The backing bean in
that example used the action method and navigation to validate that the name did not contain any
non-alphabetic characters. If the name did have an illegal character, a message was added to
FacesContext and the original form was redisplayed with the error message. This validation is actually
being handled in the invoke application phase, a later stage of the response cycle than necessary.
Validation can occur in the process validations phase by using a validator. The following section demon-
strates some of the many ways that this can be done, but first you need a new example.

Try It Out The Number Guess Example
The Number Guess program creates a random number between 1 and 10 and asks the user to try to
guess the number. If the guess is incorrect, a message is provided that indicates how far off the guess
was. If the guess is successful, then a success message is displayed and the user may play again. The
game is based on the backing bean as shown here:

package com.wrox.jsp;

import java.util.Random;
import javax.faces.application.FacesMessage;
import javax.faces.context.FacesContext;

public class GuessBean
{

private int number;
private int guess;

public GuessBean()
{

number = (new Random()).nextInt(9)+1;
}

public int getNumber()

693

JavaServer Faces

26_57485x ch21.qxd 1/14/05 10:14 PM Page 693

TEAM LinG - Live, Informative, Non-cost and Genuine!

{
return number;

}

public int getGuess()
{

return guess;
}

public void setGuess(int i)
{

guess = i;
}

public String replay()
{

number = (new Random()).nextInt(9)+1;
return “success”;

}

public String action()
{

if(guess == number)
{

return “success”;
}
else
{

FacesContext context = FacesContext.getCurrentInstance();
int delta = Math.abs(guess-number);
String message = “You missed it by “+delta+”. Try again.”;
context.addMessage(“GuessForm”, new FacesMessage(message));

}
return “failure”;

}
}

There are attributes for the number and the guess and two action methods, action and replay. The
faces-cfg.xml file is shown next:

<?xml version=”1.0”?>
<!DOCTYPE faces-config PUBLIC

“-//Sun Microsystems, Inc.//DTD JavaServer Faces Config 1.0//EN”
“http://java.sun.com/dtd/web-facesconfig_1_0.dtd”>

<faces-config>
<navigation-rule>

<from-view-id>/NumberGuess.jsp</from-view-id>
<navigation-case>

<from-outcome>success</from-outcome>
<to-view-id>/YouWin.jsp</to-view-id>

</navigation-case>
<navigation-case>

<from-outcome>failure</from-outcome>

694

Chapter 21

26_57485x ch21.qxd 1/14/05 10:14 PM Page 694

TEAM LinG - Live, Informative, Non-cost and Genuine!

<to-view-id>/NumberGuess.jsp</to-view-id>
</navigation-case>

</navigation-rule>

<navigation-rule>
<from-view-id>/YouWin.jsp</from-view-id>
<navigation-case>

<from-outcome>success</from-outcome>
<to-view-id>/NumberGuess.jsp</to-view-id>

</navigation-case>
</navigation-rule>

<managed-bean>
<description>GuessBean</description>
<managed-bean-name>GuessBean</managed-bean-name>
<managed-bean-class>com.wrox.jsp.GuessBean</managed-bean-class>
<managed-bean-scope>session</managed-bean-scope>

</managed-bean>

</faces-config>

There are two navigation rules and a single managed bean. The managed bean is the GuessBean code
that you have already seen. The first rule selects between NumberGuess.jsp and YouWin.jsp based on
the result of the call to the action method of the GuessBean class. The second rule enables the game to be
reset once it has been won, and returns the user back to NumberGuess.jsp. The code for
NumberGuess.jsp follows:

<!-- name NumberGuess.jsp -->
<%@ taglib uri=”http://java.sun.com/jsf/html” prefix=”h” %>
<%@ taglib uri=”http://java.sun.com/jsf/core” prefix=”f” %>
<html>

<head><title>Number Guess</title></head>
<body>

I am thinking of a number between 1 and 10. Can you guess it?
<f:view>

<h:form id=”GuessForm”>
<h:inputText id=”number” value=”#{GuessBean.guess}” />
<h:commandButton action=”#{GuessBean.action}” value=”Guess”/>

<h:messages />

</h:form>
</f:view>

</body>
</html>

Currently, the JSP simply provides an inputText component for entering a number and a button for
submitting the form to the action method. Shortly, you will be making changes to this file to demonstrate
using standard validators. The final segment of code is the YouWin.jsp:

<!-- name YouWin.jsp -->
<%@ taglib uri=”http://java.sun.com/jsf/html” prefix=”h” %>
<%@ taglib uri=”http://java.sun.com/jsf/core” prefix=”f” %>
<html>

<head><title>Number Guess</title></head>

695

JavaServer Faces

26_57485x ch21.qxd 1/14/05 10:14 PM Page 695

TEAM LinG - Live, Informative, Non-cost and Genuine!

<body>
<f:view>

<h:form id=”GuessForm”>
You Win!
<h:commandButton action=”#{GuessBean.replay}” value=”Replay”/>

</h:form>
</f:view>

</body>
</html>

This JSP simply states “You Win!” and offers a replay. Calling the replay method on the backing bean
generates a new random number and always returns success.

How It Works
The code as shown accepts any number entered into the field. If the value entered cannot be converted
to a number, JSF automatically returns an error message for the component, indicating a conversion
error. By adding the following as the first line of the action method, it can be shown that the action
method is not even called when a conversion error occurs:

System.out.println(“inside action method. guess=”+guess+” number=”+number);

Now an entry will be added to the logs if the action method is called. Try entering abc as the guess and
you should see a response similar to the one shown in Figure 21-5.

Figure 21-5: GuessNumber.jsp response when a number is not entered

Note that a log entry was not generated by the action method. This shows that the action method was
not called.

696

Chapter 21

26_57485x ch21.qxd 1/14/05 10:14 PM Page 696

TEAM LinG - Live, Informative, Non-cost and Genuine!

Using standard validators
Our goal is to limit the valid user input to a number from 1 to 10. As it turns out, JSF provides a standard
validator to do exactly this. The standard validators are as follows:

❑ DoubleRangeValidator: Determines whether the range of the component value is within the
specified range. The value must be convertible to a double.

❑ LengthValidator: Determines whether the length of the component’s value is within the spec-
ified range. The value must be a string.

❑ LongRangeValidator: Determines whether the value of the component falls within the speci-
fied integer range. The value must be convertible to a long.

You can use the standard validator by adding a tag to the JSP. In this case, the validator required is the
LongRangeValidator and the code will be modified as follows. In NumberGuess.jsp, replace the line
that reads

<h:inputText id=”number” value=”#{GuessBean.guess}” />

with the following:

<h:inputText id=”number” value=”#{GuessBean.guess}” >
<f:validateLongRange minimum=”1” maximum=”10” />

</h:inputText>

Now an attempt to enter 555 in the field returns the response shown in Figure 21-6.

Figure 21-6: Number entered outside of allowed range

Creating your own validation
If one of the standard validators does not support your validation needs, it does not mean you are out of
luck. JSF supports two different ways of adding your own validation code to support your application.
You can create validation methods on the backing beans or you can create classes that implement the
Validator interface.

697

JavaServer Faces

26_57485x ch21.qxd 1/14/05 10:14 PM Page 697

TEAM LinG - Live, Informative, Non-cost and Genuine!

Implementing the Validator Interface
You can create a custom validator by creating a class that implements the Validator interface. The
Validator interface has one required method with the following signature:

void validate(
javax.faces.context.FacesContext context,
javax.faces.component.UIComponent component,
java.lang.Object obj)
throws ValidatorException

Try It Out Creating a Validator
FacesContext has already been discussed. The UIComponent is the instance of the underlying JSF com-
ponent whose value will be validated. The object is the value to be validated. An example validator that
can be used with the Number Guess example follows (name this example OneToTenValidator.java):

package com.wrox.jsp;

import javax.faces.application.FacesMessage;
import javax.faces.component.UIComponent;
import javax.faces.component.UIInput;
import javax.faces.context.FacesContext;
import javax.faces.validator.Validator;
import javax.faces.validator.ValidatorException;

public class OneToTenValidator implements Validator
{

public OneToTenValidator()
{
}

public void validate(FacesContext facesContext, UIComponent component, Object
obj)

throws ValidatorException
{

boolean valid = false;
String value = null;
int i;
if (!(component instanceof UIInput) || (obj == null))
{

return;
}
value = obj.toString();
try
{

i = Integer.parseInt(value);
}
catch(NumberFormatException nfe)
{

FacesMessage message = new FacesMessage(“Could not convert to int.”);
throw new ValidatorException(message);

}

698

Chapter 21

26_57485x ch21.qxd 1/14/05 10:14 PM Page 698

TEAM LinG - Live, Informative, Non-cost and Genuine!

if((i < 1) || (i > 10))
{

FacesMessage message =
new FacesMessage(“The guess must be between 1 and 10”);

throw new ValidatorException(message);
}
return;

}

}

How It Works
The example simply ensures that the provided arguments are good, and then converts the object from a
string into an integer and tests the integer to see if it is within range. If the test fails, an exception is
thrown with the message that will be displayed on the form. To use this in your code, the line in
NumberGuess.jsp that reads

<f:validateLongRange minimum=”1” maximum=”10” />

will need to be replaced with one that reads

<f:validator validatorId=”OneToTenValidator”/>

The new validator needs to be registered in the faces-cfg.xml file. You do this by adding the follow-
ing lines below the managed bean section of the faces-cfg.xml file:

<validator>
<validator-id>OneToTenValidator</validator-id>
<validator-class>com.wrox.jsp.OneToTenValidator</validator-class>

</validator>

When the application is executed and a number greater than 10 is entered, the result is as shown in
Figure 21-7.

Figure 21-7: Output after adding a custom validator

699

JavaServer Faces

26_57485x ch21.qxd 1/14/05 10:14 PM Page 699

TEAM LinG - Live, Informative, Non-cost and Genuine!

Creating a custom validator tag
In the preceding example, the values for minimum and maximum were hard-coded in the custom val-
idator. This enables the developer to use the validator tag to associate the validator with the control. For
most applications this would be limiting because there is no way to pass parameters to the validator, so
that validator must be preconfigured or hard-coded. This limitation can be overcome by creating a cus-
tom tag to configure the properties of the validator. The attributes of the tag correspond to the properties
of the validator. The tag itself replaces the validator tag that was used in the code example. In order to
demonstrate how this works, a new validator is needed, one that provides attributes that can be config-
ured for the minimum and maximum values.

Try It Out Creating a Custom Validator Tag
The code for this new IntRangeValidator follows:

package com.wrox.jsp;

import javax.faces.application.FacesMessage;
import javax.faces.component.UIComponent;
import javax.faces.component.UIInput;
import javax.faces.context.FacesContext;
import javax.faces.validator.Validator;
import javax.faces.validator.ValidatorException;

public class IntRangeValidator implements Validator
{

private int min;
private int max;
private boolean minset = false;
private boolean maxset = false;

public IntRangeValidator()
{

System.out.println(“IntRangeValidator built”);
}

public void setMin(int m)
{

minset = true;
min = m;

}

public int getMin()
{

return min;
}

public void setMax(int m)
{

maxset = true;
max = m;

}

700

Chapter 21

26_57485x ch21.qxd 1/14/05 10:14 PM Page 700

TEAM LinG - Live, Informative, Non-cost and Genuine!

public int getMax()
{

return max;
}

public void validate(FacesContext facesContext, UIComponent component, Object
obj)

throws ValidatorException
{

boolean valid = false;
String value = null;
int i;
if (!(component instanceof UIInput) || (obj == null))
{

return;
}
value = obj.toString();
try
{

i = Integer.parseInt(value);
}
catch(NumberFormatException nfe)
{

FacesMessage message = new FacesMessage(“Could not convert to int.”);
throw new ValidatorException(message);

}
if((minset && (i < min)) || (maxset && (i > max)))
{

FacesMessage message =
new FacesMessage(“The entry must be between “+min+” and “+max);
throw new ValidatorException(message);

}
return;

}

}

In order to use this validator, a custom tag is needed that can set the min and max properties of the val-
idator. The custom IntRangeTag extends the javax.faces.webapp.ValidatorTag class. The code for
the tag follows:

package taglib;

import com.wrox.jsp.IntRangeValidator;
import javax.faces.validator.Validator;
import javax.faces.webapp.ValidatorTag;
import javax.servlet.jsp.JspException;

public class IntRangeTag extends ValidatorTag
{

private int min = 0;
private int max = 0;

701

JavaServer Faces

26_57485x ch21.qxd 1/14/05 10:14 PM Page 701

TEAM LinG - Live, Informative, Non-cost and Genuine!

private boolean minset = false;
private boolean maxset = false;

public IntRangeTag()
{

super();
super.setValidatorId(“IntRangeValidator”);

}

protected Validator createValidator()
throws JspException
{

IntRangeValidator validator = null;
validator = (IntRangeValidator) super.createValidator();
if(validator == null)
{

System.out.println(“null validator”);
return validator;

}
if(minset)

validator.setMin(min);
if(maxset)

validator.setMax(max);
return validator;

}

public void setMin(int m)
{

minset = true;
min = m;

}

public int getMin()
{

return min;
}

public void setMax(int m)
{

maxset = true;
max = m;

}

public int getMax()
{

return max;
}

}

How It Works
Essentially, the tag provides attributes for min and max and tracks to see whether the attributes have
been set. The constructor must also set the ValidatorId to the name as set in faces-cfg.xml. The
changes to faces-cfg.xml will be examined in a few moments. The rest of the code is in the

702

Chapter 21

26_57485x ch21.qxd 1/14/05 10:14 PM Page 702

TEAM LinG - Live, Informative, Non-cost and Genuine!

createValidator method, which is shaded in the code listing. This method creates an instance of the
validator by calling the createValidator method on the superclass. Then it sets the min and max prop-
erties on the validator if needed.

Try It Out Using the Tag Library
To use the tag library, a tag library descriptor (.tld) file is needed. The .tld file for this example
follows:

<?xml version=”1.0” encoding=”UTF-8” ?>

<!DOCTYPE taglib
PUBLIC “-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.2//EN”
“http://java.sun.com/dtd/web-jsptaglibrary_1_2.dtd”>

<taglib>
<tlib-version>1.0</tlib-version>
<jsp-version>1.2</jsp-version>
<short-name>taglib</short-name>
<uri>/taglib</uri>
<tag>

<name>IntRangeValidator</name>
<tag-class>taglib.IntRangeTag</tag-class>
<body-content>empty</body-content>
<display-name>IntRangeValidator</display-name>
<attribute>

<name>min</name>
<required>false</required>
<rtexprvalue>true</rtexprvalue>
<type>int</type>

</attribute>
<attribute>

<name>max</name>
<required>false</required>
<rtexprvalue>true</rtexprvalue>
<type>int</type>

</attribute>
</tag>

</taglib>

The descriptor simply declares the new tag with optional min and max attributes. To use this tag, some
changes are needed in the NumberGuess.jsp file. The new listing follows:

<!-- name NumberGuess.jsp -->
<%@ taglib uri=”http://java.sun.com/jsf/html” prefix=”h” %>
<%@ taglib uri=”http://java.sun.com/jsf/core” prefix=”f” %>
<%@ taglib uri=”/taglib” prefix=”t” %>
<html>

<head><title>Number Guess</title></head>
<body>

I am thinking of a number between 1 and 10. Can you guess it?
<f:view>

<h:form id=”GuessForm”>

703

JavaServer Faces

26_57485x ch21.qxd 1/14/05 10:14 PM Page 703

TEAM LinG - Live, Informative, Non-cost and Genuine!

<h:inputText id=”number” value=”#{GuessBean.guess}” >
<t:IntRangeValidator min=”1” max=”10” />

</h:inputText>
<h:commandButton action=”#{GuessBean.action}” value=”Guess”/>

<h:messages />

</h:form>
</f:view>

</body>
</html>

The changes are shown with the shaded lines. The first change adds the reference to the new taglib and
sets the prefix to t:. The second change uses the new tag to set the min and max values for the validator
and associate it with the inputText component.

How It Works
The tag library descriptor (.tld file) provides the information that the container needs to know to use
the tag in the JSP. The .tld file is referenced in the taglib directive in the JSP file that uses the tag.
When the tag is encountered in the JSP, the Java code that implements the tag is passed the attributes
and executed. This code in turn calls the validator class, IntRangeValidator, to validate that the val-
ues are within the desired range.

If you think this is a lot of effort for a simple range validation, you are right. This type of custom valida-
tor is warranted when it will be reused many times. There is still one more, much simpler way to add
custom validation. A validation method can be added to a backing bean.

Using the backing bean
A backing bean can also have validation methods. A validation method for a backing bean has the same
signature as the validation method in the Validator interface, except that the backing bean does not
throw the ValidatorException; however, the validation method on the bean is often simpler. The list-
ing for a validation method that can be added to the GuessBean.java class follows:

public void validate(FacesContext context, UIComponent component, Object obj)
{

int i;
String value = obj.toString();
UIInput inputText = (UIInput)component;
try
{

i = Integer.parseInt(value);
if((i < 1) || (i > 10))
{

inputText.setValid(false);
FacesMessage message =

new FacesMessage(“Your guess should be between 1 and 10”);
context.addMessage(component.getClientId(context),message);

}
}
catch(Exception e)
{

inputText.setValid(false);
FacesMessage message = new FacesMessage(“Exception:”+e.getMessage());

704

Chapter 21

26_57485x ch21.qxd 1/14/05 10:14 PM Page 704

TEAM LinG - Live, Informative, Non-cost and Genuine!

context.addMessage(component.getClientId(context),message);
}
return;

}

This method can be used by simply adding a validator attribute to the inputText tag as shown:

<h:inputText
id=”number”
value=”#{GuessBean.guess}”
validator=”#{GuessBean.validate}” />

There is no need for a .tld file or for changes to faces-config.xml.

Converting Data
When creating Web applications, all of the data entered into forms is initially available only as strings.
These strings must be converted to the underlying data types used in our model. You’ll often need to
convert the strings into various types of numbers or dates, and vice versa. The data as represented in the
model does not have to be in strings, but it should be represented in the format that is most convenient
for how that data needs to be manipulated. For example, while it is possible to perform math calcula-
tions solely using strings (in Java, anyway), it is awkward and slow. Normally, we convert to the proper
data type, perform the calculation, and then convert back to a string. In this section, you use a new code
example that illustrates a simple loan payment calculator, with a simple twist. It will also show you how
much you can borrow if you know what your payment should be. A screenshot of the application is
shown in Figure 21-8.

Try It Out Using the Backing Bean to Convert Data
The calculator consists of the JSP, a backing bean, and the faces-config.xml file. First, enter the source
code for the backing bean:

package com.wrox.jsp;

public class LoanBean
{

private double amount;
private double payment;
private double apr;
private double periodic_rate;
private double periods;

public LoanBean()
{
}

private double calcPayment(double amount, double iRate, double periods)
{

return amount * factor(iRate, periods);
}

705

JavaServer Faces

26_57485x ch21.qxd 1/14/05 10:14 PM Page 705

TEAM LinG - Live, Informative, Non-cost and Genuine!

private double calcAmount(double payment, double iRate, double periods)
{

return payment/factor(iRate, periods);
}

private double factor(double iRate, double periods)
{

return (iRate * Math.pow((1.0 + iRate), (periods)))/(Math.pow((1.0+iRate),
periods)-1);

}

public String amount()
{

LoanCalc calc = new LoanCalc();
amount = this.calcAmount(payment, periodic_rate, periods);
return “success”;

}

public String payment()
{

LoanCalc calc = new LoanCalc();
payment = this.calcPayment(amount, periodic_rate, periods);
return “success”;

}

public double getAmount()
{

return amount;
}

public void setAmount(double amount)
{

this.amount = amount;
}

public double getApr()
{

return apr;
}

public void setApr(double apr)
{

this.periodic_rate = apr/1200.0;
this.apr = apr;

}

public double getPayment()
{

return payment;
}

public void setPayment(double payment)
{

this.payment = payment;
}

706

Chapter 21

26_57485x ch21.qxd 1/14/05 10:14 PM Page 706

TEAM LinG - Live, Informative, Non-cost and Genuine!

public double getPeriodic_rate()
{

return periodic_rate;
}

protected void setPeriodic_rate(double periodic_rate)
{

this.periodic_rate = periodic_rate;
}

public double getPeriods()
{

return periods;
}

public void setPeriods(double periods)
{

this.periods = periods;
}

}

In the LoanBean class, normally you would expect the code for the methods calcPayment,
calcAmount, and factor to appear in a separate helper class instead of being included in the backing
bean. The methods are included as part of the backing bean in this example to improve the clarity of the
example.

Now enter the navigation-rule and managed-bean elements of the faces-config.xml file as
follows:

<navigation-rule>
<from-view-id>/calc.jsp</from-view-id>
<navigation-case>

<from-outcome>success</from-outcome>
<to-view-id>/calc.jsp</to-view-id>

</navigation-case>
</navigation-rule>

<managed-bean>
<description>LoanBean</description>
<managed-bean-name>LoanBean</managed-bean-name>
<managed-bean-class>com.wrox.jsp.LoanBean</managed-bean-class>
<managed-bean-scope>session</managed-bean-scope>

</managed-bean>

Essentially, the application consists of a single page that always returns to itself. Enter the code for the
page calc.jsp as follows:

<%@ taglib uri=”http://java.sun.com/jsf/html” prefix=”h” %>
<%@ taglib uri=”http://java.sun.com/jsf/core” prefix=”f” %>
<html>

<head><title>Simple Loan Calculator</title></head>
<body>
<hr/>

707

JavaServer Faces

26_57485x ch21.qxd 1/14/05 10:14 PM Page 707

TEAM LinG - Live, Informative, Non-cost and Genuine!

If you select the Payment button, this application calculates
the payment on a standard commercial loan
given:
the amount of the loan,
the annual percentage,
rate and the number of monthly payments.

If the Amount button is selected then the application shows the amount of
money that can be borrowed when making the specified payment each month
for the specified number of months at the set interest rate.
<hr/>
<f:view>

<h:form id=”LoanForm”>
<table border=’0’ >

<tbody>
<tr>

<td align=’right’>Loan Amount:</td>
<td>

<h:inputText id=”amount” value=”#{LoanBean.amount}” >
<f:convertNumber type=”number” pattern=”#,##0.00” />

</h:inputText>
</td>

</tr>
<tr>

<td align=’right’>Annual Percentage Rate:</td>
<td>

<h:inputText id=”apr” value=”#{LoanBean.apr}” >
<f:validateDoubleRange minimum=”0.0” maximum=”25.0” />
<f:convertNumber type=”number” />

</h:inputText>
</td>

</tr>
<tr>
<td align=’right’>Months to Pay:</td>
<td>

<h:inputText id=”periods” value=”#{LoanBean.periods}” >
<f:validateLongRange minimum=”0” />
<f:convertNumber integerOnly=”true”/>

</h:inputText>
</td>
</tr>
<tr>

<td align=’right’>Payment:</td>
<td>

<h:inputText id=”payment” value=”#{LoanBean.payment}”>
<f:convertNumber type=”number” pattern=”#,##0.00”/>

708

Chapter 21

26_57485x ch21.qxd 1/14/05 10:14 PM Page 708

TEAM LinG - Live, Informative, Non-cost and Genuine!

</h:inputText>
</td>

</tr>
</tbody>

</table>

<h:commandButton

action=”#{LoanBean.amount}” value=”Amount” id=”AmountId” />
<h:commandButton

action=”#{LoanBean.payment}” value=”Payment” id=”PaymentId” />

<h:messages />

</h:form>
</f:view>
</body>

</html>

Four lines are highlighted. For the first run, you will want to comment these lines out or delete them.
When the application is run, you should see something similar to what is shown in Figure 21-8.

Figure 21-8: Running calc.jsf with conversion code removed

Notice how the currency values are represented as decimal numbers. When the lines are added back in,
the screen looks like Figure 21-9.

709

JavaServer Faces

26_57485x ch21.qxd 1/14/05 10:14 PM Page 709

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 21-9: Running calc.jsf with conversion code active

How It Works
The application accepts four numeric values:

❑ Amount: The amount of a potential loan

❑ APR: The annual percentage rate of interest, in percent

❑ Periods: The numbers of months to repay the loan

❑ Payment: The amount of the monthly payment to repay the loan

The variable periodic_rate is divided by 12 months times 100 percent to get the actual rate used per
period. The APR must be between 0 and 25 percent. Periods must be a positive integer, and Amount and
Payment must be positive values.

There are two action methods: amount() and payment(). If amount is selected, then loan amount avail-
able for the provided monthly payment is calculated. If payment is selected, then the monthly payment
to pay back the loan in the specified numbers of periods is calculated.

During the first run, when the f:convertNumber lines were commented out, the values were displayed
without a fixed decimal point or any numeric formatting, as shown in Figure 21-8. Adding the format-
ting statements enabled the numbers to be rendered more correctly as integers or decimals, as shown in
Figure 21-9.

This example makes use of one of the standard converters provided as a part of JSF, the
numberConverter. The job of the converter is to convert things from strings to objects, and then from
objects back to strings again. In the sample code, the numberConverter uses information passed in

710

Chapter 21

26_57485x ch21.qxd 1/14/05 10:14 PM Page 710

TEAM LinG - Live, Informative, Non-cost and Genuine!

attributes of a custom tag to format the numbers. It also uses these formats to parse the numbers from
strings to the correct type.

Standard converters
Just as there are standard validators, JSF provides a set of standard converters. The standard JSF imple-
mentation offers the following standard converters:

❑ BigDecimalConverter

❑ BigIntegerConverter

❑ BooleanConverter

❑ ByteConverter

❑ CharacterConverter

❑ DateTimeConverter

❑ DoubleConverter

❑ FloatConverter

❑ IntegerConverter

❑ LongConverter

❑ NumberConverter

❑ ShortConverter

The NumberConverter and the DateTimeConverter also provide custom tags to control the format of
the conversions. If a component is bound to a backing, then the data is automatically converted to the
type required by the property on the bean. Nothing further needs to be done. If you want to specify a
specific converter to use and no parameters need to be provided to the converter, then the converter
attribute of the component’s tag can be used as shown.

<h:inputText
id=”number”
value=”#{GuessBean.guess}”
converter=”javax.faces.convert.IntegerConverter”/>

This might be useful, for example, if the backing bean supported a long but integer limits were desired.

Converting dates and times
The DateTimeConverter is accessed using a nested tag as shown:

<h:inputText id=”number” value=”#{InfoBean.BirthDate}” >
<f:convertDateTime pattern=”yyyy/mm/dd HH:mm:ss.SSS Z” />

</h:inputText>

In general, the patterns and attributes correspond to the patterns for java.text.SimpleDateFormat,
and their attributes for the java.text.DateFormat classes. These patterns will be applied to both the

711

JavaServer Faces

26_57485x ch21.qxd 1/14/05 10:14 PM Page 711

TEAM LinG - Live, Informative, Non-cost and Genuine!

input data and the output data. The following table describes the attributes supported by the
convertDateTime tag.

Attribute Type Description

dateStyle String Valid values are default, short, medium, long,
and full. Defines the format, as in DateFormat.
getDateInstance(style).

locale String or Locale Determines the locale used for formatting. Defaults
to the value returned by FacesContext.getLocale.

pattern String Custom formatting pattern used to determine how
to format and parse the date. Patterns correspond to
those supporting SimpleDataFormat.

timeStyle String Valid values are default, short, medium, long,
and full. Defines the format, as in DateFormat.
getTimeInstance(style).

timeZone String or TimeZone Sets the time zone to use for conversion.

type String Valid values are date, time, or both. Defaults to
date. Determines if the string value will contain
a date, a time, or both.

Converting numbers
The NumberConverter is accessed using a nested tag as shown:

<h:inputText id=”amount” value=”#{LoanBean.amount}” >
<f:convertNumber type=”number” pattern=”#,##0.00” />

</h:inputText>

The attributes supported for the convertNumber tag are shown in following table.

Attribute Type Description

currencyCode String ISO4217 currency code.

currencySymbol String Currency symbol.

groupingUsed boolean If true, grouping separators are used in formatted
output.

integerOnly boolean If true, then only the integer part of the value is
parsed.

maxFractionDigits int Number of digits in the fractional part of the output.

maxIntegerDigits int Number of digits in the integer part of the output.

minFractionDigits int Minimum number of digits formatted in the fractional
part of the output.

712

Chapter 21

26_57485x ch21.qxd 1/14/05 10:14 PM Page 712

TEAM LinG - Live, Informative, Non-cost and Genuine!

Attribute Type Description

minIntegerDigits int Minimum number of digits formatted in the integer
part of the output.

locale String Locale whose styles are used to format or parse data.

pattern String Custom formatting pattern that determines how
the number string is formatted and parsed. See
NumberFormat class.

type String Values are number, currency, or percentage;
defaults to number. Determines how the string value
is parsed and formatted.

Implementing the Converter interface
What should you do if you need a custom conversion? The answer is simple: You create a class that
implements the Converter interface and you bind it to the component. The interface supports two
methods, getAsObject() and getAsString(). The first method takes a string and returns the appro-
priate object. The second method takes an object and converts it to a string.

Try It Out Creating a Custom Converter
To demonstrate this, let’s use the preceding example and add a custom converter for the Loan Amount
field. When an amount is entered, we want the amount to be shown as currency, with the appropriate
symbol and number of digits to the right of the decimal, but we do not want to have to enter the number
this way. Therefore, a custom converter is needed. Here is the code for the custom converter:

package com.wrox.jsp;

import java.text.NumberFormat;
import javax.faces.application.FacesMessage;
import javax.faces.component.UIComponent;
import javax.faces.context.FacesContext;
import javax.faces.convert.Converter;
import javax.faces.convert.ConverterException;

public class NumberToCashConverter implements Converter
{

public NumberToCashConverter()
{
}

public Object getAsObject(
FacesContext facesContext,
UIComponent uIComponent,
String str)

{
Double dbl = null;
if (str == null)

713

JavaServer Faces

26_57485x ch21.qxd 1/14/05 10:14 PM Page 713

TEAM LinG - Live, Informative, Non-cost and Genuine!

{
return null;

}

try
{

NumberFormat format = NumberFormat.getCurrencyInstance();
if(format.getCurrency().getSymbol().charAt(0) == (str.charAt(0)))
{

Number num = format.parse(str);
dbl = new Double(num.doubleValue());

}
else
{

dbl = new Double(Double.parseDouble(str));
}

}
catch (Exception e)
{

FacesMessage message =
new FacesMessage(“Conversion to Double failed! “+e.getMessage());

throw new ConverterException(message);
}
return dbl;

}

public String getAsString(
FacesContext facesContext,
UIComponent uIComponent,
Object obj)

{
Double inputVal = null;
String retVal = null;
if (obj == null)
{

return “”;
}
// value must be of the type that can be cast to a String.
try
{

inputVal = (Double)obj;
//== strip $ character off but decimal
NumberFormat format = NumberFormat.getCurrencyInstance();
retVal = format.format(inputVal);

}
catch (Exception e)
{

FacesMessage message =
new FacesMessage(“Conversion to String failed! “+e.getMessage());

throw new ConverterException(message);
}
return retVal;

}
}

714

Chapter 21

26_57485x ch21.qxd 1/14/05 10:14 PM Page 714

TEAM LinG - Live, Informative, Non-cost and Genuine!

How It Works
In the getAsObject() method, the line that reads

if(format.getCurrency().getSymbol().charAt(0) == (str.charAt(0)))

determines whether the currency symbol of the current locale matches the first character of the string. If
it does, then a currency conversion is performed by using the parse method of the format object.
Otherwise, the string is parsed as a double.

Going the other direction should always give us a currency string by using the format object created
with NumberFormat.getCurrencyInstance().

To use the converter, we still have two more tasks. First we must register it by adding an entry to
faces-cfg.xml. This is done by inserting the following lines before the closing </faces-config> tag:

<converter>
<converter-id>NumberToCash</converter-id>
<converter-class>com.wrox.jsp.NumberToCashConverter</converter-class>

</converter>

The final task is to bind the converter to the component in the JSP. This can be done by changing the
lines in calc.jsp that read

<h:inputText id=”amount” value=”#{LoanBean.amount}” >
<f:convertNumber type=”number” pattern=”#,##0.00” />

</h:inputText>

to the following:

<h:inputText id=”amount” value=”#{LoanBean.amount}” converter=”NumberToCash” />

Once this has been completed, run the application and observe the behavior of the Loan Amount field.
Data rendered in the field is preceded with a $ in the US locale, but the data is converted correctly
whether or not the $ is provided for the input.

Handling Events with Listeners
JavaServer Faces supports an event handling model that provides components with the capability to
generate events, and for Listeners to be created to respond to those events. Three types of events are
supported:

❑ action

❑ value-change

❑ data-model

Action events are generated by the UICommand component, which is the component behind the
<h:commandButton> and <h:commandLink> tags.

715

JavaServer Faces

26_57485x ch21.qxd 1/14/05 10:14 PM Page 715

TEAM LinG - Live, Informative, Non-cost and Genuine!

Value-change events are generated when a user changes the value of a component represented by
UIInput or one of its subclasses. These include the h:input and h:select series of tags.

Data-model events are related to the UIData component, which in turn is rendered by the
h:dataTable tag. It is generated when a new row of the UIData component is selected.

Try It Out Handling Value-Change Events
Value changes are generated when a value on a component changes. Value-change events can be han-
dled in one of two ways — a method can be added to a backing bean, or a ValueChangeListener can
be created. The following code demonstrates a ValueChangeListener called LogChange, which logs
an entry to the standard output each time the value of the component changes:

package com.wrox.jsp;

import javax.faces.event.AbortProcessingException;
import javax.faces.event.ValueChangeEvent;
import javax.faces.event.ValueChangeListener;

public class LogChange implements ValueChangeListener
{

public LogChange()
{
}

public void processValueChange(ValueChangeEvent event)
throws AbortProcessingException
{

String id = event.getComponent().getId();
String oldVal = event.getOldValue().toString();
String newVal = event.getNewValue().toString();
System.out.println(“Component:”

+id
+” value changed from “
+oldVal
+” to “
+newVal);

}

}

How It Works
The LogChange class simply gets the component id and the old and new values and prints them to stan-
dard output. To use this in the calc.jsp example, we need to add the f:valueChangeListener tag
inside of any of the h:inputText tags as shown:

<h:inputText id=”amount” value=”#{LoanBean.amount}” converter=”NumberToCash” >
<f:valueChangeListener type=”com.wrox.jsp.LogChange” />

</h:inputText>

716

Chapter 21

26_57485x ch21.qxd 1/14/05 10:14 PM Page 716

TEAM LinG - Live, Informative, Non-cost and Genuine!

The type attribute of this tag needs to be the fully qualified class name of the class that implements the
ValueChangeListener interface.

We hope that we’ve demonstrated the usefulness of general-purpose ValueChangeListeners. A value
change event can also be handled by a backing bean. The backing bean needs to implement a method
that accepts a ValueChangeEvent and returns void, just as the processValueChange() method of the
sample listener does. Assuming that we were to add the processValueChange() method to the
LoanBean, we would associate the method with the event in the JSP by making the following change
to the calc.jsp:

<h:inputText id=”amount” value=”#{LoanBean.amount}”
converter=”NumberToCash”
valueChangeListener=”#{LoanBean.processValueChange}” />

This is all one tag and is broken across lines for clarity. The valueChangeListener attribute causes the
method on the backing bean to be executed in response to the event.

Try It Out Handling Action Events
Action events are generated when a command component is activated. An action event can be han-
dled in one of two ways — a method that handles the event can be added to a backing bean or an
ActionListener can be created. A sample ActionListener follows:

package com.wrox.jsp;

import javax.faces.event.AbortProcessingException;
import javax.faces.event.ActionEvent;
import javax.faces.event.ActionListener;
import javax.faces.event.PhaseId;

public class LogAction implements ActionListener
{

public LogAction()
{
}

public void processAction(ActionEvent event)
throws AbortProcessingException
{

String id = event.getComponent().getId();
String phase = event.getPhaseId().toString();
System.out.println(

“Component:”
+id
+” generated action event handled in phase “
+phase);

}

}

717

JavaServer Faces

26_57485x ch21.qxd 1/14/05 10:14 PM Page 717

TEAM LinG - Live, Informative, Non-cost and Genuine!

How It Works
The class implements the ActionListener interface. The processAction method handles the event.
To use the handler, the following change needs to be made in calc.jsp. The line that reads

<h:commandButton
action=”#{LoanBean.amount}” value=”Amount” id=”AmountId” />

should be changed to add the f:actionListener tag as shown:

<h:commandButton
action=”#{LoanBean.amount}” value=”Amount” id=”AmountId” >
<f:actionListener type=”com.wrox.jsp.LogAction” />

</h:commandButton>

Now each time the Amount button is selected, a message will be logged to the standard output.

Again, the action can also be handled by the backing bean. To do this, simply add a method to the back-
ing bean that accepts an ActionEvent and has no return value and then make the following change to
the h:commandButton tag:

<h:commandButton
action=”#{LoanBean.amount}”
actionListener=”#{LoanBean.processAction}”
value=”Amount” id=”AmountId” />

This assumes that you named the method processAction. The actionListener attribute causes the
referenced method on the backing bean to be called in response to the event.

JSF versus Struts
Both JSF and Struts are implementations of the Model View Controller design pattern, and there are a
number of similarities between them. That is to be expected because both projects were created by the
same people. However, there are also a number of differences. The following list briefly compares Struts
and JSF:

❑ Struts has been around longer; and through experience, a number of best practices have devel-
oped around Struts. JSF development is less mature.

❑ Several JSF constructs map to equivalent concepts in Struts, including the following:

❑ The JSF counterpart to the struts-config.xml file is the faces-config.xml file.
These files describe the navigation between pages and the Java classes that are used to
implement the code for the application.

❑ The JSF backing bean is similar to a Struts Action Form and Action class rolled into one.

❑ Struts is very page-focused. This can be addressed by using Tiles and tiles actions, but many
developers are not familiar with these features of Struts. JSF, on the other hand, is designed to
be component-focused. It is possible to create new, reusable JSF components that can be avail-
able for many applications. In this respect, it is similar to Swing and AWT.

718

Chapter 21

26_57485x ch21.qxd 1/14/05 10:14 PM Page 718

TEAM LinG - Live, Informative, Non-cost and Genuine!

❑ Finally, JSF is slated to become a part of the J2EE set of standards. While Struts is the current de
facto standard for MVC frameworks, it remains to be seen what the effect of JSF becoming a part
of the standard will have on Struts usage.

Fortunately, the two libraries are compatible and it is possible to use JSF within the context of a Struts
application. That, however, is an advanced topic best left for another book.

Summary
This chapter introduced you to developing applications with JavaServer Faces technology. You learned
about the following topics:

❑ JSF applications

❑ Backing beans

❑ Navigation

❑ The JSF lifecycle

❑ Data validation

❑ Data conversion

❑ Event handling

Along the way, you created several JSF applications and we hope you learned how to assemble the vari-
ous parts of a JSF application into a working whole.

JSF is slated to become a standard part of the J2EE platform. Once this happens, vendors will incorpo-
rate better JSF tools and implementations into their development environments, and it is possible that
JSF will become the dominant Web application development technology for the Java developer.

If you are looking for more JSF resources, a good place to start is the J2EE tutorial that can be found at
http://java.sun.com/j2ee. A lot of useful documentation is also included with the JSF reference
implementation that can be downloaded from http://java.sun.com/j2ee/javaserverfaces/
download.html.

Exercises
1. Modify the Hello example to capitalize the first letter of each word in the name using a custom

converter.

2. Modify the LoanBean in the calc example to log a message for value change events on the
Payment field.

3. Modify the LoanBean to log messages for action events on both the Amount and Payment
buttons.

719

JavaServer Faces

26_57485x ch21.qxd 1/14/05 10:14 PM Page 719

TEAM LinG - Live, Informative, Non-cost and Genuine!

26_57485x ch21.qxd 1/14/05 10:14 PM Page 720

TEAM LinG - Live, Informative, Non-cost and Genuine!

22
JSP in J2EE

JSP is one of many components that make up the J2EE specification and technology stack. This
chapter explores many of the aspects of the J2EE technologies, how these technologies work
together, and the options that JSP developers have for working with the other J2EE technologies.

JSP is one of the important building blocks in the Java Web application development environment,
and in this chapter the other components are examined. Additionally, the J2EE components most
frequently used with JSP are examined in more detail.

After starting with an overview of the J2EE platform, this chapter moves on to more details about
the components, the architecture, and some architectural options that JSP developers can use when
building applications.

Finally, this chapter examines the J2EE technologies most important to the JSP developer, and pro-
vides a few examples.

In particular, this chapter

❑ Provides an overview of J2EE

❑ Discusses the benefits of J2EE

❑ Examines the components of J2EE

❑ Shows different JSP implementation scenarios

❑ Provides some examples of using the J2EE components

Overview of J2EE
Because this book focuses on JSP programming, this section provides a brief introduction to J2EE.
In it you’ll explore areas such as the concepts behind J2EE, its history, and some of the reasons
why JSP developer might consider using a complete J2EE technology solution.

27_57485x ch22.qxd 1/14/05 10:16 PM Page 721

TEAM LinG - Live, Informative, Non-cost and Genuine!

What is J2EE?
The Java 2 Enterprise Edition (J2EE) is a technology platform for building server-side applications.
While primarily used for Web-centered applications, the platform is a general-purpose, enterprise-cen-
tric, server-side development and deployment environment.

The J2EE platform provides a standard development and deployment platform supporting core enter-
prise requirements, including the following:

❑ Transactions

❑ Security

❑ Scalability

❑ Integration with other systems

To take advantage of these capabilities, the J2EE platform contains a comprehensive set of APIs. Using
this programming model along with the capabilities of the J2EE platform simplifies some of the complex
aspects associated with applications developed outside the J2EE environment.

Instead of having to develop a system that handles threading, security, transactions, and interoperability
with other systems, the J2EE environment provides these for the developer to build upon. That way, the
developer can focus on solving the business problems, rather than building infrastructure.

The J2EE platform provides a multilayered approach to architecting solutions. Each of the layers is capa-
ble of scaling independently, providing a solution for even the most demanding applications. This n-tier
approach to developing applications is covered in more detail in the following sections.

To support the multilayered approach, the J2EE platform provides a definition of four separate contain-
ers. These containers are runtime environments that have specific APIs defined for applications to
utilize.

The following four containers are defined by the J2EE platform:

❑ Application Client container

❑ Applet container

❑ Web Component container

❑ Enterprise Java Bean container

All the containers use the J2SE (Java 2 Standard Edition) runtime as the engine to power the container,
and some of the containers add additional functionality by way of additional libraries, which are
exposed to the application as APIs. The libraries and APIs are covered in more detail in the following
sections.

The Application Client container is a standard J2SE runtime, and for J2EE 1.4, it requires a J2SE 1.4 and
later version of the Java runtime. An Application Client will communicate with the Web Component
container via HTTP or HTTPS and with the Enterprise Bean container using RMI, or potentially using

722

Chapter 22

27_57485x ch22.qxd 1/14/05 10:16 PM Page 722

TEAM LinG - Live, Informative, Non-cost and Genuine!

SOAP/HTTP. An Application Client is normally known as a fat client (implemented in Swing or SWT)
and has a rich user interface.

The Applet container also is a standard J2SE runtime, but generally will run in the context of a browser
(such as Mozilla, Netscape, or Internet Explorer). Communication from the Applet container defined by
the J2EE standard to the Web container is accomplished by using HTTP and HTTPS.

The Web Component container is traditionally thought of as J2EE, and this container defines the libraries
and APIs for the JSP and servlets.

The final container is the Enterprise Bean container, which along with the Web Component container
provides the final link in server-side development. The Enterprise Bean container defines the contracts
for the Session and Entity beans used in distributed component development.

The Web Component and EJB containers are most commonly considered the J2EE platform, and this
book focuses on the Web Component container, as this is the runtime environment for JSP.

These relationships are shown in Figure 22-1.

Figure 22-1: J2EE application container architecture

applet container

HTTP
HTTPS

HTTP
HTTPS

applet

web container

JSP

servlet

client container

swing app

ejb container

ejb

database

723

JSP in J2EE

27_57485x ch22.qxd 1/14/05 10:16 PM Page 723

TEAM LinG - Live, Informative, Non-cost and Genuine!

What does a container do?
A container in the J2EE architecture is used to provide a unified view of the underlying J2EE APIs to the
application components. A J2EE application never directly interacts with other J2EE components; all
these interactions are controlled and managed by the container.

To use the container, a developer needs to provide the application components and a deployment
descriptor, which declares to the container the application components and what role those components
are to be used for. For example, when creating a Web application, the application developer will create
JSP files with an extension of .jsp, which is an implicit signal to the Web container that these files
should be treated in a particular way. A further example is the use of a Java class file as a servlet. This
class file is declared in the deployment descriptor, and a name is associated with the servlet so that it can
be managed by the container, and accessed by external requests.

The container has contracts and interfaces to which the J2EE application developer conforms, to make
use of the container. In return, the container can provide services such as the following:

❑ Lifecycle management: This involves starting and stopping the application components. If the
application is a servlet, this will mean calling the init() method when the servlet is loaded,
and calling the service() method when the servlet is required to respond to a request.

❑ Resource pooling: This provides a single access point for the application components to locate
and use resources that are expensive to create. The additional benefit of using resource pooling
is that the application need not be aware of the concrete resource that is used. This resource can
be configured externally to the application, enabling the container to be responsible for obtain-
ing the resource, creating a cache, and then allowing the application to obtain the resource from
the cache. The typical example of this is the location and creation of a database connection pool.

❑ Transaction management: The container may provide declarative transaction management for
application components. A container is capable of starting a transaction upon access to an appli-
cation component or making use of a transaction that is already started.

❑ Security: Declarative security services are available for both the Web and EJB containers, and
these services allow configuration so that access to application resources can require authentica-
tion prior to any access. This is all without any code written by the Web application developer.

These services are infrastructure, so they don’t need to be created for each application, which enables
developers to focus on the difficult task of solving the business problems.

J2EE Technologies
As you can see from the previous sections, the J2EE platform is comprehensive, and while detailed cov-
erage of all the platform’s capabilities is beyond the scope of this book, it is very important for JSP devel-
opers to understand the potential technologies available so they can be used effectively if required.

It is unlikely that many of the components of the J2EE platform would be part of the daily working life
of the typical JSP developer (or server-side Java developer), but a good understanding will assist in inte-
gration and development efforts.

724

Chapter 22

27_57485x ch22.qxd 1/14/05 10:16 PM Page 724

TEAM LinG - Live, Informative, Non-cost and Genuine!

J2EE APIs
This section contains a brief description of all the APIs that a J2EE 1.4–compliant application server has
to implement.

Because the J2EE runtime is based on using the J2SE runtime, some of the required J2EE APIs are based
on APIs provided by J2SE 1.4. The following APIs are from J2SE:

❑ Java IDL API: Java IDL is a technology for distributed objects, similar to RMI, but for accessing
CORBA-based objects. Unlike RMI, IDL allows objects using different languages to interoperate
in invoking the distributed objects. More information on IDL can be found in the CORBA 2.3.1
specification.

❑ JDBC API: The Java Database Connection API provides a database-independent means for
accessing a wide range of data sources, including relational databases, flat files, and tabular
data.

❑ RMI-IIOP API: The RMI-IIOP subsystem allows the use of RMI, enabling objects with a defined
RMI interface to be accessed via the IIOP protocol. This makes any enterprise bean (EJB) accessi-
ble via RMI-IIOP. More on this is defined in the CORBA 2.3.1 specification.

❑ Java Naming and Directory Interface (JNDI API): The JNDI API is for accessing a Naming and
Directory service. Two similar services are offered. The first, for Naming, provides access to
objects configured in the naming service context. An example of this is the InitialContext
that is used to look up JDBC connection pools in a J2EE server.

The second, for Directories, provides the functionality to view, create, and modify attributes
for a directory object via a DirContext. An example is the information exposed by an LDAP-
compliant server.

❑ Java API for XML Processing (JAXP): This API provides a means for applications to parse and
transform XML documents in a manner that is independent of the implementation of the XML
processing engine. JAXP also provides a means of substituting the XML processing engine.
Some of the XML processing engines include Apache Xalan-J and the JAXP RI from Sun.

❑ Java Authentication and Authorization Service (JAAS) API: This API provides an interface for
provider-based access to an authentication and authorization service. Like the JAXP API, the
JAAS API allows for different implementations to be used, with the JAAS API providing a con-
sistent way of using the functionality.

In addition to these, the following packages and APIs are required:

❑ Enterprise Java Beans (EJB): This standard extension specifies the J2EE application services for
a distributed component server-side framework. EJB support is further specified in the EJB 2.1
specification. The most important result is that the J2EE platform has defined a consistent way
of accessing the components, enabling the J2EE developer to build applications that will work
with a wide variety of EJB containers.

❑ Servlet: This standard extension specifies the J2EE application services for building Web appli-
cations. Many of the JSP specifications are defined in the Servlet specification.

❑ Java Server Pages (JSP): This standard extension further develops the capabilities of a J2EE
application server by introducing template-based scripting to the Web application platform.

725

JSP in J2EE

27_57485x ch22.qxd 1/14/05 10:16 PM Page 725

TEAM LinG - Live, Informative, Non-cost and Genuine!

❑ Java Message Service (JMS): The JMS provides reliable point-to-point and publish-subscribe
protocols for use by the application. As with many of the J2EE platform components, the J2EE
specification provides the capability to substitute the JMS implementation without affecting the
APIs provided to the application.

❑ Java Transaction API (JTA): This API defines the interface to a UserTransaction that is used
to control the lifecycle of a transaction under the control of the application. This lifecycle control
consists of the capability to start, commit, and abort transactions.

❑ JavaMail: The JavaMail API provides a standard mechanism for accessing different implemen-
tations of mail transport protocols. These protocols include the implementation of message
stores (such as a POP or IMAP mailbox) and the construction and delivery of MIME messages
using SMTP.

The JavaMail APIs use the JavaBeans Activation Framework (JAF) for the MIME message-
handling support.

❑ JavaBeans Activation Framework (JAF): The JAF APIs provide a series of objects for manipula-
tion of MIME data types. This enables MIME-formatted data to be converted easily to Java
objects.

❑ J2EE Connector Architecture (JCA): The JCA provides a standard interface to external systems
that are used by the J2EE platform. These external systems normally take the form of an enter-
prise information system (EIS), but the external system can be something as simple as a file
system.

Each external system provides a Resource Adapter that conforms to a defined set of interfaces
loaded by the J2EE application server to access the resource.

The functionality provided by the Resource Adapter includes support for transactions, security,
and connection pooling.

❑ Java API for XML-Based RPC (JAX-RPC): The JAX-RPC specification provides Web services
interoperability between different platforms based on the use of SOAP over HTTP. The specifi-
cation provides definitions for both the client invocation and server end-points of the protocol,
using Web Services Description Language (WSDL) to enable clients and servers deployed on
different platforms to interoperate smoothly.

The Web services end-points can be developed using either the Servlet or EJB component mod-
els, with the Web services deployed using the respective mechanisms.

❑ SOAP with Attachments for Java (SAAJ): This API provides a standard mechanism for sending
XML documents. SAAJ is used by JAX-RPC to access the SOAP message in a JAX-RPC message
handler.

SAAJ can also be used independently to create applications that produce and consume SOAP
messages directly, without using JAX-RPC.

❑ Java API for XML Registries (JAXR): JAXR defines a standard interface for clients to access
XML-based registries, including ebXML and UDDI.

❑ J2EE Management 1.0: The J2EE Management interface provides a means for tools to query the
J2EE application server to examine internal information. This includes examining objects that
identify the status of the application server, the applications deployed, the status of applica-
tions, and even collection of statistics to assist in performance monitoring.

726

Chapter 22

27_57485x ch22.qxd 1/14/05 10:16 PM Page 726

TEAM LinG - Live, Informative, Non-cost and Genuine!

The Management component is based on JMX, and identifies concrete object models that the
J2EE application server will expose through a EJB known as the J2EE Management EJB
Component.

❑ Java Management Extensions (JMX): The JMX support in the J2EE application server is
required for the J2EE Management interface.

❑ Java Authorization Contract for Containers (JACC): The JACC specification defines a standard
interface between a J2EE application server and an authorization policy provider. The specifica-
tion includes definitions for how authorization policy providers are deployed, configured, and
used in making access decisions.

J2EE platform architecture
Figure 22-2 shows a more detailed view of the J2EE platform architecture, focusing on the most common
understanding of J2EE as a thin client application, with the user interface generated by a Web application,
communicating to a business tier operating in the EJB container. It is worth noting that the Web con-
tainer and EJB container shown in Figure 22-2 do not have to be installed in separate JVMs or even on
separate machines. It is quite common for the Web and EJB containers to be running on the same JVM.
The capability to distribute the Web and EJB containers across JVMs and hardware is evidence of the
scalability of the J2EE architecture.

Figure 22-2: J2EE Web platform component architecture

It is important to understand that the J2EE architecture does not mandate the use of all the components
when leveraging the J2EE platform. Many components are great for a mix-and-match opportunity, and
selecting the appropriate components is one of the most important aspects of using the J2EE platform.

web browser

RMI-IIOP

HTTP
HTTPS

JavaMail
JAF

JSP servlet

web container

Mgmt
JMX

JTA

JAXP JAAS SAAJ
Connector JACC JDBC

JAX-RPC
JMS

JavaMail
JAF

ejb database

ejb container

Mgmt
JMX

JTA

JAXP JAAS SAAJ
Connector JACC JDBC

JAX-RPC
JMS

727

JSP in J2EE

27_57485x ch22.qxd 1/14/05 10:16 PM Page 727

TEAM LinG - Live, Informative, Non-cost and Genuine!

JSP development scenarios
The J2EE platform provides the opportunity to select a number of alternative architectures when devel-
oping a Web application. This section covers some of these alternatives, and provides some insight into
what would be required during development of each of the scenarios.

The first scenario examined uses JSP for the entire application. This is well suited to simple applications
and prototypes. The deployment of the JSP is simple: There is no need to compile additional Java classes,
and the capability to change the functionality rapidly makes this a great alternative for working with
customers to flesh out and clarify requirements.

Figure 22-3 shows the J2EE components used when using JSP only.

Figure 22-3: Web application using JSP only

The next scenario involves the use of JSP and servlets. This is one of the most common alternatives for
general-purpose Web applications. The servlets are used to control the flow of the application and pro-
vide access to the domain information, and the JSPs are used to create the user interface. This model bal-
ances a need for rapid development and extensive multi-tier scalability. While the tiers within the
application architecture can be appropriately layered, and transactions can be utilized, this scenario does
require more work for a developer for more complex applications.

Figure 22-4 shows the J2EE components used when a Web application is built using JSP and servlets.

Figure 22-4: Web application using JSP and servlets

web browser HTTP
HTTPS

JSP

servlet

helper

data
access

database

domain

web container

web browser HTTP
HTTPS JSP

helper

data
access

database
domain

web container

728

Chapter 22

27_57485x ch22.qxd 1/14/05 10:16 PM Page 728

TEAM LinG - Live, Informative, Non-cost and Genuine!

The final scenario involves both the Web and EJB containers, moving the domain and data access to the
EJB tier. This alternative is the most complex, requiring deployment options and configuration not
required for the Web application–only scenarios. This is most suitable for very complex applications,
requiring high levels of scalability.

Figure 22-5 shows the J2EE components used when a Web application is built using JSP, servlets, and
EJB components.

Figure 22-5: Web application using JSP, servlets, and EJB

As the previous section has shown, there is a variety of choices for developers building Web applica-
tions, but the one consistent element is the use of JSP.

Using JSP with J2EE Components
The previous sections have introduced a multitude of components the J2EE platform provides to appli-
cation developers. This section describes in more detail some of the components a JSP developer is likely
to need to interact with on projects, and includes a number of simple examples to illustrate their use.

Many of these J2EE components are covered in further detail, and with more comprehensive examples,
in other chapters in the book.

web browser HTTP
HTTPS

JSP

servlet

helper

domain

web container

ejb container

session

entity database

729

JSP in J2EE

27_57485x ch22.qxd 1/14/05 10:16 PM Page 729

TEAM LinG - Live, Informative, Non-cost and Genuine!

Servlets
Servlets form the core of the server-side Web application development components. Servlets are used for
a variety of functions, including processing user input, communicating with other J2EE technologies,
such as JDBC and EJB, accessing the business domain classes, and generating responses.

At the most basic level, a servlet is a Java class that adds functionality to a Web application server. A
servlet is installed in a Web container as part of a Web application and configured as part of that Web
application.

From a JSP developer’s perspective, servlets are important because a JSP page is transformed into a
servlet by the Web container. This means that all benefits and restrictions attached to a servlet are carried
to the JSP.

While all the functionality available to a developer via a servlet is also available via a JSP, it quickly
becomes apparent that the JSP and servlet are suited to different roles within a Web application. A JSP is
great for developing user interfaces, as the language provides a close alignment with the HTML markup
of Web pages. However, it very rapidly becomes unwieldy performing complicated business logic
directly in the JSP, as the markup and Java code become entwined.

This can be resolved in many cases by using tag libraries and helper classes to isolate the Java code;
however, once a Web application reaches a certain level of complexity, the workflow and communication
with other J2EE technologies are best moved to a servlet.

Servlet example
In the following Try It Out exercise, we will create a JSP page to collect data about a user, process the
data in a servlet, and then display the results in a separate JSP page. The servlet will act to control the
workflow of the Web application.

Figure 22-6 shows a diagram of the flow of information and the components that are involved.

Figure 22-6: Form processing using a servlet and JSP

browser

1

3

FormProc input.jsp output.jsp

4

2

5

6

730

Chapter 22

27_57485x ch22.qxd 1/14/05 10:16 PM Page 730

TEAM LinG - Live, Informative, Non-cost and Genuine!

The steps involved in the processing are as follows:

1. The user browses to the form processing Web application, and the servlet FormProc is config-
ured to intercept all the user requests.

2. The FormProc servlet forwards the user request to the input.jsp page.

3. The input.jsp page displays the form for the user to complete.

4. The user completes the form and submits the data.

5. The FormProc servlet processes the data, and then forwards the user request to the
output.jsp page.

6. The output.jsp page displays the result for the user.

Try It Out Building the Web Application
The Web application consists of the following files:

❑ chapter22/src/com/wrox/begjsp/ch22/name/FormProc.java

❑ chapter22/web/WEB-INF/web.xml

❑ chapter22/web/input.jsp

❑ chapter22/web/output.jsp

❑ chapter22/chapter22.xml

The following listing shows the contents of the form processing servlet, FormProc.java.

Create the file FormProc.java in the src/com/wrox/begjsp/ch22/name directory with the following
contents:

package com.wrox.begjsp.ch22.name;

import java.io.IOException;
import java.util.Date;

import javax.servlet.RequestDispatcher;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class FormProc extends HttpServlet
{

private static final String INPUT_JSP = “/input.jsp”;
private static final String OUTPUT_JSP = “/output.jsp”;

protected void service(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException
{

731

JSP in J2EE

27_57485x ch22.qxd 1/14/05 10:16 PM Page 731

TEAM LinG - Live, Informative, Non-cost and Genuine!

String userName = request.getParameter(“userName”);

if ((userName == null) || (userName.length() == 0))
{

forwardToJSP(FormProc.INPUT_JSP, request, response);
}
else
{

request.setAttribute(“user”, userName);
request.setAttribute(“now”, new Date());
forwardToJSP(FormProc.OUTPUT_JSP, request, response);

}
}

private void forwardToJSP(String target, HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException

{
RequestDispatcher dispatcher = request.getRequestDispatcher(target);
dispatcher.forward(request, response);

}
}

Create the file input.jsp in the src/web directory with the following contents:

<html>
<head>

<title> Enter Your Name </title>
</head>
<body>

<h1> Name Entry </h1>
<form action=”name” method=”post”>

<table>
<tr>

<td>Name: </td>
<td>

<input type=”text” name=”userName” />
</td>

</tr>
<tr>

<td> </td>
<td>

<input type=”submit” value=”submit” />
</td>

</tr>
</table>

</form>
</body>

</html>

732

Chapter 22

27_57485x ch22.qxd 1/14/05 10:16 PM Page 732

TEAM LinG - Live, Informative, Non-cost and Genuine!

Create the file output.jsp in the src/web directory with the following contents:

<%@ taglib prefix=”fmt” uri=”http://java.sun.com/jsp/jstl/fmt” %>
<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>

<jsp:useBean id=”now” class=”java.util.Date” scope=”request” />
<jsp:useBean id=”user” class=”java.lang.String” scope=”request” />
<html>

<head>
<title> Form Data </title>

</head>
<body>

<h1> Form Data </h1>
<table>

<tr>
<td>The name entered was: </td>
<td>

<c:out value=”${user}” />

</td>

</tr>
<tr>

<td>Date processed: </td>
<td>

<fmt:formatDate value=”${now}” type=”both” />
</td>

</tr>
</table>
<p/>
Try Again!

</body>
</html>

Create the file web.xml in the src/web/WEB-INF directory with the following contents:

<?xml version=”1.0” encoding=”ISO-8859-1”?>
<web-app version=”2.4” uri=”http://java.sun.com/xml/ns/j2ee” >

<servlet>
<servlet-name>FormProcServlet</servlet-name>
<servlet-class>com.wrox.begjsp.ch22.name.FormProc</servlet-class>

</servlet>
<servlet-mapping>

<servlet-name>FormProcServlet</servlet-name>
<url-pattern>/name</url-pattern>

</servlet-mapping>
<welcome-file-list>

<welcome-file>name</welcome-file>
</welcome-file-list>

</web-app>

733

JSP in J2EE

27_57485x ch22.qxd 1/14/05 10:16 PM Page 733

TEAM LinG - Live, Informative, Non-cost and Genuine!

Finally, create the file chapter22.xml in the root directory with the following contents:

<?xml version=’1.0’ encoding=’utf-8’?>
<Context docBase=”/path/to/chapter22/web”

path=”/chapter22”
reloadable=”true”
workDir=”/path/to/chapter22/work”>

</Context>

Make sure the attributes for docBase and workDir contain an absolute path to the location of the direc-
tories. Copy this file to <Tomcat Installation Directory> conf/Catalina/localhost, where it
will be picked up by the Tomcat server.

After starting Tomcat, this Web application can now be accessed via the URL http://localhost:
8080/chapter22/name.

How It Works
FormProc.java is a very simple piece of Java. To be a servlet, the class must extend HttpServlet and
then implement one of doPost(), doGet(), or service(). For this simple example, service() has
been implemented.

In the service() method, the request parameter userName is checked to see if it exists, or if the length
is not empty. If not, the flow of control is sent straight back to the input page (input.jsp). This flow is
shown in Figure 22-6 as step 2.

If the userName is valid, then a small amount of processing is done. The userName is set as an attribute
in the request object and is given the name user. In addition, the servlet creates a timestamp indicating
when the processing occurs and stores this in the request object with the name now. Storing these
objects in the request enables them to be used by the target of the forward. Finally, the flow of control
is directed to the output page (output.jsp). This flow is shown in Figure 22-6 as step 5.

input.jsp is a simple page that contains an HTML form that will collect the value of userName and
submit it to the target name. This flow is shown in Figure 22-6 as step 4.

output.jsp is another simple JSP that displays the information that was set in the request object by
the FormProc servlet. The execution of this JSP is shown as step 6 in Figure 22-6.

The web.xml file configures the Web application, defining the Java class for the servlet, the URL to
access the servlet, and the default resource to serve by the Web application via the welcome-file-list.

This simple Web application shows how servlet technologies can be used to work with the JSP and
provide a means for controlling the page flow. Of course, this Web application is too simple to show the
benefit of separating the concerns in this manner, but in Chapter 15, “JSP and Servlets,” and the two
project chapters (Chapters 27 and 28), more fully developed Web applications show how compelling this
separation becomes.

More information on servlets and their interactions with JSP are covered in Chapter 15.

734

Chapter 22

27_57485x ch22.qxd 1/14/05 10:16 PM Page 734

TEAM LinG - Live, Informative, Non-cost and Genuine!

JNDI
The Java Naming and Directory Interface (JNDI) provides a general-purpose set of APIs to enable client
applications to perform standard operations on a directory service, such as an LDAP-compliant
directory.

However, within the context of J2EE applications, the main use of the JNDI APIs is to look up services
provided by the J2EE container. It is this use that this section covers, as this is one of the most common
tasks that a J2EE application developer (including JSP developers) will need to perform.

A JNDI service provides a namespace for the objects that it holds. These objects are then located by
name, and can be retrieved as objects of the appropriate type. This is an advantage of a JNDI service —
the information returned is in the form of an object, not just a piece of data, as would be found in a
database.

The J2EE specification requires that a conforming J2EE container provide access to the following objects
within the java: namespace:

❑ EJBHome objects

❑ JTA UserTransaction objects

❑ JDBC API DataSource objects using java:comp/env/jdbc

❑ JMS ConnectionFactory and Destination objects using java:comp/env/jms

❑ JavaMail Session objects using java:comp/env/mail

As well as these objects, the container provides JNDI access to the environment entries available from the
application descriptors. These are the <env-entry> values, accessible via the java:env/ namespace.

The following Try It Out exercise shows how to access the environment entries in the web.xml deploy-
ment descriptor. This first task is to modify the web.xml that was created for the servlet example.

Try It Out Accessing the Environment Entries
The following listing contains a couple of simple environment entries as additions to web.xml.

Modify web.xml to include the additional environment entries as follows:

<?xml version=”1.0” encoding=”ISO-8859-1”?>
<web-app version=”2.4” uri=”http://java.sun.com/xml/ns/j2ee” >

<env-entry>
<env-entry-name>pageTitle</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>JNDI Lookup Page</env-entry-value>

</env-entry>
<env-entry>

<env-entry-name>versionNumber</env-entry-name>
<env-entry-type>java.lang.Integer</env-entry-type>
<env-entry-value>42</env-entry-value>

</env-entry>

735

JSP in J2EE

27_57485x ch22.qxd 1/14/05 10:16 PM Page 735

TEAM LinG - Live, Informative, Non-cost and Genuine!

<servlet>
<servlet-name>FormProcServlet</servlet-name>
<servlet-class>com.wrox.begjsp.ch22.name.FormProc</servlet-class>

</servlet>
<servlet-mapping>

<servlet-name>FormProcServlet</servlet-name>
<url-pattern>/name</url-pattern>

</servlet-mapping>
<welcome-file-list>

<welcome-file>name</welcome-file>
</welcome-file-list>

</web-app>

The second task is to create a JSP page as web/jndi.jsp. The contents of jndi.jsp are as follows:

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<%@ page import=”javax.naming.Context” %>
<%@ page import=”javax.naming.InitialContext” %>

<jsp:scriptlet>
Context context = new InitialContext();
Context applicationEnv = (Context)context.lookup(“java:comp/env”);
String title = (String)applicationEnv.lookup(“pageTitle”);
Integer version = (Integer)applicationEnv.lookup(“versionNumber”);

pageContext.setAttribute(“title”, title);
pageContext.setAttribute(“version”, version);

</jsp:scriptlet>

<html>
<head>

<title> <c:out value=”${title}” /></title>
</head>
<body>

<h1><c:out value=”${title}” /></h1>
<table>

<tr>
<td>This is version number: </td>
<td>

<c:out value=”${version}” />

</td>

</tr>
</table>

</body>
</html>

The current version of jndi.jsp is really ugly, with all the scripting in the JSP. A quick modification to
put the JNDI code into a helper class cleans this up nicely.

736

Chapter 22

27_57485x ch22.qxd 1/14/05 10:16 PM Page 736

TEAM LinG - Live, Informative, Non-cost and Genuine!

To perform these improvements, create the file web/jndi-neat.jsp with the contents shown here:

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>

<jsp:useBean id=”env” class=”com.wrox.begjsp.ch22.jndi.JNDIHelper” />

<html>
<head>

<title> <c:out value=”${env.title}” /></title>
</head>
<body>

<h1><c:out value=”${env.title}” /></h1>
<table>

<tr>
<td>This is version number: </td>
<td>

<c:out value=”${env.version}” />

</td>

</tr>
</table>

</body>
</html>

Create the file src/com/wrox/begjsp/ch22/jndi/JNDIHelper.java with the contents shown next:

package com.wrox.begjsp.ch22.jndi;

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;

public class JNDIHelper
{

private String _title;
private Integer _version;

public JNDIHelper()
{

try
{

Context context = new InitialContext();
Context applicationEnv = (Context)context.lookup(“java:comp/env”);
_title = (String)applicationEnv.lookup(“pageTitle”);
_version = (Integer)applicationEnv.lookup(“versionNumber”);

}
catch (NamingException unexpected)
{

_title = “Unknown”;
_version = new Integer(0);

}
}

737

JSP in J2EE

27_57485x ch22.qxd 1/14/05 10:16 PM Page 737

TEAM LinG - Live, Informative, Non-cost and Genuine!

public String getTitle()
{

return _title;
}

public Integer getVersion()
{

return _version;
}

}

Browse to jndi-neat.jsp and the results should be the same as the results from the jndi.jsp.

How It Works
Browsing to http://localhost:8080/chapter22/jndi.jsp displays the values of the environment
entries from web.xml. The important elements for the JNDI lookup are the Context objects and the
lookup() method. There is no need to break up the lookup, the title and version information could be
located directly using the following:

String _title = (String)context.lookup(“java:comp/env/pageTitle”);
Integer version = (Integer)context.lookup(“java:comp/env/versionNumber”);

The introduction of the JNDI helper to the JSP makes the JSP far cleaner, without affecting its
functionality.

Notice the change that removes the additional <%@page import %> statements from jndi.jsp, and the
replacement of the <jsp:scriptlet> with the <jsp:useBean>. This cleans up the original JSP consider-
ably. The functionality that existed in the <jsp:scriptlet> tag has now been moved to a helper class.

The maintainability of the new solution is vastly improved by the changes that were introduced.

This example shows the fundamentals of using the JNDI APIs for accessing the J2EE resources.
Accessing other types of resources requires accessing the appropriate object in the namespace. The
next section on using JDBC shows another example of looking up objects in the JNDI registry, the
DataSource object.

JDBC
The J2EE specification mandates that support for a JDBC 3.0–compliant driver be made available to
applications. One of the restrictions on an application is that it should not attempt to load the driver
directly via the Class.forName(“com.company.jdbc.DriverName”), but instead should rely on
using the JNDI lookup for a DataSource object.

Some of the additional functionality that the J2EE specification requires JDBC support for is as follows:

❑ Metadata requests via Connection.getMetaData()

❑ Stored procedures

❑ Batch updates

738

Chapter 22

27_57485x ch22.qxd 1/14/05 10:16 PM Page 738

TEAM LinG - Live, Informative, Non-cost and Genuine!

The exact mechanism for setting up a JDBC DataSource in a J2EE application server depends on the
server, but all follow similar principles. The JDBC Try It Out exercise that follows shows a simple exam-
ple of setting up a JDBC connection, and then using the JSP tags provided by JSTL to query the database.

JDBC example
This example uses the popular MySQL database. This is freely available, and instructions on installation
and general database configuration are covered in detail in Chapter 23, “Access to Databases.”

As required by the J2EE specification, the MySQL driver will be configured as part of the JNDI name-
space, and a DataSource will be located and used.

This example also uses the simplest possible approach to connecting JSP and a database. The JSTL
includes the <sql> tags, which are used to connect and select data from the database. This approach
works very well for a simple project or for prototyping, but it should be reiterated that this approach
should not be considered best practice for all Web applications.

Try It Out Setting Up the Environment
The first step is to configure the JNDI resource factory. This example uses the Tomcat application server,
and configuration will be done via the Tomcat-specific application files.

The following listing shows the additions required to the <Context> configuration for this Web
application.

Add the following to chapter22.xml:

<?xml version=’1.0’ encoding=’utf-8’?>
<Context docBase=”/path/to/chapter22/web”

path=”/chapter22”
reloadable=”true”
workDir=”/path/to/chapter22/work”>

<Resource name=”jdbc/FootyDB”
type=”javax.sql.DataSource”
auth=”Container”
/>

<ResourceParams name=”jdbc/FootyDB”>
<parameter>

<name>username</name>
<value>footy</value>

</parameter>
<parameter>

<name>password</name>
<value>footy</value>

</parameter>
<parameter>

<name>driverClassName</name>
<value>com.mysql.jdbc.Driver</value>

</parameter>
<parameter>

<name>url</name>

739

JSP in J2EE

27_57485x ch22.qxd 1/14/05 10:16 PM Page 739

TEAM LinG - Live, Informative, Non-cost and Genuine!

<value>jdbc:mysql://localhost:3306/footydb?autoReconnect=true</value>
</parameter>

</ResourceParams>

</Context>

The next step is to declare the resource in the application web.xml:

<?xml version=”1.0” encoding=”ISO-8859-1”?>
<web-app version=”2.4” uri=”http://java.sun.com/xml/ns/j2ee” >

<env-entry>
<env-entry-name>pageTitle</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>JNDI Lookup Page</env-entry-value>

</env-entry>
<env-entry>

<env-entry-name>versionNumber</env-entry-name>
<env-entry-type>java.lang.Integer</env-entry-type>
<env-entry-value>42</env-entry-value>

</env-entry>

<resource-ref>
<res-ref-name>jdbc/FootyDB</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>

</resource-ref>

<servlet>
<servlet-name>FormProcServlet</servlet-name>
<servlet-class>com.wrox.begjsp.ch22.name.FormProc</servlet-class>

</servlet>
<servlet-mapping>

<servlet-name>FormProcServlet</servlet-name>
<url-pattern>/name</url-pattern>

</servlet-mapping>
<welcome-file-list>

<welcome-file>name</welcome-file>
</welcome-file-list>

</web-app>

Notice how the <res-ref-name> specified in web.xml matches the value defined in <Resource
name=”....”>.

Create the file web/jdbc.jsp with the following contents:

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<%@ taglib prefix=”sql” uri=”http://java.sun.com/jsp/jstl/sql” %>

<sql:setDataSource dataSource=”jdbc/FootyDB” />
<c:set value=”This Weeks Results” var=”title” />

<html>
<head>

740

Chapter 22

27_57485x ch22.qxd 1/14/05 10:16 PM Page 740

TEAM LinG - Live, Informative, Non-cost and Genuine!

<title><c:out value=”${title}” /></title>
</head>
<body>

<h1><c:out value=”${title}” /></h1>
<table>

<tr><th>Home Team</th><th>Away Team</th></tr>
<sql:query var=”results” scope=”page”>

SELECT * from games
</sql:query>
<c:forEach items=”${results.rows}” var=”game” >

<tr>
<td <c:if test=”${game.winner == 1}”>bgcolor=”yellow”</c:if>>

${game.home_team}
</td>
<td <c:if test=”${game.winner == 2}”>bgcolor=”yellow”</c:if>>

${game.away_team}
</td>

</tr>
</c:forEach>

</table>
</body>

</html>

How It Works
The chapter22.xml file contains the definitions of the resources required for the database, the security
information, and the class name of the JDBC driver for the database. Depending on the J2EE container,
this may be done slightly differently, but in general all of the same information will be required.

The web.xml file uses resource-ref to map the name used in the J2EE container configuration. This
provides a name that can be used in a JNDI lookup to access the resource. In this example, the JNDI
name is used in jdbc.jsp as the data source in the <sql:setDataSource> tag.

Finally, jdbc.jsp is a simple JSP that utilizes the JNDI data source, and then performs a simple query.
The forEach tag is then used to iterate through the query results, displaying the data in the columns.

EJB
The final section in this chapter examines the role of EJB in the J2EE platform. Because this book is not a
comprehensive guide to EJB or J2EE technologies, and does not cover how to develop an EJB, readers
who are interested should check out Rod Johnson’s Expert One-on-One J2EE Design and Development for
further information.

To many developers, EJB is synonymous with J2EE. As shown in this chapter, the EJB components are a
fairly small part of the J2EE platform, but EJB is certainly one of the technologies that has been around
since the earliest versions of the J2EE specification.

A Java developer would not normally call an EJB directly from a JSP; however, a Web application would
use a servlet to access the EJB components, storing data collected by a JSP, or retrieving data to be dis-
played by a JSP.

741

JSP in J2EE

27_57485x ch22.qxd 1/14/05 10:16 PM Page 741

TEAM LinG - Live, Informative, Non-cost and Genuine!

Benefits of EJB
An EJB is a Java-based component consisting of a number of classes and an XML descriptor defining the
nature of the component. As discussed earlier in the chapter, an EJB runs in a J2EE EJB container. The con-
tainer provides callback into the EJB to provide lifecycle management of the components, as well as the
infrastructure for system-level services providing transactions, security, concurrency, and persistence.

An EJB is a reusable component. Historically, there has been some confusion about the best way to use
the EJB components and architect solutions that take advantage of the powerful benefits that accrue
from the use of EJBs.

The current wisdom when using EJB is to take a coarse-grained view of the EJB as a distinct high-level
aggregated component providing a standard interface to a service. A developer can think of the EJB tech-
nology as a non-XML version of a Web service! This view is well founded, as in the current version of
the EJB specification, a session bean can be exposed to clients as a Web service.

The EJB container presents a standard interface into the EJBs deployed in the container. This enables a
variety of clients to access the EJBs. Some of the ways that EJBs can be accessed include the following:

❑ Remotely from a servlet or JSP in a Web container

❑ Locally by other EJBs in the same container

❑ Remotely by a Swing application on a different machine

❑ Remotely by a Web service client

Restrictions on EJB
Unfortunately, there is no such thing as a free lunch, and using EJBs is no exception. To gain the benefits
associated with EJBs and the container-orchestrated functionality, some restrictions are placed on devel-
opers and what activities an EJB can perform.

In order to maintain portability of the developed EJB, the EJB specification defines certain activities as
forbidden. That is, the EJB may well work on a particular EJB container, but it is not guaranteed to oper-
ate the same way across all J2EE-compliant containers, or indeed across different versions of the same
vendor container supporting the same J2EE specification. Some of the most important restrictions on
EJBs are as follows:

❑ Writing to static fields: All static fields in the EJB class should be declared as final, as there is
no guarantee that all instances of a class are created in the same container. The EJB container
may have a number of instances as part of a distributed configuration.

❑ Manipulating threads: No methods should use the synchronized keyword, or attempt to
manage threads. The instances may be distributed, which will provide different threading
semantics, and the management of threads is the responsibility of the container.

❑ Using AWT for output, or obtaining input from a keyboard: This is a server, so there is no
guarantee of the existence of a display device or any input devices.

❑ Using java.io.* to access the file system: The server is responsible for accessing external ser-
vices, so all the application components should obtain resources via a JNDI resource provider.

742

Chapter 22

27_57485x ch22.qxd 1/14/05 10:16 PM Page 742

TEAM LinG - Live, Informative, Non-cost and Genuine!

❑ Listening to or accepting connections on a socket: An EJB can be a network socket client,
but not a server. If the EJB needs to service clients, the clients can access the EJB through the
container-provided interfaces.

❑ Performing certain functions with a ClassLoader: The container is responsible for providing
the loading of classes. Allowing an EJB to perform these functions could compromise the secu-
rity of the container.

❑ Using the value of this as an argument to a method, or a return value: The container is
responsible for intercepting calls to EJBs (to support the additional functionality) and as a result,
returning this will subvert this mechanism. To return a reference to an EJB, or to use it as a
method argument, the developer should use the getEJBObject() or getEJBLocalObject()
methods available in the SessionContext and EntityContext interfaces.

This list is not exhaustive, and is refined as newer versions of the EJB specification are produced.
Developers requiring detailed knowledge of the restrictions should read the EJB specification, which can
be downloaded from the java.sun.com Web site.

Types of EJB
There are three major groups of EJBs:

❑ Session

❑ Entity

❑ Message-driven

Each of these forms of the EJB provides certain services for the J2EE platform, and each should be chosen
to assist in different problem domains. As with the J2EE platform, choosing to use one particular entity
bean does not force application developers to use all three. Many applications use session beans only to
obtain the benefits of the transaction and security infrastructure, and then use a different persistence
mechanism (such as Hibernate, an open-source Java persistence framework), rather than entity beans.

There is a fourth “type” of EJB, the Timer Service. This is not a distinct type of EJB, but more of an exten-
sion to the other three EJBs to provide a container-based scheduling system.

The architecture and requirements of the application should drive the choice of technologies used from
the entire J2EE platform, and not the reverse. Sadly, many early J2EE projects failed spectacularly when
naive developers implemented the technology “because it was there,” rather than making well-
considered judgments about what to include and what to leave out.

Session beans
A session bean is implemented to represent concepts such as workflow, business rule or, potentially,
application state. A session bean can be stateless or stateful. The differences are obvious from their
names — a stateless session bean cannot maintain any data between client requests, whereas a stateful
session bean can.

743

JSP in J2EE

27_57485x ch22.qxd 1/14/05 10:16 PM Page 743

TEAM LinG - Live, Informative, Non-cost and Genuine!

One of the most important J2EE patterns to be identified is the use of the session bean as a front, or
facade, to a client. This facade provides a coarse-grained interface to potentially many session and entity
beans arranged to perform a service.

Following are two good reasons to use this pattern:

❑ Reduced network traffic: If a single entry point is provided to a client, then a single remote call
encapsulates a high volume of interactions and data requests that stay within the EJB container.
The session bean then marshals the responses to provide a single response to the client.

❑ Correctly positioned business logic: Creating a facade can force application architecture deci-
sions to identify the appropriate layering of business logic. A facade can identify common busi-
ness functionality and group it into a common interface. It can also identify areas of functionality
that should be in a separate interface, or not exposed to a client at all. This decision-making pro-
cess can aid in the reuse of components at a service level.

Entity beans
An entity bean represents an object-oriented view of some persistent data within the business domain of
the application. The EJB container provides lifecycle support for entity beans to manage all the persis-
tence functions associated with loading, saving, and updating data in a database.

The entity bean is a representation of the data within the database, and rather than a client directly
accessing the data via JDBC and SQL, the entity bean acts as the interface. This enables clients of the
entity beans (which are normally session beans) to use a more object-oriented view of the data, and
obtain the benefits of this view.

Entity beans are not the only means of persisting data in a J2EE application, as the developer may use
direct SQL via JDBC, or object-relational mapping (ORM) tools such as Hibernate or Toplink directly
from session beans. Depending on the complexity of the data model and the data access requirements of
the application, these might be viable options.

The advantage of using entity beans is the reduction of issues surrounding the mapping of data from an
object model to a relational database, including the configuration that is concerned with that mapping.

Entity beans can be of two forms: container-managed persistence (CMP) or bean-managed persistence
(BMP). A CMP bean delegates all the management of loading and storing data to the container, in con-
trast with a BMP bean, where the loading and saving is done via methods within the entity bean.

CMP entity beans are considered one of the major benefits of using J2EE in general, and EJB in particu-
lar, as they drastically reduce the development effort surrounding the management of the business data.
The most common means to access data is via SQL. Writing SQL is a complex, time-consuming and
error-prone process that gets more and more difficult as the complexity of the data model increases.

In the majority of cases, the container’s support for CMP and the EJB specification that covers the query-
ing capability of CMP is sufficient to persist the application data. For those cases that fall outside the
support, there is BMP. BMP can enable developers to write persistence code that exists in the entity bean
that specifically handles the needs of the application.

744

Chapter 22

27_57485x ch22.qxd 1/14/05 10:16 PM Page 744

TEAM LinG - Live, Informative, Non-cost and Genuine!

Using BMP was a reasonably common occurrence in older versions of the EJB implementations because
of significant limitations in the CMP support. With the release of EJB 2.0, the CMP support has been
greatly expanded, minimizing the need for developers to use BMP.

Unfortunately, using BMP means relinquishing many of the benefits of using entity beans for persis-
tence, as the developer is back to using SQL as data access code.

Message-driven beans
The final member in the trio of EJBs is the message-driven bean (MDB). An MDB is a consumer of mes-
sages that will be invoked asynchronously by the container on receipt of a message. The MDB may use
the Java Message Service (JMS) as the transport for the message, but may also support other types of
messaging.

MDBs are stateless; the lifecycle is managed by the container. MDBs are also the simplest of all the EJBs.

A client cannot directly access an MDB because it has no client-accessible interfaces. Instead, it commu-
nicates by sending a message to a queue, indicating that the MDB is configured as the destination. MDB
queue and message selection criteria are defined in the deployment descriptor, so the client access points
are defined at deployment time.

Timer Service
Newly introduced in the EJB 2.1 specification, the Timer Service adds scheduling functionality to ses-
sion, entity, and message-driven beans.

The Timer Service is intended to provide support for long-lived business processes, so the EJB specifica-
tion requires that the container maintain the timer information and any associated EJB information over
shutdown and restart of the container.

Timers can be associated only with entity beans, stateless session beans, and message-driven beans.
Timers may not be associated with stateful session beans.

The Timer Service consists of the following components:

❑ TimedObject: This interface is implemented by the EJB that requires the scheduling functional-
ity. The method ejbTimeout(Timer timer) is invoked by the container when the scheduled
event occurs.

❑ TimerService: An instance of a TimerService is obtained from the EJBContext of the EJB.
The TimerService is then used to register for notification of a schedule. The notification may
be on a specific date, after a period of time, or at a recurring interval. The TimerService may
also be used to obtain all the outstanding Timer events associated with the given EJB.

❑ Timer: A Timer represents a single notification event. A Timer can be used to cancel an upcom-
ing scheduled event or to query information about the event.

A Timer that is associated with an entity bean is really associated with a specific instance of that entity
bean and the data it represents. Using a Timer with an entity bean enables you to access the data

745

JSP in J2EE

27_57485x ch22.qxd 1/14/05 10:16 PM Page 745

TEAM LinG - Live, Informative, Non-cost and Genuine!

associated with that identity. An example of using a timed entity bean is adjusting time-based reference
data according to a schedule, such as decreasing prices on stock for a sale, and then increasing them
after the sale has ended.

A Timer on a session bean should be associated only with a stateless session bean. Any available session
bean will be notified when the scheduled time occurs. An example of the use of a timed stateless session
bean is to validate that some workflow process has occurred within an appropriate timeframe. This
might be especially relevant to a review phase, where a review must occur within a certain timeframe of
a workflow step.

A Timer on a message-driven bean is similar to one on a stateless session bean. Given the asynchronous
nature of an MDB, these are likely candidates to be activated via a timer, as well as external messaging.

Summary
This chapter has covered the fundamentals of the J2EE platform — what it is composed of, and the key
technologies that a JSP developer should understand, including its structure, configuration, develop-
ment, and deployment.

To conclude this chapter, let’s review some of its key points:

❑ JSP is part of the J2EE platform.

❑ The J2EE platform provides infrastructure services for the development of applications.

❑ The J2EE platform is governed by a specification that mandates inclusion of certain technolo-
gies, such as JDBC, JTA, and JavaMail, for use by applications.

❑ The J2EE platform is architected as a number of containers, of which the Web and EJB container
form the key server-side Java development components.

❑ A JSP developer can easily access the J2EE platform technologies through a standard set of APIs,
gaining the benefit of application portability.

❑ A developer does not need to use all of the technology components provided by the J2EE plat-
form to take advantage of the benefits provided by the services that are needed, and should
ensure that the needs of the application drive the choice of technologies.

Exercises
1. Develop a Web application to iterate through the java:comp/env namespace and display all

the available objects.

2. Develop a Web application that will enable the sending of an e-mail using the JavaMail J2EE
component. The Web application should collect the To, Subject, and Body elements of the mail
message.

746

Chapter 22

27_57485x ch22.qxd 1/14/05 10:16 PM Page 746

TEAM LinG - Live, Informative, Non-cost and Genuine!

23
Access to Databases

A database forms part of many enterprise applications, and Web applications are prime candidates
for searching, displaying, and capturing data. Understanding how to use a database in a Web
application is a very important part of a JSP developer’s toolkit. Persistence of data is such a com-
mon requirement in modern applications that many developers consider not having any data stor-
age or retrieval to be a mistake in the collection of requirements.

This chapter covers an introduction to databases and the standard means of accessing relational
databases from Java, the JDBC API. It explores the different ways of accessing databases from a
JSP, from using the <sql> tags provided by the JSTL for simple applications to more comprehen-
sive approaches that are used as the complexity of the data model and data use increases. This
exploration includes an examination of different types of common data access mechanisms using
JDBC, as well as the issues associated with object-relational mapping (ORM).

Finally, the chapter looks at some other database access mechanisms, including object-relational
mapping tools such as Hibernate and JDO.

This chapter covers the following topics:

❑ The fundamental components used in accessing databases from Java

❑ An introduction to the JDBC APIs

❑ Different techniques for accessing databases

❑ How to use direct JDBC calls to access a database

❑ How to use Hibernate to access a database

This chapter assumes a basic working knowledge of SQL syntax and the basic SQL commands
required to set up and manage databases and tables, as well as SQL used for working with the
data within the database and tables.

28_57485x ch23.qxd 1/14/05 10:18 PM Page 747

TEAM LinG - Live, Informative, Non-cost and Genuine!

Introduction to Databases
A database can be considered a means of storing data; this may include relational databases, object
databases, or even files in a directory. The most common form of database known to the majority of
developers is a relational database. Examples of relational databases are Oracle, IBM’s DB2, Microsoft’s
SQL Server, and the freely available MySQL, PostgreSQL, and Hypersonic.

Because of the overwhelming dominance of relational databases in the marketplace, this chapter focuses
on solutions involving those technologies. Clearly, databases form a core part of an enterprise’s IT assets,
and the data they contain is often the reason why funding is allocated for development.

A database may be specific to a single Web application, but it is more common that the database is
owned by the enterprise, and the Web application forms another access mechanism for the data. It is
more complicated to build applications to access historical data than to start with a completely new
application.

Many applications require the capability to save and recover information that may have to last for a long
period of time. Usernames and passwords, user preferences, bulletin board postings, news articles, and
even defect reports are all candidates for storage in a database.

Therefore, for all Java application developers, whether developing for the Web using J2EE or a stan-
dalone application, the skills that enable you to understand how to work with databases are an impor-
tant set to have.

A database is such a common component in Web applications that the J2EE specification requires that an
application server provide transparent access to databases for all the applications installed on the con-
tainer. This capability is provided by a JNDI lookup to obtain a DataSource and configuration in the
J2EE container. While a Web container is not required to provide this functionality, most of the currently
available Web containers (such as Tomcat) have provided this, because of demand and a desire to enable
applications to work on J2EE containers.

Therefore, after determining that your application needs to use a database, the next step is to consider
which database to use. As an enterprise developer, this isn’t generally something that is within the
control of an individual application, but a decision that is made at a corporate level. However, when
developing at home, or for pleasure, you can choose between a database and other means of persisting
the data.

Different classes of relational databases are available, each providing different pros and cons. One set of
databases consists of those likely to be found as enterprise solutions. These large-scale commercial offer-
ings, such as Oracle and DB2, are traditionally complicated software products that require specialist
skills to set up, manage, and maintain. They do offer the benefit of having the most comprehensive fea-
ture sets, but this comes at a cost, that of understanding how to work with them.

Fortunately, these systems are generally installed in large-scale commercial environments, so specialists
are usually at hand to assist developers.

The next tier of databases includes the more developer-friendly systems such as MySQL and
PostgreSQL. These databases are not lightweights; they contain the features required to develop robust
and reliable Web applications, but they may lack some of the more comprehensive features provided in
commercial offerings.

748

Chapter 23

28_57485x ch23.qxd 1/14/05 10:18 PM Page 748

TEAM LinG - Live, Informative, Non-cost and Genuine!

Finally, there are databases that are so lightweight they act as “in-memory” databases. HSQLDB is a
Java-based version, with a JDBC driver that provides a subset of the SQL standard. This can be of great
value during development and testing where setup and configuration of a “disk-based” database might
be more complicated than is necessary, especially if the application, or testing requirements, are all based
on reading data. Using a database like HSQLDB can provide a migration path as data requirements
become more complicated. The JDBC standard provides interoperability between implementations, and
supports a sufficiently large subset of the SQL standard. The JDBC driver implementation is conforming,
so migration to other databases is a relatively straightforward process.

This book is not about databases, so this is a very general and highly subjective discussion of the
databases. While there may be some merit in looking at databases from this angle, it is not within the
scope of this book to perform a thorough analysis of different databases.

Because of the free availability of MySQL as a database platform, and the acceptance of MySQL in the
developer community, coupled with the developer-friendly nature of the database, this chapter will test
all code, and provide examples, using MySQL. There is no specific need to use MySQL to work through
the code examples or exercises, but working with different database software may require changes to
some of the database setup scripts and connection information, and some minor changes to keywords
depending on the database you are using.

Connecting to a database
As discussed in the preceding section, Java has a standard set of APIs for connecting to a database. The
JDBC APIs support accessing relational databases and other data sources such as flat files.

As an interesting aside, JDBC is a trademarked term and not an acronym. However, it is commonly
considered to stand for Java Database Connectivity, or Java Database Connection.

The JDBC APIs define what is available to client software. To connect to any particular database, a JDBC-
compatible driver must be provided by the database vendor, or a third party. Sun has provided a com-
prehensive (and probably database-backed) searchable list of currently available drivers at http://
servlet.java.sun.com/products/jdbc/drivers.

This allows for searching for drivers based on a number of criteria. Obviously, searching by database is
an option, but so is searching for the JDBC API driver version number, and the JDBC driver type.

One of the most important considerations for developers, apart from the JDBC API driver version, is the
driver type. This determines, in general, how easy it will be to install and update the driver, and tends to
indicate how recently the driver has been built, and how seriously the database vendor wishes to work
with Java developers.

There are four basic types of drivers:

❑ A JDBC-ODBC bridge

❑ Native API/partly Java driver

❑ Net-protocol fully Java driver

❑ Native-protocol fully Java driver

749

Access to Databases

28_57485x ch23.qxd 1/14/05 10:18 PM Page 749

TEAM LinG - Live, Informative, Non-cost and Genuine!

Type 1: JDBC-ODBC bridge
The type 1 driver was one of the first available driver types supporting JDBC for database vendors. This
is mostly due to the existing support and availability of ODBC drivers for databases, and the JDBC-
ODBC bridge provides a unified API utilizing that support.

The main advantage that the JDBC-ODBC bridge had (which is now obsolete as a result of support for
later, more comprehensive driver types across most database vendors) was the availability of ODBC
drivers, which were already installed on the client machines that needed to use the database.

However, JDBC-ODBC bridge drivers suffer from a massive performance penalty because the JDBC call
is routed through the bridge to the ODBC driver and then to the native database interface. When the
database responds, the reverse occurs.

Another significant downside of the JDBC-ODBC bridge drivers is that for each new client machine that
is installed, native support must be installed on each of those machines. This makes it much harder to
deploy Java-only solutions.

Type 1 drivers are relatively uncommon now, having primarily been replaced by type 3 or type 4 drivers.

Type 2: Native API/Partly Java driver
The type 2 driver was a step up from the type 1 driver, where custom Java driver code was integrated
with native database client code to provide a hybrid driver for communicating with the database.

Many type 2 drivers suffer from disadvantages similar to those of the type 1 client: low performance and
the requirement for native code installation on the client. However, some of the type 2 drivers, notably
the Oracle OCI drivers, have optimized native code for specific platforms, and so perform quite well.

The advantage that type 2 drivers have over type 1 drivers is an increase in performance. Like type 1
drivers, type 2 drivers represent a significant minority, especially for modern versions of the popular
databases.

Type 3: Net Protocol/All Java driver
The type 3 driver is the first of all Java drivers available for JDBC access. A type 3 driver communicates
with special database-specific middleware that converts JDBC calls to database-specific calls. The main
advantage the type 3 driver provides is that the client code is all Java; no native client install is required,
so distribution and configuration of Java applications is vastly simplified.

The middleware server can serve many different versions of databases and can act as a gateway to mul-
tiple database servers.

In general, the type 3 drivers are significantly faster than the type 1 or 2 drivers.

Type 4: Native Protocol/All Java driver
The type 4 driver, like the type 3 driver, provides an all-Java driver for the client. The main difference
between the type 4 and type 3 drivers is that the type 4 driver communicates directly with the database,
converting the JDBC calls to database-specific protocols within the JDBC driver.

750

Chapter 23

28_57485x ch23.qxd 1/14/05 10:18 PM Page 750

TEAM LinG - Live, Informative, Non-cost and Genuine!

One theoretical disadvantage of the type 4 drivers over type 3 is the need for specific drivers for each of
the databases supported, whereas a type 3 driver could potentially serve many databases behind the
middleware server. In practice, this isn’t much of an issue.

Using a JDBC driver
Connecting to a database using JDBC can be performed in one of two ways. The first is to load the JDBC
driver directly. The second is to use the J2EE container to provide an abstraction and obtain a
DataSource object via JNDI.

The advantages of obtaining a DataSource from the container include the following:

❑ Configuration is not contained in client code, and is instead managed during deployment,
allowing for substitution of drivers and databases.

❑ Additional features such as connection pooling can be implemented transparently to the
application.

A Web container is not required to provide a JNDI resource pool containing a DataSource. Most do pro-
vide this facility, but to cover all the bases, the following examples highlight the differences between the
two approaches. Both end up with a Connection object, and both examples are quite simple.

The following code fragment shows how to load a JDBC driver and obtain a Connection directly:

Connection conn = null;
try
{

Class.forName(“com.mysql.jdbc.Driver”).newInstance();
conn = DriverManager.getConnection(“jdbc:mysql://localhost/mysql?params”);

}
catch (SQLException unexpected)
{

System.out.println(“Error occurred obtaining connection”);
System.out.println(unexpected.getMessage());

}
. . .

The following code fragment shows how to locate a JDBC driver via a JNDI lookup, and obtain a
Connection from the DataSource:

Connection conn = null;
try
{

Context initialContext = new InitialContext();
Context env = (Context) initialContext.lookup(“java:comp/env”);
DataSource source = (DataSource) env.lookup(“jdbc/FootyDB”);
conn = source.getConnection();

}
catch (SQLException unexpected)
{

System.out.println(“Error occurred obtaining connection”);
System.out.println(unexpected.getMessage());

}
. . . .

751

Access to Databases

28_57485x ch23.qxd 1/14/05 10:18 PM Page 751

TEAM LinG - Live, Informative, Non-cost and Genuine!

Notice that the structure and layout of the code is almost identical. There’s only a minor difference
between the two approaches in obtaining a Connection.

At this point, not much can be done without setting up a database. The remaining examples assume that
this setup and configuration are handled. This is not a comprehensive guide to setting up MySQL; for
additional assistance, the MySQL Web site (www.mysql.org) provides very detailed instructions for
installation and troubleshooting.

Downloading and Installing MySQL
The installation instructions vary slightly depending on the operating system that is used to run the
database, and on the application server that is to be used.

Downloading MySQL
To download MySQL, go to www.mysql.org.

1. Download the latest production version of the MySQL database server. At the time of writing,
this was 4.0.20.

If MySQL is to be installed on a Linux system and the distribution supports the RPM format, then
download the MySQL-server-VERSION.i386.rpm and MySQL-client-VERSION.i386.rpm.
Otherwise, download the appropriate .tar.gz package.

2. Download the latest production version of the Connector/J driver. At the time of writing, this
was 3.0.14

3. (Optional) Download the latest version of MySQL Control Center. This is a GUI tool that uses a
cross-platform toolkit to run on both Windows and UNIX environments. This tool will make it
easier to manage the installation of MySQL, create tables, and modify user permissions. MySQL
Control Center can be downloaded from devmysql.com/products/mysqlcc/.

Installing MySQL
For Microsoft Windows:

1. Unzip the downloaded binary package.

2. Run the setup.exe program to begin the installation process.

3. The default options are appropriate for the examples. If the default options are not chosen, then
additional configuration may be required after installation.

For Linux systems, the standard RPM tools will install the MySQL binaries and distribution to the
appropriate places.

Installing the JDBC driver
The procedure for installing a JDBC driver depends on the application server that is installed for the
examples. In general, it requires making the classes available to the application server so that they can be
found and utilized by the server.

752

Chapter 23

28_57485x ch23.qxd 1/14/05 10:18 PM Page 752

TEAM LinG - Live, Informative, Non-cost and Genuine!

The Tomcat Web application server recommends placing the driver JAR file into <Tomcat
Installation Directory>/common/lib; this enables it to take advantage of loading through the
JNDI DataSource.

If there is no need or any interest in using the JNDI DataSource for locating and loading the driver,
then the Connector/J JAR file can be packaged with the WAR during deployment.

All the following examples require that the driver JAR be installed with the application server, as the
code will obtain a DataSource according to a JNDI lookup. This will enable the examples to be rela-
tively independent of any database-specific setup or classes.

Starting MySQL
Starting MySQL is as simple as running mysqld.exe (Windows) or safe_mysql (UNIX). Using the
RPM installation under Linux will create scripts to automatically start and stop the database when the
system is started and shut down.

Windows users can install MySQL as a service, which provides the same lifecycle functionality.

JDBC APIs
The JDBC APIs consist of several packages that provide various services for application developers.
Version 2.0 of the JDBC APIs contains two major parts: the JDBC 2.1 Core API (represented by classes in
the java.sql packages) and the JDBC 2.0 Optional Package API (represented by classes in the
javax.sql packages). In version 3.0 of the JDBC APIs, the two major parts have been combined into
one, the JDBC API; in version 3.0, however the original package naming for all the classes still remains.

java.sql packages
This set of packages contains the core classes and interfaces that are necessary when dealing with
databases. These elements relate to tasks such as the following:

❑ Making a connection to the database via the DriverManager

❑ Sending SQL statements to a database, including elements such as Statement,
PreparedStatement, and Connection

❑ Dealing with responses and updates via the ResultSet

❑ Standard mapping of SQL types to classes and interfaces in the Java language, including ele-
ments such as Array, Blob, Clob, Date, Time, and Timestamp

❑ Obtaining metadata from a database via DatabaseMetaData, columns in a ResultSet via
ResultSetMetaData

❑ Dealing with exceptions such as SQLException.

javax.sql
This set of packages contains the classes and interfaces that are used for server-side data source access.
The javax.sql packages are now included in Java 1.4, but are also required as part of J2EE environ-
ments. The main inclusion as part of javax.sql is the DataSource provided as an alternative to

753

Access to Databases

28_57485x ch23.qxd 1/14/05 10:18 PM Page 753

TEAM LinG - Live, Informative, Non-cost and Genuine!

DriverManager. However, it also includes such things as connection pooling, distributed transactions,
and the RowSet implementation.

JDBC connection and database access
The following table describes some of the more common classes and interfaces used to obtain database
connections and perform queries on the database.

Class Description

java.sql.DriverManager This provides a basic service for managing JDBC drivers.
In JDBC 2.0, this has been superceded by the use of the
javax.sql.DataSource.

javax.sql.DataSource This provides a factory for locating the object that pro-
vides an interface to the actual database connection. The
DataSource is implemented by the JDBC driver author
and may have the following results when the
getConnection() method is invoked:

❑ Basic: Calls will return a standard Connection
object.

❑ Connection pooling: Calls will produce a
Connection object that automatically participates
in a connection pool.

❑ Distributed transaction: Calls will produce a
Connection object that may be used in a dis-
tributed transaction, and in most cases will be
capable of participating in a connection pool.

java.sql.Statement A Statement is used for executing a static SQL state-
ment and returning the results. An important considera-
tion is that only one ResultSet may be open for a
Statement at any time. Applications that require multi-
ple open ResultSets must create them from separate
Statement objects.

java.sql.PreparedStatement A PreparedStatement is a sub-interface of Statement
that represents a precompiled SQL statement. This SQL
statement may include parameters that can be changed
for each call, without re-specifying the statement. An
example of a parameterized statement is “SELECT *
from GAMES where round = ?”

java.sql.CallableStatement A sub-interface of PreparedStatement, Callable
Statement provides a standard way to call stored proce-
dures via JDBC in a database-independent manner.

A CallableStatement may return one or more
ResultSet objects.

754

Chapter 23

28_57485x ch23.qxd 1/14/05 10:18 PM Page 754

TEAM LinG - Live, Informative, Non-cost and Genuine!

Class Description

java.sql.ResultSet A ResultSet contains the rows returned from a
Statement (including Prepared and Callable)
querying the database.

A ResultSet has a cursor that can be used to iterate
through the results. Depending on the ResultSet, it
may be scrollable in forward and reverse directions, and
may be updateable.

JDBC data types
The following table describes the common Java data types that are needed to support the SQL data
types. Using these Java classes may be required when obtaining information from a ResultSet.

Class Description

java.sql.Array Corresponds to an SQL ARRAY. A collection of SQL data
types.

java.sql.Blob Corresponds to an SQL BLOB.

java.sql.Clob Corresponds to an SQL CLOB.

java.sql.Date Corresponds to the SQL DATE. java.sql.Date extends
the general purpose java.util.Date, and should be
used in preference to java.util.Data in working with
the SQL DATE data type.

java.sql.Time Corresponds to the SQL type TIME. java.sql.Time also
extends java.util.Date.

java.sql.Timestamp Corresponds to the SQL type TIMESTAMP. A
java.sql.Timestamp extends a java.util.Date and
also includes support for nanoseconds.

Now that you are familiar with the descriptions of common components used when working with
databases in Java, you can experiment with the following Try It Out example, which includes many of
the concepts that have been covered.

Try It Out Building an Application
This example represents a simple football roster management application. Football was chosen because
you can modify the application to whatever football team is local to your country or region. Readers
who aren’t sports fans can pretend that they are building the application for a friend who is a fan.

755

Access to Databases

28_57485x ch23.qxd 1/14/05 10:18 PM Page 755

TEAM LinG - Live, Informative, Non-cost and Genuine!

The application (at this stage) will start with the following:

❑ A roster of teams that participate in a season

❑ A season that is split into a number of rounds

❑ A number of fixtures that occur on a round

❑ A pair of teams that play in each fixture at a venue

This is simple enough to start with, but also contains a rich enough set of functions to fully exercise the
JDBC APIs to be used. This example provides functionality to add teams and set up rounds and fixtures.

Creating a database
The first steps in creating an application are to create the database and the tables that will hold the data.
This can be done via JDBC or via an administrative tool. To keep things simple, it will be easiest to use
an administrative tool to manage the creation of the database and tables.

To create the database, use the MySQL Control Center administration tool (mysqlcc). Downloading
instructions are provided in a previous section of the chapter, “Downloading and Installing MySQL.”
Instructions for using the MySQL Control Center are located at the MySQL Web site (www.mysql.org).

Create the database using the following SQL, or mysqlcc:

CREATE DATABASE footydb;

Create a user and password to access the database using the following SQL, or create a user called
footy@localhost with a password footy, with access to the footydb using mysqlcc:

GRANT ALL ON footydb.* TO footy@localhost IDENTIFIED BY ‘footy’;

Create the tables for the following entities: roster, round, fixture, and venue. Use either the follow-
ing SQL or mysqlcc to create the tables:

CREATE TABLE `roster` (
`id` int(11) NOT NULL auto_increment,
`teamname` varchar(100) NOT NULL default ‘’,
PRIMARY KEY (`id`)

) TYPE=MyISAM;

CREATE TABLE `round` (
`id` int(11) NOT NULL auto_increment,
`number` int(11) NOT NULL default ‘0’,
`startdate` date NOT NULL default ‘0000-00-00’,
`enddate` date NOT NULL default ‘0000-00-00’,
PRIMARY KEY (`id`)

) TYPE=MyISAM;

CREATE TABLE `fixture` (

756

Chapter 23

28_57485x ch23.qxd 1/14/05 10:18 PM Page 756

TEAM LinG - Live, Informative, Non-cost and Genuine!

`id` int(11) NOT NULL auto_increment,
`roundid` int(11) NOT NULL default ‘0’,
`hometeam` int(11) NOT NULL default ‘0’,
`awayteam` int(11) NOT NULL default ‘0’,
`venueid` int(11) NOT NULL default ‘0’,
PRIMARY KEY (`id`)

) TYPE=MyISAM;

CREATE TABLE `venue` (
`id` int(11) NOT NULL auto_increment,
`location` varchar(100) NOT NULL default ‘’,
PRIMARY KEY (`id`)

) TYPE=MyISAM;

This has created a fresh database for the application, without any data. The next step is to build an appli-
cation that will allow the addition of the teams to the roster.

Creating the roster administration
Figure 23-1 shows the components of the application that will be built to support the addition of teams
to the roster table.

Figure 23-1: Roster administration

Web application directory setup
The Web application will follow the same structure as other Web applications in the book, so create an
empty directory structure as follows:

chapter23/
src/
web/

WEB-INF/
lib/

Copy the jstl.jar and standard.jar used in earlier chapters into the lib directory.

RosterManager

footydb
AdminServlet

roster.jsp

757

Access to Databases

28_57485x ch23.qxd 1/14/05 10:18 PM Page 757

TEAM LinG - Live, Informative, Non-cost and Genuine!

Create the Tomcat context file chapter23.xml in the chapter23 directory with the following contents:

<?xml version=’1.0’ encoding=’utf-8’?>
<Context docBase=”/path/to/chapter23/web”

path=”/chapter23”
reloadable=”true”
workDir=”/path/to/chapter23/work”>

<Resource name=”jdbc/FootyDB”
type=”javax.sql.DataSource”
auth=”Container”
/>

<ResourceParams name=”jdbc/FootyDB”>
<parameter>

<name>username</name>
<value>footy</value>

</parameter>
<parameter>

<name>password</name>
<value>footy</value>

</parameter>
<parameter>

<name>driverClassName</name>
<value>com.mysql.jdbc.Driver</value>

</parameter>
<parameter>

<name>url</name>
<value>jdbc:mysql://localhost/footydb?autoReconnect=true</value>

</parameter>
</ResourceParams>

</Context>

The /path/to in docBase and workDir must match the full path to the chapter23 directory. Under
Windows this might look like the following:

<Context docBase=”c:/dev/begjsp/chapter23/web”

Copy this file to <Tomcat Installation Directory>/conf/Catalina/localhost. This configura-
tion enables Tomcat to find the web directory in the development directories, rather than needing to
copy files when they are changed, or to work directly in the <Tomcat Installation Directory>/
webapps directory.

The additional configuration required in this context fragment enables Tomcat to manage the database
connection automatically. This removes all need for the Web application to understand how to connect,
or even what database is used. This can make it easy to develop using lightweight databases, and to
deploy using fully featured enterprise databases.

Finally, to set up the Web application, create the Web application deployment descriptor web.xml in the
web/WEB-INF directory with the following contents:

758

Chapter 23

28_57485x ch23.qxd 1/14/05 10:18 PM Page 758

TEAM LinG - Live, Informative, Non-cost and Genuine!

<?xml version=”1.0” encoding=”ISO-8859-1”?>
<web-app version=”2.4” uri=”http://java.sun.com/xml/ns/j2ee” >

<servlet>
<servlet-name>AdminServlet</servlet-name>
<display-name>Football administration servlet</display-name>
<description>Football administration servlet</description>
<servlet-class>com.wrox.begjsp.ch23.football.AdminServlet</servlet-class>

</servlet>
<servlet-mapping>

<servlet-name>AdminServlet</servlet-name>
<url-pattern>/admin</url-pattern>

</servlet-mapping>

<resource-ref>
<res-ref-name>jdbc/FootyDB</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>

</resource-ref>

</web-app>

The <resource-ref> element providing the link to the <Resource> is defined in the chapter23.xml
configuration for Tomcat.

Creating the administration servlet
Starting with the AdminServlet, this will perform a check on the method of calling, and if an HTTP GET
is used to invoke the servlet, it will display the roster.jsp. roster.jsp will perform a few duties;
these include providing a list of currently entered teams, deleting entered teams when necessary, chang-
ing the name of an existing team, or adding a new team.

It would not normally be a good idea to include so much responsibility in one page, but as the roster
table is so simple and the operations to be performed on the data are not complex, it’s not going to cause
any major issues. Create the JSP code for roster.jsp in the web directory as follows:

<!--
<%@ taglib prefix=”fmt” uri=”http://java.sun.com/jsp/jstl/fmt” %>
<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
-->
<jsp:useBean id=”roster” class=”java.util.ArrayList” scope=”request” />
<jsp:useBean id=”SERVLET_PATH” class=”java.lang.String” scope=”request” />
<c:set value=”Team Roster Management” var=”title” />
<html>

<head>
<script type=”text/javascript” >

function modifyTeam(id) {
var roster = document.rosterlist;
roster.ACTION.value=”ROSTER_MODIFY”;
roster.teamid.value=id;
var elementName = “teamname_”+id;
var name = roster.elements[elementName].value;

759

Access to Databases

28_57485x ch23.qxd 1/14/05 10:18 PM Page 759

TEAM LinG - Live, Informative, Non-cost and Genuine!

roster.teamname.value=name;
roster.submit();
}

function deleteTeam() {
document.rosterlist.ACTION.value=”ROSTER_DELETE”;
document.rosterlist.submit();
}

</script>
<title><c:out value=”${title}” /></title>

</head>
<body>

<h1><c:out value=”${title}” /></h1>
<table border=”1”>

<tr>
<th>Team ID</th>
<th>Team Name</th>
<th>New Name</th>
<th colspan=”2”> </th>

</tr>
<form name=”rosterlist” action=”<c:out value=”${SERVLET_PATH}” />”

method=”POST”>
<input type=”hidden” name=”ACTION” value=”ROSTER” />
<input type=”hidden” name=”teamid” value=”” />
<input type=”hidden” name=”teamname” value=”” />

<c:forEach var=”team” items=”${roster}” >
<tr>
<td>${team.id}</td>
<td>${team.name}</td>
<td><input id=”teamname_${team.id}” type=”text” size=”20” /></td>
<td><input type=”button” value=”Modify”

onclick=”modifyTeam(‘${team.id}’)” /></td>
<td><input name=”DELETE_LIST” type=”checkbox” value=”${team.id}” /></td>
</tr>

</c:forEach>
<tr>

<td align=”right” colspan=”4”>Delete selected items</td>
<td><input type=”button” value=”Delete Checked”

onclick=”deleteTeam()” /></td>
</tr>

</form>
<form action=”<c:out value=”${SERVLET_PATH}” />” method=”POST”>
<input type=”hidden” name=”ACTION” value=”ROSTER_ADD” />
<tr>

<td colspan=”2”>Add new Team</td>
<td><input name=”teamname” type=”text” size=”20” /></td>
<td><input name=”ADD” type=”submit” value=”Add” /></td>
<td> </td>

</tr>
</table>

</body>
</html>

760

Chapter 23

28_57485x ch23.qxd 1/14/05 10:18 PM Page 760

TEAM LinG - Live, Informative, Non-cost and Genuine!

This first section (in the <head> tags) contains some functions that make operating the HTML a little
easier. Because of a minor limitation on the way that HTML works, dual operations such as the Modify
and Delete can be performed this way. The jsp:useBean for roster contains the results of the
database query performed by the AdminServlet. The remainder of roster.jsp (the section in the
<body>) is fairly standard, displaying the team id and team name in a list.

The next listing shows the AdminServlet that controls the inputs from the JSP page, determines what
action to take, and then coordinates the results back to the JSP page. This is another example, a very sim-
ple example admittedly, of the Model View Controller (MVC) architecture covered in more detail in
Chapter 17, “Model View Controller.”

Create the file AdminServlet.java in the src/com/wrox/begjsp/ch23.football directory with the
following contents:

package com.wrox.begjsp.ch23.football;

import java.io.IOException;
import java.sql.SQLException;
import java.util.List;

import javax.naming.NamingException;
import javax.servlet.RequestDispatcher;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class AdminServlet extends HttpServlet
{

private static final String ROSTER_PAGE = “roster.jsp”;

private static final String ACTION_TOKEN = “ACTION”;

private static final String ACTION_ROSTER = “ROSTER_LIST”;
private static final String ACTION_ROSTER_ADD = “ROSTER_ADD”;
private static final String ACTION_ROSTER_MOD = “ROSTER_MODIFY”;
private static final String ACTION_ROSTER_DEL = “ROSTER_DELETE”;

private FootyJDBCHelper _jdbcHelper = null;

public void init() throws ServletException
{

try
{

_jdbcHelper = new FootyJDBCHelper();
}
catch (NamingException unexpected)
{

throw new ServletException(“Cannot locate required database : “ +
unexpected);

}
}

761

Access to Databases

28_57485x ch23.qxd 1/14/05 10:18 PM Page 761

TEAM LinG - Live, Informative, Non-cost and Genuine!

public void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException

{
doPost(request, response);

}

public void doPost(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException

{
String action = findAction(request);

if (ACTION_ROSTER_ADD.equals(action))
{

String newNameString = request.getParameter(“teamname”);
if (isValidString(newNameString))
{

processRosterAdd(newNameString);
}

}
else if (ACTION_ROSTER_DEL.equals(action))
{

String deleteIDs[] = request.getParameterValues(“DELETE_LIST”);
if (deleteIDs != null)
{

for (int i = 0; i < deleteIDs.length; i++)
{

String idString = deleteIDs[i];
int id = Integer.parseInt(idString);
processRosterDelete(id);

}
}

}
else if (ACTION_ROSTER_MOD.equals(action))
{

String modIdString = request.getParameter(“teamid”);
int modId = Integer.parseInt(modIdString);
String modTeamName = request.getParameter(“teamname”);
if (isValidString(modTeamName) && (modId > 0))
{

processRosterModify(new Team(modId, modTeamName));
}

}
processRosterList(request);
performRedirect(ROSTER_PAGE, request, response);

}

private void processRosterList(HttpServletRequest request)
{

RosterManager manager = null;
try
{

manager = getRosterManager();
List teams = manager.getTeamsInRoster();

762

Chapter 23

28_57485x ch23.qxd 1/14/05 10:18 PM Page 762

TEAM LinG - Live, Informative, Non-cost and Genuine!

request.setAttribute(“roster”, teams);
}
catch (DataException unexpected)
{

log(“Error processing roster list : “ + unexpected);
}
finally
{

if (manager != null)
{

manager.releaseResources();
}

}
}

private void processRosterDelete(int teamId)
{

RosterManager manager = null;
try
{

manager = getRosterManager();
manager.deleteTeamFromRoster(teamId);

}
catch (DataException unexpected)
{

log(“Error adding new team to roster : “ + unexpected);
}
finally
{

if (manager != null)
{

manager.releaseResources();
}

}
}

private void processRosterAdd(String newTeam)
{

RosterManager manager = null;
try
{

manager = getRosterManager();
manager.addNewTeamToRoster(new Team(0, newTeam));

}
catch (DataException unexpected)
{

log(“Error adding new team to roster : “ + unexpected);
}
finally
{

if (manager != null)
{

manager.releaseResources();
}

763

Access to Databases

28_57485x ch23.qxd 1/14/05 10:18 PM Page 763

TEAM LinG - Live, Informative, Non-cost and Genuine!

}
}

private void processRosterModify(Team team)
{

RosterManager manager = null;
try
{

manager = getRosterManager();
manager.modifyTeamInRoster(team);

}
catch (DataException unexpected)
{

log(“Error modifying team in roster : “ + unexpected);
}
finally
{

if (manager != null)
{

manager.releaseResources();
}

}
}

private RosterManager getRosterManager() throws DataException
{

RosterManager manager;
try
{

manager =
RosterManagerFactory.createRosterManager(

_jdbcHelper.getConnection());
}
catch (SQLException connectionFailure)
{

throw new DataException(connectionFailure.getMessage());
}
return manager;

}

private boolean isValidString(String input)
{

return ((input != null) && (input.length() > 0));
}

private String findAction(HttpServletRequest request)
{

String action;
if ((action = request.getParameter(ACTION_TOKEN)) == null)
{

action = ACTION_ROSTER;
}
return action;

764

Chapter 23

28_57485x ch23.qxd 1/14/05 10:18 PM Page 764

TEAM LinG - Live, Informative, Non-cost and Genuine!

}

private void performRedirect(String path, HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException

{
if (path != null)
{

request.setAttribute(“SERVLET_PATH”, request.getContextPath()
+ request.getServletPath());

RequestDispatcher dispatch = request.getRequestDispatcher(path);
dispatch.forward(request, response);

}
}

}

How It Works
The AdminServlet is the coordination point for the application. It receives requests from the browser,
checks for errors, and sends the request off to the appropriate method for processing.

The init() method creates an instance of the FootyJDBCHelper(). This object provides a simple
means of looking up and getting database connections. The details for FootyJDBCHelper are shown in
a later section of code.

The doPost() method identifies the appropriate action, and then calls the appropriate method to pro-
cess the data from the browser. This works well for this simple example. More complicated applications
with more actions and processes will find that an approach like this quickly becomes cumbersome.
Jakarta Struts may be an appropriate framework to manage this complexity, and is described in detail in
Chapter 19, “Struts Framework.” However, Struts may be overkill for some applications, so a simplified
mechanism for dealing with this complexity is shown in later sections.

processRosterList() is the first in a group of methods that are very similar. The all use an imple-
mentation of the RosterManager and a connection from the JDBC helper. The RosterManager
provides an encapsulation of the database-specific code. RosterManager is an interface, and the reasons
behind this choice will become more apparent as the chapter progresses. processRosterDelete(),
processRosterAdd(), and processRosterModify() provide the additional methods that process
the commands coming from the browser.

One of the advantages of using interfaces rather than concrete classes is that we can change the under-
lying implementation without changing the calling code. This chapter examines a number of different
persistence techniques, each of which can create a specific implementation of RosterManager.

A very, very important consideration when building code that works with databases is cleaning up the
resources used with each database interaction. Not closing the connection in the manner shown previ-
ously can lead to resource starvation.

As an interesting exercise, remove the manager.releaseResources() from processRoster
List() (or other methods) and then repeatedly access the Web application. Depending on the configu-
ration of the application server, resource starvation may result as the database connections become
exhausted.

765

Access to Databases

28_57485x ch23.qxd 1/14/05 10:18 PM Page 765

TEAM LinG - Live, Informative, Non-cost and Genuine!

Management of externally located resources is an important consideration for Web application develop-
ment. Correctly identifying the error paths and exception paths through code, and making sure that the
resources are always cleaned up, is a time-consuming, but necessary activity.

Comprehensive unit testing can assist with locating issues like resource mismanagement, and Chapters
25, “Performance,” and 26, “Best Practices and Tools,” contain some additional tips on this topic for
readers who are curious to explore this further.

The method getRosterManager() is worthy of a little explanation. This method could be implemented
by just creating a specific implementation of a RosterManager, as shown here:

private RosterManager getRosterManager()
{

return new JDBCRosterManager(
_jdbcHelper.getConnection());

}

However, when the implementation changes to another mechanism — for example, a
HibernateRosterManager— then it is necessary to change the AdminServlet.
RosterManagerFactory implements all the logic for determining which version of the RosterManager
will be used by the application.

This can be configured externally by an XML file, a properties file, or even by using deployment descrip-
tor parameters. Not only can the application be installed on different application servers, it now can
choose which mechanism it wants to use to persist the data, all of which is isolated in a couple of sup-
port classes, rather than scattered throughout the business logic of the application.

Some readers may consider this additional work excessive for small applications. The Web application
shown here is about as small as it gets, and the additional work consisted of creating an interface and a
very simple factory class to provide the concrete classes. When coupled with the testing advantages this
approach provides, it should be considered a useful addition to even the smallest Web applications.

The remaining methods in AdminServlet are some utility methods for processing inputs and redirect-
ing to an output page.

The final class to be entered is the most interesting in the context of database development. The
JDBCRosterManager class contains all the JDBC-specific persistence code. This is where the application
utilizes the JDBC objects for communicating with the database.

In the next section, this class is examined in more detail than the previous classes were because a num-
ber of new concepts are introduced.

Try It Out JDBCRosterManager
The JDBCRosterManager class provides a single point in the application where all of the database-
specific code is implemented

Create the file JDBCRosterManager.java in the src/com/wrox/begjsp/ch23.football directory
with the following contents:

766

Chapter 23

28_57485x ch23.qxd 1/14/05 10:18 PM Page 766

TEAM LinG - Live, Informative, Non-cost and Genuine!

package com.wrox.begjsp.ch23.football;

import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
import java.util.ArrayList;
import java.util.List;

public class JDBCRosterManager implements RosterManager
{

private Connection _connection;

public JDBCRosterManager(Connection connection)
{

_connection = connection;
}
public List getTeamsInRoster() throws DataException
{

List results = new ArrayList();
Statement statement = null;
try
{

statement = _connection.createStatement();
ResultSet teams =

statement.executeQuery(“SELECT * FROM roster ORDER BY id ASC”);
if (teams != null)
{

while (teams.next())
{

int id = teams.getInt(“id”);
String name = teams.getString(“teamname”);
Team team = new Team(id, name);
results.add(team);

}
}

}
catch (SQLException unexpected)
{

throw new DataException(unexpected.getMessage());
}
finally
{

safeClose(statement);
}
return results;

}
private void safeClose(Statement statement)
{

try
{

if (statement != null)
{

767

Access to Databases

28_57485x ch23.qxd 1/14/05 10:18 PM Page 767

TEAM LinG - Live, Informative, Non-cost and Genuine!

statement.close();
}

}
catch (SQLException unexpected)
{

// ignore this
}

}

public void releaseResources()
{

if (_connection != null)
{

try
{

_connection.close();
}
catch (SQLException unexpected)
{

// ignore this
}

}
}
public boolean addNewTeamToRoster(Team newTeam) throws DataException
{

PreparedStatement statement = null;
boolean result = false;
try
{

statement = _connection.prepareStatement(
“INSERT INTO roster (teamname) values (?)”);

statement.setString(1, newTeam.getName());

result = statement.execute();
}
catch (SQLException unexpected)
{

throw new DataException(unexpected.getMessage());
}
finally
{

safeClose(statement);
}
return result;

}

public boolean modifyTeamInRoster(Team modifyTeam) throws DataException
{

PreparedStatement statement = null;
boolean result = false;
try
{

statement = _connection.prepareStatement(
“UPDATE roster set teamname = ? where id = ?”);

768

Chapter 23

28_57485x ch23.qxd 1/14/05 10:18 PM Page 768

TEAM LinG - Live, Informative, Non-cost and Genuine!

statement.setString(1, modifyTeam.getName());
statement.setInt(2, modifyTeam.getId());

result = statement.execute();
}
catch (SQLException unexpected)
{

throw new DataException(unexpected.getMessage());
}
finally
{

safeClose(statement);
}
return result;

}

public boolean deleteTeamFromRoster(int teamId) throws DataException
{

PreparedStatement statement = null;
boolean result = false;
try
{

statement = _connection.prepareStatement(
“DELETE from roster where id = ?”);

statement.setInt(1, teamId);

result = statement.execute();
}
catch (SQLException unexpected)
{

throw new DataException(unexpected.getMessage());
}
finally
{

safeClose(statement);
}
return result;

}
}

How It Works
The constructor for JDBCRosterManager allows the Connection to be provided to the object. This
gives the controlling code much greater scope for determining what capabilities JDBCRosterManager
will provide. For example, in testing JDBCRosterManager, there is the capacity to provide a
Connection that checks to see if it has been closed correctly. This helps to ensure that the code using
JDBCRosterManager and the JDBC Connection will operate correctly in a production environment.

The method getTeamsInRoster() is used to process the request for the list of teams. The creation of
the Statement from the Connection enables a SQL statement to be processed by the database. The
results of the query are returned in a ResultSet. The data in the ResultSet is processed to return a
List of Team objects.

769

Access to Databases

28_57485x ch23.qxd 1/14/05 10:18 PM Page 769

TEAM LinG - Live, Informative, Non-cost and Genuine!

It may be very tempting to just return the ResultSet and let the JSP extract the data required. While
this might be an appropriate solution for an application of limited complexity, writing applications in
this manner causes implementation details that affect the database structure to be reflected in the display
logic of the application. This unnecessarily causes ripple effects when changes are made to the database
during development, or enhancements are added to the application.

Creating a layer that deals with database access, and then produces results in terms of the business
domain — in our case, the Team object — enables the persistence mechanism to be transparently changed
without affecting the rest of the application.

In the section on Hibernate (another persistence mechanism), the benefits of this decision will become
apparent, as it can be implemented, replacing the JDBCRosterManager, without changing the rest of the
application.

The getTeamsInRoster() method completes with a call to safeClose(). This again follows the
approach of releasing resources as soon as practical. Closing the Statement will also close the
ResultSet that is associated with the Statement.

The safeClose() and releaseResources() methods ignore the SQLException that can be thrown by
the close() methods. In general, ignoring a SQLException is not a good practice, but if the close fails,
there is little the application can do to address the situation. In a more production-focused application, it
would be worth logging the SQLException, as this might indicate more fundamental problems with the
environment and assist with locating the issue.

Adding the logging code to this example would not add to our discussion here, and may end up obscur-
ing the more important concepts in this section.

addNewTeamToRoster(), modifyTeamInRoster(), and deleteTeamFromRoster() all use the
PreparedStatement for sending commands to the database.

The PreparedStatement enables precompilation of the SQL, and the use of parameters to allow for dif-
ferent values to be included as part of the processing.

Note that when using a PreparedStatement, the parameters are specified by number. This process
can be error prone, especially as the number of parameters increases. If changes to the database schema
are likely, good testing of these methods is very important!

The final classes and interfaces for this Web application are included here for completeness. These are
the RosterManager interface, and the RosterManagerFactory and FootyJDBCHelper classes.

Create the file RosterManager.java in the src/com/wrox/begjsp/ch23.football directory with
the following contents:

770

Chapter 23

28_57485x ch23.qxd 1/14/05 10:18 PM Page 770

TEAM LinG - Live, Informative, Non-cost and Genuine!

package com.wrox.begjsp.ch23.football;

import java.util.List;

public interface RosterManager
{

void releaseResources();

List getTeamsInRoster() throws DataException;
boolean addNewTeamToRoster(Team newTeam) throws DataException;
boolean modifyTeamInRoster(Team modifyTeam) throws DataException;
boolean deleteTeamFromRoster(int teamId) throws DataException;

}
This interface will expand over time. After the teams, the venue, round and fixture
access methods need to be added as more functionality is developed.

Create the file RosterManagerFactory.java in the src/com/wrox/begjsp/ch23.football direc-
tory with the following contents:

package com.wrox.begjsp.ch23.football;

import java.sql.Connection;

public class RosterManagerFactory
{

public static final String JDBC_MANAGER = “JDBC”;
public static final String HIBERNATE_MANAGER = “HIBERNATE”;

private static String _currentManager = JDBC_MANAGER;

public static void setRosterManagerType(String type)
{

_currentManager = type;
}

public static RosterManager createRosterManager(Connection connection)
{

if (JDBC_MANAGER.equals(_currentManager))
{

return new JDBCRosterManager(connection);
}
throw new IllegalStateException(_currentManager +

“ persistence not implemented”);
}

}

771

Access to Databases

28_57485x ch23.qxd 1/14/05 10:18 PM Page 771

TEAM LinG - Live, Informative, Non-cost and Genuine!

The RosterManagerFactory provides a transparent means of selecting the persistence mechanism. At
this stage of the application, the only choice is the JDBCRosterManager. Later in the application, devel-
opment of an alternative persistence mechanism will be implemented.

Create the file FootyJDBCHelper.java in the src/com/wrox/begjsp/ch23.football directory with
the following contents:

package com.wrox.begjsp.ch23.football;

import java.sql.Connection;
import java.sql.SQLException;

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.sql.DataSource;

public class FootyJDBCHelper
{

private DataSource _dataSource;

public FootyJDBCHelper() throws NamingException
{

Context context = new InitialContext();
Context applicationEnv = (Context)context.lookup(“java:comp/env”);
_dataSource = (DataSource)applicationEnv.lookup(“jdbc/FootyDB”);

}

public Connection getConnection() throws SQLException
{

return _dataSource.getConnection();
}

}

The FootyJDBCHelper provides a means to obtain a Connection from a JNDI DataSource, and is just
a simple utility class to put the external lookup code in one place.

Running the application
To run the Web application, make sure the MySQL database is running, and that the Web application is
deployed correctly to Tomcat, which is also running.

Browse to the following URL:

http://localhost:8080/chapter23/roster.jsp

This will display a page similar to Figure 23-2.

772

Chapter 23

28_57485x ch23.qxd 1/14/05 10:18 PM Page 772

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 23-2: Roster management for football administration

It may seem that there was a lot of code written to perform a very simple Web input screen. The infras-
tructure code in the AdminServlet and the JDBCRosterManager provide a level of separation between
the requests and responses to the Web front end and the loading and storing of data in the database. A
small application does not do justice to the value of this separation; however, in later sections of this
chapter, you will see the benefits of this separation as additional code is added to the Web application
with a very small amount of effort.

This Web application uses a number of different JDBC classes and interfaces:

❑ DataSource: FootyJDBCHelper locates a DataSource via a JNDI lookup, and maintains a ref-
erence so that Connection objects can be obtained.

❑ Connection: FootyJDBCHelper.getConnection() returns a Connection so that it can be
used by JDBCRosterManager to query the database.

❑ Statement, PreparedStatement: JDBCRosterManager uses a Connection to create
Statements that execute SQL, which may return a ResultSet.

❑ ResultSet: JDBCRosterManager.getTeamsInRoster() loops through a ResultSet extract-
ing the returned data and creating objects that will be used by the rest of the application.

773

Access to Databases

28_57485x ch23.qxd 1/14/05 10:18 PM Page 773

TEAM LinG - Live, Informative, Non-cost and Genuine!

Another important lesson is that database resources need to be managed carefully. If you fail to do this,
you will end up with a very unreliable Web application.

The next section examines some of the aspects of building database-backed Web applications. Due to the
multi-threaded, multi-user nature of a Web application, many of the more complex elements are imme-
diately important and relevant to even the smallest Web application.

Building Applications
This section covers a broad range of topics related to building Web applications using databases. Most of
these are not specific to Web applications or JSP, but are common to any applications using a database.

As described in the preceding section, developers of even the smallest Web applications need a higher
level of understanding of database use than they would for single-user desktop applications.

Data characteristics
When building an application that uses a database, it is important to consider not only the data that is
part of the application, but how that data is used.

Different patterns of data use can drastically alter the methods used to work with the data, which can
affect how the application should be built.

For example, administrators need to add, modify, and delete data, whereas the primary consumers
might need read-only access. Designing the application in the same way that a data entry workflow sys-
tem is built may result in an application that suffers from severe performance issues.

Some of the questions that developers need to consider include the following:

❑ How the data is used: Are there many updates and not many reads, or vice versa? Does the
application have an administration interface that requires strong transaction control? Is there a
need to select large sets of data?

❑ Concurrent updates: Do most of the updates occur on the same sets of data, or are most updates
likely to occur on completely different data? Examples of this are workflow applications com-
pared to a bulletin board, or a Web site with personal data updated by individuals.

❑ Stale data: Does it matter if the data on the screen does not reflect the exact state of the
database? In the content entry administration of a workflow application, this is probably very
important, but in the display of the content to end users, probably less so. Due to the inherently
stateless nature of the interactions with the Web browser, the possibility of stale data is worthy
of extra consideration when you are building a Web application. The scope of this issue is
broader than just the nature of the database transaction, but covers the entire end-to-end round-
trip of the data from the database to the browser and back again.

❑ Data history: Is there a need to keep historical information about the data? Is there a versioning
requirement? These requirements might lead to the concept of a logical delete, whereby the data
is never removed from the database, but instead a flag is maintained on records to indicate its
status. This will have profound implications on the manner in which data is not only main-
tained but queried.

774

Chapter 23

28_57485x ch23.qxd 1/14/05 10:18 PM Page 774

TEAM LinG - Live, Informative, Non-cost and Genuine!

❑ Data migration: Does data need to move from staging databases to production databases? Is
backup and restoration of data needed? Using auto-incrementing identifiers or sequences are
very convenient for generating primary keys for data, but when these are also moved or
migrated to a different system, special consideration needs to be given to how this will be
performed.

Many of the preceding points relate to how data will be managed during an update or query. This will
directly influence the transaction strategy for the Web application. The next section covers transactions
in more detail.

Transactions
A transaction is a unit of work whereby everything within the scope of the transaction must succeed or
nothing will be allowed to succeed. It’s an “all or nothing” situation. The most common example of a
transaction is the transfer of funds from one bank account to another. If any error occurs during process-
ing, then the state of the accounts must return to the state they were in before the transaction started.
This property is known as atomicity.

Transactions are crucial for data integrity in a multi-user environment. When an application undergoes a
transaction, it should move from one consistent state to the next. This property of a transaction is not
directly under the control of the transaction and requires application support. For example, the transac-
tion doesn’t know that account balances cannot become negative; this is an application developer’s
responsibility. All the transaction can guarantee is that if the application data started in a valid state, it
will end up in a valid state after the transaction has completed. This second property of a transaction is
known as consistency.

The third property specifies that while the accounts are under the transaction, no external changes can
be made. For example, in the bank accounts example, after it is determined that sufficient funds are
available for transfer, another withdrawal may occur, causing the account to become overdrawn. This
property is known as isolation.

The final property of a transaction specifies that the results of the transaction are permanently saved. Of
course, another transaction might later change the data, but for each transaction, when complete, the
changes are persisted. This property is known as durability.

These four properties of a transaction (atomicity, consistency, isolation, and durability) are known by the
acronym ACID.

Transactions can be completed when they are committed, or rolled back. A committed transaction will
make the results of the changes durable; and a rolled back transaction will return the application to the
consistent state, prior to the application starting.

Effects of transactions
After discovering the power of the transaction to keep the data in the database and the application in a
consistent, valid state, one might be tempted to use transactions everywhere. Again, there is no such
thing as a free lunch, and transactions require careful use to avoid significant performance issues.

Imagine that for every read of the database, all of the data that was to be read was locked so no changes
were possible. What benefit would that be for most applications? Certainly for a multi-user reporting

775

Access to Databases

28_57485x ch23.qxd 1/14/05 10:18 PM Page 775

TEAM LinG - Live, Informative, Non-cost and Genuine!

application with no data updates, this would severely impact the performance, as each user has to wait
for the previous user to complete the read.

The effects of isolation on a transaction can result in the application performing worse than it would
without using transaction control at all. However, any JDBC query from a database will require a trans-
action. It appears that we’ve reached an impasse!

Luckily, there is a solution; the transaction isolation can be relaxed, lessening the constraints on the
changes that can occur during the transaction. This relaxation, however, can produce other potential
problems for the application:

❑ Dirty reads: A dirty read occurs when changes to data are visible to other transactions prior to
the point at which the transaction making the changes has committed the changes. Dirty reads
are generally okay in a read-only or read-mostly application, but will cause great difficulty
when data integrity is paramount.

❑ Nonrepeatable reads: A nonrepeatable read occurs when an application, in the context of a
transaction, reads some data, and then re-reads the same data and it has changed. This is differ-
ent than the dirty read, in that the same transaction is interfered with by external changes.

❑ Phantom read: A phantom read is a close cousin of the nonrepeatable read. Instead of the data
changing, new data is added. Therefore, an initial query and subsequent query will result in a
different number of rows returned.

With these potential problems identified, JDBC supports four isolation levels, as well as support for no
transactions, but databases are not required to support these isolation levels, or even indicate what level
of support they provide.

These isolation levels (including no transactions) are as follows:

❑ TRANSACTION_NONE: This is the most relaxed isolation, and indicates that transactions are not
supported. This is not normally supported by JDBC drivers, as a compliant driver requires
transaction support. However, vendors may choose to support this as an option. This isolation
level allows all three problems identified earlier to occur.

❑ TRANSACTION_READ_UNCOMMITTED: This isolation level allows for the reading of uncommitted
data by other transactions. This level also allows all three problems to occur.

❑ TRANSACTION_READ_COMMITTED: This level prevents dirty reads because only committed
changes to data are visible to the transaction. This level does not prevent nonrepeatable or
phantom reads from occurring. This level is the most commonly supported, and often the
default level for databases.

❑ TRANSACTION_REPEATABLE_READ: In addition to READ_COMMITTED, this level prevents
other transactions from interfering with data that is being read by the transaction. This prevents
the nonrepeatable read problem, and for most applications this isolation level provides suffi-
cient data integrity.

❑ TRANSACTION_SERIALIZABLE: This is the most restrictive isolation level, and provides com-
plete protection for the problems identified previously. Other transactions cannot read, update,
or create new data in the data set for this transaction. Databases may have different mechanisms
for performing this serialization, and applications need to understand how a specific database
supports this facility.

776

Chapter 23

28_57485x ch23.qxd 1/14/05 10:18 PM Page 776

TEAM LinG - Live, Informative, Non-cost and Genuine!

The transaction isolation level is not set by the JDBC driver, but the default value is provided by the
database, and can be updated by a call to Connection.setTransactionIsolation().

Object-relational mapping
A relational database does a great job of storing the data and allowing languages such as SQL to provide
access. Java, and by extension JSP, provide a fantastic object-oriented development environment with a
robust set of capabilities for creating objects rich in functionality and for encapsulating data.

While the relational database data structure and the object class model are deceptively similar, the man-
ner in which relationships between the data in the database and the data in the object model are handled
by developers is quite different.

This difference and the requirements to persist the data managed by objects are known as the object-
relational impedance mismatch. To resolve this mismatch, a series of tools have been developed. These
tools are known as object-relational mapping (ORM) tools.

In the Java world, several commercial tools are available, such as TopLink and CocoBase. There is also
the Java Data Objects (JDO) specification, led by the Java Community Process (JCP), which provides a
standardized approach to object persistence.

The most commonly used ORM tool in Java today is Hibernate. Hibernate enjoys much of its success
because it is simple, robust, and one of the best documented open-source products available. Hibernate
is available from www.hibernate.org.

Hibernate is simple in the sense that it provides an API that is easy to work with, and there are no frame-
work or infrastructure requirements for using Hibernate. This provides a very flat learning curve, with
developers being able to start using the tool very quickly.

Another major benefit is that Hibernate is designed to work with plain Java objects. All the Java object
needs to do in order for Hibernate to be able to persist it is to implement a JavaBean (not a Enterprise
JavaBean) interface.

A later example uses Hibernate as the ORM layer in the application.

Different Types of Applications
One of the major benefits of the J2EE technology stack is the flexibility it offers developers in choosing
between a very simple implementation and scaling up to a more complex implementation as the need
demands. After carefully considering the contents of the preceding section, it still may be useful to build
a simple, JSP-based Web application.

The following sections start with examples of building simple applications, and describe techniques for
dealing with more complex applications. The more complex applications will still be quite simple, and it
might be difficult to understand the value in implementing ORM mapping technologies such as JDO or
Hibernate. Chapter 28, “JSP Project II: Shopping Cart Application,” builds a more complete application
using Hibernate, which should provide a better indication of the advantages to be found over using
direct access to the database using JDBC.

777

Access to Databases

28_57485x ch23.qxd 1/14/05 10:18 PM Page 777

TEAM LinG - Live, Informative, Non-cost and Genuine!

Simple applications
Two characteristics that may result from building an application using simple techniques include the
following:

❑ Short life span: An application that is developed only for a prototype or a “once-off” activity
is often a good candidate for a simple implementation. The maintenance issues associated with
building a database-backed Web application are negated by a Web application that has a
short life.

❑ Small scope: The smaller the better! An application with many JSPs or complex data arrange-
ments will very quickly become too cumbersome and prone to errors when building.

Two approaches that are suitable for building simple Web applications include the following:

❑ Have a JSP page connect directly to a database, using the <sql:> tags.

❑ Use simple JDBC-based helper classes with the JSP page to encapsulate the database
functionality.

The characteristics and approaches identified here are not exhaustive but do illustrate the style of appli-
cation and the solutions that may be appropriate. As with all software development activities, spending
the appropriate time thinking about the problem and potential solutions will lead to a better result than
blindly following advice written in a book!

Using JSP and JDBC
This part of the application will perform the data entry and viewing of information for the rounds table.
Like the previous example of storing data in the roster table, this is a very simple part of the application.
To contrast the development style, compare how the data entry and result display is performed in this
section with the roster code.

The following Try It Out example uses the <sql> tags available in the JSTL to directly communicate with
the database using JSP. The <sql> tags provide wrappers around the JDBC classes so they can be
directly used by the JSP pages.

Try It Out <sql:> Tags in JSP
The first JSP page lists the currently entered rounds, and then provides an input area to add new rounds;
or, if the round number is the same as previous rounds, it updates the round information. There is no
facility to delete rounds.

Create the file round-input.jsp in the web directory with the following contents:

<!--
<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<%@ taglib prefix=”sql” uri=”http://java.sun.com/jsp/jstl/sql” %>
-->
<c:set value=”Round Management” var=”title” />

<sql:query var=”roundlist” dataSource=”jdbc/FootyDB” >

778

Chapter 23

28_57485x ch23.qxd 1/14/05 10:18 PM Page 778

TEAM LinG - Live, Informative, Non-cost and Genuine!

SELECT * from round
</sql:query>

<html>
<head>

<title><c:out value=”${title}” /></title>
</head>
<body>

<h1><c:out value=”${title}” /></h1>
<table border=”1”>

<tr>
<th>Round Number</th>
<th>Start Date</th>
<th colspan=”2”>End Date</th>

</tr>
<c:forEach var=”round” items=”${roundlist.rows}” >

<tr>
<td>${round.number}</td>
<td>${round.startdate}</td>
<td colspan=”2”>${round.enddate}</td>

</tr>
</c:forEach><tr>

<form name=”round-input” action=”round-process.jsp” method=”POST”>
<td><input name=”round_number” type=”text” size=”20” /></td>
<td><input name=”round_startdate” type=”text” size=”20” /></td>
<td><input name=”round_enddate” type=”text” size=”20” /></td>
<td><input type=”submit” value=”Update” /></td>

</form>
</tr>

</table>

</body>
</html>

The page is similar to the roster.jsp but with the addition of the <sql:query> tag at the start of the
page to select the existing rounds. The use of the dataSource attribute enables the JSP to participate in
the JNDI lookup for the DataSource of the same name. This is not required, but is definitely a good
idea.

However, if the JSP is executing in a JSP container that does not provide JNDI support, then the alterna-
tive is to use an equivalent, as shown in the following JSP fragment:

<sql:query var=”roundlist”
dataSource=”jdbc:mysql://localhost/footydb,com.mysql.jdbc.Driver,footy,footy”>
SELECT * from round

</sql:query>

There is a third means of obtaining a dataSource that will be shown in round-process.jsp.

The other section of JSP code that is important to consider is the <c:forEach> iterator, and the use of
roundlist.rows to select the rows returned by the <sql:query>. It is very convenient that the
database column names can be used to select the information directly from the returned rows. For a
simple application, input and output screens can be developed very rapidly.

779

Access to Databases

28_57485x ch23.qxd 1/14/05 10:18 PM Page 779

TEAM LinG - Live, Informative, Non-cost and Genuine!

Create the file round-process.jsp in the web directory with the following contents:

<!--
<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<%@ taglib prefix=”sql” uri=”http://java.sun.com/jsp/jstl/sql” %>
<%@ taglib prefix=”fmt” uri=”http://java.sun.com/jsp/jstl/fmt” %>
-->
<c:set value=”Round Management” var=”title” />

<sql:setDataSource dataSource=”jdbc/FootyDB” />

<sql:query var=”roundExists” >
SELECT * from round
WHERE number = ?
<sql:param value=”${param.round_number}” />

</sql:query>

<c:choose>
<c:when test=”${roundExists.rowCount != 0}”>

<sql:update>
UPDATE round SET startdate = ?, enddate = ?
WHERE number = ?
<sql:param value=”${param.round_startdate}” />
<sql:param value=”${param.round_enddate}” />
<sql:param value=”${param.round_number}” />

</sql:update>
</c:when>
<c:otherwise>

<sql:update>
INSERT INTO round (number, startdate, enddate)
VALUES (?, ?, ?)
<sql:param value=”${param.round_number}” />
<sql:param value=”${param.round_startdate}” />
<sql:param value=”${param.round_enddate}” />

</sql:update>
</c:otherwise>

</c:choose>
<c:redirect url=”round-input.jsp” />

How It Works
To run the Web application, make sure the MySQL database is running, and that the Web application is
deployed correctly to Tomcat, which is also running.

Browse to the following URL:

http://localhost:8080/chapter23/round-input.jsp

This will display a page similar to Figure 23-3.

780

Chapter 23

28_57485x ch23.qxd 1/14/05 10:18 PM Page 780

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 23-3: Round input management

Entering data in the input fields and clicking the Update button on round-input.jsp will post the
form data to round-process.jsp. This provides an example of writing a Web application using no Java
code at all.

The preceding code is very simple and took very little time to implement. There is limited checking of
input data, and any data that isn’t correctly formatted or of the correct value (for example, using xxx as
the round number) produces erroneous results.

If we examine round-process.jsp, we see that it is possible to introduce logic to check the inputs for
validity and redirect to error pages. However, the nature of writing more complex code in a JSP will
rapidly lead to cumbersome pages that will become a maintenance nightmare over time. This is why it
is recommended to use JSP for data capture and presentation, and servlets for the controlling logic for
applications that have more complex requirements, and a longer active life.

Using this technique for developing Web applications is fantastic for prototyping and for working with
customers or other developers to elicit further requirements. Rapid feedback of the visual interface, com-
plete with realistic data, can assist in furthering the application’s development.

781

Access to Databases

28_57485x ch23.qxd 1/14/05 10:18 PM Page 781

TEAM LinG - Live, Informative, Non-cost and Genuine!

More complex applications
Some of the application characteristics that may constrain a developer from building an application
using the simple techniques shown previously include the following:

❑ Medium to long life span: As soon as an application enters a maintenance phase, adding new
features and fixing defects can necessitate a more structured code base. This enables developers
to minimize the potential for introducing errors into currently working code.

❑ Changing requirements: If requirements are changing, so will the code that implements the
requirements. If an application has an unclear separation of responsibilities (the preceding
example had viewing and database access in one JSP), then modifying a single piece of code can
result in unintended side-effects. In general, separating responsibilities is good practice, but
when working with databases it is even more important, as some of the subtle defects that occur
when resources are not released correctly, or when transaction control is applied incorrectly, can
lead to great frustration when the client is asking for “just a simple change.”

❑ Larger scope: A larger scope means more work, more code, and potentially more developers,
all of which results in a greater likelihood of errors occurring.

The first example shown in this chapter, the development of the code for roster data entry, demon-
strates a set of techniques that enable development to scale to more complex applications.

The next example looks at implementing database access using the ORM tool Hibernate.

Using Hibernate
Hibernate is described by the Hibernate developers as “relational persistence for idiomatic Java.”
Hibernate provides a service for persisting plain Java objects (as opposed to a framework such as EJB)
and a query language (HQL).

Using Hibernate enables a different approach to using JDBC to persist data. The use of the
RosterManager shown earlier is a common pattern using JDBC. The Manager interface provides a
service layer that will translate Java objects (such as the Team) and then use an SQL command to store
or retrieve the data. This mapping layer becomes quite cumbersome as application complexity increases,
especially when data relationships become involved.

However, using Hibernate (or JDO), the Java objects are used directly as part of the transaction. These
objects can also contain collections of other objects, representing the data relationships that will also
be persisted.

The following example uses Hibernate to select objects from a database:

Query allTeams = session.createQuery(“from Team as team order by team.id asc”);
List list = allTeams.list();

The returned List contains fully created and populated Team objects. The session object is used to
maintain a conversation between the application and the database and is responsible for maintaining a
cache of the persistent objects.

782

Chapter 23

28_57485x ch23.qxd 1/14/05 10:18 PM Page 782

TEAM LinG - Live, Informative, Non-cost and Genuine!

Compare this to the equivalent JDBC:

ResultSet teams = statement.executeQuery(“SELECT * FROM roster ORDER BY id ASC”);
while (teams.next())
{

int id = teams.getInt(“id”);
String name = teams.getString(“teamname”);
Team team = new Team(id, name);
results.add(team);

}

Not a huge difference for a query, but performing an insert or an update is where Hibernate’s affinity
with the Java language becomes apparent.

You can insert a new record using JDBC as follows:

Team newTeam = new Team(0, “New Town”);
insertStmt = con.prepareStatement(“INSERT INTO roster (teamname) values (?)”);
insertStmt.setString(1, newTeam.getName());

result = statement.execute();

Unfortunately, this example isn’t very “Java-like.” Compare this to the Hibernate equivalent:

Team newTeam = new Team(0, “New Town”);
Transaction tx = session.beginTransaction();
session.save(newTeam);
tx.commit();

To achieve this, Hibernate needs to be configured with a mapping between the objects and the relational
data structures. This is done by an XML configuration file for each of the objects that are persisted.

An example of a mapping file is as follows:

<hibernate-mapping>
<class name=”com.wrox.begjsp.ch23.football.Team” table=”roster”>

<id name=”_id” column=”id” access=”field” type=”integer” unsaved-value=”0”>
<generator class=”native” />

</id>
<property name=”_name” column=”teamname” access=”field” type=”string” />

</class>
</hibernate-mapping>

The file consists of the name of the class and the table that contains the data. The next elements are the
fields of the objects and the mapping to the columns in the database. The id element represents the pri-
mary key of the data in the table. It is conventional to place the metadata mapping files in the same
directory as the Java objects that they configure.

As the preceding short fragments indicate, Hibernate is a fairly easy tool to work with — the following
example elaborates on the capabilities of Hibernate, including relationships between objects.

783

Access to Databases

28_57485x ch23.qxd 1/14/05 10:18 PM Page 783

TEAM LinG - Live, Informative, Non-cost and Genuine!

Installing Hibernate
The first task is to download and install Hibernate. Download the latest version from www.hibernate.
org. At the time of this writing, this is version 2.1.4.

Installing Hibernate is a matter of uncompressing the downloaded hibernate-2.1.4 archive. The
archive contains all the Hibernate JAR files and all the Hibernate documentation.

To use Hibernate in the Web application, a number of libraries must be installed in the WEB-INF/lib
directory of the Web application.

The hibernate-2.1.4/lib directory contains a README.txt file that describes all the libraries pro-
vided by Hibernate, and which of them are required for the runtime. This example extends the football
roster application, so copy these files into the current WEB-INF/lib.

The files used are as follows:

❑ cglib-full-2.0.1.jar

❑ commons-collections-2.1.jar

❑ commons-logging-1.0.3.jar

❑ dom4j-1.4.jar

❑ ehcache-0.7.jar

❑ hibernate2.jar

❑ jta.jar

❑ odmg-3.0.jar

In the following series of Try It Out examples, you use Hibernate to build a Web application. This exam-
ple builds the fixture and venue components for the football application. All the code for this example
is available for download from www.wrox.com. The complete application contains significant amounts
of code, so the following examples highlight the development activities involved in using Hibernate.

This is a fairly detailed walkthrough of using databases with Hibernate, and it contains several different
sections to make it easier to follow the steps required. Not all of the Try It Out examples create a work-
ing application. Where the Web application can be successfully operational, it will be mentioned in the
“How It Works” section.

Try It Out Configuring a Persistent Object in Hibernate
As mentioned earlier, persistent objects in Hibernate are just plain Java objects. The first part of develop-
ing a Hibernate application is to create these objects.

Create the file Venue.java in the src/com/wrox/begjsp/ch23/football directory with the follow-
ing contents:

784

Chapter 23

28_57485x ch23.qxd 1/14/05 10:18 PM Page 784

TEAM LinG - Live, Informative, Non-cost and Genuine!

package com.wrox.begjsp.ch23.football;

public class Venue
{

private int _id;
private String _location;

public Venue(int id, String location)
{

_id = id;
_location = location;

}

public int getId()
{

return _id;
}

public String getLocation()
{

return _location;
}

public boolean equals(Object obj)
{

if (obj instanceof Venue)
{

Venue compare = (Venue)obj;
return (_id == compare.getId());

}
return false;

}

public int hashCode()
{

return _location.hashCode();
}

public String toString()
{

return “[“ + _id + “] : [“ +_location + “]”;
}

private Venue()
{

// required for hibernate
}

private void setId(int id)
{

_id = id;
}

private void setLocation(String location)

785

Access to Databases

28_57485x ch23.qxd 1/14/05 10:18 PM Page 785

TEAM LinG - Live, Informative, Non-cost and Genuine!

{
_location = location;

}
}

Create the file Venue.hbm.xml in the src/com/wrox/begjsp/ch23.football directory with the fol-
lowing contents:

<?xml version=”1.0”?>
<!DOCTYPE hibernate-mapping PUBLIC

“-//Hibernate/Hibernate Mapping DTD//EN”
“http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd”>

<hibernate-mapping>
<class name=”com.wrox.begjsp.ch23.football.Venue” table=”venue”>

<id name=”id” column=”id” type=”integer” unsaved-value=”0”>
<generator class=”native” />

</id>
<property name=”location” column=”location” type=”string” />

</class>
</hibernate-mapping>

How It Works
Venue is a standard-looking JavaBean, except for the provision of the private setters and the default
no-argument constructor. The Venue objects are immutable, and Hibernate can work with objects such
as these in two ways. The method used in Venue.java is to provide private setters. Hibernate can
then use those setters to populate the objects. The second method is shown in the file containing the
Hibernate XML for Team.java shown previously. Hibernate can directly manipulate the fields of the
object when the XML configuration for the property includes the access=”field” attribute and value,
as shown in the following example:

<property name=”_name” column=”teamname” access=”field” type=”string” />

Hibernate’s developers do not recommend using the access=”field” attribute, but this is for reasons
of encapsulation, rather than any underlying technical issue. The choice of which approach to take is left
in the hands of the application developer.

The next Try It Out example uses the persistent object just configured to create, load, and update data
stored in the database. This section introduces the simple API that Hibernate provides to perform these
operations.

Try It Out Creating, Loading, and Updating Data with Hibernate
To work with the persistent objects, we will create a Java class that provides an interface between the
code manipulating the HTTP-specific parts of the data and the code for persistence.

This functionality is provided by the HibernateRosterManager. It contains the support code that ini-
tializes the Hibernate sessions, as well as the functionality for processing the requests. This code is the
Hibernate equivalent of the JDBCRosterManager that was developed earlier in this chapter.

786

Chapter 23

28_57485x ch23.qxd 1/14/05 10:18 PM Page 786

TEAM LinG - Live, Informative, Non-cost and Genuine!

Modify the RosterManager.java interface to provide support for the new functionality as follows:

package com.wrox.begjsp.ch23.football;

import java.util.List;

public interface RosterManager
{

void releaseResources();

List getVenuesInRoster() throws DataException;
boolean addNewVenueToRoster(Venue venue) throws DataException;
boolean deleteVenueFromRoster(int venueId) throws DataException;
boolean modifyVenueInRoster(Venue venue) throws DataException;

}

This change has removed the previously available methods for the Team object management. This is to
simplify the implementation steps. The Team object management will be added back into the
RosterManager interface later in the chapter.

Create the file HibernateRosterManager.java in the src/com/wrox/begjsp/ch23/football direc-
tory with the following contents:

package com.wrox.begjsp.ch23.football;

import java.sql.Connection;
import java.sql.SQLException;
import java.util.List;
import java.util.Properties;

import net.sf.hibernate.HibernateException;
import net.sf.hibernate.MappingException;
import net.sf.hibernate.Query;
import net.sf.hibernate.Session;
import net.sf.hibernate.SessionFactory;
import net.sf.hibernate.Transaction;
import net.sf.hibernate.cfg.Configuration;

public class HibernateRosterManager implements RosterManager
{

private Connection _connection;
private SessionFactory _sessionFactory;
private Session _currentSession;

public HibernateRosterManager(Connection connection)
{

_connection = connection;

Configuration configuration = new Configuration();
try
{

configuration.addClass(Venue.class);

787

Access to Databases

28_57485x ch23.qxd 1/14/05 10:18 PM Page 787

TEAM LinG - Live, Informative, Non-cost and Genuine!

}
catch (MappingException mappingFailure)
{

throw new IllegalArgumentException(
“Cannot find required object classes, check CLASSPATH : “ +
mappingFailure);

}
Properties props = new Properties();
props.put(“hibernate.dialect”, “net.sf.hibernate.dialect.MySQLDialect”);
props.put(“hibernate.statement_cache.size”, “0”);
configuration.setProperties(props);

try
{

_sessionFactory = configuration.buildSessionFactory();
}
catch (HibernateException sessionFailure)
{

throw new IllegalArgumentException(
“Cannot build session factory, check configuration : “ +
sessionFailure);

}
}
/*-- getting objects --*/
public List getVenuesInRoster() throws DataException
{

return getAllItems(“from Venue as venue order by venue.id asc”);
}

private List getAllItems(String query) throws DataException
{

initSession();
List list = null;
try
{

Query allItems = _currentSession.createQuery(query);
list = allItems.list();

}
catch (HibernateException unexpected)
{

throw new DataException(unexpected.getMessage());
}
finally
{

flushSession();
}
return list;

}
/*-- adding and modifying objects --*/
public boolean addNewVenueToRoster(Venue venue) throws DataException
{

addOrModifyVenue(venue, “ADD”);
}

788

Chapter 23

28_57485x ch23.qxd 1/14/05 10:18 PM Page 788

TEAM LinG - Live, Informative, Non-cost and Genuine!

public boolean modifyVenueInRoster(Venue venue) throws DataException
{

addOrModifyVenue(venue, “MODIFY”);
}

private boolean addOrModifyVenue(Venue venue, String action)
{

initSession();
Transaction tx = null;
try
{

tx = _currentSession.beginTransaction();
_currentSession.saveOrUpdate(venue);
tx.commit();

}
catch (HibernateException cannotSaveOrUpdate)
{

try
{

tx.rollback();
}
catch (HibernateException cannotRollback)
{

// log this error
}
throw new DataException(“Unable to “+action+” venue : “+

cannotSaveOrUpdate.getMessage());
}
finally
{

flushSession();
}

return false;
}
/*-- delete objects --*/
public boolean deleteVenueFromRoster(int id) throws DataException
{

initSession();
Transaction tx = null;
try
{

tx = _currentSession.beginTransaction();
Venue deleted = _currentSession.load(Venue.class, new Integer(id));
_currentSession.delete(deleted);
tx.commit();

}
catch (HibernateException cannotDelete)
{

try
{

tx.rollback();
}
catch (HibernateException cannotRollback)

789

Access to Databases

28_57485x ch23.qxd 1/14/05 10:18 PM Page 789

TEAM LinG - Live, Informative, Non-cost and Genuine!

{
// log this error

}
throw new DataException(“Unable to delete venue [“+id+”]: “+

cannotDelete.getMessage());
}
finally
{

flushSession();
}
return false;

}

/*-- utility methods --*/
private void initSession()
{

if (_currentSession == null)
{

_currentSession = _sessionFactory.openSession(_connection);
}

}

private void flushSession()
{

try
{

if (_currentSession != null)
{

_currentSession.flush();
}

}
catch (HibernateException sessionFlushFailure)
{

// log this error
}

}

public void releaseResources()
{

if (_connection != null)
{

try
{

if (_currentSession != null)
{

_currentSession.connection().close();
_currentSession.close();
_currentSession = null;

}
_connection.close();

}
catch (HibernateException sessionCloseFailure)
{

790

Chapter 23

28_57485x ch23.qxd 1/14/05 10:18 PM Page 790

TEAM LinG - Live, Informative, Non-cost and Genuine!

// log this error
}
catch (SQLException connectionCloseFailure)
{

// log this error
}

}
}

}

How It Works
The HibernateRosterManager file contains all the code required to set up a Hibernate connection, find
the configuration for the persistent objects, and work with the objects. The constructor contains all the
necessary code for setting up Hibernate ready for use.

There are two ways to configure Hibernate. In this Try It Out example, you implement the programmatic
method. This involves creating a Configuration object and setting the appropriate properties. The most
common method is to create a Hibernate configuration file that is loaded. Hibernate supports a
Properties format file (hibernate.properties), as well as an XML format configuration file
(hibernate.cfg.xml).

The configuration must include the objects that are to be persisted. You do this by specifying the classes
(as shown previously), or by specifying the hbm.xml files. If the hbm.xml files are in the same location as
the objects, then Hibernate will locate them and load the mapping correctly.

Finally, the specific configuration for the database is required. hibernate.dialect is used so that
Hibernate will generate the correct SQL and use the correct sequence generators (if available) when com-
municating with the database. To maintain interface compatibility with the JDBCRosterManager, the
sessionFactory creates sessions with a provided Connection object. The second configuration item
prevents PreparedStatements from being cached. This is required when an external Connection
object is used to create sessions. Session creation is handled by the openSession() method on a session
factory; an example of this is found later in the initSession() method.

Building a session factory is a slow process, so this should be done as infrequently as possible. In this
example, a session factory is created each time the AdminServlet processes a request. Because a
SessionFactory is responsible for maintaining a configuration relating to a single database, it
would be possible to initialize the servlet factory once on Web application initialization, and make the
factory available to all servlets by placing it in the application scope of the Web application.

To keep this example simple, the creation of the SessionFactory is included in the construction of the
HibernateRosterManager.

The Session object created by the SessionFactory is used to perform all the actions on the persistent
objects. This object provides the Hibernate methods to enable retrieval, addition, deletion, and modifica-
tion of the data.

In the method getVenuesInRoster() is a call to a private method getAllItems(), with an appropri-
ately structured query. The public interface for obtaining a list of Venue objects has been separated from
the private implementation. This enables easy extension as more methods are added to the public

791

Access to Databases

28_57485x ch23.qxd 1/14/05 10:18 PM Page 791

TEAM LinG - Live, Informative, Non-cost and Genuine!

interface, and allows the implementation to be changed if required without affecting the client code. This
is an important concept when developing infrastructure so that other developers using the persistence
layers do not have to continually update code as the persistence infrastructure matures

The methods addNewVenueToRoster () and modifyVenueInRoster () both use the same under-
lying private method addOrModifyVenue() to save or update the data. Hibernate provides a
saveOrUpdate() method to deal with inserting new objects or updating existing object data. This
reduces the amount of duplicated code that exists when using save() or update() methods indepen-
dently. The second parameter to the public methods is only to provide additional information if the
Hibernate methods fail.

Deleting objects is also simple and straightforward. The method deleteVenueFromRoster provides an
example of how this is performed. The object is first loaded to confirm that it is exists; it would be a
good idea to use additional error-checking prior to deleting a potentially nonexistent object. Then a call
to the delete() method removes the object.

Best practices for using Hibernate include starting sessions and transaction management in servlet fil-
ters, and leaving the business code free of persistence infrastructure. This becomes very important as
applications increase in size and complexity, but for this simple application it’s more convenient to keep
all the code together.

The methods initSession(), flushSession(), and releaseResources() are utility methods for
dealing with the session and releasing resources as required. As with previous examples in this chapter,
exceptions are caught and then ignored. This is not good practice, but for the sake of focusing on the
important concepts in the example (the data interface), exception handling is deliberately ignored.

The next Try It Out example shows the data display and entry JSP for the venue data. This example ties
together all the previous sections to create a working Web application.

Try It Out Converting the Web Application to Hibernate
To make use of the persistent objects and the Hibernate interface to the database in the Web application,
you need to create a JSP page for listing, creating, updating, and deleting the venue data.

Create the file venue.jsp in the web directory with the following contents:

<!--
<%@ taglib prefix=”fmt” uri=”http://java.sun.com/jsp/jstl/fmt” %>
<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
-->
<jsp:useBean id=”venues” class=”java.util.ArrayList” scope=”request” />
<jsp:useBean id=”SERVLET_PATH” class=”java.lang.String” scope=”request” />
<c:set value=”Team Venue Management” var=”title” />
<html>

<head>
<script type=”text/javascript” >

function modifyVenue(id) {
var venue = document.venuelist;
venue.ACTION.value=”VENUE_MODIFY”;
venue.venueid.value=id;
var elementName = “venue_”+id;

792

Chapter 23

28_57485x ch23.qxd 1/14/05 10:18 PM Page 792

TEAM LinG - Live, Informative, Non-cost and Genuine!

var name = venue.elements[elementName].value;
venue.venuename.value=name;
venue.submit();
}
function deleteVenue() {
document.venuelist.ACTION.value=”VENUE_DELETE”;
document.venuelist.submit();
}

</script>
<title><c:out value=”${title}” /></title>

</head>
<body>

<h1><c:out value=”${title}” /></h1>
<table border=”1”>

<tr>
<th>Venue ID</th>
<th>Venue Name</th>
<th colspan=”2”> </th>

</tr>
<form name=”venuelist”

action=”<c:out value=”${SERVLET_PATH}” />” method=”POST”>
<input type=”hidden” name=”ACTION” value=”VENUE” />
<input type=”hidden” name=”venueid” value=”” />
<input type=”hidden” name=”venuename” value=”” />
<c:forEach var=”venue” items=”${venues}” >

<tr>
<td>${venue.id}</td>
<td>${venue.location}</td>
<td><input id=”venue_${venue.id}” type=”text” size=”20” /></td>
<td><input type=”button”

value=”Modify” onclick=”modifyVenue(‘${venue.id}’)” /></td>
<td><input name=”DELETE_LIST”

type=”checkbox” value=”${venue.id}” /></td>
</tr>

</c:forEach>
<tr>

<td align=”right” colspan=”4”>Delete selected items</td>
<td><input name=”DELETE_BUTTON” type=”button”

value=”Delete Checked” onclick=”deleteVenue()” /></td>
</tr>

</form>
<form action=”<c:out value=”${SERVLET_PATH}” />” method=”POST”>
<input type=”hidden” name=”ACTION” value=”VENUE_ADD” />
<tr>

<td colspan=”2”>Add new Venue</td>
<td><input name=”venuename” type=”text” size=”20” /></td>
<td><input name=”ADD” type=”submit” value=”Add” /></td>
<td> </td>

</tr>
</table>
Main Menu

</body>
</html>

793

Access to Databases

28_57485x ch23.qxd 1/14/05 10:18 PM Page 793

TEAM LinG - Live, Informative, Non-cost and Genuine!

With both the persistence code and the user interaction code completed, the only task that remains is to
provide the functionality to gather the requests from the Web browser and act on the request by issuing
commands to the database using the Hibernate interface. The AdminServlet developed previously in
the chapter performs this task, and in the following code has been enhanced significantly to cope with
the additional requirements.

One of the goals of this chapter is to show how code can be transformed as more requirements are
uncovered. The enhancements to AdminServlet coupled with the separation of responsibilities in the
user interface and database manager classes show how this is possible.

The following code shows AdminServlet.java, significantly modified from the original shown earlier.
As the code volume increases due to managing more data, it is important to structure the support infras-
tructure so that it will scale with the additional responsibilities, without becoming too cumbersome and
prone to error.

Modify AdminServlet.java in the src/com/wrox/begjsp/ch23/football directory as follows:

package com.wrox.begjsp.ch23.football;

import java.io.IOException;

import javax.naming.NamingException;
import javax.servlet.RequestDispatcher;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class AdminServlet extends HttpServlet
{

private static final String DEFAULT_PAGE = “menu.html”;

private static final String ACTION_TOKEN = “ACTION”;

private static final String VENUE_ACTIONS = “VENUE”;
private FootyJDBCHelper _jdbcHelper = null;

public void init() throws ServletException
{

RosterManagerFactory.
setRosterManagerType(RosterManagerFactory.HIBERNATE_MANAGER);

try
{

_jdbcHelper = new FootyJDBCHelper();
}
catch (NamingException unexpected)
{

throw new ServletException(“Cannot locate required database : “ +
unexpected);

}
}

794

Chapter 23

28_57485x ch23.qxd 1/14/05 10:18 PM Page 794

TEAM LinG - Live, Informative, Non-cost and Genuine!

public void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException

{
doPost(request, response);

}

public void doPost(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException

{
String action = findAction(request);

ProcessingCommand command = null;
if (action != null)
{

if (action.startsWith(VENUE_ACTIONS))
{

command = new VenueProcessingCommand(_jdbcHelper);
}

if (command != null)
{

command.execute(request, response, action);
return;

}
}
RequestDispatcher menu = request.getRequestDispatcher(DEFAULT_PAGE);
menu.forward(request, response);

}

private String findAction(HttpServletRequest request)
{

return request.getParameter(ACTION_TOKEN);
}

}

To create the implementation for the ProcessingCommand interface easier, you can place a couple
of utility methods in a parent class to be reused by the concrete classes. Create the file
AbstractProcessingCommand.java in the src/com/wrox/begjsp/ch23/football directory
with the following contents:

package com.wrox.begjsp.ch23.football;

import java.io.IOException;

import javax.servlet.RequestDispatcher;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public abstract class AbstractProcessingCommand implements ProcessingCommand
{

795

Access to Databases

28_57485x ch23.qxd 1/14/05 10:18 PM Page 795

TEAM LinG - Live, Informative, Non-cost and Genuine!

public abstract void execute(HttpServletRequest request,
HttpServletResponse response,
String action)

throws ServletException, IOException;

public final boolean isValidString(String input)
{

return ((input != null) && (input.length() > 0));
}

public final void performRedirect(String path, HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException

{
if (path != null)
{

request.setAttribute(“SERVLET_PATH”, request.getContextPath()
+ request.getServletPath());

RequestDispatcher dispatch = request.getRequestDispatcher(path);
dispatch.forward(request, response);

}
}

}

Create the file VenueProcessingCommand.java in the src/com/wrox/begjsp/ch23/football direc-
tory with the following contents:

package com.wrox.begjsp.ch23.football;

import java.io.IOException;
import java.sql.SQLException;
import java.util.List;

import javax.servlet.ServletException;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import org.apache.log4j.Logger;

public class VenueProcessingCommand extends AbstractProcessingCommand
{

private static final Logger LOG = Logger.getLogger(
VenueProcessingCommand.class);

private static final String VENUE_PAGE = “venue.jsp”;
private static final String VENUE_LIST_TOKEN = “venues”;

private static final String ACTION_VENUE_ADD = “VENUE_ADD”;
private static final String ACTION_VENUE_MOD = “VENUE_MODIFY”;
private static final String ACTION_VENUE_DEL = “VENUE_DELETE”;

private FootyJDBCHelper _helper = null;

796

Chapter 23

28_57485x ch23.qxd 1/14/05 10:18 PM Page 796

TEAM LinG - Live, Informative, Non-cost and Genuine!

public VenueProcessingCommand(FootyJDBCHelper helper)
{

_helper = helper;
}

public void execute(HttpServletRequest request,
HttpServletResponse response, String action)

throws ServletException, IOException
{

if (ACTION_VENUE_ADD.equals(action))
{

String newNameString = request.getParameter(“venuename”);
if (isValidString(newNameString))
{

processVenueAdd(newNameString);
}

}
else if (ACTION_VENUE_DEL.equals(action))
{

String deleteIDs[] = request.getParameterValues(“DELETE_LIST”);
if (deleteIDs != null)
{

for (int i = 0; i < deleteIDs.length; i++)
{

String idString = deleteIDs[i];
int id = Integer.parseInt(idString);
processVenueDelete(id);

}
}

}
else if (ACTION_VENUE_MOD.equals(action))
{

String modIdString = request.getParameter(“venueid”);
int modId = Integer.parseInt(modIdString);
String modVenue = request.getParameter(“venuename”);
if (isValidString(modVenue) && (modId > 0))
{

processVenueModify(new Venue(modId, modVenue));
}

}
processVenueList(request);
performRedirect(VENUE_PAGE, request, response);

}
private void processVenueModify(Venue venue)
{

RosterManager manager = null;
try
{

manager = getRosterManager();
manager.modifyVenueInRoster(venue);

}
catch (DataException unexpected)
{

797

Access to Databases

28_57485x ch23.qxd 1/14/05 10:18 PM Page 797

TEAM LinG - Live, Informative, Non-cost and Genuine!

LOG.error(“Error modifying venue : “ + unexpected);
}
finally
{

if (manager != null)
{

manager.releaseResources();
}

}
}

private void processVenueDelete(int teamId)
{

RosterManager manager = null;
try
{

manager = getRosterManager();
manager.deleteVenueFromRoster(teamId);

}
catch (DataException unexpected)
{

LOG.error(“Error deleting venue : “ + unexpected);
}
finally
{

if (manager != null)
{

manager.releaseResources();
}

}
}

private void processVenueAdd(String newVenue)
{

RosterManager manager = null;
try
{

manager = getRosterManager();
manager.addNewVenueToRoster(new Venue(0, newVenue));

}
catch (DataException unexpected)
{

LOG.error(“Error adding new venue : “ + unexpected);
}
finally
{

if (manager != null)
{

manager.releaseResources();
}

}
}

private void processVenueList(HttpServletRequest request)

798

Chapter 23

28_57485x ch23.qxd 1/14/05 10:18 PM Page 798

TEAM LinG - Live, Informative, Non-cost and Genuine!

{
RosterManager manager = null;
try
{

manager = getRosterManager();
List venue = manager.getVenuesInRoster();
request.setAttribute(VENUE_LIST_TOKEN, venue);

}
catch (DataException unexpected)
{

LOG.error(“Error processing venue list : “ + unexpected);
}
finally
{

if (manager != null)
{

manager.releaseResources();
}

}
}

private RosterManager getRosterManager() throws DataException
{

RosterManager manager;
try
{

manager = RosterManagerFactory.createRosterManager(
_helper.getConnection());

}
catch (SQLException connectionFailure)
{

throw new DataException(connectionFailure.getMessage());
}
return manager;

}
}

The final piece of the application is the menu.html page described in the AdminServlet. This is the
index page for the application.

Create the file menu.html in the web directory with the following contents:

<html>
<head>Football Administration Menu</head>
<body>

Round
Venue

</body>

</html>

799

Access to Databases

28_57485x ch23.qxd 1/14/05 10:18 PM Page 799

TEAM LinG - Live, Informative, Non-cost and Genuine!

How It Works
The first part of the servlet defines some constants for working with the different requests from the Web
browser. Notice how the definitions of the ROSTER_ACTIONS and VENUE_ACTIONS are strings that repre-
sents the first part of the group of actions for that type of data. The venue.jsp has a number of actions
such as VENUE_ADD and VENUE_DELETE, which are used in the AdminServlet.doPost() method to
determine which operation to perform. A very simple HTML-based menu called menu.html has been
created and is used to select between the various administration tasks.

The actions that are specific to each particular data-entry screen have been removed from the
AdminServlet and moved to classes that will process the data-entry requirements for each data-entry
area. This is an important step in keeping complexity under control; imagine how large the
AdminServlet would become if there were ten different data-entry screens, each having a list, add,
modify, and delete action.

The code in AdminServlet.doPost() replaces all the previous roster processing code and also includes
the venue processing code. As more processing is required, implementations of ProcessingCommand
can be provided for each group of actions. This enables the AdminServlet to focus on determining
which command to execute, with the commands themselves containing the processing code.

AdminServlet.findAction() has been simplified in this version to identify when a request is made
without supplying an action. In this case, the method will return null to indicate that status and is han-
dled by the AdminServlet.doPost() method by redirecting to the menu page. It would have been
possible to create a NullProcessingCommand() to deal with this option, but this was simpler.

The ProcessingCommands are now responsible for processing each of the groups of actions for a partic-
ular set of data. The example of the VenueProcessingCommand shows a template for how the remain-
ing ProcessingCommands should be implemented.

The VenueProcessingCommand now contains all the constants that were defined in the AdminServlet
specific to the processing of requests relating to the venue data. This enables the AdminServlet to focus
on coordination and the ProcessingCommand to work with the required data.

The changes to the code are long, but are reasonably simple; the code that was in AdminServlet
.doPost() has been moved to the VenueProcessingCommand.execute() method. The
AdminServlet selects a command to run and then invokes a method to run the command. The remain-
ing methods are the workers that perform the tasks for the identified actions, finding a persistence man-
ager and then calling the appropriate method.

Browse to the following URL:

http://localhost:8080/chapter23/menu.html

This will display the simple menu available. Click the link for Venue and after a short delay while the
database connection is established and the Hibernate mapping files are processed, this should display a
page similar to the one shown in Figure 23-4.

800

Chapter 23

28_57485x ch23.qxd 1/14/05 10:18 PM Page 800

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 23-4: Venue management

Managing object relationships with Hibernate
The final component in this example is the creation of the fixture data entry. This is slightly different
than the elements created previously, as there are relationships between the fixture, round, venue,
and roster tables. Using JDBC, it rapidly becomes a difficult proposition to query the different tables
and then later match up the foreign keys.

Using Hibernate, the relationships can be managed in the same way that Java code manages relation-
ships. The Round, Roster, and Venue objects are created and added to the Fixture object representing
the match to be played. It’s easier and cleaner and requires much less code than the equivalent JDBC
approach.

The following Try It Out example creates the fixture data-entry screens and objects for the Web
application.

801

Access to Databases

28_57485x ch23.qxd 1/14/05 10:18 PM Page 801

TEAM LinG - Live, Informative, Non-cost and Genuine!

Try It Out Persisting the Fixture Data Using Hibernate
To get the fixture entry to work successfully with Hibernate, the first task is to create some missing
objects and configuration. The round data entry was all performed using SQL directly from a JSP, so
Round.java and Team.java and the associated metadata mapping files are missing.

Create the file Round.java in the src/com/wrox/begjsp/ch23/football directory with the follow-
ing contents:

package com.wrox.begjsp.ch23.football;

import java.util.Date;
import java.util.HashSet;
import java.util.Set;

public class Round
{

private int _id;
private int _roundNumber;
private Date _startDate;
private Date _endDate;

public Round(int id, int roundNumber, Date startDate, Date endDate)
{

_id = id;
_roundNumber = roundNumber;
_startDate = startDate;
_endDate = endDate;

}

public int getId()
{

return _id;
}

public Date getStartDate()
{

return _startDate;
}

public int getRoundNumber()
{

return _roundNumber;
}

public Date getEndDate()
{

return _endDate;
}

public boolean equals(Object obj)
{

802

Chapter 23

28_57485x ch23.qxd 1/14/05 10:18 PM Page 802

TEAM LinG - Live, Informative, Non-cost and Genuine!

if (obj instanceof Round)
{

Round compare = (Round)obj;
return (_id == compare.getId());

}
return false;

}

public int hashCode()
{

int hash = 7;
hash = 31 * hash + _id;
hash = 31 * hash + _roundNumber;
return hash;

}

public String toString()
{

return getClass() + “[“ + _id + “] : [“ + _roundNumber + “]”;
}

private Round()
{

// required for hibernate
}

private void setEndDate(Date endDate)
{

_endDate = endDate;
}

private void setRoundNumber(int roundNumber)
{

_roundNumber = roundNumber;
}

private void setStartDate(Date startDate)
{

_startDate = startDate;
}

private void setId(int id)
{

_id = id;
}

}

The Round object contains the round number, start and end date, and the auto-generated primary key.
The Round.hbm.xml metadata mapping file is similar to the previous files. Create this also in the
src/com/wrox/begjsp/ch23/football directory:

803

Access to Databases

28_57485x ch23.qxd 1/14/05 10:18 PM Page 803

TEAM LinG - Live, Informative, Non-cost and Genuine!

<?xml version=”1.0”?>
<!DOCTYPE hibernate-mapping PUBLIC

“-//Hibernate/Hibernate Mapping DTD//EN”
“http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd”>

<hibernate-mapping>
<class name=”com.wrox.begjsp.ch23.football.Round” table=”round”>

<id name=”id” column=”id” type=”integer” unsaved-value=”0”>
<generator class=”native” />

</id>
<property name=”roundNumber” column=”number” type=”int” />
<property name=”startDate” column=”startdate” type=”date” />
<property name=”endDate” column=”enddate” type=”date” />

</class>
</hibernate-mapping>

Create the file Team.java in the src/com/wrox/begjsp/ch23/football directory with the following
contents:

package com.wrox.begjsp.ch23.football;

public class Team
{

private int _id;
private String _name;

public Team(int id, String name)
{

_id = id;
_name = name;

}

public int getId()
{

return _id;
}

public String getName()
{

return _name;
}

public boolean equals(Object obj)
{

if (obj instanceof Team)
{

Team compare = (Team)obj;
return (_id == compare.getId());

}
return false;

}

public int hashCode()

804

Chapter 23

28_57485x ch23.qxd 1/14/05 10:18 PM Page 804

TEAM LinG - Live, Informative, Non-cost and Genuine!

{
return _name.hashCode();

}

public String toString()
{

return getClass() + “[“ + _id + “] : [“ + _name + “]”;
}

private Team()
{

// required for hibernate
}

private void setId(int id)
{

_id = id;
}

private void setName(String name)
{

_name = name;
}

}

Again, create the file Team.hbm.xml in the src/com/wrox/begjsp/ch23/football directory with the
following contents:

<?xml version=”1.0”?>
<!DOCTYPE hibernate-mapping PUBLIC

“-//Hibernate/Hibernate Mapping DTD//EN”
“http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd”>

<hibernate-mapping>
<class name=”com.wrox.begjsp.ch23.football.Team” table=”roster”>

<id name=”id” column=”id” type=”integer” unsaved-value=”0”>
<generator class=”native” />

</id>
<property name=”name” column=”teamname” type=”string” />

</class>
</hibernate-mapping>

Let’s move to the more interesting components; the first is the Fixture.java class. Enter the following
code in the src/com/wrox/begjsp/ch23/football directory:

package com.wrox.begjsp.ch23.football;

public class Fixture
{

private int _id;
private Round _round;
private Team _homeTeam;

805

Access to Databases

28_57485x ch23.qxd 1/14/05 10:18 PM Page 805

TEAM LinG - Live, Informative, Non-cost and Genuine!

private Team _awayTeam;
private Venue _venue;

public Fixture(int id, Round round, Team homeTeam, Team awayTeam, Venue venue)
{

_id = id;
_round = round;
_homeTeam = homeTeam;
_awayTeam = awayTeam;
_venue = venue;

}

public Team getAwayTeam()
{

return _awayTeam;
}

public Team getHomeTeam()
{

return _homeTeam;
}

public int getId()
{

return _id;
}

public Round getRound()
{

return _round;
}

public Venue getVenue()
{

return _venue;
}

public boolean equals(Object obj)
{

if (obj instanceof Fixture)
{

Fixture compare = (Fixture)obj;
return (_id == compare.getId());

}
return false;

}

public int hashCode()
{

int hash = 7;
hash = 31 * hash + _id;
hash = 31 * hash + (_round == null ? 0 : _round.hashCode());
hash = 31 * hash + (_homeTeam == null ? 0 : _homeTeam.hashCode());
hash = 31 * hash + (_awayTeam == null ? 0 : _awayTeam.hashCode());

806

Chapter 23

28_57485x ch23.qxd 1/14/05 10:18 PM Page 806

TEAM LinG - Live, Informative, Non-cost and Genuine!

hash = 31 * hash + (_venue == null ? 0 : _venue.hashCode());
return hash;

}

public String toString()
{

return getClass() + “[“ + _id + “]”;
}

private Fixture()
{

// required for hibernate
}

private void setAwayTeam(Team awayTeam)
{

_awayTeam = awayTeam;
}

private void setHomeTeam(Team homeTeam)
{

_homeTeam = homeTeam;
}

private void setId(int id)
{

_id = id;
}

private void setRound(Round round)
{

_round = round;
}

private void setVenue(Venue venue)
{

_venue = venue;
}

}

When examining the structures in the Fixture class, it isn’t obvious how this class can ever be per-
sisted. The class contains no keys or relationship information. The secret is in the following file.

The following Fixture.hbm.xml file contains the relationship mapping information. The Java objects
are used directly as relationships. Create this file also in the src/com/wrox/begjsp/ch23/football
directory:

<?xml version=”1.0”?>
<!DOCTYPE hibernate-mapping PUBLIC

“-//Hibernate/Hibernate Mapping DTD//EN”
“http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd”>

807

Access to Databases

28_57485x ch23.qxd 1/14/05 10:18 PM Page 807

TEAM LinG - Live, Informative, Non-cost and Genuine!

<hibernate-mapping>
<class name=”com.wrox.begjsp.ch23.football.Fixture” table=”fixture”>

<id name=”id” column=”id” type=”integer” unsaved-value=”0”>
<generator class=”native” />

</id>
<many-to-one name=”round” column=”roundid” />
<many-to-one name=”homeTeam” column=”hometeam” />
<many-to-one name=”awayTeam” column=”awayteam” />
<many-to-one name=”venue” column=”venueid” />

</class>
</hibernate-mapping>

To allow for the processing of the Fixture objects, create the file FixtureProcessingCommand.java
in the src/com/wrox/begjsp/ch23/football directory with the following contents:

package com.wrox.begjsp.ch23.football;

import java.io.IOException;
import java.sql.SQLException;
import java.util.List;

import javax.servlet.ServletException;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import org.apache.log4j.Logger;

public class FixtureProcessingCommand extends AbstractProcessingCommand
{

private static final Logger LOG = Logger.getLogger(
FixtureProcessingCommand.class);

private static final String FIXTURE_PAGE = “fixture.jsp”;

// for the dropdown menus
private static final String ROUND_LIST_TOKEN = “rounds”;
private static final String TEAM_LIST_TOKEN = “teams”;
private static final String VENUE_LIST_TOKEN = “venues”;
private static final String FIXTURE_LIST_TOKEN = “fixtures”;

private static final String ACTION_FIXTURE_ADD = “FIXTURE_ADD”;
private static final String ACTION_FIXTURE_DEL = “FIXTURE_DELETE”;

private FootyJDBCHelper _helper = null;

public FixtureProcessingCommand(FootyJDBCHelper helper)
{

_helper = helper;
}

public void execute(HttpServletRequest request,
HttpServletResponse response, String action)

808

Chapter 23

28_57485x ch23.qxd 1/14/05 10:18 PM Page 808

TEAM LinG - Live, Informative, Non-cost and Genuine!

throws ServletException, IOException
{

if (ACTION_FIXTURE_ADD.equals(action))
{

String roundIdString = request.getParameter(“round_id”);
String awayTeamIdString = request.getParameter(“away_team_id”);
String homeTeamIdString = request.getParameter(“home_team_id”);
String venueIdString = request.getParameter(“venue_id”);

processFixtureAdd(Integer.parseInt(roundIdString),
Integer.parseInt(awayTeamIdString),
Integer.parseInt(homeTeamIdString),
Integer.parseInt(venueIdString));

}

else if (ACTION_FIXTURE_DEL.equals(action))
{

String deleteIDs[] = request.getParameterValues(“DELETE_LIST”);
if (deleteIDs != null)
{

for (int i = 0; i < deleteIDs.length; i++)
{

String idString = deleteIDs[i];
int id = Integer.parseInt(idString);
processFixtureDelete(id);

}
}

}
processFixtureList(request);
performRedirect(FIXTURE_PAGE, request, response);

}

private void processFixtureDelete(int fixtureId)
{

RosterManager manager = null;
try
{

manager = getRosterManager();
manager.deleteFixtureFromRoster(fixtureId);

}
catch (DataException unexpected)
{

LOG.error(“Error deleting fixture : “ + unexpected);
}
finally
{

if (manager != null)
{

manager.releaseResources();
}

}
}

809

Access to Databases

28_57485x ch23.qxd 1/14/05 10:18 PM Page 809

TEAM LinG - Live, Informative, Non-cost and Genuine!

private void processFixtureAdd(int roundId, int homeTeamId,
int awayTeamId, int venueId)

{
RosterManager manager = null;
try
{

manager = getRosterManager();

Round round = manager.getRoundById(roundId);
Team homeTeam = manager.getTeamById(homeTeamId);
Team awayTeam = manager.getTeamById(awayTeamId);
Venue venue = manager.getVenueById(venueId);

manager.addNewFixtureToRoster(new Fixture(0, round,
homeTeam, awayTeam, venue));

}
catch (DataException unexpected)
{

LOG.error(“Error adding new fixture : “ + unexpected);
}
finally
{

if (manager != null)
{

manager.releaseResources();
}

}
}

private void processFixtureList(HttpServletRequest request)
{

RosterManager manager = null;
try
{

manager = getRosterManager();

List venues = manager.getVenuesInRoster();
List teams = manager.getTeamsInRoster();
List rounds = manager.getRoundsInRoster();
List fixtures = manager.getFixturesInRoster();

request.setAttribute(FIXTURE_LIST_TOKEN, fixtures);
request.setAttribute(TEAM_LIST_TOKEN, teams);
request.setAttribute(ROUND_LIST_TOKEN, rounds);
request.setAttribute(VENUE_LIST_TOKEN, venues);

}
catch (DataException unexpected)
{

LOG.error(“Error processing fixture list : “ + unexpected);
}
finally
{

if (manager != null)

810

Chapter 23

28_57485x ch23.qxd 1/14/05 10:18 PM Page 810

TEAM LinG - Live, Informative, Non-cost and Genuine!

{
manager.releaseResources();

}
}

}

private RosterManager getRosterManager() throws DataException
{

RosterManager manager;
try
{

manager = RosterManagerFactory.createRosterManager(
_helper.getConnection());

}
catch (SQLException connectionFailure)
{

throw new DataException(connectionFailure.getMessage());
}
return manager;

}
}

First modify RosterManager.java to include the new functionality as follows:

package com.wrox.begjsp.ch23.football;

import java.util.List;

public interface RosterManager
{

void releaseResources();

List getTeamsInRoster() throws DataException;
boolean addNewTeamToRoster(Team newTeam) throws DataException;
boolean modifyTeamInRoster(Team modifyTeam) throws DataException;
boolean deleteTeamFromRoster(int teamId) throws DataException;

List getVenuesInRoster() throws DataException;
boolean addNewVenueToRoster(Venue venue) throws DataException;
boolean deleteVenueFromRoster(int venueId) throws DataException;
boolean modifyVenueInRoster(Venue venue) throws DataException;

List getFixturesInRoster() throws DataException;
boolean addNewFixtureToRoster(Fixture fixture) throws DataException;
boolean deleteFixtureFromRoster(int fixtureId) throws DataException;
boolean modifyFixtureInRoster(Fixture fixture) throws DataException;

}

811

Access to Databases

28_57485x ch23.qxd 1/14/05 10:18 PM Page 811

TEAM LinG - Live, Informative, Non-cost and Genuine!

Now modify HibernateRosterManager.java to include the new Hibernate persistent objects, as well
as the additional public methods to perform the actions and remain compatible with the RosterManager
interface. The modified code sections are shown as follows:

package com.wrox.begjsp.ch23.football;

import java.sql.Connection;
import java.sql.SQLException;
import java.util.List;
import java.util.Properties;

import net.sf.hibernate.HibernateException;
import net.sf.hibernate.MappingException;
import net.sf.hibernate.Query;
import net.sf.hibernate.Session;
import net.sf.hibernate.SessionFactory;
import net.sf.hibernate.Transaction;
import net.sf.hibernate.cfg.Configuration;

public class HibernateRosterManager implements RosterManager
{

private static final String ADD_DATA_ACTION = “ADD”;
private static final String MODIFY_DATA_ACTION = “MODIFY”;

private Connection _connection;
private SessionFactory _sessionFactory;
private Session _currentSession;

public HibernateRosterManager(Connection connection)
{

_connection = connection;

Configuration configuration = new Configuration();
try
{

configuration.addClass(Team.class);
configuration.addClass(Venue.class);
configuration.addClass(Round.class);
configuration.addClass(Fixture.class);

}
catch (MappingException mappingFailure)
{

throw new IllegalArgumentException(
“Cannot find required object classes, check CLASSPATH : “ +
mappingFailure);

}

Properties props = new Properties();
props.put(“hibernate.dialect”, “net.sf.hibernate.dialect.MySQLDialect”);
props.put(“hibernate.statement_cache.size”, “0”);
configuration.setProperties(props);

try
{

812

Chapter 23

28_57485x ch23.qxd 1/14/05 10:18 PM Page 812

TEAM LinG - Live, Informative, Non-cost and Genuine!

_sessionFactory = configuration.buildSessionFactory();
}
catch (HibernateException sessionFailure)
{

throw new IllegalArgumentException(
“Cannot build session factory, check configuration : “ +
sessionFailure);

}
}

/*-- getting objects --*/
public List getTeamsInRoster() throws DataException
{

return getAllItems(“from Team as team order by team.name asc”);
}

public List getVenuesInRoster() throws DataException
{

return getAllItems(“from Venue as venue order by venue.location asc”);
}

public List getRoundsInRoster() throws DataException
{

return getAllItems(“from Round as round order by round.roundNumber asc”);
}

public List getFixturesInRoster() throws DataException
{

return getAllItems(“from Fixture as fixture order by fixture.id asc”);
}

private List getAllItems(String query) throws DataException
{

initSession();
List list = null;
try
{

Query allTeams = _currentSession.createQuery(query);
list = allTeams.list();

}
catch (HibernateException unexpected)
{

throw new DataException(unexpected.getMessage());
}
finally
{

flushSession();
}
return list;

}

/*-- adding and modifying objects --*/
public boolean addNewTeamToRoster(Team team) throws DataException
{

813

Access to Databases

28_57485x ch23.qxd 1/14/05 10:18 PM Page 813

TEAM LinG - Live, Informative, Non-cost and Genuine!

return addOrModifyObject(team, ADD_DATA_ACTION);
}

public boolean addNewVenueToRoster(Venue venue) throws DataException
{

return addOrModifyObject(venue, ADD_DATA_ACTION);
}

public boolean modifyTeamInRoster(Team team) throws DataException
{

return addOrModifyObject(team, MODIFY_DATA_ACTION);
}

public boolean modifyVenueInRoster(Venue venue) throws DataException
{

return addOrModifyObject(venue, MODIFY_DATA_ACTION);
}

public boolean addNewFixtureToRoster(Fixture newFixture) throws DataException
{

return addOrModifyObject(newFixture, ADD_DATA_ACTION);
}

public boolean modifyFixtureInRoster(Fixture fixture) throws DataException
{

throw new UnsupportedOperationException(
“Modify a Fixture not supported, use delete, then add”);

}

private boolean addOrModifyObject(Object object, String action)
throws DataException
{

initSession();
Transaction tx = null;
try
{

tx = _currentSession.beginTransaction();
_currentSession.saveOrUpdate(object);
tx.commit();

}
catch (HibernateException cannotSaveOrUpdate)
{

try
{

tx.rollback();
}
catch (HibernateException cannotRollback)
{

// log this error
}
throw new DataException(“Unable to “ + action + “ : “ +

cannotSaveOrUpdate.getMessage());
}

814

Chapter 23

28_57485x ch23.qxd 1/14/05 10:18 PM Page 814

TEAM LinG - Live, Informative, Non-cost and Genuine!

finally
{

flushSession();
}

return false;
}

/*-- loading by id --*/
public Round getRoundById(int id) throws DataException
{

return (Round)loadObjectById(Round.class, id);
}

public Team getTeamById(int id) throws DataException
{

return (Team)loadObjectById(Team.class, id);
}

public Venue getVenueById(int id) throws DataException
{

return (Venue)loadObjectById(Venue.class, id);
}

public Fixture getFixtureById(int id) throws DataException
{

return (Fixture)loadObjectById(Fixture.class, id);
}

private Object loadObjectById(Class clazz, int id) throws DataException
{

initSession();
Object rv = null;
try
{

rv = _currentSession.load(clazz, new Integer(id));
}
catch (HibernateException unexpected)
{

throw new DataException(unexpected.getMessage());
}
finally
{

flushSession();
}
return rv;

}

/*-- delete objects --*/
public boolean deleteTeamFromRoster(int id) throws DataException
{

return deleteObject(Team.class, id);
}

815

Access to Databases

28_57485x ch23.qxd 1/14/05 10:18 PM Page 815

TEAM LinG - Live, Informative, Non-cost and Genuine!

public boolean deleteVenueFromRoster(int id) throws DataException
{

return deleteObject(Venue.class, id);
}

public boolean deleteFixtureFromRoster(int id) throws DataException
{

return deleteObject(Fixture.class, id);
}

private boolean deleteObject(Class clazz, int id) throws DataException
{

initSession();
Transaction tx = null;
try
{

tx = _currentSession.beginTransaction();
Object aboutToBeDeleted = loadObjectById(clazz, id);
_currentSession.delete(aboutToBeDeleted);
tx.commit();

}
catch (HibernateException cannotDelete)
{

try
{

tx.rollback();
}
catch (HibernateException cannotRollback)
{

// log this error
}
throw new DataException(“Unable to delete : “ +

cannotDelete.getMessage());
}
finally
{

flushSession();
}
return false;

}

/*-- utility methods --*/
private void initSession()
{

if (_currentSession == null)
{

_currentSession = _sessionFactory.openSession(_connection);
}

}

private void flushSession()
{

try

816

Chapter 23

28_57485x ch23.qxd 1/14/05 10:18 PM Page 816

TEAM LinG - Live, Informative, Non-cost and Genuine!

{
if (_currentSession != null)
{

_currentSession.flush();
}

}
catch (HibernateException sessionFlushFailure)
{

// log this error
}

}

public void releaseResources()
{

if (_connection != null)
{

try
{

if (_currentSession != null)
{

_currentSession.connection().close();
_currentSession.close();
_currentSession = null;

}
_connection.close();

}
catch (HibernateException sessionCloseFailure)
{

// log this error
}
catch (SQLException connectionCloseFailure)
{

// log this error
}

}
}

}

As with the other data management components, a JSP page is created to provide the user interface.
Create the file fixture.jsp in the web directory with the following contents:

<!--
<%@ taglib prefix=”fmt” uri=”http://java.sun.com/jsp/jstl/fmt” %>
<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
-->
<jsp:useBean id=”fixtures” class=”java.util.ArrayList” scope=”request” />
<jsp:useBean id=”teams” class=”java.util.ArrayList” scope=”request” />
<jsp:useBean id=”rounds” class=”java.util.ArrayList” scope=”request” />
<jsp:useBean id=”venues” class=”java.util.ArrayList” scope=”request” />
<jsp:useBean id=”SERVLET_PATH” class=”java.lang.String” scope=”request” />

817

Access to Databases

28_57485x ch23.qxd 1/14/05 10:18 PM Page 817

TEAM LinG - Live, Informative, Non-cost and Genuine!

<c:set value=”Team Fixture Management” var=”title” />
<html>

<head>
<title><c:out value=”${title}” /></title>

</head>
<body>

<h1><c:out value=”${title}” /></h1>
<table border=”1”>

<tr>
<th>Fixture ID</th>
<th>Round #</th>
<th>Home Team</th>
<th>Away Team</th>
<th>Venue</th>
<th colspan=”2”> </th>

</tr>
<form name=”fixturelist” action=”<c:out value=”${SERVLET_PATH}” />”

method=”POST”>
<input type=”hidden” name=”ACTION” value=”FIXTURE_DELETE” />
<c:forEach var=”fixture” items=”${fixtures}” >

<tr>
<td>${fixture.id}</td>
<td>${fixture.round.roundNumber}</td>
<td>${fixture.homeTeam.name}</td>
<td>${fixture.awayTeam.name}</td>
<td>${fixture.venue.location}</td>
<td><input name=”DELETE_LIST” type=”checkbox”

value=”${fixture.id}” /></td>
</tr>

</c:forEach>
<tr>

<td align=”right” colspan=”5”>Delete selected items</td>
<td><input name=”DELETE_BUTTON” type=”submit”

value=”Delete Checked” /></td>
</tr>

</form>
<form action=”<c:out value=”${SERVLET_PATH}” />” method=”POST”>
<input type=”hidden” name=”ACTION” value=”FIXTURE_ADD” />
<tr>

<td> </td>
<td>

<select name=”round_id”>
<c:forEach var=”round” items=”${rounds}” >

<option value=”${round.id}”>${round.roundNumber}</option>
</c:forEach></select>

</td>
<td>

<select name=”home_team_id”>
<c:forEach var=”homeTeam” items=”${teams}” >

<option value=”${homeTeam.id}”>${homeTeam.name}</option>
</c:forEach>

</select>
</td>

818

Chapter 23

28_57485x ch23.qxd 1/14/05 10:18 PM Page 818

TEAM LinG - Live, Informative, Non-cost and Genuine!

<td>
<select name=”away_team_id”>

<c:forEach var=”awayTeam” items=”${teams}” >
<option value=”${awayTeam.id}”>${awayTeam.name}</option>

</c:forEach>
</select>

</td>
<td>

<select name=”venue_id”>
<c:forEach var=”venue” items=”${venues}” >

<option value=”${venue.id}”>${venue.location}</option>
</c:forEach>

</select>
</td>
<td><input name=”ADD” type=”submit” value=”Add Fixture” /></td>

</tr>
</table>
Main Menu

</body>
</html>

Finally, perform a minor modification to the web/menu.html file to enable the fixture administration to
be selected:

<html>
<head>Football Administration Menu</head>
<body>

Round
Venue
Fixture

</body>

</html>

How It Works
The Web application has grown to a reasonably complex application, with a significant proportion of the
functionality required to manage the data for the football roster implemented. The fixture data manage-
ment shows how Hibernate can manage relationships between objects in a very convenient way for the
Web application developer without having to resort to cumbersome and repetitive SQL. Under the cov-
ers of the Hibernate libraries, SQL is still issued to the database via the JDBC interfaces. The Hibernate
team has done a comprehensive job of shielding the developer from needing to understand the complex-
ity of the underlying SQL.

Notice how the Fixture class is very “Java-like.” It’s an object, and it contains other objects. It was diffi-
cult to see this in previous parts of the example, as the other objects map very closely to their relational
database representations with only simple fields. The persistence of different types of objects with rela-
tionships between objects is where Hibernate shines.

819

Access to Databases

28_57485x ch23.qxd 1/14/05 10:18 PM Page 819

TEAM LinG - Live, Informative, Non-cost and Genuine!

In many projects, the Fixture class would be implemented with the following fields:

private int _id;
private int _roundId;
private int _homeTeamId;
private int _awayTeamId;
private int _venueId;

This would make it very easy to map to a database and avoid much of the complicated JDBC code nor-
mally found with hand-built ORM, but it sacrifices the advantages of using Java as the programming
language.

Hibernate removes the complication, enabling Java developers to express their business objects in a far
more expressive and natural manner.

The Fixture.hbm.xml mapping file should appear quite familiar, except for the new element, many-
to-one, that has been introduced. The choice of the many-to-one element may seem a little unusual.
However, that’s the relationship that Fixture has with Round (or Team and Venue), a unidirectional
many-to-one association. The relationship is only one way (from Fixture to Round) and the column
roundid in the fixture table is a foreign key for the primary key column for the Round object.

Notice how the <many-to-one> elements specify only the field (round, homeTeam, and so on) that con-
tains the object. Hibernate uses runtime reflection to determine the actual class name, locates the appro-
priate mapping file, and then performs the appropriate mapping for the foreign key. How cool is that!

The class attribute can be used in the <many-to-one> mapping to make the relationship more explicit:

<many-to-one name=”homeTeam” class=”Team” column=”hometeam” />

Browse to the following URL:

http://localhost:8080/chapter23/menu.html

This will display the simple menu available. Click the link for Fixture. This should show a screen similar
to the one shown in Figure 23-5.

Similar to the other JSP output shown previously, the table contains the list of existing fixtures, with
check boxes for the deletion of fixtures and addition of new fixtures. However, unlike other JSP exam-
ples the fixtures are all added via drop-down lists of currently available records.

820

Chapter 23

28_57485x ch23.qxd 1/14/05 10:18 PM Page 820

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 23-5: Team fixture management

The adding of fixtures is done by using existing data created by other screens. The drop-down menus
contain lists of data that are chosen to create the fixture. The Fixture processing is managed in a sym-
metrical way to the Venue processing, via the implementation of a ProcessingCommand.

The FixtureProcessingCommand is very similar to the existing VenueProcessingCommand, convert-
ing the parameters contained in the HttpServletRequest into the correct values and invoking the
appropriate RosterManager methods.

The Strings defined at the start of the class are used by fixture.jsp to load lists of data obtained
from the database.

The add action occurs when the action parameter equals the constant ACTION_FIXTURE_ADD, obtain-
ing the parameters from the fixture.jsp POST and converting it into objects that represent the foreign
key values. In a production quality system, better checking of the input values would be mandatory, but
for this example they are skipped for clarity.

To add the new Fixture, the processFixtureAdd() method is called, and the parameters obtained
from the Web application are used to load the objects from the database. Again, this would be a good
place to add some error-checking to ensure that the objects returned exist prior to adding the new
Fixture.

821

Access to Databases

28_57485x ch23.qxd 1/14/05 10:18 PM Page 821

TEAM LinG - Live, Informative, Non-cost and Genuine!

The processFixtureList() method loads a number of collections of objects into request scope so the
fixture.jsp can render the lists appropriately. The fixtures list is used to display the currently exist-
ing fixtures, and the venues, teams, and rounds are used to display the drop-down lists on the page.

The HibernateRosterManager has been modified to include the new fixture processing functional-
ity. The new elements are highlighted in the following code.

The configuration created in the constructor now includes all four objects requiring persistence.

The value in extracting out the common functionality for the query of objects becomes more apparent as
more objects are added. The getXXXInRoster() methods all call the same method to perform the work.
Adding extra objects now only requires minor additions to the HibernateRosterManager, which can
be done safely and without spending significant time.

Moving down the class, more common functionality is performed in one method: addXXXToRoster()
and modifyXXXInRoster() both call the addOrModifyObject() method. The alternative is to have
four separate implementations of addOrModifyObject(), one for each persistent object. This would
cause excessive code duplication, which makes modification more complex and error prone.

Similarly, the loadObjectById() method provides a common method for the associated type-specific
public interfaces. The use of the Class as a parameter to _currentSession.load() provides the nec-
essary information to Hibernate to correctly locate the appropriate object based on the primary key. This
is a very powerful feature of Hibernate that provides convenient implementation options for the devel-
oper. Instead of having to write conditional code for each object type, this is handled transparently by
Hibernate, which significantly reduces the work of the Web application developer and greatly reduces
the likelihood of errors creeping into the code.

The pattern repeats for the deleteObject() method. However, to obtain the appropriate object to
delete, the loadObjectById() method is called. This will find the object to be deleted to ensure that it
exists. This is a slightly different pattern from the other methods, and at first glance seems very strange.
Why create an object just for the purpose of deleting it?

The alternative is to create an identity object holding just the id in the deleteXXXXFromRoster()
methods. However, that may require the addition of a specific constructor that takes only the id as a
parameter, as shown here:

deleteObject(new Team(id));

Alternatively, you can relax the error-checking in the constructor, allowing null values to be passed into
the object:

deleteObject(new Team(id, null);

Finally, you can enable the construction of temporary objects specifically for deletion:

deleteObject(new Team(id, “deleteMe”));

822

Chapter 23

28_57485x ch23.qxd 1/14/05 10:18 PM Page 822

TEAM LinG - Live, Informative, Non-cost and Genuine!

While these options are possible, none of them are particularly clean; and with more complex objects,
they start to look far less attractive:

deleteObject(new Fixture(id, (Round)null, (Team)null, (Team)null, (Venue)null));

The downside of creating an identity object is that these techniques make it impossible for the rest of the
application to now rely on the consistent state of the persistent objects. Creating an identity object might
be appropriate for very short-lived objects that exist only in the persistence management layer of the
application. However, another developer may choose to use one of the identity object creation methods
in another part of the application, causing major errors to occur. It is not a good idea to create objects
that exist in an illegal state under most circumstances, especially when there are alternatives.

Hibernate will work with any of the preceding options, but these are generally considered a workaround
to enable persistence, and it is a better idea to load the object prior to deletion.

Some developers may dismiss the load and then delete strategy for performance reasons, arguing that
the load from the database will adversely affect the application too greatly. The good news is that the
Hibernate session cache will generally have these objects available in the cache ready for loading without
needing to perform a database access. Yet again, Hibernate provides functionality to enable Java devel-
opers to work with the objects in a natural way without penalty.

The fixture.jsp is similar to the previous JSP, but the use of the collections of objects to create the
drop-down lists is something not shown before. Nonetheless, it’s a very common feature to be found in
Web applications accessing databases. Single and multiple selections of data from lists drive many Web
user interfaces.

When developing the Web application, remember that even though the data from the database was used
to create the initial lists, there is no guarantee that when the form data is sent back to the server the
information represented by the keys exists. The data may have been deleted or the user may be mali-
ciously trying to cause errors. This is another good reason to be vigilant about checking the data coming
from Web browsers, and validating the use of that data within the Web application.

The Hibernate example shown in this chapter only scratches the surface of the power available to the
developer using this tool. Additionally, Hibernate provides support for collections of data, lazy-loading
of child objects to prevent a cascade of objects from loading with the parent object, and many-to-many
relationships. The Hibernate Query Language (HQL) also provides extensive means for working with
selecting complex graphs of objects.

Developers with a further interest in this topic should read Professional Hibernate by Eric Pugh and
Joseph Gradecki (Wrox, 2004).

Summary
This chapter has covered Web application development using a database. The coverage included directly
communicating to a database via a JSP using the JSTL tags, using raw JDBC with a persistence layer, and
using the open-source ORM tool Hibernate.

823

Access to Databases

28_57485x ch23.qxd 1/14/05 10:18 PM Page 823

TEAM LinG - Live, Informative, Non-cost and Genuine!

To conclude this chapter, let’s review some of its key points:

❑ Database access is commonly required in Web applications.

❑ Incorrectly implementing database access can lead to excessive complexity.

❑ Ignoring important considerations such as resource cleanup and transaction management will
lead to an unstable Web application.

❑ The database connection and management is best handled as a separate layer to the business
objects.

❑ Checking of data for validity and properly handling error conditions will assist in building a
robust and reliable Web application. Failing to adequately address unexpected situations or
erroneous input can lead to crashes and embarrassing errors.

❑ ORM mapping tools such as Hibernate can provide a more natural mechanism for persisting
rich Java objects than hand-built JDBC.

824

Chapter 23

28_57485x ch23.qxd 1/14/05 10:18 PM Page 824

TEAM LinG - Live, Informative, Non-cost and Genuine!

24
Security

This chapter looks at one of the more challenging areas in Web application development, that of
securing the Web application.

The chapter begins by examining security in general, and includes a breakdown of the term
“security” into a number of different areas that can be addressed independently depending on
the requirements of the Web application.

Next you will examine examples of how these security areas can be implemented using the
Tomcat JSP and servlet container, and examples of use in JSP. This covers technologies such as
SSL, and implementing different J2EE support authentication techniques such as basic, form,
and client-certificate.

Finally, the chapter concludes with some examples of using programmatic authorization.

In particular, this chapter

❑ Provides a general discussion about Web application security

❑ Shows how to configure Tomcat with SSL

❑ Shows examples of the J2EE-supported authentication types

❑ Shows examples of programmatic authorization

Areas of Security
The security of Web applications is covered by a number of different areas. These areas will gener-
ally relate to different requirements for the Web application and the data that is used by the Web
application. The sorts of questions that can be used to identify how and what should be secured
are as follows:

❑ Who is allowed to access the Web application?

❑ How will you identify the users?

29_57485x ch24.qxd 1/14/05 10:16 PM Page 825

TEAM LinG - Live, Informative, Non-cost and Genuine!

❑ Are there any restrictions on where the application is accessed from?

❑ Is any of the application data private?

❑ Who can add/modify/delete data?

These questions look very much like additional requirements for a Web application. This is how security
should be viewed. A common error in building software of all types, not only Web applications, is to try
to build the functionality of the software (what it does) and then try to add security later. Failing to iden-
tify and incorporate the security requirements as business requirements can lead to fragile and error-
prone implementations.

This is a path that will lead to much toil and trouble for both the developer and the user. It is very
important to consider the security requirements as part of exactly the same process as the functionality
requirements, and design and build the Web application with all the requirements in mind from the
beginning. This method also helps to identify areas early that might require additional resources (such
as obtaining server certificates) or hardware environments for testing that are often left until far too late
in the project cycle for sufficient testing or deployment.

The four main areas relating to security requirements are as follows:

❑ Authentication

❑ Authorization

❑ Data integrity

❑ Confidentiality

These areas are covered in more detail in the following sections.

Authentication
Authentication is the proof of identity. The most well-known form of authentication in computer applica-
tions is the username and password, although having a personal key pair and certificate is starting to
become more common with the introduction of smart cards to securely hold the keys. Widespread
adoption of this means of authentication, however, is likely to be many years away due to cost and
inconvenience.

Authentication is used by many applications to relate an identity to a HTTP session that is accessing
some resource in a Web application. This resource may be protected in some manner, and authentication
is used to validate whether the identity is authorized to access the resource. An example of this is Internet
banking or Web-based e-mail. In these circumstances, the identity is related to a real person, and access
probably depends on some proof of that identity during creation of the authentication parameters.

For some applications, the resources are not protected and the authentication is used to apply personal-
ization or provide identity validation for submitted information. Examples of this use include Web-based
information services such as Slashdot (www.slashdot.org) or Java Blogs (javablogs.com). There is no
real requirement to relate a real-world identity to the login credentials; these sites don’t care about real-
world relationships.

826

Chapter 24

29_57485x ch24.qxd 1/14/05 10:16 PM Page 826

TEAM LinG - Live, Informative, Non-cost and Genuine!

The Servlet specification provides support for the container to perform authentication via the security-
constraint element in the web.xml file.

The forms of authentication specified in the Servlet specification and provided by servlet containers such
as Tomcat are as follows:

❑ HTTP basic authentication

❑ HTTP digest authentication

❑ Form-based authentication

❑ SSL client certificate authentication

Another option is to implement a custom authentication solution that manually accesses a user database
directly after obtaining user credentials from a form or HTTP request. This can be done as part of the
core Web application or implemented as a filter that controls access to resources based on the requests.
Additionally, Web frameworks such as WebWork (www.opensymphony.com/webwork/) or using an
open-source solution such as Seraph (http://opensource.atlassian.com) can be leveraged to pro-
vide authentication solutions depending on the complexity of the requirements.

This chapter focuses on the container-provided security and authentication mechanisms, as this is the
most likely scenario for the majority of JSP developers.

HTTP basic authentication is the simplest method for a Web application to support. No other resources
are required to be provided by the Web application (other than configuration of the user database); and
if the requirement is merely to protect a resource, then this provides a quick method for the Web applica-
tion deployer.

There are three considerable drawbacks with using HTTP basic authentication. The first is that the secu-
rity of the transmitted information is very poor. The username and password are transferred by the
browser for every request and are “protected” by a BASE-64 encoding of the information.

The second drawback is that the visual aspects of the authentication dialog are quite basic, and do not fit
in well with the style of many Web applications.

The third drawback is that the use of basic authentication is controlled by the browser, and there is no way
to “log out” the user other than to shut down the browser. This is generally not an acceptable option.

HTTP digest authentication is a similar approach to HTTP basic authentication, the difference being that
the information transmitted from the browser to the server does not contain the password, but a digest
consisting of the password and some random values. HTTP digest authentication is not commonly used
because of lack of support by browsers.

Form-based authentication provides advantages over HTTP basic authentication. The first and most sig-
nificant is from a visual point of view: Form-based authentication uses an HTML FORM element that can
be styled to suit a Web application. The second advantage is that form-based authentication is imple-
mented using some form of server-side session tracking, so the session can be invalidated and the user
can “log out,” often a very desirable feature.

827

Security

29_57485x ch24.qxd 1/14/05 10:16 PM Page 827

TEAM LinG - Live, Informative, Non-cost and Genuine!

The final option available is SSL client-certificate authentication. This is not just configuring SSL on the
server, but actually having the servlet container verify the authenticity of the client-presented certificates.
This is generally not a very attractive option as it requires the users of the system to create and install
certificates to use the Web application. In certain specific circumstances (such as an extranet application
for which the user base is managed by the Web application owners), it may be a worthwhile authentica-
tion mechanism.

It is a very useful technique to implement HTTP basic authentication or form-based authentication over
HTTPS, as this will secure the credentials passed between the browser and the container.

Authorization
Authorization is also known as access control. Whereas authentication provides the identity of the user
accessing the resource, authorization determines whether the user has the permissions to access the
resource.

In the Servlet specification, the authorization model is role-based. This means that a user is assigned one
or more roles, and resources can be accessed by authenticated users with the specified role. Roles are a
convenient means of providing a set of users with the same access rights. Users can be added or removed
from a particular role to change the resources that can be accessed. If new resources are added to the
Web application (such as new functionality), then all users who are currently assigned to a particular
role can access the new resource with a single change. This is a preferable option to modifying the access
rights of each and every user.

The group of users and roles for a particular authentication policy is known as a Realm.

The implementation of the authorization mechanism for a J2EE or JSP/servlet container is not defined
by the Servlet specification, so implementation, or even a range of implementations, is specific to the
container.

Tomcat supports a number of different implementations of an authorization realm, such as an XML file,
a relational database, and an LDAP connector. To the JSP developer, all provide the same service, so the
choice does not affect the Web application implementation, but it does affect configuration of the system
as a whole.

Authorization of access to resources can be performed in two ways: declarative or programmatic. In declar-
ative authorization, the application developer provides elements in the Web application deployment
descriptor (web.xml) to specify resources that are protected. This is the security-constraint ele-
ment, which provides a URL mapping specifying the resource that is protected and the role required to
access the resource.

The declarative security model is based only on client-initiated requests. Any use of the
RequestDispatcher to invoke forward or include methods to resources is not processed by the
servlet container and may be used to access otherwise “protected” resources.

As the Web application developer has complete control over the use of these methods to access resources
within the Web application, selecting the appropriate mechanisms to implement the Web application’s
security is an important design consideration.

828

Chapter 24

29_57485x ch24.qxd 1/14/05 10:16 PM Page 828

TEAM LinG - Live, Informative, Non-cost and Genuine!

The following example illustrates the security-constraint element and the corresponding user and
role configuration:

(in web.xml)
<security-constraint>

<display-name>Administrators Only</display-name>
<web-resource-collection>

<web-resource-name>
Administration

</web-resource-name>
<url-pattern>/admin/*</url-pattern>
<http-method>GET</http-method>
<http-method>POST</http-method>

</web-resource-collection>
<auth-constraint>

<role-name>administrators</role-name>
</auth-constraint>
<user-data-constraint>

<transport-guarantee>
NONE

</transport-guarantee>
</user-data-constraint>

</security-constraint>

(in conf/tomcat-users.xml)
<?xml version=’1.0’ encoding=’utf-8’?>
<tomcat-users>

<role rolename=”administrators”/>
<user username=”jon” password=”secret” roles=”administrators”/>

</tomcat-users>

As you can see from the configuration, the declarative security is controlled at a high level with a very
coarse-grained approach to authorizing access to a resource. In many situations this may be suitable, but
where authorization forms part of business rules, an alternative mechanism is required.

An example of authorization forming part of the business rules of a system might be preventing access
to a resource out of your internal network, or having roles with fine-grained rights such as “can view the
staff information and modify personal details, but not add or delete new staff.”

To facilitate these requirements, the second security model for authorization is available. As the name
suggests, this programmatic security requires the Web developer to explicitly write code to implement the
authorization rules.

Programmatic security requires the implementation of rules within the Java code of the Web application,
but still uses the servlet security framework for authentication of the users. If the security-
constraint elements are not used within the Web application, then the following APIs will not
contain useful values.

The following methods are used to obtain user and role information when developing programmatic
security solutions:

829

Security

29_57485x ch24.qxd 1/14/05 10:16 PM Page 829

TEAM LinG - Live, Informative, Non-cost and Genuine!

❑ String getRemoteUser(): Returns the username that is currently authenticated, or null if the
user is not authenticated.

❑ boolean isUserInRole(String role): Returns true if the currently authenticated user is in
the specified role.

❑ Principal getUserPrincipal(): Returns a Principal object representing the currently
authenticated user, or null if the user is not authenticated. The Principal object can then be
queried using principal.getName() to return the current username.

Data integrity
Data integrity is often a forgotten aspect of security. Data integrity is the property that prohibits changes
from occurring in the data during transmission. Basically, whatever the client or server sends, the recipi-
ent gets exactly as sent. If not, it can be detected that a change has been made.

A Web application developer can do little to affect data integrity of information, as it is a servlet con-
tainer responsibility and is provided when HTTPS/SSL connections are used.

Confidentiality
Confidentiality is generally the only part that most people consider when thinking about security.
Confidentiality is the aspect of security that keeps private data private during transmission, and it is
implemented by encrypting the data. Servlet containers provide this functionality by implementing an
HTTPS/SSL connection to be used by the Web application.

Confidentiality for many Web applications is not enough, as the data may be transmitted secretly but if
there is no authentication or authorization, anybody can access the original data! The converse is cer-
tainly true as well. If the authentication information can be easily examined during transmission between
the client and server, then authentication is severely compromised.

The confidentiality configuration is performed as part of the declarative security model and is often
outside of the control of the Web application developer. This may pose a problem if the Web application
developer requires data to be transmitted confidentially. The ServletRequest object provides a method
isSecure() that returns true if the request was made over a secure channel.

The Web developer can implement code within a Web application — either as a filter or as code within
a servlet — that can prohibit access to resources unless the request has been performed over a secure
channel.

Data Integrity and Confidentiality
While authentication and authorization are very important concepts, the most commonly implemented
security components in Web applications are those relating to data integrity and confidentiality. All Web
applications requiring some degree of security will generally implement HTTPS to protect the data
transferred between the client and the server.

830

Chapter 24

29_57485x ch24.qxd 1/14/05 10:16 PM Page 830

TEAM LinG - Live, Informative, Non-cost and Genuine!

Even without the need to authenticate individuals, transferring data privately is a very common require-
ment for Web applications. Online stores, bill payments, and delivery addresses are all important data to
protect from modification and prying eyes.

Implementing these security areas is simply a matter of implementing SSL in the Web container. The fol-
lowing examples use Tomcat as the target Web container, but many of these steps will be common to any
J2EE server.

Implementing SSL
Implementing SSL in a J2EE server requires the following steps:

1. Obtain the Java Secure Socket Extension (JSSE).

2. Create keys and certificates.

3. Configure the J2EE server to use the keys.

4. Configure the SSL connector in the J2EE server.

Obtaining JSSE
JSSE is a Java implementation of the Secure Sockets Layer (SSL) and Transport Layer Security (TLS) pro-
tocols. JSSE contains all the functionality required to implement data integrity and confidentiality
through encryption and server authentication.

JSSE is bundled with the standard Sun JRE 1.4. Users that are still using JRE 1.3 should download and
install JSSE from Sun. JSSE is available from http://java.sun.com/products/jsse.

Comprehensive installation documentation is also available at the same location, and with the JSSE
download.

Creating keys and certificates
Using SSL requires the creation of public and private keys, and information about the server requires
signing by a third party to create a certificate. This certificate is then used to verify the details of the
server by the client browser authenticating the server.

Normally the creation of the certificate is performed by a trusted third party called a certificate authority
(CA). Because of the requirements involved in becoming a CA, this small market has been dominated by
VeriSign and Thawte. Recently, a number of smaller CAs have entered the global market, although the
dominance of VeriSign and Thawte continues, particularly because their root certificates are distributed
with browsers and the JVM.

However, it is not necessary to use a third party to create the certificate; this can be done using open-
source tools such as EJBCA (ejbca.sourceforge.net), a Java-based CA. There is even a simpler option
available to Java developers. The Java keytool provides a means for creating self-signed certificates
and storing them in a keystore. This is a perfect option for testing our security.

For simplicity and ease of configuration, place the keystore created in the following Try It Out section
into the root directory of the Tomcat installation. Either copy the keystore after creation, or create it
directly in the target directory.

831

Security

29_57485x ch24.qxd 1/14/05 10:16 PM Page 831

TEAM LinG - Live, Informative, Non-cost and Genuine!

In the following Try It Out example, you learn to create a certificate.

Try It Out Creating a Certificate
To create a new keystore in the current directory containing a self-signed certificate using the RSA algo-
rithm, use the following command:

keytool -genkey -alias localhost -keyalg RSA -keystore ./keystore

The keytool is in the bin directory of the Java distribution. Make sure this directory is included in
the PATH, or specify the full path to the keytool command.

This will run the keytool, which asks a series of questions as follows:

Enter keystore password:

Answer with secret.

What is your first and last name?

Answer with localhost.

It is very unlikely that any name actually is localhost, but this certificate is for the server, and not
for a person. If the server has a real name (like darkmatter.com), then this can be used.

The next group of questions asked is purely demographic. Either use the default value provided
(Unknown), enter information that is specific to the server, or use the information provided in the follow-
ing steps. This is purely presentation, and has no bearing on the validity of the generated certificate.

Of course, when generating a non-test certificate, this is the information that would link a digital identity
to a real-world identity, so third-party CAs are very strict about this information, and generally require
proof of correctness before creating the certificate. You’ll have to respond to the following prompts:

What is the name of your organizational unit?

Answer with Beginning JSP.

What is the name of your organization?

Answer with Wrox.

What is the name of your City or Locality?

Answer with Melbourne.

What is the name of your State or Province?

Answer with Victoria.

What is the two-letter country code for this unit?

832

Chapter 24

29_57485x ch24.qxd 1/14/05 10:16 PM Page 832

TEAM LinG - Live, Informative, Non-cost and Genuine!

Answer with AU.

The last question validates the entered information:

Is CN=localhost, OU=Beginning JSP, O=Wrox, L=Melbourne, ST=Victoria, C=AU correct?
[no]:

Answer with yes.

The final question asks for the password to be used for the key. Using this keystore with Tomcat requires
that the keystore password and key password be the same. This is a limitation of the Tomcat implemen-
tation, and it may be different on other J2EE servers.

Enter key password for <localhost>
(RETURN if same as keystore password):

Answer this by just accepting the default and pressing Return.

How It Works
That’s it. The keystore created in the current directory contains the newly created keys and certificate.
Type in the following to list the entries:

keytool -list -v -keystore ./keystore -storepass secret

This should result in a listing similar to the following:

Keystore type: jks
Keystore provider: SUN

Your keystore contains 1 entry

Alias name: localhost
Creation date: 2/09/2004
Entry type: keyEntry
Certificate chain length: 1
Certificate[1]:
Owner: CN=localhost, OU=Beginning JSP, O=Wrox, L=Melbourne, ST=Victoria, C=AU
Issuer: CN=localhost, OU=Beginning JSP, O=Wrox, L=Melbourne, ST=Victoria, C=AU
Serial number: 4136f771
Valid from: Thu Sep 02 20:35:29 EST 2004 until: Wed Dec 01 21:35:29 EST 2004
Certificate fingerprints:

MD5: 54:55:03:A8:EE:0B:E7:44:A5:3F:B5:1E:56:0F:E7:2E
SHA1: 0B:97:9A:92:8C:4F:C8:C3:FD:79:BE:75:8C:4E:F4:3D:F7:1C:16:9B

Configuring Tomcat
The server.xml file contains the configuration of the different options for Tomcat. The Connector ele-
ments are used to configure the HTTP and HTTPS connectors for the server. To enable SSL, a new con-
nector element needs to be activated so the Tomcat server can accept connections using the SSL protocol.

The default installation of Tomcat has an SSL connector preconfigured in server.xml. By default, it is
enclosed in comments to prevent activation during startup. The server.xml file can be found in the

833

Security

29_57485x ch24.qxd 1/14/05 10:16 PM Page 833

TEAM LinG - Live, Informative, Non-cost and Genuine!

conf subdirectory of the root install directory for Tomcat. In the following Try It Out example, you mod-
ify server.xml and test your connector.

Try It Out Modifying server.xml and Testing the SSL Connector
Find the following connector:

<!--
<Connector port=”8443”

maxThreads=”150” minSpareThreads=”25” maxSpareThreads=”75”
enableLookups=”false” disableUploadTimeout=”true”
acceptCount=”100” debug=”0” scheme=”https” secure=”true”
clientAuth=”false” sslProtocol=”TLS” />

-->

Remove the HTML comments from above <!-- and below -->. Add the following highlighted lines to
the end of the element:

<Connector port=”8443”
maxThreads=”150” minSpareThreads=”25” maxSpareThreads=”75”
enableLookups=”false” disableUploadTimeout=”true”
acceptCount=”100” debug=”0” scheme=”https” secure=”true”
clientAuth=”false” sslProtocol=”TLS”
keystoreFile=”/path/to/keystore”
keystorePass=”secret” />

The value for keystoreFile is the full path to the keystore created above. For example, under Windows
this will look something like the following:

keystoreFile=”c:\tomcat\keystore”

Under UNIX, it will look as follows:

keystoreFile=”/usr/local/tomcat/keystore”

The path depends on where the keystore was created.

Finally, test the modified configuration by starting Tomcat and then browsing to the following URL:

https://localhost:8443/

This should result in a screen similar to the one shown in Figure 24-1.

Before this page was displayed, the browser would have displayed a dialog box alerting the user that
although the certificate provided was valid and matched the host displaying the page (localhost),
the certificate was not issued by a company that the browser trusts.

These dialog boxes should look similar to what is shown in Figure 24-2 for Mozilla/Firefox, or Figure
24-3 for Internet Explorer.

834

Chapter 24

29_57485x ch24.qxd 1/14/05 10:16 PM Page 834

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 24-1: Default Tomcat page viewed over SSL

Figure 24-2: Mozilla warning dialog

835

Security

29_57485x ch24.qxd 1/14/05 10:16 PM Page 835

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 24-3: Internet Explorer warning dialog

Using the browser to examine the certificate should display a dialog box showing the contents of the cer-
tificate. The fields indicate that they contain the same information entered earlier, confirming that
Tomcat is correctly configured with the certificate that was created. Figure 24-4 shows an example of the
certificate information displayed by Mozilla.

Figure 24-4: Certificate contents dialog box from Mozilla

836

Chapter 24

29_57485x ch24.qxd 1/14/05 10:16 PM Page 836

TEAM LinG - Live, Informative, Non-cost and Genuine!

How It Works
The introduction of the keystore and the configuration of the connector in Tomcat have activated the
HTTPS protocol on the server. The use of the https prefix and the 8443 port number in the browser
URL has enabled a connection to the SSL connector. The browser has validated the connection, and in
this case alerted the user that not everything is 100 percent satisfactory.

The alert occurs because of the use of the self-signed certificate. If the certificate was issued by VeriSign
or Thawte, the connection would occur without any problems, but there is no reduction in security in
this approach, just an additional step when accessing the site.

After the user accepts the connection, the browser displays the Web page and displays the “closed lock”
icon, identifying the page as having been encrypted and sent to the browser.

Authentication
Encrypting the data from the server to the browser is only the first step in ensuring that the users of the
Web application can store personal information and keep that information private.

The next step, arguably the most important, is identifying the user and ensuring that the user is provid-
ing the appropriate credentials. In the simplest terms, this is providing the username and password to
access the Web application.

As you will see in subsequent examples, there are other means of proving identity suitable for
authentication.

HTTP BASIC authentication
This is the simplest form of authentication available to Web applications. However, it is the least cus-
tomizable and the most clumsy for users to interact with.

Try It Out Creating the Web Application
Create the following directory structure:

chapter24/
src/
web/

private/
public/
WEB-INF/

lib/
Copy the jstl.jar and standard.jar files used in earlier chapters into the lib directory.

Create the Tomcat context file chapter24.xml in the chapter24 directory with the following contents:

<?xml version=’1.0’ encoding=’utf-8’?>
<Context docBase=”/path/to/chapter24/web”

path=”/chapter24”

837

Security

29_57485x ch24.qxd 1/14/05 10:16 PM Page 837

TEAM LinG - Live, Informative, Non-cost and Genuine!

reloadable=”true”
workDir=”/path/to/chapter24/work”>

</Context>

The /path/to in docBase and workDir must match the full path to the chapter24 directory. Under
Windows this might look like the following:

<Context docBase=”c:/dev/begjsp/chapter24/web”

Copy this file to <Tomcat Installation Directory>/conf/Catalina/localhost. This configura-
tion enables Tomcat to find the web directory in the development directories rather than needing to copy
files when they are changed, or work directly in the <Tomcat Installation Directory>/webapps
directory.

Modify the <Tomcat Installation Directory>/conf/tomcat-users.xml file to add the following
role and user:

<?xml version=’1.0’ encoding=’utf-8’?>
<tomcat-users>

<role rolename=”manager”/>
<role rolename=”admin”/>
<role rolename=”chapter24” />
<user username=”manager” password=”manager” roles=”manager”/>
<user username=”admin” password=”admin” roles=”admin,manager”/>
<user username=”user24” password=”secret” roles=”chapter24” />

</tomcat-users>

Create a web.xml file in the web/WEB-INF directory with the following contents:

<?xml version=”1.0” encoding=”ISO-8859-1”?>

<web-app version=”2.4” uri=”http://java.sun.com/xml/ns/j2ee” >

<security-constraint>
<web-resource-collection>

<web-resource-name>Everything Private</web-resource-name>
<url-pattern>/private/*</url-pattern>

</web-resource-collection>
<http-method>GET</http-method>
<http-method>POST</http-method>
<user-data-constraint>

<transport-guarantee>CONFIDENTIAL</transport-guarantee>
</user-data-constraint>

<auth-constraint>
<role-name>chapter24</role-name>

</auth-constraint>

</security-constraint>

<login-config>
<auth-method>BASIC</auth-method>
<realm-name>Private Realm</realm-name>

</login-config>

838

Chapter 24

29_57485x ch24.qxd 1/14/05 10:16 PM Page 838

TEAM LinG - Live, Informative, Non-cost and Genuine!

<security-role>
<role-name>chapter24</role-name>

</security-role>

</web-app>

Create the file public-page.jsp in the web/public directory with the following contents:

<!--
<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
-->
<c:set value=”Public Page” var=”title” />
<html>

<head>
<title>

<c:out value=”${title}” />
</title>

</head>
<body>

<h1>
<c:out value=”${title}” />

</h1>
This is a public page ! <p/>
The request is from : ${pageContext.request.remoteAddr} <p/>
Is the request secure ? : ${pageContext.request.secure}

</body>
</html>

Create the following file private-page.jsp in the web/private directory:

<!--
<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
-->
<c:set value=”Private Page” var=”title” />
<html>

<head>
<title>

<c:out value=”${title}” />
</title>

</head>
<body>

<h1>
<c:out value=”${title}” />

</h1>
This is a private page ! <p/>
The request is from : ${pageContext.request.remoteAddr} <p/>
Is the request secure ? : ${pageContext.request.secure} <p/>

Hello Remote User : ${pageContext.request.remoteUser} <p/>

Hello Principal : ${pageContext.request.userPrincipal.name}

</body>
</html>

839

Security

29_57485x ch24.qxd 1/14/05 10:16 PM Page 839

TEAM LinG - Live, Informative, Non-cost and Genuine!

How It Works
Start by browsing to http://localhost:8080/chapter24/public/public-page.jsp. This should
display a page similar to the one shown in Figure 24-5.

This page is not secured and doesn’t require authentication, as the URL doesn’t match the specification
in the web.xml file. The relevant section is as follows:

<web-resource-collection>
<web-resource-name>Everything Private</web-resource-name>
<url-pattern>/private/*</url-pattern>

</web-resource-collection>

Now browse to http://localhost:8080/chapter24/private/private-page.jsp. This is within
the configuration of a secured page.

This should result in a page similar to the one shown in Figure 24-6.

Entering user24 for the user name and secret for the password and clicking OK should result in a
screen similar to the one shown in Figure 24-7.

Figure 24-5: Public page

840

Chapter 24

29_57485x ch24.qxd 1/14/05 10:16 PM Page 840

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 24-6: HTTP BASIC authentication username and password dialog box

Notice how the URL is now https://localhost:8443/chapter24/private/private-page.jsp.
The servlet container has redirected the input URL to use HTTPS. This was achieved by the setup of the
Tomcat connectors. If you look at <Tomcat Installation Directory>/conf/server.xml, the impor-
tant attribute is in the first of the two connectors, the redirectPort:

<Service name=”Catalina”>
<Connector port=”8080”

maxThreads=”150” minSpareThreads=”25” maxSpareThreads=”75”
enableLookups=”false” redirectPort=”8443” acceptCount=”100”
debug=”0” connectionTimeout=”20000”
disableUploadTimeout=”true”
compression=”on”
compressionMinSize=”2048”
noCompressionUserAgents=”gozilla, traviata”
compressableMimeType=”text/html,text/xml” />

<Connector port=”8443”
maxThreads=”150” minSpareThreads=”25” maxSpareThreads=”75”
enableLookups=”false” disableUploadTimeout=”true”
acceptCount=”100” debug=”0” scheme=”https” secure=”true”

841

Security

29_57485x ch24.qxd 1/14/05 10:16 PM Page 841

TEAM LinG - Live, Informative, Non-cost and Genuine!

clientAuth=”false” sslProtocol=”TLS”
keystoreFile=”c:\tomcat\keystore”
keystorePass=”secret” />

If the standard HTTP connector receives a request to make the data confidential, it will redirect to the
connector on port 8443.

The other points to notice from this are that the request is now secure and the remote user and principal
have values matching the authentication information provided (user24).

Following are two downsides of using BASIC authentication:

❑ The user session cannot be invalidated by the server, as the browser sends the authentication
information with each request. This can be inconvenient because the only way to clear this
information is to get the user to shut down the browser.

❑ The HTTP BASIC authentication dialog box is really ugly. It doesn’t fit in with the look and feel
of any Web application developed for production use.

Fortunately, there is an alternative — form-based authentication, which is examined in the next section.

Figure 24-7: Private page

842

Chapter 24

29_57485x ch24.qxd 1/14/05 10:16 PM Page 842

TEAM LinG - Live, Informative, Non-cost and Genuine!

Form-based authentication
Form-based authentication is another type of authentication supported by the J2EE specification. As dis-
cussed previously, it provides some advantages over the HTTP BASIC authentication scheme, and it is
the most widely implemented of the authentication schemes. In the next Try It Out example, you learn
about implementing form-based authentication.

Try It Out Implementing Form-Based Authentication
The first thing to modify is the web.xml file to specify FORM rather than BASIC authentication. Change
the login-config stanza to the following:

<login-config>
<auth-method>FORM</auth-method>
<form-login-config>

<form-login-page>/login.html</form-login-page>
<form-error-page>/login-error.html</form-error-page>

</form-login-config>
</login-config>

Create the following index.html file in the web directory:

<!DOCTYPE HTML PUBLIC “-//W3C/DTD HTML 4.01 Transitional//EN”>
<html>

<head>
<title>Chapter 24 Web Application</title>

</head>
<body>

<h1>Chapter 24 Web Application</h1>
<table>

<tr>
<td>Public Page</td>

</tr>
<tr>

<td>Private Page</td>
</tr>

</table>
</body>

</html>

To support the form login, create a login.html file in the web directory with the following contents:

<!DOCTYPE HTML PUBLIC “-//W3C/DTD HTML 4.01 Transitional//EN”>
<html>

<head>
<title>Private Area Login Page</title>

</head>
<body>

<h1>Warning: Authorised Users Only</h1>
<form action=”j_security_check” method=”post”>

<table>
<tr>

<td>User Name</td>

843

Security

29_57485x ch24.qxd 1/14/05 10:16 PM Page 843

TEAM LinG - Live, Informative, Non-cost and Genuine!

<td><input type=”text” name=”j_username”></td>
</tr>
<tr>

<td>Password</td>
<td><input type=”password” name=”j_password”></td>

</tr>
<tr>

<td align=”right”>
<input type=”submit” value=”login”>

</td>
<td align=”left”>

<input type=”reset”>
</td>

</tr>
</table>

</form>
</body>

</html>

Finally, create the login-error.html, also in the web directory:

<!DOCTYPE HTML PUBLIC “-//W3C/DTD HTML 4.01 Transitional//EN”>

<html>
<head>

<title>Private Area Login Error</title>
</head>

<body>
<h1>Warning: Authorised Users Only</h1>

An error occurred during login.
<p/>
This is probably due to an incorrect username and/or password.
<p/>
Click on the link below to try again.
<p/>
Return to the Index Page

</body>
</html>

For convenience, create an index.html file in the web directory. This will make it easier to browse the
public and private pages. This file should contain the following contents:

<!DOCTYPE HTML PUBLIC “-//W3C/DTD HTML 4.01 Transitional//EN”>
<html>

<head>
<title>Chapter 24 Web Application</title>

</head>
<body>

<h1>Chapter 24 Web Application</h1>
<table>

<tr>

844

Chapter 24

29_57485x ch24.qxd 1/14/05 10:16 PM Page 844

TEAM LinG - Live, Informative, Non-cost and Genuine!

<td>Public Page</td>
</tr>
<tr>

<td>Private Page</td>
</tr>

</table>
</body>

</html>

How It Works
Start by browsing to http://localhost:8080/chapter24/index.html. This should display the page
shown in Figure 24-8.

When you select the Private Page link, you should be redirected by the browser to the login form shown
in Figure 24-9.

You enter the same credentials as before, a user name of user24 and a password of secret. When you
click the Login button, you see the same page shown in Figure 24-7.

Figure 24-8: Web application index page

845

Security

29_57485x ch24.qxd 1/14/05 10:16 PM Page 845

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 24-9: Form-based authentication login page

Form-based authentication uses a standard HTML form to submit some specially named parameters to
the server. These parameters are the j_username and j_password input fields defined in login.html.

When a user requests a secured page, the server redirects the request to the page defined in form-
login-page. This page contains a form with the specially named parameters, and when the user
submits the form to the j_security_check target, the server intercepts the HTTP POST and checks
the credentials.

On success, the server redirects to the secured page; on failure, the server redirects to the page specified
in form-error-page.

To see the error page, restart the browser and select the Private Page link again. This time, just click login
without entering any information into the form. This will display the page shown in Figure 24-10.

The final change to the form-based authentication scheme is to implement a means to log out, as shown
in the next Try It Out example. Such functionality is not available to the basic authentication scheme.

846

Chapter 24

29_57485x ch24.qxd 1/14/05 10:16 PM Page 846

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 24-10: Error page from form login

Try It Out Implementing a Logout
In the web/public directory, create the file session.jsp with the following contents:

<!--
<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
-->
<c:set value=”Show Session Information” var=”title” />
<html>

<head>
<title>

<c:out value=”${title}” />
</title>

</head>
<body>

<h1>
<c:out value=”${title}” />

</h1>
The current session is : ${pageContext.request.session.id} <p/>

847

Security

29_57485x ch24.qxd 1/14/05 10:16 PM Page 847

TEAM LinG - Live, Informative, Non-cost and Genuine!

Logout <p/>
Back to index page

</body>
</html>

Also in the web/public directory, create the file kill-session.jsp with the following contents:

<!--
<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
-->

<jsp:scriptlet>
session.invalidate();

</jsp:scriptlet>

<c:redirect url=”../index.html” />

Finally, modify the web/index.html file to add in a link to the session.jsp:

<!DOCTYPE HTML PUBLIC “-//W3C/DTD HTML 4.01 Transitional//EN”>
<html>

<head>
<title>Chapter 24 Web Application</title>

</head>
<body>

<h1>Chapter 24 Web Application</h1>
<table>

<tr>
<td>Public Page</td>

</tr>
<tr>

<td>Private Page</td>
</tr>
<tr>

<td>Show Session Information</td>
</tr>

</table>
</body>

</html>

Browse to the URL http://localhost:8080/chapter24/index.html and select the Private Page
link. The user will be redirected to a page similar to the one shown in Figure 24-9. Enter the username
and password used previously in this chapter and click login. The screen should look like Figure 24-7.

Now, browse to different URLs in the public and private directories; the user is not required to re-
authenticate as browsing continues.

Browse to the URL http://localhost:8080/chapter24/index.html and click the Show Session
Information link. This screen should look like the one shown in Figure 24-11.

848

Chapter 24

29_57485x ch24.qxd 1/14/05 10:16 PM Page 848

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 24-11: Showing session information

Click the Logout link. This should direct you back to index.html and display the screen shown in
Figure 24-8, with the additional Show Session Information link. Click the Private Page link, and at this
point you will be forced to re-authenticate via the login.html page shown in Figure 24-9.

How It Works
The session information is stored by the server, and a cookie is stored in the browser to maintain the
session’s validity. The session.invalidate() method in kill-session.jsp deletes the session on
the server, and the user is forced to re-authenticate because the cookie in the browser is now no longer
linked to a valid, authenticated session.

Client-certificate authentication
The final form of authentication supported by the J2EE container is client-certificate authentication.
This scheme is the least frequently used, primarily because of the inconvenience it poses to the end
users, making it unsuitable for general-purpose Internet applications. The client certificate is a good fit
for intranet or extranet applications in which a higher degree of confidence in the identity of the user is
needed.

849

Security

29_57485x ch24.qxd 1/14/05 10:16 PM Page 849

TEAM LinG - Live, Informative, Non-cost and Genuine!

Personal certificates
There are many different ways to obtain a user certificate. Like the server certificate created earlier in the
chapter, a user certificate can be manually generated and installed, or you can use a variety of certificate
authorities (CA) that provide personal certificates.

Unlike the server certificates, many of the CA personal certificates are free and installed into the browser.

The CA chosen for this example is VeriSign (www.verisign.com), mostly because of the wide availabil-
ity of the root certificates pre-installed in browsers and the JVM. This wide availability makes it very easy
to complete this example, and in practice makes it easy to use in production. This should not be taken to
mean that VeriSign is the best or only option, but for the purposes of the example, it is definitely one of
the most convenient.

On its Web site, VeriSign calls its personal certificate product a “Digital ID,” so this is the term used in
the Try It Out example to avoid confusion.

When implementing a system in production, many factors come into play, and research should be
undertaken to determine the best choices for any specific situation. This might include cost, convenience,
maintenance, support, and even legal requirements of local jurisdictions.

Try It Out Installing the Certificate in a Browser
Browse to https://digitalid.verisign.com/client/enroll.htm. This is the entry point for the
VeriSign Personal Certificate sign-up.

Click the link for Microsoft or Netscape, depending on the type of browser being used.

This presents a page with some fields to be filled out. Unlike generating the server certificate, it is impor-
tant to fill in this information accurately. Of critical importance is the e-mail address — in order to com-
plete the VeriSign enrollment, an e-mail is sent to this address, so ensure that this is a valid and accessible
e-mail address.

There is no need to purchase the Digital ID; select the “60-day trial Digital ID for free” option, and
leave the “Billing Information” section blank.

Select either 2048 (High Grade) or 1024 (Medium Grade) Encryption Strength; it isn’t particularly impor-
tant for the example which one is used. Selecting the Medium Grade strength will be slightly faster.

Click the Accept button after reading the Subscriber Agreement. This will generate a key and VeriSign
will send an e-mail message to the address specified previously.

When the e-mail message from VeriSign arrives, it will have a subject line of “Trial Class 1 VeriSign
Digital ID Installation Instructions.” Follow the instructions in the e-mail message to install the Digital
ID in the browser.

To see the installed Digital ID under Internet Explorer, select Tools ➪ Internet Options ➪ Content, and
click the Certificates button under the Certificates section. This should show a dialog box similar to the
one shown in Figure 24-12.

850

Chapter 24

29_57485x ch24.qxd 1/14/05 10:16 PM Page 850

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 24-12: Internet Explorer Certificates dialog box

Double-clicking the certificate opens another dialog box that shows detailed information about the cer-
tificate. This should resemble the dialog box shown in Figure 24-13.

Figure 24-13: Certificate Information dialog box

851

Security

29_57485x ch24.qxd 1/14/05 10:16 PM Page 851

TEAM LinG - Live, Informative, Non-cost and Genuine!

How It Works
This process created a private key and a public key, and the public key was signed by a CA, creating
a certificate. This certificate can be used to identify the holder of the certificate when accessing Web
resources.

Unlike a username and password, the identity is proved by the user actually holding the private key.
Our next challenge is determining what to use in our Web application to allow or disallow a user with
a certificate.

The following Try It Out example shows you the process of configuring Tomcat to accept client certifi-
cates and authenticate the user based on those certificates. The first part of the example provides some
helper code to show the client certificate in the browser.

The capability to display the certificate is very useful, as the configuration of the client certificate map-
ping in Tomcat is somewhat primitive and has a few traps for the unwary.

Try It Out Testing with Tomcat
Modify the server.xml HTTPS connector so that the clientAuth value is want:

<Connector port=”8443”
maxThreads=”150” minSpareThreads=”25” maxSpareThreads=”75”
enableLookups=”false” disableUploadTimeout=”true”
acceptCount=”100” debug=”0” scheme=”https” secure=”true”
clientAuth=”want” sslProtocol=”TLS”
keystoreFile=”/path/to/keystore”
keystorePass=”secret” />

Create the following find-certinfo.jsp file in the private directory:

<!--
<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<%@ taglib prefix=”fn” uri=”http://java.sun.com/jsp/jstl/functions” %>
-->
<c:set value=”Find Certificate Info” var=”title” />
<html>

<head>
<title>

<c:out value=”${title}” />
</title>

</head>
<body>

<h1>
<c:out value=”${title}” />

</h1>
<table border=1>

<c:forEach var=”cert”
items=”${requestScope[‘javax.servlet.request.X509Certificate’]}” >

<c:set var=”subject” value=”${cert[‘subjectDN’]}” />
<c:set var=”expiry” value=”${cert[‘notAfter’]}” />
<c:set var=”quote” value=”\”” />
<tr>

852

Chapter 24

29_57485x ch24.qxd 1/14/05 10:16 PM Page 852

TEAM LinG - Live, Informative, Non-cost and Genuine!

<td>SubjectDN</td><td>${fn:replace(subject, quote, ‘&quot;’)}</td>
</tr>
<tr>

<td>Expiry</td><td>${expiry}</td>
</tr>

</c:forEach>
</table>

</body>
</html>

Start Tomcat, and browse to http://localhost:8080/chapter24/private/find-certinfo.jsp.
This should result in the form-based authentication method as displayed in Figure 24-9. Enter the user-
name and password used previously in the chapter and press login.

This should result in a screen similar to the one shown in Figure 24-14.

The certificate information has been partially processed by the JSP to enable it to be directly copied into
the Tomcat configuration file tomcat-users.xml. Create a new user in the tomcat-users.xml file
with a copy of the contents of the table cell starting with the EMAILADDRESS attribute. In this example,
this is the first certificate.

Figure 24-14: Certificate Information provided by the browser

853

Security

29_57485x ch24.qxd 1/14/05 10:16 PM Page 853

TEAM LinG - Live, Informative, Non-cost and Genuine!

This should be copied, creating a user, as follows:

<user username=”EMAILADDRESS=jon@eaves.org, CN=Jon Eaves, OU=Digital ID Class 1 -
Netscape, OU=Persona Not Validated, OU="www.verisign.com/repository/RPA

Incorp. by Ref.,LIAB.LTD(c)98", OU=VeriSign Trust Network, O="VeriSign,
Inc."” password=”null” roles=”chapter24” />

The text inside the username attribute must be on a single line in the tomcat-users.xml file.

Modify the login-config element in web.xml to use CLIENT-CERT authentication as follows:

<login-config>
<auth-method>CLIENT-CERT</auth-method>
<realm-name>Private Realm</realm-name>

</login-config>

Browse to the URL http://localhost:8080/chapter24/private/private-page.jsp. This should
display a page similar to the one shown in Figure 24-15.

Figure 24-15: Client certificate authentication

854

Chapter 24

29_57485x ch24.qxd 1/14/05 10:16 PM Page 854

TEAM LinG - Live, Informative, Non-cost and Genuine!

How It Works
The configuration of the connector requests the browser to send a certificate if it has one available, and the
find-clientinfo.jsp page is used to display the contents of the certificate. In a production environ-
ment, it would be necessary to have two Web applications, as only one authentication realm may be active
at any time. This prevents the need to swap between the FORM and CLIENT-CERT login configurations.

Note the substitution performed by the client-certificate information JSP. All instances of the double-
quote (“) are replaced by with the XML-safe equivalent ("). This is required to prevent Tomcat
from having difficulties loading the tomcat-users.xml. This might not be required depending on
the servlet container used.

As with all the other authentication schemes, the programmer is unaware of the type of authentication
scheme used. In each case, the JSP uses the remote user to get the information provided by the container.

Authorization
The role of authorization in the Web application is strongly linked with authentication. Authorization
generally needs a confirmed identity to perform the activity, but not always. For example, access to a
resource might be restricted by time (business hours, Monday to Friday) or location (within the com-
pany intranet).

Container
All the examples in the authentication section are examples of container-based declarative security.
These provide a restriction based on coarse-grained role-based access to resources. For example, there is
no means of declaratively creating a policy that “users in the manager role can access the payroll details
for their own staff, but not for any other staff.” This functionality is implemented using programmatic
authorization.

Programmatic
Programmatic authorization puts the control of authorization implementation in the hands of the devel-
oper. This offers the developer a more detailed level of control over the decisions that are possible but
with the added burden of developing and testing the code.

The most common forms of programmatic authorization are data-related functionality, where depending
on the identity of the user, certain operations are allowed or denied on sets of the data. For example,
whereas declarative authorization would deny access to the “view payroll” page, programmatic autho-
rization would allow users to see their own data on that page, and potentially the payroll details for all
of the staff.

The second form of authorization is less common, but still relevant in the role of enterprise development.
This is authorization based not on data, but on some other factor, such as time or location. Access to cer-
tain resources might be limited to business hours, or within a certain network. This can also be coupled
with the data-related functionality, creating very complex business rules around access to sensitive
resources.

855

Security

29_57485x ch24.qxd 1/14/05 10:16 PM Page 855

TEAM LinG - Live, Informative, Non-cost and Genuine!

In most cases of Web application development, authentication is managed by the container over a broad
range of resources (such as the administration application), while authorization about what data is to be
shown is managed by code implemented in the Web application using the identity provided by the con-
tainer. In the next Try It Out example, you learn how to implement programmatic authorization.

Try It Out Implementing Programmatic Authorization
Add two new users and a new role to tomcat-users.xml as follows:

<role rolename=”example1” />
<user username=”staff1” password=”staff1” roles=”staff” />
<user username=”staff2” password=”staff2” roles=”staff” />

Modify the web.xml file to include a new security-constraint, a new filter configuration, an
updated login-config, and a new security-role as follows:

<?xml version=”1.0” encoding=”ISO-8859-1”?>

<web-app version=”2.4” uri=”http://java.sun.com/xml/ns/j2ee” >

<security-constraint>
<web-resource-collection>

<web-resource-name>Everything Private</web-resource-name>
<url-pattern>/private/*</url-pattern>

</web-resource-collection>
<http-method>GET</http-method>
<http-method>POST</http-method>
<user-data-constraint>

<transport-guarantee>CONFIDENTIAL</transport-guarantee>
</user-data-constraint>

<auth-constraint>
<role-name>chapter24</role-name>

</auth-constraint>
</security-constraint>

<security-constraint>
<web-resource-collection>

<web-resource-name>Staff Roster</web-resource-name>
<url-pattern>/roster/*</url-pattern>

</web-resource-collection>
<http-method>GET</http-method>
<http-method>POST</http-method>
<user-data-constraint>

<transport-guarantee>CONFIDENTIAL</transport-guarantee>
</user-data-constraint>

<auth-constraint>
<role-name>staff</role-name>

</auth-constraint>
</security-constraint>

<filter>

856

Chapter 24

29_57485x ch24.qxd 1/14/05 10:16 PM Page 856

TEAM LinG - Live, Informative, Non-cost and Genuine!

<filter-name>SecurityFilter</filter-name>
<filter-class>com.wrox.begjsp.ch24.roster.SecurityFilter</filter-class>

</filter>

<filter-mapping>
<filter-name>SecurityFilter</filter-name>
<url-pattern>/roster/*</url-pattern>

</filter-mapping>

<login-config>
<auth-method>FORM</auth-method>
<form-login-config>

<form-login-page>/login.html</form-login-page>
<form-error-page>/login-error.html</form-error-page>

</form-login-config>
</login-config>

<security-role>
<role-name>chapter24</role-name>
<role-name>staff</role-name>

</security-role>

</web-app>

Create a servlet filter, SecurityFilter, in src/com/wrox/begjsp/ch24/roster with the following:

package com.wrox.begjsp.ch24.roster;

import java.io.IOException;
import java.util.HashMap;
import java.util.Map;

import javax.servlet.Filter;
import javax.servlet.FilterChain;
import javax.servlet.FilterConfig;
import javax.servlet.ServletException;
import javax.servlet.ServletRequest;
import javax.servlet.ServletResponse;
import javax.servlet.http.HttpServletRequest;

public class SecurityFilter implements Filter
{

private Map _roster = new HashMap();

public void init(FilterConfig config)
{

_roster.put(“staff1”, “Monday”);
_roster.put(“staff2”, “Tuesday”);

}

public void doFilter(ServletRequest request,
ServletResponse response,
FilterChain chain)

857

Security

29_57485x ch24.qxd 1/14/05 10:16 PM Page 857

TEAM LinG - Live, Informative, Non-cost and Genuine!

throws IOException, ServletException
{

if (request instanceof HttpServletRequest)
{

HttpServletRequest httpRequest = (HttpServletRequest)request;

httpRequest.setAttribute(“staffRoster”, _roster);
boolean isAdmin = httpRequest.isUserInRole(“manager”);
httpRequest.setAttribute(“isAdmin”, Boolean.valueOf(isAdmin));

}

chain.doFilter(request, response);
}

public void destroy()
{

// do nothing
}

}

Finally, create a new JSP file called staff-roster.jsp in a new roster subdirectory:

<!--
<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
-->
<html>

<head>
<title>

<c:out value=”${title}” />
</title>

</head>
<body>

<h1>
<c:out value=”${title}” />

</h1>

<c:set var=”user” value=”${pageContext.request.remoteUser}” />
<c:set var=”workDay” value=”${staffRoster[user]}” />

Welcome ${user} <p/>

You are rostered to work on ${workDay} <p/>

Logout <p/>
</body>

</html>

Browse to the URL http://localhost:8080/roster/staff_roster.jsp. The form-based authenti-
cation will intercept the request and display the form login screen shown in Figure 24-9. Enter the user-
name staff1 and the password staff1 into the form and press login.

858

Chapter 24

29_57485x ch24.qxd 1/14/05 10:16 PM Page 858

TEAM LinG - Live, Informative, Non-cost and Genuine!

This will display the screen shown in Figure 24-16.

Browse around to the public page (http://localhost:8080/chapter24/public/public-page.jsp)
and then back to the roster page. Notice how the same user is still logged in. Press the Logout link and
browse to the roster page again.

Again, the form-based authentication interceptor will intervene. This time enter the username as staff2
and the password as staff2. The screen should now look like the one shown in Figure 24-17.

How It Works
This is a very simple example of how J2EE authentication can be used with programmatic authorization.
The HashMap is used in the SecurityFilter to simulate a database access for the same information.

Once the J2EE authentication has been performed, the value of the remote user can be used for any pur-
pose. In this case, it is used to look up user-specific data to be displayed.

Figure 24-16: staff1 logged in

859

Security

29_57485x ch24.qxd 1/14/05 10:16 PM Page 859

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 24-17: staff2 logged in

Summary
This chapter has covered the fundamentals of security for Web applications. To conclude this chapter,
let’s review some of its key points:

❑ The J2EE specification provides security support.

❑ All authentication schemes provide the same interface to the JSP developer.

❑ The container-based declarative authorization is coarse-grained.

❑ Programmatic authorization allows for more fine-grained control over resource access.

Exercises
1. Modify the roster JSP page such that it will let the role of “manager” access the page and dis-

play all the staff roster information.

2. Extend exercise 1 so that the authorization allows staff to access the roster JSP page during busi-
ness hours (9:00 A.M. to 6:00 P.M.) and managers at any time.

860

Chapter 24

29_57485x ch24.qxd 1/14/05 10:16 PM Page 860

TEAM LinG - Live, Informative, Non-cost and Genuine!

25
Performance

Performance is very important for Web applications. Even if your application has a lot of useful
functionality and an elegant user interface, your users may still not use it if they have to wait a
long time for a Web page to load.

This chapter covers the following issues relating to the performance of Web applications:

❑ The meaning of performance as it applies to a Web application

❑ Measuring the performance of a Web application.

❑ Investigating the reasons behind performance bottlenecks in your Web application

❑ Some common mechanisms to improve performance

Performance tuning is a complex area. For a Web application deployed in an enterprise, many
of the factors that affect performance are often outside the application itself. These factors may
include the network configuration and hardware platform characteristics, the operating system
settings, Java virtual machine parameters, database tuning parameters, and the architecture of the
Web application itself.

Naturally, everything that affects performance cannot be covered here. The objective of this chap-
ter is to introduce you to performance measurement and tuning concepts, give you a hands-on feel
for some of the tools used for performance measurement, and cover those areas of JSP develop-
ment and deployment that affect performance.

Performance Concepts
What does performance mean for a Web site? From a user’s perspective, the performance of a Web
site boils down to how fast (or how slow) the Web pages load. As a Web developer, you need pre-
cise ways to quantify the performance of your Web site.

30_57485x ch25.qxd 1/14/05 10:17 PM Page 861

TEAM LinG - Live, Informative, Non-cost and Genuine!

In the following subsections, you will first learn how you can quantify the performance of your Web site,
rather than using imprecise terms such as “fast” or “slow.” You will then be shown some techniques to
obtain this performance measurement. Finally, after you complete performance testing, you will be
introduced to ways in which you can analyze causes of poor performance.

What to measure
There are two important properties that you should measure to quantify the performance of your Web site:

❑ Response time

❑ Scalability

The response time is the time it takes for one user to perform an operation. For example, in a storefront
Web site, after the customer puts items in a shopping cart and clicks the Buy button, the time it takes to
process the order and for the checkout screen to appear is the response time for the checkout Web page.
Typically, you would test this operation multiple times, and note the average response time. Different oper-
ations on your Web site (listing items in stock, adding items to a cart, checkout) might have different
response time values. You can add these to get the total transaction time for the user. In this case, for a
“buy item” transaction, you would add the time for listing items, adding items to a cart, and checking
out to get the total transaction time. Is this how long a user will have to wait every time while buying
items? Not really: The response time varies depending on the load on the Web site.

Scalability, in the context of Web applications, refers to the ability of your Web site to handle multiple
users at the same time. Naturally, the response time for your application usually increases as multiple
users access your Web site at the same time. To measure scalability, you note the response time as the
load on the Web site (increased number of users, users doing complex transactions, and so on) increases.
At some point, things just break: Either the response gets unreasonably slow, or users start seeing errors
caused by the Web site — refusing connections, database connection unavailability, or a host of other
reasons. The number of users that the Web site can support with a reasonable response time is a measure
of its scalability.

Another property of your Web site, related to its response time and scalability, is throughput. Throughput
is the number of transactions that can occur in a given amount of time. The throughput is usually mea-
sured in transactions per second (tps).

However, before you start any performance testing, you should be clear about what kind of performance
is expected from the Web site, as reflected in the following questions:

❑ How long should a Web transaction take?

❑ How long should a user wait before a page loads?

❑ How many users should the Web site support?

❑ What kind of user traffic are you expecting? Is it bursty (meaning does it have periods of low
activity and high activity)?

Understanding what kind of Web traffic is expected is important while designing performance test cases.

862

Chapter 25

30_57485x ch25.qxd 1/14/05 10:17 PM Page 862

TEAM LinG - Live, Informative, Non-cost and Genuine!

The user’s perspective
The beginning of this section talked about the user’s perspective on performance. Often, a factor in this
is how the user accesses the Web site. Naturally, a user accessing the Web site over a slow network con-
nection, such as a dial-up modem, will not see the same kind of performance as a user accessing it over
a high-speed network, or the local LAN. Some features of your Web site — such as graphics-intensive
Web pages, applets embedded inside a Web page, and so on — might even load so slowly on dial-up
connections that the user experiences timeouts from the Web browser.

Another issue that affects performance from a user’s perspective is server proximity. If a server is located
in California, a user accessing the Web site from Korea might not see the same performance because of
network-related issues, such as multiple network hops to reach the server.

It is important to design performance tests that simulate these different kinds of user experiences. Many
of the performance monitoring tools listed later in the chapter enable you to do this.

How to measure performance
You can perform several tests to determine the performance characteristics of your Web site under user
load. The kinds of tests you can do fall broadly into three categories:

❑ Load testing

❑ Stress testing

❑ Continuous hours of operation testing

The terms load testing and stress testing are often uses interchangeably. The confusion is caused by the fact
that they are done in a somewhat similar manner. In both tests, the system (in this case, the Web applica-
tion) is subjected to multiple concurrent users. What is different in the two tests is the objective of the
tests.

In load testing, the Web application is subjected to a “normal” amount of load. You would start with a
low number of users accessing the Web application and then increase the number of users incrementally
until you reach a “high load” on the application. During this process, the response time is measured
as the number of concurrent users increases. At the end of the load test, you have data on how well (or
badly) the Web site scales with increased load, and if it can provide a reasonable response time at peak
load.

The objective of stress testing is simply to break the system. You subject the Web application to an unrea-
sonable amount of load — perhaps 5,000 or 10,000 concurrent users, for instance — and continue increas-
ing the load until something crashes. The kind of errors you would get might result from the Web server
refusing connections, the JVM running out of memory or other resources, new database connections fail-
ing, or just about anything else. Basically, you are looking for answers to the following:

❑ What kind of load would break the system?

❑ What bugs in the Web application show up in such extreme conditions?

863

Performance

30_57485x ch25.qxd 1/14/05 10:17 PM Page 863

TEAM LinG - Live, Informative, Non-cost and Genuine!

The bugs that you should be concerned about relate to data corruption. For example, in a banking Web
site, a crash during stress testing should not leave the bank accounts being modified at that time in an
inconsistent state.

You should remember that the load to which the Web application is subjected in the stress test is some-
thing out of the ordinary. Therefore, you don’t have to, in most cases, go back and improve performance
so that it can handle this load. All you need to do is ensure that harmful bugs (data corruption, etc.) do
not occur in situations of extreme load. In addition, if possible, you should handle such conditions grace-
fully on the Web site, such as by displaying an error message asking users to try again later.

Finally, in continuous hours of operation (CHO) testing, you would leave your Web application running
for a few days and simulate normal user traffic on your Web site. You would then monitor the response
time, as well as the system’s characteristics. The system’s characteristics include memory and CPU
usage. Tools such as top (on Linux/UNIX) and the Task Manager (on Windows) can be used for this
purpose.

CHO tests are useful in detecting subtle problems that are often not detected by other forms of testing.
These problems could relate to resources not being released properly, such as memory leaks, database
connections, and other connection pool resources not being freed. For instance, an increase in memory
usage by the Web server or container over time might be an indication of a memory leak. This kind of
testing doesn’t strictly fall under the category of performance testing, however, as it is targeted toward
detecting problems in the code.

Running these kinds of tests requires automated tools, as it is not feasible (or cost effective!) to get a
large number of users to access your Web site manually over extended periods of time. Several such
automated test tools are available, and some popular ones are listed in the following table.

Performance Tool Company URL Licensing

JMeter Apache Software http://jakarta. Open Source,
Foundation apache.org/ Apache License

jmeter/

Flood Apache Software http://httpd. Open Source,
Foundation apache.org/test/ Apache License

flood/

LoadRunner Mercury Interactive www.mercury.com/ Commercial

Silk Performer Segue Software www.segue.com/ Commercial

Rational IBM www.306.ibm.com/ Commercial
Performance software/
Tester awdtools/tester/

performance/
index.html

WebLOAD Radview Software www.radview.com/ Commercial

The first tool listed in the preceding table, JMeter, is covered briefly later in the chapter.

864

Chapter 25

30_57485x ch25.qxd 1/14/05 10:17 PM Page 864

TEAM LinG - Live, Informative, Non-cost and Genuine!

After you have determined the performance characteristics for your Web site for the first time, you can
use them as a baseline for comparison purposes. When you make changes to the Web application for
functionality or performance reasons, you can rerun your tests to see how the performance changes
relative to the baseline.

Some of the changes you make to improve performance include changing the way your Web applica-
tions work, how they are deployed, or even throwing more system resources at the problem — more
hardware, more memory for servers, changing the operating system or network parameters, changing
database parameters, and so on.

Before you start making changes for this, you must analyze the reasons for your performance — or the
lack of it.

What to do after performance testing
After you complete the initial performance testing and find that your Web application is very slow or
cannot handle the expected user load, you might be tempted to rush in with a solution, redo parts that
seem slow, throw more hardware at the problem, and so on. Don’t!

It is important to analyze the reasons why your application is slow and identify the bottlenecks.
Following are some of the steps that you can perform to identify the root causes of your performance
problem:

❑ Log your system information, such as the memory and CPU utilization on your server. Using
tools such as top on UNIX/Linux and the Task Manager on Windows are some of the ways
you can do this.

❑ Instrument your code to trace the areas of poor application performance. Instrumenting your
Web application for performance analysis means adding additional code to your Web applica-
tion that tracks and records the amount of time it takes to perform certain tasks. Typically, this
is in the form of logging statements that output the amount of time taken for operations. For
example, you would add such statements around database invocations, calls to remote meth-
ods, and so on. In Chapter 14, “JSP Debugging Techniques,” you saw how Log4j or the Java
Logging API can be used for logging from Web applications.

❑ Use profiling tools to analyze your applications, draw visual representations of the behavior
under load, and show call graphs with the time taken in each module. The call graph is a dia-
gram that identifies the modules of a system and shows which module calls another. Some
popular profiling tools are shown the following table.

Profiling Tool Company URL Licensing

JProbe Quest Software www.quest.com/jprobe/index.asp Commercial

OptimizeIt Borland www.borland.com/optimizeit/ Commercial

JProfiler EJ Technologies www.ej-technologies.com/ Commercial
products/jprofiler/overview.
html

865

Performance

30_57485x ch25.qxd 1/14/05 10:17 PM Page 865

TEAM LinG - Live, Informative, Non-cost and Genuine!

The objective of using these profiling tools or instrumenting your Web application code is to identify the
performance bottlenecks in your application and to address those specifically.

As mentioned before, these performance bottlenecks can often be caused by external components. For
instance, if a database call from your Web application takes a long time, you could explore whether the
SQL query can be made more efficient, or use a database stored procedure call, or tune database param-
eters, and so on.

Measuring Performance Using JMeter
Several tools for performance testing are available — both open source (such as Apache JMeter) as well
as popular commercial ones such as LoadRunner and Silk Performer. This section looks at using JMeter
for testing a Web application.

Installing JMeter
JMeter can be downloaded from http://jakarta.apache.org/site/binindex.cgi#jmeter_
binaries. It comes as a zip file (tar.gz for Linux/UNIX), and all you need to do is extract it in a
directory of your choice. Other than that, JMeter requires JDK version 1.4 or later to run, and your
JAVA_HOME should be set to the JDK 1.4 install directory.

JMeter concepts
JMeter runs in three modes:

❑ As a standalone GUI application

❑ Non-interactively, through the command line, or using Ant scripts

❑ In a server mode, for distributed testing

The standalone mode is the most common way to use JMeter. To run JMeter in this mode, run the
jmeter.bat batch file (the jmeter shell script for Linux/UNIX) located under <JMETER_HOME>/bin.
This starts up a Swing-based GUI application, as shown in Figure 25-1.

Figure 25-1: JMeter GUI

866

Chapter 25

30_57485x ch25.qxd 1/14/05 10:17 PM Page 866

TEAM LinG - Live, Informative, Non-cost and Genuine!

JMeter can be used to test not only a Web site/Web application, but also a database server, LDAP server,
or a Web service. This section focuses on just the Web site testing.

If the machine you are running JMeter from accesses the Web site using a proxy server, you can specify
the proxy host/port to the JMeter batch file or shell script using the –H and –P command-line parameters
as shown:

jmeter –H proxy_host –P proxy_port

To start testing, you first have to define a test plan, and then execute it to view the results. You can also
save a test plan so that the performance testing can be repeated later. This is a good idea, for typically
you would run performance tests, then make changes in the Web application or its deployment, and
then rerun the tests to see how performance is affected. As mentioned earlier, the results obtained in the
initial runs can be used as a baseline for future testing.

Building a test plan in JMeter for Web testing involves the following steps:

1. Add users for testing: In this step, you configure the number of users that would be simulated,
how many requests are sent by each user, and the delay between requests as they start up. You
can also specify if the users support cookies or not.

2. Configure the Web server properties: Next, you specify the Web server properties, such as the
hostname, port, and so on.

3. Specify the requests to be sent to the Web server: Here, you list all the requests sent to the
server (GET and POST requests, and file uploads).

4. Define a listener to store the results of the test: Finally, you define a listener that stores the
results of a test run and presents it visually. A listener is a JMeter component that stores and
processes test results. Some examples of listeners are Graph Listener (shows results in a graph)
and Mailer Visualizer (sends out an e-mail).

The test plan can be saved and run at a later time. Rerunning the test plan can be done either through
the JMeter GUI, or even non-interactively. Some form of performance testing can be included as a part of
a build and release procedure to track how code changes affect performance. For running JMeter non-
interactively, you can use the command-line options shown here:

jmeter –n –t test_plan –l log_file

Here, the –n option indicates that JMeter is being run non-interactively, the –t option specifies the test
plan to be run, and the –l option indicates the log file to which sample results should be sent.

JMeter can even be run from Ant build scripts. A third-party library that implements Ant support for
JMeter can be downloaded from programmerplanet.org/ant-jmeter/. Apache Ant is covered in
greater detail in Chapter 26, “Best Practices and Tools.”

JMeter also has a lot of other features that enable you to simulate users more realistically, and thus per-
form better testing:

867

Performance

30_57485x ch25.qxd 1/14/05 10:17 PM Page 867

TEAM LinG - Live, Informative, Non-cost and Genuine!

❑ Timer: A timer enables you to introduce delays between user requests. JMeter supports constant
timers (a constant delay between each request), constant throughput timers (constant number
of requests per minute), as well as random timers that simulate the random real-world traffic to
your Web site.

❑ Logic controller: Manages the execution flow of the test plan.

❑ Assertions: Validates the data returned from the Web server.

❑ HTTP proxy server: The proxy server can record the traffic between the Web browser and the
server, and this can be played back as performance test cases.

❑ Distributed load testing: JMeter can also run in a server mode, controlled by one JMeter client.
This enables you to do distributed load testing, especially if you are trying to test the effect of
server proximity on performance.

Server load testing with JMeter is covered in more detail in Professional Apache Tomcat 5 by Vivek Chopra,
et al. (Wrox Press; ISBN 0764559028).

In the following Try It Out exercise, you develop a performance test plan for one of the Web applications
developed earlier in this book. In your test, you will do a load test, and increase the number of users to
observe how the application scales.

Try It Out Developing a Performance Testing Plan
The Web application described in Chapter 18, “Web Frameworks,” will be used in this example. The
example assumes that the Web application is deployed in Tomcat, and can be accessed at the URL
http://localhost:8080/webwork-skeleton.

The first thing you need to do is define the number of users for the Web application. In this example, ini-
tially ten users are defined. In later tests, you can increase this number.

In the JMeter GUI, right-click the Test Plan node, select the Add option, and select Thread Group, as
shown in Figure 25-2.

A Thread Group corresponds to a group of simulated users. The characteristics of these users can be
modeled using the Thread Group parameters, as shown in Figure 25-3. Specify the parameters for the
Thread Group as shown in the figure. Set the Number of Threads parameter to 10, the Ramp-Up Period
to 1, and Loop Count to forever.

Figure 25-3 shows a test with ten users that run requests at one-second intervals.

You can similarly define other thread groups with 20, 30, 40 users and so on.

Next, specify the Web server properties. Right-click the thread group (10 users) you just created, and
select Add ➪ Sampler ➪ HTTP Request, as shown in Figure 25-4.

Figure 25-5 shows the HTTP request called Post to form, which posts the parameters of user, age,
and comments to the form URL specified in the Path parameter (http://localhost:8080/
webwork-skeleton/formtest.action).

868

Chapter 25

30_57485x ch25.qxd 1/14/05 10:17 PM Page 868

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 25-2: Adding a thread group

Figure 25-3: Adding ten users

You can see another HTTP request called Get form just above the Post to form request: This gets the
http://localhost:8080/webwork-skeleton/formtest!default.action Web form.

869

Performance

30_57485x ch25.qxd 1/14/05 10:17 PM Page 869

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 25-4: Creating an HTTP request

Figure 25-5: Posting to a Web page

870

Chapter 25

30_57485x ch25.qxd 1/14/05 10:17 PM Page 870

TEAM LinG - Live, Informative, Non-cost and Genuine!

The final step before being able to run the tests is to add listeners. In this example, an Aggregate
Report listener is set up by clicking the Add ➪ Listener ➪ Aggregate Report menu options. This lis-
tener provides a concise summary of the test data in a tabular form (see Figure 25-6).

Figure 25-6: Test results in an Aggregate Report listener

To run the test, click Run from the Start menu. Because you earlier configured the tests to run indefi-
nitely (see Figure 25-3), you have to use Run ➪ Stop to stop it. Figure 25-6 shows the aggregated test
results, including the request count, the minimum, the maximum, the average request, the error rate,
and the throughput.

You can then repeat this test, increasing the number of users and tracking the change in throughput.

How It Works
As you saw in the Try It Out example, the minimal setup required for JMeter to simulate user load on a
Web site involves the following:

❑ Configure users

❑ Configure Web server properties

❑ Configure HTTP request properties

❑ Configure listeners

As mentioned earlier, configuring users involves configuring the Thread Group element. A Thread
Group corresponds to a group of simulated users, and has a number of configurable parameters, includ-
ing the following:

❑ Number of Threads: This parameter indicates the number of threads to be started. Each thread
simulates a user.

❑ Ramp-Up Period: The Ramp-Up Period controls the time after which each thread (i.e., user) in
the thread group is started. A Ramp-Up Period of 0 starts all at once; a Ramp-Up Period of 1
starts a user every 1 second until the Number of Threads is reached.

871

Performance

30_57485x ch25.qxd 1/14/05 10:17 PM Page 871

TEAM LinG - Live, Informative, Non-cost and Genuine!

❑ Loop Count: The Loop Count determines how many times this whole set of users will execute
their requests; it defaults to forever.

❑ Scheduler: Finally, there is a Scheduler that can be used to start or stop the users at a particu-
lar time.

You can specify the parameters to be sent with the request, while configuring the HTTP request proper-
ties. The HTTP request enables you to configure Web server attributes such as server name or IP address,
port number, protocol, method (GET/POST), and the URL to which user requests should be sent.

This can also be configured as a default for all requests, using HTTP Request Defaults (select your thread
group and right-click to select Add ➪ Config Element ➪ HTTP Request Defaults).

After a test is run, the results of the test are processed by the listener. The listener component can store
the result, do additional processing if required, visualize the result graphically, and so on. In this case,
the Aggregate listener shows a summary of the results in a tabular format (see Figure 25-6).

Performance Tuning Tips
Because performance tuning is a complex topic, it isn’t possible to address everything that affects perfor-
mance in one chapter. This section will first give you a feel for what can affect the performance of a Web
application, and then address areas specific to JSP development and deployment.

Broadly, things that affect performance can be addressed at three stages:

❑ Design time

❑ Development time

❑ Deployment time

Decisions made at design time often have the greatest impact on performance. The design includes both
the software as well as the system architecture. The software architecture is concerned with issues such
as design of software modules, data structures, and so on. The system architecture, on the other hand,
would also address issues such as the following:

❑ Is there load balancing to handle a large volume of requests?

❑ Are there clustering/failover capabilities to handle situations when a Web server or any another
component of the Web site goes down?

This chapter does not address these kinds of issues. The development and deployment-time issues spe-
cific to JSP programming are covered next.

Development-time measures
Following are some JSP coding practices that developers can use to positively affect performance:

❑ Do not create sessions for JSPs if they are not required.

❑ Do not store large objects in your session.

872

Chapter 25

30_57485x ch25.qxd 1/14/05 10:17 PM Page 872

TEAM LinG - Live, Informative, Non-cost and Genuine!

❑ Time out sessions quickly, and invalidate your sessions when you are done with them.

❑ Use the right scope for objects.

❑ Use connection pooling for improving performance.

❑ Cache static data.

❑ Use transfer objects to minimize calls to remote services.

❑ Minimize logging from Web applications, or use simple logging formats.

The following sections examine each of these practices in more detail.

Avoid creating sessions for JSPs if not required
As you learned earlier in the book, HTTP is a stateless protocol. The servlet container, however, provides
session support for servlets and JSP pages. This enables you to keep track of users and the state of the
application across multiple requests from the Web browser. This session is internally implemented using
cookies. If cookies aren’t supported, URL rewriting is used.

For example, if you have a JSP page that shows the contents of a shopping cart, having a session enables
you to know which user’s cart to display.

However, not all JSP pages need to have a session. A JSP page that shows the same information to each
user — for example, the stock quote for a company — may not need to know user-specific information.

Using sessions in a JSP page adds overhead to it, and if a session isn’t required for a page, it should not
be used.

You can avoid creating sessions by adding the following JSP directive at the top of the JSP page:

<%@ page session=”false”%>

Session objects should be small in size
The objects that you store in your session should be as small as possible. Having large objects in your
session negatively affects your application’s scalability.

For example, even though you might store 500K of Java objects in your session, it adds up if you have
multiple concurrent sessions — 0.5GB for 1,000 sessions, 1GB for 2,000, and so on — and that is just the
session data!

Time out sessions quickly
For similar scalability reasons, session timeouts should be kept low. You can change this value during
the configuration of the container, or even programmatically.

The following lines from the deployment descriptor (web.xml) file show the default setting of session
timeouts (30 minutes). You can change it here, or modify it programmatically in your application.

<session-config>
<session-timeout>30</session-timeout>

</session-config>

873

Performance

30_57485x ch25.qxd 1/14/05 10:17 PM Page 873

TEAM LinG - Live, Informative, Non-cost and Genuine!

The following code fragment shows how the session timeout can be configured programmatically from
within your servlet or JSP page:

// Set timeout to 1800 seconds
httpSession.setMaxInactiveInterval(1800);

However, a low session timeout value might cause timeout errors for users if they are inactive for a
while, or if the Web transaction takes a long time to complete.

Use the right scope for objects
As you know by now, there are four levels of scope: page, request, session, and application.

The following shows a JavaBean declaration in session scope:

<jsp:useBean id=”currency” class=”Currency” scope=”session”/>

The scope attribute determines the lifetime of the object: A bean declared with session scope will live
for the duration of the session; a bean with application scope will be around as long as the Web appli-
cation remains loaded. A request scoped bean, on the other hand, will be created for every request.

The scope should be used as appropriate. A JavaBean required only for the request should be declared
with request scope; otherwise, it will stay around for the entire session, retaining the memory allocated
for it.

Use connection pooling for performance
Your Web application should use connection pooling for any kind of remote calls, including calls to
databases.

Typical database connection pooling mechanisms, such as Jakarta DBCP (http://jakarta.apache
.org/commons/dbcp/), allocate a pool of connections at startup time. A request for a database connec-
tion is met from this pool, and connections are returned to it when the database call is over. This avoids
the overhead of creating a connection for every new database call.

Cache data
Static data used across JSP calls should be cached for performance. Typically, such caching is useful for
commonly accessed database records, results of complex processing, or data retrieved from remote sites.

Use transfer objects
Your Web application often has to access remote applications or processes to get data. This could include
databases, LDAP registries, other Web applications, or even another layer of the same Web application.
Making several network calls to access data is expensive and should be minimized. A collection of data
items should be returned in each call, rather than individual items. For example, if a Web application
needs the username, the user’s account information, and his or her customizable options, they should be
retrieved in one single user profile object instead of using multiple calls.

874

Chapter 25

30_57485x ch25.qxd 1/14/05 10:17 PM Page 874

TEAM LinG - Live, Informative, Non-cost and Genuine!

This kind of object that is used to transfer data between layers is called a data transfer object (DTO), or
sometimes just transfer object. Using a DTO is a common design pattern while building enterprise appli-
cations. Chapter 27, “Project I: Personalized Portal,” illustrates the use of transfer objects.

Minimize logging
Logging is important, as you can log runtime errors, and even cause alerts to be sent in abnormal situa-
tions. It can also be used to trace the behavior of Web applications and help debug complex problems.
However, excessive logging can be expensive as far as performance is concerned.

Log4j is the most widely used logging framework, even though the JDK 1.4 comes with another logging
mechanism called the Java Logging API. Both these frameworks are covered in Chapter 14, “JSP
Debugging Techniques.” Some of the ways in which you can get the benefits of logging without affect-
ing performance too much are listed here:

❑ Minimize the amount of information being logged: Both Log4j and the Java Logging API sup-
port multiple logging levels. For example, Log4j has debug, info, warn, error, and fatal levels.
The debug and info levels are useful for development environments and can be turned off for
production deployments. Using the different logging levels enables you to screen out most of
the messages and leave only the critical logging in place. The log level for an application can be
configured via a configuration file, or even programmatically.

❑ Use efficient logging formats: Both logging mechanisms allow for configurable logging formats.
In Log4j, for instance, you can opt for a plain string format, choose from more complex formats
with date and time embedded, or even log in an HTML or XML format. However, the more
elaborate formats are expensive in terms of performance. Again, these settings can be set (or
changed) via a configuration file. This enables you to have a more verbose or easier-to-read log
format for development, and have a compact and efficient one for production deployment.

❑ Add conditional code before logging statements: If you have logging statements in your code
for informational or debug messages, and you turn those logging levels off, those messages will
not be logged. However, a method invocation will still occur, with the associated cost of construct-
ing the parameters to the method. To get around this cost, you could add code to check for a
particular logging level.

In other words, instead of an unadorned debug message log as shown here

logger.debug (“Info:” + infoMessage);

you should first determine whether the debug logging level is enabled:

if (logger.isDebugEnabled())
{

logger.debug (“Info:” + infoMessage);
}

Deployment-time measures
In the previous section, you learned some of the things that you can do to improve performance while
developing your Web applications.

875

Performance

30_57485x ch25.qxd 1/14/05 10:17 PM Page 875

TEAM LinG - Live, Informative, Non-cost and Genuine!

After a Web application is developed, it is deployed on a server. This section covers some of the
deployment-time considerations that affect performance. This section covers four measures:

❑ Precompiling your JSP pages

❑ Disabling your container from checking for JSP modifications

❑ Enabling pooling of your custom tags

❑ Using a Web server, such as Apache or IIS, to serve static content

In addition to these performance measures, there are a host of other deployment-time measures related
to tuning the parameters of the Application server or the container itself, the Java Virtual Machine
(JVM), the database to which the Web application connects, the operating system on which this runs,
and so on. These are not covered in this chapter, which examines only those deployment-time considera-
tions that are specific to JSPs.

Precompile JSPs
The first request for a JSP is handled differently from subsequent requests. When a browser requests a
JSP page for the first time, the following set of tasks happens behind the scenes:

1. The container translates the JSP to Java code. This Java class is actually a servlet.

2. This servlet is compiled into Java bytecode, and this class file is kept in a file system location
specific to the container.

3. The servlet class file is then loaded into memory.

4. The container calls an initialization method for the servlet.

5. Finally, the service method of this servlet is called. The service method handles the incoming
request and generates the response that is eventually sent back to the user’s browser.

For every subsequent call to the JSP page, all of the following steps need to be performed:

1. The container first determines whether the JSP file has changed since the last time it was com-
piled. This is typically done by comparing the timestamps on the files.

2. If there was a change, the container would, as before, first translate the JSP to corresponding
servlet Java code, and then compile it to a class file.

3. If nothing was changed in the JSP file, the container determines whether the servlet class corre-
sponding to the JSP page has been loaded into memory.

4. If the servlet class is not in memory, the container loads and initializes it.

5. Finally, as before, the service method of this servlet is called. The service method handles the
incoming request and generates the response that is eventually sent back to the user’s browser.

This lifecycle of JSPs is summarized in Figure 25-7.

876

Chapter 25

30_57485x ch25.qxd 1/14/05 10:17 PM Page 876

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 25-7: JSP lifecycle

The difference between the first invocation (when the JSP is translated and then compiled into bytecode)
and subsequent invocations is quite evident; the first time the JSP is called, the response is noticeably
slower than all other times.

This overhead can be avoided if the JSP is precompiled. Precompiling JSPs involves manually doing the
tasks that the container does for first-time invocation of JSPs:

1. Translating JSPs to Java code

2. Compiling the Java code

3. Copying the class files to a location where they can be loaded along with the rest of the Web
application classes

Is this the first
time the JSP is
invoked?

JSP request

NO

NO

NO

YES

YES

YES

Translate JSP to
servlet

Has JSP
changed since
last compile?

Is the JSP's
class loaded in
memory?

Compile servlet
to class file

Load class in
memory

and initialize

Invoke service
method to

handle request

877

Performance

30_57485x ch25.qxd 1/14/05 10:17 PM Page 877

TEAM LinG - Live, Informative, Non-cost and Genuine!

The following Ant script from the Tomcat documentation shows how the JSP precompilation can be
done for Tomcat. This script precompiles all the JSP files in the Web application:

<project name=”Webapp Precompilation” default=”all” basedir=”.”>

<target name=”jspc”>

The script first defines the Ant task (jasper2) for converting a JSP file to the equivalent Java code. This
task uses Jasper 2, which is the JSP page compiler for Tomcat 5:

<taskdef classname=”org.apache.jasper.JspC” name=”jasper2” >
<classpath id=”jspc.classpath”>

<pathelement location=”${java.home}/../lib/tools.jar”/>
<fileset dir=”${tomcat.home}/bin”>

<include name=”*.jar”/>
</fileset>
<fileset dir=”${tomcat.home}/server/lib”>

<include name=”*.jar”/>
</fileset>
<fileset dir=”${tomcat.home}/common/lib”>

<include name=”*.jar”/>
</fileset>

</classpath>
</taskdef>

The jasper2 task is then invoked to translate all JSP files into equivalent Java source code. These classes
are output in the directory pointed to by the outputDir attribute:

<jasper2
validateXml=”false”
uriroot=”${webapp.path}”
webXmlFragment=”${webapp.path}/WEB-INF/generated_web.xml”
outputDir=”${webapp.path}/WEB-INF/src” />

</target>

Finally, the Java code is compiled to class files using Ant’s built-in javac task, as shown in the following
code. The class files are output in the <web application path>/WEB-INF/classes directory, as speci-
fied by the destdir attribute of the javac task:

<target name=”compile”>

<mkdir dir=”${webapp.path}/WEB-INF/classes”/>
<mkdir dir=”${webapp.path}/WEB-INF/lib”/>

<javac destdir=”${webapp.path}/WEB-INF/classes”
optimize=”off”
debug=”on” failonerror=”false”
srcdir=”${webapp.path}/WEB-INF/src”
excludes=”**/*.smap”>

<classpath>
<pathelement location=”${webapp.path}/WEB-INF/classes”/>

878

Chapter 25

30_57485x ch25.qxd 1/14/05 10:17 PM Page 878

TEAM LinG - Live, Informative, Non-cost and Genuine!

<fileset dir=”${webapp.path}/WEB-INF/lib”>
<include name=”*.jar”/>

</fileset>
<pathelement location=”${tomcat.home}/common/classes”/>
<fileset dir=”${tomcat.home}/common/lib”>

<include name=”*.jar”/>
</fileset>
<pathelement location=”${tomcat.home}/shared/classes”/>
<fileset dir=”${tomcat.home}/shared/lib”>

<include name=”*.jar”/>
</fileset>
<fileset dir=”${tomcat.home}/bin”>

<include name=”*.jar”/>
</fileset>

</classpath>
<include name=”**” />
<exclude name=”tags/**” />

</javac>

</target>

<target name=”all” depends=”jspc,compile”>
</target>

</project>

Ant is covered in more detail in Chapter 26, “Best Practices and Tools.”

In the next Try It Out example, you will see for yourself how much overhead is introduced if a JSP page
is to be translated and compiled.

Try It Out Precompiling JSP Pages
Tomcat stores the translated servlet code and the compiled class files under the <Tomcat Installation
Directory>\work\Catalina\<virtual host name> directory. For the default Tomcat configuration,
this would be <Tomcat Installation Directory>\work\Catalina\localhost\<web
application name>. Change to this directory and remove all the files under the ch09 Web application.

Now start your browser and access the URL http://localhost:8080/ch09/example1/. Note the
delay before the page actually appears in the browser. Now start another browser window, and browse
to the same URL; the page loads a lot faster the second time.

Remember to clear out your browser’s cache before you perform this test, or you might get spurious
results.

JSP modification-time checks
The JSP lifecycle in the preceding section showed how each time there is a request for a JSP, the container
first checks to see if it has been modified. This feature is useful for a development environment, as it
saves you the overhead of doing a compile and deploy every time you want to try out the effect of
changes.

879

Performance

30_57485x ch25.qxd 1/14/05 10:17 PM Page 879

TEAM LinG - Live, Informative, Non-cost and Genuine!

However, in a production environment, this can affect the performance of JSP pages. Often in such envi-
ronments, this JSP modification-time check is disabled.

The following excerpt is from the global Web application configuration file (<Tomcat Installation
Directory>/conf/web.xml); it shows how this parameter can be tuned for the Jasper servlet. The
Jasper servlet, as mentioned earlier, invokes the JSP page compiler.

The two attributes that control the JSP compilation behavior in Tomcat are development and reloading.
If you don’t want the JSP pages to be checked for modification each time there is a request, you should
set development to false.

In the following settings, the reloading attribute is also set to false. Had reloading been true, back-
ground compiles would have been enabled. The background compile option would cause the container
to check and compile JSPs after a period of time. Another configurable parameter, called checkInterval,
determines how frequently the compiles are triggered.

In the current Tomcat default setting, both development and reloading are set to true, and
checkInterval is set to 300 seconds.

<servlet>
<servlet-name>jsp</servlet-name>
<servlet-class>org.apache.jasper.servlet.JspServlet</servlet-class>
<init-param>

<param-name>fork</param-name>
<param-value>false</param-value>

</init-param>

<init-param>
<param-name>development</param-name>
<param-value>false</param-value>

</init-param>

<init-param>
<param-name>reloading</param-name>
<param-value>false</param-value>

</init-param>

...

</servlet>

The two techniques described previously are among the reasons why JSP development is so popular.
The modification-time check feature enables you to use JSPs as a scripting tool in development environ-
ments. In these environments, you can make changes to JSP files and immediately see the effect.

When you are finally ready for production, you can simply turn this off and precompile the code for bet-
ter performance.

Custom tag pooling
Throughout this book, you have been taught that good JSP design means keeping Java code out of JSPs,
and that using a tag library (JSTL or custom) makes for more maintainable code.

880

Chapter 25

30_57485x ch25.qxd 1/14/05 10:17 PM Page 880

TEAM LinG - Live, Informative, Non-cost and Genuine!

A clean and maintainable design does not come without some costs, however, and excessive use of cus-
toms tags affects performance. When you are facing the trade-off between a maintainable design and
squeezing out a little bit more performance, a maintainable design should be chosen — it pays off in the
long run in terms of programmer productivity.

Jasper (the JSP-to-Java translator for Tomcat) addresses the issue of tag performance to some extent by
supporting custom tag pooling. The Java objects instantiated for the custom tags are now pooled and
reused, which boosts the performance of JSP pages.

The following is an excerpt from the global Web application deployment descriptor (TOMCAT_HOME\
conf\web.xml), which has defaults for all the Web applications. The settings below are for the
JspServlet that handles all requests for JSP pages. The enablePooling attribute specifies whether
the pooling of Tag library classes is to be enabled (true) or not (false). This attribute is enabled by
default, so you don’t have to do anything here. In case you are using another application server, you
need to check its documentation to see if this feature is supported, and if so, how to enable it.

<servlet>
<servlet-name>jsp</servlet-name>
<servlet-class>org.apache.jasper.servlet.JspServlet</servlet-class>
<init-param>

<param-name>fork</param-name>
<param-value>false</param-value>

</init-param>

<init-param>
<param-name>enablePooling</param-name>
<param-value>true</param-value>

</init-param>
...

</servlet>

Using Web servers for static content
Web sites contain both static and dynamic content. The static content includes HTML pages, images, and
style sheets (.css files), while the dynamic content includes JSPs and servlets.

All the examples in this book have been shown running within a servlet container (Tomcat). While this
is fine for development time, for production deployments, often a Web server is used in addition to a
servlet container or a J2EE application server. In such deployments, the Web server — for example,
Apache or IIS — serves up the static content to Web browsers. When there is a request for a JSP or a
servlet, a special configuration at the Web server end tells it how to send the request to the servlet con-
tainer. The servlet container then processes the request and returns the result to the Web server, and
finally to the user’s browser.

Figure 25-8 shows a typical deployment.

The primary reason for using a Web server in addition to a servlet container is performance. Servlet con-
tainers and J2EE application servers are typically written in Java and do not perform as well as native
Web servers do.

881

Performance

30_57485x ch25.qxd 1/14/05 10:17 PM Page 881

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 25-8: Using a Web server in addition to a servlet container or J2EE application server

Some other reasons for using a Web server include the following:

❑ Stability: Such a configuration is more stable than a standalone one involving just a servlet
container; Web servers such as Apache are typically a lot more robust. If the servlet container
crashes, for instance, the rest of the Web site that contains static content is still available to users.

❑ Legacy support: Web sites sometimes have legacy modules implement in other languages such
as Perl, Python, and so on. Using a Web server front end such as Apache enables you to con-
tinue using their functionality.

The steps for configuring a Web server such as Apache or IIS to work as a front end to Tomcat are
beyond the scope of this book. For more information, see Vivek Chopra’s Professional Apache Tomcat 5
(Wrox, 2004) or visit the Tomcat Web site at http://jakarta.apache.org/tomcat/.

Web browser

Web server

Dynamic page request
(JSP/servlet)

Static page request
(HTML page, image)

Dynamic page request
(JSP/servlet)

Fetch stored HTML,
image content

Filesystem

servlet container or J2EE
application server

882

Chapter 25

30_57485x ch25.qxd 1/14/05 10:17 PM Page 882

TEAM LinG - Live, Informative, Non-cost and Genuine!

Summary
Performance tuning a Web application requires knowledge of not just Web development concepts, but
also databases, network configurations, and operating system tuning, among other things. This chapter
gave you a feel for some of these issues, focusing on those aspects of JSP development that affect
performance.

To summarize the important points of this chapter:

❑ You should decide what you are going to measure, and develop a performance test plan before
you start. The test plan typically includes the desired performance (e.g., how many concurrent
users to support, expected response time, expected throughput), as well as the testing method-
ology (e.g., load test, stress test) and their details.

❑ The test plan should also include the user transactions being simulated, the load being tested,
and the environment for testing.

❑ You should determine a baseline measure the first time you test, and use that to compare
against after making changes.

❑ Tools such as JMeter, LoadRunner, and Silk Performer help automate testing.

❑ After performance testing is completed, analyzing the test results helps determine the root causes
of poor performance. This should be done before attempting any changes for performance.

❑ Some JSP-related measures for improving performance include precompiling JSP pages, not
using sessions when not required, and invalidating sessions sooner. Often, however, the cause
of poor performance might lie outside your Web application, related to such issues as database
access or deployment.

The next chapter covers programming methodologies, best practices, and developer tools.

883

Performance

30_57485x ch25.qxd 1/14/05 10:17 PM Page 883

TEAM LinG - Live, Informative, Non-cost and Genuine!

30_57485x ch25.qxd 1/14/05 10:17 PM Page 884

TEAM LinG - Live, Informative, Non-cost and Genuine!

26
Best Practices and Tools

Building reliable software is not easy. In the preceding chapters, you learned several techniques
for developing Web applications, and best practices while using them. These techniques are
important, but even more important is learning how to develop software well. This skill is applica-
ble to all programming domains, whether you are developing Web applications or writing operat-
ing system code.

This chapter covers a range of topics, from development methodologies to tools used for Web
development and best practices. It starts off by briefly explaining some of the popular develop-
ment methodologies that are relevant today, and provides a tutorial introduction to tools that
should be in every Web developer’s tool box. Finally, the chapter summarizes the best practices
that were used throughout the book. This is the last chapter prior to the project chapters, so it cov-
ers what you need to know, in addition to JSP programming, to be a professional Web developer.

This chapter contains the following important topics:

❑ Popular development methodologies

❑ A range of tools for development, version control, building and deployment, testing,
and performance metrics for Web applications

❑ How to work with the CVS version control system

❑ How to write an Ant script to build and deploy Web applications

❑ How to use JUnit and HttpUnit for unit and regression testing

❑ The importance of coding standards and conventions, and some tools that can help
enforce these standards

❑ Best practices that relate to Web programming in general, and JSP development in
particular

As you can see, that’s a long list of tools and techniques, not all of which can be covered in detail
in a single chapter. This chapter provides a brief tutorial-style introduction to these tools and tech-
niques, and provides references (i.e., Web sites, books) where further information can be found.

31_57485x ch26.qxd 1/14/05 10:19 PM Page 885

TEAM LinG - Live, Informative, Non-cost and Genuine!

Development Methodologies
A development methodology refers to way in which the software development process is carried out.
Several development methodologies aim to help you develop reliable software, and sometimes they dif-
fer in their approach to software development.

This chapter doesn’t advocate any one particular methodology, and besides, these methodologies are
often set by company policy. What is important is that you follow a consistent development approach
that is suitable for your application domain.

Although several methodologies exist, they broadly fall under two categories:

❑ Waterfall methodologies

❑ Iterative methodologies

Waterfall and iterative methodologies
Many of the design methodologies in use in the past few decades were variations of the waterfall
methodology. This design methodology borrows from traditional engineering disciplines in its approach
to developing software, with distinct stages:

❑ Define the requirement.

❑ Design the software components.

❑ Code the software.

❑ Test the software.

❑ Implement the solution for the customer. This stage would also include training and
documentation.

These methodologies are called waterfall methodologies because there is no moving backward in the
process. They are also characterized by a structured approach to developing software, with a defined
set of activities and deliverables from each stage. For example, the deliverable from the requirements
definition stage is the requirements document, from the design stage it is the design document, and
so on.

As opposed to this, the iterative methodologies have multiple iterations over the design ➪ code ➪ test
stages of the project, often with customer feedback, until the final solution is ready for implementation.

In recent years, a new set of iterative methodologies, called agile methodologies, has become very popular.
Another term for these is adaptive methodologies, as opposed to traditional waterfall methodologies,
which are termed predictive methodologies. These recent methodologies are called adaptive because they
can adapt to a changing set of requirements. Yet another term for agile methodologies is lightweight
methodologies, as traditional methodologies have a larger amount of procedure and documentation
requirements.

886

Chapter 26

31_57485x ch26.qxd 1/14/05 10:19 PM Page 886

TEAM LinG - Live, Informative, Non-cost and Genuine!

Some of the agile methodologies include the following:

❑ Extreme programming

❑ Test-driven development

❑ Crystal methodologies

❑ Feature-driven development

These methodologies claim that traditional, structured, and waterfall methodologies have inherent risks,
such as the following:

❑ Requirements are often not defined properly.

❑ Requirements change.

❑ Late integration of software exposes incompatibilities when the modules have already been
written.

❑ Design flaws are sometimes not detected until the testing phase, by which time all the code is
already written.

These methodologies all deal with code in small “bite-size” portions and place emphasis on continuous
integration and testing of the code, and continuous refactoring.

You can get additional information on agile development methodologies from the following Web sites:

❑ Extreme programming Web sites: xprogramming.com and extremeprogramming.org

❑ Crystal methodologies: http://alistair.cockburn.us/crystal/crystal.html

❑ Feature-driven development: featuredrivendevelopment.com

❑ Finally, the principles of agile software development: The Agile Manifesto at
agilemanifesto.org/principles.html

Refactoring is a term that you’ll see a lot while reading about agile methodologies —
it refers to not only rewriting code, but also to making improvements on the design
of a software module. Martin Fowler, a renowned proponent of these methodolo-
gies, defines it as follows:

“Refactoring is a disciplined technique for restructuring an existing body of code,
altering its internal structure without changing its external behavior. Its heart is a
series of small behavior-preserving transformations. Each transformation (called a
“refactoring”) does little, but a sequence of transformations can produce a significant
restructuring. Because each refactoring is small, it’s less likely to go wrong. The sys-
tem is also kept fully working after each small refactoring, reducing the chances that a
system can get seriously broken during the restructuring.”

You can get more information on refactoring from the refactoring.com Web site.

887

Best Practices and Tools

31_57485x ch26.qxd 1/14/05 10:19 PM Page 887

TEAM LinG - Live, Informative, Non-cost and Genuine!

Rational Unified Process
Rational Unified Process (RUP) is a software methodology created by the Rational Corporation
(now IBM). It adheres to the following broad guidelines:

❑ Develop software iteratively.

❑ Determine management requirements. RUP defines how design decisions and functionality
should be documented.

❑ Use component-based architecture.

❑ Visually model software. RUP recommends using Unified Modeling Language (UML) to model
and document the software design.

❑ Verify software quality.

❑ Control changes to software, and track and monitor changes.

Even though RUP advocates an iterative approach to software development, it has a much more for-
mally defined process than many of the agile methodologies.

Extreme Programming
Extreme Programming (XP) is the most widely known agile methodology. It defines a set of practices
(described later in this section) and emphasizes testing as the foundation of development and continu-
ous integration and build throughout the development cycle. XP has programmers writing test code
along with production code, instead of having a separate group of people writing tests.

XP practices are grouped around the tasks of planning, designing, coding, and testing. Some of these are
covered in the following list. A more complete list of rules and practices and additional information can
be found at extremeprogramming.org/rules.html.

Planning practices:

❑ Write user stories. User stories are similar to use cases, and are written by the customer. They
often drive the acceptance testing of the product. Acceptance testing, and other forms of testing,
are described later in the chapter in the “Testing tools” section.

❑ Make frequent releases of small pieces of functionality.

❑ Divide the project into iterations.

Designing practices:

❑ The design should be simple.

❑ Use a consistent and easy-to-understand convention for naming classes and methods.

❑ Involve the entire project team in the design.

❑ Add extra functionality later.

❑ Refactor often.

❑ Run acceptance tests often and publish the results.

888

Chapter 26

31_57485x ch26.qxd 1/14/05 10:19 PM Page 888

TEAM LinG - Live, Informative, Non-cost and Genuine!

Coding practices:

❑ The customer should always be available to the development team.

❑ Code must be written to agreed standards.

❑ The unit test code must be written before production code.

❑ All production code should be written by teams of two programmers.

❑ Only one programming pair integrates code at a time.

❑ Integration should be done often.

❑ Code ownership should be collective.

❑ Optimizations should be left until the end.

Testing practices:

❑ All code must have unit tests.

❑ All code must pass all unit tests before release.

❑ When a bug is found, a new unit test must be created.

❑ Acceptance tests are run often and results are published.

Two major proponents of XP are Kent Beck and Ward Cunningham. Kent has also been involved with a
related methodology called test-driven development.

Test-driven development
Test-driven development (TDD) proposes a model of development centered on writing test cases for the
code. The process involves the following steps for incremental amounts of code:

1. Write the test before writing the code.

2. Write the code to satisfy the test.

3. Run tests to check the code.

4. Make changes in the code until the test succeeds.

5. Refactor the code to remove duplicates.

6. Repeat for the next piece of code you have to write.

The chief proponent of test-driven development (TDD), Kent Beck, is also one the authors of the JUnit
testing framework. This is not a coincidence, as JUnit and similar frameworks (collectively called xUnit
testing frameworks) are at the core of test-driven development. Two of these frameworks — JUnit and
HttpUnit — are covered later in the chapter.

TDD often involves writing more test code than production code. In addition, after your entire software
is complete, you still have to do more testing; the test code is usually made up of functional and regression
tests. You still need to test for performance and usability of the complete software.

889

Best Practices and Tools

31_57485x ch26.qxd 1/14/05 10:19 PM Page 889

TEAM LinG - Live, Informative, Non-cost and Genuine!

Feature-driven development
Feature-driven development (FDD) defines a project as a list of features and functions, and plans devel-
opment based on these features. FDD believes in short iterations of development, each of about two
weeks duration.

FDD defines five processes; the first three are done at the beginning of the project, and the last two
within each of the iterations. Each of these processes is broken down into tasks, with verification criteria.
These processes are as follows:

1. Develop an overall model of the system.

2. Build a list of features.

3. Plan by feature.

4. Design by feature.

5. Build by feature.

Development Tools
Tools are important to all these development methodologies. Tools help programmers do their job in a
predictable way, and help minimize the risks in software development. These tools can be broadly
divided into the following categories:

❑ Tools that help in developing software — these include editors, integrated development envi-
ronments (IDEs), and build environments.

❑ Tools that keep track of different versions of the software.

❑ Tools that help validate the software: These include frameworks that help in unit testing,
regression testing, performance testing and profiling, as well as mechanisms to output log
information.

This section looks at an assortment of tools that are extremely useful for software developers in general,
and Web programmers in particular.

Version-control tools
Version-control tools keep track of different versions of the software and enable teams of programmers
to work together without the risk of overwriting someone else’s code. The most popular version-control
tools in use are the open-source Concurrent Versions System (CVS) as well as commercial products such
as Rational Clearcase (now IBM) and Microsoft’s Visual SourceSafe. CVS is covered is some detail later
in this chapter.

Build tools
Build tools not only compile the source code, but can also build distributable versions of the software.
The most commonly used build tool for Java and Web projects is Apache Ant. Ant is covered later in the

890

Chapter 26

31_57485x ch26.qxd 1/14/05 10:19 PM Page 890

TEAM LinG - Live, Informative, Non-cost and Genuine!

chapter. Build tools can be automatically invoked from within an IDE such as Eclipse, JBuilder,
Netbeans, or IntelliJ, or from the command line.

Testing tools
Testing is a broad area and includes, among others, the following aspects:

❑ Unit testing: Testing of individual units of the program, often with knowledge of the internal
functioning of the program (i.e., white box testing)

❑ Regression testing: Testing carried out to ensure that the new code doesn’t break earlier code

❑ Acceptance testing: Testing that covers anything of value to the customer

❑ Functional testing: Testing of specific functionality in the program

❑ System testing: Testing of the entire system as a whole

❑ Performance and load testing: Testing the performance of the software and its behavior under a
large user load

Some of these areas require custom test plans and approaches, but the testing areas for which you can
find numerous tools to automate the process are unit, regression, and performance testing.

The xUnit set of testing frameworks (JUnit, HttpUnit, NUnit, Cactus, etc.) are commonly used for unit
and regression testing, especially by practitioners of agile development methodologies. JUnit and
HttpUnit are covered later in the chapter.

Performance and load testing tools include open-source tools such as jMeter (covered in Chapter 25,
“Performance”), as well as commercial tools such as LoadRunner.

Logging tools
Adding log statements to your Web applications is a common way to debug them, or to trace the behav-
ior of a long-running Web application. However, adding such statements to your code affects its perfor-
mance and increases the code size. Not only that, turning logging on or off often requires you to change
the Web application code.

Logging frameworks and APIs such as Log4j and the Java Logging API (standard in J2SE 1.4) address
both these issues — they allow for a standard, configurable way to add log statements to your code, and
can be turned on or off without requiring code modification. Log4j is the older of the two, and a widely
used mechanism for logging. Both these logging mechanisms are covered in Chapter 14, “JSP Debugging
Techniques.”

Tools for enforcing coding standards
Coding conventions are important for improving the readability of code, especially because the main-
tainers of the code are often not the developers. Well-designed code conventions can also prevent com-
mon programming mistakes at development time.

891

Best Practices and Tools

31_57485x ch26.qxd 1/14/05 10:19 PM Page 891

TEAM LinG - Live, Informative, Non-cost and Genuine!

The most well-known coding convention for Java programming is that defined by Sun (http://java
.sun.com/docs/codeconv/html/CodeConvTOC.doc.html). Coding conventions are often the subject
of debates between programmers, but having and following a consistent convention is often more
important than which one you follow.

Two open-source tools that can ease the task of following coding conventions are Jalopy and Checkstyle.

Jalopy (http://jalopy.sourceforge.net) is a code formatter that can convert code to a user-
specified formatting style. Checkstyle (http://checkstyle.sourceforge.net) is an even more com-
prehensive tool; in addition to code style issues, it can also catch incorrect use of Javadoc comments,
naming conventions, and common coding problems.

The following sections cover some of these tools — Ant, CVS, JUnit, and HttpUnit — in more detail.

Apache Ant
Ant was designed to be a tool to build Java code, but it has become a lot more than that. One reason
for its popularity is the capability it provides for developers to extend Ant via custom tasks. For exam-
ple, Tomcat has custom Ant tasks that enable you to deploy and undeploy Web applications from within
your Ant build script. This means that not only can you build the Web application using the Ant build
script, you can also go a step further by installing, removing, or reloading the application while running
Tomcat.

This section provides a brief introduction to the features of Ant, including the following:

❑ A tutorial introduction to Ant

❑ A sample Web application and its associated Ant build script, which is used to compile the
application and get it ready for deployment to a Tomcat instance

❑ References to additional information on Ant

Installing Ant
Apache Ant can be downloaded from http://ant.apache.org. This chapter uses the latest release
available at the time of writing (Ant 1.6.1).

Installing Ant is simple:

1. Download Ant from http://ant.apache.org/bindownload.cgi and unzip it in a directory
of choice. For the remainder of the chapter, $ANT_HOME will be used as the environment variable
that points to the installation directory of Ant.

2. Add $ANT_HOME/bin to your system PATH.

Ant often is used to do additional tasks, other than building Java code. Typically, this requires copying
JAR files for these custom tasks into $ANT_HOME/lib.

892

Chapter 26

31_57485x ch26.qxd 1/14/05 10:19 PM Page 892

TEAM LinG - Live, Informative, Non-cost and Genuine!

For example, when Ant is to be used to manage Web applications, you need to copy the catalina-ant
.jar file that contains Tomcat’s Ant tasks from the <Tomcat Installation Directory>/server/
lib directory to $ANT_HOME/lib.

Ant concepts
As a developer, you might have used other tools to build code (make, for instance). So why is another
build tool required?

Ant is built around the following central ideas:

❑ Implement the build tool in Java, and use XML to store the build information. This results in a
platform-independent build tool.

❑ Allow for extensibility of the tool. Developers can extend Ant by writing Java classes, and thus,
develop custom tasks. An example of this kind of integration is the capability to run JUnit test
cases from Ant build scripts, using the optional <junit> task.

Ant uses an XML file to store build information, and this file contains the list of tasks to be performed.
The general structure of an Ant build file is shown in Figure 26-1.

Figure 26-1: Ant build file structure

A project consists of a number of properties, targets, paths, and task definitions. Properties at the project level
are name-value pairs that are available throughout the project and to each target.

A target consists of a series of tasks. A target can define its own set of properties, which override the
global project properties. A target can depend on other targets, which means that all targets on which it
depends will execute first, before running the tasks associated with it. Ant comes with several built-in
tasks that can be called. Some of the built-in tasks include creating directories, copying files, compiling
Java source files, and so on.

Project

Property

Path

Task definition

Target Property

Path

Task

893

Best Practices and Tools

31_57485x ch26.qxd 1/14/05 10:19 PM Page 893

TEAM LinG - Live, Informative, Non-cost and Genuine!

You can also define path elements at both the project level and target level. A path is used to include
or exclude certain files and directories. For example, you can construct a path element to contain the
directories/JAR files that comprise the classpath.

Consider the following simple Ant file (mybuild.xml). This build file creates a directory and then copies
a file to that directory.

First, the <project> element must be specified:

<project name=”MyAntProject” basedir=”.” default=”copyfile”>

The name attribute in the <project> element is set to the name of the project (MyAntProject, in this
case). The basedir attribute indicates the root directory, which will be used as a reference for all the
tasks present in this project. The default attribute indicates the target that will be executed by default
if none is specified while running Ant.

Next, the properties for the project are defined:

<property name=”dir.name” value=”${basedir}/mydir”/>
<property name=”file.name” value=”file1.txt”/>

Here, two global properties are defined: dir.name and file.name. The dir.name property specifies
the name of the directory to be created, and file.name is the file to be copied.

After this, the targets to be performed are specified. In this project, these include creating a directory
(mydir) and copying the file (file1.txt) into the newly created directory:

<target name=”makedirectory” description=”Create directory mydir”>
<mkdir dir=”${dir.name}”/>

</target>

<target name=”copyfile” depends=”makedirectory” description=”Copy files”>
<copy file=”${file.name}” todir=”${dir.name}”/>

</target>

</project>

In these two targets, makedirectory and copyfile, note that the target copyfile is made dependent
on makedirectory. So even if you specify the copyfile target, Ant will make sure that all the depen-
dencies are run first, and makedirectory will be executed irrespective of the situation.

The target makediretory creates the directory. Note how the directory name is referenced via the
${dir.name} property. The built-in tasks <mkdir> and <copy> are used to perform the functions of
making a directory and copying the file. The syntax of the Ant command is as follows:

ant –buildfile <filename> <target-name>

If the buildfile option is not used, Ant will look for a file named build.xml file in the directory from
which the Ant command was issued. If the target name is not specified, Ant will look for the default tar-
get to execute as specified by the default attribute of the root <project> element.

894

Chapter 26

31_57485x ch26.qxd 1/14/05 10:19 PM Page 894

TEAM LinG - Live, Informative, Non-cost and Genuine!

The following code shows the Ant command being run with the mybuild.xml build file:

$ ant –buildfile mybuild.xml

Buildfile: mybuild.xml

makedirectory:
[mkdir] Created dir: /home/tomcat/ch26/mydir

copyfile:
[copy] Copying 1 file to /home/tomcat/ch26/mydir

BUILD SUCCESSFUL
Total time: 1 second

Ant tasks
Ant includes a number of predefined tasks for performing operations such as copying files; creating
directories, zip files, and JAR files; compiling Java code; and interacting with CVS repositories. Ant’s
core tasks are described listed in the following table.

Task Name Description

ant Run Ant on a build file. This task can be used to build subprojects.

antcall Call another target within the same build file.

antstructure Generate a Document Type Definition (DTD) for Ant build files.

apply Execute a system command. This task has an optional os parameter
that specifies the operating system on which the command should
be run.

available Set a property if a resource (file, directory, class, JVM system
resource) is available at runtime.

basename Determine the basename of a specified file. Also see dirname.

buildnumber Used to track build numbers.

bunzip2 Unzip a file using the BZip2 algorithm.

bzip2 Compress a file using the BZip2 algorithm.

checksum Generate a checksum for a file.

chmod Change permissions of file(s).

concat Concatenate a file or series of files to a file or console.

condition Set a property if a condition is true.

copy Copy a file or set of files to new location.

cvs Handle CVS modules.

Table continued on following page

895

Best Practices and Tools

31_57485x ch26.qxd 1/14/05 10:19 PM Page 895

TEAM LinG - Live, Informative, Non-cost and Genuine!

Task Name Description

cvschangelog Generate a CVS Changelog in XML format.

cvspass Add entries to the CVS .cvspass file (same effect as doing a cvs
login).

cvstagdiff Generate a diff between two CVS tags (or dates).

delete Delete a file, a set of files, or a directory.

dependset Manage arbitrary dependencies between files.

dirname Determine the directory path of a specified file.

ear An extension of the jar task for handling Enterprise ARchive (EAR)
files.

echo Echo a message to a logger or a listener (the default is to echo to the
console).

exec Execute an OS-specific system command.

fail Exit the current Ant build.

filter Set up a token filter. These filters are used by file copying tasks.

fixcrlf Adjust a text file for local OS conventions.

genkey Generate a key in a keystore.

get Get a file from a URL.

gunzip Uncompress a file using the Gzip protocol.

gzip Compress a file using the Gzip protocol.

input Prompt for input from the user.

jar Create a JAR file.

java Execute a Java class within the same virtual machine.

javac Compile a Java source tree.

javadoc Run javadoc to create project documentation.

loadfile Load a text file into a property.

loadproperties Load Ant properties from a file.

mail Send e-mail.

manifest Create a manifest file (used in JAR files).

mkdir Create a directory.

move Move a file, a set of files, or a directory to a new location.

parallel Execute a set of tasks in parallel. Each task executes in its own thread.

896

Chapter 26

31_57485x ch26.qxd 1/14/05 10:19 PM Page 896

TEAM LinG - Live, Informative, Non-cost and Genuine!

Task Name Description

patch Apply a diff file patch to the original file.

pathconvert Used for converting representations of a path from one form to
another.

property Set a property.

record Listener to the current build process that records the output to a file.

replace Replace a string with another string in a text file.

rmic Runs the rmic compiler.

sequential Specify a set of tasks to be run in sequence. Typically used for group-
ing inside a nested parallel task.

signjar Sign a JAR or ZIP file using the signjar command.

sleep “Sleep” for a specified amount of time.

sql Execute a SQL statement via JDBC.

style Process a set of documents using XSLT.

tar Create a TAR archive.

taskdef Add a task definition for new (optional) tasks.

tempfile Set a property to the name of a temporary file.

touch Change the modification time of a file.

tstamp Set the timestamp-related properties in the build file.

typedef Specify a new type definition for the project.

unjar/untar/unwar/ Extract a JAR/TAR/WAR or ZIP file.
unzip

uptodate Set a property if a target file (or set of files) is more current than a
source file (or set of files).

waitfor Block until a certain condition is true. Often used in conjunction with
the parallel task.

war An extension of the JAR task for handling WAR files

xmlproperty Load properties from an XML file.

xslt Process a set of documents using XML Stylesheet Transforms (XSLT).

zip Create a ZIP file.

In addition to these core tasks, Ant has a number of optional tasks. More details on these core and
optional tasks can be found in the Ant manual at http://ant.apache.org/manual/index.html.

897

Best Practices and Tools

31_57485x ch26.qxd 1/14/05 10:19 PM Page 897

TEAM LinG - Live, Informative, Non-cost and Genuine!

Try It Out Using Ant
This section demonstrates how to build a sample Web application with Ant. The steps include compiling
the files and creating the appropriate directory structure for the WAR file to get the application ready for
deployment.

Let’s start with a sample development-time directory structure for a Web application project, as shown
in Figure 26-2.

Figure 26-2: Sample development-time directory structure for a Web application

This directory structure consists of the following:

❑ The main build file (build.xml).

❑ A directory (src) containing all the Java source files of the Web application (for example, all the
servlet classes).

❑ A directory (web) containing the HTML and JSP files. In addition, it contains any other resource
directories — for example, images. It also contains the WEB-INF directory with the deployment
descriptor (web.xml). The WEB-INF directory also has a lib directory that contains any third-
party JAR files.

❑ A directory (build) in which the compiled Java classes would be built and the expanded WAR
structure created. This directory is to be created by the build script.

❑ And finally, a directory (dist) in which the WAR file is generated from the build directory. This
directory is also created by the build script.

web/ WEB-INF/

images/

login.jsp

error.jsp

web.xml

lib/

classes/

tlds/

src/

dist/

build/

build.xml

/home/tomcat/ch26/

898

Chapter 26

31_57485x ch26.qxd 1/14/05 10:19 PM Page 898

TEAM LinG - Live, Informative, Non-cost and Genuine!

The build.xml build file is shown here — you can create this in any editor of your choice. The default
target is the compile target.

<!-- Ant build file for Sample Web Application -->
<project name=”myWebapp” default=”compile” basedir=”.”>

The next section shows how the global properties that are used throughout the build file are initialized.
Note that you might have to change some of these properties to suit your environment. For example, the
catalina.home property should point to the root directory of your Tomcat installation.

<property name=”catalina.home”
value=”/usr/tomcat/jakarta-tomcat-5.0.15”/>

<property name=”app.name” value=”myWebapp”/>
<property name=”app.path” value=”/${app.name}”/>
<property name=”src.home” value=”${basedir}/src”/>
<property name=”web.home” value=”${basedir}/web”/>
<property name=”docs.home” value=”${basedir}/docs”/>
<property name=”build.home” value=”${basedir}/build”/>
<property name=”dist.home” value=”${basedir}/dist”/>
<property name=”war.file” value=”${dist.home}/${app.name}.war”/>

In this build file, the properties are included in the file itself for the sake of simplicity. A good program-
ming practice is to move them to a separate properties file that contains the name-value property pairs.
This enables you to use the same build script for different deployment environments. The property file
can then be specified via a command-line option:

ant –buildfile <filename> <target-name> -propertyfile <propertyfilename>

The clean target deletes the build and dist directories and all subdirectories within them. This target
is useful if you want to clean all the files generated by a build.

<!-- ====== Clean Target ====== -->
<target name=”clean”

description=”Deletes the build and dist directories”>
<delete dir=”${build.home}”/>
<delete dir=”${dist.home}”/>

</target>

The prepare target creates the expanded WAR directory structure and copies the static Web files from
web and its subdirectories:

<!-- ====== Prepare Target ====== -->

<target name=”prepare”>
<mkdir dir=”${build.home}”/>
<mkdir dir=”${build.home}/images”/>
<mkdir dir=”${build.home}/WEB-INF”/>
<mkdir dir=”${build.home}/WEB-INF/classes”/>

899

Best Practices and Tools

31_57485x ch26.qxd 1/14/05 10:19 PM Page 899

TEAM LinG - Live, Informative, Non-cost and Genuine!

<!-- Copy static content of this web application -->
<copy todir=”${build.home}”>

<fileset dir=”${web.home}”/>
</copy>

</target>

The compile target compiles all the Java source files present in the src directory. The destination direc-
tory for the class files is ./build/WEB-INF/classes:

<!-- ====== Compilation ====== -->
<target name=”compile” depends=”prepare”>

<javac srcdir=”${src.home}”
destdir=”${build.home}/WEB-INF/classes”
debug=”true”
deprecation=”true”>

<classpath>
<fileset dir=”${web.home}/WEB-INF/lib”>

<include name=”*.jar”/>
</fileset>

<pathelement location=”${catalina.home}/common/classes”/>
<fileset dir=”${catalina.home}/common/endorsed”>

<include name=”*.jar”/>
</fileset>

<fileset dir=”${catalina.home}/common/lib”>
<include name=”*.jar”/>

</fileset>

<pathelement location=”${catalina.home}/shared/classes”/>

<fileset dir=”${catalina.home}/shared/lib”>
<include name=”*.jar”/>

</fileset>

</classpath>
</javac>

<!-- Copy application resources -->
<copy todir=”${build.home}/WEB-INF/classes”>

<fileset dir=”${src.home}” excludes=”**/*.java”/>
</copy>
<copy todir=”${build.home}/WEB-INF/lib”>

<fileset dir=”${web.home}/WEB-INF/lib”/>
</copy>

</target>

900

Chapter 26

31_57485x ch26.qxd 1/14/05 10:19 PM Page 900

TEAM LinG - Live, Informative, Non-cost and Genuine!

The dist target creates a WAR file out of the expanded WAR directory structure present in the build
directory:

<!-- ====== Dist Target ====== -->

<target name=”dist” depends=”compile”
description=”Create WAR file”>

<!-- Create WAR file -->
<mkdir dir=”${dist.home}”/>
<jar jarfile=”${war.file}” basedir=”${build.home}”/>

</target>

The all target runs all the targets. Ant will run each target once in the order specified in the depends
attribute for this target:

<!-- ====== All Target ====== -->

<target name=”all”
depends=”clean, prepare, compile, dist”
description=”Builds the web application and war file”/>

</project>

Let’s run the different targets now to make sure that our environment is set up to run Ant correctly. To
execute the Ant script, type the Ant command followed by the target name.

Open the console window and go to the /home/tomcat/ch26 directory and run the clean target as
shown here. Note that if you run the clean target after running the compile or dist targets, you will
find the build and dist directories getting cleared in the clean target:

$ ant clean
Buildfile: build.xml

clean:
[delete] Deleting directory /home/tomcat/ch26/build
[delete] Deleting directory /home/tomcat/ch26/dist

BUILD SUCCESSFUL
Total time: 2 seconds

The dist target is responsible for generating the WAR file. Because this target depends on the compile
target, by running it you ensure that not only will the files be compiled and copied into an expanded
WAR directory structure, but that the WAR file is also generated:

901

Best Practices and Tools

31_57485x ch26.qxd 1/14/05 10:19 PM Page 901

TEAM LinG - Live, Informative, Non-cost and Genuine!

$ ant dist
Buildfile: build.xml

prepare:
[mkdir] Created dir: /home/tomcat/ch26/build
[mkdir] Created dir: /home/tomcat/ch26/build/images
[mkdir] Created dir: /home/tomcat/ch26/build/WEB-INF
[mkdir] Created dir: /home/tomcat/ch26/build/WEB-INF/classes
[mkdir] Created dir: /home/tomcat/ch26/build/WEB-INF/lib
[copy] Copying 4 files to /usr/tomcat/ch26/build
[copy] Copied 1 empty directory to /usr/tomcat/ch26/build

compile:
[javac] Compiling 1 source file to /home/tomcat/ch26/build/WEB-INF/classes

dist:
[mkdir] Created dir: /home/tomcat/ch26/dist

[jar] Building jar: /home/tomcat/ch26/dist/myWebapp.war

BUILD SUCCESSFUL
Total time: 5 seconds

Now that you have the expanded WAR directory structure for the Web application as well as the .war
file, you are ready to deploy it. This Web application can be deployed in a number of ways:

❑ Copy the WAR file to the <Tomcat Installation Directory> /webapps directory.

❑ Create a context for the Web application by making a directory within <Tomcat Installation
Directory> /webapps— for example, <Tomcat Installation Directory> /webapps/
myWebapp— and copy the expanded WAR directory structure in the build directory to
<Tomcat Installation Directory> /webapps/myWebapp.

❑ Use the Manager Web application GUI to deploy the application.

❑ Use the Ant interface to the Manager application.

In addition to the simple examples covered here, Ant can be used to construct very elaborate build envi-
ronments that perform a range of tasks:

❑ Checking in or checking out code from version-control systems such as CVS. More details on
CVS, and CVS’s Ant task, are covered later in the chapter.

❑ Running test cases (when coupled with JUnit, and Ant’s JUnit-specific tasks).

❑ Building installable packages.

❑ Deploying applications (for example, using Tomcat’s Ant tasks to deploy a Web application).

❑ E-mailing the status of the test cases or the build to developers.

❑ Formatting code according to an organization’s coding standards. Earlier in the chapter you
were introduced to formatting tools such as Jalopy and Checkstyle. These come with Ant tasks

902

Chapter 26

31_57485x ch26.qxd 1/14/05 10:19 PM Page 902

TEAM LinG - Live, Informative, Non-cost and Genuine!

too, enabling you to add commands to format code from within your build script. See
http://jalopy.sourceforge.net/plugin-ant-usage.html for details on Jalopy’s Ant
task and http://checkstyle.sourceforge.net/anttask.html for Checkstyle’s Ant task.

Additional resources
More information on Apache Ant (including a list of Ant tasks) is available at the Ant Web site at
http://ant.apache.org/manual/index.html. Another good resource is Professional Java Tools for
Extreme Programming by Richard Hightower, et al (Wrox Press; ISBN 0764556177).

CVS
Concurrent Versions System (CVS) is an open-source version-control system that is the de facto version-
ing tool used by most open-source projects. Even if you use another version-control system at work,
such as Clearcase, Perforce, or SourceSafe, knowing how to use CVS is useful. If you need to get the lat-
est version (or a specific version) of your favorite open-source software, such as the Apache HTTP
server, Tomcat, or Struts, you might have to get it from their CVS repository. Many open-source projects
post only the last few released versions on their Web site.

Installing CVS
The installation and administration of the CVS server is beyond the scope of this book. Moreover, as
developers, you will usually need to use only the CVS client.

The CVS client comes as a part of most Linux distributions if you have the development tools installed.
For other UNIX platforms, such as SunOS, HP-UX, and AIX, you can download either the source code
distribution of CVS or binary versions from cvshome.org/downloads.html.

For Windows, you can either install a GUI version of the CVS client, called WinCVS (wincvs.org), or
get the Cywin development environment (cygwin.com) that provides most UNIX command-line tools
for Windows.

CVS concepts
CVS is a version-control system that enables you to maintain different versions of your file (called revi-
sions). It also enables groups of people to work on files at the same time — hence, the name Concurrent
Versions System.

CVS has a safekeeping place called a repository for holding groups of files. A related group of files is
called a module. Developers can checkout a module or specific files within a module and make changes in
it. Once they are done, they can commit (i.e., check in) the files back into the repository for others to
access. CVS has mechanisms such that developers can either prevent others from making changes while
a file is checked out (reserved checkout), or not (unreserved checkout, the default). If a file has been checked
out with an unreserved checkout, then two or more people can be modifying the same file at the same
time. CVS has tools to help merge code in such cases.

903

Best Practices and Tools

31_57485x ch26.qxd 1/14/05 10:19 PM Page 903

TEAM LinG - Live, Informative, Non-cost and Genuine!

You can create a code branch from the main code trunk. A branch refers to a version of code that has been
forked out from the main development version. For example, if sequential versions of the source code
are labeled as 1.0, 1.1, 1.2, and so on, you could take out a branch from the 1.1 version, label it 1.1.1 and
continue development on that line. You might do this if you wanted to work on adding specific features
to your software without disturbing the primary work going on. The latest versions of the code on the
main trunk are called top of trunk, and the latest version of any branch or trunk is called the head of that
branch/trunk. CVS has the capability to merge changes from a branch onto the main trunk. This is illus-
trated in Figure 26-3.

Figure 26-3: A sample source code tree in CVS

Once a module has been developed, it can be released to users. Before doing so, it is a good practice to
put a tag on the module, such as release_1-0. A tagged release consists of a snapshot of the files in a
module at a given point in time, and these files often have different versions. Tagging a release helps
keep track of any issues with a specific release. For example, if after some months a bug is reported by
your users, you can get the specific version of code released to them from the CVS repository, and fix the
problem.

Connecting to a CVS server
Information on which CVS server to connect to is passed though an environment variable called
CVSROOT. Usually, you would get this information from your system administrator.

A typical CVSROOT variable setting for Linux/UNIX is as follows:

$ CVSROOT=”:pserver:username@host.domain.com:/home/cvs/modulename”; export CVSROOT

Here, pserver indicates the authentication protocol used for connecting to the CVS server. The most
common protocol is pserver, and other protocols include rhosts, ssh, and ntserver. The username
and host.domain.com should be replaced by the username and hostname for the CVS server. Finally,
the path (/home/cvs/modulename) indicates the file system path to your code module. If you are going

Filename.jsp
Version 1.0

Filename.jsp
Version 1.1

Code
branch

Top of trunk

Main code trunk

Filename.jsp
Version 1.1.1

Filename.jsp
Version 1.1.2

Filename.jsp
Version 1.2

904

Chapter 26

31_57485x ch26.qxd 1/14/05 10:19 PM Page 904

TEAM LinG - Live, Informative, Non-cost and Genuine!

to be connecting to this CVS server often, you should add this to your login startup scripts, such as
.kshrc, .bashrc, and so on.

Once the CVSROOT variable is specified, you need to log in to the CVS server using the cvs login com-
mand. You may be prompted for a password depending on your authentication settings.

$ cvs login

In the WinCVS GUI, use the Admin->Preferences->General option to set CVSROOT, and then use
Admin->Login to log in to the CVS server. Figure 26-4 shows the CVS settings in WinCVS for anony-
mously retrieving code from the Apache Jakarta Project.

Figure 26-4: CVS settings in WinCVS

Once you have logged in, depending on your setting, you don’t have to log in each subsequent time. The
login information is kept in an internal configuration file, and the CVS client logs you in automatically.

Checking in code
To check in a module for the very first time, change to the directory in which the source code is located
and issue the cvs import command as shown:

$ cd code-directory
$ cvs import -m “message here” modulename vendorname release

Here, modulename is the name of the module, vendorname is a string that identifies you or your com-
pany, and release is a tag for identifying the latest version of the files. The message specified after the
–m flag is for documentation purposes.

In the WinCVS client, the same can be done using the Remote->Import module option.

Once the module is checked in, you must check it out (see the “Checking out code” section next) before
you can start using it.

905

Best Practices and Tools

31_57485x ch26.qxd 1/14/05 10:19 PM Page 905

TEAM LinG - Live, Informative, Non-cost and Genuine!

To check in individual files, use the cvs ci command as shown:

$ cvs ci filename

You will be asked to enter a comment while checking in a file. This comment is used for documenting
the changes made in the file.

Checking out code
Checking out the latest version (i.e., the top of trunk) can be done using the cvs co command:

$ cvs co filename

This command has a number of options, including the –r flag for checking out a specific version of a file:

$ cvs co –r 1.0 filename

Instead of checking out individual files, you can also check out all the latest files using the cvs update
command. This command is issued in the directory containing the source code to be updated:

$ cvs update .

Comparing changes across revisions
With CVS, you can compare a checked out file with the current top of trunk, or compare two specific
versions of a file.

The following code compares a checked out file with the current top of trunk in CVS:

$ cvs diff –wb filename

This code compares two version of the file:

$ cvs diff -r 1.1 -r 1.2 -wb filename

The –wb option is one of the many cvs diff options. This particular option ignores whitespace charac-
ters while doing the comparison.

Managing code versions through Ant scripts
These CVS commands can also be executed through your Ant build script. This powerful feature
enables you to build, test (as you shall see in the next section), and check in a final release version of
your code — all from your build script.

More details on the CVS task in Ant can be found at
http://ant.apache.org/manual/CoreTasks/cvs.html.

906

Chapter 26

31_57485x ch26.qxd 1/14/05 10:19 PM Page 906

TEAM LinG - Live, Informative, Non-cost and Genuine!

Additional resources
This CVS tutorial contained only a handful of the commands required to work with a CVS repository. A
complete list of CVS commands is documented in the CVS manual, which can be found online at
cvshome.org/docs/manual/.

JUnit
JUnit is a framework for writing unit and regression tests in Java. This framework has become extremely
popular, especially with practitioners of agile programming methodologies, such as test-driven develop-
ment (TDD). JUnit, written by Erich Gamma and Kent Beck, is a simple and small test framework, but it
implements very useful testing patterns. To quote Martin Fowler, “Never in the field of software devel-
opment was so much owed by so many to so few lines of code.”

JUnit has also inspired a number of other testing frameworks, including the following:

❑ cppunit: A testing framework for C++ code (http://cppunit.sourceforge.net/)

❑ NUnit: A testing framework for .NET languages (nunit.org/)

❑ HttpUnit: A framework for testing Web applications (http://httpunit.sourceforge.net/)

❑ Cactus: A framework for testing server-side Java code (http://jakarta.apache.org/
cactus/index.html)

These and other testing frameworks are listed on the http://www.xprogramming.com/software.htm
Web site. This section provides a tutorial introduction to JUnit.

Installing JUnit
JUnit can be downloaded from junit.org. The version used in this section (3.8.1) was the latest avail-
able at the time of writing.

After you download the zip file (typically named junitx.y.z, where x.y.z is the version number),
extract it to a directory of your choice. This contains JAR files and documentation. All you need to do is
add junit.jar in your classpath, and you are ready to go.

On Windows, type the following at the command prompt:

C:\> set CLASSPATH=”%CLASSPATH%;C:\junit3.8.1\junit.jar

On Linux/UNIX, type the following:

$ CLASSPATH=”$CLASSPATH:/home/me/junit3.8.1/junit.jar”; export CLASSPATH

907

Best Practices and Tools

31_57485x ch26.qxd 1/14/05 10:19 PM Page 907

TEAM LinG - Live, Informative, Non-cost and Genuine!

JUnit concepts
As mentioned earlier, JUnit provides a framework for building unit and regression tests. The framework
includes a Java class (junit.framework.TestCase) that all test cases extend. This class has methods
for test case initialization and cleanup, and a mechanism to write and run tests.

A summary of the steps for writing a test suite is as follows:

1. Implement a subclass of the junit.framework.TestCase class.

2. Perform initialization for the test case by overloading the setUp() method. This usually
involves initializing instance variables that store the state of the test.

3. Write individual tests.

4. Perform cleanup after the test by overloading the tearDown() method.

A testing term that you’ll see often in JUnit documentation is fixture — this is just another name for a
test setup.

Developing an individual test involves writing code that performs operations with the Java class it has
to test, and then uses assert method calls to confirm that the Java class is in the desired state.

For example, writing a test for a debit() method of a Bank Account class would involve the following
steps:

1. Debit a certain amount from the bank account, say $100.

2. Assert that the current bank balance is less than the original bank balance by $100.

This example is shown in more detail in the JUnit example in the next section.

Once the tests are written, the following line in the main() method of your test suite will execute all
test cases:

public static void main (String[] args)
{

junit.swingui.TestRunner.run (BankAccountTest.class);
}

The junit.swingui.TestRunner class used in the preceding code is a Swing-based test runner. There
are other test runners too, such as the non-GUI junit.textui.TestRunner. The approach shown pre-
viously dynamically runs all tests defined in the BankAcccountTest test class.

You can also selectively run specific tests, as shown here:

public static Test suite()
{

TestSuite suite= new TestSuite();

// add test method testCredit() and testDebit() to the
// test suite

908

Chapter 26

31_57485x ch26.qxd 1/14/05 10:19 PM Page 908

TEAM LinG - Live, Informative, Non-cost and Genuine!

suite.addTest (new BankAccountTest (“testCredit”));
suite.addTest (new BankAccountTest (“testDebit”));
return suite;

}

public static void main (String[] args)
{

// Run selected tests in the suite using the non-GUI test runner
junit.textui.TestRunner.run (suite());

}

Try It Out Writing a JUnit Test
This example creates a test for a simple Java class (BankAccount) that models a bank account. First take
a look at the code for the BankAccount.java class for which we are writing this test:

package com.wrox.begjsp.ch26;

public class BankAccount
{

The class has an accountId that is an identification number for the bank account, an accountType that
can be either checking or savings, and the current balance in the account (currentBalance). These
fields are not important for our example — the currentBalance, shown here, is:

public static final int CHECKING_ACCOUNT = 0;
public static final int SAVINGS_ACCOUNT = 1;

/* Unique ID for bank account */
private long accountID;
/* Type of account- CHECKING_ACCOUNT or SAVINGS_ACCOUNT */
private int accountType;
/* Account balance */
private float currentBalance;

public BankAccount (long accountID, int accountType, float currentBalance)
{

this.accountID = accountID;
this.accountType = accountType;
this.currentBalance = currentBalance;

}

Note that the debit() method doesn’t allow you to overdraw money from your bank account. If debit
succeeds, it returns true; otherwise, it returns false:

public boolean debit (float debitAmount)
{

/* No overdraft allowed */
if (debitAmount > currentBalance)

return false;

909

Best Practices and Tools

31_57485x ch26.qxd 1/14/05 10:19 PM Page 909

TEAM LinG - Live, Informative, Non-cost and Genuine!

currentBalance -= debitAmount;
return true;

}

public boolean credit (float creditAmount)
{

currentBalance += creditAmount;
return true;

}

The transferFrom() method simply debits one bank account with the appropriate amount and credits
the other account with the same amount. You probably noticed that there is no check to determine
whether the bank account from which the amount has been debited has the required amount — well,
that is what we’ll be testing for:

public boolean transferFrom (BankAccount account, float amount)
{

account.debit (amount);
this.credit (amount);
return true;

}

Finally, the getCurrentBalance() method returns the current balance in the account:

public float getCurrentBalance ()
{

return currentBalance;
}

}

The first step in writing a test case for the BankAccount class is deciding what we want to test. In this
example, it is simple — we want to test if we can successfully debit and credit a bank account and if the
transferFrom() method correctly transfers money. We perform tests that transfer valid amounts of
money, as well as money that doesn’t exist in an account.

The next step is to write a test class that is, by convention, called BankAccountTest. Notice that it is in
the same package as the class we are testing — this, too, is a convention, and it helps the test code to
access data private to a package. BankAccountTest extends the junit.framework.TestCase class.

package com.wrox.begjsp.ch26;

import junit.framework.Assert;
import junit.framework.Test;
import junit.framework.TestSuite;
import junit.framework.TestCase;

public class BankAccountTest extends TestCase
{

910

Chapter 26

31_57485x ch26.qxd 1/14/05 10:19 PM Page 910

TEAM LinG - Live, Informative, Non-cost and Genuine!

The account1 and account2 variables are the instance variables that store the state of the test. They are
initialized in the setUp() method and accessed in the test cases:

private BankAccount account1;
private BankAccount account2;

In the setup() method for the test, we initialize the two bank accounts (account1 and account2) with
some money. There is no need for a tearDown() method in this case, as there are no resources that need
to be released. If, for instance, we had established a database connection in the test, then code to release
it back to the database pool would have been placed in the tearDown() method:

protected void setUp ()
{

account1 = new BankAccount (1, BankAccount.CHECKING_ACCOUNT, 1000);
account2 = new BankAccount (2, BankAccount.SAVINGS_ACCOUNT, 1000);

}

Our first test case, testDebit(), debits $100 from the bank account and then verifies the transaction
using an assert statement showing that the account contains $100 less. As you can see in the example, a
JUnit test is a method with no parameters and has a prefix, test:

public void testDebit ()
{

float balance = account1.getCurrentBalance();
account1.debit (100);
Assert.assertEquals (balance-100, account1.getCurrentBalance(),0);

}

The testCredit() method, similarly, adds $100 to the account and checks the current balance:

public void testCredit ()
{

float balance = account1.getCurrentBalance();
account1.credit (100);
Assert.assertEquals (balance+100, account1.getCurrentBalance(),0);

}

Next, we test the functionality to transfer money between bank accounts. We try transferring varying
amounts, some of which are valid (such as $10 and $100), and some of which are not (such as $10,000).
What is important is that accounts should not be left in an inconsistent state — the receiving account
should not be credited money if there are insufficient funds in the sending account.

public void testTransferFrom ()
{

float transferAmount[] = {10, 100, 1000, 10000};

for (int i = 0; i < transferAmount.length; i++)
{

911

Best Practices and Tools

31_57485x ch26.qxd 1/14/05 10:19 PM Page 911

TEAM LinG - Live, Informative, Non-cost and Genuine!

float balance1 = account1.getCurrentBalance();
float balance2 = account2.getCurrentBalance();
boolean transferSuccess = account1.transferFrom (account2,

transferAmount[i]);
if (transferSuccess)
{

Assert.assertEquals (balance1+transferAmount[i],
account1.getCurrentBalance(),
0);

Assert.assertEquals (balance2-transferAmount[i],
account2.getCurrentBalance(),
0);

}
else /* transfer of money between bank accounts failed */
{

Assert.assertEquals (balance1, account1.getCurrentBalance(),0);
Assert.assertEquals (balance2, account2.getCurrentBalance(),0);

}
}

}

Finally, we have the test runner, which specifies that all tests in the BankAccountTest class should be
run. JUnit enables you to run specific tests, too, instead of all tests in a suite, as you saw earlier in the
“JUnit concepts” section.

public static void main (String[] args)
{

junit.swingui.TestRunner.run (BankAccountTest.class);
}

}

The test can be run as shown:

$ java com.wrox.begjsp.ch26.BankAccountTest

The test for the transfer account fails, as shown in Figure 26-5.

912

Chapter 26

31_57485x ch26.qxd 1/14/05 10:19 PM Page 912

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 26-5: JUnit test indicating failure

The cause is indicated by the failure message and is not hard to trace — we did not confirm that the
sending bank account had enough money before crediting the receiving account. The following code
from BankAccount class shows the fix:

public boolean transferFrom (BankAccount account, float amount)
{

// Check if we have money in account
if (account.debit (amount))

return this.credit (amount);

// If we reach here, then debit() failed-
// therefore transferFrom() fails too
return false;

}

913

Best Practices and Tools

31_57485x ch26.qxd 1/14/05 10:19 PM Page 913

TEAM LinG - Live, Informative, Non-cost and Genuine!

After recompiling the class and rerunning the test, we get a successful test run, as shown in Figure 26-6.

Figure 26-6: JUnit test indicating success

Running JUnit tests from Ant scripts
JUnit tests can also be started from Ant scripts. This is a powerful feature, as it enables you to add unit
tests to your development process. For example, these unit tests could be executed each time you rebuild
your code, thus catching any errors introduced by your changes. This kind of testing, whereby you
check to see if your new changes affect existing functionality, is called regression testing.

To be able to do this, you have to copy the JUnit JAR file (junit.jar) in a location where Ant can find
it. This can either be in your classpath or conveniently copied to $ANT_HOME/lib.

Once this is done, you can add a JUnit task to your Ant script, as shown in the following excerpt:

<junit>
<formatter type=”brief” usefile=”false”/>
<test name=”com.wrox.begjsp.ch26.BankAccountTest”/>

</junit>

Here the test element specifies the test class, and the formatter element specifies the format of the
result. The result in this case is being printed in the brief format and is output to the console and not a
file (usefile set to false).

914

Chapter 26

31_57485x ch26.qxd 1/14/05 10:19 PM Page 914

TEAM LinG - Live, Informative, Non-cost and Genuine!

The JUnit task is an optional task. To get more information on this task, see http://ant.apache.org/
manual/OptionalTasks/junit.html.

Additional resources
You can find additional documentation about JUnit at http://junit.sourceforge.net/
#Documentation. Another useful resource is Professional Java Tools for Extreme Programming
(ISBN 0764556177).

HttpUnit
HttpUnit is an open-source unit and regression testing framework for Web applications. It is based on
JUnit and emulates the behavior of a Web browser for automating testing. It handles most things that a
browser does — form submission, JavaScripts, HTTP-BASIC authentication, cookies, and page redirec-
tion. The response from a Web page can be handled in tests as text, an XML document, or even Java rep-
resentations for forms, tables, and links. It also has a simulated servlet container for isolating and testing
individual servlets.

HttpUnit is different from other Web application testing tools that are based on record-and-playback.
HttpUnit actually parses the HTML response from the Web pages, so it is not as “brittle” as tools that
depend upon the layout of a Web page. However, building a test case in HttpUnit may take longer than
such tools.

Installing HttpUnit
HttpUnit can be downloaded from the http://httpunit.sourceforge.net Web site. It is available as
a zip file named httpunit-x.y.z.zip, where x.y.z is the version number. The version used in this
section is HttpUnit 1.5.4. Installing HttpUnit is a simple matter of extracting the zip file in a directory of
your choice.

Once HttpUnit is installed, the Java classpath has to be changed to include the JUnit and HttpUnit JAR
files, as well as the supporting JAR files that help process the HTTP requests and responses. These JAR
files are included with the HttpUnit download.

A Windows script for setting the classpath is shown here. In the script, HTTPUNIT_HOME is the location
where HttpUnit is installed:

set HTTPUNIT_HOME=d:\software\httpunit-1.5.4
set
CLASSPATH=%CLASSPATH%;%HTTPUNIT_HOME%\lib\httpunit.jar;%HTTPUNIT_HOME%\jars\Tidy.ja
r;%HTTPUNIT_HOME%\jars\js.jar;%HTTPUNIT_HOME%\jars\junit.jar;%HTTPUNIT_HOME%\jars\n
ekohtml.jar;%HTTPUNIT_HOME%\jars\servlet.jar;%HTTPUNIT_HOME%\jars\xercesImpl.jar;%H
TTPUNIT_HOME%\jars\xmlParserAPIs.jar;.

915

Best Practices and Tools

31_57485x ch26.qxd 1/14/05 10:19 PM Page 915

TEAM LinG - Live, Informative, Non-cost and Genuine!

The corresponding setting for UNIX/Linux is shown here:

HTTPUNIT_HOME=/home/username/httpunit-1.5.4
CLASSPATH=$CLASSPATH:$HTTPUNIT_HOME/lib/httpunit.jar:$HTTPUNIT_HOME/jars/Tidy.jar:$
HTTPUNIT_HOME/jars/js.jar:$HTTPUNIT_HOME/jars/junit.jar:$HTTPUNIT_HOME/jars/nekohtm
l.jar:$HTTPUNIT_HOME/jars/servlet.jar:$HTTPUNIT_HOME/jars/xercesImpl.jar:$HTTPUNIT_
HOME/jars/xmlParserAPIs.jar:.

HttpUnit concepts
HttpUnit tests follow the same pattern as JUnit tests:

1. Set up the test fixture using the setUp() method.

2. Write individual tests.

3. Write cleanup code in the tearDown() method.

4. Run all tests or specific tests in a TestSuite using either the junit.textui.TestRunner or
the junit.swingui.TestRunner test runners.

The reason for this similarity is that HttpUnit builds upon the JUnit code base. What HttpUnit provides
in addition is a complete HTTP client that performs the same tasks that a browser does — form submis-
sion, JavaScripts, HTTP-BASIC authentication, cookies, and page redirection.

The most important class here is WebConversation. This class models a Web browser, and is used to
request a resource from a Web site, as shown here:

WebConversation wc = new WebConversation ();
WebRequest req = new GetMethodWebRequest(“http://www.wrox.com”);
WebResponse resp = wc.getResponse (req);

The response from the Web site (the WebResponse object) can then be manipulated in the test code in
three ways:

❑ As plain text: The getText() method of the WebResponse class returns a string representation
of the entire Web page.

❑ As an XML document: The getDOM() method of the WebResponse class returns an XML repre-
sentation of the entire Web page.

❑ As Java object representations of HTML elements: These can be forms (getForms() method),
tables (getTables() method), links (getLinks() method), images (getImages() method),
and so on.

Try It Out Writing an HttpUnit Test
In this example, we will write a test case for the webwork-skeleton Web application introduced in
Chapter 18, “Web Frameworks.” In order to run this test, you have to install the application as specified
in the chapter. The Web application, once installed, should be accessible at http://localhost:8080/
webwork-skeleton/formtest!default.action. If there is a change to this, you have to modify the
FORM_URL constant in the code appropriately.

916

Chapter 26

31_57485x ch26.qxd 1/14/05 10:19 PM Page 916

TEAM LinG - Live, Informative, Non-cost and Genuine!

The first step in the test is similar to JUnit — extend the junit.framework.TestCase class:

package com.wrox.begjsp.ch26;

import com.meterware.httpunit.*;
import junit.framework.*;

/**
* An example of testing servlets using HttpUnit
**/

public class FormTest extends TestCase
{

As mentioned earlier, the FORM_URL contains the URL of the Web form to be tested:

public static final String FORM_URL = “http://localhost:8080/webwork-
skeleton/formtest!default.action”;

The HttpUnit test runner shown here is the same as in JUnit:

public static void main(String args[])
{

junit.textui.TestRunner.run (suite());
}

public static Test suite()
{

return new TestSuite (FormTest.class);
}

The first test is a sanity check to see if the form exists and has the required parameters —user, age, and
comments:

/**
* Verifies that the web page has exactly one form, with
* three parameters- user, age and comments.
**/

public void testForm() throws Exception
{

WebConversation conversation = new WebConversation();
WebRequest request = new GetMethodWebRequest(FormTest.FORM_URL);

WebResponse response = conversation.getResponse (request);
WebForm forms[] = response.getForms();
assertEquals (1, forms.length);
assertEquals (3, forms[0].getParameterNames().length);
assertEquals (“user”, forms[0].getParameterNames()[2]);
assertEquals (“age”, forms[0].getParameterNames()[1]);
assertEquals (“comments”, forms[0].getParameterNames()[0]);

}

917

Best Practices and Tools

31_57485x ch26.qxd 1/14/05 10:19 PM Page 917

TEAM LinG - Live, Informative, Non-cost and Genuine!

Next, we check for an invalid age input. This should result in the error message “Age cannot be less
than 18.” If this is true, the test passes. If not, the test fails with an Incorrect age does not flag
error message:

/**
* Verifies that submitting the form with an invalid
* age value fails with an error message.
*/

public void testIncorrectAge() throws Exception
{

WebConversation conversation = new WebConversation();
WebRequest request = new GetMethodWebRequest (FormTest.FORM_URL);

WebResponse response = conversation.getResponse (request);
WebForm form = response.getForms()[0];
request = form.getRequest();
request.setParameter (“user”, “John Doe”);
request.setParameter (“age”, “17”);
response = conversation.getResponse (request);
assertTrue (“Incorrect age does not flag error”,

response.getText().indexOf (“Age cannot be less than 18”) != -1);
}

Finally, we check for a valid age input. This should result in a success status from the Web application,
and some information is presented to the user. The test checks this by confirming that the response Web
page contains the Advice string. If this is true, the test passes. If not, the test fails with a “Correct age
limit not accepted” message:

/**
* Verifies that submitting the form with an valid
* age value works fine.
*/

public void testCorrectAge() throws Exception
{

WebConversation conversation = new WebConversation();
WebRequest request = new GetMethodWebRequest (FormTest.FORM_URL);

WebResponse response = conversation.getResponse (request);
WebForm form = response.getForms()[0];
request = form.getRequest();
request.setParameter (“user”, “Jane Doe”);
request.setParameter (“age”, “18”);
response = conversation.getResponse (request);
assertTrue (“Correct age limit not accepted”,

response.getText().indexOf (“Advice”) != -1);
}

}

To compile and run the test, the classpath has to include the JUnit and HttpUnit JAR file, as well as the
supporting JAR files that help process the HTTP requests and responses. The section “Installing
HttpUnit” shows how this can be done.

918

Chapter 26

31_57485x ch26.qxd 1/14/05 10:19 PM Page 918

TEAM LinG - Live, Informative, Non-cost and Genuine!

Once the classpath is set, the test can be run as shown in Figure 26-7.

Figure 26-7: Running the HttpUnit test

Additional resources
Further documentation on HttpUnit is available at the HttpUnit Web site (http://httpunit.
sourceforge.net). Another resource is Professional Java Tools for Extreme Programming
(ISBN 0764556177).

Best Practices for Web Development
Now that you are almost at the end of the book, you have seen a range of best practices in use in the var-
ious chapters. The most important of these best practices are summarized in this section.

Follow good JSP coding practices
Earlier in the book, you were introduced to a range of best practices related to JSP coding, including the
following:

❑ Use the simplest HTML to prototype your application before adding in style and layout. See
Chapter 2, “JSP Basics 1: Dynamic Page Creation for Data Presentation,” for more details
on this.

❑ Separate JSP development from HTML layout and formatting if possible. Again, refer to
Chapter 2 for more details.

❑ Avoid the use of Java scriptlets in JSP; use EL or tag libraries instead. This is described further in
Chapter 5, “JSP and EL,” and Chapter 6, “JSP Tag Libraries and JSTL.” An example of what not
to do, e.g., use Java scriptlets, is demonstrated in Chapter 3, “JSP Basics 2: Generalized
Templating and Server Scripting.”

❑ Use stylesheets for the layout and fonts of your JSP pages. Chapter 4, “CSS, JavaScript,
VBScript, and JSP” has examples of dynamically creating stylesheets.

❑ Use the JSP inclusion mechanism to avoid redundant code. Examples of the include directive in
action can be seen in Chapter 7, “JSP Directives.”

❑ Use JavaBeans to pass data between the business logic and the presentation. This is introduced
in Chapter 9, “JSP and JavaBeans,” and formally covered as a design pattern in Chapter 27, “JSP
Project I: Personalized Portal.”

919

Best Practices and Tools

31_57485x ch26.qxd 1/14/05 10:19 PM Page 919

TEAM LinG - Live, Informative, Non-cost and Genuine!

❑ Handle errors in your Web application gracefully and yet log enough information so that the
cause of the error can be debugged. Error handling is discussed in Chapter 10, “Error
Handling,” and logging mechanisms are covered in detail in Chapter 14, “JSP Debugging
Techniques.”

❑ Consider developing internationalized Web pages. Even if your Web site is currently only in one
language, you may at some time in the future want to support multiple languages. Chapter 13,
“Internationalization and Localized Content,” explains the JSTL support for internationaliza-
tion, and Chapters 19 and 27 show an alternative mechanism using Struts’ tag library.

Separate application logic and presentation
Any application-related logic, relating to both any business logic as well as control flow in your Web site,
should be kept separate from your presentation. See Chapter 17, “Model View Controller,” for a recom-
mended architecture for your Web applications.

Use design patterns where appropriate
Many of the problems that you solve as a software developer have already been faced by others before
you. Instead of repeatedly reinventing a new way to solve a certain class of problems, it is wiser to use a
tried and tested solution. A design pattern is a solution to a type of a problem.

Some of the patterns that have been used in this book are listed as follows. Note that this is not an
exhaustive list of patterns and is not organized in any particular manner.

❑ Factory: The factory pattern is used create an object at runtime. Examples of the factory pattern
are shown in Chapter 23, “Access to Databases,” and Chapter 27, “JSP Project I: Personalized
Portal.”

❑ Facade: A facade provides a unified interface to a subsystem. The facade pattern is used in
Chapter 23.

❑ Transfer Object/Data Transfer Object: This is an object that carries data across layers in an
application, to minimize the number of method calls. This is especially useful if the layer in
question is a remote layer. The transfer object is used in Chapter 9 and Chapter 27.

❑ Data Access Object (DAO): A Data Access Object encapsulates all access to a persistent store,
such as a database. The DAO is used in Chapters 23 and 27.

❑ Model View Controller (MVC): The MVC pattern separates the user interface into three roles:
the Controller (the part that responds to user requests), the Model (the data model of the
application), and the View (the actual presentation). This pattern is described extensively in
Chapter 17, “Model View Controller,” and examples of its use can be seen in Chapter 18,
“Web Frameworks,” Chapter 19, “Struts Framework,” and Chapter 21, “JavaServer Faces.”

❑ Front controller: The front controller is a single interface point for handling all requests to a
Web site; examples of this can be seen in Chapter 9, “JSP and JavaBeans,” and Chapter 12,
“Advanced Dynamic Web Content Generation.”

❑ Remote proxy: The proxy object is used to control access to a remote object. This is illustrated in
Chapter 27.

❑ Service locator: The service locator, as the name suggests, does any lookup that is required for a
service. This pattern is used in Chapter 27.

920

Chapter 26

31_57485x ch26.qxd 1/14/05 10:19 PM Page 920

TEAM LinG - Live, Informative, Non-cost and Genuine!

Use frameworks for developing applications
Chapter 18, “Web Frameworks,” lists a number of frameworks, including those for Web development,
testing, persistence, and templating, among others.

Frameworks are good for the same reason design patterns are good — they implement solutions to com-
mon problems faced by developers in an application domain, they provide a structure for your solu-
tions, and they leave you to focus on the business problem at hand. Not only that, a framework typically
has been used by a lot of developers before you, and thus provides you with a mature and stable plat-
form to build upon.

The frameworks covered in this book include the following:

❑ MVC frameworks: Struts (Chapter 19), Spring and WebWork (Chapter 18)

❑ Templating frameworks: Tiles (Chapter 20)

❑ Logging frameworks: Log4j and Java Logging API (Chapter 14)

❑ Persistence frameworks: Hibernate (Chapter 23)

Early testing and integration
Earlier in the chapter you were introduced to agile methodologies, which focus on writing test cases
before beginning development, and the benefits of early integration. Even if you don’t follow such
methodologies rigorously, the benefits of early testing and integration while developing complex appli-
cations cannot be stressed enough. This chapter introduced you to two tools that help you build test
cases: JUnit and HttpUnit. You were also introduced to the Apache Ant build tool, which as you saw in
its support for other tools, such as CVS, JUnit, and so on, is a lot more than just a build tool.

Summary
This chapter covered a range of development methodologies and the best practices they espouse. It also
introduced you to commonly used software tools. To be a good Web programmer, it is not enough to be
able to code JSPs and develop Web applications. It is also important to be aware of the different pro-
gramming methodologies and be armed with a set of tools to handle complex customer requirements. It
is hoped that this chapter was a good starting point to that end.

To summarize what we covered:

❑ Traditional waterfall methodologies take an engineering approach to software development.
They are predictive and freeze the requirements and design before beginning development.

❑ Iterative methodologies are more adaptive to changing customer requirements.

❑ Agile methodologies are relatively lightweight and emphasize writing tests before the actual
code. They encourage iterative development, dealing with smaller code portions, continuous
integration, and continuous refactoring.

❑ Version-control systems, such as CVS, enable the tracking of different versions of the code and
are essential for projects involving teams of engineers.

921

Best Practices and Tools

31_57485x ch26.qxd 1/14/05 10:19 PM Page 921

TEAM LinG - Live, Informative, Non-cost and Genuine!

❑ Build tools such as Ant help automate the software build and deploy process.

❑ Unit and regression testing tools such as JUnit are central to iterative/agile software
development.

❑ Performance and load testing can be automated using tools such as jMeter.

❑ Logging can be added in a standard and configurable manner using logging frameworks such
as Log4j or the Java Logging API.

❑ Coding standards are important, and tools such as Jalopy and Checkstyle help enforce them.

Exercises
1. Write a JUnit test for the Authentication service used in Chapter 27, “JSP Project I: Personalized

Portal.”

922

Chapter 26

31_57485x ch26.qxd 1/14/05 10:19 PM Page 922

TEAM LinG - Live, Informative, Non-cost and Genuine!

Part III: Spreading Your
New Wings: Applying JSP
in the Real World

Chapter 27: JSP Project I: Personalized Portal

Chapter 28: JSP Project II: Shopping Cart Application

32_57485x pt03.qxd 1/14/05 10:23 PM Page 923

TEAM LinG - Live, Informative, Non-cost and Genuine!

32_57485x pt03.qxd 1/14/05 10:23 PM Page 924

TEAM LinG - Live, Informative, Non-cost and Genuine!

27
JSP Project I:

Personalized Portal

The first two parts of this book covered JSP development and introduced you to a lot of other
areas in Enterprise Java in general and Web development technologies in particular. In this, the
third and final part of the book, you will see how these technologies are brought together into two
projects. These projects are complete by themselves yet simple enough to demonstrate important
concepts.

This first project, a personalized portal, builds on many of the concepts covered earlier, and specif-
ically from the following chapters:

❑ Chapter 5, “JSP and EL”

❑ Chapter 6, “JSP Tag Libraries and JSTL”

❑ Chapter 14, “JSP Debugging Techniques”

❑ Chapter 17, “Model View Controller”

❑ Chapter 19, “Struts Framework”

❑ Chapter 20, “Layout Management with Tiles”

❑ Chapter 26, “Best Practices and Tools”

By the end of these projects, you will be able to piece together different concepts taught in the
book and apply them in complete, real-world Web applications.

The Portal Project
This project demonstrates a personalized portal. It enables users to register and customize their
preferences. Based on these preferences, the portal gathers news and other content from different
Web sites and aggregates it for the user. This is done using the RSS news syndication technology.

33_57485x ch27.qxd 1/14/05 10:22 PM Page 925

TEAM LinG - Live, Informative, Non-cost and Genuine!

In addition, the portal retrieves information about books and (potentially) other items that match the
user’s interest, and presents them as advertisements on the customized news page. Presenting such
targeted items increases the chance that the user will buy them, and thus helps pay for the cost of hosting
the portal. These items are pulled in from Amazon.com using their Web service API.

This book is about JSPs and Web development, and not Web services or RSS. However, because they are
used in this project, the following section provides a brief introduction.

Introduction to RSS
RSS is an XML content syndication format invented by Netscape in 1999. Many Web sites today fall under
the category of content providers. Some of these include traditional news sites such as CNN, BBC, or
Wired. Even non-news Web sites offer RSS feeds — for example, the iTunes music store has customizable
RSS feeds for new songs released.

What is an RSS feed? RSS is a format for describing metadata about news content. For example, the news
at a certain point in time from Slashdot (www.slashdot.org), a popular technology Web site, has the
following items:

❑ Stress Costs U.S. $300 Billion a Year

❑ Mozilla Usage Doubles in 9 Months

Slashdot also publishes metadata about this content as an RSS file, available from http://slashdot.
org/index.rss. The content of this file for these news items is listed here:

<rdf:RDF>
<channel rdf:about=”http://slashdot.org/”>

<title>Slashdot</title>
<link>http://slashdot.org/</link>
<description>News for nerds, stuff that matters</description>
<dc:language>en-us</dc:language>
<dc:rights> Copyright 1997-2004, OSTG - Open Source Technology Group, Inc. All

Rights Reserved.</dc:rights>
<dc:date>2004-09-05T03:13:13+00:00</dc:date>
<dc:publisher>OSTG</dc:publisher>
<dc:creator>pater@slashdot.org</dc:creator>
<dc:subject>Technology</dc:subject>

</channel>

<item rdf:about=”http://slashdot.org/article.pl?sid=04/09/04/219248”>
<title>Stress Costs U.S. $300 Billion a Year</title>
<link>http://slashdot.org/article.pl?sid=04/09/04/219248</link>
<description>

jburroug writes “A new study, as reported in the New York Times claims that
the stress of the modern always-on work environment is taking a far greater toll on
the health of workers than previously believed, to the tune of $300 billion in lost
productivity and increased health care costs in the U.S. alone.”

</description>
<dc:creator>michael</dc:creator>
<dc:subject>science</dc:subject>
<dc:date>2004-09-05T03:08:00+00:00</dc:date>
<slash:section>science</slash:section>

</item>

926

Chapter 27

33_57485x ch27.qxd 1/14/05 10:22 PM Page 926

TEAM LinG - Live, Informative, Non-cost and Genuine!

<item rdf:about=”http://slashdot.org/article.pl?sid=04/09/04/1825227”>
<title>Mozilla Usage Doubles in 9 Months</title>
<link>http://slashdot.org/article.pl?sid=04/09/04/1825227</link>
<description>

TheBadger writes “Thanks to the success of Firefox, Mozilla now appears to
have 14.9% of the browser share, double that of 9 months ago. Let this be a lesson
in complacency.”

</description>
<dc:creator>michael</dc:creator>
<dc:subject>mozilla</dc:subject>
<dc:date>2004-09-04T23:44:00+00:00</dc:date>
<slash:section>mainpage</slash:section>

</item>
</rdf:RDF>

This listing has been edited for clarity, and is not a complete RSS document. However, even if you don’t
know RSS (or even much XML), you can gather what this document contains. It has information about
the content provider, such as the following:

❑ The name (Slashdot)

❑ Web site URL (http://slashdot.org)

❑ A description of the Web site (News for nerds, etc.)

❑ Copyright

❑ Language for the content

❑ Date

❑ Publisher

❑ Subject

Then, for each news item on the Web site, it contains the following metadata:

❑ Title

❑ URL for the full news article

❑ Description

❑ Date

❑ Creator of article

❑ Subject

An application that “subscribes” to the content from this Web site will periodically grab the latest RSS
file at the http://slashdot.org/index.rss URL, and display information about any new news
items. This is possible because each article “item” has date and time information as a part of the
metadata.

A content provider such as Slashdot doesn’t have to manually generate the RSS file. In most cases, the
software that runs the Web site generates an updated RSS file every time a new article is posted on it.

927

JSP Project I: Personalized Portal

33_57485x ch27.qxd 1/14/05 10:22 PM Page 927

TEAM LinG - Live, Informative, Non-cost and Genuine!

RSS is a badly fragmented standard; there are seven different versions of this standard proposed by rival
groups. In addition, there is an alternative look-alike standard called Atom that has similar features. In
fact, even the abbreviation RSS has multiple expansions; the three commonly used ones are Rich Site
Summary, RDF Site Summary, and Really Simple Syndication. When people cannot agree on what the
abbreviation stands for, it is no wonder that they don’t agree on the standards! However, you don’t have
to worry too much about this; most RSS clients and API implementations handle RSS feeds in multiple
formats.

Finally, RSS does not restrict you to news content. For example, CVS checkin logs, Web site revision
information — in short, just about anything that needs to be communicated to a larger audience — can be
published as RSS content.

The Importance of RSS
Even though RSS has been around for a while now, its recent spike in popularity is due to its adoption
by Weblogs. RSS enables you to aggregate content from different providers. This can be done using
RSS readers that can either work as standalone programs (e.g., BlogExpress, Straw, FeedDemon,
NetNewsWire, to name a few) or be integrated with your browser (e.g., Sage, RSS Reader Panel,
Aggreg8, NewsMonster) or Mail reader (e.g., NewsGator, intraVnews, Genecast). The proliferation
of RSS readers gives you some idea of how popular RSS has become. Figure 27-1 shows one such
RSS reader.

Figure 27-1: An RSS reader interface

928

Chapter 27

33_57485x ch27.qxd 1/14/05 10:22 PM Page 928

TEAM LinG - Live, Informative, Non-cost and Genuine!

With an RSS reader, you don’t have to visit several Web sites every day, or every few hours, to check for
updated news. All you have to do is add the RSS feed URL to your reader and it will fetch new content
from these Web sites periodically. You can specify how frequently the reader should poll for content.

Another way to consume RSS content is using an online RSS aggregator. This is a Web site that aggre-
gates RSS content from different content providers. This way, you can visit just one Web site instead of
many to get information. The personalized portal covered in this chapter is an example of an RSS
aggregator.

Introduction to Web services
Distributed computing has been around for a few decades now, with a number of technologies such as
RPC (remote procedure call), CORBA, DCE, and COM. What Web services brought into this mix was
loose coupling between services and clients, better cross-platform support, and most important, support
across all vendors. The initial Web services specifications came from IBM, Microsoft, and others, but has
since been adopted by most companies.

Although there are several Web service specifications and technologies, such as those that deal with
security and transactions, for instance, we are going to look at just two of these in this chapter: SOAP
and WSDL. These are, in fact, the core Web service technologies on which everything else builds.

The first concept to understand is that of a service. A service is a software component that implements
some business logic and has a well-defined interface. For example, a weather service would take the
name of a city or a postal code as input and return the current temperature and humidity.

In order for your service to be used by client applications, you would need to describe its interface in
some form and ensure that even if the implementation of the service changes, it is transparent to the
client applications. In the Java world, you do this by defining an interface and then writing an implemen-
tation for that interface. Client classes will then code to the interface and not the implementation. This is
what is meant by the term loose coupling that was introduced in the first paragraph of this section. The
Web service equivalent of this is called WSDL or Web Service Definition Language. WSDL is an XML for-
mat for describing the interface provided by a service, defining the input and output parameter types, as
well as, optionally, the end point for the service.

When a service is invoked, the message from and to the client can move along several alternative
transports — HTTP, JMS, SMTP, or even a bare-bones TCP socket. The network end point the service lis-
tens on, such as the URL, is called the end point of the service. The format of the message is important —
it needs to be platform- as well as language-independent, as the client and server can be on heteroge-
neous platforms, and be implemented in different languages. For this reason, an XML format was cho-
sen for the messages. This format is called SOAP, or Simple Object Access Protocol.

A Web service, therefore, is a service whose interface is described using a WSDL definition, and can be
invoked using a SOAP message. Typically, a service provider would implement a Web service, describe
it using WSDL, and then announce this WSDL to users either by listing it in registry, or by some other
ad-hoc mechanism. For example, xmethods.net is a Web site that lists many Web services and their
WSDL descriptions.

While developing Web services or writing client that invoke a Web service, in most cases you don’t have
to deal with the XML representations of either the SOAP message or the WSDL interface. Several software

929

JSP Project I: Personalized Portal

33_57485x ch27.qxd 1/14/05 10:22 PM Page 929

TEAM LinG - Live, Informative, Non-cost and Genuine!

tools can handle the XML formats, leaving you free to develop the application logic in your language of
choice. In practice, however, some understanding is useful, especially while debugging tricky problems.
In this chapter, you will look at a simple application and will be spared detailed XML listings.

The Importance of Web services
Why are Web services so important? There are many places where Web services can be used, but to illus-
trate their importance, consider the following two areas where they play an invaluable role:

❑ Enterprise Application Integration (EAI)

❑ Web sites as applications

Enterprise application integration
A company usually has a lot of applications, with useful data spread all across them. Some of these
applications, such as spreadsheets, run on PCs. Others, such as payroll systems and supply chain sys-
tems, may run on UNIX systems, NT servers, or even mainframes. Even applications running on the
same system (for example, Solaris) might well be from different vendors, with different data formats,
APIs, and implementation languages. Web services ease the task of integrating across applications and
prevent your enterprise data from being locked up in isolated application silos.

Web sites as applications
In the last decade, Web sites have evolved from being brochure-ware to serious e-commerce applica-
tions. In fact, many of the popular Web sites in use today, such as eBay, Amazon, PayPal, and Google, are
conceptually applications with a browser interface. Web services take this a step further and enable you
to expose these application interfaces in a standard manner. Thus, other companies, such as resellers and
partners, can incorporate this functionality into their own Web sites and applications. For example,
using the Google Web service API, you can add Google search functionality into your applications.
Similarly, using Amazon’s API, you can provide a customized list of products on your Web site and thus
earn a commission each time someone buys these products from your site. In fact, the project covered
later in the chapter demonstrates this very example.

This does not mean that Web services are a “golden hammer” suitable for each and every task. As a
developer, you should choose your tools based on the task at hand. For example, situations in which all
applications share the same platform, such as Java or .NET, or for which there are performance and high
data volume considerations, may be better served by using other more conventional technologies.

Project Features
The first step in developing a software application is requirement analysis. In this phase, the software ana-
lysts sit down with the intended users to understand their requirements.

Often, users are not able to precisely state their requirements. Hence, a very useful technique in this
stage is creating use cases. Use cases demonstrate how the user interacts with the system and are an effec-
tive way of capturing the functional requirements of the system. In addition, use cases can be translated
very easily into test cases and can form the basis for acceptance testing of the application.

930

Chapter 27

33_57485x ch27.qxd 1/14/05 10:22 PM Page 930

TEAM LinG - Live, Informative, Non-cost and Genuine!

A detailed requirement analysis process is beyond the scope of this chapter, so the use cases are enlisted
as a lightweight substitute for a formal requirements document.

Use cases
The use cases for the system are listed here:

1. The user should be able to register with the system and specify preferences. These preferences
include the following:

a. The username and password for logging in

b. The user’s display name

c. A list of publishers that the user is interested in reading news from

d. Any interests that the user has, specified by keywords. Examples of keywords could be
Java, XML, or even poetry.

2. The user should be able to log on to the portal using a username and password configured dur-
ing the registration phase.

3. The user should be able to change his preferences, including the password, the display name,
the list of publishers, and interest items.

4. On logging in to the portal, users should be presented with a personalized page with news
items and other content from all the publishers that they have subscribed to.

5. The user should also be presented with advertisements for items that match his profile as speci-
fied in his “interests” keywords.

6. On clicking a book advertisement link, the user should be taken to Amazon’s Web page to pur-
chase it. Because these links contain the partner id (the “Amazon Associates id”) of the portal,
any purchase would pay a commission.

7. Finally, the user should be able to log off from the portal.

Initial analysis
Based on the use cases, we can come up with a list of entities in this system, and the relationship
between them. This constitutes what is called the domain model of the system. The entities of the domain
model are as follows:

❑ User profile: The user profile contains information that identifies the user, such as the user
name, display name and password, as well as the user preferences. These preferences include a
list of publishers and the news feeds to which the user has subscribed, and a list of keywords
that identify what the user is interested in. These keywords are entered by the user in this pro-
ject, but they can also be automatically “learned.” For example, if the user subscribes to sports
news, the sports can be added to his list of interests. This learning can also occur based on the
user’s interaction with the system, such as the news items the user actually reads (if he reads
basketball-related news more than any other news item, then we can add basketball to his inter-
est list). Many popular e-commerce Web sites, such as Amazon.com, use these and related

931

JSP Project I: Personalized Portal

33_57485x ch27.qxd 1/14/05 10:22 PM Page 931

TEAM LinG - Live, Informative, Non-cost and Genuine!

techniques to suggest new items to the user, thus increasing the likelihood of selling them. This
being a simple project, we are going to restrict ourselves to asking the user to enter his interests
in a Web form, rather than inferring it from his interaction with the Web site.

❑ News source: A source of news from which the user can choose. The information that we keep
for a news source includes the name of the news provider, a short description, the category it
falls under, and finally and most important, the URL of the RSS feed for this news source.

❑ News feed: The news feed from a news source. This consists of the title of the feed (e.g., “Yahoo!
News–Sports”), a brief description, and a group of news items.

❑ News item: A news item is contained in a news feed. This consists of the headline, a description
of the news item, and the URL for the actual news story.

❑ Advertisement feed: Similar to the news feed, an advertisement feed would have the name of
the feed (e.g., “Java books from Amazon.com”) and a group of advertised items.

❑ Advertised item: An advertised item has the name of the item, a URL to the picture of the item,
and finally a URL from where it can be purchased. This URL, as mentioned earlier, contains
embedded information that enables the portal to earn a commission for each sale.

From this domain model and the use case, you can now proceed to design the persistent store/database
and the application and to develop each of the components.

The Application Design
The application design section covers the following topics:

❑ Designing the persistent store

❑ Designing the key entity objects

❑ Designing the Web site control flow

Of these, the first two topics correspond to the Model layer in a typical MVC architecture, and the last
corresponds to the Controller layer. The Controller layer is covered in more detail later in the chapter.

Designing the persistent store
Every application has some data that needs to live on across application runs. This data is called persis-
tent data, as it persists even when the application does not. Typically, it is stored in a relational database,
such as Oracle, Sybase, SQL Server, DB2, or mySQL. For very simple Web applications, the data can also
be stored on the file system. However, what you gain in terms of simplicity by using files, you lose in
terms of functionality. Chapter 23, “Access to Databases,” introduced you to the benefits of databases,
such as a powerful query mechanism and transaction support.

After mentioning all this, we now backtrack and use a file-based mechanism for persisting data on our
portal Web application! However, the following code shows a factory design pattern that makes the
database access mechanism transparent to the Web application code. This enables you to change the
implementation from a file-based mechanism to a relational database with minimal-to-no code change.

932

Chapter 27

33_57485x ch27.qxd 1/14/05 10:22 PM Page 932

TEAM LinG - Live, Informative, Non-cost and Genuine!

The actual change to a database-based implementation is left as an exercise for you, though a solution is
provided at the end of the book. Chapter 26, “Best Practices and Tools,” introduces design patterns
briefly, and lists those that are used in this book.

First, let’s look at the data being persisted — the user profile and the publishers. The user profile consists
of the following:

❑ User name

❑ User password

❑ Display name

❑ Subscriptions for the user (a multi-valued field)

❑ User’s interests (a multi-valued field)

The publisher’s object is simpler — it consists of multiple rows of the following:

❑ Publisher name

❑ Publisher description

❑ Category of the news feed

❑ RSS URL of the news feed

Access to the persistent data is through a factory (com.wrox.begjsp.ch27.dal.DBFactory). The fac-
tory is a design pattern that enables us to create an object, with the exact type of the object decided at
runtime. For example, the DBFactory class shown next returns instances of file-based implementations
(UserProfileDBMemoryImpl, PublisherDBMemoryImpl) but could easily be changed to return any
other implementation. The client code accesses these implementations using interfaces (UserProfileDB,
PublisherDB). As you will see later in the exercise, this enables us to swap out the memory-based
implementation with a relational database–based one without affecting client code:

package com.wrox.begjsp.ch27.dal;

/**
* Returns instances of Database Access Objects
*/

public class DBFactory
{

public static PublisherDB getPublisherDB()
{

return PublisherDBMemoryImpl.getInstance();
}

public static UserProfileDB getUserProfileDB()
{

return UserProfileDBMemoryImpl.getInstance();
}

}

933

JSP Project I: Personalized Portal

33_57485x ch27.qxd 1/14/05 10:22 PM Page 933

TEAM LinG - Live, Informative, Non-cost and Genuine!

The Java package structure (com.wrox.begjsp.ch27.dal) shown in the code is explained in the
“Directory structure” section, later in the chapter.

The interface for the UserProfileDB is listed next. The UserProfileDBMemoryImpl implements this
interface and any relational database–based implementation will have to do the same.

package com.wrox.begjsp.ch27.dal;

import com.wrox.begjsp.ch27.dto.UserProfile;

/**
* Interface for the database access layer for UserProfile objects
*/

public interface UserProfileDB
{

public UserProfile getUserProfile(String username)
throws DatabaseException;

public void updateUserProfile(UserProfile userProfile)
throws DatabaseException;

public void insertUserProfile(UserProfile userProfile)
throws DatabaseException;

public void deleteUserProfile(String username) throws DatabaseException;
}

The same applies for the PublisherDB interface listed next. The PublisherDBMemoryImpl implements
this interface, and any relational database–based implementation will have to do the same.

package com.wrox.begjsp.ch27.dal;

import com.wrox.begjsp.ch27.dto.Publisher;

import java.util.List;

/**
* Interface for the database access layer for Publishers
*/

public interface PublisherDB
{

public List getPublishers() throws DatabaseException;

public Publisher getPublisher(String feedUrl) throws DatabaseException;
}

Another design pattern in use here is the Data Access Object, or the DAO. The DAO abstracts out the
implementation details of the database access and has find, insert, replace, or delete methods that act on
the database.

934

Chapter 27

33_57485x ch27.qxd 1/14/05 10:22 PM Page 934

TEAM LinG - Live, Informative, Non-cost and Genuine!

The classes that implement the PublisherDB and UserProfileDB interface are examples of DAOs.
These include the file-based implementations PublisherDBMemoryImpl and UserProfileDBMemory
Impl mentioned earlier, as well as the MySQL database–based implementations PublisherDBMySQL
and UserProfileDBMySQLImpl discussed in the exercises at the end of the chapter.

Defining the key entity objects
A complex online system has multiple layers. Traditionally, there are at least three: a database layer (or
database access layer), a business layer, and a presentation layer, and each might have further granularity.
Passing data between different layers and processes is expensive. To reduce the number of calls across
layers and processes, more data should be transferred in each call. For example, to serve up advertise-
ments, instead of making multiple calls for each advertised item, all the items should be fetched at the
same time.

This kind of object that is used to transfer data between layers is called a data transfer object (DTO), or just
a transfer object. A DTO is a common design pattern that is used while building enterprise applications.

In our simple example, the transfer objects and the database look identical as far as the data in them is
concerned. However, in most real-life systems, they are not the same — a transfer object has only that
piece of information that is required by a specific application layer. Transfer objects are also closely tied
to the use case being implemented and may pull together data from different sources and organize it in a
way required by the application.

The following six data transfer objects are used in our application:

❑ com.wrox.begjsp.ch27.dto.UserProfile: Models the user’s profile

❑ com.wrox.begjsp.ch27.dto.Publisher: A news provider, which can provide one or more
news feeds

❑ com.wrox.begjsp.ch27.dto.NewsFeed: A related group of news items from the publisher/
news provider

❑ com.wrox.begjsp.ch27.dto.NewsItem: An individual news item

❑ com.wrox.begjsp.ch27.dto.ItemFeed: A related set of advertisements (for books)

❑ com.wrox.begjsp.ch27.dto.InterestItem: An individual (advertised) item that a user
might be interested in

More information on the Java package structure (com.wrox.begjsp.ch27.dto) is provided in the sec-
tion “Directory structure,” later in the chapter.

The code for the UserProfile is listed here. As you can see, it contains the following data elements:

❑ userName: Used to uniquely identify a user.

❑ password: Secures a user’s account from unauthorized access.

❑ displayName: The name to display on a user’s account.

935

JSP Project I: Personalized Portal

33_57485x ch27.qxd 1/14/05 10:22 PM Page 935

TEAM LinG - Live, Informative, Non-cost and Genuine!

❑ subscriptions: A group of news feeds (as indicated by RSS feed URLs) to which the user
subscribes.

❑ interests: The interests of the user. This is indicated by a group of keywords indicating the
interest topics.

❑ status: Used by the Web application to manage the state of a user’s profile.

package com.wrox.begjsp.ch27.dto;

import java.io.Serializable;

/**
* User Profile
*/

public class UserProfile implements Serializable
{

/* The values of the status codes */
final public static int STATUS_ERROR = -1;
final public static int STATUS_INVALID_USER = 1;
final public static int STATUS_INVALID_PASSWORD = 2;
final public static int STATUS_LOGGED_IN = 3;
final public static int STATUS_NOT_LOGGED_IN = 4;

/* Status of a user- used to indicate invalid,logged in or not
* logged in users
*/

private int status;

/* The username for logging in */
private String userName;

/* The password for logging in */
private String password;

/* The display name on account, defaults to userName */
private String displayName;

/* The news feeds the user has subscribed to */
private String[] subscriptions;

/* A list of keywords indicating user’s interests */
private String[] interests;

public String getDisplayName()
{

return displayName;
}

public String[] getInterests()
{

return interests;
}

936

Chapter 27

33_57485x ch27.qxd 1/14/05 10:22 PM Page 936

TEAM LinG - Live, Informative, Non-cost and Genuine!

public String getPassword()
{

return password;
}

public int getStatus()
{

return status;
}

public String[] getSubscriptions()
{

return subscriptions;
}

public String getUserName()
{

return userName;
}

public void setDisplayName(String string)
{

displayName = string;
}

public void setInterests(String[] strings)
{

interests = strings;
}

public void setPassword(String string)
{

password = string;
}

public void setStatus(int i)
{

status = i;
}

public void setSubscriptions(String[] strings)
{

subscriptions = strings;
}

public void setUserName(String string)
{

userName = string;
}

}

937

JSP Project I: Personalized Portal

33_57485x ch27.qxd 1/14/05 10:22 PM Page 937

TEAM LinG - Live, Informative, Non-cost and Genuine!

Following is the code for the NewsFeed. It contains the following data elements:

❑ title: The title for the news feed

❑ description: A short description

❑ items: A group of news items in this feed

package com.wrox.begjsp.ch27.dto;

import java.io.Serializable;

/**
* A news feed from a publisher that the user has subscribed to
*/

public class NewsFeed implements Serializable
{

/* The name/title of the news provider */
private String title;

/* A short description for the news provider */
private String description;

/* A group of news items from this news provider */
private NewsItem[] items;

public String getDescription()
{

return description;
}

public String getTitle()
{

return title;
}

public NewsItem[] getItems()
{

return items;
}

public void setDescription(String string)
{

description = string;
}

public void setTitle(String string)
{

title = string;
}

public void setItems(NewsItem[] newsItem)
{

938

Chapter 27

33_57485x ch27.qxd 1/14/05 10:22 PM Page 938

TEAM LinG - Live, Informative, Non-cost and Genuine!

items = newsItem;
}

}

The code for the NewsItem is listed next. It contains the following data elements:

❑ headline: The headline for this news item

❑ description: A short description of the news item

❑ newsURL: The URL for the actual news item

package com.wrox.begjsp.ch27.dto;

import java.io.Serializable;

/**
* A news item
*/

public class NewsItem implements Serializable
{

/* The headline for the news item */
private String headline;

/* A short description for the news item */
private String description;

/* The URL for the complete news item */
private String newsURL;

public String getDescription()
{

return description;
}

public String getHeadline()
{

return headline;
}

public String getNewsURL() {
return newsURL;

}

public void setDescription(String string)
{

description = string;
}

public void setHeadline(String string)
{

headline = string;
}

939

JSP Project I: Personalized Portal

33_57485x ch27.qxd 1/14/05 10:22 PM Page 939

TEAM LinG - Live, Informative, Non-cost and Genuine!

public void setNewsURL(String string) {
newsURL = string;

}
}

The code for the Publisher is listed next. As explained earlier, it contains the following data elements:

❑ name: The name of the publisher/news provider.

❑ description: A short description.

❑ category: The category under which this news feed can be classified.

❑ feedUrl: The URL for the RSS feed. The actual feed is modeled by the NewsFeed and NewsItem
objects discussed earlier.

package com.wrox.begjsp.ch27.dto;

import java.io.Serializable;

/**
* A publisher entry registered with the portal Web site
*/

public class Publisher implements Serializable
{

/* Name of the publisher */
private String name;

/* Description of the news feed */
private String description;

/* The RSS URL for the news feed */
private String feedUrl;

/* The category this news feed can be classified under */
private String category;

public Publisher()
{

// Do nothing
}

public Publisher(String name, String description, String category,
String feedUrl)

{
this.name = name;
this.description = description;
this.category = category;
this.feedUrl = feedUrl;

}

940

Chapter 27

33_57485x ch27.qxd 1/14/05 10:22 PM Page 940

TEAM LinG - Live, Informative, Non-cost and Genuine!

public String getCategory()
{

return category;
}

public String getDescription()
{

return description;
}

public String getFeedUrl()
{

return feedUrl;
}

public String getName()
{

return name;
}

public void setCategory(String string)
{

category = string;
}

public void setDescription(String string)
{

description = string;
}

public void setFeedUrl(String string)
{

feedUrl = string;
}

public void setName(String string)
{

name = string;
}

}

The code for the ItemFeed is listed next. As explained earlier, it models a group of related items being
advertised to the user and consists of the following:

❑ itemFeedName: The name for this feed

❑ interestItem: The related group of items being advertised

941

JSP Project I: Personalized Portal

33_57485x ch27.qxd 1/14/05 10:22 PM Page 941

TEAM LinG - Live, Informative, Non-cost and Genuine!

package com.wrox.begjsp.ch27.dto;

import java.io.Serializable;

/**
* A group of items that the user might be interested in
*/

public class ItemFeed implements Serializable
{

/* A descriptive name for the set of items */
private String itemFeedName;

/* The group of items the user might be interested in */
private InterestItem[] interestItem;

public InterestItem[] getInterestItem()
{

return interestItem;
}

public String getItemFeedName()
{

return itemFeedName;
}

public void setInterestItem(InterestItem[] items)
{

interestItem = items;
}

public void setItemFeedName(String string)
{

itemFeedName = string;
}

}

Finally, you have the source code for the InterestItem. This models an item that is being advertised to
the user and contains the following data elements:

❑ itemName: The name for this item

❑ imageUrl: An image of this item, specified by a URL

❑ itemUrl: A URL for a Web page from which the item can be purchased

942

Chapter 27

33_57485x ch27.qxd 1/14/05 10:22 PM Page 942

TEAM LinG - Live, Informative, Non-cost and Genuine!

package com.wrox.begjsp.ch27.dto;

import java.io.Serializable;

/**
* Items that the user might be interested in
*/

public class InterestItem implements Serializable
{

/* The URL to the image for the item */
private String imageUrl;

/* The name of the item */
private String itemName;

/* The URL to the item */
private String itemUrl;

public String getImageUrl()
{

return imageUrl;
}

public String getItemName()
{

return itemName;
}

public String getItemUrl()
{

return itemUrl;
}

public void setImageUrl(String string)
{

imageUrl = string;
}

public void setItemName(String string)
{

itemName = string;
}

public void setItemUrl(String string)
{

itemUrl = string;
}

}

943

JSP Project I: Personalized Portal

33_57485x ch27.qxd 1/14/05 10:22 PM Page 943

TEAM LinG - Live, Informative, Non-cost and Genuine!

As you can see from the preceding code listings, DTOs are JavaBeans with simple GET/SET methods,
and don’t contain any business logic.

Designing the Web site control flow
The next step in designing the Web site is describing the control flow. This control flow can be validated
against the use cases. One technique used for describing the control flow is a sequence diagram.
Figure 27-2 shows what happens when a user tries to log in.

First the logon form is presented. This captures the username and password and passes it to the logon
action. The action invokes an authentication service to verify the username and password. The authenti-
cation service returns a user profile if it succeeds and an error indicator if it fails. The user profile con-
tains the user’s subscriptions and interests. The logon action can use this to invoke the News and
Advertising services, respectively, and pass this collected information to the portal page to display.

Figure 27-2: Control flow for logon to the portal

Where do service invocations fit in an MVC architecture? Chapter 17, “Model View Controller,” looked
at MVC architecture in detail. These invocations update the data in the Model, as shown in Figure 27-3.
Notice that the Web service call is behind an additional Web service proxy layer. This insulates the
Advertisement/Item service from any changes in Web service implementation.

getNewsFeed (userprofile.subscriptions)

Logon form

username, password

login (username, password)

login failed

getNewsFeed (userprofile.subscriptions)

News feed with news itemsNews feed with news items

getItemFeed (userprofile.interests)getItemFeed (userprofile.interests)

getItemFeed (userprofile.interests)Advertised items matching interest profile

login success,
user profile
returned

user profile, news
items, advertised
items

login failed

Logon action Portal page Advt. serviceNews serviceAuthenication
service

944

Chapter 27

33_57485x ch27.qxd 1/14/05 10:22 PM Page 944

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 27-3: Accessing external services

Now that the key entities of the system and the control flow through the different components have been
designed, we can look at the development environment and setup required for the Web application.

The Development Environment
This section covers the development environment setup, the installation of third-party components, as
well as any additional setup that is required.

This includes the following:

❑ Directory setup for the development and build environment

❑ JSTL setup

❑ Struts setup

❑ The build script for the application

❑ Log4j installation and configuration

❑ The Rome RSS library used for getting news content

❑ The Apache Axis library used for making SOAP calls to Amazon’s Web services

Controller
Request

Response
View

Model

Authentication
Service

User profile

News Service
RSS feeds

Advt./Item
Service Web service proxy

SOAP calls

Amazon.com

945

JSP Project I: Personalized Portal

33_57485x ch27.qxd 1/14/05 10:22 PM Page 945

TEAM LinG - Live, Informative, Non-cost and Genuine!

A prerequisite that is not covered here is Tomcat and JSTL installation and setup. See Chapter 1, “Getting
Started with JavaServer Pages,” for more details on Tomcat, and Chapter 6, “JSP Tag Libraries and
JSTL,” for information on JSTL.

Directory structure
Figure 27-4 shows the directory structure for the development environment.

Figure 27-4: Directory structure

Note the following important directories:

❑ src: This contains all the Java code for the Web application, including that of the DTOs, the
servlets, and the Struts action classes.

❑ web: The web directory contains all the JSP pages and configuration files. Its directory structure
is identical to that of the WAR file. This is no accident — the build script shown in the next sec-
tion will copy the structure into the build directory as a first step towards creating a deployable
WAR file.

❑ build: This directory is created by the build script and contains all the compiled Java classes as
well as the copied contents of the web directory. After a successful compile, the build directory
contains the extracted version of a Web application.

❑ dist: The dist directory is also created by the build script to store the deployable WAR file.

946

Chapter 27

33_57485x ch27.qxd 1/14/05 10:22 PM Page 946

TEAM LinG - Live, Informative, Non-cost and Genuine!

The src directory contains all the Java source code for the Web application. As you can see, the package
structure consists of the following:

❑ com.amazon.soap: This consists of the client-side stubs/proxies to invoke the Amazon Web
services. This code is generated from the WSDL definition of the Web services. The “Apache
Axis” section later in the chapter explains more about this.

❑ com.wrox.begjsp.ch27.dal: This is the code for the data access layer. The data access layer
contains all the details for accessing the data, including the data access objects (DAOs). This
enables you to make changes in the way you access this data (for example, from being stored in
a file to being stored in a relational database) without affecting the rest of the code.

❑ com.wrox.begjsp.ch27.dto: These are the data transfer objects that were discussed earlier in
the section “Defining the key entity objects.”

❑ com.wrox.begjsp.ch27.service: This is the code for accessing remote services for RSS news
feeds, advertised items, and the authentication service. The authentication service is not a
remote service, but using a service interface for it enables us to potentially use one in the future.
An example of a remote authentication service could be using a corporate directory service, or
even the Microsoft Passport service to authenticate users in the system.

❑ com.wrox.begjsp.ch27.servlet: All servlets used in the application. These servlets, as you
shall see later, are used for initializing resources such as the logging system.

❑ com.wrox.begjsp.ch27.struts: This is all the Struts-specific code, such as the Struts action
classes.

❑ com.wrox.begjsp.ch27.wsproxy: These are the client-side Web service proxy classes. Why
do you need this when you already have the generated proxy classes (i.e., com.amazon.soap)?
Using an additional proxy class enables you to decouple any code specific to Apache Axis from
the application. In the future, if you move to another Web service implementation, all the Axis-
specific code would be localized to the proxy classes.

Build scripts
The Ant-based build script shown next creates a WAR file for the Portal Web application. This WAR file
can then be deployed in a servlet container, such as Tomcat. If you haven’t already installed Ant, you can
download it from http://ant.apache.org. More details on Ant installation and the syntax of Ant
build scripts are covered in Chapter 26, “Best Practices and Tools.”

The first step in the Ant script is to set all the properties required in the script. This includes the Tomcat
install directory (catalina.home), the location of the source code to be compiled (src.home), the loca-
tion of the JSP and configuration files that are copied as is to the Web application (web.home), and the
location where the WAR file (war.file) is to be created (dist.home). After this, all the targets for the
build script are specified.

947

JSP Project I: Personalized Portal

33_57485x ch27.qxd 1/14/05 10:22 PM Page 947

TEAM LinG - Live, Informative, Non-cost and Genuine!

<!-- Ant build file for JSP Project I Web Application -->

<project name=”jspportal” default=”compile” basedir=”.”>
<property name=”catalina.home” value=”D:\\software\\tomcat\\jakarta-tomcat-

5.0.25”/>
<property name=”app.name” value=”ch27”/>
<property name=”app.path” value=”/${app.name}”/>
<property name=”src.home” value=”${basedir}/src”/>
<property name=”web.home” value=”${basedir}/web”/>
<property name=”docs.home” value=”${basedir}/docs”/>
<property name=”build.home” value=”${basedir}/build”/>
<property name=”dist.home” value=”${basedir}/dist”/>
<property name=”war.file” value=”${dist.home}/${app.name}.war”/>

Next, the prepare target creates the required directory structure with the build and dist directories,
and copies the JSP files, along with all configuration files, into the build directory:

<!-- ====== Prepare Target ====== -->
<target name=”prepare”>

<mkdir dir=”${build.home}”/>
<mkdir dir=”${build.home}/WEB-INF”/>
<mkdir dir=”${build.home}/WEB-INF/classes”/>

<!-- Copy static content of this web application -->
<copy todir=”${build.home}”>

<fileset dir=”${web.home}”/>
</copy>

</target>

The compile target compiles all Java code into the build directory. Notice the CLASSPATH settings for
the compilation — it includes all JAR files in the WEB-INF/lib directory, as well as Tomcat’s common
JAR files (${catalina.home}/common/lib). The former includes all the third-party JAR files for the
Web application (for instance, for Axis, the Rome RSS library, Struts, Tiles, and so on), and the latter
includes the servlet API JAR files required for compiling your servlets.

<!-- ====== Compilation ====== -->
<target name=”compile” depends=”prepare”>

<javac srcdir=”${src.home}”
destdir=”${build.home}/WEB-INF/classes”
debug=”true”
deprecation=”true”>

<classpath>
<fileset dir=”${web.home}/WEB-INF/lib”>

<include name=”*.jar”/>
</fileset>
<pathelement location=”${catalina.home}/common/classes”/>
<fileset dir=”${catalina.home}/common/endorsed”>

<include name=”*.jar”/>
</fileset>
<fileset dir=”${catalina.home}/common/lib”>

<include name=”*.jar”/>
</fileset>

948

Chapter 27

33_57485x ch27.qxd 1/14/05 10:22 PM Page 948

TEAM LinG - Live, Informative, Non-cost and Genuine!

<pathelement location=”${catalina.home}/shared/classes”/>
<fileset dir=”${catalina.home}/shared/lib”>

<include name=”*.jar”/>
</fileset>

</classpath>
</javac>

<!-- Copy application resources -->
<copy todir=”${build.home}/WEB-INF/classes”>

<fileset dir=”${src.home}” excludes=”**/*.java”/>
</copy>
<copy todir=”${build.home}/WEB-INF/lib”>

<fileset dir=”${web.home}/WEB-INF/lib”/>
</copy>

</target>

The dist target takes the contents of the build directory and creates a deployable WAR file out of it:

<!-- ====== Dist Target ====== -->
<target name=”dist” depends=”compile”

description=”Create WAR file”>
<!-- Create WAR file -->
<mkdir dir=”${dist.home}”/>
<jar jarfile=”${war.file}” basedir=”${build.home}”/>

</target>

The clean target removes all compiled files and generated WAR files, along with the directories:

<!-- ====== Clean Target ====== -->
<target name=”clean” description=”Deletes the build and dist directories”>

<delete dir=”${build.home}”/>
<delete dir=”${dist.home}”/>

</target>

Finally, the all target invokes the clean, prepare, compile, and dist targets, respectively:

<!-- ====== All Target ====== -->
<target name=”all”

depends=”clean, prepare, compile, dist”
description=”Builds the web application and war file”/>

</project>

Struts
Struts installation and configuration is explained in detail in Chapter 19, “Struts Framework.” In brief,
the following steps are involved:

1. Download Struts from http://struts.apache.org and extract it in a directory of choice.

2. Copy the Struts JAR files from <Struts installation directory>/lib into WEB-INF/lib.

949

JSP Project I: Personalized Portal

33_57485x ch27.qxd 1/14/05 10:22 PM Page 949

TEAM LinG - Live, Informative, Non-cost and Genuine!

3. Configure the Action servlet in the deployment descriptor (WEB-INF/web.xml) as shown:

<!-- Action Servlet Configuration -->
<servlet>

<servlet-name>action</servlet-name>
<servlet-class>org.apache.struts.action.ActionServlet</servlet-class>
<init-param>

<param-name>config</param-name>
<param-value>/WEB-INF/struts-config.xml</param-value>

</init-param>
<load-on-startup>3</load-on-startup>

</servlet>

4. Write a Struts configuration file (struts-config.xml). The Struts configuration file contains
the action mappings that drive the control flow of the Web application. This control flow is
derived from the use cases, as described in the section “Designing the Web site control flow,”
earlier in the chapter. The Struts configuration file and the action classes for the mapping are
explained in more detail in the “Controller” section, later in the chapter.

Tiles
Tiles installation and configuration is explained in detail in Chapter 20, “Layout Management with
Tiles.” In brief, the following steps are involved:

1. Tiles is available from www.lifl.fr/~dumoulin/tiles/index.html. However, Tiles is also
packaged with Struts, so you don’t have to download it explicitly.

2. Create a Tiles definition file. The following definition file for the project (tiles-defs.xml)
defines the portal layout (portal.layout):

<!DOCTYPE tiles-definitions PUBLIC
“-//Apache Software Foundation//DTD Tiles Configuration//EN”
“http://jakarta.apache.org/struts/dtds/tiles-config.dtd”>

<tiles-definitions>
<definition name=”portal.layout” path=”/layout/portal-layout.jsp”>

<put name=”header” value=”/tiles/portal-header.jsp” />
<put name=”body” value=”/tiles/portal-body.jsp” />
<put name=”advt” value=”/tiles/portal-advt.jsp” />
<put name=”footer” value=”/tiles/portal-footer.jsp” />

</definition>
</tiles-definitions

3. Finally, configure the Tiles servlet in web.xml and specify the Tiles definition file:

<!-- Tiles Servlet Configuration -->
<servlet>
<servlet-name>tilesaction</servlet-name>
<servlet-class>org.apache.struts.tiles.TilesServlet</servlet-class>
<init-param>

950

Chapter 27

33_57485x ch27.qxd 1/14/05 10:22 PM Page 950

TEAM LinG - Live, Informative, Non-cost and Genuine!

<param-name>definitions-config</param-name>
<param-value>/WEB-INF/tiles-defs.xml</param-value>

</init-param>
<load-on-startup>4</load-on-startup>

</servlet>

You are now ready to start using Tiles and designing layouts for your Web pages. See the “View” section
later in the chapter for more details on the layout design for the portal Web pages.

Log4j
Chapter 14, “JSP Debugging Techniques,” explains how Log4j can be installed and configured. The
installation here is pretty much the same, except that the Log4j JAR file (in this case, log4j-1.2.8.jar)
should be copied into the \WEB-INF\lib directory so that it becomes a part of the Web application’s
runtime.

Next, configure the Log4j settings as shown in the \WEB-INF\log4j.properties file listed here.
Notice that even though the logging level for the root logger has been set to WARN, (i.e., no DEBUG and
INFO messages are to be printed), this can be overruled on a per package or class basis. The log4j.
logger.com.wrox.begjsp.ch27.struts=All line at the end shows how this is done:

Set root logger level to DEBUG and its only appender to ConsoleOut.
log4j.rootLogger=WARN, ConsoleOut

ConsoleOut is set to be a ConsoleAppender.
log4j.appender.ConsoleOut=org.apache.log4j.ConsoleAppender

ConsoleOut uses PatternLayout.
log4j.appender.ConsoleOut.layout=org.apache.log4j.PatternLayout
log4j.appender.ConsoleOut.layout.ConversionPattern=%-4r [%t] %-5p %c - %m%n

Set logging levels, or turn specific logging on or off for
selective packages or classes
log4j.logger.com.wrox.begjsp.ch27.struts=All

The log4j.properties property file needs to be loaded, which the com.wrox.begjsp.ch27.servlet.
WroxLogServlet does for us, as shown next. The name of the Log4j properties file is read from the
log4jconfig property.

package com.wrox.begjsp.ch27.servlet;

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
import java.util.*;
import org.apache.log4j.PropertyConfigurator;

public class WroxLogServlet extends HttpServlet {

public void init()
throws ServletException {

951

JSP Project I: Personalized Portal

33_57485x ch27.qxd 1/14/05 10:22 PM Page 951

TEAM LinG - Live, Informative, Non-cost and Genuine!

// Get Fully Qualified Path to Properties File
String config = getServletContext().getRealPath(“/”) +

getInitParameter(“log4jconfig”);
System.out.println(“*** LoggingServlet Initialized using file :” + config);

// Initialize Properties for All Servlets
PropertyConfigurator.configure(config);

}

....
}

This servlet in turn has to be started up at Web application startup time. This is done by the following
configuration in \WEB-INF\web.xml. Note the log4jconfig parameter that specifies the name and
path of the Log4j properties file and the load-on-startup element that causes this servlet to be loaded
when the Web application starts up:

<!-- Log4j Configuration -->
<servlet>

<servlet-name>WroxLogServlet</servlet-name>
<servlet-class>com.wrox.begjsp.ch27.servlet.WroxLogServlet</servlet-class>
<init-param>

<param-name>log4jconfig</param-name>
<param-value>/WEB-INF/log4j.properties</param-value>

</init-param>
<load-on-startup>1</load-on-startup>

</servlet>

Now you are all set to use Log4j. The logger initialization (Logger.getLogger()) gets the logger
specific to this class, and the logger.debug() call logs a debug statement. Note the logger.
isDebugEnabled() check. This ensures that the debug statement is not even evaluated when the
logger is set to a level above DEBUG. You might remember this performance tip from Chapter 25,
“Performance.”

public final class LogonAction extends Action
{

private Logger logger = Logger.getLogger(LogonAction.class.getName());
...
public ActionForward execute(ActionMapping mapping, ActionForm form,

HttpServletRequest request, HttpServletResponse response)
throws Exception

{
...

if (logger.isDebugEnabled())
{

logger.debug(“Attempting to log in “ + username);
}

952

Chapter 27

33_57485x ch27.qxd 1/14/05 10:22 PM Page 952

TEAM LinG - Live, Informative, Non-cost and Genuine!

To summarize our steps:

1. Copy log4j-1.2.8.jar into the \WEB-INF\lib directory.

2. Configure the Log4j properties in \WEB-INF\log4j.properties.

3. Load the properties using a servlet (com.wrox.begjsp.ch27.servlet.WroxLogServlet).

4. Configure the deployment descriptor to load the WroxLogServlet when the Web application
starts up.

5. Add log statements to Java files.

Rome
Rome (“All feeds lead to Rome”) is an open-source RSS library that can be downloaded from https://
rome.dev.java.net. It supports all RSS versions, as well as the Atom syndication standard. The first
installation step is to copy the Rome JAR file (rome.jar) into /WEB-INF/lib. The version of Rome used
in this application is 0.3.

Rome depends on the JDOM XML parsing library, and you would need to copy the JDOM JAR files into
/WEB-INF/lib, too. All dependencies of Rome can be downloaded from http://wiki.java.net/
bin/view/Javawsxml/Rome.

The code (com.wrox.begjsp.ch27.service.NewsServiceImpl) that uses the Rome RSS library to
get and parse the RSS feed is shown next. The getNewsFeed() method takes as input the RSS URL and
reads its content into a SyndFeedI object, which is a Rome-specific class for representing an RSS feed.
You then extract specific fields from SyndFeedI into your NewsFeed DTO and return that to the calling
program:

package com.wrox.begjsp.ch27.service;

import com.wrox.begjsp.ch27.dto.NewsFeed;
import com.wrox.begjsp.ch27.dto.NewsItem;

import com.sun.syndication.feed.synd.SyndEntry;
import com.sun.syndication.feed.synd.SyndFeedI;
import com.sun.syndication.io.FeedException;
import com.sun.syndication.io.SyndFeedInput;

...

/**
* An implementation of the NewsService
*/

public class NewsServiceImpl implements NewsService
{

...

953

JSP Project I: Personalized Portal

33_57485x ch27.qxd 1/14/05 10:22 PM Page 953

TEAM LinG - Live, Informative, Non-cost and Genuine!

public NewsFeed getNewsFeed(String subscription) throws WroxServiceException
{

NewsFeed newsFeed = new NewsFeed();
URL channelUrl = null;

try
{

channelUrl = new URL(subscription);
}
catch (MalformedURLException e)
{

throw new WroxServiceException(“Invalid RSS feed URL “ + subscription,
e);

}

SyndFeedInput input = new SyndFeedInput();

SyndFeedI feed = null;

try
{

feed = input.build(getFeedReader(channelUrl));
}
catch (IllegalArgumentException e)
{

...
}

newsFeed.setTitle(feed.getTitle());
newsFeed.setDescription(feed.getDescription());

List entries = feed.getEntries();

ListIterator listIterator = entries.listIterator(0);
NewsItem[] newsItems = new NewsItem[entries.size()];

int i = 0;

while (listIterator.hasNext())
{

SyndEntry entry = (SyndEntry) listIterator.next();
NewsItem item = new NewsItem();
item.setHeadline(entry.getTitle());

item.setDescription((entry.getDescription()).getValue());
item.setNewsURL(entry.getLink());
newsItems[i] = item;
i++;

}

newsFeed.setItems(newsItems);

return newsFeed;
}

954

Chapter 27

33_57485x ch27.qxd 1/14/05 10:22 PM Page 954

TEAM LinG - Live, Informative, Non-cost and Genuine!

private static Reader getFeedReader(URL feedUrl) throws IOException
{

...
}

}

Finally, the Web application accesses the NewsServiceImpl functionality through a service locator inter-
face, as shown here:

newsService = WroxServiceLocator.getNewsService();
NewsFeed newsFeed = newsService.getNewsFeed(subscription);

This service locator is a design pattern that is used when you want to consolidate all lookup operations
for services in one place and also hide the implementation details of the lookup. The code listing for the
service locator (com.wrox.begjsp.ch27.service.WroxServiceLocator) is shown next. As you can
see, it returns instances of not only the news service, but also the authentication and item (advertise-
ment) services:

package com.wrox.begjsp.ch27.service;

/**
* Returns instances of the services
*/

public class WroxServiceLocator
{

public static AuthenticationService getAuthenticationService()
throws WroxServiceException

{
return new AuthenticationServiceImpl();

}

public static ItemService getItemService() throws WroxServiceException
{

return new ItemServiceImpl();
}

public static NewsService getNewsService() throws WroxServiceException
{

return new NewsServiceImpl();
}

}

You can find additional details about the Rome RSS library, including Javadocs, at its Web site
(https://rome.dev.java.net/).

To summarize our steps:

1. Download the Rome RSS library and JDOM.

2. Copy all JAR files into the /WEB-INF/lib directory.

3. Use the Rome API to get and parse the RSS news feeds.

955

JSP Project I: Personalized Portal

33_57485x ch27.qxd 1/14/05 10:22 PM Page 955

TEAM LinG - Live, Informative, Non-cost and Genuine!

Apache Axis
Apache Axis can be downloaded from http://ws.apache.org/axis. Download and extract it in a
directory of your choice. Add all the classes under AXIS_HOME/lib to your Java CLASSPATH; you will
need that for generating the client-side stubs for invoking Amazon’s Web service API.

Next, you need to get a developer token from Amazon. This can be done from the http://soap
.amazon.com/ Web site. This Web site also has a developer’s toolkit. You don’t need it for this example,
but you can download it to look at example code.

Next, generate the client-side stubs using the following command:

java org.apache.axis.wsdl.WSDL2Java http://soap.amazon.com/schemas3/
AmazonWebServices.wsdl

The WSDL2Java program takes an interface definition of a Web service (defined as a WSDL file) and
generates client-side stubs. These stubs expose the Web service API as a Java API and contain all the
code required to take Java objects, convert them to their XML representation, make a SOAP method call,
and finally take the XML response and convert it back into Java for us. Client programs can then simply
invoke these client-side stubs and avoid dealing with any SOAP or XML details.

This command presumes that all JAR files under AXIS_HOME/lib are in your CLASSPATH. When this
command executes successfully, you will see a lot of Java classes generated under the
com.amazon.soap package hierarchy in your current directory.

Copy all the JAR files from AXIS_HOME/lib into WEB-INF/lib and copy all the generated classes to the
src directory. You are now all set to start invoking Amazon’s Web service API.

The following code listing shows how the generated Axis code can be used for making a Web service
call. This class has a searchByKeyword() method that takes a keyword and returns items from
Amazon.com’s inventory that match the keyword. The things to note here are as follows:

❑ The end point specified in AMAZON_ENDPOINT is the network end point where Amazon’s Web
services listen for client requests.

❑ The associate’s id (ASSOCIATE_ID) is like a username that enables any purchases to be credited
to your account. In case you don’t have an Amazon associate’s id, you can use the anonymous
id webservices-20 as shown.

❑ The developer token (DEVELOPER_TOKEN) is necessary — you need to get this before any exam-
ples can be run.

❑ The mode indicates what items categories to search under. It is currently set to books.

package com.wrox.begjsp.ch27.wsproxy;

import com.amazon.soap.AmazonSearchPort;
import com.amazon.soap.AmazonSearchService;
import com.amazon.soap.AmazonSearchServiceLocator;
import com.amazon.soap.Details;
import com.amazon.soap.KeywordRequest;
import com.amazon.soap.ProductInfo;

956

Chapter 27

33_57485x ch27.qxd 1/14/05 10:22 PM Page 956

TEAM LinG - Live, Informative, Non-cost and Genuine!

import com.wrox.begjsp.ch27.dto.InterestItem;
import com.wrox.begjsp.ch27.dto.ItemFeed;

import java.net.MalformedURLException;
import java.net.URL;

import java.rmi.RemoteException;

import javax.xml.rpc.ServiceException;

/**
* Proxy class for retrieving data from Amazon.com’s Web store
*/

public class AmazonStore implements WebserviceStore
{

/* The Web service end point */
private final static String AMAZON_ENDPOINT =

“http://soap.amazon.com/onca/soap3”;

/* The Amazon associate id */
private final static String ASSOCIATE_ID = “webservices-20”;

/* The developer token from Amazon */
private final static String DEVELOPER_TOKEN = “<Your developer token here>”;

/* The page number to retrieve */
private final static String PAGE_NUMBER = “1”;

/* Search for books */
private final static String MODE = “books”;

/* Amount of information to return- ‘lite’ mode or ‘heavy’ */
private final static String TYPE = “lite”;

/* Web service version to invoke */
private final static String VERSION = “1.0”;

/* Axis SOAP objects for making Web service call */
private AmazonSearchService service;
private AmazonSearchPort port;

public AmazonStore() throws MalformedURLException, ServiceException
{

service = new AmazonSearchServiceLocator();
port = service.getAmazonSearchPort(new URL(AMAZON_ENDPOINT));

}

public InterestItem[] searchByKeyword(String keyword)
throws RemoteException

{
KeywordRequest request = new KeywordRequest();

957

JSP Project I: Personalized Portal

33_57485x ch27.qxd 1/14/05 10:22 PM Page 957

TEAM LinG - Live, Informative, Non-cost and Genuine!

/* Set search parameters */
request.setKeyword(keyword);
request.setPage(PAGE_NUMBER);
request.setMode(MODE);
request.setTag(ASSOCIATE_ID);
request.setType(TYPE);
request.setDevtag(DEVELOPER_TOKEN);

//request.setVersion(VERSION);
ProductInfo productInfo = port.keywordSearchRequest(request);

Details[] details = productInfo.getDetails();
int productCount = details.length;
InterestItem[] items = new InterestItem[productCount];

for (int i = 0; i < productCount; i++)
{

InterestItem item = new InterestItem();
item.setItemName(details[i].getProductName());
item.setImageUrl(details[i].getImageUrlSmall());
item.setItemUrl(details[i].getUrl());
items[i] = item;

}

return items;
}

}

Extensive documentation for Apache Axis is available at http://ws.apache.org/axis/java/
index.html.

To summarize the steps:

1. Download Apache Axis and copy all JAR files into WEB-INF/lib.

2. Get a developer token for Amazon’s Web service API. You can also download the toolkit to look
at examples.

3. Use the WSDL2Java class to generate client-side stubs for Amazon’s Web service API.

4. Use the stubs to make Web service calls to get Amazon’s catalog information or to place orders
in Amazon’s shopping cart. The Amazon associates id and developer token will be passed along
with the order, ensuring that you get paid a commission on purchases.

The Application
The previous sections covered the design of the Web site and the control flow (“Project Features”
section), the model used in the Web site along with the transfer objects (“Defining the Key Entities”
section), and finally the services — the News service, Authentication service, and Advertisement/
Item service — that are invoked by the model.

In this section, you look at the View and Controller portions of the application.

958

Chapter 27

33_57485x ch27.qxd 1/14/05 10:22 PM Page 958

TEAM LinG - Live, Informative, Non-cost and Genuine!

View
In the Struts configuration explained earlier in the chapter, you saw how the Action servlet was config-
ured and the Struts configuration file (/WEB-INF/struts-config.xml) passed to it as a parameter. The
Struts configuration has form bean definitions as shown:

<!-- ========== Form Bean Definitions =================================== -->
<form-beans>

<!-- Logon form bean -->
<form-bean name=”logonForm”

type=”org.apache.struts.validator.DynaValidatorForm”>
<form-property name=”username” type=”java.lang.String”/>
<form-property name=”password” type=”java.lang.String”/>

</form-bean>

<form-bean name=”registrationForm”
type=”com.wrox.begjsp.ch27.struts.RegistrationForm”/>

</form-beans>

These form beans have their values set to what the user fills out in the form and are then passed to an
appropriate action for further processing. Let’s start with the first form (logon.jsp) that the users see
when they browse to the portal application.

Note the following in the HTML form:

❑ The text shown on the form page is internationalized. Note the bean:message tags; they spec-
ify which text message should be displayed using key attributes. The actual messages are
picked up from a property file (ApplicationResources.properties) that is configured in
struts-config.xml as follows. Chapter 13, “Internationalization and Localized Content”
explains the concepts behind internationalization and shows how it can be accomplished using
JSTL tags. This is similar to that but uses the Struts bean tag library instead of JSTL.

<message-resources
parameter=”com.wrox.begjsp.ch27.ApplicationResources”/>

The content of the ApplicationResources.properties properties file that corresponds to
the messages shown in this form is as follows:

-- logon page --
welcome.title=Beginning JavaServer Pages Portal Project
welcome.heading=Welcome to your portal!
welcome.message=Please log in to your portal
welcome.logon=Login
welcome.newuser=Please register if you are a new user

❑ Note the username and password properties. What the user enters here is filled in the
LogonForm bean.

❑ When the user submits the form, the result is sent to the logon action as specified in the Struts
configuration. This is discussed later in the chapter in more detail.

❑ Finally, note the editRegistration.do link for creating a new user. This triggers the edit reg-
istration action, which uses the registration.jsp form to accept user preferences.

959

JSP Project I: Personalized Portal

33_57485x ch27.qxd 1/14/05 10:22 PM Page 959

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 27-6 (later in the chapter) shows what this form looks like when it is rendered by the browser. The
JSP code for the form is listed here:

<%@ page contentType=”text/html;charset=UTF-8” language=”java” %>
<%@ taglib uri=”/WEB-INF/struts-bean.tld” prefix=”bean” %>
<%@ taglib uri=”/WEB-INF/struts-html.tld” prefix=”html” %>

<html:html locale=”true”>
<head>
<title><bean:message key=”welcome.title”/></title>
<html:base/>
</head>
<body bgcolor=”white”>
<h3><bean:message key=”welcome.heading”/></h3>
${error}
${ok_message}
<html:form action=”/logon”>

<table width=”100%” border=”0”>
<tr>

<td width=”38%”><bean:message key=”prompt.username”/></td>
<td width=”62%”><html:text property=”username” size=”16”

maxlength=”18”/></td>
</tr>
<tr>

<td><bean:message key=”prompt.password”/></td>
<td><html:password property=”password” size=”16” maxlength=”18”

redisplay=”false”/>
</td>

</tr>
<tr>

<td> </td>
<td>

<html:submit>
<bean:message key=”welcome.logon”/>

</html:submit>
</td>
</tr>
<tr>

<td> </td>

<td> </td>
</tr>
<tr>

<td><html:link page=”/editRegistration.do”><bean:message
key=”welcome.newuser”/></html:link></td>

<td> </td>
</tr>

</table>
</html:form>
</body>
</html:html>

960

Chapter 27

33_57485x ch27.qxd 1/14/05 10:22 PM Page 960

TEAM LinG - Live, Informative, Non-cost and Genuine!

The next JSP page shown is registration.jsp, mentioned earlier. This simple form enables users to
enter their username, password, and interests, and select news feeds from a set of publishers:

<%@ page contentType=”text/html;charset=UTF-8” language=”java” %>
<%@ taglib uri=”http://java.sun.com/jsp/jstl/core” prefix=”c” %>
<%@ taglib uri=”/WEB-INF/app.tld” prefix=”app” %>
<%@ taglib uri=”/WEB-INF/struts-bean.tld” prefix=”bean” %>
<%@ taglib uri=”/WEB-INF/struts-html.tld” prefix=”html” %>
<%@ taglib uri=”/WEB-INF/struts-logic.tld” prefix=”logic” %>
<html:html>
<head>

<title><bean:message key=”registration.title.create”/></title>
<html:base/>
</head>
<body bgcolor=”white”>

<html:errors/>

<html:form action=”/saveRegistration”>
<html:hidden property=”action”/>
<table border=”0” width=”100%”>

<tr>
<th align=”right”>

<bean:message key=”registration.username”/>:
</th>
<td align=”left”>

<html:text property=”userName” size=”16” maxlength=”16”/>
</td>

</tr>

<tr>
<th align=”right”>

<bean:message key=”registration.password”/>:
</th>
<td align=”left”>

<html:password property=”password” size=”16” maxlength=”16”/>
</td>

</tr>

<tr>
<th align=”right”>

<bean:message key=”registration.displayName”/>:
</th>
<td align=”left”>

<html:text property=”displayName” size=”50”/>
</td>

</tr>

<tr>
<th align=”right”>

961

JSP Project I: Personalized Portal

33_57485x ch27.qxd 1/14/05 10:22 PM Page 961

TEAM LinG - Live, Informative, Non-cost and Genuine!

<bean:message key=”registration.interests”/>:
</th>
<td align=”left”>

<html:text property=”interests” size=”50”/>
</td>

</tr>

<tr>
<th align=”right”>

<bean:message key=”registration.subscription”/>:
</th>
<td align=”left”>

<html:select property=”subscriptions” multiple=”true”>
<c:forEach items=”${publisher_info}” var=”a_publisher”>

<jsp:useBean id=”a_publisher”
type=”com.wrox.begjsp.ch27.dto.Publisher”/>

<html:option value=”${a_publisher.feedUrl}”>[${a_publisher.name}]
${a_publisher.description}</html:option>

</c:forEach>
</html:select>

</td>
</tr>

<tr>
<td align=”right”>

<html:submit>
<bean:message key=”button.save”/>

</html:submit>
</td>
<td align=”left”>

<html:reset>
<bean:message key=”button.reset”/>

</html:reset>
</td>

</tr>

</table>
</html:form>

</body>
</html:html>

As you can see in the registration JSP, no validation checks are being performed. See the exercises at the
end of the chapter — this is left for you to do. Solutions are provided in Appendix D, “Exercise
Solutions.”

We finally come to the most important JSP page in the application, the portal page itself. This page is
designed using Tiles. Figure 27-5 shows the layout of this page.

962

Chapter 27

33_57485x ch27.qxd 1/14/05 10:22 PM Page 962

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 27-5: Tiles layout for the portal page

The JSP code for this page (portalPage.jsp) is shown here. As you can see, it simply includes its lay-
out from portal.layout:

<%@ page language=”java” %>
<%@ taglib uri=”/WEB-INF/struts-tiles.tld” prefix=”tiles” %>
<%@ taglib uri=”/WEB-INF/app.tld” prefix=”app” %>

<app:checkLogon/>
<tiles:insert definition=”portal.layout” flush=”true” />

You saw earlier in tiles-def.xml how portal.layout maps to the layout/portal-layout.jsp
JSP file. This file is listed next and as the name suggests, defines the layout of the portal page. Compare
how this corresponds to Figure 27-5.

<%@ taglib uri=”/WEB-INF/struts-tiles.tld” prefix=”tiles” %>
<%@ taglib uri=”/WEB-INF/struts-bean.tld” prefix=”bean” %>

<html>
<head>

<title><bean:message key=”portalPage.title”/></title>
</head>

<body bgcolor=”white”>

<table border=”1” width=”100%” height=”100%” border=”1”>
<tr>

<td colspan=”2” height=”100” bgcolor=”gray”>
<tiles:insert attribute=”header”/>

</td>
</tr>

Header (portal-header.jsp)

Footer (portal-footer.jsp)

Ad
ve

rt
is

em
en

ts
 (

po
rt

al
-a

dv
t.

js
p)

Body (portal-body.jsp)

963

JSP Project I: Personalized Portal

33_57485x ch27.qxd 1/14/05 10:22 PM Page 963

TEAM LinG - Live, Informative, Non-cost and Genuine!

<tr>
<td width=”20%” valign=”top” bgcolor=”lightgrey”>

<tiles:insert attribute=”advt”/>
</td>
<td valign=”top” align=”left”>

<tiles:insert attribute=”body”/>
</td>

</tr>
<tr>

<td colspan=”2” height=”50” bgcolor=”gray”>
<tiles:insert attribute=”footer”/>

</td>
</tr>
</table>
</body>
</html>

Next is the header for the portal page (tiles/portal-header.jsp). This uses the bean profile to show
the user’s display name, along with links to log off and change the profile. This bean is loaded into the
session by the logon action, as you will see later in the chapter.

...
<table width=”100%” border=”0”>

<tr>
<td width=”25%”> </td>
<td width=”50%”><h1 align=”center”><bean:message

key=”portalPage.heading”/></h1></td>
<td width=”25%”> </td>

</tr>
<tr>

<td><div align=”left”><bean:message key=”portalPage.greetings”/>
<jsp:getProperty name=”profile” property=”displayName”/></div></td>

<td> </td>
<td><div align=”right”>[<html:link page=”/editProfile.do”><bean:message

key=”portalPage.registration”/></html:link>|<html:link
forward=”logoff”><bean:message key=”portalPage.logoff”/></html:link>]</div></td>

</tr>
</table>

The body of the portal page (tiles/portal-body.jsp) shows all news items stored in the news bean.
This bean is loaded into the request by the logon or save profile actions, as you will see later in the chap-
ter. Note also the c:catch JSTL tag surrounding the JSP code. This catches any exceptions that occur
during the execution of the page and prints an error message.

...
<c:catch var=”exception”>

<c:forEach items=”${news}” var=”publishers”>
<jsp:useBean id=”publishers” type=”com.wrox.begjsp.ch27.dto.NewsFeed”/>

<table width=”100%” border=”0”>
<tr>

<td bgcolor=”#CCCCCC”><div align=”center”>
<jsp:getProperty name=”publishers” property=”title”/>

964

Chapter 27

33_57485x ch27.qxd 1/14/05 10:22 PM Page 964

TEAM LinG - Live, Informative, Non-cost and Genuine!

 :
<jsp:getProperty name=”publishers” property=”description”/>
</div></td>

</tr>
<c:forEach items=”${publishers.items}” var=”newsitem”>

<jsp:useBean id=”newsitem” type=”com.wrox.begjsp.ch27.dto.NewsItem”/>
<tr>

<td><div align=”left”><a href=”${newsitem.newsURL}”
target=_blank>${newsitem.headline}</div></td>

</tr>
<tr>

<td><div align=”left”>${newsitem.description}</div></td>
</tr>
<tr>

<td> </td>
</tr>

</c:forEach>
</table>

</c:forEach>
</c:catch>
<c:if test=”${not empty exception}”>

Sorry, no news. The RSS feeds are down. Cause: ${exception}
</c:if>

Next are the advertisements that are shown on the sidebar (tiles/portal-advt.jsp). This JSP uses
the items bean to display the advertisements. This bean is also loaded into the request by the logon or
save profile actions. Again, the c:catch JSTL tag catches any exceptions that occur during the execution
of the page and prints an error message.

<c:catch var=”exception”>
<c:forEach items=”${items}” var=”itemgroups”>

<jsp:useBean id=”itemgroups” type=”com.wrox.begjsp.ch27.dto.ItemFeed”/>

<table width=”100%” border=”0”>
<tr>

<td bgcolor=”#CCCCCC”><div align=”center”>
<jsp:getProperty name=”itemgroups” property=”itemFeedName”/>

</div></td>

</tr>
<c:forEach items=”${itemgroups.interestItem}” var=”interestitem”>
<jsp:useBean id=”interestitem” type=”com.wrox.begjsp.ch27.dto.InterestItem”/>
<tr>

<td><div align=”left”></div></td>

</tr>
<tr>

<td><div align=”left”><a href=”${interestitem.itemUrl}”
target=_blank>${interestitem.itemName}</div></td>

</tr>
<tr>

<td> </td>
</tr>
</c:forEach>

965

JSP Project I: Personalized Portal

33_57485x ch27.qxd 1/14/05 10:22 PM Page 965

TEAM LinG - Live, Informative, Non-cost and Genuine!

</table>
</c:forEach>

</c:catch>
<c:if test=”${not empty exception}”>

Sorry, the store is closed. Cause: ${exception}
</c:if>

Controller
In the Struts configuration explained earlier in the chapter, you saw how the Action servlet was config-
ured and the Struts configuration file (/WEB-INF/struts-config.xml) passed to it as a parameter. The
Struts configuration file has the following action mappings defined:

<!-- ========== Global Forward Definitions ============================== -->
<global-forwards>

<forward name=”logon” path=”/logon.do”/>
<forward name=”logoff” path=”/logoff.do”/>

</global-forwards>

<!-- ========== Action Mapping Definitions ============================== -->
<action-mappings>

<!-- Process a user logoff -->
<action path=”/logoff”

type=”com.wrox.begjsp.ch27.struts.LogoffAction”>
<forward name=”success” path=”/logon.jsp”/>

</action>

<!-- Process a user logon -->
<action path=”/logon”

type=”com.wrox.begjsp.ch27.struts.LogonAction”
name=”logonForm”
scope=”session”
input=”logon”>

<forward name=”success” path=”/portalPage.jsp”/>
<forward name=”failure” path=”/logon.jsp”/>

</action>

<!-- Edit user registration -->
<action path=”/editRegistration”

type=”com.wrox.begjsp.ch27.struts.EditRegistrationAction”
attribute=”registrationForm”

scope=”request”
validate=”false”>

<forward name=”success” path=”/registration.jsp”/>
</action>

966

Chapter 27

33_57485x ch27.qxd 1/14/05 10:22 PM Page 966

TEAM LinG - Live, Informative, Non-cost and Genuine!

<!-- Save user registration -->
<action path=”/saveRegistration”

type=”com.wrox.begjsp.ch27.struts.SaveRegistrationAction”
name=”registrationForm”

scope=”request”
input=”registration”>

<forward name=”success” path=”/logon.jsp”/>
<forward name=”failure” path=”/logon.jsp”/>

</action>

<!-- Edit profile -->
<action path=”/editProfile”

type=”com.wrox.begjsp.ch27.struts.EditProfileAction”
attribute=”registrationForm”

scope=”request”
validate=”false”>

<forward name=”success” path=”/editProfile.jsp”/>
</action>

<!-- Save profile -->
<action path=”/saveProfile”

type=”com.wrox.begjsp.ch27.struts.SaveProfileAction”
name=”registrationForm”

scope=”request”
input=”registration”>

<forward name=”success” path=”/portalPage.jsp”/>
<forward name=”failure” path=”/logon.jsp”/>

</action>

</action-mappings>

These action mappings can also be mapped to the control flow defined in the use cases. For example,
in use case 1, the user registering with the system maps to the /editRegistration and
/saveRegistration action mappings (editRegistration.do ➪ registration.jsp ➪

saveRegistration.do). Similarly, a user logging in as specified in use case 2 maps to /logon
(logon.jsp ➪ logon.do ➪ portalPage.jsp).

Let’s look at the code for the logon action (com.wrox.begjsp.ch27.struts.LogonAction) first:

package com.wrox.begjsp.ch27.struts;
...

/**
* Implementation of an Action that authenticates a user and pulls up
* the user profile
*/

public final class LogonAction extends Action
{

967

JSP Project I: Personalized Portal

33_57485x ch27.qxd 1/14/05 10:22 PM Page 967

TEAM LinG - Live, Informative, Non-cost and Genuine!

The first thing to note in the code is how the Log4j logger is initialized with the logger of the class. This
enables you to turn on/off logging at the class level:

private Logger logger = Logger.getLogger(LogonAction.class.getName());

...
public ActionForward execute(ActionMapping mapping, ActionForm form,

HttpServletRequest request, HttpServletResponse response)
throws Exception

{
HttpSession session = request.getSession();

// Is there a currently logged on user?
UserProfile userProfile = (UserProfile)

session.getAttribute(WebappConstants.PROFILE_OBJECT);

String username = null;

if (userProfile == null)
{

String error = null;

The code then grabs the username and password that was entered in the logon.jsp form. Based on
this, the authentication service is called and the user profile is pulled up:

username = (String) PropertyUtils.getSimpleProperty(form, “username”);

String password = (String) PropertyUtils.getSimpleProperty(form,
“password”);

if (logger.isDebugEnabled())
{

logger.debug(“Attempting to log in “ + username);
}

try
{

userProfile = authenticateUser(username, password);

if ((userProfile == null) ||
(userProfile.getStatus() != UserProfile.STATUS_LOGGED_IN))

{
error = (userProfile.getStatus() ==

UserProfile.STATUS_INVALID_USER)
? “Invalid user” : “Invalid password”;

logger.info(“Logon for user “ + username +
“ failed. Reason: “ + error);

}
}
catch (WroxServiceException e)
{

logger.error(“Error accessing Authentication service “ +
e.getLocalizedMessage());

error = “Portal unavailable”;
}

968

Chapter 27

33_57485x ch27.qxd 1/14/05 10:22 PM Page 968

TEAM LinG - Live, Informative, Non-cost and Genuine!

If the login call fails, perhaps due to an incorrect username/password, then an appropriate error is
returned:

// Report any errors
if (error != null)
{

request.setAttribute(WebappConstants.ERROR_INFO, error);

return (mapping.findForward(“failure”));
}

On a successful login, the profile object is saved in the session. You also get the news subscriptions for
the user, along with the matching advertisements, and store them in the request. These objects (news,
advertised items) are required only for the next page (portalPage.jsp), so it doesn’t make sense to
store them in the session. Storing a lot of information in the session is bad for Web site scalability. This
and other performance tips can be found in Chapter 25, “Performance.”

// Save our logged-in user in the session
session.setAttribute(WebappConstants.PROFILE_OBJECT, userProfile);

}

// Get the news subscriptions for the user, and save them in the request
ArrayList news = ServiceHelper.getSubscriptions(userProfile, logger);
request.setAttribute(WebappConstants.NEWS_OBJECT, news);

// Get the items matching the user interest and save them in the request
ArrayList items = ServiceHelper.getItems(userProfile, logger);
request.setAttribute(WebappConstants.ITEMS_OBJECT, items);

if (mapping.getAttribute() != null)
{

if (“request”.equals(mapping.getScope()))
{

request.removeAttribute(mapping.getAttribute());
}
else
{

session.removeAttribute(mapping.getAttribute());
}

}

if (logger.isDebugEnabled())
{

logger.debug(“User “ + username + “ logged in.”);
}

// Forward control to the specified success URI
return (mapping.findForward(“success”));

}

...
private UserProfile authenticateUser(String username, String password)

throws WroxServiceException

969

JSP Project I: Personalized Portal

33_57485x ch27.qxd 1/14/05 10:22 PM Page 969

TEAM LinG - Live, Informative, Non-cost and Genuine!

{
AuthenticationService authService =

WroxServiceLocator.getAuthenticationService();
UserProfile userProfile = authService.login(username, password);

return userProfile;
}

}

Next you have the two actions that help register a new user. The first one (com.wrox.begjsp.ch27.
struts.EditRegistrationAction) is called before the registration form (registration.jsp) is
shown. This initializes the form and loads the publisher list bean into the request. This bean is used by
registration.jsp to show details on the publishers and enables the user to choose one or more
of them.

package com.wrox.begjsp.ch27.struts;
...
public final class EditRegistrationAction extends Action
{

private static Logger logger =
Logger.getLogger(EditRegistrationAction.class.getName());

...
public ActionForward execute(ActionMapping mapping, ActionForm form,

HttpServletRequest request, HttpServletResponse response)
throws Exception

{
if (logger.isDebugEnabled())
{

logger.debug(“EditRegistration invoked”);
}

form = new RegistrationForm();
request.setAttribute(mapping.getAttribute(), form);

// Save a new transaction token in the user’s profile
saveToken(request);

List publisherList = DBFactory.getPublisherDB().getPublishers();

request.setAttribute(WebappConstants.PUBLISHER_INFO_OBJECT,
publisherList);

return (mapping.findForward(“success”));
}

}

The second action (com.wrox.begjsp.ch27.struts.SaveRegistrationAction) is called after the
registration form (registration.jsp) is shown. This does the following:

❑ Checks whether the username entered in the form is unique. If not, an error is returned.

❑ If the username is unique, then the user’s profile is saved to the database and a success message
is returned.

970

Chapter 27

33_57485x ch27.qxd 1/14/05 10:22 PM Page 970

TEAM LinG - Live, Informative, Non-cost and Genuine!

package com.wrox.begjsp.ch27.struts;
...

/**
* Processes the user registration information entered by the user.
*/

public final class SaveRegistrationAction extends Action
{

private Logger logger =
Logger.getLogger(SaveRegistrationAction.class.getName());

...
public ActionForward execute(ActionMapping mapping, ActionForm form,

HttpServletRequest request, HttpServletResponse response)
throws Exception

{
HttpSession session = request.getSession();
RegistrationForm regform = (RegistrationForm) form;
UserProfile userProfile = new UserProfile();

String username = regform.getUserName();

// Check for duplicate user name; flag error
UserProfile checkProfile =

(DBFactory.getUserProfileDB()).getUserProfile(username);

if ((checkProfile != null) &&
(username.equals(checkProfile.getUserName())))

{
// Duplicate user!
String errorMessage = “User “ + username + “ already exists”;
logger.error(errorMessage);
request.setAttribute(WebappConstants.ERROR_INFO, errorMessage);

return (mapping.findForward(“failure”));
}

if (logger.isDebugEnabled())
{

logger.debug(“Create user called for “ + username +
“ with interests “ + regform.getInterests() +
“ and subscription [“ + regform.getSubscriptions() + “]”);

}

userProfile.setUserName(username);
userProfile.setPassword(regform.getPassword());
userProfile.setDisplayName(regform.getDisplayName());

String interestString = regform.getInterests();
StringTokenizer tokenizer = new StringTokenizer(interestString, “,”);
String[] interests = new String[tokenizer.countTokens()];

int i = 0;

971

JSP Project I: Personalized Portal

33_57485x ch27.qxd 1/14/05 10:22 PM Page 971

TEAM LinG - Live, Informative, Non-cost and Genuine!

while (tokenizer.hasMoreTokens())
{

interests[i] = tokenizer.nextToken();
i++;

}

userProfile.setInterests(interests);

userProfile.setSubscriptions(regform.getSubscriptions());

session.setAttribute(WebappConstants.PROFILE_OBJECT, userProfile);

(DBFactory.getUserProfileDB()).insertUserProfile(userProfile);

// Remove the obsolete form bean
if (mapping.getAttribute() != null)
{

if (“request”.equals(mapping.getScope()))
{

request.removeAttribute(mapping.getAttribute());
}
else
{

session.removeAttribute(mapping.getAttribute());
}

}

// Forward control to the specified success URI
request.setAttribute(WebappConstants.SUCCESS_INFO,

“User account for “ + regform.getUserName() +
“ created. Please log in.”);

return (mapping.findForward(“success”));
}

}

The edit profile (com.wrox.begjsp.ch27.struts.EditProfileAction) action that is invoked when
the user is already logged in is similar to the edit registration, except for two differences:

❑ If the user’s session has expired, the user is redirected to the logon page.

❑ The registration form is populated with the contents of the profile. This enables the edit profile
form (editProfile.jsp) to show existing values, and enables the user to change them if
desired.

The code for edit profile is shown next, with the changes highlighted:

public final class EditProfileAction extends Action
{

private static Logger logger =
Logger.getLogger(EditProfileAction.class.getName());

...

972

Chapter 27

33_57485x ch27.qxd 1/14/05 10:22 PM Page 972

TEAM LinG - Live, Informative, Non-cost and Genuine!

public ActionForward execute(ActionMapping mapping, ActionForm form,
HttpServletRequest request, HttpServletResponse response)
throws Exception

{
HttpSession session = request.getSession();

...

UserProfile userProfile = (UserProfile) session.getAttribute
(WebappConstants.PROFILE_OBJECT);

// If we can’t find the user profile object, then send to logon page
if (userProfile == null)
{

logger.error(“Session for user expired; redirecting to logon page”);

return (mapping.findForward(“logon”));
}

// Populate the user profile
if (form == null)
{

form = new RegistrationForm();
}

/* Populate the registration form */
RegistrationForm regform = (RegistrationForm) form;

regform.setUserName(userProfile.getUserName());
regform.setPassword(userProfile.getPassword());
regform.setDisplayName(userProfile.getDisplayName());

String interestStr = “”;
String[] interests = userProfile.getInterests();

for (int i = 0; i < interests.length; i++)
{

if (i == 0)
{

interestStr = interests[0];
}
else
{

interestStr += (“,” + interests[i]);
}

}

regform.setInterests(interestStr);
regform.setSubscriptions(regform.getSubscriptions());

request.setAttribute(mapping.getAttribute(), form);

List publisherList = DBFactory.getPublisherDB().getPublishers();
request.setAttribute(WebappConstants.PUBLISHER_INFO_OBJECT,

973

JSP Project I: Personalized Portal

33_57485x ch27.qxd 1/14/05 10:22 PM Page 973

TEAM LinG - Live, Informative, Non-cost and Genuine!

publisherList);

return (mapping.findForward(“success”));
}

}

The save profile (com.wrox.begjsp.ch27.struts.SaveProfileAction) action is similar in intent to
the save registration, but has many differences:

❑ It is invoked for a logged on user, so if the session has expired, the user should be directed to
the logon page instead of executing the rest of the action.

❑ You don’t have to check for duplicate usernames, as you do a save profile only on an
existing user.

❑ You do an update of an existing user’s information, instead of inserting a new user.

❑ Finally, because this page forwards to the portal page (portalPage.jsp), and not the logon
page like the save registration action, you would need to get fresh advertisements and news
subscriptions and load them in the request scope.

These differences are highlighted in the following code:

public final class SaveProfileAction extends Action
{

....
public ActionForward execute(ActionMapping mapping, ActionForm form,

HttpServletRequest request, HttpServletResponse response)
throws Exception

{
HttpSession session = request.getSession();
RegistrationForm regform = (RegistrationForm) form;
String action = regform.getAction();

// Is there a currently logged on user
UserProfile userProfile = (UserProfile)

session.getAttribute(WebappConstants.PROFILE_OBJECT);

if (userProfile == null)
{

String errorMessage = “Trying to edit profile when session does not
exist”;

logger.error(errorMessage);
request.setAttribute(WebappConstants.ERROR_INFO, errorMessage);

return (mapping.findForward(“failure”));
}

userProfile.setUserName(regform.getUserName());
userProfile.setPassword(regform.getPassword());
userProfile.setDisplayName(regform.getDisplayName());
userProfile.setStatus(UserProfile.STATUS_LOGGED_IN);

String interestString = regform.getInterests();

974

Chapter 27

33_57485x ch27.qxd 1/14/05 10:22 PM Page 974

TEAM LinG - Live, Informative, Non-cost and Genuine!

if (interestString != null)
{

StringTokenizer tokenizer = new StringTokenizer(interestString, “,”);
String[] interests = new String[tokenizer.countTokens()];

int i = 0;

while (tokenizer.hasMoreTokens())
{

interests[i] = tokenizer.nextToken();
i++;

}

userProfile.setInterests(interests);
}

String[] subscriptions = regform.getSubscriptions();

if ((subscriptions != null) && (subscriptions.length != 0))
{

userProfile.setSubscriptions(regform.getSubscriptions());
}

session.setAttribute(WebappConstants.PROFILE_OBJECT, userProfile);

(DBFactory.getUserProfileDB()).updateUserProfile(userProfile);

// Get the news subscriptions for the user, and save them in the request
ArrayList news = ServiceHelper.getSubscriptions(userProfile, logger);
request.setAttribute(WebappConstants.NEWS_OBJECT, news);

// Get the items matching the user interest and save them in the request
ArrayList items = ServiceHelper.getItems(userProfile, logger);
request.setAttribute(WebappConstants.ITEMS_OBJECT, items);
...
// Forward control to the specified success URI
request.setAttribute(WebappConstants.SUCCESS_INFO,

“User account for “ + regform.getUserName() + “ modified.”);

return (mapping.findForward(“success”));
}

Running the portal application
Now that the application has been developed, it’s time to try it out. Run the Ant script to create the WAR
file. You should see output on your screen similar to the following:

D:\work\chapter27\jspportal>ant all
Buildfile: build.xml

clean:

prepare:

975

JSP Project I: Personalized Portal

33_57485x ch27.qxd 1/14/05 10:22 PM Page 975

TEAM LinG - Live, Informative, Non-cost and Genuine!

[mkdir] Created dir: D:\work\chapter27\jspportal\build
[mkdir] Created dir: D:\work\chapter27\jspportal\build\WEB-INF
[mkdir] Created dir: D:\work\chapter27\jspportal\build\WEB-INF\classes
[copy] Copying 63 files to D:\work\chapter27\jspportal\build

compile:
[javac] Compiling 98 source files to D:\work\chapter27\jspportal\build\WEB-

INF\classes
[copy] Copying 1 file to D:\work\chapter27\jspportal\build\WEB-INF\classes

dist:
[mkdir] Created dir: D:\work\chapter27\jspportal\dist

[jar] Building jar: D:\work\chapter27\jspportal\dist\ch27.war

all:

BUILD SUCCESSFUL
Total time: 43 seconds

Deploy the WAR file (ch27.war) in Tomcat as explained in Chapter 1. Browse to the URL http://
localhost:8080/ch27/ and you should see the initial logon form, as shown in Figure 27-6.

The following steps assume that the machine on which the Web application runs can connect to the
Internet directly. Check your browser settings (for example, Tools ➪ Internet Options ➪ Connections ➪

LAN Settings in Internet Explorer) to verify this. If you are running on a machine behind a proxy
server, you need to pass that information to the JVM. This can be done by editing the Tomcat startup
script (<Tomcat Installation Directory>\bin\catalina.bat or catalina.sh), adding
the following lines at the beginning of the script:

For catalina.bat:

set CATALINA_OPTS=%CATALINA_OPTS% -Dhttp.proxySet=true

set CATALINA_OPTS=%CATALINA_OPTS% -Dhttp.proxyHost=<proxy_host>

set CATALINA_OPTS=%CATALINA_OPTS% -Dhttp.proxyPort=<proxy_port>

For catalina.sh:

CATALINA_OPTS=”${CATALINA_OPTS} -Dhttp.proxySet=true -Dhttp.proxyHost=
<proxy_host> -Dhttp.proxyPort=<proxy_port>”

These settings are required because your Web application connects to other sites (e.g., for RSS feeds, for
Amazon Web services) internally.

Another useful property to note here is http.nonProxyHosts. You don’t have to set it this time, but
if your application was accessing some services in an internal network, then you would specify those
hosts as nonproxy hosts because the proxy server might not be able to resolve them.

976

Chapter 27

33_57485x ch27.qxd 1/14/05 10:22 PM Page 976

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 27-6: Logon form

Click the Please Register If You Are a New User link, and enter your profile information as shown in
Figure 27-7. Here you create a user with interests in Tomcat and Java, and who wishes to subscribe to
news content from IBM developerWorks and Wired News.

Figure 27-7: Registering a new user

Upon successfully creating a user, you are directed back to the logon page with a success message, as
shown in Figure 27-8.

977

JSP Project I: Personalized Portal

33_57485x ch27.qxd 1/14/05 10:22 PM Page 977

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 27-8: Account successfully created

If you try creating a user that already exists (the username should be unique), then you see the “User
already exists” error message instead, as shown in Figure 27-9.

Figure 27-9: Trying to create a user that already exists

Finally, when you log in, you are shown your portal page (see Figure 27-10), with news from the pub-
lishers that you configured, and advertisements for books that match your interest profile.

If you don’t like what you see, you can click the Edit Profile link, and edit your profile as shown in
Figure 27-11. Here, the user chooses just one news provider (XML news from IBM developerWorks) and
enters XML as the sole interest area.

978

Chapter 27

33_57485x ch27.qxd 1/14/05 10:22 PM Page 978

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 27-10: The portal page with news subscriptions and advertisements

Figure 27-11: It’s easy to modify a profile.

979

JSP Project I: Personalized Portal

33_57485x ch27.qxd 1/14/05 10:22 PM Page 979

TEAM LinG - Live, Informative, Non-cost and Genuine!

When this profile is saved, the user is returned to the portal page (see Figure 27-12), with the new profile
in effect. Notice the new content from the IBM developerWorks XML zone, and also the different books
being advertised to the user.

Figure 27-12: The portal page with new subscription and advertisements

Try it out for yourself! Three users are already configured (usernames test0, test1, and test2), with
passwords set to be the same as that of the username. Try changing their profiles or adding new users.

980

Chapter 27

33_57485x ch27.qxd 1/14/05 10:22 PM Page 980

TEAM LinG - Live, Informative, Non-cost and Genuine!

Summary
This project, which exposed you to several concepts described in previous chapters, was designed to be
a refresher to the earlier chapters. These concepts included the MVC architecture, Struts, Tiles, Log4j,
Ant, and JSTL among others. The project also touched upon more complex areas, such as design patterns
and concepts from enterprise Java. It is difficult to cover a complete JSP-based project that illustrates
good design principles yet avoid mentioning or using common design patterns. That said, this is not a
design pattern book, or an enterprise Java book, but rather lays the foundations from which you can
move on to that stage.

The complete code for this project can be downloaded from the Wrox Web site (www.wrox.com).

Exercises
1. Replace the memory database implementation with one that uses a relational database,

minimizing code changes to the portal.

2. Add validation to the registration and change profile Web forms.

981

JSP Project I: Personalized Portal

33_57485x ch27.qxd 1/14/05 10:22 PM Page 981

TEAM LinG - Live, Informative, Non-cost and Genuine!

33_57485x ch27.qxd 1/14/05 10:22 PM Page 982

TEAM LinG - Live, Informative, Non-cost and Genuine!

28
JSP Project II: Shopping

Cart Application

Welcome to the final chapter of the book! You’ve come a long way since the humble beginnings of
Chapter 1. This chapter, together with Chapter 27, applies some of the tools and techniques that
have been covered in the preceding 26 chapters and illustrates them in the context of a real-world
application. In addition to the general JSP usage explained in the book, this chapter focuses on the
concepts covered in the following chapters for building an application:

❑ Chapter 11, “Building Your Own Custom JSP Tag Library”

❑ Chapter 17, “Model View Controller”

❑ Chapter 19, “Struts Framework”

❑ Chapter 20, “Layout Management with Tiles”

❑ Chapter 23, “Access to Databases”

❑ Chapter 26, “Best Practices and Tools”

You should make yourself familiar with the content of these chapters before embarking on this
one. By the end of this chapter, you should have a much better understanding of how the tools and
techniques explained in this book will help you develop your own applications.

This chapter is progressive. First the features of the application are discussed, much like a cus-
tomer would describe them. The chapter then describes the design approach the application will
take, examining the database schema and the key entities and objects involved. The development
environment is then described, enabling you to replicate it on your own computer. Note that the
source code of the application described in this chapter can be downloaded from the Wrox Web
site at www.wrox.com.

Once the development environment is established, the functional areas of the application are
examined individually, enabling you to gain an understanding of how the different components
and entities interact to fulfill the requirements.

34_57485x ch28.qxd 1/14/05 10:22 PM Page 983

TEAM LinG - Live, Informative, Non-cost and Genuine!

The Bookstore Project
The shopping cart application presented in this chapter will use an online bookstore as its implementa-
tion but could be easily adapted to sell a range of products to customers. Applications, even simple ones
like this one, can have massive requirements, and because of the limited space of a single chapter, we
can present only a subset of the implementation required for a full-scale online inventory and sales sys-
tem. You could use this project as a basis for your own implementations if you were so inclined.

Project features
The features of the bookstore project are presented here in a brief, informal use-case type format. Use
cases are simply one way of describing the interaction of the user of a system with the system itself.
They do not specify the implementation because this is typically not something the customer needs (or
wants) to know about. Use cases are designed to capture the specific requirements of a system without
clouding the user with technical detail. As developers, however, we are technical people, so it is there-
fore our job to read the use cases and translate their implications into some sort of workable product that
will accurately deliver the functionality desired by the customer. This is sometimes easier said than
done. Because project management and business analysis are not our main concerns here, we’ve gone
easy on you and made the requirements fairly explicit and clear.

There are entire books, even careers, devoted to the techniques and strategies of collecting and present-
ing customer requirements. A use case is only one of these techniques. They are used here in a very
informal manner.

Use cases
The application has the following requirements:

1. The user browses to the application and is presented with a list of book categories.

2. The user selects a book category and is presented with a list of books that are within the selected
category.

3. The user clicks a link to add a book to the shopping cart. If a selected item is already in the
shopping cart, the quantity in the cart will be incremented by one, rather than being added as a
new item.

4. The user clicks a menu link to view the current contents of the shopping cart. This page, the
Manage Cart page, presents a list of the shopping cart items, along with the quantity and price
of each. At the bottom of the list is the total value of the cart. The quantity of each item is pre-
sented in a form that the user can modify to change the quantity in the cart. At the bottom of the
list is an Update button that refreshes the page and updates the user’s shopping cart with the
new quantities. If a value of zero is entered as the quantity of a shopping cart item, that item
will be removed from the cart.

5. If the user goes to the Manage Cart page and there are no items, a message will be displayed
indicating that there are no items in the cart.

6. From the Manage Cart page, the user can select to clear the entire cart, removing all items.
When the user selects this link, all items are removed from the cart and the user is presented
with the catalogue list, as in use case 1.

984

Chapter 28

34_57485x ch28.qxd 1/14/05 10:22 PM Page 984

TEAM LinG - Live, Informative, Non-cost and Genuine!

7. The user selects a Checkout button from the menu and is presented with a form that collects
personal and credit cart number information. The form ensures that all values are entered, and
appropriate validation is performed against the zip code field and the credit card number. At
the base of the form, the current content and value of the order are again displayed.

8. If the user selects to checkout when there are no items in the shopping cart, the form will not be
displayed. A message will indicate that there are no items to check out.

9. Once all values are entered into the checkout form, the user clicks a Checkout button and the
order is submitted to the system. If the credit card purchase is approved, the user is presented
with a confirmation screen and the current shopping cart is emptied. If the credit cart purchase
is declined, the user is presented with a message inviting them to try again or contact their
bank. In the decline scenario, the shopping cart is not emptied.

10. The customer needs to keep track of declined orders, so even though an order is declined it
should be recorded and marked as declined.

11. On all pages in the application, a small discrete area will display the current number of unique
items in the shopping cart and its current value.

12. The system should ensure that a price change for a book does not affect the cost of orders that
have previously been recorded or the cost of books that users have already added to their shop-
ping cart. Customers are understandably unhappy when they add an item to a shopping cart at
one price and find out that the item is suddenly more expensive when they check out.

Initial analysis
Looking over this list of requirements and behaviors, it is often good practice to identify the major enti-
ties, or domain concepts, that the system uses. It is hoped that you will have identified the following:

❑ Shopping Cart: A temporary receptacle for the user’s pending order. This contains shopping
cart items of various quantities.

❑ Category: A logical grouping of books.

❑ Book: The product the user intends to purchase from the system. A book has a price.

❑ Order: A purchase order recorded in the system containing customer details and items that are
purchased by the customer in various quantities.

❑ Order Status: Whether an order was approved or declined.

❑ Shopping Cart item: An item that might be ordered by the user and has been added to the
shopping cart. A shopping cart item has a property representing the quantity of the book it rep-
resents.

Based on this list, you can make some important decisions. It is clear that an item in a shopping cart is
related to, but distinct from, a simple book, the product. First of all, a shopping cart item can represent
many copies of the same book. Its value, therefore, is not simply the value of the book, but the value of
the book multiplied by the quantity requested. A book, however, is the basic product itself, with a per-
unit price.

Use case 12 tells us that the prices of books in recorded orders and in shopping carts should not be
affected by price changes made to books in the system. We will need to record the unit price of the book

985

JSP Project II: Shopping Cart Application

34_57485x ch28.qxd 1/14/05 10:22 PM Page 985

TEAM LinG - Live, Informative, Non-cost and Genuine!

when an item is added to the user’s shopping cart. This unit price will be separate from the unit price
that the system holds for each book.

An order is closely related to a shopping cart; both have a collection of items with various quantities.
The differences are that the order contains customer information and is a permanent record, whereas a
shopping cart is a temporary entity. Once the user completes an order successfully, or leaves the site, the
shopping cart ceases to exist. Figure 28-1 represents the process of creating an order in the system.

Figure 28-1: Creating a new order in the system

Tracing the steps of the diagram in Figure 28-1, step A represents a user selecting a book and creating a
shopping cart item. This item is then placed in the shopping cart in step B. Step C shows the customer
committing to an order. Step D represents a customer abandoning a shopping cart. The gray boxes high-
light parts of the system that are persistent: a book with its own name and unit price, and an order, along
with its customer details and collection of items. There are other parts of the system that we will need to
persist, but these are the most important areas for this discussion.

Now that we have a clear understanding of the relationships that exist in the shopping cart system,
the design process can move on to the database and define the important objects that will exist in the
system.

Application Design
In this section, we will determine the broad structure of some of the key entities in the application and
how some of these will be represented in the database.

Database design
Our initial design discussion led to the discovery of some important things that need to be represented in
the application. Some of these are temporary, and only live as long as the duration of the user’s session
on the application; others need to be recorded in the database.

The diagram in Figure 28-1 and the requirements illustrate that the following entities need to be per-
sisted in some way (for us this will be using a relational database):

Book
(name, price)

Shopping Cart
Item

(book, price, qty)A

B

C

D

Shopping Cart

Item Item

Order
(customer)

Item Item

986

Chapter 28

34_57485x ch28.qxd 1/14/05 10:22 PM Page 986

TEAM LinG - Live, Informative, Non-cost and Genuine!

❑ Customer order

❑ Order status

❑ Shopping cart item

❑ Book

❑ Category

By the time a shopping cart item is persisted, it is no longer related to the shopping cart itself, but to the
order. A shopping cart item’s sole purpose is to be associated, eventually, with an order. Therefore, it
makes sense to call it an order item instead, even though it is initially created in a shopping cart. From
now on we will refer to this entity as an order item.

The driving force behind designing any relational database is, as the name suggests, the relationships
that exist between the entities. In this application, the relationships are very easy to illustrate. They can
be summarized as follows: A category has many books; a book has one category. An order item has one
book; a book has many order items. An order can have many order items; an order item has one order.
An order has one order status. An order status can have many orders.

These relationships become clearer when we present the associated entity relationship diagram (ERD),
as shown in Figure 28-2.

Figure 28-2: ERD for the bookstore application

An ERD is a very powerful diagram that is fairly ubiquitous with relational database design. You read
the diagram much like the text description earlier: A category has many books; a book has one category,
and so on. The 1 and m represent the one and many sides of the relationship. ERDs are capable of repre-
senting far more complicated relationships than these, but our application doesn’t require them.

These entities represent the tables in our database. Each table will have a number of columns that will
record the required information for each row. The following table shows the columns for each of these.

Category

1

1 m

m 1

m

1

m

CustomerOrder

Book OrderItem

OrderStatus

987

JSP Project II: Shopping Cart Application

34_57485x ch28.qxd 1/14/05 10:22 PM Page 987

TEAM LinG - Live, Informative, Non-cost and Genuine!

Name Type Description

category

id int, primary key, auto Unique identifier for categories.
increment

name varchar(100) The name of the category.

description varchar(200) A description of the category.

book

id int, primary key, auto Unique identifier for books.
increment

name varchar(100) The name of the book.

description varchar(200) A description of the book.

unitprice float The unit price of each copy of
this book.

category int, foreign key Foreign key to the id field of the
category table. Represents the
relationship between a book and
a category.

customerorder

id int, primary key, auto Unique identifier for customer
increment orders. Will also represent the

reference number received by the
customer.

firstname varchar(100) The first name of the customer.

lastname varchar(100) The last name of the customer.

address varchar(100) The address of the customer.

zipcode varchar(10) The Zip code of the customer’s
address.

orderdate datetime The date and time of the order.

status int, foreign key Foreign key to the id field of the
orderstatus table. Represents the
relationship between a customer
order and order status.

cardnumber varchar(20) The credit card number of the
customer.

988

Chapter 28

34_57485x ch28.qxd 1/14/05 10:22 PM Page 988

TEAM LinG - Live, Informative, Non-cost and Genuine!

Name Type Description

orderstatus

id int, primary key Unique identifier for customer
orders.

name varchar(20) The name of the order status
(approved or declined).

orderitem

id int, primary key, auto Unique identifier for customer
increment orders.

bookid int, foreign key Foreign key to the id field of the
book table. Represents the rela-
tionship between an order item
and a book.

ordered int, foreign key, allow Foreign key to the id field of the
null customerorder table. Represents

the relationship between a cus-
tomerorder and an orderitem.

unitprice float The price of the book at the time
of purchase.

This database structure will satisfy the requirements of the application. Additional requirements, such
as customer accounts, stored shopping carts, and other products, would require additional changes to
be made.

Defining the key entity objects
In a simplistic application such as this one, typically the database entities are shadowed by correspond-
ing programmatic objects. For instance, all the tables listed in the previous section will have associated
objects representing important business concepts.

The mapping between the database entities and the object entities will be managed by Hibernate.
Hibernate enables you to treat your interactions with persistent objects in an object-oriented manner,
rather than piecing together objects from unique identifiers. This way, your objects can have rich refer-
ences to other objects, rather than an integer id reference. For example, the CustomerOrder object will
need a reference to an OrderStatus. Rather than simply having a private int member variable as a ref-
erence to the ID of the appropriate row of the orderstatus table, our CustomerOrder object can actu-
ally have an OrderStatus as the member variable. This has the effect of making our application code
more about the relationships between objects, rather than the relationships between database tables.

Not all of the key entity objects will be persisted. The ShoppingCart object, for instance, will represent
the collection of items the customer might buy; it will reside in the session of the user but will not be

989

JSP Project II: Shopping Cart Application

34_57485x ch28.qxd 1/14/05 10:22 PM Page 989

TEAM LinG - Live, Informative, Non-cost and Genuine!

persisted when an order is made. Instead, a new CustomerOrder representing its contents and the
details of the customer will be created and saved to the database.

The following discussion defines each of these key entities and provides their source code.

BaseEntity
BaseEntity is an abstract object that will act as a superclass for objects that are managed and persisted
by Hibernate. BaseEntity also provides a member variable, the int id, as well as associated getter and
setter methods that the subclasses can inherit. Having this BaseEntity available will be convenient
when implementing the class that will manage the persistence of objects. The source code for the
BaseEntity class is as follows:

package com.wrox.begjsp.ch28.bookstore;

public abstract class BaseEntity
{

private int _id = 0;

public int getId()
{

return _id;
}

public void setId(int id)
{

_id = id;
}

}

This class is declared abstract as it is not intended to be instantiated in the application; rather, it is
used as a core type for other entities so that they can be referenced in a more general manner.

CustomerOrder
A CustomerOrder object extends BaseEntity and represents a completed order in the system. Its
member variables include a collection of OrderItem objects and details of the customer who created the
order. CustomerOrder objects will also have a reference to an OrderStatus indicating if the order was
approved or declined.

package com.wrox.begjsp.ch28.bookstore;

import java.sql.Date;
import java.util.Iterator;
import java.util.Set;

public class CustomerOrder extends BaseEntity
{

private String _firstName;
private String _lastName;
private String _address;
private String _zipCode;
private Date _orderDate;

990

Chapter 28

34_57485x ch28.qxd 1/14/05 10:22 PM Page 990

TEAM LinG - Live, Informative, Non-cost and Genuine!

private OrderStatus _status;
private String _cardNumber;
private Set _orderItems;

public String getAddress()
{

return _address;
}

public void setAddress(String address)
{

_address = address;
}

public String getFirstName()
{

return _firstName;
}

public void setFirstName(String firstName)
{

_firstName = firstName;
}

public String getLastName()
{

return _lastName;
}

public void setLastName(String lastName)
{

_lastName = lastName;
}

public Date getOrderDate()
{

return _orderDate;
}

public void setOrderDate(Date orderDate)
{

_orderDate = orderDate;
}

public OrderStatus getStatus()
{

return _status;
}

public void setStatus(OrderStatus status)
{

_status = status;
}

991

JSP Project II: Shopping Cart Application

34_57485x ch28.qxd 1/14/05 10:22 PM Page 991

TEAM LinG - Live, Informative, Non-cost and Genuine!

public String getZipCode()
{

return _zipCode;
}

public void setZipCode(String zipcode)
{

_zipCode = zipcode;
}

public String getCardNumber()
{

return _cardNumber;
}

public void setCardNumber(String cardNumber)
{

_cardNumber = cardNumber;
}

public Set getOrderItems()
{

return _orderItems;
}

public void setOrderItems(Set orderItems)
{

_orderItems = orderItems;
}

public float getValue()
{

Iterator it = _orderItems.iterator();
float result = 0.0f;

while (it.hasNext())
{

OrderItem item = (OrderItem) it.next();
result += item.getValue();

}

return result;
}

}

In addition to the set and get methods for each of the member variables, a getValue method has been
added. This method provides us with the total value of the items represented by this order. It uses the
getValue method of each of its OrderItem objects in order to calculate it.

OrderItem
The OrderItem extends BaseEntity and represents an item in a customer’s order. Rather than an
order being made up of an individual item for each individual product purchased, the OrderItem will

992

Chapter 28

34_57485x ch28.qxd 1/14/05 10:22 PM Page 992

TEAM LinG - Live, Informative, Non-cost and Genuine!

represent the book, a unit price, and a quantity that the customer has ordered. Recording the unit price
separately from the book ensures that our model supports the price changes requirement discussed
earlier.

If a customer purchases ten copies of a book, it will be represented by one corresponding OrderItem
object with a quantity of ten, and a value that reflects the product of unit price and quantity. Because of
the structure of this object, it makes sense to use it in the temporary phases of an order’s creation. When
a customer adds a new item to the shopping cart, the system will represent this by adding an appropri-
ate OrderItem. This is consistent with the diagram in Figure 28-1, but we’ve renamed the shopping cart
item to OrderItem.

An OrderItem, therefore, has a reference to the book the customer has ordered, the unit price at the time
the OrderItem was selected, and a quantity of this item in the order. The source code for the OrderItem
class is as follows:

package com.wrox.begjsp.ch28.bookstore;

public class OrderItem extends BaseEntity
{

private Book _book;
private CustomerOrder _order;
private int _qty = 0;
private float _unitPrice = 0.0f;

public OrderItem()
{
}

public Book getBook()
{

return _book;
}

public String getBookDescription()
{

return _book.getDescription();
}

public int getBookId()
{

return _book.getId();
}

public String getBookName()
{

return _book.getName();
}

public CustomerOrder getOrder()
{

return _order;
}

993

JSP Project II: Shopping Cart Application

34_57485x ch28.qxd 1/14/05 10:22 PM Page 993

TEAM LinG - Live, Informative, Non-cost and Genuine!

public int getQty()
{

return _qty;
}

public float getUnitPrice()
{

return _unitPrice;
}

public float getValue()
{

return _unitPrice * _qty;
}

public void setBook(Book book)
{

_book = book;
}

public void setOrder(CustomerOrder order)
{

_order = order;
}

public void setQty(int qty)
{

_qty = qty;
}

public void setUnitPrice(float unitPrice)
{

_unitPrice = unitPrice;
}

public int hashCode()
{

return getBook().getId();
}

public boolean equals(Object o)
{

OrderItem i = (OrderItem) o;
return _book.equals(i.getBook());

}
}

Note in this class how the default equals method has been overridden. The system will equate two
OrderItem objects (consider them the same) if they represent the same book.

994

Chapter 28

34_57485x ch28.qxd 1/14/05 10:22 PM Page 994

TEAM LinG - Live, Informative, Non-cost and Genuine!

OrderStatus
OrderStatus extends BaseEntity and represents the success or failure of the order with respect to
payment. There are only two possible values of OrderStatus: approved and declined. This simple
object will have a name field. The source code for the OrderStatus class is as follows:

package com.wrox.begjsp.ch28.bookstore;

public class OrderStatus extends BaseEntity
{

private String _name;

public String getName()
{

return _name;
}

public void setName(String name)
{

_name = name;
}

}

Category
The Category object extends BaseEntity and represents a logical collection of books. The Category
object will have a reference to a collection of Book objects, that being the books in this category. In addi-
tion, the Category object will have a name and description so that it can be referenced and displayed.

package com.wrox.begjsp.ch28.bookstore;

import java.util.List;

public class Category extends BaseEntity
{

private List _books;
private String _description;
private String _name;

public Category()
{
}

public int getBookCount()
{

return _books.size();
}

public List getBooks()
{

return _books;
}

995

JSP Project II: Shopping Cart Application

34_57485x ch28.qxd 1/14/05 10:22 PM Page 995

TEAM LinG - Live, Informative, Non-cost and Genuine!

public String getDescription()
{

return _description;
}

public String getName()
{

return _name;
}

public void setBooks(List books)
{

_books = books;
}

public void setDescription(String description)
{

_description = description;
}

public void setName(String name)
{

_name = name;
}

}

Book
A Book object extends BaseEntity and represents the product in the system that customers intend
(hopefully!) to buy. A Book has a reference to its associated Category. Additionally, the Book object will
have a name, a description, and a unit price. The source code is shown here:

package com.wrox.begjsp.ch28.bookstore;

public class Book extends BaseEntity
{

private Category _category;
private String _description;
private String _name;
private float _unitPrice;

public Book()
{
}

public Category getCategory()
{

return _category;
}

public String getDescription()
{

996

Chapter 28

34_57485x ch28.qxd 1/14/05 10:22 PM Page 996

TEAM LinG - Live, Informative, Non-cost and Genuine!

return _description;
}

public String getName()
{

return _name;
}

public float getUnitPrice()
{

return _unitPrice;
}

public void setCategory(Category category)
{

_category = category;
}

public void setDescription(String description)
{

_description = description;
}

public void setName(String name)
{

_name = name;
}

public void setUnitPrice(float price)
{

_unitPrice = price;
}

public int hashCode()
{

return getId();
}

public boolean equals(Object o)
{

Book b = (Book) o;

if (getId() == b.getId())
{

return true;
}

return false;
}

}

997

JSP Project II: Shopping Cart Application

34_57485x ch28.qxd 1/14/05 10:22 PM Page 997

TEAM LinG - Live, Informative, Non-cost and Genuine!

ShoppingCart
The ShoppingCart object reflects the collection of items that the customer may purchase and has a life-
cycle extending from the customer’s first arrival at the site to her departure or completion of an order.
The lifecycle of this object is not really our concern here; this will be managed by the controller structure
we implement. This is covered later in the chapter in more detail.

The ShoppingCart object must be structured in such a way that it can store a list of unique OrderItem
objects that represent products in quantities before they are purchased. In addition to storing data in a
certain fashion, it must also provide behavior to manipulate that data as the application requires.

Internally, the ShoppingCart will maintain a java.util.Set of items. Implementations of the Set
interface (such as java.util.HashSet) guarantee a unique collection of items such that no objects in
the Set are equal (using the object’s equals method). This suits our purposes perfectly, as we want to
ensure that when a customer adds an item to her shopping cart and that item is already there, the quan-
tity is only incremented rather than a separate new item being added. We can use the behavior of the
Set interface to help us enforce this business rule.

The ShoppingCart also needs to expose methods that will enable the application to manipulate the con-
tents of the cart, such as adding items, replacing items, and removing items. The source code for the
ShoppingCart object is as follows:

package com.wrox.begjsp.ch28.bookstore;

import java.util.HashSet;
import java.util.Iterator;
import java.util.Set;

public class ShoppingCart
{

private Set items = null;

public ShoppingCart()
{

items = new HashSet();
}

public void addOrIncrementItem(OrderItem toAdd)
{

OrderItem existing = getItemForBook(toAdd.getBook());

if(existing != null)
{

removeItem(existing);
int qty = existing.getQty();
toAdd.setQty(toAdd.getQty() + qty);

}
addItem(toAdd);

}

public void replaceItem(OrderItem toReplace)
{

998

Chapter 28

34_57485x ch28.qxd 1/14/05 10:22 PM Page 998

TEAM LinG - Live, Informative, Non-cost and Genuine!

OrderItem existing = getItemForBook(toReplace.getBook());

if(existing != null)
{

removeItem(existing);
}
addItem(toReplace);

}

private void addItem(OrderItem item)
{

items.add(item);
}

public void removeItem(OrderItem item)
{

items.remove(item);
}

public void clear()
{

items.clear();
}

public Set getItems()
{

return items;
}

public int getItemCount()
{

return items.size();
}

private OrderItem getItemForBook(Book book)
{

Iterator it = items.iterator();

while(it.hasNext())
{

OrderItem item = (OrderItem) it.next();
if(item.getBook().equals(book))

return item;
}
return null;

}

public float getValue()
{

Set items = getItems();
float result = 0.0f;

Iterator it = items.iterator();

999

JSP Project II: Shopping Cart Application

34_57485x ch28.qxd 1/14/05 10:22 PM Page 999

TEAM LinG - Live, Informative, Non-cost and Genuine!

while (it.hasNext())
{

OrderItem i = (OrderItem) it.next();
result += i.getValue();

}

return result;
}

}

The ShoppingCart class exposes methods that enable its contents to be manipulated, such as
addOrIncrementItem(OrderItem), which will either add an item that doesn’t exist already in the
ShoppingCart or increase the quantity of that item as appropriate. If the item does exist, then its quan-
tity is added to the existing items. replaceItem(OrderItem) ignores the quantity of the existing item
(if any) and simply replaces it. A getValue() method in this class enables the total value of its contents
to be retrieved.

Note from the preceding discussion that none of these objects is aware of the environment in which they
will be used. This includes knowledge of the persistence mechanism to be used (Hibernate), or the MVC
framework that will organize and present data stored in these structures to the customer (Struts/Tiles).
These objects represent key components of the Model layer of our application; keeping them decoupled
as much as possible from other layers and the infrastructure is an important goal to achieve.

Persistence management design
Hibernate will be used to persist most of the objects described in the preceding section. This will be
achieved with the implementation of an EntityManager object whose role is to manage the saving,
updating, and retrieving of these entities to and from the database. The EntityManager object will be
instantiated with the class that it is responsible for managing (i.e., OrderItem.class). This means that
the single EntityManager object can be used to manage all the Hibernate mapped classes in the appli-
cation. To make the instantiation of the EntityManager easier, an EntityManagerFactory object is
used to create an EntityManager object for the desired class. For the EntityManager to be useful, it
needs access to a Hibernate session object. This is the job of the SessionProvider.

SessionProvider
The EntityManager will use a SessionProvider object as a source of the Hibernate session. The
Hibernate session represents a conversation between the application and the persistence mechanism.
This session will be used in the EntityManager to save, update, and retrieve data in the database. It
manages the important line between the relational world of the database and the object-oriented world
of the application. Importantly, the application does not need to be explicitly aware of the semantics of
the database that is managed by Hibernate.

A Hibernate session is derived from a SessionFactory that is configured according to the demands of
the application — classes to persist with object mappings, database connections, and database dialects,
just to name a few. As you learned in Chapter 23, “Access to Databases,” creating a SessionFactory is
an expensive task in terms of performance, so it makes sense that the application creates it only once.
The SessionProvider will therefore have a static reference to the SessionFactory that is instantiated
when the SessionProvider is first invoked. There are countless ways to manage this, static and non-
static, but the implementation illustrated here is used as much for clarity as anything else.

1000

Chapter 28

34_57485x ch28.qxd 1/14/05 10:22 PM Page 1000

TEAM LinG - Live, Informative, Non-cost and Genuine!

The Hibernate session itself is instantiated from the SessionFactory and stored in the confines of a
static ThreadLocal object. The semantics of ThreadLocal are beyond the scope of this discussion. It
is only important to understand that each thread that accesses the ThreadLocal variable is provided
with its own copy of the Hibernate session. If you wish to learn more about ThreadLocal, there is a
good explanation from IBM developerWorks (www-106.ibm.com/developerworks/java/library/
j-threads3.html). The source code for the SessionProvider is as follows:

package com.wrox.begjsp.ch28.bookstore.persist;

import net.sf.hibernate.FlushMode;
import net.sf.hibernate.HibernateException;
import net.sf.hibernate.Session;
import net.sf.hibernate.SessionFactory;
import net.sf.hibernate.cfg.Configuration;

public class SessionProvider
{

private static final SessionFactory sessionFactory;
public static final ThreadLocal session = new ThreadLocal();

static
{

try
{

Configuration config = new Configuration();
config = config.configure(“/hibernate.cfg.xml”);
sessionFactory = config.buildSessionFactory();

}
catch (HibernateException ex)
{

throw new RuntimeException(“Exception building SessionFactory: “ +
ex.getMessage(), ex);

}
}

public static Session currentSession() throws HibernateException
{

Session s = (Session) session.get();

// Open a new Session, if this Thread has none yet
if (s == null)
{

s = sessionFactory.openSession();
s.setFlushMode(FlushMode.COMMIT);
session.set(s);

}

return s;
}

public static void closeSession() throws HibernateException
{

Session s = (Session) session.get();

1001

JSP Project II: Shopping Cart Application

34_57485x ch28.qxd 1/14/05 10:22 PM Page 1001

TEAM LinG - Live, Informative, Non-cost and Genuine!

session.set(null);

if (s != null)
{

s.close();
}

}
}

This is probably the most complicated class in this application. Its job is to provide the application with
Hibernate sessions (as the name suggests). It can provide this session because the SessionFactory that
provides the sessions has been configured appropriately. This configuration can be seen in the static{}
initializer at the top of the code sample. Here, the default configuration file (a file called
hibernate.cfg.xml that you will see later) is used to configure the SessionFactory only once when
the SessionProvider class is first instantiated. This code explicitly specified the hibernate.cfg.xml
file when using the configure method of the Configuration object for clarity, but strictly speaking
you wouldn’t have to; Hibernate will look for a file by this name if one is not specified.

The currentSession method shown previously will be used from the EntityManager object to
retrieve the current session. If one is not available, a new session will be created and added to the
ThreadLocal instance. This session will then be used to save, update, and retrieve persistent objects in
the EntityManager. The closeSession method will be called at the conclusion of each request in the
application.

EntityManager and EntityManagerFactory
The EntityManager is the interface into Hibernate and object persistence used by the rest of the appli-
cation. The EntityManager provides a series of simple methods to save, update, and retrieve items
from and to the data store as the application demands.

Some of the operations in the EntityManager need to know which persistent object is being worked on.
For instance, if you retrieve a list of all items of something, the EntityManager needs to know that you
in fact mean to retrieve a complete list of CustomerOrders, or one of the other Hibernate-managed
classes. The EntityManager will therefore take a Class in its sole constructor when being set up for rel-
evant operations. Some of the operations within EntityManager don’t rely on this class object; for
instance, the saveOrUpdate method takes a BaseEntity object as its only parameter. It knows which
class it needs to persist; it can determine this from the parameter itself. It would therefore be possible to
persist a CustomerOrder object with an EntityManager set up to manage Category objects; ugly, but
possible. The full source code of the EntityManager is shown here:

package com.wrox.begjsp.ch28.bookstore.persist;

import java.util.ArrayList;
import java.util.List;

import net.sf.hibernate.Criteria;
import net.sf.hibernate.HibernateException;
import net.sf.hibernate.Query;
import net.sf.hibernate.Session;
import net.sf.hibernate.Transaction;

1002

Chapter 28

34_57485x ch28.qxd 1/14/05 10:22 PM Page 1002

TEAM LinG - Live, Informative, Non-cost and Genuine!

import com.wrox.begjsp.ch28.bookstore.BaseEntity;

public class EntityManager
{

private Class _cl;

protected EntityManager(Class cl)
{

_cl = cl;
}

public List findAll() throws HibernateException
{

List rv = new ArrayList();

Session session = SessionProvider.currentSession();
Criteria criteria = session.createCriteria(_cl);
rv = criteria.list();

return rv;
}

public BaseEntity findById(int id) throws HibernateException
{

Session session = SessionProvider.currentSession();
BaseEntity rv = (BaseEntity) session.get(_cl, new Integer(id));

return rv;
}

public BaseEntity saveOrUpdate(BaseEntity entity) throws HibernateException
{

Session session = SessionProvider.currentSession();
Transaction tx = session.beginTransaction();
session.saveOrUpdate(entity);
tx.commit();

return entity;
}

}

The EntityManager contains the following key methods for manipulating values in the database.

findAll()

This method retrieves a list of all the values in the database for this object mapping. A simple Hibernate
Criteria object is established with the Class object that was used when this EntityManager was
established. The returning value will be a list of the objects represented by the mapped class.

1003

JSP Project II: Shopping Cart Application

34_57485x ch28.qxd 1/14/05 10:22 PM Page 1003

TEAM LinG - Live, Informative, Non-cost and Genuine!

findById(int id)

This method retrieves a single value based on the Class this EntityManager has been configured with
and the id parameter. The method creates a Query object with the appropriate Hibernate SQL (HSQL)
and retrieves a list containing a single item. The load() method of the Hibernate session is used to
instantiate the value required. If the value doesn’t exist, a HibernateException is thrown.

saveOrUpdate(BaseEntity entity)

This method creates new persistent values or updates existing values. Hibernate determines which
action to perform based on the value of the id field. A value of 0, the default value as defined in the
BaseEntity class, ensures that Hibernate creates a new value. Any other value for the id field will
cause Hibernate to perform an update. The unsaved value, 0 in this case, is defined in the Hibernate con-
figuration files discussed later. Note in this method that the operation is performed within a transaction.
Hibernate uses the underlying JDBC transaction management to ensure proper transactional integrity of
such operations.

Note that the EntityManager has a constructor with protected access. This means that only objects
within the com.wrox.begjsp.ch28.bookstore.persist package (or their subclasses) can instantiate
this class as an object. So how does the rest of the application use this important class? Instantiations of
the EntityManager are retrieved from the EntityManagerFactory. The Entity
ManagerFactory has a retrieval method for each of the persistent objects in the application that
require direct management: CustomerOrder, OrderStatus, Category, and Book. These methods
return EntityManager instances instantiated with the appropriate class. The source code is as follows:

package com.wrox.begjsp.ch28.bookstore.persist;

import com.wrox.begjsp.ch28.bookstore.Book;
import com.wrox.begjsp.ch28.bookstore.Category;
import com.wrox.begjsp.ch28.bookstore.CustomerOrder;
import com.wrox.begjsp.ch28.bookstore.OrderStatus;

public class EntityManagerFactory
{

public static EntityManager getBookManagerInstance()
{

return new EntityManager(Book.class);
}

public static EntityManager getCategoryManagerInstance()
{

return new EntityManager(Category.class);
}

public static EntityManager getOrderManagerInstance()
{

return new EntityManager(CustomerOrder.class);
}

public static EntityManager getOrderStatusManagerInstance()
{

return new EntityManager(OrderStatus.class);
}

}

1004

Chapter 28

34_57485x ch28.qxd 1/14/05 10:22 PM Page 1004

TEAM LinG - Live, Informative, Non-cost and Genuine!

Using this factory is simple. Suppose you wanted to manage CustomerOrder objects in some way. The
following example code uses the factory to create an appropriate manager and then perform some func-
tion with the manager:

EntityManager orderManager = EntityManagerFactory.getOrderManagerInstance();
CustomerOrder order = (CustomerOrder) orderManager.findById(3);

As the findById(int) method of the EntityManager returns the generic BaseEntity object,
(CustomerOrder is a BaseEntity), the value needs to be cast to a CustomerOrder.

Controller object design
So far, we have discussed entities and objects that form the model layers of the application, i.e., where
the specific business relationships are defined and used. In Controller object design, you are more con-
cerned with how to structure the Struts actions that will control and manage the presentation of the
application to a browser.

You know from the requirements of the application that various actions need to be implemented. You
can also tell that these actions will need to perform various functions that other actions may also need to
perform. It makes sense therefore that the actions in this application should extend a common action
that you can control, rather than the typical Struts Action class, which you have no control over because
you don’t want to change Struts. Having a common parent class Controller means that the common
operations can be defined in one place that all actions can access, thereby reducing code duplication.
Figure 28-3 shows the hierarchy of Struts actions in the application.

Figure 28-3: Struts action hierarchy

The parent Controller is called BookstoreController and performs two important functions for the
application:

❑ It exposes methods that are used by more than one subclass action.

❑ It manages the lifecycle of a user request through the application such that operations can be
executed before and after the subclass action has been executed.

Action

CheckoutActionAddItemAction

DefaultAction BrowseCategoryAction ListCategoriesAction ManageCartAction

CompleteOrderAction

BookstoreController

1005

JSP Project II: Shopping Cart Application

34_57485x ch28.qxd 1/14/05 10:22 PM Page 1005

TEAM LinG - Live, Informative, Non-cost and Genuine!

The BookstoreController is able to provide these capabilities for two reasons:

❑ It extends the Struts Action class, which all Struts actions must extend. All actions in this appli-
cation will use the BookstoreController as their superclass.

❑ It implements the execute method that Struts actions must implement. This method imple-
mentation calls a doAction method found in all of its subclasses. Subclasses are forced to
implement the doAction method because it is declared abstract in the BookstoreController.
This capability to call the doAction method of the subclass from the execute method of
BookstoreController allows us to intervene and perform logic that will apply to all the sub-
class actions before and after the call to doAction.

The source code for the BookstoreController is as follows:

package com.wrox.begjsp.ch28.bookstore.controller;

import com.wrox.begjsp.ch28.bookstore.Category;
import com.wrox.begjsp.ch28.bookstore.OrderItem;
import com.wrox.begjsp.ch28.bookstore.ShoppingCart;
import com.wrox.begjsp.ch28.bookstore.persist.SessionProvider;

import net.sf.hibernate.HibernateException;

import org.apache.struts.action.Action;
import org.apache.struts.action.ActionForm;
import org.apache.struts.action.ActionForward;
import org.apache.struts.action.ActionMapping;

import java.util.List;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpSession;

public abstract class BookstoreController extends Action
{

private final static String CART_NAME = “cart”;

public abstract ActionForward doAction(ActionMapping mapping,
ActionForm form, HttpServletRequest request,
HttpServletResponse response) throws Exception;

public ActionForward execute(ActionMapping mapping, ActionForm form,
HttpServletRequest request, HttpServletResponse response)
throws Exception

{
intialize(request);

ActionForward fwd = doAction(mapping, form, request, response);
cleanUp();

return fwd;
}

1006

Chapter 28

34_57485x ch28.qxd 1/14/05 10:22 PM Page 1006

TEAM LinG - Live, Informative, Non-cost and Genuine!

protected void cleanUp() throws HibernateException
{

SessionProvider.closeSession();
}

protected void intialize(HttpServletRequest request)
{

getOrCreateCart(request);
}

protected ShoppingCart getOrCreateCart(HttpServletRequest request)
{

HttpSession session = request.getSession(true);
ShoppingCart cart = (ShoppingCart) session.getAttribute(CART_NAME);

if (cart == null)
{

cart = new ShoppingCart();
session.setAttribute(CART_NAME, cart);

}

return cart;
}

protected void addItemToCart(HttpServletRequest request, OrderItem item)
{

ShoppingCart cart = getOrCreateCart(request);
cart.addOrIncrementItem(item);

}

protected void removeItemFromCart(HttpServletRequest request, OrderItem item)
{

ShoppingCart cart = getOrCreateCart(request);
cart.removeItem(item);

}

protected void clearCart(HttpServletRequest request)
{

ShoppingCart cart = getOrCreateCart(request);
cart.clear();

}

protected void prepareForBrowseCategory(HttpServletRequest request,
Category cat)

{
List books = cat.getBooks();
request.setAttribute(“category”, cat);
request.setAttribute(“books”, books);
request.setAttribute(“bookCount”, String.valueOf(books.size()));

}
}

1007

JSP Project II: Shopping Cart Application

34_57485x ch28.qxd 1/14/05 10:22 PM Page 1007

TEAM LinG - Live, Informative, Non-cost and Genuine!

Of particular interest in this class is the implementation of the execute method and the use of the
doAction method in the subclasses. The execute method is implicitly called by Struts when the action
is invoked:

public ActionForward execute(ActionMapping mapping, ActionForm form,
HttpServletRequest request, HttpServletResponse response)
throws Exception

{
intialize(request);

ActionForward fwd = doAction(mapping, form, request, response);
cleanUp();

return fwd;
}

The initialize method is called to ensure that there is a ShoppingCart in the user’s HTTP session.
If other preconditions are required, they can be added to this method. To ensure this, a method called
getOrCreateCart(..) will attempt to retrieve the ShoppingCart object from the HTTP session via
an attribute name. If one does not exist, it is created for the session and returned. This process from
execute method to initialize to getOrCreateCart ensures that every visitor to the site is guaran-
teed to have a ShoppingCart object available in their HTTP session.

The subclass’s doAction method is then invoked with the same parameters as the execute method.
From this invocation, an ActionForward is retrieved that represents the forward this action will pass
control to. Once the ActionForward is retrieved, a cleanUp method is called. The cleanUp method is
able to process any final operations before control is passed to the action forward resource. In this appli-
cation, the cleanUp method will call the closeSession method on the SessionProvider.

You will also notice another method in the BookstoreController called
prepareForBrowseCategory. The significance of this will be shown later; for now it is enough to know
that this is an example of the BookstoreController providing functionality to two subclasses.

The Development Environment
and Its Configuration

Now that you have defined the major objects in the application, you should define the exact structure of
the development environment required as well as the various configuration files that go with it. Java
applications these days can turn into a maze of XML configuration files, so it’s important to stand back
and account for each of them in turn. This section therefore explains the location and function of the
following:

❑ Ant build file: build.xml

❑ Hibernate configuration file: hibernate.hbm.xml

❑ Hibernate mapping files: CustomerOrder.hbm.xml etc

❑ Struts configuration file: struts-config.xml

1008

Chapter 28

34_57485x ch28.qxd 1/14/05 10:22 PM Page 1008

TEAM LinG - Live, Informative, Non-cost and Genuine!

❑ Tiles definitions file: tiles-defs.xml

❑ Web application descriptor: web.xml

❑ Validation file: validation.xml

Quite a list and somewhat confusing for the uninitiated! Rest assured that most newcomers to the Java
Web application world are overwhelmed by the volume of important XML-based configuration files, so
you’re not alone.

If you are going to get this application working in your own environment, you can download the source
code from the Web site for this book. You will then need to ensure that your environment follows the
structure defined in the following sections. You should pay particular attention to the Tomcat, MySQL,
and Ant sections. All the configuration files and the directory structure are included in the download.

Directory structure
The directory structure described here assumes that the application will be compiled and viewed from
within Tomcat in a kind of “development mode.” That is, no WAR files will be used. Instead, Tomcat
will reference a part of this directory structure as the document root. This description has been included
because it is how you would actually set about creating your own application.

The directory structure of this application should be thought of in two parts: the first is where the basic
source code and configuration files live (the development home), and the second is where the source
code has been compiled and all other files have been placed in appropriate positions as a standard Web
application (the build home). The build home will be generated automatically for you through Ant. The
following instructions assume that the application will live in a directory named as follows:

c:\bookstore

Beneath this directory is where the entire application will reside: both development and build homes.
Figure 28-4 displays the entire directory structure fully expanded.

Figure 28-4: Fully expanded directory structure

1009

JSP Project II: Shopping Cart Application

34_57485x ch28.qxd 1/14/05 10:22 PM Page 1009

TEAM LinG - Live, Informative, Non-cost and Genuine!

The elements in the directory structure contain the following information:

❑ c:\bookstore: This directory contains the build.xml file for Ant usage.

❑ c:\bookstore\src: Beneath this directory is the location of all Java source code for the appli-
cation within the package structure. Other files such as messages.properties and Hibernate
configurations will also be stored here.

❑ c:\bookstore\web: This directory stores the WEB-INF directory along with all of its configura-
tion and Jar files.

❑ c:\bookstore\web\WEB-INF\jsp: All JSP files will be stored within this directory structure.
Storing the JSP files beneath the WEB-INF directory ensures that they cannot be invoked directly
by a browser; however, Tiles and Struts components can still access and reference them.

❑ c:\bookstore\build: When the application is compiled from within Ant, this directory will
represent the properly structured Web application and will be referenced by Tomcat as the root
directory. For instance, Java source files will be compiled and placed in the directory
c:\bookstore\build\WEB-INF\classes.

Packages
The directory structure illustrated here shows the package structure of the Java classes for this
application:

❑ com.wrox.begjsp.ch28.bookstore: Stores the core objects for the application, such as
CustomerOrder, etc.

❑ com.wrox.begjsp.ch28.bookstore.persist: Stores the objects involved in persisting
objects in the database

❑ com.wrox.begjsp.bookstore.util: Utility classes for special requirements

❑ com.wrox.begjsp.bookstore.controller: Actions and other Struts-related classes

Tomcat
Chapter 1, “Getting Started with JavaServer Pages,” explained how Tomcat could be set up on your
computer; you should follow those steps before continuing with this section. Once Tomcat is set up, the
following section on Ant will enable you to deploy the download from this book into Tomcat to get up
and running.

Ant
Chapter 26, “Best Practices and Tools,” explained the installation of Apache Ant. The following material
assumes you have set up Ant on your computer and in the following directory:

c:\apache-ant-1.6.2

When building this application, you will use some custom Ant tasks that can communicate with Tomcat.
For these tasks to work effectively, you need to copy c:\Tomcat 5.0\server\lib\catalina-ant.jar
into the c:\apache-ant-1.6.2\lib directory.

1010

Chapter 28

34_57485x ch28.qxd 1/14/05 10:22 PM Page 1010

TEAM LinG - Live, Informative, Non-cost and Genuine!

Tomcat provides an excellent example Ant script to use when building and deploying applications.
This section explains the customization of this script for use with your application. The build.xml file
that results from this explanation is stored and invoked from the c:\bookstore directory.

The build.xml file customized here can be copied from the c:\Tomcat 5.0\webapps\tomcat-docs\
appdev\sample directory. In its raw form, this file contains a set of Ant tasks that can be used to
perform certain actions on the application and to communicate with Tomcat.

If you are using the version included with the download for this chapter, you will need to modify the
following properties to suit your environment:

❑ Project name attribute: The name of project (bookstore).

❑ app.name: The name of the project (bookstore).

❑ catalina.home: The location of Tomcat on your computer.

❑ manager.username: The administrator username for Tomcat.

❑ manager.password: The administrator password for Tomcat.

❑ hibernate.home: The location of Hibernate on your computer.

❑ struts.home: The location of Struts on your computer.

❑ mysqljdbc.home: The location of the MySQL JDBC driver on your computer.

❑ jstl.home: The location of JSTL on your computer. We have used the JSTL release from Jakarta.
The build file included with this application assumes you have as well.

The following instructions assume you are adapting the original file copied from Tomcat.

Properties customization
The build.xml file described here uses certain properties to find libraries, locate Tomcat, and so on. If
you open the default file, the first change to make concerns the name of the project, which is defined in
the project element of the Ant script:

<project name=”bookstore” default=”compile” basedir=”.”>

After the project element is a set of properties that defines the various important locations relevant to
this application:

<property name=”app.name” value=”bookstore”/>
<property name=”app.path” value=”/${app.name}”/>
<property name=”app.version” value=”0.1-dev”/>
<property name=”build.home” value=”${basedir}/build”/>
<property name=”catalina.home” value=”c:/Tomcat 5.0”/>
<property name=”dist.home” value=”${basedir}/dist”/>
<property name=”docs.home” value=”${basedir}/docs”/>
<property name=”manager.url” value=”http://localhost:8080/manager”/>

1011

JSP Project II: Shopping Cart Application

34_57485x ch28.qxd 1/14/05 10:22 PM Page 1011

TEAM LinG - Live, Informative, Non-cost and Genuine!

<property name=”manager.username” value=”admin”/>
<property name=”manager.password” value=”password”/>
<property name=”src.home” value=”${basedir}/src”/>
<property name=”web.home” value=”${basedir}/web”/>

Two properties have been added to this list: manager.username and manager.password. They repre-
sent the username and password you nominated for the admin user when you installed Tomcat. Other
changes to this list have been highlighted. You should change the catalina.home, manager.url,
manager.username, and manager.password properties to match your environment.

Your application also needs to know where Hibernate and Struts are located so that the required library
files can be used in compiling the application, and for its deployment. Therefore, add the following
properties beneath those just described:

<property name=”hibernate.home” value=”c:/hibernate-2.1”/>
<property name=”struts.home” value=”c:/jakarta-struts-1.2.4”/>
<property name=”mysqljdbc.home”

value=”f:/java/tools/mysql-connector-java-3.0.14-production”/>
<property name=”jstl.home” value=”c:/jakarta-taglibs”/>

These home locations will be used to specify the required JAR files in their respective directories. You
should modify these properties to match the equivalent locations on your computer. These JAR file refer-
ences will be used to compile the application and for the JAR files to be copied into the /WEB-INF/lib
directory when the application is deployed.

Property references will be made for the following JAR files:

Struts

❑ struts.jar

❑ commons-beanutils.jar

❑ commons-collections.jar

❑ commons-digester.jar

❑ commons-validator.jar

❑ commons-logging.jar

Hibernate

❑ hibernate2.jar

❑ cglib-full-2.0.1.jar

❑ dom4j-1.4.jar

❑ ehcache-0.7.jar

❑ jta.jar

1012

Chapter 28

34_57485x ch28.qxd 1/14/05 10:22 PM Page 1012

TEAM LinG - Live, Informative, Non-cost and Genuine!

JSTL

❑ standard.jar

❑ jstl.jar

MySQL driver

❑ mysql-connector-java-3.0.14-production-bin.jar

The following entries create property aliases inside the build.xml file so that these JAR files can be ref-
erenced in the compile classpath and the prepare target:

<property name=”struts.jar” value=”${struts.home}/lib/struts.jar”/>
<property name=”commons-beanutils.jar”

value=”${struts.home}/lib/commons-beanutils.jar”/>
<property name=”commons-collections.jar”

value=”${struts.home}/lib/commons-collections.jar”/>
<property name=”commons-digester.jar”

value=”${struts.home}/lib/commons-digester.jar”/>
<property name=”commons-validator.jar”

value=”${struts.home}/lib/commons-validator.jar”/>
<property name=”commons-logging.jar”

value=”${struts.home}/lib/commons-logging.jar”/>
<property name=”hibernate2.jar” value=”${hibernate.home}/hibernate2.jar”/>
<property name=”cglib-full-2.0.1.jar”

value=”${hibernate.home}/lib/cglib-full-2.0.1.jar”/>
<property name=”dom4j-1.4.jar”

value=”${hibernate.home}/lib/dom4j-1.4.jar”/>
<property name=”ehcache-0.7.jar”

value=”${hibernate.home}/lib/ehcache-0.7.jar”/>
<property name=”jta.jar”

value=”${hibernate.home}/lib/jta.jar”/>
<property name=”odmg-3.0.jar”

value=”${hibernate.home}/lib/odmg-3.0.jar”/>
<property name=”jstl.jar” value=”${jstl.home}/standard/lib/jstl.jar”/>
<property name=”standard.jar” value=”${jstl.home}/standard/lib/standard.jar”/>
<property name=”mysqljdbc.jar”

value=”${mysqljdbc.home}/mysql-connector-java-3.0.14-production-bin.jar”/>

Classpath
The Ant build.xml script builds a list of directories and files it needs to add to the classpath for compi-
lation. By default, the build.xml script includes references to the JAR files provided by Tomcat; this
ensures that J2EE-specific resources are included when you compile. As this application also has depen-
dencies on other resources, some of the properties defined in the preceding section also need to be refer-
enced when building the classpath.

1013

JSP Project II: Shopping Cart Application

34_57485x ch28.qxd 1/14/05 10:22 PM Page 1013

TEAM LinG - Live, Informative, Non-cost and Genuine!

These references are added with the following addition to the path element used for the classpath:

<path id=”compile.classpath”>
<pathelement location=”${struts.jar}”/>
<pathelement location=”${hibernate2.jar}”/>

<!-- Include all elements that Tomcat exposes to applications -->
<pathelement location=”${catalina.home}/common/classes”/>
<fileset dir=”${catalina.home}/common/endorsed”>

<include name=”*.jar”/>
</fileset>
<fileset dir=”${catalina.home}/common/lib”>

<include name=”*.jar”/>
</fileset>
<pathelement location=”${catalina.home}/shared/classes”/>
<fileset dir=”${catalina.home}/shared/lib”>

<include name=”*.jar”/>
</fileset>

</path>

Note that only struts.jar and hibernate.jar are required for compilation. The remaining JAR files
are required for the application to run.

Runtime resources
The Ant script also needs to be customized to ensure that all the JAR files referenced earlier are copied
from their respective homes into the /WEB-INF/lib directory when the application is deployed. It
also needs to copy the appropriate *.tld and validation-rules.xml files from Struts into the
WEB-INF/ directory. To ensure this occurs, make the following addition to the prepare target in the
build.xml file:

<copy todir=”${build.home}/WEB-INF/lib” file=”${struts.jar}”/>
<copy todir=”${build.home}/WEB-INF/lib” file=”${commons-beanutils.jar}”/>
<copy todir=”${build.home}/WEB-INF/lib” file=”${commons-collections.jar}”/>
<copy todir=”${build.home}/WEB-INF/lib” file=”${commons-digester.jar}”/>
<copy todir=”${build.home}/WEB-INF/lib” file=”${commons-logging.jar}”/>
<copy todir=”${build.home}/WEB-INF/lib” file=”${commons-validator.jar}”/>
<copy todir=”${build.home}/WEB-INF/lib” file=”${hibernate2.jar}”/>
<copy todir=”${build.home}/WEB-INF/lib” file=”${cglib-full-2.0.1.jar}”/>
<copy todir=”${build.home}/WEB-INF/lib” file=”${dom4j-1.4.jar}”/>
<copy todir=”${build.home}/WEB-INF/lib” file=”${ehcache-0.7.jar}”/>
<copy todir=”${build.home}/WEB-INF/lib” file=”${jta.jar}”/>
<copy todir=”${build.home}/WEB-INF/lib” file=”${odmg-3.0.jar}”/>
<copy todir=”${build.home}/WEB-INF/lib” file=”${mysqljdbc.jar}”/>
<copy todir=”${build.home}/WEB-INF/lib” file=”${jstl.jar}”/>
<copy todir=”${build.home}/WEB-INF/lib” file=”${standard.jar}”/>

<copy todir=”${build.home}/WEB-INF/”>
<fileset dir=”${struts.home}/lib”>

<include name=”*.tld”/>
<include name=”validator-rules.xml”/>

</fileset>
</copy>

1014

Chapter 28

34_57485x ch28.qxd 1/14/05 10:22 PM Page 1014

TEAM LinG - Live, Informative, Non-cost and Genuine!

Targets
The changes described so far are the only ones required to be made to the sample build.xml file from
Tomcat. If you have downloaded the sample application and have the Hibernate, Tomcat, and Struts
properties configured properly, you should be in a position to build the application and communicate
with Tomcat from a command line.

Various targets in the aforementioned build.xml file will help you during development or deployment
of the application. Here’s a brief summary of each:

❑ all: Runs the following targets in order: clean, compile.

❑ clean: Removes all items from the build directory (C:\bookstore\build).

❑ compile: Compiles all Java files and copies all files to the build directory in the correct
locations.

❑ dist: Creates a binary distribution of the application into the dist directory. This task also
creates Javadoc files for the application.

❑ install: Installs the application into Tomcat.

❑ list: Communicates with Tomcat to list all the applications installed in Tomcat.

❑ reload: Reloads the application (when an application has been installed or the context is avail-
able in Tomcat via another method), enabling Tomcat to incorporate any Java class or configura-
tion file changes. This target also runs the compile target so that the changes are placed in the
build directory.

❑ remove: Uninstalls the application from Tomcat.

The communication with Tomcat is especially convenient when developing such applications. You can
use the install target to make your application immediately available within Tomcat. Once executed,
you can browse to http://localhost:8080/bookstore and the application will appear. If you make
changes to the source code, simply run the reload target and the changes will be incorporated and the
application reloaded. Behind the scenes, the install ant target creates a bookstore.xml context file in
the c:\Tomcat5.0\conf\Catalina\localhost directory. This is Tomcat’s configuration file to find
the application.

If you are running this application in your own environment, first ensure that all the components in this
section are configured accordingly, including Tomcat, MySQL, and Ant. You can then call the install
target using Ant. This can be done from the command line in the same directory as the build.xml file,
c:\bookstore, with the following command:

c:\bookstore> ant install

The application will be compiled and deployed to the c:\bookstore\build directory, and the context
XML file will be deployed to Tomcat. The application would now be available at http://localhost:
8080/bookstore.

1015

JSP Project II: Shopping Cart Application

34_57485x ch28.qxd 1/14/05 10:22 PM Page 1015

TEAM LinG - Live, Informative, Non-cost and Genuine!

Database
This application will use MySQL to store data. MySQL was briefly introduced in Chapter 23, and this
chapter assumes you have set up MySQL appropriately. For this application to function, a new database
needs to be created and various SQL commands need to be run. For convenience, a complete SQL file
capable of creating the database and all the tables, and inserting some test data, has been included in the
download for this chapter. The following instructions explain how to complete this task using the com-
mand line.

Assuming you have extracted the download for this chapter into the c:\bookstore directory, the rele-
vant SQL file can be found at c:\bookstore\db\bookstore.sql.

1. Start up a command prompt and type mysql. If you have not changed the default permissions
for the root user, this should log you into MySQL immediately. If not, you will have to use the
following syntax to log you in with a username and password you have specified:
mysql –u <username> -p

2. Type the following command: source c:\bookstore\db\bookstore.sql

The new database will be created and all the tables and some example data will be installed.

You could also specify specialized user permissions for this database as per the instructions in
Chapter 26. In this chapter, the application will communicate with MySQL using the following admin-
istrator username and password details:

❑ Username: root

❑ Password: password

This may be different in your environment depending on how you set up MySQL.

In order for the application to communicate properly with the database, it must be provided with a
MySQL JDBC driver. This driver must reside in the classpath of the application at runtime. In the next
section, Hibernate’s configuration uses the Driver class from the MySQL JDBC driver.

The MySQL driver will reside in the WEB-INF/lib directory of our application. The MySQL JDBC driver
can be downloaded from the MySQL site at mysql.com/products/connector/j/. The build.xml file
described earlier will reference this JAR file and place it in the required location along with all the other
JAR files. You should only need to adjust the build.xml file to point the mysqljdbc.home property to
the location on your computer where the driver was installed.

The version used in this application is 3.0.14.

Hibernate
As you learned in Chapter 26, Hibernate manages the persistence of objects in a relational database.
This mapping between the object-oriented world of your application and the relational world of the
database is defined by a set of Hibernate configuration files that reside in the classpath of the
application. These files are referenced centrally in the configuration file that was referenced in the
SessionProvider object discussed earlier —hibernate.cfg.xml. This file resides in the root

1016

Chapter 28

34_57485x ch28.qxd 1/14/05 10:22 PM Page 1016

TEAM LinG - Live, Informative, Non-cost and Genuine!

of the package tree (c:\bookstore\src\hibernate.cfg.xml), along with the other Hibernate config-
uration files that relate to each object being managed.

The hibernate.cfg.xml file can be used for many configurable elements of Hibernate, most of which
are out of the scope of this chapter. However, for our purposes this file has been used as follows:

❑ To inform Hibernate from where and with what parameters it can retrieve database connections

❑ To provide the name of specific configuration files for objects that will be managed

The contents of the hibernate.cfg.xml file are as follows:

<?xml version=’1.0’ encoding=’utf-8’?>
<!DOCTYPE hibernate-configuration

PUBLIC “-//Hibernate/Hibernate Configuration DTD//EN”
“http://hibernate.sourceforge.net/hibernate-configuration-2.0.dtd”>

<hibernate-configuration>
<session-factory>

<!-- datasource -->
<property name=”dialect”>net.sf.hibernate.dialect.MySQLDialect</property>
<property

name=”hibernate.connection.driver_class”>
com.mysql.jdbc.Driver

</property>
<property name=”hibernate.connection.url”>

jdbc:mysql://localhost:3306/bookstore
</property>
<property name=”hibernate.connection.username”>root</property>
<property name=”hibernate.connection.password”>password</property>
<property name=”show_sql”>true</property>

<!-- Mapping files -->
<mapping resource=”Book.hbm.xml”/>
<mapping resource=”OrderStatus.hbm.xml”/>
<mapping resource=”CustomerOrder.hbm.xml”/>
<mapping resource=”OrderItem.hbm.xml”/>
<mapping resource=”Category.hbm.xml”/>

</session-factory>
</hibernate-configuration>

The first section (with the comment datasource above it) tells Hibernate everything it needs to know
about connecting to the MySQL database and using this database to manage your objects. If you are at
all familiar with connection parameters to a database using straight JDBC, you will see some similarities
with some of these parameters.

Various sets of properties can be used in this capacity in the hibernate.cfg.xml file. With these,
Hibernate can be configured to connect to data sources provided in a number of ways, such as JNDI
lookup and connection pooling. In this application, you have used a basic configuration. If you wished
to implement a more robust data source management routine, it would simply be a matter of changing
this file appropriately.

1017

JSP Project II: Shopping Cart Application

34_57485x ch28.qxd 1/14/05 10:22 PM Page 1017

TEAM LinG - Live, Informative, Non-cost and Genuine!

You should also notice in the preceding file that a dialect has been specified. The value of this property is
a Hibernate-provided class that tells Hibernate the rules it should abide by when communicating with a
particular database. Dialect class files are available for many of the more popular relational databases.

The second section of the hibernate.cfg.xml file, entitled Mapping files, specifies the mapping files
for each of the objects you expect Hibernate to manage. The following sections briefly describe these
mapping files and highlight the relationships that are fulfilled.

Book.hbm.xml
If you recall the description of the Book object, it represented a product in the system that could be pur-
chased. In this configuration file, you need to map the fields of the object with the columns in the
database and, if necessary, specify the nature of the relationship a field may have with another object,
something you can facilitate with the use of a foreign key. You can see this in the listing of
Book.hbm.xml:

<?xml version=”1.0”?>
<!DOCTYPE hibernate-mapping

PUBLIC “-//Hibernate/Hibernate Mapping DTD//EN”
“http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd”>

<hibernate-mapping>
<class name=”com.wrox.begjsp.ch28.bookstore.Book” table=”book”>

<id name=”id” type=”int” column=”id” unsaved-value=”0”>
<generator class=”identity”/>

</id>
<property name=”name”>

<column name=”name” sql-type=”varchar(100)” not-null=”true”/>
</property>
<property name=”description”>

<column name=”description” sql-type=”varchar(200)” not-null=”true”/>
</property>
<property name=”unitPrice”>

<column name=”unitprice” sql-type=”float” not-null=”true”/>
</property>
<many-to-one column=”category”

name=”category”
class=”com.wrox.begjsp.ch28.bookstore.Category”
not-null=”true”/>

</class>
</hibernate-mapping>

This file first specifies the class that is represented by this configuration as well as the associated
database table. Within the class element is a list of properties that define the member variables of the
object and maps them to columns in the database table. In some cases, such as category, these fields are
defined in terms of their relationships with other objects in the application. If you quickly refer to the
source code for the Book object, you will note that the category member variable is in fact a Category
object. This mapping means that when a Book object is retrieved from Hibernate, the associated
Category object will be available by calling the getCategory() method. Under the covers, Hibernate

1018

Chapter 28

34_57485x ch28.qxd 1/14/05 10:22 PM Page 1018

TEAM LinG - Live, Informative, Non-cost and Genuine!

performs some extensive SQL in order for this relationship to be appropriately object-oriented at the
application level. This mapping is defined in Hibernate as a many-to-one mapping; a book has one cat-
egory and a category can have many books. This is consistent with the relationship between these two
entities discussed earlier. You will see examples of other types of relationships in other mapping files.

Note the id element of this file that maps the id field of the Book object with the id field of the book
table. The unsaved-value attribute tells Hibernate how to distinguish between objects that have been
persisted and those that are new. This is important in the context of the saveOrUpdate method of the
EntityManager object discussed earlier.

Category.hbm.xml
A category object is associated with a list of book objects. This relationship is defined in the
Category.hbm.xml file:

<?xml version=”1.0”?>
<!DOCTYPE hibernate-mapping

PUBLIC “-//Hibernate/Hibernate Mapping DTD//EN”
“http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd”>

<hibernate-mapping>
<class name=”com.wrox.begjsp.ch28.bookstore.Category” table=”category”>

<id name=”id” type=”int” column=”id” unsaved-value=”0”>
<generator class=”identity”/>

</id>
<property name=”name”>

<column name=”name” sql-type=”varchar(100)” not-null=”true”/>
</property>
<property name=”description”>

<column name=”description” sql-type=”varchar(200)” not-null=”true”/>
</property>
<bag name=”books” table=”book” lazy=”false” inverse=”false”

cascade=”save-update”>
<key column=”category”></key>
<one-to-many class=”com.wrox.begjsp.ch28.bookstore.Book”/>

</bag>
</class>

</hibernate-mapping>

Note the <bag..> element that informs Hibernate of the relationship a Category has with its associated
Book objects. The <bag> element defines the one-to-many relationship this object has. The key reference
to the category column of the book table maps the relational binding between these two entities. Note
the reversed relationship perspective between this and the Book mapping file.

CustomerOrder.hbm.xml
A CustomerOrder has a set of OrderItem objects. From the CustomerOrder object’s perspective, this is
a one-to-many relationship. This object also has a many-to-one relationship with OrderStatus. The
remaining fields are simple id and varchar column mappings:

1019

JSP Project II: Shopping Cart Application

34_57485x ch28.qxd 1/14/05 10:22 PM Page 1019

TEAM LinG - Live, Informative, Non-cost and Genuine!

<?xml version=”1.0”?>
<!DOCTYPE hibernate-mapping

PUBLIC “-//Hibernate/Hibernate Mapping DTD//EN”
“http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd”>

<hibernate-mapping>
<class name=”com.wrox.begjsp.ch28.bookstore.CustomerOrder”

table=”customerorder”>
<id name=”id” type=”int” column=”id” unsaved-value=”0”>

<generator class=”identity”/>
</id>
<property name=”firstName”>

<column name=”firstname” sql-type=”varchar(100)” not-null=”true”/>
</property>
<property name=”lastName”>

<column name=”lastname” sql-type=”varchar(100)” not-null=”true”/>
</property>
<property name=”address”>

<column name=”address” sql-type=”varchar(100)” not-null=”true”/>
</property>
<property name=”zipCode”>

<column name=”zipcode” sql-type=”varchar(10)” not-null=”true”/>
</property>
<property name=”orderDate”>

<column name=”orderdate” sql-type=”datetime” not-null=”true”/>
</property>
<property name=”cardNumber”>

<column name=”cardnumber” sql-type=”varchar(20)” not-null=”true”/>
</property>
<set name=”orderItems” cascade=”save-update”>

<key column=”orderid”/>
<one-to-many class=”com.wrox.begjsp.ch28.bookstore.OrderItem”/>

</set>
<many-to-one column=”status”

name=”status”
class=”com.wrox.begjsp.ch28.bookstore.OrderStatus”
not-null=”true”/>

</class>
</hibernate-mapping>

OrderItem.hbm.xml
OrderItem is a central object in the model of this application. It has important relationships with both
the CustomerOrder and Book objects. These are defined by two many-to-one mappings that enable an
OrderItem to provide its associated CustomerOrder and Book objects. Remember that the orderitem
table had two foreign keys to the customerorder and book tables.

<?xml version=”1.0”?>
<!DOCTYPE hibernate-mapping

PUBLIC “-//Hibernate/Hibernate Mapping DTD//EN”
“http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd”>

1020

Chapter 28

34_57485x ch28.qxd 1/14/05 10:22 PM Page 1020

TEAM LinG - Live, Informative, Non-cost and Genuine!

<hibernate-mapping>
<class name=”com.wrox.begjsp.ch28.bookstore.OrderItem” table=”orderitem”>

<id name=”id” type=”int” column=”id” unsaved-value=”0”>
<generator class=”identity”/>

</id>
<property name=”qty”>

<column name=”qty” sql-type=”int” not-null=”true”/>
</property>

<property name=”unitPrice”>
<column name=”unitprice” sql-type=”float” not-null=”true”/>

</property>

<many-to-one column=”bookid” name=”book”
class=”com.wrox.begjsp.ch28.bookstore.Book”
not-null=”true”/>

<many-to-one column=”orderid” name=”order”
class=”com.wrox.begjsp.ch28.bookstore.CustomerOrder”
not-null=”false”/>

</class>
</hibernate-mapping>

Take note of the relationships here, especially between this object and the CustomerOrder. The order
mapping allows a null value (and a corresponding allowable null on the database column). This
enables Hibernate to persist a new CustomerOrder with a set of new OrderItem objects all in one
transaction. This will be illustrated later.

OrderStatus.hbm.xml
An OrderStatus object represents the success or failure of a CustomerOrder with regard to payment.
Only two values are defined in the database for this object, approved and declined. It is included in this
example to show a simple many-to-one mapping from the CustomerOrder object:

<?xml version=”1.0”?>
<!DOCTYPE hibernate-mapping

PUBLIC “-//Hibernate/Hibernate Mapping DTD//EN”
“http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd”>

<hibernate-mapping>
<class name=”com.wrox.begjsp.ch28.bookstore.OrderStatus” table=”orderstatus”>

<id name=”id” type=”int” column=”id” unsaved-value=”0”>
<generator class=”identity”/>

</id>
<property name=”name”>

<column name=”name” sql-type=”varchar(20)” not-null=”true”/>
</property>

</class>
</hibernate-mapping>

1021

JSP Project II: Shopping Cart Application

34_57485x ch28.qxd 1/14/05 10:22 PM Page 1021

TEAM LinG - Live, Informative, Non-cost and Genuine!

So where do all these Hibernate configuration files reside? They typically reside in the classpath either
alongside their associated objects Java file or in the root of the classpath at the top of the package struc-
ture. In the context of the directory structure used in this chapter, they would sit at c:\bookstore\src\;
the top of the package structure and the ant compile target will copy them into the appropriate
c:\bookstore\build\WEB-INF\classes directory.

Struts, Validator, and Tiles
The bookstore application makes heavy use of the Struts framework described in Chapter 19, “Struts
Framework.” Each functional section of the site makes use of at least one Struts action in order to inter-
face with the model components and pass them to appropriate resources for the view. These Struts
actions are configured in the struts-config.xml file that resides in the /WEB-INF/ directory.

Two HTML forms in the application are managed by Struts and rely on the coordination between
Struts and its inbuilt Validator framework to provide simple validation. The rules for validating these
forms are defined in the validation.xml file in the /WEB-INF/ directory. Messages referenced by
these validation rules are defined in the messages.properties file that resides in the classpath of the
application.

The result of most of the actions in the application is the presentation of a Web page managed via the
Tiles framework. As discussed in Chapter 20, “Layout Management with Tiles,” Tiles and Struts coordi-
nate to enable Tiles definitions to be referenced as the corresponding ActionForward for display pur-
poses. The application uses a series of Tiles definitions to represent the various views the application
presents. These are all defined within the tiles-defs.xml file that resides in the /WEB-INF/ directory.

Two types of Tiles definitions are used in this application. The bulk of definitions present the screen dis-
play for the user. A further definition, used by the others, is for the presentation of a simple menu. The
contents of this menu are also provided by this definition.

The details of each of the Struts actions, forms, action forwards, and Tiles definitions will be illustrated
as each piece of functionality is explained. However, the Tiles and Validator plug-ins are declared within
the struts-config.xml file with the following:

<?xml version=”1.0” encoding=”ISO-8859-1” ?>

<!DOCTYPE struts-config PUBLIC
“-//Apache Software Foundation//DTD Struts Configuration 1.1//EN”
“http://jakarta.apache.org/struts/dtds/struts-config_1_1.dtd”>

<struts-config>
<form-beans>

...
</form-beans>
<global-forwards>

...
</global-forwards>
<action-mappings>

...
</action-mappings>
<message-resources parameter=”messages” null=”false”/>

1022

Chapter 28

34_57485x ch28.qxd 1/14/05 10:22 PM Page 1022

TEAM LinG - Live, Informative, Non-cost and Genuine!

<plug-in className=”org.apache.struts.validator.ValidatorPlugIn”>
<set-property property=”pathnames”

value=”/WEB-INF/validator-rules.xml,
/WEB-INF/validation.xml”/>

</plug-in>
<plug-in className=”org.apache.struts.tiles.TilesPlugin” >

<set-property property=”definitions-config”
value=”/WEB-INF/tiles-defs.xml” />

<set-property property=”definitions-debug” value=”2” />
<set-property property=”definitions-parser-details” value=”2” />
<set-property property=”definitions-parser-validate” value=”true” />

</plug-in>
</struts-config>

You can see that the Tiles and Validator plug-ins nominate their respective configuration files residing in
the /WEB-INF/ directory of the application. The contents of these files will be explained alongside each
corresponding piece of functionality. As you would have noticed in the Ant section, the JAR, TLD, and
XML files appropriate for Struts are copied from the Struts installation directory to the /WEB-INF/ direc-
tory of the deployment.

web.xml
The application would not be complete without a web.xml file. As you learned in Chapter 19, the
web.xml file defines the Struts Controller servlet and specifies the location of the struts-config.xml
file. The contents of web.xml are as follows:

<web-app xmlns=”http://java.sun.com/xml/ns/j2ee”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd”
version=”2.4”>
<icon></icon>
<display-name>Bookstore</display-name>
<description>Chapter 28 Online Bookstore</description>
<servlet>

<servlet-name>action</servlet-name>
<servlet-class>org.apache.struts.action.ActionServlet</servlet-class>
<init-param>

<param-name>config</param-name>
<param-value>/WEB-INF/struts-config.xml</param-value>

</init-param>
<load-on-startup>1</load-on-startup>

</servlet>
<servlet-mapping>

<servlet-name>action</servlet-name>
<url-pattern>*.do</url-pattern>

</servlet-mapping>
<welcome-file-list>

<welcome-file>index.jsp</welcome-file>
</welcome-file-list>

</web-app>

1023

JSP Project II: Shopping Cart Application

34_57485x ch28.qxd 1/14/05 10:22 PM Page 1023

TEAM LinG - Live, Informative, Non-cost and Genuine!

With the environment and configuration now explained, you can move on to the implementation of each
piece of functionality the site will offer. Along the way, corresponding entries in the struts-config.xml,
tiles-defs.xml and validation.xml files will also be explained.

The Application
This section will detail the implementation of each unit of functionality within the application, with par-
ticular focus on the Controller and View components.

Application layout: Tiles
Chapter 20 explained the power of template management through the use of the Tiles framework. Tiles
is used in this application for the presentation of each interface. One central layout tile is used to repre-
sent the page structure, as shown in Figure 28-5.

Figure 28-5: Tiles layout

The menu tile will contain a simple list of links within the application. These links will be defined within
the Tiles definition for the menu component itself. The header will contain a cart status display panel to
show customers the value of their shopping cart. The body will show whatever content the current view
focuses on, and the footer tile will show a simple copyright message.

This central layout tile (/WEB-INF/jsp/layout/standard-layout.jsp) contains the following:

<%@ taglib uri=”/WEB-INF/struts-tiles.tld” prefix=”tiles” %>

<html>
<head>

<title>Online Bookstore</title>
</head>

<body bgcolor=”white”>

<table border=”1” width=”100%” height=”100%” border=”1”>
<tr>

<td colspan=”2” height=”100” bgcolor=”gray”>
<tiles:insert attribute=”header”/>

</td>
</tr>
<tr>

header

body

footer

m
en

u

1024

Chapter 28

34_57485x ch28.qxd 1/14/05 10:22 PM Page 1024

TEAM LinG - Live, Informative, Non-cost and Genuine!

<td width=”20%” valign=”top” bgcolor=”lightgrey”>
<tiles:insert attribute=”menu”/>

</td>
<td valign=”top” align=”left”>

<tiles:insert attribute=”body”/>
</td>

</tr>
<tr>

<td colspan=”2” height=”50” bgcolor=”gray”>
<tiles:insert attribute=”base”/>

</td>
</tr>
</table>
</body>
</html>

As you can see, a standard HTML table organizes the component tiles into the structure illustrated in
Figure 28-5.

Within the tiles-defs.xml file, this layout is used to define a definition that will be used, or extended,
by most of the other definitions in the application. Its associated entry in the tiles-defs.xml file is as
follows:

<definition name=”view.abstract” path=”/WEB-INF/jsp/layout/standard-layout.jsp”>
<put name=”header” value=”/WEB-INF/jsp/tiles/header.jsp” />
<put name=”menu” value=”bookstore.menu” />
<put name=”base” value=”/WEB-INF/jsp/tiles/base.jsp” />

</definition>

This definition is called view.abstract because it will not be directly invoked by the application for
layout purposes. Instead, subdefinitions use its features as a basis for their own. Note that it does not
define a body tile; this is provided by the subdefinitions.

Menu tile definition
The code fragment in the preceding section showing the tiles-defs.xml entry for the
view.abstract definition used another definition to represent the value of the menu tile
bookstore.menu. The bookstore.menu definition is defined in the tiles-defs.xml files as follows:

<definition name=”bookstore.menu” path=”/WEB-INF/jsp/layout/menu-layout.jsp”>
<put name=”menuTile” value=”/WEB-INF/jsp/tiles/menu.jsp”/>
<putList name=”menuItems”>

<item value=”Book Categories” link=”listcategories.do”/>
<item value=”View Cart” link=”managecart.do”/>
<item value=”Checkout” link=”checkout.do”/>

</putList>
</definition>

1025

JSP Project II: Shopping Cart Application

34_57485x ch28.qxd 1/14/05 10:22 PM Page 1025

TEAM LinG - Live, Informative, Non-cost and Genuine!

This definition includes a reference to a separate layout for just this definition. A menu tile (menuTile) is
put within the menu layout along with the list entitled menuItems. The contents of the menu-layout.
jsp tile layout are as follows:

<%@ taglib uri=”/WEB-INF/struts-tiles.tld” prefix=”tiles” %>

<table cellspacing=”0” width=”100%” cellpadding=”5” border=”0”>
<tr>

<td valign=”top”>
<tiles:insert attribute=”menuTile”>

<tiles:put name=”menuList” beanName=”menuItems” beanScope=”tile”/>
</tiles:insert>
</td>

</tr>
</table>

This simple, self-contained layout just presents the contents of the menuTile, along with the list it has
been passed, menuList. The menuTile tile will iterate over the contents of this list and present the
menu to the customer. As you can tell from the bookstore.menu definition, the menu tile JSP page
itself resides in the /WEB-INF/jsp/tiles directory as menu.jsp. Its contents are as follows:

<%@ taglib uri=”/WEB-INF/struts-tiles.tld” prefix=”tiles” %>
<%@ taglib uri=”http://java.sun.com/jsp/jstl/core” prefix=”c”%>

<tiles:importAttribute/>

<table cellspacing=”0” cellpadding=”0” border=”0”>
<c:forEach items=”${menuList}” var=”thisItem”>

<tr>
<td>${thisItem.value}</td>
</tr>

</c:forEach>
</table>

Tiles implicitly creates a collection of org.apache.struts.tiles.beans.SimpleMenuItem objects
to represent the menu items presented on the page, so the properties link and value can be accessed
via EL.

Cart status
Within the header tile, a cart status panel is presented. This panel will show the current user’s
ShoppingCart object. Remember that all visitors to the site are guaranteed to have a ShoppingCart
object in their HTTP session. The role of this panel is to present the dollar value and number of unique
items in it to the customer. This is the perfect job for a custom tag file. The problem is simple enough that
a Java-based custom tag is not required, yet this is a piece of functionality that may need to be reused
elsewhere.

1026

Chapter 28

34_57485x ch28.qxd 1/14/05 10:22 PM Page 1026

TEAM LinG - Live, Informative, Non-cost and Genuine!

To satisfy this functionality, a tag file called cartstatus.tag is found in the /WEB-INF/tags directory.
This tag file is called from the header tile, header.jsp, with the following:

<%@ taglib prefix=”begjsp” tagdir=”/WEB-INF/tags” %>
<table cellspacing=0 cellpadding=0 width=”100%”>
<tr>

<td width=”100%”><h1>BOOKSTORE</h1></td>
<td><begjsp:cartstatus/></td>

</tr>
</table>

The cartstatus.tag file itself contains the following:

<%@ tag body-content=”empty” %>
<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<%@ taglib prefix=”fmt” uri=”http://java.sun.com/jsp/jstl/fmt” %>
<jsp:useBean id=”cart” scope=”session”

class=”com.wrox.begjsp.ch28.bookstore.ShoppingCart”/>

<table width=”200” height=”100%” bgcolor=”white”
cellspacing=”2”
cellpadding=”2” border=”0”>

<thead>
<tr>

<th colspan=”2”>Shopping Cart</th>
</tr>
<tbody>
<tr>

<td width=”100%” colspan=”2”>
There are ${cart.itemCount} items in the cart
</td>

</tr>
<tr>

<td>Value:</td>
<td width=”50%”><fmt:formatNumber value=”${cart.value}” type=”currency”/></td>

</tr>
</table>

At the start of the tag, the ShoppingCart object guaranteed to be available is retrieved from the ses-
sion scope using the name it is given in the BookstoreController, cart. Once the object is available,
two of its properties can be used. If you refer to the ShoppingCart object presented earlier in the chap-
ter, you will notice the getValue and getItemCount methods that make the calls in this tag file possi-
ble. The value returned from the ShoppingCart object is formatted using the JSTL formatNumber tag.

What results from this use of Tiles and custom tags is an interface that can handle all the requirements
for the application. Figure 28-6 shows the entry page of the application with the menu and cart status
panel. The body of the interface shows the result of the next piece of functionality, a list of categories.

1027

JSP Project II: Shopping Cart Application

34_57485x ch28.qxd 1/14/05 10:22 PM Page 1027

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 28-6: Bookstore interface showing the menu and cart status panel

Presenting a list of categories
Figure 28-6 displays the result of this area of functionality — a list of book categories with a brief descrip-
tion and a total of the number of books within each. The heading of each category will link to a list of the
associated books.

To display this list, a Struts action ListCategoriesAction has been implemented. This action retrieves
a list of Category objects and passes them on to the appropriate ActionForward resource for display.
The JSP page then iterates over the list and presents the output you see in Figure 28-6. The
ActionForward resource reference returned from the ListCategoriesAction points to a Tiles defini-
tion defined in the tiles-defs.xml file.

The ListCategoriesAction is configured in the struts-config.xml file with the following entry:

<action path=”/listcategories”
type=”com.wrox.begjsp.ch28.bookstore.controller.ListCategoriesAction”
scope=”request”>

<forward name=”success” path=”list.categories”/>
</action>

The ListCategoriesAction is therefore invoked when the following URL is called: http:
//localhost:8080/listcategories.do. This source code for this action is as follows:

1028

Chapter 28

34_57485x ch28.qxd 1/14/05 10:22 PM Page 1028

TEAM LinG - Live, Informative, Non-cost and Genuine!

package com.wrox.begjsp.ch28.bookstore.controller;

import com.wrox.begjsp.ch28.bookstore.persist.EntityManager;
import com.wrox.begjsp.ch28.bookstore.persist.EntityManagerFactory;

import org.apache.struts.action.ActionForm;
import org.apache.struts.action.ActionForward;
import org.apache.struts.action.ActionMapping;

import java.util.List;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class ListCategoriesAction extends BookstoreController
{

public ActionForward doAction(ActionMapping mapping, ActionForm form,
HttpServletRequest request, HttpServletResponse response)
throws Exception

{
EntityManager manager = EntityManagerFactory.getCategoryManagerInstance();
List categories = manager.findAll();
request.setAttribute(“categories”, categories);

return mapping.findForward(“success”);
}

}

The ListCategoriesAction class extends the BookstoreController and therefore must implement
a doAction(ActionMapping, ActionForm, HttpServletRequest, HttpServletResponse)
method. This method is called via the execute method defined in the BookstoreController class.

The doAction method simply creates an EntityManager object via the EntityManagerFactory class.
This ensures that the EntityManager is aware of which Hibernate-mapped class it is to work with. The
findAll() method is then called, which returns a List of Category objects from the data source.
Remember that each Category object also has a reference to a List of the Book objects that it contains.
This enables the number of books in each category to be displayed, another requirement of this interface.

Once the List has been retrieved, it is set as an attribute in the request so that the JSP page will have
access to it, under the alias categories. The action then returns an ActionForward from its action
mapping entry called success.

The action forward success, defined in the /listcategories action mapping, refers to a Tiles defini-
tion in its path attribute, list.categories. This definition is defined in the tiles-defs.xml file as
follows:

<definition name=”list.categories” extends=”view.abstract”>
<put name=”body” value=”/WEB-INF/jsp/tiles/category-list.jsp” />

</definition>

1029

JSP Project II: Shopping Cart Application

34_57485x ch28.qxd 1/14/05 10:22 PM Page 1029

TEAM LinG - Live, Informative, Non-cost and Genuine!

The list.categories definition extends the view.abstract definition described earlier, and there-
fore it only needs to provide a value for the body tile that the layout expects. The body tile nominated
for this definition is implemented in the JSP file /WEB-INF/jsp/tiles/category-list.jsp. This JSP
file iterates over the List of Category objects added to the request as an attribute under the name cat-
egories. With each iteration, the name of the Category is printed, along with a link to enable browsing
the books in that Category. The getBookCount() method of each Category object is also called in
order to display the number of books each Category holds. The content of this file is as follows:

<%@ taglib uri=”http://java.sun.com/jsp/jstl/core” prefix=”c”%>

<table cellspacing=3 cellpadding=3 width=”100%”>
<tr>

<td></td>
<td>No. Titles</td>

</tr>
<c:forEach items=”${categories}” var=”thisItem”>
<tr>

<td valign=”top”><h3>
${thisItem.name}

</h3>${thisItem.description}</td>
<td valign=”top”>${thisItem.bookCount}</td>

</tr>
</c:forEach>
</table>

What results from this processing is the output shown in Figure 28-6. Notice that each Category name
in the list links to a further action called browsecategory.do. This is the subject of the next piece of
functionality.

Presenting a list of books
As per the requirements listed previously, when customers click a category name in the category list,
they are presented with a list of the books in that category.

As you saw from the link for each category in the category-list.jsp file, a parameter named cat is
sent with the request to the browsecategory.do action. The value of this parameter is the unique id of
the category selected. This value will be used in the BrowseCategoryAction class in order to retrieve
the correct Category object from the persistence layer.

The resulting list of books is displayed to the customer. It is from this list that a book can be added to the
customer’s shopping cart. The interface for this screen is illustrated in Figure 28-7.

1030

Chapter 28

34_57485x ch28.qxd 1/14/05 10:22 PM Page 1030

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 28-7: Browse category screen

The Struts action for this functionality, /browsecategory, is defined in the struts-config.xml file as
follows:

<action path=”/browsecategory”
type=”com.wrox.begjsp.ch28.bookstore.controller.BrowseCategoryAction”
scope=”request”>

<forward name=”success” path=”view.category”/>
</action>

This action mapping’s corresponding class, BrowseCategoryAction, is passed a parameter called cat
from the Category list when a category is selected. Its job is to retrieve the corresponding Category
object from the persistence layer. This category, and its list of book objects, is then passed to the View
layer for display. As the list is displayed via this Struts action, and also via the AddItemAction, it makes
sense to move some of the logic to the BookstoreController class to reduce duplication. The source
code for the BrowseCategoryAction class is as follows:

package com.wrox.begjsp.ch28.bookstore.controller;

import com.wrox.begjsp.ch28.bookstore.Category;
import com.wrox.begjsp.ch28.bookstore.persist.EntityManager;
import com.wrox.begjsp.ch28.bookstore.persist.EntityManagerFactory;
import com.wrox.begjsp.ch28.bookstore.util.NumericUtil;

import org.apache.struts.action.ActionForm;
import org.apache.struts.action.ActionForward;
import org.apache.struts.action.ActionMapping;

1031

JSP Project II: Shopping Cart Application

34_57485x ch28.qxd 1/14/05 10:22 PM Page 1031

TEAM LinG - Live, Informative, Non-cost and Genuine!

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class BrowseCategoryAction extends BookstoreController
{

public ActionForward doAction(ActionMapping mapping, ActionForm form,
HttpServletRequest request, HttpServletResponse response)
throws Exception

{
String category = request.getParameter(“cat”);

if (!NumericUtil.isInteger(category))
{

return mapping.findForward(“home”);
}

int categoryId = NumericUtil.getInt(category);
EntityManager manager = EntityManagerFactory.getCategoryManagerInstance();

Category cat = (Category) manager.findById(categoryId);
prepareForBrowseCategory(request, cat);

return mapping.findForward(“success”);
}

}

Note that a class called NumericUtil is used to ensure that the value of the cat parameter is numeric,
and for the conversion from String to int. Its implementation is not important within this discussion,
so if you’re really interested, have a look at this class in the downloaded source code.

Once the cat parameter has been converted into a usable int, an EntityManager is instantiated and
the specific Category is retrieved via the findById(..) method. As this method returns a BaseEntity
object, it must be cast to the specific class we are expecting. The requested Category object is then used
to prepare for the display of the Book list. As mentioned earlier, the common functionality required for
preparation of this list has been encapsulated in a method called prepareForBrowseCategory(..) in
the BookstoreController class. To save you the trouble of referring back to the BookstoreController
listing, here’s the method again:

protected void prepareForBrowseCategory(HttpServletRequest request,
Category cat)

{
List books = cat.getBooks();
request.setAttribute(“category”, cat);
request.setAttribute(“books”, books);
request.setAttribute(“bookCount”, String.valueOf(books.size()));

}

It simply adds the category and its associated list of Book objects into the request. A bookCount attribute
is also passed to the request so that the JSP page can readily determine if the list of Book objects has any
values.

1032

Chapter 28

34_57485x ch28.qxd 1/14/05 10:22 PM Page 1032

TEAM LinG - Live, Informative, Non-cost and Genuine!

The struts-config.xml mapping for this action references a Tiles definition for its success
ActionForward outcome: view.category. This is defined in the tiles-defs.xml file with the follow-
ing entry:

<definition name=”view.category” extends=”view.abstract”>
<put name=”body” value=”/WEB-INF/jsp/tiles/category-browse.jsp” />

</definition>

The category-browse.jsp page presents a list of books, each with an associated price and Add to Cart
link, enabling a single unit of the item to be placed in the ShoppingCart object for this user. The source
for the category-browse.jsp file is as follows:

<%@ taglib uri=”http://java.sun.com/jsp/jstl/core” prefix=”c”%>
<%@ taglib prefix=”fmt” uri=”http://java.sun.com/jsp/jstl/fmt” %>

<table cellspacing=3 cellpadding=3 width=”100%”>
<tr>

<td><h2>Category: ${category.name}</h2></td>
</tr>
<c:choose>

<c:when test=”${bookCount gt 0}”>
<tr>

<td></td>
<td>Price</td>
<td></td>

</tr>
<c:forEach items=”${books}” var=”thisItem”>
<tr>

<td>
${thisItem.name}

${thisItem.description}

</td>
<td><fmt:formatNumber value=”${thisItem.unitPrice}”

type=”currency”/></td>
<td>Add To Cart</td>

</tr>
</c:forEach>

</c:when>
<c:otherwise>
<tr>

<td colspan=”3”>There are no books in this category</td>
</tr>
</c:otherwise>

</c:choose>
</table>

This JSP page presents a list of the books for the chosen category. If there are no books in the chosen cate-
gory, an appropriate message is displayed to the user.

1033

JSP Project II: Shopping Cart Application

34_57485x ch28.qxd 1/14/05 10:22 PM Page 1033

TEAM LinG - Live, Informative, Non-cost and Genuine!

Adding a book to the shopping cart
The list of books presented in the preceding section also provided a link so that each book can be added
to the customer’s ShoppingCart. The Add to Cart link invokes the AddItemAction and passes it an id
(as parameter book) of the corresponding Book to add. This action is configured in struts-
config.xml with the following:

<action path=”/additem”
type=”com.wrox.begjsp.ch28.bookstore.controller.AddItemAction”
scope=”request”>

<forward name=”success” path=”view.category”/>
</action>

Note that the success forward configured here points to the view.category definition; this is the same
screen from which this action is being invoked. This means that when a customer clicks the link to add
the item to the cart, the item is added and then the same list is re-presented. This will also have the effect
of incrementing the values presented in the Shopping cart status panel.

The source code for AddItemAction is as follows:

package com.wrox.begjsp.ch28.bookstore.controller;

import com.wrox.begjsp.ch28.bookstore.Book;
import com.wrox.begjsp.ch28.bookstore.Category;
import com.wrox.begjsp.ch28.bookstore.OrderItem;
import com.wrox.begjsp.ch28.bookstore.persist.EntityManager;
import com.wrox.begjsp.ch28.bookstore.persist.EntityManagerFactory;
import com.wrox.begjsp.ch28.bookstore.util.NumericUtil;

import org.apache.struts.action.ActionForm;
import org.apache.struts.action.ActionForward;
import org.apache.struts.action.ActionMapping;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class AddItemAction extends BookstoreController
{

public ActionForward doAction(ActionMapping mapping, ActionForm form,
HttpServletRequest request, HttpServletResponse response)
throws Exception

{
String book = request.getParameter(“book”);

if (!NumericUtil.isInteger(book))
{

return mapping.findForward(“home”);
}

int bookId = NumericUtil.getInt(book);
EntityManager manager = EntityManagerFactory.getBookManagerInstance();
Book bookToAdd = (Book) manager.findById(bookId);
OrderItem item = getOrderItem(bookToAdd, 1);

1034

Chapter 28

34_57485x ch28.qxd 1/14/05 10:22 PM Page 1034

TEAM LinG - Live, Informative, Non-cost and Genuine!

addItemToCart(request, item);

Category category = bookToAdd.getCategory();
prepareForBrowseCategory(request, category);

return mapping.findForward(“success”);
}

private OrderItem getOrderItem(Book book, int qty)
{

OrderItem item = new OrderItem();
item.setBook(book);
item.setQty(qty);
item.setUnitPrice(book.getUnitPrice());

return item;
}

}

Obviously, this is a much more involved action than we have seen previously. After using the
NumericUtil class to ensure that book parameter is a number, the associated Book object is retrieved
from an appropriately created EntityManager. This Book is then used to create a new OrderItem by
calling the getOrderItem(..) method with a given quantity. Of course, this new OrderItem is not
persisted; the value of its id property will be zero.

Once the OrderItem is returned from the getOrderItem method, the addItemToCart method of the
BookstoreController is called to add the OrderItem to the ShoppingCart object in the customer’s
HTTP session. To save you the trouble of referring back to the BookstoreController listing, here is the
addItemToCart method:

protected void addItemToCart(HttpServletRequest request, OrderItem item)
{

ShoppingCart cart = getOrCreateCart(request);
cart.addOrIncrementItem(item);

}

First the cart is retrieved (or created, if the HTTP session has expired), and the OrderItem is passed to
the ShoppingCart’s addOrIncrementItem method:

public void addOrIncrementItem(OrderItem toAdd)
{

OrderItem existing = getItemForBook(toAdd.getBook());

if(existing != null)
{

removeItem(existing);

int qty = existing.getQty();
toAdd.setQty(toAdd.getQty() + qty);

}

addItem(toAdd);
}

1035

JSP Project II: Shopping Cart Application

34_57485x ch28.qxd 1/14/05 10:22 PM Page 1035

TEAM LinG - Live, Informative, Non-cost and Genuine!

This method will either add the new OrderItem to the ShoppingCart or increment the quantity of the
item in the ShoppingCart if it already exists. The increment amount is equal to the amount of the new
OrderItem being passed to the method. In this case, it is only 1.

Once the new item has been added to the customer’s ShoppingCart, the AddItemAction then prepares
the request to represent the browse category page. It can do this using the prepareForBrowseCategory
method described earlier, passing it the Category of the Book that has just been added. Once this is
done, the success ActionForward of this action is returned, again presenting the view.category
definition.

Managing the shopping cart
At any time in their shopping experience (!), customers can select View Cart from the menu, or the
Shopping Cart link from the Cart status panel, and display the contents of the shopping cart, its value,
as well as an input field for each item’s quantity so that this can be changed. If the customer chooses to
change a value in a quantity input field, the Update button needs to be clicked to record the change in
the shopping cart. When the Update button is clicked, the page will simply refresh, displaying the new
values, subtotals, and the total value of the cart. Figure 28-8 shows this page after the quantity of the
second item in the cart has been changed to two and the Update button has been clicked.

Figure 28-8: Manage Your Shopping Cart screen

1036

Chapter 28

34_57485x ch28.qxd 1/14/05 10:22 PM Page 1036

TEAM LinG - Live, Informative, Non-cost and Genuine!

Notice that this page also includes a link to empty the cart completely. If this link is clicked, the
ShoppingCart object in the session is cleared of OrderItem objects and the customer is taken to the List
Category page.

Probably the most challenging aspect of this interface is the dynamic nature of the Struts form.
Remember that customers can have any number of items in their shopping cart; therefore, the size of the
form must be able to grow and shrink as the case may be. To address this issue, a Map-backed Struts
form has been used. This enables one or many items to be represented, rather than using a static form in
which a fixed number of form elements are displayed.

The struts-config.xml entry to define this action is as follows:

<action path=”/managecart”
type=”com.wrox.begjsp.ch28.bookstore.controller.ManageCartAction”
scope=”request”
validate=”false”
name=”cartForm”>

<forward name=”success” path=”manage.cart”/>
</action>

The action presented here will also make use of a global-forward called home, which denotes the front
page of the site, the List Categories page:

<global-forwards>
<forward name=”home” path=”/default.do”/>

</global-forwards>

Unlike the preceding actions in this application, a form has been nominated with the name attribute.
cartForm represents the Map-backed form that will be displayed on this screen.

The Action class, ManageCartAction, will first display the current content of the shopping cart, and
when the form is submitted, it will manipulate the content of the cart accordingly, redisplaying the
screen with the new values. This action also handles cases in which the customer selects to clear the cart
completely.

The source code for the ManageCartAction is as follows:

package com.wrox.begjsp.ch28.bookstore.controller;

import com.wrox.begjsp.ch28.bookstore.OrderItem;
import com.wrox.begjsp.ch28.bookstore.ShoppingCart;
import com.wrox.begjsp.ch28.bookstore.util.NumericUtil;

import org.apache.struts.action.ActionForm;
import org.apache.struts.action.ActionForward;
import org.apache.struts.action.ActionMapping;

import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.util.Set;

1037

JSP Project II: Shopping Cart Application

34_57485x ch28.qxd 1/14/05 10:22 PM Page 1037

TEAM LinG - Live, Informative, Non-cost and Genuine!

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class ManageCartAction extends BookstoreController
{

public ActionForward doAction(ActionMapping mapping, ActionForm form,
HttpServletRequest request, HttpServletResponse response)
throws Exception

{
ManageCartForm cartForm = (ManageCartForm) form;
String command = cartForm.getCommand();

if (“update”.equals(command))
{

updateCart(request, cartForm);
}
else if (“clear”.equals(command))
{

clearCart(request);

return mapping.findForward(“home”);
}

ShoppingCart cart = getOrCreateCart(request);

initializeForm(cartForm, cart);

return mapping.findForward(“success”);
}

private void updateCart(HttpServletRequest request, ManageCartForm form)
{

ShoppingCart cart = getOrCreateCart(request);
Map values = form.getValues();
Set items = cart.getItems();
List itemsArr = new ArrayList(items);
Iterator it = itemsArr.iterator();

while (it.hasNext())
{

OrderItem item = (OrderItem) it.next();
String newQty = (String) values.get(String.valueOf(item.getBookId()));

if (NumericUtil.isInteger(newQty))
{

int qty = Integer.parseInt(newQty);

if (qty > 0)
{

item.setQty(qty);
cart.replaceItem(item);

}
else
{

1038

Chapter 28

34_57485x ch28.qxd 1/14/05 10:22 PM Page 1038

TEAM LinG - Live, Informative, Non-cost and Genuine!

cart.removeItem(item);
}

}
}

}

private void initializeForm(ManageCartForm form, ShoppingCart cart)
{

Set items = cart.getItems();
Iterator it = items.iterator();

while (it.hasNext())
{

OrderItem item = (OrderItem) it.next();
form.setValue(String.valueOf(item.getBookId()),

new Integer(item.getQty()));
}

}
}

The imports for this class have been truncated to allow for its size.

The initializeForm method is first called; this method takes the ShoppingCart and sets up the val-
ues in the Map-backed form, ManageCartForm. Each item from the ShoppingCart is represented as a
corresponding item in the form’s Map property using the Book object’s id as a key. As no Book can
appear in the ShoppingCart more than once, this is guaranteed to be unique. The value for each item
in the Map is, of course, the current quantity.

You will see the Map itself when the ManageCartForm is explained next.

ManageCartForm is defined in the struts-config.xml file as follows:

<form-bean name=”cartForm”
type=”com.wrox.begjsp.ch28.bookstore.controller.ManageCartForm”>

</form-bean>

ManageCartForm is a very simple class with only two properties: a Map to store the value pairs for the
items in the form, and a String called command to track the task with which the user is invoking the
form: update or clear. It also includes methods to manipulate these values. The source code for this class
is included here:

package com.wrox.begjsp.ch28.bookstore.controller;

import java.util.HashMap;
import java.util.Map;

import org.apache.struts.action.ActionForm;

public class ManageCartForm extends ActionForm
{

private Map values = new HashMap();
private String command = “”;

1039

JSP Project II: Shopping Cart Application

34_57485x ch28.qxd 1/14/05 10:22 PM Page 1039

TEAM LinG - Live, Informative, Non-cost and Genuine!

public String getCommand()
{

return command;
}

public void setCommand(String value)
{

command = value;
}

public void setValue(String key, Object value)
{

values.put(key, value);
}

public Object getValue(String key)
{

return values.get(key);
}

public Map getValues()
{

return values;
}

}

Once the form is initialized, the number of items in the cart is also added to the request under the alias
cartSize, so that the JSP page can more easily determine whether to display the form, or a message, to
the customer.

The success ActionForward from the ManageCartAction is then returned. success for this action is
to present the manage.cart Tiles definition, as per the entry in tiles-defs.xml:

<definition name=”manage.cart” extends=”view.abstract”>
<put name=”body” value=”/WEB-INF/jsp/tiles/manage-cart.jsp” />

</definition>

The manage-cart.jsp page is presented as the body tile for this action. manage-cart.jsp either dis-
plays the contents of the shopping cart as well as the associated form or presents a message to the cus-
tomer if the shopping cart is empty. manage-cart.jsp is a rather long page, so we’ll look at it in stages.
The head of the JSP page simply sets up the resources required:

<%@ taglib uri=”http://java.sun.com/jsp/jstl/core” prefix=”c”%>
<%@ taglib uri=”http://java.sun.com/jsp/jstl/fmt” prefix=”fmt”%>
<%@ taglib uri=”/WEB-INF/struts-html.tld” prefix=”html” %>

The following section presents a heading for the page and the form content if there is more than one
item in the shopping cart:

1040

Chapter 28

34_57485x ch28.qxd 1/14/05 10:22 PM Page 1040

TEAM LinG - Live, Informative, Non-cost and Genuine!

<table cellspacing=3 cellpadding=3 width=”100%”>
<tr>

<td colspan=”5”><h3>Manage your Shopping Cart</h3></td>
</tr>
<c:choose>

<c:when test=”${cart.itemCount gt 0}”>
<html:form action=”managecart.do”>
<html:hidden property=”command” value=”update”/>
<tr>

<td colspan=”3”>

Click here to empty cart

</td>
</tr>
<tr>

<td></td>
<td>Unit Price</td>
<td>Quantity</td>
<td>Sub Total</td>

</tr>
<c:forEach items=”${cart.items}” var=”thisItem” varStatus=”status”>

<c:set value=”${thisItem.book}” var=”book”/>
<tr>

<td>
${status.count}. ${book.name}

</td>
<td><fmt:formatNumber

value=”${thisItem.unitPrice}” type=”currency”/>
</td>
<td><html:text size=”3” property=”value(${thisItem.bookId})”/></td>
<td><fmt:formatNumber value=”${thisItem.value}”

type=”currency”/>
</td>

</tr>
</c:forEach>
<tr>

<td colspan=”4”> </td>
</tr>
<tr>

<td colspan=”3”>TOTAL</td>
<td><fmt:formatNumber value=”${cart.value}”

type=”currency”/>
</td>

</tr>
<tr>

<td colspan=”2”></td>
<td><html:submit value=”update cart”/>
<td></td>

</html:form>
</c:when>

1041

JSP Project II: Shopping Cart Application

34_57485x ch28.qxd 1/14/05 10:22 PM Page 1041

TEAM LinG - Live, Informative, Non-cost and Genuine!

The Struts form presents all the current values from the ManageCartForm that was initialized in the
ManageCartAction. The contents of the cart are then iterated over, printing out the unit price and total
value for each item. The highlighted entry highlights the form element that represents the quantity of
each item in the cart. The value of the property attribute here might look a bit confusing, but it is recog-
nized by the Struts framework as a call to the getValue(String key) method of the ManageCartForm.
This ensures that the correct quantity is displayed for each item in the Map (remember that the Book
object’s id was used as the key in the Map). When the list of items is completed, the total value of the
cart’s contents is displayed. At the top of the form, the command property is assigned the value update.
This will indicate to the ManageCartAction that the form has been submitted and trigger the manipula-
tion of the quantities of the items in the cart.

The final section of the manage-cart.jsp page is the alternate content to the above and is displayed
when there are no items in the customer’s ShoppingCart object:

<c:otherwise>
<tr>

<td colspan=”5”>Your shopping cart is empty.</td>
</tr>

</c:otherwise>

</c:choose>
</table>

When the form presented in manage-cart.jsp is submitted, the ManageCartAction is again invoked.
This time, there is a recognized value in the command property of the form, update. With this value, the
updateCart method of the ManageCartAction is called and passed the HTTP request and the submit-
ted form. The updateCart method iterates over the OrderItem objects in the ShoppingCart object and
updates the associated quantity of each with the corresponding value retrieved from the form. If a
retrieved quantity is not numeric, the new quantity is ignored and the existing value will remain. If the
new quantity is less than 1, it is removed from the cart. Once the Shopping cart update is completed, the
initializeForm method is called again, and the manage-cart.jsp page is again displayed with the
new values. Because the value of the ShoppingCart in the session has changed, the Cart status panel
will reflect the new values.

Note that there was no interaction with the persistence layer in this functionality. The OrderItem objects
in the cart are not persisted, as the customer hasn’t committed to an order yet. When the customer actu-
ally checks out and makes a purchase, the OrderItem objects in the ShoppingCart will be saved as part
of an order.

Checkout
When the customer has selected a book to purchase, and hopefully used the Manage Cart form to
increase its quantity, we hope that the next step will be to make a purchase. The functionality explained
in this section enables customers to do just that.

From the menu on the left-hand side of the screen, the customer can select the Checkout link. This
presents a simple form on which the customer can enter some basic details, including name, address,
and credit card number. Validation will therefore be required for all of these details, using the Struts
Validator framework discussed in Chapter 19. This functionality will also highlight the persistence of
the new CustomerOrder, together with its OrderItems.

1042

Chapter 28

34_57485x ch28.qxd 1/14/05 10:22 PM Page 1042

TEAM LinG - Live, Informative, Non-cost and Genuine!

Two Struts actions will be presented here: CheckoutAction, which will present the form to the customer,
and CompleteOrderAction, which will receive a successfully completed order form, approve or decline
the credit card payment, and save the order to the persistence layer. A page will then be displayed
informing the customer of the validation results. If the payment is approved, the shopping cart will be
cleared; if the payment is declined, the cart will be left intact in case the customer wishes to try again.

These actions are defined within Struts with the following entries to the struts-config.xml file:

<action path=”/checkout”
type=”com.wrox.begjsp.ch28.bookstore.controller.CheckoutAction”
scope=”request”
validate=”false”
name=”checkOutForm”>

<forward name=”success” path=”view.checkout”/>
</action>

<action path=”/completeorder”
type=”com.wrox.begjsp.ch28.bookstore.controller.CompleteOrderAction”
scope=”request”
validate=”true”
input=”/checkout.do”
name=”checkOutForm”>

<forward name=”success” path=”view.checkout.completed”/>
</action>

The form mentioned in both these entries under the name attribute, checkOutForm, is a
DynaValidatorForm provided by Struts. Unlike the ManageCartForm presented in the preceding sec-
tion, this form is dynamically instantiated using its configuration entry in the struts-config.xml file
rather than a concrete class. The entry for this form is as follows:

<form-bean name=”checkOutForm”
type=”org.apache.struts.validator.DynaValidatorForm”>

<form-property name=”firstName” type=”java.lang.String”/>
<form-property name=”lastName” type=”java.lang.String”/>
<form-property name=”address” type=”java.lang.String”/>
<form-property name=”zipCode” type=”java.lang.String”/>
<form-property name=”cardNumber” type=”java.lang.String”/>

</form-bean>

These properties match those of the CustomerOrder object presented earlier.

The CheckoutAction is invoked when a customer selects to checkout their shopping cart and commit
to an order. The source code for this action is presented here:

package com.wrox.begjsp.ch28.bookstore.controller;

import org.apache.struts.action.ActionForm;
import org.apache.struts.action.ActionForward;
import org.apache.struts.action.ActionMapping;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

1043

JSP Project II: Shopping Cart Application

34_57485x ch28.qxd 1/14/05 10:22 PM Page 1043

TEAM LinG - Live, Informative, Non-cost and Genuine!

public class CheckoutAction extends BookstoreController
{

public ActionForward doAction(ActionMapping mapping, ActionForm form,
HttpServletRequest request, HttpServletResponse response)

{
return mapping.findForward(“success”);

}
}

The ActionForward success returned from this action corresponds to the Tiles definition view.
checkout. This definition is defined in the tiles-defs.xml file as follows:

<definition name=”view.checkout” extends=”view.abstract”>
<put name=”body” value=”/WEB-INF/jsp/tiles/checkout.jsp” />

</definition>

Once again, the definition for our view only has to implement the body tile with the JSP page
/WEB-INF/jsp/tiles/checkout.jsp.

The checkout.jsp page presents two sections to the customer: the checkout form and a summary of
the items being purchased. You can see both these elements in Figure 28-9.

Figure 28-9: Checkout form with order items

1044

Chapter 28

34_57485x ch28.qxd 1/14/05 10:22 PM Page 1044

TEAM LinG - Live, Informative, Non-cost and Genuine!

Anticipating that it will be used elsewhere in the site, the list of items is displayed using a custom tag
file. The custom tag, listitems, takes a Set of OrderItem objects as its only attribute. This tag file is
implemented in a file called /WEB-INF/tags/listitems.tag. Implementing a tag file in this way
means that with minimal effort, the contents of the cart can be displayed in a predefined format wher-
ever we like. The source code for this tag file is as follows:

<%@ tag body-content=”empty” %>
<%@ taglib prefix=”fmt” uri=”http://java.sun.com/jsp/jstl/fmt” %>
<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<%@ attribute name=”items” required=”true” type=”java.util.Set” %>

<table cellspacing=0 cellpadding=0 width=”100%”>
<tr>

<td></td>
<td>Unit Price</td>
<td>Quantity</td>
<td>Sub Total</td>

</tr>

<c:forEach items=”${items}” var=”thisItem” varStatus=”status”>
<c:set value=”${total + thisItem.value}” var=”total”/>
<c:set value=”${thisItem.book}” var=”book”/>

<tr>
<td>${status.count}. ${book.name}</td>
<td><fmt:formatNumber value=”${thisItem.unitPrice}” type=”currency”/></td>
<td>${thisItem.qty}</td>
<td><fmt:formatNumber value=”${thisItem.value}” type=”currency”/></td>

</tr>
</c:forEach>
<tr>

<td colspan=”4”> </td>
</tr>
<tr>

<td colspan=”3”>TOTAL</td>
<td><fmt:formatNumber value=”${total}” type=”currency”/></td>

</tr>
</table>

As you can see, the tag displays a simple table of the set provided, with a total of the items displayed at
the end. Note that the output of the tag file is a complete table with minimal formatting. This provides
the greatest flexibility to any surrounding display code that may make use of the tag.

This tag is used at the base of the form presented in the checkout.jsp page. Once again, the presenta-
tion of the form, and the list provided by the preceding custom tag, is dependent on the number of items
in the ShoppingCart in the customer’s session. If there are no items, it doesn’t make any sense to allow
the customer to proceed to checkout. The checkout.jsp page is rather lengthy, so it will be presented
here piece by piece.

The first section of the checkout.jsp page simply prepares the resources that the rest of the page
may need:

1045

JSP Project II: Shopping Cart Application

34_57485x ch28.qxd 1/14/05 10:22 PM Page 1045

TEAM LinG - Live, Informative, Non-cost and Genuine!

<%@ taglib uri=”http://java.sun.com/jsp/jstl/core” prefix=”c”%>
<%@ taglib uri=”/WEB-INF/struts-html.tld” prefix=”html” %>
<%@ taglib uri=”/WEB-INF/struts-logic.tld” prefix=”logic” %>
<%@ taglib prefix=”begjsp” tagdir=”/WEB-INF/tags” %>

In the preceding code, you can see directives for the tag libraries that are required for the rest of the
page; note the begjsp entry so we can access the listitems.tag tag file. The checkout.jsp page
then has to determine whether the form and items list can be presented based on the size of the cart. The
cart can be referenced directly as it is in the session scope:

<table cellspacing=3 cellpadding=3 width=”100%”>
<tr>

<td><h3>Checkout and Complete your order</h3></td>
</tr>
<c:choose>

<c:when test=”${cart.itemCount gt 0}”>
<tr>

<td>

Much like the Manage Cart page presented earlier, the Checkout page will show the form and items list
if there are, in fact, items ready to purchase. The Struts form is presented next, along with appropriate
entries to output validation errors should they occur upon form submission. The listing here has been
truncated to show the errors for only the first field, firstName:

<html:form action=”completeorder.do”>
<table cellspacing=0 cellpadding=0>
<logic:messagesPresent property=”firstName”>
<tr>

<td colspan=2>

<html:errors property=”firstName”/>

</td>
</tr>
<tr>

<td colspan=”2”> </td>
</tr>
</logic:messagesPresent>
<tr>

<td width=”200”>First Name</td>
<td><html:text property=”firstName”/></td>

</tr>
...

<tr>
<td>Last Name</td>
<td><html:text property=”lastName”/></td>

</tr>
...
<tr>

<td>Address</td>
<td><html:text property=”address”/></td>

</tr>

1046

Chapter 28

34_57485x ch28.qxd 1/14/05 10:22 PM Page 1046

TEAM LinG - Live, Informative, Non-cost and Genuine!

...
<tr>

<td>Zip Code</td>
<td><html:text property=”zipCode”/></td>

</tr>
...

<tr>
<td>Credit Card Number</td>
<td><html:text property=”cardNumber” /></td>

</tr>
<tr>

<td> </td>
<td><html:submit value=”complete order”/></td>

</tr>
</html:form>
</table>

The form will present each property provided to cartForm in an identical element. Errors that are dis-
played through validation will appear, in red, above each. The rest of checkout.jsp presents the list of
items in the ShoppingCart through the listitems.tag and the message to display if a customer
attempts to checkout when there are no items in her cart:

</td>
</tr>
<tr>

<td>
<table cellspacing=0 cellpadding=0 width=”100%”>
<tr>

<td colspan=”4”>
Your order is made up of the following items:

</td>
</tr>
<tr>
<td>

<begjsp:listitems items=”${cart.items}”/>
</td>
</tr>
</table>

</td>
</tr>
</c:when>
<c:otherwise>

<tr>
<td>There are no items in your shopping cart</td>

</tr>
</c:otherwise>

</c:choose>
</table>

Because of the flexibility of the layout provided within the listtags custom tag, it can be placed within
the structure of this page easily.

1047

JSP Project II: Shopping Cart Application

34_57485x ch28.qxd 1/14/05 10:22 PM Page 1047

TEAM LinG - Live, Informative, Non-cost and Genuine!

Validation
This form has a variety of values that need to be entered by the customer, some with specific validation
needs. All the fields in this form are required, and some need to be only numeric or have a required
length. The credit card field has all of these requirements in addition to being a real credit card number.
This represents a significant amount of logic. Thankfully, the validation framework provided with Struts
handles all of this for us with a minimum of configuration.

The message actually displayed when one of these errors occurs is one of four types: missing, integer,
length, or card number. Instead of having a specific message for each error for each field, the validation
framework enables you to nominate a template for each error message type. The template for each mes-
sage will include a field name, and may include other specific values, such as the minimum and maxi-
mum length, so that, for example, the Zip code field can display the following error:

The Zip Code field must be between 5 and 6 characters in length

Zip Code, 5, and 6 are values simply given to the length message template when it is displayed. To
accomplish this, the following entries are added to the message.properties file that resides at the top
of the package structure (C:\bookstore\src\messages.properties) and will therefore be available
to the application:

checkout.error.missing = The {0} field cannot be empty
checkout.error.integer = The {0} field must only contain numbers
checkout.error.length = The {0} field must be between {1} and {2} characters long
checkout.error.cardNumber = The credit card entered was invalid

The {0}, {1}, and {2} are placeholders for values to be placed in each message template. The field
names in these templates ({0}) are provided by the following entries, also in the messages.
properties file:

checkout.field.address = Address
checkout.field.firstName = First Name
checkout.field.lastName = Last Name
checkout.field.zipCode = Zip Code
checkout.field.cardNumber = Credit Card

So where is all this used? As you learned in Chapter 19, the validation framework is configured to pro-
vide validation for this form via entries in the WEB-INF/validation.xml file. Each field is provided
with an entry that nominates its specific validation requirements and uses the preceding message struc-
ture to allocate the correct notification to the customer. Let’s look at each field of the checkOutForm
in turn.

The First Name field needs to be entered by the user, so this field has to be assigned the required
validation:

<form-validation>
<form name=”checkOutForm”>

<field property=”firstName” depends=”required”>
<msg name=”required” key=”checkout.error.missing”/>
<arg0 key=”checkout.field.firstName”/>

</field>
...

1048

Chapter 28

34_57485x ch28.qxd 1/14/05 10:22 PM Page 1048

TEAM LinG - Live, Informative, Non-cost and Genuine!

The start of the form element has been shown here to provide some context. The firstName field
depends on being required, and an associated message is assigned with the msg element. This message
template takes a single parameter, the form element’s friendly name from the messages.properties
file, which you can nominate using its key.

The lastName and address fields are also required:

<field property=”lastName” depends=”required”>
<msg name=”required” key=”checkout.error.missing”/>
<arg0 key=”checkout.field.lastName”/>

</field>

<field property=”address” depends=”required”>
<msg name=”required” key=”checkout.error.missing”/>
<arg0 key=”checkout.field.address”/>

</field>

The same message template, checkout.error.missing, is used for these fields, each passing its appro-
priate key for the field’s name.

The zipCode field is a special case. Zip codes need to be numeric, of a certain length, and of course they
are required. The entry for zipCode, therefore, needs to cover all these requirements and provide
appropriate messages:

<field property=”zipCode” depends=”required,integer,minlength,maxlength”>

<msg name=”required” key=”checkout.error.missing”/>
<msg name=”integer” key=”checkout.error.integer”/>
<msg name=”minlength” key=”checkout.error.length”/>
<msg name=”maxlength” key=”checkout.error.length”/>

<arg0 name=”minlength” key=”checkout.field.zipCode”/>
<arg1 name=”minlength” key=”${var:minlength}” resource=”false”/>
<arg2 name=”minlength” key=”${var:maxlength}” resource=”false”/>

<arg0 name=”maxlength” key=”checkout.field.zipCode”/>
<arg1 name=”maxlength” key=”${var:minlength}” resource=”false”/>
<arg2 name=”maxlength” key=”${var:maxlength}” resource=”false”/>

<arg0 name=”required” key=”checkout.field.zipCode”/>
<arg0 name=”integer” key=”checkout.field.zipCode”/>

<var>
<var-name>minlength</var-name>
<var-value>5</var-value>

</var>
<var>

<var-name>maxlength</var-name>
<var-value>6</var-value>

</var>
</field>

1049

JSP Project II: Shopping Cart Application

34_57485x ch28.qxd 1/14/05 10:22 PM Page 1049

TEAM LinG - Live, Informative, Non-cost and Genuine!

Note how the maxlength and minlength validation messages reference the var values defined at the
bottom of this listing. These var values are required for the minlength and maxlength validation
mechanisms to work.

The final field to validate here is the Credit Card number field. This field is not only required but must
also conform to the requirements of most credit card numbers. The validation framework provides for
this as well:

<field property=”cardNumber” depends=”required,creditCard”>
<msg name=”required” key=”checkout.error.missing”/>
<arg0 name=”required” key=”checkout.field.cardNumber”/>
<msg name=”creditCard” key=”checkout.error.cardNumber”/>

</field>
</form>
</formset>

</form-validation>

If you are interested in credit card number validation and how it is done, use your favorite search engine
to search for the Luhn Formula, which most credit card numbers comply with. If you are working with
the completed application and don’t have a credit card to test with, try using 4111111111111111. This is a
test credit card number that complies with the Luhn Formula.

If you refer back to the struts-config.xml file entry for this section, you will notice that the vali-
date attribute on the checkout.do action was false. This ensures that the validation presented here is
not executed when the customer first loads the Checkout page. However, the completecheckout.do
action has its validate attribute as true; therefore, the form submission, which will invoke this action,
will fire off all these validation rules.

To summarize the validation infrastructure set up for this application, let’s walk through the configura-
tion steps once more:

1. Include the validate plug-in entry in the struts-config.xml file.

2. Ensure that the validation-rules.xml file will be available in the WEB-INF directory when
the application is run.

3. Ensure that the commons-validate.jar file is within the application’s classpath (WEB-
INF/lib) when the application is run.

4. The form is defined as an appropriate Validator type form in the struts-config.xml file.

5. Ensure that the form has appropriate validation rules set up in the validation.xml file, which
should also be in the WEB-INF directory.

6. Ensure that the form page has appropriate message placeholders for each field.

What results is a very clean and convenient method of providing the validation for our checkout form.

Saving the order
We’re in the home stretch now. Once the customer has entered the form information that satisfies the
validation criteria, the system will save the details as a CustomerOrder with a set of OrderItem objects
in the database. This is the function of the CompleteOrderAction configured earlier. Because of the

1050

Chapter 28

34_57485x ch28.qxd 1/14/05 10:22 PM Page 1050

TEAM LinG - Live, Informative, Non-cost and Genuine!

length of this class, it will be explained piece by piece. The declarations and doAction method are as
follows:

package com.wrox.begjsp.ch28.bookstore.controller;

import com.wrox.begjsp.ch28.bookstore.BookstoreConstants;
import com.wrox.begjsp.ch28.bookstore.CustomerOrder;
import com.wrox.begjsp.ch28.bookstore.OrderStatus;
import com.wrox.begjsp.ch28.bookstore.ShoppingCart;
import com.wrox.begjsp.ch28.bookstore.persist.EntityManager;
import com.wrox.begjsp.ch28.bookstore.persist.EntityManagerFactory;

import net.sf.hibernate.HibernateException;

import org.apache.struts.action.ActionForm;
import org.apache.struts.action.ActionForward;
import org.apache.struts.action.ActionMapping;
import org.apache.struts.validator.DynaValidatorForm;

import java.sql.Date;

import java.util.Calendar;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class CompleteOrderAction extends BookstoreController
{

public ActionForward doAction(ActionMapping mapping, ActionForm form,
HttpServletRequest request, HttpServletResponse response)
throws Exception

{
DynaValidatorForm validForm = (DynaValidatorForm) form;
CustomerOrder order = getOrder(request, validForm);
setCreditDecision(order);
order = saveOrder(request, order);

clearCartWhenApproved(request, order);

request.setAttribute(“order”, order);

return mapping.findForward(“success”);
}

This action first instantiates ActionForm as a DynaValidatorForm so that the appropriate accessor
methods will be available. A new CustomerOrder object is then created with a call to the
getOrder(..) method:

private CustomerOrder getOrder(HttpServletRequest request,
DynaValidatorForm form)

{
Calendar cal = Calendar.getInstance();
ShoppingCart cart = getOrCreateCart(request);

1051

JSP Project II: Shopping Cart Application

34_57485x ch28.qxd 1/14/05 10:22 PM Page 1051

TEAM LinG - Live, Informative, Non-cost and Genuine!

String firstName = (String) form.get(“firstName”);
String lastName = (String) form.get(“lastName”);
String address = (String) form.get(“address”);
String zipCode = (String) form.get(“zipCode”);
String cardNumber = (String) form.get(“cardNumber”);

CustomerOrder newOrder = new CustomerOrder();
newOrder.setFirstName(firstName);
newOrder.setLastName(lastName);
newOrder.setAddress(address);
newOrder.setZipCode(zipCode);
newOrder.setCardNumber(cardNumber);
newOrder.setOrderItems(cart.getItems());
newOrder.setOrderDate(new Date(cal.getTimeInMillis()));

return newOrder;
}

The getOrder(..) method retrieves the ShoppingCart object for this customer using the
getOrCreateCart method in BookstoreController. The details the customer entered are then
retrieved from the DynaValidatorForm object. A new CustomerOrder object is then populated with
these values as well as the OrderItem objects from ShoppingCart. Finally, the new CustomerOrder
object is returned to the doAction method.

Once the CustomerOrder has been instantiated, it is passed to the setCreditDecision method, where
the order is either approved or declined:

private void setCreditDecision(CustomerOrder order)
throws HibernateException

{
EntityManager statusManager =

EntityManagerFactory.getOrderStatusManagerInstance();
OrderStatus declined = (OrderStatus)

statusManager.findById(BookstoreConstants.DECLINED_ID);
OrderStatus approved = (OrderStatus)

statusManager.findById(BookstoreConstants.APPROVED_ID);

if (order.getCardNumber().equals(“4111111111111111”))
{

order.setStatus(approved);
}
else
{

order.setStatus(declined);
}

}

This method simulates the function that a credit card payment approval service might perform. In this
example, we have ensured that the only credit card number that will be approved is the test credit card
number mentioned earlier. You can try other test credit card values to simulate a decline decision.
Another test credit card number is 4012888888881881.

1052

Chapter 28

34_57485x ch28.qxd 1/14/05 10:22 PM Page 1052

TEAM LinG - Live, Informative, Non-cost and Genuine!

The OrderStatus objects for approve and declined decisions are retrieved from the persistence layer
using an appropriate EntityManager instantiation. Once the decision has been set in the
CustomerOrder object, the method completes and the CustomerOrder within the doAction method
now has a decision.

Now the new CustomerOrder object, and its OrderItem values, can be saved to the persistence layer.
Remember that the CustomerOrder, and all the OrderItem objects, have id values of 0. The Hibernate
configurations for these objects nominated 0 as the unsaved-value. This indicates to Hibernate that all
these items should be saved with an INSERT SQL statement, rather than an UPDATE statement.

The source code for the saveOrder method is as follows:

private CustomerOrder saveOrder(HttpServletRequest request,
CustomerOrder order) throws HibernateException

{
EntityManager orderManager = EntityManagerFactory.getOrderManagerInstance();
order = (CustomerOrder) orderManager.saveOrUpdate(order);

return order;
}

Note that the CustomerOrder can be saved directly, not as an order and then as individual OrderItem
values. Because of the mappings configured between the CustomerOrder object and the OrderItem
object, Hibernate will recognize the relationship and cascade the save down to the individual
OrderItem values.

The SQL operation required of Hibernate to complete this task is tricky. It must save the OrderItem
objects, yet the orderId column in the orderitem table requires a value so it can be linked to an appro-
priate customerorder record. However, the CustomerOrder has no such id value yet. This is the very
reason we deliberately set the orderId column of the orderitem table to allow null values. Hibernate
cleverly deals with this problem by saving the CustomerOrder and OrderItem objects, and then per-
forming an update on the orderitem table to ensure that these new values have correct orderId’s set.
To create a CustomerOrder with just one OrderItem, Hibernate will issue the following SQL statements
when it performs the save:

insert into customerorder (firstname, lastname, address, zipcode, orderdate,
cardnumber, status) values (?, ?, ?, ?, ?, ?, ?)
insert into orderitem (qty, unitprice, bookid, orderid) values (?, ?, ?, ?)
update orderitem set orderid=? where id=?

Once the CustomerOrder is saved to the persistence layer, the action determines whether it can clear the
ShoppingCart of values with the clearCartWhenApproved(...) method:

private void clearCartWhenApproved(HttpServletRequest request,
CustomerOrder order)

{
if (order.getStatus().getId() == BookstoreConstants.APPROVED_ID)
{

clearCart(request);
}

}

1053

JSP Project II: Shopping Cart Application

34_57485x ch28.qxd 1/14/05 10:22 PM Page 1053

TEAM LinG - Live, Informative, Non-cost and Genuine!

This method simply calls the clearCart method found in BookstoreController if the new
CustomerOrder has an approved status.

Once all the processing is completed here, the new CustomerOrder is added to the request so that the
JSP page presented to the customer can correctly convey the results. The success ActionForward
returned from the doAction method refers to the view.checkout.completed Tiles definition defined
in the tiles-defs.xml file:

<definition name=”view.checkout.completed” extends=”view.abstract”>
<put name=”body” value=”/WEB-INF/jsp/tiles/checkoutcompleted.jsp” />

</definition>

Once again, the body tiles are simply populated with an appropriate JSP page to display the results:
checkoutcompleted.jsp.

The JSP page determines whether to display the approve or decline details based on the success of the
order:

<%@ taglib uri=”http://java.sun.com/jsp/jstl/core” prefix=”c”%>
<%@ page import=”com.wrox.begjsp.ch28.bookstore.BookstoreConstants”%>
<c:set value=”<%=String.valueOf(BookstoreConstants.APPROVED_ID)%>” var=”approved”/>

<c:choose>
<c:when test=”${order.status.id eq approved}”>

<table cellspacing=3 cellpadding=3 border=0 width=500>
<tr>

<td><h3>Order Completed</h3></td>
</tr>
<tr>

<td>Your order has been approved.<p>
For your reference the order number is: ${order.id}.<P>
The goods will be shipped to the following address as soon as
possible:

</td>
</tr>
<tr>

<td>${order.firstName} ${order.lastName}

${order.address}

${order.zipCode}</td>

</tr>
</table>

</c:when>

The approved value is equated with the APPROVED_ID constant stored in the BookstoreConstants
class. This class is simply a convenient way to access certain unchanging values in the system, such as
approved and declined OrderStatus id values. The values are static, enabling them to be referenced in
this way.

If the order is approved, a comforting message is displayed, confirming the delivery details of the order.
If the value is declined, a less pleasant message informs the customer of steps they can take, including
trying again. Remember that the ShoppingCart in the customer’s HTTP session is still intact:

1054

Chapter 28

34_57485x ch28.qxd 1/14/05 10:22 PM Page 1054

TEAM LinG - Live, Informative, Non-cost and Genuine!

<c:otherwise>
<table cellspacing=3 cellpadding=3 border=0 width=500>

<tr>
<td><h3>There was a problem</h3></td>

</tr>
<tr>

<td>Your order has been declined by your credit card’s financial
institution.<p>
For your reference the order number is: ${order.id}.
<P>
If you would like to try again please click
here.
If the problem continues, please contact you bank as soon as
possible.
</td>

</tr>
</table>

</c:otherwise>
</c:choose>

Summary
This chapter has walked you through almost every facet of the code and decision-making that went into
creating this application. Our goal was to meet the customer’s requirements while ensuring an appropri-
ate architecture and implementation along the way. Numerous tools and techniques have been discussed
and applied, and we hope that this exercise has provided you with some additional context with which
to understand the concepts and tools presented throughout the book.

Remember that you can download the entire application from the Wrox Web site. While the walk-
through presented here will help in many ways, working directly with the code and configuration set-
tings will enhance your understanding immeasurably.

Exercises
1. Create a sales report for the application. This report, accessible via a menu item, should list all

the orders placed in the system — approved orders first and then declined orders. Each order
listed should include the customer details entered (but not the credit cart number!), as well as a
list of the individual order items, their quantity, and the total value.

2. Internationalize the checkout form, i.e., make it potentially multi-lingual. Ensure that the labels
come from the messages.properties file.

1055

JSP Project II: Shopping Cart Application

34_57485x ch28.qxd 1/14/05 10:22 PM Page 1055

TEAM LinG - Live, Informative, Non-cost and Genuine!

34_57485x ch28.qxd 1/14/05 10:22 PM Page 1056

TEAM LinG - Live, Informative, Non-cost and Genuine!

Part IV: Appendixes

Appendix A: JSP Syntax Reference

Appendix B: JSP Expression Language Reference

Appendix C: JSTL Reference

Appendix D: Exercise Solutions

35_57485x pt04.qxd 1/14/05 10:21 PM Page 1057

TEAM LinG - Live, Informative, Non-cost and Genuine!

35_57485x pt04.qxd 1/14/05 10:21 PM Page 1058

TEAM LinG - Live, Informative, Non-cost and Genuine!

A
JSP Syntax Reference

This book has covered a lot of ground. Every fundamental concept in JSP was discussed, and the
example code presented important programming techniques. However, in order to maintain a
reasonable flow in the text, the syntactical details of many JSP elements were not fully explored.

This appendix captures, at one location, all of the JSP elements that are covered in the text, and
provides a more detailed syntax description. It should serve as a useful reference resource during
your daily JSP programming activities.

JSP pages are text files composed of the following components:

❑ Template text: Template text is any text that is not a JSP element. Template text is static
and does not change between invocations of the same JSP.

❑ JSP elements: Many JSP elements result in the dynamic generation of Web content. Because
template text can be any static text, a JSP element can contain template text that is in any for-
mat. Two of the most common formats are HTML and XML.

JSP elements can be composed of the following components:

❑ Directives

❑ Actions

❑ Scripting elements

Directives are typically enclosed in <%@ %>. For example, a JSP page directive may look like
the following:

<%@ page language=”java” %>

36_57485x appa.qxd 1/14/05 10:23 PM Page 1059

TEAM LinG - Live, Informative, Non-cost and Genuine!

Actions are specified in standard XML notation. For example, an occurrence of the <jsp:useBean> action
with a nested occurrence of the <jsp:setProperty> action may appear as follows:

<jsp:useBean id=”newsfeed” class=”com.wrox.begjsp.ch2.NewsFeed” scope=”request” >
<jsp:setProperty name=”newsfeed” property=”topic” value=”weather”/>

</jsp:useBean>

While directives are not in XML format, there exists an equivalent XML form for all directives. This means
that any JSP can be represented in an XML-compatible format. In practice, this is important only for tools
and automated management of JSPs.

Scripting elements provide a mechanism to include raw Java code in-line within the body of a JSP page,
as shown in the following example:

<%!
private static String EXAMPLE = “/example1”;

private String dispPrice(String price)
{

int len = price.length();
if (len <= 2)

return price;
else

return “$” + price.substring(0,len -2) + “.” + price.substring(len-2);
}

%>

Scoping
When an object is created within a JSP page, it is always associated with a scope. The scope dictates
when and where the created object may be accessible. The scope also dictates when the object will be
released, and therefore is no longer available. The four available scopes are page, request, session,
and application.

page scope
Attributes attached to the pageContext implicit object are in the page scope. These attributes are acces-
sible only within the JSP page in which they are created. This means that these attributes are no longer
available after a response has been generated and sent back to the client. This also means that the
attributes are no longer available if the request is forwarded to another JSP (or other Web resources such
as a servlet). These attributes are automatically released after a response is sent, or when the request is
forwarded to another JSP.

The following JSP code creates a JavaBean in the page scope. Because page scope is the default, there is
no need to use the scope attribute of the <jsp:useBean> standard action.

<jsp:useBean id=”newsfeed” class=”com.wrox.begjsp.ch02.NewsFeed” />

1060

Appendix A

36_57485x appa.qxd 1/14/05 10:23 PM Page 1060

TEAM LinG - Live, Informative, Non-cost and Genuine!

Using JSTL, the following JSP code creates a scoped variable in the page scope. The page scope is the
default with the <c:set> JSTL action:

<c:set var=”selectedCat” value=”${param.catid}”/>

request scope
Attributes attached to the request implicit object are in the request scope. These attributes are accessi-
ble from all the JSP pages that are used in processing the request in which the attribute is created. This
means that if the request is forwarded between a set of JSP pages, all the pages will have access to these
attributes. This also means that the attributes will no longer be accessible after a response is sent back to
the client. These attributes are automatically released after a response is sent to the client.

The following JSP code creates a JavaBean in the request scope:

<jsp:useBean id=”reqtime” class=”java.util.Date “ scope=”request” />

Using JSTL, the following JSP code creates a scoped variable in the request scope:

<c:set var=”selectedItem” value=”${param.item}” scope=”request” />

session scope
Attributes attached to the session implicit object are in the session scope. A session object can be associ-
ated with multiple requests. Not all requests have sessions associated with them. The <%@page %> direc-
tive can be used to control whether a JSP page will create a session associated with incoming requests.
The attributes in session scope are accessible across all requests associated with the session in which
they are created. This means that the attributes may be accessible for multiple incoming requests and
multiple JSP pages servicing those requests. The attributes are automatically released when the session
ends (usually from a timeout, but sometimes from explicitly ending — i.e., user logout).

The following JSP code creates a JavaBean in the session scope:

<jsp:useBean id=”loginUser” class=”com.wrox.begjsp.ch11.UserIdentity”
scope=”session” />

Using JSTL, the following JSP code creates a scoped variable in the session scope:

<c:set var=”memberDiscount” value=”${user.discount}” scope=”session” />

application scope
Attributes attached to the application implicit object are in the application scope. The application
implicit object is a ServletContext instance. This is a truly global scope. Attributes that are created in
the application scope are available to all incoming requests for that application, across all the JSP
pages that may be servicing those requests. Once created, these attributes will remain available as long
as the application remains deployed. It may be necessary in some applications to explicitly remove these

1061

JSP Syntax Reference

36_57485x appa.qxd 1/14/05 10:23 PM Page 1061

TEAM LinG - Live, Informative, Non-cost and Genuine!

attributes. The attributes will be automatically released only if the ServletContext is destroyed (only
when the application is restarted or undeployed).

The following JSP code creates a JavaBean in the application scope:

<jsp:useBean id=”newsItems” class=”com.wrox.begjsp.ch12.StanardNewsItems”
scope=”application” />

Using JSTL, the following JSP code creates a scoped variable in the application scope:

<c:set var=”cats” value=”${wxshop:getCats()}” scope=”application” />

Implicit Objects
Implicit objects in JSP are objects that are immediately usable within a JSP page, without your explicit
creation or declaration.

The request object
The request object represents the request currently being processed. In Web applications, it is usually of
the type javax.servlet.http.HttpServlet.Request. Attributes created in the request scope are
attached to this object. Some very useful properties of this object are shown in the following table.

Property Description

request.queryString The part of the URL that is used to carry request parameters when
an HTTP GET method is used to submit form data.

request.remoteUser The name of the user if the browser-managed authentication has
occurred; or null otherwise.

request.requestURI The part of the request URL up to the query string.

request.servletPath The portion of the request URL that called the servlet. Always
starts with a backslash (/). May be an empty string if the URL pat-
tern (in the web.xml file servlet mapping) /* matched the servlet.

request.method The HTTP method used in the request. It can be GET, POST, or PUT.

The response object
This represents the response being sent back to the browser. In Web applications, it is usually of the type
javax.servlet.http.HttpServletResponse. While this object has properties that control the con-
tent type and the locale of the generated response, attributes of the <@% page %> directive should be used
to set these values in most cases. Several useful properties of this object are shown in the following table.

1062

Appendix A

36_57485x appa.qxd 1/14/05 10:23 PM Page 1062

TEAM LinG - Live, Informative, Non-cost and Genuine!

Property Description

response.committed Indicates whether the response is committed (i.e., the status
code and headers are already written)

response.bufferSize The preferred size of the buffer used by the container

The pageContext object
The pageContext object represents the current JSP instance being executed during the processing of
the current request. It is always of the type javax.servlet.jsp.PageContext. Attributes created in
the page scope are attached to this object. Once the request is forwarded to another JSP page, or if a
response is sent back to the client, this object instance is destroyed. This object does not survive across
multiple requests. This object maintains references to all of the implicit objects associated with the page.
The container will actually use this object to obtain the implicit objects. As a JSP author, however, it is
more convenient to use the implicit objects provided. The useful properties of this implicit object are
shown in the following table.

Property Description

pageContext.page Same as the page implicit object

pageContext.request Same as the request implicit object

pageContext.response Same as the response implicit object

pageContext.session Same as the session implicit object

pageContext.servletConfig Same as the config implicit object

pageContext.servletContext Same the application implicit object

The session object
This represents the current HTTP user session maintained by the server. Usually, a cookie is sent to the
user’s browser and returned with every request in the session. On browsers that do not support cookies,
URL rewriting may be used to keep track of sessions (by attaching a session ID to all URLs). This object
is always of the type javax.servlet.http.HttpSession. A session survives multiple requests and is
valid across all the JSP pages that service the requests within the session. Attributes that are created in
the session scope are attached to this implicit object. Some interesting properties in the session object
are shown in the following table.

Property Description

session.new True if the client has not yet joined the session (i.e., the first
request returning a cookie has not yet been received).

session.id A unique string containing the session identifier.

Table continued on following page

1063

JSP Syntax Reference

36_57485x appa.qxd 1/14/05 10:23 PM Page 1063

TEAM LinG - Live, Informative, Non-cost and Genuine!

Property Description

session.creationTime The creation time of the session. The value is a long
value representing milliseconds since midnight Jan-
uary 1, 1970 GMT. This is a standard long-valued rep-
resentation of date/time in Java and is very convenient
for time comparisons.

The application object
This represents the servlet context associated with this Web application. This object is always of the type
javax.servlet.ServletContext. Attributes created in the application scope are attached to this
object. These attributes are essentially global across all sessions, requests, and JSPs being processed
within this application. Several interesting properties of this object are shown in the following table.

Property Description

application.majorVersion The major version number of the Servlet API that is
supported by the container. For example, this is “2”
for the Servlet 2.4 API.

application.minorVersion The minor version number of the Servlet API sup-
ported by the container. For example, this is “4” for
the Servlet 2.4 API.

application.serverInfo The name of the application server, with version
information.

application.servletContextName The name of the Web application, specified by the
<display-name> element in the web.xml deploy-
ment descriptor file.

The out object
The out object represents the output stream of the current JSP page. It is used implicitly in composing
the response to the current request. There is usually no need to address this object directly, as any gener-
ated output is automatically sent via this output stream. This object is always of the type javax.
servlet.jsp.JspWriter, and is in the page scope, meaning that a new instance is available for each
JSP instance used in processing a request. The following table describes a few properties of this object
that are accessible within a JSP page and perhaps useful in some debugging situations.

Property Description

out.bufferSize The size of the buffer used by the JspWriter object

out.remaining The available space remaining in the buffer of the
JspWriter object

1064

Appendix A

36_57485x appa.qxd 1/14/05 10:23 PM Page 1064

TEAM LinG - Live, Informative, Non-cost and Genuine!

Property Description

out.autoFlush True if the JspWriter object is auto-flushing, meaning that
buffer flushing is managed by the JspWriter object itself

The config object
This represents a servlet configuration object, always of the type javax.servlet.ServletConfig. This
object is in the page scope, and can be used to access initialization parameters that may be supplied in
the deployment descriptor (web.xml file) for a JSP page. Directly working with this implicit object is
typically reserved for code that has embedded scriptlets (i.e., embedded Java coding). However, using
the implicit object called initParam in EL (see Appendix B), these values can be easily accessed within
a JSP without using scripting elements. The only interesting property on this object to a JSP author is
shown in the following table.

Property Description

config.servletName The name of the servlet instance

The page object
This object represents the instance of a JSP page that is currently being used to process the current
request. It is a subclass of java.lang.Object. Usually, it is an instance of the Java class that is gener-
ated after the JSP container has translated the JSP code into Java code. This means that it is almost
always a servlet. There are no interesting properties on this implicit object.

The exception object
This implicit object is made available only in the error-handling page. The error handling page must be
specified using a <%@page %> directive, as in the following:

<%@page isErrorPage=”true” %>

This object is always a subtype of java.lang.Throwable. The exception implicit object contains the
actual exception that caused the error-handling page to display. Some useful properties of this object are
shown in the following table.

Property Description

exception.message Description of the exception.

exception.localizedMessage Localized version of the exception description.

exception.cause Sometimes exceptions are wrapped around other excep-
tions. In these cases, this property may be used to access
the “inner” Throwable. For example, you may need to use
exception.cause.message to obtain the actual cause of
the exception.

1065

JSP Syntax Reference

36_57485x appa.qxd 1/14/05 10:23 PM Page 1065

TEAM LinG - Live, Informative, Non-cost and Genuine!

Directives
Directives in JSP are hints and directions for the container. Directives, unlike actions, typically do not
generate any dynamic output. One can consider directives as a way to customize and configure behav-
iors of the container down to a very fine granular level — that of a JSP page. Directives are handled dur-
ing translation time, not at request time.

The page directive
The page directive is used to set attributes that affect the translation, compilation, and execution of the
current JSP page. The page directive has the following general syntax:

<%@page [... attributes...] %>

The available optional attributes are described in the following table.

Attribute Name Description

language Specifies the scripting language used when (and if) scripting elements are
used within the JSP. This defaults to Java.

extends Specifies the superclass that the container will use in generating the servlet
Java code, representing the JSP page, during the translation phase.

import Specifies the library classes that will be used within the JSP page by the
scripting elements. Fully qualified (full names) library class names are sep-
arated by commas.

session Specifies whether the container should create a session for the JSP page
(if not already in a session) during request time. The default value is true.

buffer Either a number of kilobytes in size for the buffer or none. Any numeric
value must have suffix kb. Default is 8kb or more, depending on the
container.

autoFlush Specifies whether the buffer should be flushed automatically once filled.
The default is true. If set to false, a buffer full condition will cause an
exception to be thrown.

isThreadSafe The default is true. If set to false, requests that the container generates
code that operates in the SingleThreadModel. This model is deprecated
in Servlet 2.4, and will not be available in the future. Do not alter the set-
ting of this attribute.

info Supplies information about the page. Any value you specified here is made
available to JSP developer tools.

errorPage If true, tells the container that this JSP page is used by other JSP pages to
handle errors.

isErrorPage If true, tells the container that this JSP page is used by other JSP pages to
handle errors. If this is the error page, an implicit object called exception
will be available to the page when it is executed. The default is false.

1066

Appendix A

36_57485x appa.qxd 1/14/05 10:23 PM Page 1066

TEAM LinG - Live, Informative, Non-cost and Genuine!

Attribute Name Description

contentType Specifies the MIME type and, optionally, character encoding used in the
JSP page. The default is text/html.

pageEncoding Specifies the page character encoding used for the JSP page. See Chapter
13, “Internationalization and Localized Content,” for some commonly
used IANA names for character encodings.

isELIgnored Specifies that EL expressions in the page should (false) or should not
(true) be evaluated. This defaults to false— i.e., EL will be evaluated.

The taglib directive
The taglib directive is used to include tag libraries for use within a JSP page. It is also used to specify a
prefix to all the tags in a tag library. The general syntax of the taglib directive is as follows:

<%@ taglib { uri=”...URI...” | tagdir=”...dir...” } prefix=”..prefix..” %>

If tagdir is specified instead of the uri attribute, the tag library is implemented in the form of tag files.
Tag files enable JSP developers to store commonly used segments of JSP code in their own tag libraries.

The attributes in the taglib directive are enumerated in the following table.

Attribute Name Description

uri Used by the container to locate a TLD file that describes the tag library.
The URI can be absolute, as in http://java.sun.com/jsp/jstl/
core, or relative, as in /tags/core. The URI is just used as a unique
identifier for mapping and is not accessed directly. TLD can be mapped
using a taglib map element within the web.xml file.

tagdir Specifies the actual directory that contains the tag files containing the
implementation of the tag library. For JSP 2.0, this should always start
with /WEB-INF/tags.

prefix The prefix to be used within this JSP page, before every tag from the tag
library specified with this <%@ taglib %> directive.

The include directive
The include directive provides a translation-time inclusion mechanism. Using this directive tells the con-
tainer to “pull in” the included content before the resulting JSP is translated into Java code. The JSP code
being included is not executed, but merely included in-line at the position of the directive. Coinciding
with JSP translation, the inclusion is typically performed only once. Once the JSP is translated into Java
code and compiled, only the compiled image is kept around. Note that this is very different from the

1067

JSP Syntax Reference

36_57485x appa.qxd 1/14/05 10:23 PM Page 1067

TEAM LinG - Live, Informative, Non-cost and Genuine!

include action, which performs the inclusion of resources at request processing time for each and every
request. The general syntax for the include directive is as follows:

<%@ include file=”.... URL specification “ %>

The URL specification should be relative to the directory of the location of the current JSP.

Tag file directives
Several JSP directives are used exclusively within tag files. Tag files provide a way to create a tag library
using JSP. In addition to the directives in the following sections, the taglib and include directives are
also available within tag files.

The tag directive
The tag directive is used to provide directions and information to the container or development tool
regarding the tag. Typically, a development tool may use some of these attributes in determining how to
display a specific tag to the developer. Its purpose is similar to the <%@ page %> directive for regular JSP
pages. The general syntax of this directive is as follows:

<%@ tag attributes.... %>

The available attributes for this directive are described in the following table.

Attribute Name Description

display-name A name to be displayed by a development tool accessing this tag. The
default is the name of the tag file.

body-content The default is scriptless. The choices are scriptless, tagdepen-
dent, or empty. scriptless means that no embedded Java code is
allowed within the body, empty means that there can be no body con-
tent, and tagdependent means that scripts are allowed in the body.

dynamic-attributes Used to implement a tag that allows for a flexible and changing set of
attributes, determined only during runtime. This is an advanced JSP
topic and beyond the scope of this appendix. This attribute should not
be specified if the tag does not support dynamic-attributes (the
default).

small-icon Path to a small icon to represent the tag. Typically used by developer
tools.

large-icon Path to a large icon to represent the tag. Typically used by developer
tools.

description A textual description of the tag. Typically used by developer tools.

example A string that shows how to use this tag. Typically used by developer
tools.

1068

Appendix A

36_57485x appa.qxd 1/14/05 10:23 PM Page 1068

TEAM LinG - Live, Informative, Non-cost and Genuine!

Attribute Name Description

language Same as the language attribute of the <%@ page %> directive.

import Same as the import attribute of the <%@ page %> directive.

pageEncoding Same as the pageEncoding attribute of the <%@ page %> directive.

isELIgnored Same as the isELIgnored attribute of the <%@ page %> directive.

The attribute directive
The attribute directive is used to declare an attribute for the tag in a tag file. The general syntax for
this directive is as follows:

<%@ attribute name=”...attr name...” more attributes %>

The allowed attributes for this directive are described in the following table.

Attribute Name Description

name The name of the attribute.

required Indicates if this attribute is a mandatory attribute for the tag. The default
is false.

fragment Indicates to the container if this attribute should be processed by the con-
tainer first (false) or passed to the tag handler first (true). The default
is false.

rtexprvalue Indicates if the attribute value may contain a scriptlet expression. The
default is true.

type Specifies the runtime type of this attribute. The default is a String.

description Specifies a description of the attribute. Typically used by developer tools.

The variable directive
The variable directive is used to expose a variable that can be accessed within the JSP page containing
the tag. The general syntax of this directive is as follows:

<%@ variable { name-given=”... name ...” | name-from-attribute=”...name...”}
.... more attributes.... %>

The attributes of this directive are described in the following table.

1069

JSP Syntax Reference

36_57485x appa.qxd 1/14/05 10:23 PM Page 1069

TEAM LinG - Live, Informative, Non-cost and Genuine!

Attribute Name Description

name-given Specifies the name of a scripting variable that will be defined in the
JSP containing this tag.

name-from-attribute Specifies the name of an attribute whose value at translation time will
be used to create a scripting variable in the JSP containing the tag.

alias Must be used in conjunction with name-from-attribute. Will create
a locally scoped attribute to hold the value of the variable.

variable-class Defaults to String. Specifies the Java type of this variable.

declare The default value is true. Specifies if the variable is declared within
this tag file.

scope The scope of the scripting variable, determining when the container
will perform synchronization of values. Can be AT_BEGIN, AT_END,
or NESTED. The default is NESTED.

description A description of the variable. Typically used by development tools.

Actions
Actions are often called tags in JSP. While the <%@taglib %> directive can add custom actions via tag
libraries, JSP has a set of built-in, ready-to-use tags. These built-in tags are called standard actions.

Standard actions
Standard actions haven’t evolved much since earlier versions of JSP. Therefore, you are likely to see
many of these tags used in legacy code that you may be maintaining.

The <jsp:useBean> action
The <jsp:useBean> action can be used to create a new instance of a JavaBean or to make an existing
instance of a JavaBean (perhaps created using scripting elements) visible to the JSP page. The general
syntax of <jsp:useBean> is as follows:

<jsp:useBean id=”......” scope=”....” type=”....” />

The following table describes the attributes that can be used with <jsp:useBean>.

Attribute Name Description

id The name of the JavaBean instance to look for. It is also the name
used to refer to the new JavaBean instance if one is created. You can-
not have two <jsp:useBean> standard actions using the same id
attribute. This is a mandatory attribute.

1070

Appendix A

36_57485x appa.qxd 1/14/05 10:23 PM Page 1070

TEAM LinG - Live, Informative, Non-cost and Genuine!

Attribute Name Description

class This is the full Java class name of the JavaBean. It is used to create a
new instance if the named bean cannot be found. This is an optional
attribute, but one of the class or type attributes (or both) must be
specified.

type This is a Java interface that the JavaBean instance implements or a
superclass that the JavaBean instance extends. This type is used in the
generation of Java source code during the translation phase. This is an
optional attribute, but one of the class or type attributes (or both)
must be specified.

scope Specifies the scope in which the standard action will attempt to create
the JavaBean. This is an optional attribute. The default value when not
specified is the page scope.

The <jsp:setProperty> action
This standard action is used to set a property value on a JavaBean instance. The general usage form of
this standard action is as follows:

<jsp:setProperty name=”.. JavaBean name...” property=”.. property name ...” [
value=”..value to set..” | param=”... parameter name...”] />

This standard action does not support a body.

The following can be used to set the value(s) of a JavaBean via the <jsp:setProperty> standard
action:

❑ A string constant

❑ A request parameter

❑ An EL expression

The attributes of this standard action are described in the following table.

Attribute Name Description

name Specifies the name used to search through the four scopes for an attached
attribute, a JavaBean, with the same name. If the attribute cannot be
found, an exception will be raised.

property Specifies the property of the JavaBean to be set (not a read-only property).
It can also contain the special * notation. This will cause the container to
match each request parameter against the properties of the JavaBean and
to perform an assignment for each property with an identical name to a
request parameter.

1071

JSP Syntax Reference

36_57485x appa.qxd 1/14/05 10:23 PM Page 1071

TEAM LinG - Live, Informative, Non-cost and Genuine!

Attribute Name Description

param Specifies the request parameter whose value will be used in the assign-
ment. Only one of param or value may be specified.

value Specifies the value to be used in the assignment. Only one of param or
value may be specified.

The <jsp:getProperty> action
The <jsp:getProperty> standard action is used to render the property value of a JavaBean. The gen-
eral form is as follows:

<jsp:getProperty name=”...javabean name...” property=”...property name...” />

The two attributes of this tag are shown in the following table.

Attribute Name Description

name Specifies the name of the JavaBean whose property is to be rendered.
This is typically made available by an earlier <jsp:useBean> standard
action.

property The name of the property to render.

The <jsp:include> action
The <jsp:include> standard action is a request-time action that will include the output of another JSP
at the location of the tag within the calling JSP. The general syntax for this standard action is as follows:

<jsp:include page=”...url..” flush=”true or false”/>

The tag can optionally contain a body:

<jsp:include page=”...url...” flush=”true or false”>
<jsp:param/>

</jsp:include>

In this second usage, there are one or more <jsp:param> standard actions within the body of
<jsp:include>. These <jsp:param> standard actions specify additional request parameters that will
be available within the JSP whose output is being included.

The attributes of this standard action are shown in the following table.

Attribute Name Description

page A URL that is relative to the current JSP page at request time

flush Specifies if the buffer for the output should be flushed immediately
before the included page’s output

1072

Appendix A

36_57485x appa.qxd 1/14/05 10:23 PM Page 1072

TEAM LinG - Live, Informative, Non-cost and Genuine!

The <jsp:forward> action
This standard action forwards the requests to another JSP or Web resource. The processing of the current
JSP will be terminated. The basic syntax of the <jsp:forward> standard action is as follows:

<jsp:forward page=”...url...” />

The following code shows an alternative form whereby a body can consist of <jsp:param> standard
actions:

<jsp:forward page=”..url...”>
<jsp:param/>

</jsp:forward>

This second form can be used to add parameters to the request that will be available within the JSP to
which the request is being forwarded. The attribute available for this standard action is described in the
following table.

Attribute Name Description

page A relative URL to which the request will be forwarded. The URL is a
request-time evaluated URL and may be mapped by entries in the
deployment descriptor (web.xml file).

The <jsp:params> action
The <jsp:params> standard action can occur only within the body of the <jsp:plugin> tag. It is used
to group a set of <jsp:param> entries. Its basic syntax is as follows:

<jsp:params>
<jsp:param/>
<jsp:param/>
....

</jsp:params>

There can be any number of <jsp:param> standard actions in the body of the <jsp:params> tag. Each
will be translated to a parameter for the applet and/or bean embedded on the Web page.

The <jsp:param> action
This standard action can appear in the body of <jsp:include> and <jsp:forward> standard actions.
It can also be used within the <jsp:params> standard action. The general syntax of the <jsp:param>
standard action is as follows:

<jsp:param name=”...name...” value=”...value...”/>

Each <jsp:param> creates a parameter that has a name and a value. Exactly how these parameters will
be used depends on the tag for which the parameters are used.

For example, in both of the <jsp:include> and <jsp:forward> cases, these parameters are request
parameters available for the JSP page being included (or being forwarded to).

1073

JSP Syntax Reference

36_57485x appa.qxd 1/14/05 10:23 PM Page 1073

TEAM LinG - Live, Informative, Non-cost and Genuine!

The <jsp:plugin> action
The <jsp:plugin> standard action will generate the HTML code to embed a Java object on the page.
This is typically a Java applet. The general syntax of the <jsp:plugin> standard action is as follows:

<jsp:plugin type=”... applet or bean...” code=”...” codebase=”...” archive=”...”
....>

...
</jsp:plugin>

The body of this standard action can contain a <jsp:params> and a <jsp:fallback> standard action.
The attributes of this standard action are shown in the following table.

Attribute Name Description

type Either applet or bean; specifies the type of Java object that will be
embedded on the HTML page.

other attributes Any attributes for the HTML <OBJECT> or <EMBED> tags can be specified.
See an HTML reference for the possible attributes.

The <jsp:fallback> action
The <jsp:fallback> standard action can be used only within the body of the <jsp:plugin> tag. This
standard action specifies the HTML that will be rendered (or the JSP code that will be executed) if the
browser does not support the plugin. The basic syntax for <jsp:fallback> is as follows:

<jsp:fallback>
... HTML or JSP that will be rendered if the browser does not support plugin ...

</jsp:fallback>

Other JSP standard actions
There are several other standard JSP actions that are only used in the creation of tag files. They are listed
here but are not covered in this reference. See the JSP 2.0 specification available at http://java.sun.
com/products/jsp/reference/api/index.html if you need the detailed syntax of these actions:

❑ <jsp:attribute>

❑ <jsp:body>

❑ <jsp:invoke>

❑ <jsp:doBody>

❑ <jsp:element>

❑ <jsp:text>

❑ <jsp:output>

1074

Appendix A

36_57485x appa.qxd 1/14/05 10:23 PM Page 1074

TEAM LinG - Live, Informative, Non-cost and Genuine!

Scripting Elements
Scripting elements are embedded non-templating code within JSP pages. This code is typically in the
Java programming language. Scripting elements can take one of three forms:

❑ Declarations

❑ Scriptlets

❑ Expressions

Declaration scripting elements
Declaration scripting elements are Java code that is used to declare variables and methods. The general
syntax is as follows:

<%! ... Java declaration goes here... %>

The following example declares a Java constant and a Java method:

<%!
private static String EXAMPLE = “/example3”;

private String dispPrice(String price)
{

int len = price.length();
if (len <= 2)

return price;
else

return “$” + price.substring(0,len -2) + “.” + price.substring(len-2);
}

%>

Scriptlets
Scriptlets contain arbitrary Java code segments. The general syntax is as follows:

<% ... Java code goes here ... %>

The following example generates dynamic output by writing directly to the out JSP implicit object:

<%
if (state.isLocal())

out.print(totalCost * localTax);
else

out.println(totalCost);
%>

1075

JSP Syntax Reference

36_57485x appa.qxd 1/14/05 10:23 PM Page 1075

TEAM LinG - Live, Informative, Non-cost and Genuine!

Expression scripting elements
Expressions are Java code that yield a resulting value and generate dynamic output when the JSP is exe-
cuted. The resulting value is converted to a text string and placed at the location of the scripting element.
The general syntax is as follows:

<%= ... Java expression goes here ... %>

The following example renders a product name and pricing within an HTML table:

<table>
<tr>

<td><%= curItem.getName() %></td>
<td><%= dispPrice(String.valueOf(curItem.getPrice())) %></td>

</tr>
</table>

While scripting elements offer powerful extension possibilities to JSP developers, they also encourage
the mixing of presentation-level code and business-logic code. This can result in highly convoluted JSP
pages that are difficult to maintain. Modern software design principles mandate that JSP should be used
only for templating or presentation purposes. Business logic should be implemented in another tier out-
side of JSP using technology such as Enterprise Java Beans (EJBs), or other alternative mechanisms.

1076

Appendix A

36_57485x appa.qxd 1/14/05 10:23 PM Page 1076

TEAM LinG - Live, Informative, Non-cost and Genuine!

B
JSP Expression

Language Reference

This appendix captures, at one location, the syntactical details of the Expression Language (EL)
in JSP 2. It serves as a quick reference for resolving usage questions as you apply EL in your JSP
programs.

EL Expressions
EL is a language that complements JSTL, enabling the creation of completely scriptless JSPs. As its
name implies, EL is a language that revolves around the evaluation of expressions. EL expressions
provide powerful access to JavaBeans, Java collections, Java maps, and Java arrays. This capability
eliminates the need to perform access through Java coding from within scripting elements. An EL
expression is always dynamically evaluated at request time. All EL expressions are contained in
the following notation:

${.... EL expression..... }

El expressions may appear in two distinct locations in a JSP page:

❑ In-line with template data

❑ Within attribute values of tags (for example, JSTL tags)

EL expressions in-line with template data
An EL expression can be used to render a textual string in-line with template data — for example,
as a constant EL arithmetic expression:

There are ${5 + 1} bears in the cave.

Another example demonstrates the use of EL to address a property of nested JavaBeans:

The total cost for this order is ${order.totals.afterTax}.

37_57485x appb.qxd 1/14/05 10:21 PM Page 1077

TEAM LinG - Live, Informative, Non-cost and Genuine!

EL expressions in attribute values
EL expressions are also used for the attribute values of certain tags. Namely, EL expressions are fre-
quently found in the attribute values of tags in the JSTL. For example, the <c:if> JSTL tag uses an EL
logical expression for its test attribute value:

<c:if test=”${salary > 100000}”>
Rich cousin!

</c:if>

Accessing Arrays, Maps, Object Properties,
and Collections

The most powerful aspect of EL is the ease with which it can be used to access Java arrays, maps, object
properties, and collections. Access to all of these types is unified via the dot (.) or [] (square brackets)
notation. The rules of access are designed in such a way that the most “obvious” way of accessing an ele-
ment, given that you’re familiar with Java programming, will work as intended.

Object properties access
To access the minQual property of a Java object called member, for example, use the following EL:

You must earn ${member.minQual} points to maintain your membership.

You can also use the equivalent [] notation:

You must earn ${member[“minQual”]} points to maintain your membership.

The getMinQual() getter method of the object will be invoked to obtain the value to be rendered.

Array member access
To access the ninth element in a Java array named callHistory, you can use the following EL:

In the most recent call to the customer, ${callHistory[8]} is discussed .

Java map access
A Java Map typed object provides mapping between a set of keys and a set of values. Using EL, as long
as the key values can be converted to strings, the elements in the Map can be directly accessed using EL.

For example, to access the value associated with the key “Mumbai” in a HashMap (a concrete implemen-
tation of a Java Map) called temperature, the following EL can be used:

The temperature now is ${temperature.Mumbai}.

1078

Appendix B

37_57485x appb.qxd 1/14/05 10:21 PM Page 1078

TEAM LinG - Live, Informative, Non-cost and Genuine!

The following code is equivalent to the preceding code:

The temperature now is ${temperature[“Mumbai”]}.

Java collection access
EL can readily work with any Java Collection object (i.e., objects that implement the java.util
.Collection interface). Iterative access is achieved in collaboration with JSTL’s <c:forEach> tag
(see Appendix C, “JSTL Reference”). Individual elements of a List-based collection can be accessed
via the following EL:

<tr><td>${memberList[3]} </td></tr>

The preceding code will call the memberList.get(3) method and coerce the result to a string for ren-
dering. The fourth element in the list will be displayed.

Elements of EL Expressions
EL expressions are composed of named variables, literals, operators, and functions.

Named variables
Any named variables within EL expressions are first checked against the available EL implicit objects
(see the “Implicit Objects” section later in this appendix). If the named variable does not correspond to
any implicit object, the EL runtime will search through the different scopes for an attribute with the spec-
ified name. It will search the scopes in the order of page ➪ request ➪ session ➪ application.

Literals
Literals are constants that can be used within EL. The following table shows the different types of literals
available in EL.

Literal Type Description

Boolean The value true or false

Integer An integer numeric value

Floating point A floating-point numeric value

String A string within either double or single quotes

Null The value null

1079

JSP Expression Language Reference

37_57485x appb.qxd 1/14/05 10:21 PM Page 1079

TEAM LinG - Live, Informative, Non-cost and Genuine!

Operators
Operators fall into four categories:

❑ Arithmetic operators

❑ Logical operators

❑ Comparison operators

❑ The empty prefix operator

Arithmetic operators
All the basic arithmetic operators that you are familiar with are available within EL expressions. This
includes addition, subtraction, multiplication, division, and modulus. The following table lists these
operators.

Operator Symbol

Addition +

Subtraction -

Multiplication *

Division / or div

Modulo % or mod

Logical operators
In EL, logical operators can be used to combine multiple boolean-valued sub-expressions. The logical
operators supported by EL are shown in the following table.

Operator Symbol

And && or and

Or || or or

Not ! or not

Comparison (relational) operators
EL supports a range of comparison operators found in most programming languages. Each of the opera-
tors has a symbolic form and an abbreviated textual form. The following table enumerates the available
comparison operators.

1080

Appendix B

37_57485x appb.qxd 1/14/05 10:21 PM Page 1080

TEAM LinG - Live, Informative, Non-cost and Genuine!

Operator Symbol

Greater than > or gt

Greater than or equal to >= or ge

Less than < or lt

Lesser than or equal to <= or le

Equal to == or eq

Not equal to != or ne

The empty operator
The empty operator is a unary operator that can be used to test certain conditions. The conditions tested
will depend on the type of the actual operand. The following table shows the empty values for the dif-
ferent operand types.

Operand Data Type Empty Value

String “”

Any named variable Null

Array No elements

Map No elements

List/Collection No elements

Operator precedence
As with most programming languages, parentheses () can be used to control the exact precedence of
the operators.

Otherwise, the precedence follows this order:

1. [] and . ; cannot be overridden by parentheses

2. ()

3. Unary operators (-, !, empty)

4. * / %

5. + -

6. < > <= >=

7. == !=

1081

JSP Expression Language Reference

37_57485x appb.qxd 1/14/05 10:21 PM Page 1081

TEAM LinG - Live, Informative, Non-cost and Genuine!

8. &&

9. ||

10. ? :

Functions
Functions can be used within EL to transform values of variables or other expressions. The general syn-
tax to call a function within EL is as follows:

xx:fname(arg1, arg2,)

Here, xx is the prefix of a tag library that contains the EL function, fname is the name of the function,
and arg1, arg2, is a list of arguments for the function.

EL functions must be packaged as part of a tag library.

Namespace and EL functions
EL functions use the same namespace concept that custom tags use. They must be defined within the
Tag Library Descriptor (TLD).

For example, for an EL function called rankOf(), you may use the following EL expression:

${wf:rankOf(name, level)}

Before using the preceding EL expression, the wf namespace/prefix must be defined in a <%@ taglib %>
directive earlier — in this case, a <%@ taglib %> directive similar to the following:

<%@ taglib prefix=”wf” uri=”http://www.wrox.com/begjsp/el-functions-taglib” %>

EL function implementation: static methods of a Java class
EL functions are implemented in the Java programming language. They must be defined as static methods
in a Java class. They can return a value of any data type, although String return types are most useful
when rendering in EL expressions.

An EL function implemented as a static method can also have any number of arguments. The TLD must
describe the return data type and the arguments’ data type.

For example, the following TLD fragment describes a rankOf() EL function that returns a String, and
takes a String and an int as arguments:

<function>
<description>Function to determine a member’s rank</description>
<name>rankOf</name>
<function-class>com.wrox.begjsp.ch15.ElFuncs</function-class>
<function-signature>String rankOf(String, int)</function-signature>

</function>

1082

Appendix B

37_57485x appb.qxd 1/14/05 10:21 PM Page 1082

TEAM LinG - Live, Informative, Non-cost and Genuine!

Type Conversions
To make programming in EL as simple as possible, EL has a set of type conversion rules that tries to “do
the right thing” under most circumstances. This set of rules governs what happens when operands or
arguments of an inappropriate type are supplied in expressions.

Coercion: automatic type conversion
Coercion, or automatic type conversion, occurs when the input type does not match the required type.
For example, the attribute of a tag may require an integer value, but the input value is a string. Before
this conversion can happen, EL will always first “box” a primitive type, as explained next.

Boxing and unboxing
Boxing is simply the action of creating an associated Java object from a primitive type. The following
table shows the common primitive types and their boxed form. Unboxing refers to the action of creating
a primitive typed value from the associated Java object.

Primitive Type Boxed Type

int Integer

long Long

double Double

char Character

boolean Boolean

Coercion to String
Variable values are coerced to a String type as follows:

1. First box the variable if it is primitive.

2. Use the toString() method of the wrapping object to obtain the String equivalent.

Null values are returned as an empty string, “”. An error will result if the call to toString() throws an
exception.

Coercion to Number
Number types include short, int, float, double, and their boxed types.

Variables of any type are coerced to a number type by first boxing them if necessary, and then taking one
of the following actions:

❑ If the type is String, use the valueOf() method to get its value; “” empty string will return 0.

❑ If the type is Character, use new Short((short) v.charValue()), assuming the Character
variable is called v.

❑ Unbox the variable if necessary.

1083

JSP Expression Language Reference

37_57485x appb.qxd 1/14/05 10:21 PM Page 1083

TEAM LinG - Live, Informative, Non-cost and Genuine!

Null values are returned as 0. If the type is a Boolean, an error will result. Numbers can always be con-
verted successfully among themselves (for example, Integer to Float). If the call to valueOf() throws
an exception, an error will result.

Coercion to Character
Variable values are coerced to Character type in the following manner:

❑ If the type is a Number type, first it is coerced to the type Short, and then a Character is
returned that is numerically equivalent to the short value.

❑ If the type is String, the method charAt(0) is used to obtain the Character. This is essentially
the first character of the string.

Coercing a null value causes (char) 0 to be returned as the result. A Boolean incoming type will cause
an error.

Implicit Objects
Implicit objects are built-in objects that can be used within any EL expression. This concept is similar
to implicit objects in JSP. In fact, EL can be used to access equivalent JSP implicit objects through the
pageContext implicit object.

However, accessing JSP implicit objects is unnecessary because the set of EL implicit objects makes
accessing relevant values substantially easier.

There are 11 EL implicit objects, which can be classified into five major categories:

❑ JSP implicit object: pageContext

❑ Convenience scoping access: pageScope, requestScope, sessionScope, applicationScope

❑ Convenience parameter access: param, paramValues

❑ Convenience header access: header, headerValues, cookies

❑ Convenience initialization parameter access: initParam

The pageContext implicit object
This is the same as the JSP implicit object of the same name. The properties of this implicit object can be
used to access the various JSP implicit objects.

For example, pageContext.request is the same as the request JSP implicit object, and pageContext.
servletContext is the same as the JSP application implicit object. For more details on the available
properties, see a description of the pageContext JSP implicit object in Appendix A.

1084

Appendix B

37_57485x appb.qxd 1/14/05 10:21 PM Page 1084

TEAM LinG - Live, Informative, Non-cost and Genuine!

The pageScope implicit object
The pageScope implicit object provides a map of all the available attributes in the page scope. In EL,
values of a Map can be accessed via the [] notation or the . notation.

For example, to render the value of an attribute named selectedRow in the page scope, the following
EL can be used:

${pageScope.selectedRow}

The following EL is equivalent:

${pageScope[“selectedRow”]}

The requestScope implicit object
The requestScope implicit object provides a map of all the available attributes in the request scope.
In EL, values of a map can be accessed via the [] notation or the dot (.) notation.

For example, to render the value of an attribute named currentCert in the request scope, the following
EL can be used:

${requestScope.currentCert}

The following EL is equivalent:

${requestScope[“currentCert”]}

Note that in some cases, if the incoming request is originating from another Web resource (for example,
a PERL script), the name of the attribute may actually contain embedded dot (.) characters. In this case,
you must use the second EL syntax shown above — the [] notation to access the value of the attribute.

The sessionScope implicit object
The sessionScope implicit object provides a Map of all the available attributes in the session scope.
In EL, values of a Map can be accessed via either the [] notation or the dot (.) notation.

For example, to render the value of an attribute named orderTotal in the session scope, the following
EL can be used:

${sessionScope.orderTotal}

The following EL is equivalent:

${sessionScope[“orderTotal”]}

1085

JSP Expression Language Reference

37_57485x appb.qxd 1/14/05 10:21 PM Page 1085

TEAM LinG - Live, Informative, Non-cost and Genuine!

The applicationScope implicit object
The applicationScope implicit object provides a map of all the available attributes in the application
scope. In EL, values of a map can be accessed via the [] notation or the dot (.) notation.

For example, to render the value of an attribute named productCategories in the application scope,
the following EL can be used:

${applicationScope.productCategories}

The following EL is equivalent:

${applicationScope[“productCategories”]}

The param implicit object
The param implicit object is a map containing all the incoming request parameters. The keys of the map
are the names of the parameters, and the values are the corresponding values. In EL, values of a map can
be accessed via the [] notation or the dot (.) notation.

For example, to render the value of a request parameter named address1, the following EL can be used:

${param.address1}

The following EL is equivalent:

${param[“address1”]}

The paramValues implicit object
The paramValues implicit object is a map providing access to all multivalued incoming request parame-
ters. The keys of the map are the names of the parameters, and the values are arrays of strings (String
[]) with the corresponding values. In EL, values of a map can be accessed via the [] notation or the dot
(.) notation.

For example, to access the values in a multivalued request parameter named itemsPurchased, the fol-
lowing EL can be used. Of course, you are likely to use <c:forEach> to iterate through the resulting
array value.

${paramValues.itemsPurchased}

Equivalently, the following EL can also be used obtain the array:

${paramValues[“itemsPurchased”]}

1086

Appendix B

37_57485x appb.qxd 1/14/05 10:21 PM Page 1086

TEAM LinG - Live, Informative, Non-cost and Genuine!

The header implicit object
The header implicit object is a Map containing all the HTTP headers. The keys of the Map are the names of
the headers, and the values are the corresponding header values. In EL, values of a Map can be accessed
via the [] notation or the dot (.) notation.

For example, to render the value of the HTTP header User-Agent, the following EL can be used:

${header[“User-Agent”]}

The headerValues implicit object
The headerValues implicit object is a Map providing access to all multivalued HTTP request headers.
The keys of the Map are the names of the headers, and the values are arrays of strings (String []) with the
corresponding values. In EL, values of a Map can be accessed via the [] notation or the dot (.) notation.

For example, to access the values in a multivalued HTTP header named Accept-Encoding, the follow-
ing EL can be used. Of course, you are likely to use <c:forEach> to iterate through the resulting array.

${header[“Accept-Encoding”]}

The cookies implicit object
The cookies implicit object is a map containing all the values from available HTTP cookies with the
request. The keys of the map are the names of the cookies, and the values are the corresponding values.
In EL, values of a map can be accessed via either the [] notation or the dot (.) notation.

For example, to render the value of a cookie named lastLoginName, the following EL can be used:

${cookies.lastLoginName}

Equivalently, the following EL can also be used:

${cookies[“lastLoginName”]}

Multiple cookies with the same name are not well supported by the implementation and should be
avoided.

The initParam implicit object
The initParam implicit object is a Map containing all the values from initialization parameters for the cur-
rent ServletContext (specified through the web.xml deployment descriptor; see Chapter 15, “JSP and
Servlets,” for more details). The keys of the map are the names of the initialization parameters, and the
values are the corresponding values. In EL, values of a map can be accessed via either the [] notation or
the dot (.) notation.

1087

JSP Expression Language Reference

37_57485x appb.qxd 1/14/05 10:21 PM Page 1087

TEAM LinG - Live, Informative, Non-cost and Genuine!

For example, to render the value of an initialization parameter named localOffice, the following EL
can be used:

${initParam.localOffice}

The following EL is equivalent:

${initParam[“localOffice”]}

1088

Appendix B

37_57485x appb.qxd 1/14/05 10:21 PM Page 1088

TEAM LinG - Live, Informative, Non-cost and Genuine!

C
JSTL Reference

The Java Standard Tag Library (JSTL) is a standardized collection of custom tags. It has a number
of tags for common tasks such as iterating through lists, interacting with databases, handling XML
data, formatting data, and much more.

The latest version of JSTL (at the time of writing) is 1.1. An implementation of JSTL can be down-
loaded from the Apache Jakarta Web site (http://jakarta.apache.org/).

JSTL consist of four sets of tags and a library of functions, grouped according to their functionality:

❑ JSTL core tags

❑ JSTL XML tags

❑ JSTL formatting tags

❑ JSTL SQL tags

❑ JSTL functions

JSTL Core Tags
The JSTL core tag library contains tags that deal with flow control in JSP pages, iterating over col-
lections, evaluating expressions, and importing resources.

Before using the core tag library, the following directive needs to be added to the JSP page:

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>

The equivalent XML syntax for this directive is as follows:

<jsp:directive.taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” />

The following table summarizes the JSTL core tags.

38_57485x appc.qxd 1/14/05 10:20 PM Page 1089

TEAM LinG - Live, Informative, Non-cost and Genuine!

Tag Name Description

catch Catches any Throwable exception that occurs in the body of the tag

choose Provides conditional operation and allows for choosing between mutually
exclusive options

if Provides conditional operation

import Imports a resource specified by a URL and exposes it to the page, variable,
or reader

forEach Iterates over collections

forTokens Iterates over tokens

out Outputs expressions to the Web page

otherwise A conditional operation tag for choosing between mutually exclusive
options. This tag is a subtag of the choose tag.

param Used along with the import, redirect, or url tags to add a parameter to
a URL

redirect Redirects to a new URL

remove Removes a variable from a scope

set Sets the value of an attribute

url Creates a URL

when A conditional operation tag that includes its body when an expression eval-
uates to true. This tag is a subtag of the choose tag.

catch
The catch tag is used to catch any java.lang.Throwable exception in the body of the tag. The syntax
of the catch tag is as follows:

<c:catch [var=”variable_name”]>
JSP body content

</c:catch>

The catch tag has one attribute:

❑ var: Name of the variable that is set to the thrown exception. This is an optional attribute.

An example of the catch tag is listed here:

<c:catch var=”exp”>
<c:import url=”http://www.foobar.com/stuff.html”/>

</c:catch>
<c:if test=”${not empty exp}”>

Sorry, unable to import from URL, got exception <c:out value=”${exp}” />
</c:if>

1090

Appendix C

38_57485x appc.qxd 1/14/05 10:20 PM Page 1090

TEAM LinG - Live, Informative, Non-cost and Genuine!

choose
The choose tag is used to provide conditional operation, and allows for choosing between mutually
exclusive options. The actual selection is done using its subtags: when and otherwise. The syntax of
the choose tag is shown here:

<c:choose>
<c:when test=”expression”>

JSP body content
</c:when>
...
<c:otherwise>

JSP body content
</c:otherwise>

</c:choose>

An example of the choose tag is as follows:

<c:choose>
<c:when test=”${userrole} == ‘admin’}”>

Welcome admin. Proceed to your admin page here
</c:when>
<c:when test=”${userrole} == ‘member’}”>

Welcome member. Proceed to your home page here
</c:when>
<c:otherwise>

Welcome guest. Log in here.
</c:otherwise>

</c:choose>

if
The if tag evaluates a test condition. If it is true, it processes its body. If the test condition is false, the
body is ignored. The syntax of the if tag is shown here:

<c:if test=”test condition>
[var=”variable name”]
[scope=”page|request|session|application”]>

JSP body content
</c:if>

The if tag has three attributes:

❑ test: The test condition that determines whether the body of the tag is to be processed. This is a
mandatory attribute.

❑ var: Variable that holds the result (true or false) of the test condition evaluation. This variable
can be used for future test conditions (depending on the scope of the variable), thus avoiding
reevaluation of the test condition. This is an optional attribute.

❑ scope: Scope of the variable specified in the var attribute. This can be page, request,
session, or application, and defaults to page if not specified. This is an optional attribute.

1091

JSTL Reference

38_57485x appc.qxd 1/14/05 10:20 PM Page 1091

TEAM LinG - Live, Informative, Non-cost and Genuine!

An example of the if tag is listed here:

<c:if test=”${not empty exp}”>
Sorry, unable to import from URL, got exception <c:out value=”${exp}” />

</c:if>

import
The import tag imports a resource specified by a URL and exposes it to the page, variable, or reader. It
is similar to the <jsp:include> directive, but with more features. The body of the import tag can have
param tags for adding parameters to the URL. The syntax for the tag is shown here:

<c:import url=”resource URL”
[var=”variable name”]
[scope=”page|request|session|application”]
[varReader=”variable name”]
[context=”context name”]
[charEncoding=”character encoding”]>

JSP body content
</c:import>

The import tag has six attributes:

❑ url: The relative or absolute URL of the resource being imported. This is a mandatory attribute.

❑ var: The variable in which the content retrieved from the specified URL should be stored. This
is an optional attribute.

❑ scope: Scope of the variable specified in the var attribute. This can be page, request,
session, or application, and defaults to page if not specified. This is an optional attribute.

❑ varReader: Name of the Reader for the URL resource. This is an optional attribute.

❑ context: When the URL being imported is a relative URL in another context, the context name
is specified in this attribute. This is an optional attribute.

❑ charEncoding: The character encoding of the content at the specified URL. This is an optional
attribute.

An example of the import tag is listed here:

<c:import url=”http://www.foobar.com/stuff.html”/>

forEach
The forEach tag is used for iteration over collections. The syntax of the forEach tag is shown here:

<c:forEach [items=”collection of items”]
[begin=”begin index”]
[end=”end index”]
[step=”step size”]
[var=”variable name”]

1092

Appendix C

38_57485x appc.qxd 1/14/05 10:20 PM Page 1092

TEAM LinG - Live, Informative, Non-cost and Genuine!

[varStatus=”status variable name”]>
JSP body content

</c:forEach>

The forEach tag has six attributes:

❑ items: The collection of items to iterate over. The collection can be any Java object of type
java.util.Collection or java.util.Map. This is an optional attribute.

❑ begin: The start index for the iteration. This is an optional attribute.

❑ end: The end index for the iteration. This is an optional attribute.

❑ step: The size of the index increment while iterating over the collection. The iteration will pro-
cess every step item of the collection, starting from the begin index (or first item, if begin is
not specified). For example, if step is 5, the index is incremented by 5 every iteration. This is an
optional attribute.

❑ var: The name of the variable in which the current item in the iteration is stored. This is an
optional attribute.

❑ varStatus: The name of the variable in which the status of the iteration is stored.

An example of the forEach tag is listed here:

<c:forEach items=”${list}” var=”listItem” varStatus=”status”>

<c:out value=”${listItem}”/>
</c:forEach>

forTokens
The forTokens tag is used for iterating over tokens separated by a delimiter. The syntax of the
forTokens tag is shown here:

<c:forTokens items=”string of tokens”
delims=”delimiter characters”

[begin=”begin index”]
[end=”end index”]
[step=”step size”]
[var=”variable name”]
[varStatus=”status variable name”]>

JSP body content
</c:forTokens>

The forTokens tag has seven attributes:

❑ items: The string of tokens to iterate over. This is a mandatory attribute.

❑ delims: The set of characters that separate the tokens in the string (i.e., delimiters). This is a
mandatory attribute.

1093

JSTL Reference

38_57485x appc.qxd 1/14/05 10:20 PM Page 1093

TEAM LinG - Live, Informative, Non-cost and Genuine!

❑ begin: The start index for the iteration, which defaults to 0. This is an optional attribute.

❑ end: The end index for the iteration. This is an optional attribute.

❑ step: The size of the index increment while iterating over the tokens. The iteration will process
every step token, starting from the begin index (or first item, if begin is not specified). This is
an optional attribute.

❑ var: The name of the variable in which the current item in the iteration is stored. This is an
optional attribute.

❑ varStatus: The name of the variable in which the status of the iteration is stored.

An example of the forTokens tag is listed here:

<c:forTokens items=”${list}” delims =”:” var=”listItem” varStatus=”status”>

<c:out value=”${listItem}”/>
</c:forTokens>

out
The out tag is used to output the result of an expression. It functions similarly to the <%= ... => JSP
syntax. The syntax of the out tag is shown here:

<c:out value=”expression”
[default=”default expression value”]
[escapeXml=”true|false”]>

JSP body content
</c:out>

The out tag has three attributes:

❑ value: The expression to be evaluated. The result of the expression is output to the page. This is
a mandatory attribute.

❑ default: The default value of the expression in case it results in a null. This is an optional
attribute.

❑ escapeXml: Determines whether the <, >, “ and ‘ characters in the resultant string should be
converted to their corresponding character entity codes. This is an optional attribute and
defaults to true.

An example of the out tag is listed here:

<c:forTokens items=”${list}” delims =”:” var=”listItem” varStatus=”status”>

<c:out value=”${listItem}”/>
</c:forTokens>

1094

Appendix C

38_57485x appc.qxd 1/14/05 10:20 PM Page 1094

TEAM LinG - Live, Informative, Non-cost and Genuine!

otherwise
The otherwise tag is used for conditional evaluation of its body. It is a subtag of the choose tag and
executes only if none of the when tags evaluate to true. The syntax of the otherwise tag is shown here:

<c:otherwise>
JSP body content

</c:otherwise>

An example for the otherwise tag is listed here:

<c:choose>
<c:when test=”${userrole} == ‘admin’}”>

Welcome admin. Proceed to your admin page here
</c:when>
<c:when test=”${userrole} == ‘member’}”>

Welcome member. Proceed to your home page here
</c:when>
<c:otherwise>

Welcome guest. Log in here.
</c:otherwise>

</c:choose>

param
The param tag is used along with the import, redirect, or url tags to add a parameter to a URL. The
syntax of the param tag is shown here:

<c:param name=”parameter name” [value=”parameter value”]>
JSP body content

</c:param>

The param tag has two attributes:

❑ name: The name of the parameter. This is a mandatory attribute.

❑ value: The value for the parameter. This is an optional attribute.

An example for the param tag is listed here. This generates a URL of the form
http://www.google.com/search?q=<search term>.

<c:url value=”http://www.google.com/search”>
<c:param name=”q” value=”${searchTerm}”/>

</c:url>

redirect
The redirect tag redirects the user to a new URL. The body of the redirect tag can have param tags
for adding parameters to the URL. The syntax for the tag is shown here:

1095

JSTL Reference

38_57485x appc.qxd 1/14/05 10:20 PM Page 1095

TEAM LinG - Live, Informative, Non-cost and Genuine!

<c:redirect url=”resource URL>
[context=”context name”]>

JSP body content
</c:redirect>

The redirect tag has two attributes:

❑ url: The relative or absolute URL of the resource being imported. This is an optional attribute.

❑ context: When the URL to which one is being redirected is a relative URL in another context,
the context name is specified in this attribute. This is an optional attribute.

An example of the redirect tag is listed here:

<c:catch var=”exp”>
<c:import url=”http://www.foobar.com/stuff.html”/>

</c:catch>
<c:if test=”${not empty exp}”>

<c:redirect url=”/error.jsp”/>
</c:if>

remove
The remove tag removes a variable from a scope. The syntax of the remove tag is shown here:

<c:remove var=”variable name”
[scope=”page|request|session|application”] />

The remove tag has two attributes:

❑ var: The variable to be removed. This is a mandatory attribute.

❑ scope: Scope of the variable specified in the var attribute. This can be page, request,
session, or application, and defaults to page if not specified. This is an optional attribute.

An example of the remove tag is listed here:

<c:remove var=”foobar”/>

set
The set tag sets a variable or a property to the value of an expression. The syntax of the set tag is
shown here:

<c:set [var=”variable name”]
[value=”expression”]
[target=”JavaBean or Map object name”]
[property=”target property name”]

1096

Appendix C

38_57485x appc.qxd 1/14/05 10:20 PM Page 1096

TEAM LinG - Live, Informative, Non-cost and Genuine!

[scope=”page|request|session|application”] >
JSP body content

</c:set>

The set tag has five attributes:

❑ var: The variable that is set to the value of the expression. This is an optional attribute.

❑ value: The expression to be evaluated. This is an optional attribute.

❑ target: The target object (JavaBean or Map object) whose property will be set.

❑ property: Name of the property to be set in the target attribute.

❑ scope: Scope of the variable specified in the var attribute. This can be page, request,
session, or application, and defaults to page if not specified. This is an optional attribute.

An example of the set tag is listed here:

<c:set var=”index” value=”1” scope=”page” />

url
The url tag creates a URL. The body of the url tag can have param tags for adding parameters to the
URL. The syntax for the tag is shown here:

<c:url [var=”variable name”]
[scope=”page|request|session|application”]
[value=”url”]
[context=”context name”]>

JSP body content
</c:url>

The url tag has four attributes:

❑ var: The variable that contains the processed URL.

❑ scope: Scope of the variable specified in the var attribute. This can be page, request,
session, or application, and defaults to page if not specified. This is an optional attribute.

❑ value: The URL to be processed. This is an optional attribute.

❑ context: When the URL is a relative URL in another context, the context name is specified in
this attribute. This is an optional attribute.

An example of the url tag is listed here:

<c:url value=”http://www.google.com/search”>
<c:param name=”q” value=”${searchTerm}”/>

</c:url>

1097

JSTL Reference

38_57485x appc.qxd 1/14/05 10:20 PM Page 1097

TEAM LinG - Live, Informative, Non-cost and Genuine!

when
The when tag is used for conditional evaluation of its body. It is a subtag of the choose tag, and its body
is included only if the test condition is true. The syntax of the otherwise tag is shown here:

<c:when test=”test condition” >
JSP body content

</c:when>

The when tag has one attribute:

❑ test: The test condition that determines whether the body of the tag is to be processed. This is a
mandatory attribute.

An example of the when tag is listed here:

<c:choose>
<c:when test=”${userrole} == ‘admin’}”>

Welcome admin. Proceed to your admin page here
</c:when>
<c:when test=”${userrole} == ‘member’}”>

Welcome member. Proceed to your home page here
</c:when>
<c:otherwise>

Welcome guest. Log in here.
</c:otherwise>

</c:choose>

JSTL XML Tags
The JSTL XML tag library has custom tags for interacting with XML data. This includes parsing XML,
transforming XML data, and flow control based on XPath expressions.

XPath is a syntax for addressing parts of an XML document. It allows for both relative and absolute
paths to a XML element or attribute. For example, child::foo refers to an XML element called foo
that is a child of the current XML node, and /employee/dependent refers to all XML elements
called dependent that are children of the root element employee.

For more information on XPath, XSL, and other XML technologies, refer to Beginning XML, 2nd
Edition (ISBN 0-7645-4394-6).

Before using the XML tag library, the following directive needs to be added to the JSP page:

<%@ taglib prefix=”x” uri=”http://java.sun.com/jsp/jstl/xml” %>

The equivalent XML syntax for this directive is as follows:

<jsp:directive.taglib prefix=”x” uri=”http://java.sun.com/jsp/jstl/xml” />

The following table summarizes the JSTL XML tags.

1098

Appendix C

38_57485x appc.qxd 1/14/05 10:20 PM Page 1098

TEAM LinG - Live, Informative, Non-cost and Genuine!

Tag Name Description

choose Provides conditional operation and allows for choosing between mutually
exclusive options.

forEach Iterates over collections based on XPath expressions.

if Provides conditional operation based on XPath expressions.

otherwise A conditional operation tag for choosing between mutually exclusive
options. Subtag of the choose tag.

out Outputs expressions to the Web page.

param Used along with the transform tag to add a parameter to the XML
transformer.

parse Parses XML content.

set Evaluates an XPath expression and sets the value of an attribute to it.

transform Applies an XSLT stylesheet to XML data.

when A conditional operation tag that includes its body when an expression eval-
uates to true. Subtag of the choose tag.

choose
The choose tag is used to provide conditional operation and allows for choosing between mutually
exclusive options. The actual selection is made using its subtags: when and otherwise. The syntax of
the choose tag is shown here:

<x:choose>
<x:when test=”XPath expression”>

JSP body content
</x:when>
...
<x:otherwise>

JSP body content
</x:otherwise>

</x:choose>

An example of the choose tag is listed here:

<x:choose>
<x:when select=”message[.= ‘warning’]”>

An error occurred.
</x:when>
<x:when select=”message[.= ‘fatal’]”>

A fatal error occurred.
</x:when>
<x:otherwise>

Welcome guest. Log in here.
</x:otherwise>

</x:choose>

1099

JSTL Reference

38_57485x appc.qxd 1/14/05 10:20 PM Page 1099

TEAM LinG - Live, Informative, Non-cost and Genuine!

forEach
The forEach tag is used for iterating over collections. The syntax of the forEach tag is shown here:

<x:forEach select=”XPath expression”
[begin=”begin index”]
[end=”end index”]
[step=”step size”]
[var=”variable name”]
[varStatus=”status variable name”]>

JSP body content
</x:forEach>

The forEach tag has six attributes:

❑ select: The XPath expression to be evaluated. This is a mandatory attribute.

❑ begin: The start index for the iteration. This is an optional attribute.

❑ end: The end index for the iteration. This is an optional attribute.

❑ step: The size of the index increment while iterating over the collection. The iteration will pro-
cess every step item of the collection, starting from the begin index (or first item, if begin is
not specified). This is an optional attribute.

❑ var: The name of the variable in which the current item in the iteration is stored. This is an
optional attribute.

❑ varStatus: The name of the variable in which the status of the iteration is stored.

An example of the forEach tag is listed here:

<x:forEach select=”$rssDocument//*[name()=’item’]”>

<a href=”<x:out select=”./*[name()=’link’]”/>”>
<x:out select=”./*[name()=’title’]” escapeXml=”false”/>

</x:forEach>

if
The if tag evaluates a test XPath expression; if it is true, it processes its body. If the test condition is
false, the body is ignored. The syntax of the if tag is shown here:

<x:if select=”XPath expression”
[var=”variable name”]
[scope=”page|request|session|application”]>

JSP body content
</x:if>

1100

Appendix C

38_57485x appc.qxd 1/14/05 10:20 PM Page 1100

TEAM LinG - Live, Informative, Non-cost and Genuine!

The if tag has three attributes:

❑ select: The test XPath expression that determines whether the body of the tag is to be processed.
This is a mandatory attribute.

❑ var: Variable that holds the result (true or false) of the test condition evaluation. This variable
can be used for future test conditions (depending on the scope of the variable), thus avoiding
reevaluation of the test condition. This is an optional attribute.

❑ scope: Scope of the variable specified in the var attribute. This can be page, request, session,
or application, and defaults to page if not specified. This is an optional attribute.

An example of the if tag is listed here:

<x:if select=”message[.= ‘warning’]”>
An error occurred.

</x:if>

otherwise
The otherwise tag is used for conditional evaluation of its body. It is a subtag of the choose tag and
executes only if none of the when tags evaluates to true. The syntax of the otherwise tag is as follows:

<x:otherwise>
JSP body content

</x:otherwise>

An example of the otherwise tag is listed here:

<x:choose>
<x:when select=”message[.= ‘warning’]”>

An error occurred.
</x:when>
<x:when select=”message[.= ‘fatal’]”>

An fatal error occurred.
</x:when>
<x:otherwise>

Welcome guest. Log in here.
</x:otherwise>

</x:choose>

out
The out tag is used to output the result of an XPath expression. It functions similarly to the <%= ... =>
JSP syntax. The syntax of the out tag is shown here:

<x:out select=”XPath expression”
[escapeXml=”true|false”] />

1101

JSTL Reference

38_57485x appc.qxd 1/14/05 10:20 PM Page 1101

TEAM LinG - Live, Informative, Non-cost and Genuine!

The out tag has two attributes:

❑ select: The XPath expression to be evaluated. The result of the expression is output to the
page. This is a mandatory attribute.

❑ escapeXml: Determines if the <, >, “, and ‘ characters in the resultant string should be converted
to their corresponding character entity codes. This is an optional attribute and defaults to true.

An example of the out tag is listed here:

<x:out select=”./*[name()=’title’]” escapeXml=”false”/>

param
The param tag is used along with the transform tag to add a parameter to the transformer. The syntax
of the param tag is shown here:

<x:param name=”parameter name” [value=”parameter value”]>
JSP body content

</x:param>

The param tag has two attributes:

❑ name: The name of the parameter. This is a mandatory attribute.

❑ value: The value for the parameter. This is an optional attribute

An example of the param tag is listed here:

<x:transform xml=”${xmlDoc}” xslt=”${styleSheet}”>
<param name=”id” value=”${idvalue}” />

</x:transform>

parse
The parse tag is used to parse XML data specified either via an attribute or in the tag body. The syntax
of the parse tag is shown here:

<x:parse [var=”variable name”]
[varDom=”variable name”]
[scope=”page|request|session|application”]
[scopeDom=”page|request|session|application”]
[doc=”XML document”]
[systemId=”system identifier URI”]
[filter=”filter”]>

JSP body content
</x:parse>

1102

Appendix C

38_57485x appc.qxd 1/14/05 10:20 PM Page 1102

TEAM LinG - Live, Informative, Non-cost and Genuine!

The parse tag has seven attributes:

❑ var: A variable that contains the parsed XML data. The type of this data is implementation
dependant.

❑ varDom: A variable that contains the parsed XML data. The type of this data is
org.w3c.dom.Document.

❑ scope: Scope of the variable specified in the var attribute. This can be page, request,
session, or application, and defaults to page if not specified. This is an optional attribute.

❑ scopeDom: Scope of the variable specified in the varDom attribute. This can be page, request,
session, or application, and defaults to page if not specified. This is an optional attribute.

❑ doc: XML document to be parsed

❑ systemId: The system identifier URI for parsing the document

❑ filter: The filter to be applied to the source document

The parse tag also has an attribute called xml, which has been deprecated; the doc attribute should be
used instead.

An example of the parse tag is listed here:

<c:import var=”rssFeed” url=” “http://www.theserverside.com/rss/theserverside-
servletsjsp-rss2.xml”/>
<x:parse var=”rssDocument” xml=”${rssFeed}”/>

set
The set tag sets a variable to the value of an XPath expression. The syntax of the set tag is shown here:

<x:set var=”variable name”
[select=”XPath expression”]
[scope=”page|request|session|application”]/>

The set tag has three attributes:

❑ var: A variable that is set to the value of the XPath expression. This is a mandatory attribute.

❑ select: The XPath expression to be evaluated. This is an optional attribute.

❑ scope: Scope of the variable specified in the var attribute. This can be page, request,
session, or application, and defaults to page if not specified. This is an optional attribute.

An example of the set tag is listed here:

<x:set var=”firstTitle”
select=”$rssDocument//*[name()=’channel’]/*[name()=’title’][1]}”/>

1103

JSTL Reference

38_57485x appc.qxd 1/14/05 10:20 PM Page 1103

TEAM LinG - Live, Informative, Non-cost and Genuine!

transform
The transform tag applies an XSL transformation on a XML document. The syntax for the tag is
shown here:

<x:set [var=”variable name”]
[scope=”page|request|session|application”]
[result=””]
[doc=””]
[docSystemId=””]
[xslt=””]
[xsltSystemId=””]>

JSP body content
</x:set>

XSL (Extensible Style Sheet) is a stylesheet language for XML. XSLT (XSL Transformation) is an XML
language that describes the rules for transforming an XML document into another XML document.

The transform tag has seven attributes:

❑ var: The org.w3c.dom.Document variable that is set to the transformed XML document. This
is an optional attribute.

❑ scope: Scope of the variable specified in the var attribute. This can be page, request,
session, or application, and defaults to page if not specified. This is an optional attribute.

❑ result: The result object that captures or processes the transformation result. This is an
optional attribute.

❑ doc: The XML document to be transformed. This is an optional attribute.

❑ docSystemId: The system identifier URI for parsing the XML document. This is an optional
attribute.

❑ xslt: The stylesheet, which is specified as a String, Reader, or Source object. This is an
optional attribute.

❑ xsltSystemId: The system identifier URI for parsing the XSLT stylesheet. This is an optional
attribute.

The transform tag also has attributes called xml and xmlSystemId that have been deprecated; doc and
docSystemId should be used instead.

An example of the transform tag is listed here:

<c:import var=”rssFeed” url=” “http://www.theserverside.com/rss/theserverside-
servletsjsp-rss2.xml”/>
<c:import var=”rssToHtml” url=”/WEB-INF/xslt/rss2html.xsl”/>
<x:transform xml=”${rssFeed}” xslt=”${rssToHtml}”/>

1104

Appendix C

38_57485x appc.qxd 1/14/05 10:20 PM Page 1104

TEAM LinG - Live, Informative, Non-cost and Genuine!

when
The when tag is a subtag of choose, and it evaluates its body when the expression used in it is true. The
syntax for the tag is shown here:

<x:when select=”XPath expression”>
JSP body content

</x:when>

The when tag has one attribute:

❑ select: The XPath expression to be evaluated. This is a mandatory attribute.

An example of the when tag is listed here:

<x:when select=”message[.= ‘warning’]”>
An error occurred.

</x:when>

JSTL Formatting Tags
The JSTL formatting tag library provides support for internationalization (i18n); that is, it enables the
formatting of data (dates, numbers, time) in different locales.

Before using the formatting tag library, the following directive needs to be added to the JSP page:

<%@ taglib prefix=”fmt” uri=”http://java.sun.com/jsp/jstl/fmt” %>

The equivalent XML syntax for this directive is as follows:

<jsp:directive.taglib prefix=”fmt” uri=”http://java.sun.com/jsp/jstl/fmt” />

The following table summarizes the JSTL formatting tags.

Tag Name Description

bundle Loads a resource bundle

formatDate Formats date and time

formatNumber Formats a numeric value as a number, currency, or a percentage

message Outputs a localized string

param Supplies an argument to a containing message tag

parseDate Parses a string representation of date/time

parseNumber Parses a string representation of a number, currency, or a percentage

Table continued on following page

1105

JSTL Reference

38_57485x appc.qxd 1/14/05 10:20 PM Page 1105

TEAM LinG - Live, Informative, Non-cost and Genuine!

Tag Name Description

requestEncoding Sets the request character encoding

setBundle Loads a resource bundle and stores it in a named variable

setLocale Stores the locale in a named variable

setTimeZone Stores the time zone in a named variable

timeZone Specifies the time zone for formatting or parsing date/time data

bundle
The bundle tag loads a resource bundle for the body of the tag. The body usually contains a nested
fmt:message tag to display a localized message. The syntax of the tag is shown here:

<fmt:bundle basename=”resource bundle basename”
[prefix=”message key prefix”]>

JSP body content
</fmt:bundle>

The bundle tag has two attributes:

❑ basename: The basename of the resource bundle. This is a mandatory attribute.

❑ prefix: The prefix to be applied to the message key for any nested fmt:message tags. This is
an optional attribute.

An example of the bundle tag is listed here:

<fmt:bundle basename=”com.wrox.webapps.ErrorBundle”>
<fmt:message key=”com.wrox.webapps.ErrorBundle.loginError”/>

</fmt:bundle>

formatDate
The formatDate tag formats date and time data according to a specified style and pattern. The syntax of
the tag is shown here:

<fmt:formatDate value=”string representation”
[type=”date|time|both”]
[dateStyle=”formatting style”]
[timeStyle=”formatting style”]
[pattern=”formatting pattern”]
[timeZone=”timezone”]
[var=”variable name”]
[scope=”page|request|session|application”] />

1106

Appendix C

38_57485x appc.qxd 1/14/05 10:20 PM Page 1106

TEAM LinG - Live, Informative, Non-cost and Genuine!

The formatDate tag has eight attributes:

❑ value: The date/time to be formatted. This is a mandatory attribute.

❑ type: Specifies if the data to be formatted contains a date, time, or both.

❑ dateStyle: Formatting style used for dates. The valid style values are defined by the
java.text.DateFormat class (i.e., default, short, medium, long, and full). Valid only if
the type attribute is date or both.

❑ timeStyle: Formatting style used for time values. The valid style values are defined by the
java.text.DateFormat class (i.e., default, short, medium, long, and full). Valid only if
the type attribute is time or both.

❑ pattern: Custom formatting pattern for dates and times. The patterns are specified by the
java.text.SimpleDateFormat class. Some examples include MM/dd/yyyy for dates and
h:mm a for time.

❑ timeZone: Time zone to be used for the time information.

❑ var: Variable containing the parsed date/time value. This variable is of type java.util.Date.

❑ scope: Scope of the var variable. This optional attribute can be page, request, session, or
application.

An example of the formatDate tag is listed here:

The job posting time is <fmt:formatDate value=”${timeValue}” pattern=”h:mm a zz”/>.

formatNumber
The formatNumber tag formats a numeric value as a number, currency, or a percentage in a locale-
specific manner. The syntax of the tag is shown here:

<fmt:formatNumber [value=”numeric value”]
[type=”number|currency|percentage”]
[pattern=”pattern”]
[currencyCode=”currency code”]
[currencySymbol=”currency symbol”]
[groupingUsed=”true|false”]
[maxIntegerDigits=”max integer digits”]
[minIntegerDigits=”min integer digits”]
[maxFranctionDigits=”max fractional digits”]
[minFractionDigits=”min fractional digits”]
[var=”variable name”]
[scope=”page|request|session|application”]>

JSP body content
</fmt:formatNumber>

The formatNumber tag has 12 attributes:

❑ value: The numeric value to be formatted.

❑ type: Specifies if the numeric value is to be formatted as a number, currency, or a percentage,
and defaults to a number if not specified.

1107

JSTL Reference

38_57485x appc.qxd 1/14/05 10:20 PM Page 1107

TEAM LinG - Live, Informative, Non-cost and Genuine!

❑ pattern: Custom formatting pattern. The patterns are as specified by the
java.text.DecimalFormat class (for example, “#,###”).

❑ currencyCode: Currency codes as defined by the ISO 4217 standard
(www.iso.ch/iso/en/prods-services/popstds/currencycodes.html). This is applicable
only when the type attribute is currency.

❑ currencySymbol: Symbol to use for currency. This is applicable only when the type attribute is
currency. currencySymbol is not generally required and can be used to override the defaults.

❑ groupingUsed: Specifies if the output format contains any grouping separators. These grouping
are usually done using commas in English language locales (e.g., one thousand is 1,000.00) or
using a period in some non-English locales (e.g., one thousand is 1.000,00). The groupingUsed
attribute defaults to true.

❑ maxIntegerDigits: Maximum number of digits in the integer portion of the formatted output.

❑ minIntegerDigits: Minimum number of digits in the integer portion of the formatted output.

❑ maxFractionDigits: Maximum number of digits in the fractional portion of the formatted
output.

❑ minFractionDigits: Minimum number of digits in the fractional portion of the formatted
output.

❑ var: Variable that contains the formatted numeric value as a string.

❑ scope: Scope of the var variable. This is an optional attribute, and can be page, request,
session, or application.

An example of the formatNumber tag is listed here:

This item costs <fmt:formatNumber value=”1000” type=”currency”/>.

message
The message tag displays a localized message. The body can contain a nested fmt:param tag to pass
parameterized values to the message. The syntax of the tag is shown here:

<fmt:message [key=”message key”]
[bundle=”localization bundle where key is looked up”]
[var=”variable that stores localized message”]
[scope=”page|request|session|application”]>

JSP body content
</fmt:message>

The message tag has four attributes:

❑ key: The message key corresponding to the message. This is an optional attribute.

❑ bundle: The localization context in which the message key is looked up. This is an optional
attribute.

1108

Appendix C

38_57485x appc.qxd 1/14/05 10:20 PM Page 1108

TEAM LinG - Live, Informative, Non-cost and Genuine!

❑ var: The variable that stores the localized message. This is an optional attribute.

❑ scope: Scope of the var variable. This is an optional attribute and can be page, request,
session, or application.

An example of the message tag is listed here:

<fmt:bundle basename=”com.wrox.webapps.ErrorBundle”>
<fmt:message key=”com.wrox.webapps.ErrorBundle.loginError”/>

</fmt:bundle>

param
The param tag is nested within a fmt:message tag to pass parameterized values to the message. The
syntax of the tag is shown here:

<fmt:param [value=”argument value”] >
JSP body content

</fmt:param>

The param tag has one attribute:

❑ value: Value used for parametric replacement in the fmt:message tag. This is an optional
attribute.

An example of the param tag is listed here:

<fmt:message key=”com.wrox.webapps.Messages.helloMessage”>
<fmt:param value=”${user.Name}”/>

</fmt:message>

parseDate
The parseDate tag parses string representations of date and time specified either via an attribute or in
its body content. The syntax of the tag is shown here:

<fmt:parseDate [value=”string representation”]
[type=”date|time|both”]
[dateStyle=”formatting style”]
[timeStyle=”formatting style”]
[pattern=”formatting pattern”]
[timeZone=”timezone”]
[parseLocale=”locale”]
[var=”variable name”]
[scope=”page|request|session|application”]>

JSP body content
</fmt:parseDate>

1109

JSTL Reference

38_57485x appc.qxd 1/14/05 10:20 PM Page 1109

TEAM LinG - Live, Informative, Non-cost and Genuine!

The parseDate tag has nine attributes:

❑ value: The string to be parsed.

❑ type: Specifies if the value is to be parsed; contains a date, time, or both.

❑ dateStyle: Formatting style used for the date. The valid style values are defined by the
java.text.DateFormat class (i.e., default, short, medium, long, and full). Valid only if
the type attribute is date or both.

❑ timeStyle: Formatting style used for time values. The valid style values are defined by the
java.text.DateFormat class (i.e., default, short, medium, long, and full). Valid only if
the type attribute is time or both.

❑ pattern: Custom formatting pattern for date and time strings. The patterns are specified by the
java.text.SimpleDateFormat class. Some examples are MM/dd/yyyy for dates and h:mm a
for time.

❑ timeZone: Time zone to be used for the time information.

❑ parseLocale: Locale to be used for formatting date and time values.

❑ var: Variable that contains the parsed date/time value. This variable is of type
java.util.Date.

❑ scope: Scope of the var variable. This is an optional attribute and can be page, request,
session, or application.

An example of the parseDate tag is listed here:

<c:set var=”dateString”>1/1/05 12:00 PM</c:set>
<fmt:parseDate value=”${dateString}” parseLocale=”en_US” type=”both”

dateStyle=”short” timeStyle=”short” var=”usDate”/>

parseNumber
The parseNumber tag parses a string representation of a number, currency, or a percentage specified
either via an attribute or in its body content. The syntax of the tag is shown here:

<fmt:parseNumber [value=”string representation”]
[type=”number|currency|percentage”]
[pattern=”pattern”]
[parseLocale=”locale”]
[integerOnly=”true|false”]
[var=”variable name”]
[scope=”page|request|session|application”]>

JSP body content
</fmt:parseNumber>

The parseNumber tag has seven attributes:

❑ value: The string to be parsed.

❑ type: Specifies whether the value is to be parsed as a number, currency, or a percentage, and
defaults to a number if not specified.

1110

Appendix C

38_57485x appc.qxd 1/14/05 10:20 PM Page 1110

TEAM LinG - Live, Informative, Non-cost and Genuine!

❑ pattern: Custom formatting pattern for parsing the value attribute. The patterns are specified
by the java.text.DecimalFormat class (for example, “#,###”).

❑ parseLocale: Locale to be used for parsing.

❑ integerOnly: Specifies that only the integer part needs to be parsed.

❑ var: Variable that contains the parsed numeric value.

❑ scope: Scope of the var variable. This is an optional attribute and can be page, request,
session, or application.

An example of the parseNumber tag is listed here:

<fmt:parseNumber value=”${salePrice}” parseLocale=”en_US” type=”currency”/>

requestEncoding
The requestEncoding tag sets the character encoding for the request. The syntax of the tag is shown here:

<fmt:requestEncoding [value=”character encoding name”] />

The requestEncoding tag has one attribute:

❑ value: The name of the character encoding for the request. Examples of request encodings
include UTF-8, ISO-8859-1, JIS_C6220-1969-jp, and so on. A complete list of encodings can be
found at www.iana.org/assignments/character-sets. This is an optional attribute.

An example of the requestEncoding tag is listed here:

<fmt:requestEncoding value=”UTF-8”/>

setBundle
The setBundle tag loads a resource bundle for a specified scope (as compared to the bundle tag, which
loads it only for its body). The syntax of the tag is shown here:

<fmt:setBundle basename=”resource bundle basename”
[var=”Localization context variable”]
[scope=”page|request|session|application”] />

The setBundle tag has three attributes:

❑ basename: The basename of the resource bundle. This a mandatory attribute.

❑ var: The name of the localization context variable (javax.servlet.jsp.jstl.fmt.
LocalizationContext). This is an optional attribute.

❑ scope: Scope of the localization context variable. This is an optional attribute, and can be page,
request, session, or application.

1111

JSTL Reference

38_57485x appc.qxd 1/14/05 10:20 PM Page 1111

TEAM LinG - Live, Informative, Non-cost and Genuine!

An example of the setBundle tag is listed here:

<fmt:setBundle basename=”com.wrox.webapps.ErrorBundle”/>

setLocale
The setLocale tag sets the locale value in the locale configuration variable. The syntax of the tag is
shown here:

<fmt:setLocale value=”Locale string”
[variant=”Vendor or browser specific variant”]
[scope=”page|request|session|application”]
/>

The setLocale tag has three attributes:

❑ value: The name of the character encoding for the request. Examples of request encodings
include UTF-8, ISO-8859-1, JIS_C6220-1969-jp, and so on. A complete list of encodings is at
www.iana.org/assignments/character-sets. This is a mandatory attribute.

❑ variant: This is a vendor/browser-specific value. Examples of the variants are WIN (for
Windows), MAC (for Macintosh), and POSIX (for POSIX).

❑ scope: Scope of the locale configuration. This is an optional attribute, and can be page,
request, session, or application.

An example of the setLocale tag is listed here:

<fmt:setLocale value=”en”/>

setTimeZone
The setTimeZone tag sets the time zone value in the time zone configuration variable for a specified
scope (as compared to the timeZone tag, which sets it only for its body content). The syntax of the tag is
shown here:

<fmt:setTimeZone value=”Time Zone string”
[var=”time zone variable”]
[scope=”page|request|session|application”]

/>

The setTimeZone tag has three attributes:

❑ value: The name of the time zone. This can be specified as a custom time zone ID (“GMT+8”)
or as a time zone supported by Java (“America/Los_Angeles”). This is a mandatory attribute.

❑ var: Name of the time zone variable. This is an optional attribute.

1112

Appendix C

38_57485x appc.qxd 1/14/05 10:20 PM Page 1112

TEAM LinG - Live, Informative, Non-cost and Genuine!

❑ scope: Scope of the time zone variable configuration. This is an optional attribute and can be
page, request, session, or application.

An example of the setTimeZone tag is listed here:

<fmt:setTimeZone value=”GMT-8”/>

timeZone
The timeZone tag specifies the time zone for any time formatting in its body content. The syntax of the
tag is shown here:

<fmt:timeZone value=”time zone”>
JSP body content

</fmt:timeZone>

The timeZone tag has one attribute:

❑ value: The time zone value for the body content. This can be specified as a custom time zone ID
(“GMT+8”) or as a time zone supported by Java (“America/Los_Angeles”). This is a mandatory
attribute.

An example of the timeZone tag is listed here:

<fmt:timeZone value=”GMT-8”>
...

</fmt:timeZone>

JSTL SQL Tags
The JSTL SQL tag library provides tags for interacting with relational databases (RDBMSs) such as Oracle,
mySQL, or Microsoft SQL Server. The tags are designed for rapid prototyping of applications or for devel-
oping simple Web applications; any serious database use in an enterprise application should be through a
database tier, as described in Chapter 23, “Access to Databases,” and demonstrated in Chapter 28, “JSP
Project II: Shopping Cart Application.”

Before using the SQL tag library, the following directive needs to be added to the JSP page:

<%@ taglib prefix=”sql” uri=”http://java.sun.com/jsp/jstl/sql” %>

The equivalent XML syntax for this directive is as follows:

<jsp:directive.taglib prefix=”sql” uri=”http://java.sun.com/jsp/jstl/sql” />

The following table summarizes JSTL SQL tags.

1113

JSTL Reference

38_57485x appc.qxd 1/14/05 10:20 PM Page 1113

TEAM LinG - Live, Informative, Non-cost and Genuine!

Tag Name Description

dateParam Sets a parameter in a SQL statement to a specified java.util.Date value

param Sets a parameter in a SQL statement to a specified value

query Executes a SQL query

setDataSource Specifies a data source for the database connection

transaction Provides one connection to all nested database actions so that they can be
executed as a transaction

update Executes a SQL update

dateParam
The dateParam tag is embedded in the body of a query or update tag. It is used to pass
java.util.Date parameters to a SQL statement. The syntax of the tag is shown here:

<sql:dateParam value=”date parameter value”
[type=”date|time|timestamp”] />

The dateparam tag has the following attributes:

❑ value: The parameter value for the SQL statement. This can be a date, time, or timestamp. This
is a mandatory attribute.

❑ type: The type of parameter. This can be date, time, or timestamp. This is an optional
attribute.

An example of the dateParam tag is listed here:

<sql:query sql=”select * from employee where join_date > ?”>
<sql:dateParam value=”${cutoff_date}” type=”date”/>

</sql:query>

param
The param tag is embedded in the body of a query or update tag. It is used to pass parameters to a SQL
statement. The syntax of the tag is shown here:

<sql:param [value=”parameter value”]>
JSP body content

</sql:param>

The param tag has one attribute:

❑ value: The parameter value for the SQL statement

1114

Appendix C

38_57485x appc.qxd 1/14/05 10:20 PM Page 1114

TEAM LinG - Live, Informative, Non-cost and Genuine!

An example of the param tag is listed here:

<sql:query sql=”select * from employee where salary > ?”>
<sql:param value=”${min_salary}”/>

</sql:query>

query
The query tag executes an SQL query statement specified either via an attribute or embedded in the
body of the tag. A query tag can have nested param tags to pass parameters to the SQL statement.
The syntax of the tag is shown here:

<sql:query var=”variable name”
[scope=”page|request|session|application”]
[sql=”SQL query statement”]
[startRow=”starting row”]
[maxRows=”maximum number of rows”]
[dataSource=”DataSource”]>

JSP body content
</sql:query>

The query tag has six attributes:

❑ var: This specifies the variable that contains the result of the SQL query statement. This is a
mandatory attribute.

❑ scope: Scope of the variable defined in the var attribute. This is an optional attribute, and can
be page, request, session, or application.

❑ sql: The SQL query statement to execute. This is an optional attribute.

❑ startRow: The starting row for the returned results. This is an optional attribute and defaults
to zero.

❑ maxRows: The maximum number of rows to return. This is an optional attribute and defaults
to -1 (i.e., no maximum limit) if not specified.

❑ dataSource: The DataSource for the database to be accessed. This is an optional attribute; if not
specified, the default JSTL DataSource is used.

An example of the query tag is listed here:

<sql:query sql=”select * from employee where salary > ?”>
<sql:param value=”${min_salary}”/>

</sql:query>

Another example is as follows:

<sql:query var=”roundlist”
dataSource=”jdbc:mysql://localhost/footydb,com.mysql.jdbc.Driver,footy,footy”>
SELECT * from round

</sql:query>

1115

JSTL Reference

38_57485x appc.qxd 1/14/05 10:20 PM Page 1115

TEAM LinG - Live, Informative, Non-cost and Genuine!

setDataSource
The setDataSource tag creates a DataSource for connecting to the database. The syntax for this tag is
shown here:

<sql:setDataSource [var=”variable name”]
[scope=”page|request|session|application”]
[driver=”JDBC driver”]
[url=”JDBC URL for database”]
[user=”Username to connect to the database”]
[password=”Password to connect to the database”]
[dataSource=”DataSource”]/>

The setDataSource tag has seven attributes:

❑ var: This specifies the variable that contains the specified DataSource. This is an optional
attribute.

❑ scope: Scope of the variable defined in the var attribute. This is an optional attribute, and can
be page, request, session, or application.

❑ driver: JDBC driver class name.

❑ url: JDBC URL for the database.

❑ user: Username to connect to the JDBC database.

❑ password: Password to connect to the JDBC database.

❑ dataSource: The DataSource for the database to be accessed. This is an optional attribute, and
if not specified, the default JSTL DataSource is used.

An example of the setDataSource tag is listed here:

<sql:setDataSource url=”jdbc:mysql:///taglib”
driver=”org.gjt.mm.mysql.Driver”
user=”admin”
password=”secret”/>

<sql:query sql=”select * from employee where salary > ?”>
<sql:param value=”${min_salary}”/>

</sql:query>

transaction
Other SQL tags are nested within a transaction tag. The tag provides them with a shared connection
object and allows all the nested tags to run as one transaction. The syntax of the transaction tag is
shown here:

<sql:transaction [dataSource=”DataSource”]
[isolation=”read_committed|read_uncommitted|repeatable_read|serializable”] >

JSP body content
</sql:transaction>

1116

Appendix C

38_57485x appc.qxd 1/14/05 10:20 PM Page 1116

TEAM LinG - Live, Informative, Non-cost and Genuine!

The transaction tag has two attributes:

❑ dataSource: The DataSource for the database to be accessed. This is an optional attribute, and
if not specified, the default JSTL DataSource is used.

❑ isolation: Isolation level for the transaction. This can be read_committed, read_uncommit-
ted, repeatable_read, or serializable. This is an optional attribute and defaults to the
DataSource isolation level.

An example of the transaction tag is listed here:

<sql:transaction>
<sql:update sql=”update employee set salary = ? where emp_id = ?”>

<sql:param value=”${new_salary}”/>
<sql:param value=”${empId}”/>

</sql:update>
<sql:update sql=”update employee set salary_deductions = ? where emp_id = ?”>

<sql:param value=”${new_deductions}”/>
<sql:param value=”${empId}”/>

</sql:update>
</sql:transaction>

update
The update tag executes an SQL update statement specified either via an attribute or embedded in the
body of the tag. An update tag can have nested param tags to pass parameters to the SQL statement.
The syntax of the tag is shown here:

<sql:update [var=”variable name”]
[scope=”page|request|session|application”]
[sql=”SQL update statement”]
[dataSource=”DataSource”]>

JSP body content
</sql:update>

The update tag has four attributes:

❑ var: This specifies the variable that contains the result of the SQL update statement. This is an
optional attribute.

❑ scope: Scope of the variable defined in the var attribute. This is an optional attribute and can
be page, request, session, or application.

❑ sql: The SQL update statement to execute. This is an optional attribute.

❑ dataSource: The DataSource for the database to be accessed. This is an optional attribute, and
if not specified, the default JSTL DataSource is used.

1117

JSTL Reference

38_57485x appc.qxd 1/14/05 10:20 PM Page 1117

TEAM LinG - Live, Informative, Non-cost and Genuine!

An example of the update tag is listed here:

<sql:update>
UPDATE round SET startdate = ?, enddate = ?
WHERE number = ?
<sql:param value=”${param.round_startdate}” />
<sql:param value=”${param.round_enddate}” />
<sql:param value=”${param.round_number}” />

</sql:update>

JSTL Functions
The JSTL function library contains a number of string manipulation functions. These include functions
for splitting and concatenating strings, returning substrings, determining whether a string contains a
specified substring, and many others.

Before using the function library, the following directive needs to be added to the JSP page:

<%@ taglib prefix=”fn” uri=”http://java.sun.com/jsp/jstl/functions” %>

The equivalent XML syntax for this directive is as follows:

<jsp:directive.taglib prefix=”fn” uri=”http://java.sun.com/jsp/jstl/functions” />

The following table summarizes the JSTL functions.

Tag Name Description

contains Tests whether an input string contains the specified substring. This is a
case-sensitive search.

containsIgnoreCase Tests whether an input string contains the specified substring in a
case-insensitive way.

endsWith Tests whether an input string ends with the specified suffix.

escapeXml Escapes characters that could be interpreted as XML markup.

indexOf Returns the index within a string of the first occurrence of a specified
substring.

join Concatenates all elements of an array into a string.

length Returns the number of items in a collection or the number of charac-
ters in a string.

replace Returns a string that results from replacing in an input string all occur-
rences of a “before” string into an “after” substring.

split Splits a string into an array of substrings.

1118

Appendix C

38_57485x appc.qxd 1/14/05 10:20 PM Page 1118

TEAM LinG - Live, Informative, Non-cost and Genuine!

Tag Name Description

startsWith Tests whether an input string starts with the specified prefix.

substring Returns a subset of a string.

substringAfter Returns a subset of a string following a specific substring.

substringBefore Returns a subset of a string before a specific substring.

toLowerCase Converts all of the characters of a string to lowercase.

toUpperCase Converts all of the characters of a string to uppercase.

trim Removes white spaces from both ends of a string.

contains
The contains function determines whether an input string contains a specified substring. The syntax of
the function is shown here:

boolean contains(java.lang.String, java.lang.String)

An example of the contains function is listed here:

<c:if test=”${fn:contains(theString, searchString)}”>

containsIgnoreCase
The containsIgnoreCase function determines whether an input string contains a specified substring.
The syntax of the function is shown here:

boolean containsIgnoreCase(java.lang.String, java.lang.String)

An example of the containsIgnoreCase function is listed here:

<c:if test=”${fn:containsIgnoreCase(theString, searchString)}”>

endsWith
The endsWith function determines whether an input string ends with a specified suffix. The syntax of
the function is shown here:

boolean endsWith(java.lang.String, java.lang.String)

An example of the endsWith function is listed here:

<c:if test=”${fn:endWith (theString, suffix)}”>

1119

JSTL Reference

38_57485x appc.qxd 1/14/05 10:20 PM Page 1119

TEAM LinG - Live, Informative, Non-cost and Genuine!

escapeXml
The escapeXml function escapes characters that can be interpreted as XML markup. The syntax of the
function is shown here:

java.lang.String escapeXml(java.lang.String)

An example of the escapeXml function is listed here:

${fn:escapeXml(xmlContainingText)}

indexOf
The indexOf function returns the index within a string of a specified substring. The syntax of the function
is shown here:

int indexOf(java.lang.String, java.lang.String)

An example of the indexOf function is listed here:

${fn:indexOf(theString, searchString)}

join
The join function concatenates all the elements of an array into a string with a specified separator. The
syntax of the function is shown here:

String join (java.lang.String[], java.lang.String)

An example of the join function is listed here:

Your Path settings should be ${fn:join(filenamesArray, “;”)}.

length
The length function returns the string length or the number of items in a collection. The syntax of the
function is shown here:

int length(java.lang.Object)

An example of the length function is listed here:

There are ${fn:length(shoppingCart.Items)} items in your shopping cart.

replace
The replace function replaces all occurrences of a string with another string. The syntax of the function
is shown here:

boolean replace(java.lang.String, java.lang.String, java.lang.String)

1120

Appendix C

38_57485x appc.qxd 1/14/05 10:20 PM Page 1120

TEAM LinG - Live, Informative, Non-cost and Genuine!

An example of the replace function is listed here:

The CLASSPATH for Windows is ${fn:replace(classpathString, “:”, “;”)}.

split
The split function splits a string into an array of substrings based on a delimiter string. The syntax of
the function is shown here:

java.lang.String[] split(java.lang.String, java.lang.String)

An example of the split function is listed here:

${fn:split(theString, delimiterString)}

startsWith
The startsWith function determines whether an input string starts with a specified substring. The syn-
tax of the function is shown here:

boolean startsWith(java.lang.String, java.lang.String)

An example of the startsWith function is listed here:

<c:if test=”${fn:startsWith(theString, prefixString)}”>

substring
The substring function returns a subset of a string specified by start and end indices. The syntax of
the function is shown here:

java.lang.String substring(java.lang.String, int, int)

An example of the substring function is listed here:

${fn:substring(theString, beginIndex, endIndex)}

substringAfter
The substringAfter function returns the part of a string after a specified substring. The syntax of the
function is shown here:

java.lang.String substringAfter(java.lang.String, java.lang.String)

An example of the substringAfter function is listed here:

${fn:substringAfter(theString, substring)}

1121

JSTL Reference

38_57485x appc.qxd 1/14/05 10:20 PM Page 1121

TEAM LinG - Live, Informative, Non-cost and Genuine!

substringBefore
The substringBefore function returns the part of a string before a specified substring. The syntax of
the function is shown here:

java.lang.String substringBefore(java.lang.String, java.lang.String)

An example of the substringBefore function is listed here:

${fn:substringBefore(theString, substring)}

toLowerCase
The toLowerCase function converts all the characters of a string to lowercase. The syntax of the function
is shown here:

java.lang.String toLowerCase(java.lang.String)

An example of the toLowerCase function is listed here:

${fn:toLowerCase(theString)}

toUpperCase
The toUpperCase function converts all the characters of a string to uppercase. The syntax of the function
is shown here:

java.lang.String toUpperCase(java.lang.String)

An example of the toUpperCase function is listed here:

${fn:toUpperCase(theString)}

trim
The trim function removes white space from both ends of a string. The syntax of the function is shown
here:

java.lang.String trim(java.lang.String)

An example of the trim function is listed here:

${fn:trim(theString)}

1122

Appendix C

38_57485x appc.qxd 1/14/05 10:20 PM Page 1122

TEAM LinG - Live, Informative, Non-cost and Genuine!

D
Exercise Solutions

Chapter 1 Exercises

Exercise 1
To modify the index.jsp file in the third example to display a page similar to Figure 1-17, create a
index1.jsp page containing the following code:

<%@ taglib prefix=”wroxtags” tagdir=”/WEB-INF/tags” %>
<html>

<head>
<title><wroxtags:bookTitle/></title>

</head>
<body>

<h1><wroxtags:bookTitle/></h1>
<p><i>published by <wroxtags:publisher/></i></p>
<p><small>Note: You will need <wroxtags:containerName/> to use this

book.</small></p>
</body>

</html>

Exercise 2
There is a tag called showBrowser.tag in the WEB-INF/tags directory. You will need to use this
tag in creating index2.jsp:

<%@ taglib prefix=”wroxtags” tagdir=”/WEB-INF/tags” %>
<html>

<head>
<title>Book Information</title>

</head>
<body>

<h1>Book Information</h1>

39_57485x appd.qxd 1/14/05 10:22 PM Page 1123

TEAM LinG - Live, Informative, Non-cost and Genuine!

<hr>
<p>The name of this book is <i><wroxtags:bookTitle/></i>.</p>
<p>It is published by <wroxtags:publisher/>.</p>
<p>The server used in all the examples is <wroxtags:containerName/>.</p>
<p>The browser you are using is <wroxtags:showBrowser/>.</p>
</body>

</html>

Chapter 2 Exercises

Exercise 1
Create a showportal.jsp file that contains the following:

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<html>

<head>
<link rel=stylesheet type=”text/css” href=”portal.css”>
<title>New Portal</title>

</head>
<body>

<jsp:include page=”news.jsp” >
<jsp:param name=”mode” value=”standalone”/>
</jsp:include>

<jsp:include page=”weather.jsp” >
<jsp:param name=”mode” value=”standalone”/>

</jsp:include>

<jsp:include page=”entertain.jsp” >
<jsp:param name=”mode” value=”standalone”/>

</jsp:include>

</body>
</html>

Exercise 2
Modify news.jsp to the following:

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<c:choose>
<c:when test=”${param.mode != ‘standalone’}”>
<head>
<link rel=stylesheet type=”text/css” href=”portal.css”>
<title>News Portal</title>
</head>
<body>
</c:when>
<c:otherwise/>
</c:choose>

1124

Appendix D

39_57485x appd.qxd 1/14/05 10:22 PM Page 1124

TEAM LinG - Live, Informative, Non-cost and Genuine!

<table class=”mainBox” width=”600”>
<tr><td class=”boxTitle” >
Welcome to the News Portal!
</td></tr>
<tr><td>

<jsp:useBean id=”newsfeed” class=”com.wrox.begjsp.ch2.NewsFeed” scope=”request” >
<jsp:setProperty name=”newsfeed” property=”topic” value=”news”/>
<jsp:getProperty name=”newsfeed” property=”value”/>
</jsp:useBean>

<jsp:include page=”dummytext.html” />

</td></tr>
</table>

Modify weather.jsp to contain the following:

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<c:choose>
<c:when test=”${param.mode != ‘standalone’}”>
<head>
<link rel=stylesheet type=”text/css” href=”portal.css”>
<title>Weather Portal</title>
</head>
<body>
</c:when>
<c:otherwise/>
</c:choose>

<table class=”mainBox” width=”600”>
<tr><td class=”boxTitle” >
You Get the Latest Weather!
</td></tr>
<tr><td>
<jsp:useBean id=”newsfeed” class=”com.wrox.begjsp.ch2.NewsFeed” scope=”request” />
<jsp:setProperty name=”newsfeed” property=”topic” value=”weather”/>

<table>
<c:forEach items=”${newsfeed.values}” var=”row” >

<tr><td class=”tableCell” width=”200”> ${row.city} </td>
<td> ${row.temp}</td>

</tr>
</c:forEach>

</table>
</td></tr>
</table>

Modify entertain.jsp to contain the following:

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<c:choose>
<c:when test=”${param.mode != ‘standalone’}”>

1125

Exercise Solutions

39_57485x appd.qxd 1/14/05 10:22 PM Page 1125

TEAM LinG - Live, Informative, Non-cost and Genuine!

<head>
<link rel=stylesheet type=”text/css” href=”portal.css”>
<title>Weather Portal</title>
</head>
<body>
</c:when>
<c:otherwise/>
</c:choose>
<table class=”mainBox” width=”600”>
<tr><td class=”boxTitle” >
Entertainment News Just for You!
</td></tr>
<tr><td>

<jsp:useBean id=”newsfeed” class=”com.wrox.begjsp.ch2.NewsFeed” scope=”request” >
<jsp:setProperty name=”newsfeed” property=”topic” value=”entertainment”/>
<jsp:getProperty name=”newsfeed” property=”value”/>
</jsp:useBean>

<jsp:include page=”dummytext.html” />

</td></tr>
</table>

Chapter 3 Exercises

Exercise 1
Modify shopcart.jsp as follows to add sales tax calculations. The changes are highlighted:

<%@ page language=”java”
import = “com.wrox.begjsp.ch03.*,java.util.*” session=”true” %>

<%!
private static String EXAMPLE = “/example3”;
private static String SHOP_PAGE = “/estore.jsp”;
private static String CART_PAGE = “/shopcart.jsp”;

private String dispPrice(String price) {
int len = price.length();
if (len <= 2)

return price;
else

return “$” + price.substring(0,len -2) + “.” + price.substring(len-2);
}
%>

<html>
<head>
<title>Wrox Shopping Mall - Shopping Cart</title>

1126

Appendix D

39_57485x appd.qxd 1/14/05 10:22 PM Page 1126

TEAM LinG - Live, Informative, Non-cost and Genuine!

</head>
<body>

<%
ArrayList items = (ArrayList) session.getAttribute(“lineitems”);
String action = request.getParameter(“action”);
String sku = request.getParameter(“sku”);
Product prod = null;
if (sku != null)

prod = EShop.getItem(sku);

if (items == null) { // add first item
items = new ArrayList();
items.add(new LineItem(1,sku,prod.getName(),

prod.getPrice()));
session.setAttribute(“lineitems”, items);
}

else if (action.equals(“clear”)) {
items.clear();

}
else {

boolean itemFound = false;
// check to see if sku exists
for (int i=0; i<items.size(); i++) {

LineItem curItem = (LineItem) items.get(i);
if (curItem.getSku().equals(sku)) {

itemFound = true;
curItem.setQuantity(curItem.getQuantity() + 1);
break;

} // of if
} //of for

if (!itemFound)
items.add(new LineItem(1,sku,prod.getName(),

prod.getPrice()));

} // of final else

long total = 0;
%>
<table width=”600”>
<tr>
<td>
<h1></h1>
<table border=”1” width=”600”>
<tr><th colspan=”5”>Your Shopping Cart</th></tr>
<tr><th align=”left”>Quantity</th><th align=”left”>Item</th><th
align=”right”>Price</th>
<th align=”right”>Extended</th>
<th align=”left”>Add</th></tr>

<%
for (int i=0; i< items.size(); i++) {

LineItem curItem = (LineItem) items.get(i);

1127

Exercise Solutions

39_57485x appd.qxd 1/14/05 10:22 PM Page 1127

TEAM LinG - Live, Informative, Non-cost and Genuine!

int quan = curItem.getQuantity();
long price = curItem.getPrice();
long extended = quan * price;
total += extended;

%>

<tr>
<td><%= quan %></td>
<td><%= curItem.getDesc() %></td>
<td align=”right”><%= dispPrice(String.valueOf(price)) %></td>
<td align=”right”><%= dispPrice(String.valueOf(extended)) %></td>
<td>

<a href=”<%= request.getContextPath() + EXAMPLE + CART_PAGE + “?action=inc&sku=” +
curItem.getSku() %>”>

Add 1
</td>

</tr>
<%

}
long tax = total / 100 * 8 ; // 8 % sales tax
total = tax + total;

%>
<tr>
<td colspan=”5”>
</td>
</tr>

<tr>
<td colspan=”3” align=”right”>Sales Tax (8%):</td>
<td align=”right”><%= dispPrice(String.valueOf(tax)) %></td>
<td> </td>
</tr>

<tr>
<td colspan=”3” align=”right”>Total:</td>
<td align=”right”><%= dispPrice(String.valueOf(total)) %></td>
<td> </td>
</tr>

<tr>
<td colspan=”5”>
<a href=”<%= request.getContextPath() + EXAMPLE + CART_PAGE + “?action=clear” %>”>
Clear the cart
</td>
</tr>

<tr>
<td colspan=”5”>
<a href=”<%= request.getContextPath() + EXAMPLE + SHOP_PAGE %>”>
Return to Shopping
</td>
</tr>

1128

Appendix D

39_57485x appd.qxd 1/14/05 10:22 PM Page 1128

TEAM LinG - Live, Informative, Non-cost and Genuine!

</table>
</body>
</html>

Exercise 2
Modify shopcart.jsp, in the third Try It Out example. Add a link on each line item to subtract 1 from
the displayed quantity. Make the changes as highlighted:

<%@ page language=”java”
import = “com.wrox.begjsp.ch03.*,java.util.*” session=”true” %>

<%!
private static String EXAMPLE = “/example3”;
private static String SHOP_PAGE = “/estore.jsp”;
private static String CART_PAGE = “/shopcart.jsp”;

private String dispPrice(String price) {
int len = price.length();
if (len <= 2)

return price;
else

return “$” + price.substring(0,len -2) + “.” + price.substring(len-2);
}
%>

<html>
<head>
<title>Wrox Shopping Mall - Shopping Cart</title>
</head>
<body>

<%
ArrayList items = (ArrayList) session.getAttribute(“lineitems”);
String action = request.getParameter(“action”);
String sku = request.getParameter(“sku”);
Product prod = null;
if (sku != null)

prod = EShop.getItem(sku);

if (items == null) { // add first item
items = new ArrayList();
items.add(new LineItem(1,sku,prod.getName(),

prod.getPrice()));
session.setAttribute(“lineitems”, items);
}

else if (action.equals(“clear”)) {
items.clear();

}
else {

boolean itemFound = false;
// check to see if sku exists

1129

Exercise Solutions

39_57485x appd.qxd 1/14/05 10:22 PM Page 1129

TEAM LinG - Live, Informative, Non-cost and Genuine!

for (int i=0; i<items.size(); i++) {
LineItem curItem = (LineItem) items.get(i);
if (curItem.getSku().equals(sku)) {

itemFound = true;
if (action.equals(“inc”)) {

curItem.setQuantity(curItem.getQuantity() + 1);
} else {

if (curItem.getQuantity() > 0)
curItem.setQuantity(curItem.getQuantity() - 1);

}
break;

} // of if
} //of for

if (!itemFound)
items.add(new LineItem(1,sku,prod.getName(),

prod.getPrice()));

} // of final else

int total = 0;
%>
<table width=”600”>
<tr>
<td>
<h1></h1>
<table border=”1” width=”600”>
<tr><th colspan=”5”>Your Shopping Cart</th></tr>
<tr><th align=”left”>Quantity</th><th align=”left”>Item</th><th
align=”right”>Price</th>
<th align=”right”>Extended</th>
<th align=”left”>Add</th></tr>

<%
for (int i=0; i< items.size(); i++) {

LineItem curItem = (LineItem) items.get(i);
int quan = curItem.getQuantity();
long price = curItem.getPrice();
long extended = quan * price;
total += extended;

%>

<tr>
<td><%= quan %></td>
<td><%= curItem.getDesc() %></td>
<td align=”right”><%= dispPrice(String.valueOf(price)) %></td>
<td align=”right”><%= dispPrice(String.valueOf(extended)) %></td>
<td>

<a href=”<%= request.getContextPath() + EXAMPLE + CART_PAGE + “?action=inc&sku=” +
curItem.getSku() %>”>

Add 1
<a href=”<%= request.getContextPath() + EXAMPLE + CART_PAGE + “?action=dec&sku=” +
curItem.getSku() %>”>

Subtract 1

1130

Appendix D

39_57485x appd.qxd 1/14/05 10:22 PM Page 1130

TEAM LinG - Live, Informative, Non-cost and Genuine!

</td>
</tr>
<%

}
%>
<tr>
<td colspan=”5”>
</td>
</tr>
<tr>
<td colspan=”3” align=”right”>Total:</td>
<td align=”right”><%= dispPrice(String.valueOf(total)) %></td>
<td> </td>
</tr>

<tr>
<td colspan=”5”>
<a href=”<%= request.getContextPath() + EXAMPLE + CART_PAGE + “?action=clear” %>”>
Clear the cart
</td>
</tr>

<tr>
<td colspan=”5”>
<a href=”<%= request.getContextPath() + EXAMPLE + SHOP_PAGE %>”>
Return to Shopping
</td>
</tr>

</table>
</body>
</html>

Chapter 4 Exercises

Exercise 1
Modify index.jsp to create index2.jsp. The changes are highlighted:

<html>
<head>

<link rel=stylesheet type=”text/css” href=”portal.css”>
<title>Select Your Portal</title></head>

<body>
<table class=”mainBox” width=”400”>

<tr><td class=”boxTitle” colspan=”2”>
Wrox JSP Portal Selector

</td></tr>
<tr><td colspan=”2”> </td></tr>
<tr><td>

1131

Exercise Solutions

39_57485x appd.qxd 1/14/05 10:22 PM Page 1131

TEAM LinG - Live, Informative, Non-cost and Genuine!

<form action=”showportal2.jsp” method=”get”>
<table>

<tr>
<td width=”200”>

Your First Name: </td>
<td><input name=”username” type=”text” size=”25”/></td>

</tr>
<tr>

<td width=”200”>Color Theme</td><td>
<select name=”color”>

<option>blue</option>
<option>red</option>
<option>green</option>

</select>
</td>

</tr>

<tr>
<td width=”200”>Font</td><td>

<select name=”font”>
<option>sans-serif</option>
<option>serif</option>

</select>
</td>

</tr>

<tr>
<td width=”200”>Style</td><td>

<select name=”style”>
<option>normal</option>
<option>italic</option>

</select>
</td>

</tr>

<tr>
<td width=”200”>Portal Selection</td><td>

<select name=”portchoice”>
<option>news</option>
<option>weather</option>
<option>entertainment</option>

</select>
</td>

</tr>
<tr><td colspan=”2”> </td></tr>
<tr><td colspan=”2” align=”center”>

<input type=”submit” value=”Select”/>
</td></tr>

</table>
</form>
</td></tr>

</table>
</body>
</html>

1132

Appendix D

39_57485x appd.qxd 1/14/05 10:22 PM Page 1132

TEAM LinG - Live, Informative, Non-cost and Genuine!

Modify showportal.jsp to create showportal2.jsp. The changes are highlighted:

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<html>
<head>
<c:choose>

<c:when test=”${param.color == ‘blue’}”>
<c:set var=”selcolor” value=”blue”/>

</c:when>
<c:when test=”${param.color == ‘red’}”>

<c:set var=”selcolor” value=”red” />
</c:when>
<c:when test=”${param.color == ‘green’}”>

<c:set var=”selcolor” value=”green” />
</c:when>

</c:choose>

<c:choose>
<c:when test=”${param.font == ‘sans-serif’}”>

<c:set var=”selfont” value=”Verdana, Geneva, Arial, Helvetica, sans-
serif”/>

</c:when>
<c:when test=”${param.font == ‘serif’}”>

<c:set var=”selfont” value=”’Times New Roman’,Times,serif” />
</c:when>

</c:choose>

<style>
.tableCell
{
font-family : ${selfont};
font-size : 16;
font-weight : bold;
font-style: ${param.style};
color : #0f7fcf;
background-color: #ffffff;

}

.valueCell
{
font-family : ${selfont};
font-size : 16;
color : #000000;
background-color: #fefefe;

}
.headLine
{
font-family : ${selfont};
font-size : 18;
font-weight : bold;
font-style: ${param.style};
color: #000000;

}

1133

Exercise Solutions

39_57485x appd.qxd 1/14/05 10:22 PM Page 1133

TEAM LinG - Live, Informative, Non-cost and Genuine!

.newsText
{
font-family : ${selfont};
font-size : 10;
color: #000000;

}
.boxTitle
{
font-family : ${selfont};
font-size : 22;
font-weight : bold;
font-style: ${param.style};
color : #ffffff;
background-color: ${selcolor};

}
.mainBox
{
font-family : ${selfont};
font-size : 12;
color : #ffffff;
background-color: #eeeeee;

}

</style>

<c:choose>
<c:when test=”${param.portchoice == ‘news’}”>

<jsp:include page=”news.jsp” >
<jsp:param name=”user” value=”${param.username}”/>

</jsp:include>
</c:when>
<c:when test=”${param.portchoice ==’weather’}”>

<jsp:include page=”weather.jsp” >
<jsp:param name=”user” value=”${param.username}”/>

</jsp:include>
</c:when>
<c:when test=”${param.portchoice == ‘entertainment’}”>

<jsp:include page=”entertain.jsp” >
<jsp:param name=”user” value=”${param.username}”/>

</jsp:include>
</c:when>
<c:otherwise>

<head><title>System Portal</title></head>
<body>
<h1>Application logic problem detected!</h1>
</body>

</c:otherwise>
</c:choose>
</body>
</html>

1134

Appendix D

39_57485x appd.qxd 1/14/05 10:22 PM Page 1134

TEAM LinG - Live, Informative, Non-cost and Genuine!

Exercise 2
Modify weather.jsp to create the new weather.jsp. The changes are highlighted:

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<title>Weather Portal</title>

</head>
<body>

<script language=”JavaScript” src=”menu.js”></script>
<script language=”JavaScript”>

function showToolbar()
{

menu = new Menu();

<c:choose>
<c:when test=”${param.menuchoice == ‘news-only’}”>

menu.addItem(“newsportalid”, “News Portal”, “News Portal”, null, null);
menu.addItem(“otherportalid”, “Other Portals”, “Other Portals”,

null, null);
menu.addSubItem(“newsportalid”, “World News”, “World News”,

“http://localhost:8080/ch04/example2/”,””);
menu.addSubItem(“newsportalid”, “American News”, “American News”,

“http://localhost:8080/ch04/example2/”,””);
menu.addSubItem(“newsportalid”, “UK News”, “UK News”,

“http://localhost:8080/ch04/example2/”,””);

menu.addSubItem(“otherportalid”, “Yahoo News”, “Yahoo News”,
“http://localhost:8080/ch04/example2/”,””);

menu.addSubItem(“otherportalid”, “CNN News”, “CNN News”,
“http://localhost:8080/ch04/example2/”,””);

</c:when>
<c:when test=”${param.menuchoice == ‘all’}”>

menu.addItem(“newsid”, “News”, “News”, null, null);
menu.addItem(“weatherid”, “Weather”, “Weather”, null, null);
menu.addItem(“entid”, “Entertainment”, “Entertainment”, null, null);
menu.addItem(“lotid”, “Lotteries”, “Lottories”, null, null);

menu.addSubItem(“newsid”, “World News”, “World News”,
“http://localhost:8080/ch04/example2/”,””);

menu.addSubItem(“newsid”, “American News”, “American News”,
“http://localhost:8080/ch04/example2/”,””);

menu.addSubItem(“newsid”, “UK News”, “UK News”,
“http://localhost:8080/ch04/example2/”,””);

menu.addSubItem(“newsid”, “Yahoo News”, “Yahoo News”,
“http://localhost:8080/ch04/example2/”,””);

menu.addSubItem(“newsid”, “CNN News”, “CNN News”,
“http://localhost:8080/ch04/example2/”,””);

menu.addSubItem(“weatherid”, “Accurate Weather”, “Accurate Weather”,
“http://localhost:8080/ch04/example2/”,””);

menu.addSubItem(“weatherid”, “Weather Central”, “Weather Central”,
“http://localhost:8080/ch04/example2/”,””);

1135

Exercise Solutions

39_57485x appd.qxd 1/14/05 10:22 PM Page 1135

TEAM LinG - Live, Informative, Non-cost and Genuine!

menu.addSubItem(“entid”, “E Motion”, “E Motion”,
“http://localhost:8080/ch04/example2/”,””);

menu.addSubItem(“entid”, “Hollywood on the Run”, “Hollywood on the Run”,
“http://localhost:8080/ch04/example2/”,””);

menu.addSubItem(“lotid”, “Lucky 9”, “Lucky 9”,
“http://localhost:8080/ch04/example2/”,””);

menu.addSubItem(“lotid”, “Mega Fortune”, “Mega Fortune”,
“http://localhost:8080/ch04/example2/”,””);

</c:when>
</c:choose>
menu.showMenu();
}

showToolbar();
function UpdateIt()
{

if (ie&&keepstatic&&!opr6)
document.all[“MainTable”].style.top = document.body.scrollTop;

setTimeout(“UpdateIt()”, 200);
}
UpdateIt();

</script>

<table class=”mainBox” width=”600”>
<tr><td class=”boxTitle” >

You Get the Latest Weather, ${param.user}!
</td></tr>
<tr><td>

<jsp:useBean id=”newsfeed” class=”com.wrox.begjsp.ch2.NewsFeed”
scope=”request” >
<jsp:setProperty name=”newsfeed” property=”topic” value=”weather”/>

</jsp:useBean>
<table>

<c:forEach items=”${newsfeed.values}” var=”row” >
<tr><td class=”tableCell” width=”200”> ${row.city} </td>

<td> ${row.temp}</td>
</tr>

</c:forEach>
</table>

</td></tr>
</table>

Modify entertain.jsp to create the new entertain.jsp. The changes are highlighted:

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<title>Weather Portal</title>

</head>

1136

Appendix D

39_57485x appd.qxd 1/14/05 10:22 PM Page 1136

TEAM LinG - Live, Informative, Non-cost and Genuine!

<body>
<script language=”JavaScript” src=”menu.js”></script>
<script language=”JavaScript”>

function showToolbar()
{

menu = new Menu();

<c:choose>
<c:when test=”${param.menuchoice == ‘news-only’}”>

menu.addItem(“newsportalid”, “News Portal”, “News Portal”, null, null);
menu.addItem(“otherportalid”, “Other Portals”, “Other Portals”,

null, null);
menu.addSubItem(“newsportalid”, “World News”, “World News”,

“http://localhost:8080/ch04/example2/”,””);
menu.addSubItem(“newsportalid”, “American News”, “American News”,

“http://localhost:8080/ch04/example2/”,””);
menu.addSubItem(“newsportalid”, “UK News”, “UK News”,

“http://localhost:8080/ch04/example2/”,””);

menu.addSubItem(“otherportalid”, “Yahoo News”, “Yahoo News”,
“http://localhost:8080/ch04/example2/”,””);

menu.addSubItem(“otherportalid”, “CNN News”, “CNN News”,
“http://localhost:8080/ch04/example2/”,””);

</c:when>
<c:when test=”${param.menuchoice == ‘all’}”>

menu.addItem(“newsid”, “News”, “News”, null, null);
menu.addItem(“weatherid”, “Weather”, “Weather”, null, null);
menu.addItem(“entid”, “Entertainment”, “Entertainment”, null, null);
menu.addItem(“lotid”, “Lotteries”, “Lottories”, null, null);

menu.addSubItem(“newsid”, “World News”, “World News”,
“http://localhost:8080/ch04/example2/”,””);

menu.addSubItem(“newsid”, “American News”, “American News”,
“http://localhost:8080/ch04/example2/”,””);

menu.addSubItem(“newsid”, “UK News”, “UK News”,
“http://localhost:8080/ch04/example2/”,””);

menu.addSubItem(“newsid”, “Yahoo News”, “Yahoo News”,
“http://localhost:8080/ch04/example2/”,””);

menu.addSubItem(“newsid”, “CNN News”, “CNN News”,
“http://localhost:8080/ch04/example2/”,””);

menu.addSubItem(“weatherid”, “Accurate Weather”, “Accurate Weather”,
“http://localhost:8080/ch04/example2/”,””);

menu.addSubItem(“weatherid”, “Weather Central”, “Weather Central”,
“http://localhost:8080/ch04/example2/”,””);

menu.addSubItem(“entid”, “E Motion”, “E Motion”,
“http://localhost:8080/ch04/example2/”,””);

menu.addSubItem(“entid”, “Hollywood on the Run”, “Hollywood on the Run”,
“http://localhost:8080/ch04/example2/”,””);

1137

Exercise Solutions

39_57485x appd.qxd 1/14/05 10:22 PM Page 1137

TEAM LinG - Live, Informative, Non-cost and Genuine!

menu.addSubItem(“lotid”, “Lucky 9”, “Lucky 9”,
“http://localhost:8080/ch04/example2/”,””);

menu.addSubItem(“lotid”, “Mega Fortune”, “Mega Fortune”,
“http://localhost:8080/ch04/example2/”,””);

</c:when>
</c:choose>
menu.showMenu();
}

showToolbar();
function UpdateIt()
{

if (ie&&keepstatic&&!opr6)
document.all[“MainTable”].style.top = document.body.scrollTop;

setTimeout(“UpdateIt()”, 200);
}
UpdateIt();

</script>

<table class=”mainBox” width=”600”>
<tr><td class=”boxTitle” >

Entertainment News Just for You, ${param.user}!
</td></tr>
<tr><td>

<jsp:useBean id=”newsfeed” class=”com.wrox.begjsp.ch2.NewsFeed”

scope=”request” >
<jsp:setProperty name=”newsfeed” property=”topic”

value=”entertainment”/>
<jsp:getProperty name=”newsfeed” property=”value”/>

</jsp:useBean>

<jsp:include page=”dummytext.html” />

</td></tr>
</table>

Chapter 5 Exercises

Exercise 1
Create a form for entry of the number, called index1.jsp:

<html>
<head>

<title>Multiplication Table</title>

1138

Appendix D

39_57485x appd.qxd 1/14/05 10:22 PM Page 1138

TEAM LinG - Live, Informative, Non-cost and Genuine!

</head>
<body>

<h1>Enter a Number</h1>

<form action=”multtab.jsp” method=”get”>
Number:<input name=”mult” size=”10”>

<input type=”submit” value=”See multiplication table” />

</form>
</body>
</html>

Create multtab.jsp to render the multiplication table:

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>

<html>
<head>

<title>Multiplication Table</title>
</head>
<body>

<c:set var=”op” value=”${param.mult}”/>

<h1>Multiplication Table for ${op}</h1>

${op} times 1 is ${op * 1}.

${op} times 2 is ${op * 2}.

${op} times 3 is ${op * 3}.

${op} times 4 is ${op * 4}.

${op} times 5 is ${op * 5}.

${op} times 6 is ${op * 6}.

${op} times 7 is ${op * 7}.

${op} times 8 is ${op * 8}.

${op} times 9 is ${op * 9}.

${op} times 10 is ${op * 10}.

</body>
</html>

Exercise 2
Modify the WEB-INF/jsp/function-taglib.tld file to add the functions, highlighted here:

<?xml version=”1.0” encoding=”UTF-8” ?>

<taglib xmlns=”http://java.sun.com/xml/ns/j2ee”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”http://java.sun.com/xml/ns/j2ee web-jsptaglibrary_2_0.xsd”
version=”2.0”>
<description>A taglib to define some EL accessible functions.</description>
<tlib-version>1.0</tlib-version>
<short-name>ELFunctionTaglib</short-name>

1139

Exercise Solutions

39_57485x appd.qxd 1/14/05 10:22 PM Page 1139

TEAM LinG - Live, Informative, Non-cost and Genuine!

<uri>/ELFunctionTagLibrary</uri>
<function>

<description>Exposes the abs() function from java.lang.Math
package</description>

<name>abs</name>
<function-class>java.lang.Math</function-class>
<function-signature>int abs(int)</function-signature>

</function>

<function>
<description>Exposes the round() function from java.lang.Math

package</description>
<name>round</name>
<function-class>java.lang.Math</function-class>
<function-signature>int round(double)</function-signature>

</function>

<function>
<description>Exposes the integer min() function from java.lang.Math

package</description>
<name>min</name>
<function-class>java.lang.Math</function-class>
<function-signature>int min(int, int)</function-signature>

</function>

<function>
<description>Exposes the integer max() function from java.lang.Math

package</description>
<name>max</name>
<function-class>java.lang.Math</function-class>
<function-signature>int max(int, int)</function-signature>

</function>
<function>

<description>Exposes the sin() function from java.lang.Math
package</description>

<name>sin</name>
<function-class>java.lang.Math</function-class>
<function-signature>double sin(double)</function-signature>

</function>
<function>

<description>Exposes the cos() function from java.lang.Math
package</description>

<name>cos</name>
<function-class>java.lang.Math</function-class>
<function-signature>double cos(double)</function-signature>

</function>
<function>

<description>Exposes the sqrt() function from java.lang.Math
package</description>

<name>sqrt</name>
<function-class>java.lang.Math</function-class>
<function-signature>double sqrt(double)</function-signature>

</function>
</taglib>

1140

Appendix D

39_57485x appd.qxd 1/14/05 10:22 PM Page 1140

TEAM LinG - Live, Informative, Non-cost and Genuine!

Create a test JSP for the functions called index2.jsp:

<%@ taglib prefix=”wf” uri=”http://www.wrox.com/begjsp/el-functions-taglib” %>

<html>
<head>

<title>New EL Functions</title>
</head>
<body>

<h1>New EL Functions</h1>

min(10, 5) is ${wf:min(10,5)}

max(10, 5) is ${wf:max(10,4)}

sin(3.14) is ${wf:sin(3.14)}

cos(3.14) is ${wf:cos(3.14)}

sqrt(49) is ${wf:sqrt(49)}

</body>
</html>

Chapter 6 Exercises

Exercise 1
The estore2.jsp page is a modified version of estore.jsp, with the changes highlighted here:

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<%@ taglib prefix=”fmt” uri=”http://java.sun.com/jsp/jstl/fmt” %>
<%@ taglib prefix=”wxshop” uri=”http://www.wrox.com/begjsp/eshop-functions-taglib”
%>

<%@ page session=”true” %>
<c:if test=”${empty cats}”>

<c:set var=”cats” value=”${wxshop:getCats()}” scope=”application”/>
</c:if>

<html>
<head>

<title>Wrox Shopping Mall</title>
<link rel=stylesheet type=”text/css” href=”store.css”>

</head>
<body>

<table width=”600”>
<tr><td colspan=”2” class=”mainHead”>Wrox JSTL Web Store</td></tr>

<tr>
<td width=”20%”>
<c:forEach var=”curCat” items=”${cats}”>

<c:url value=”/example1/estore2.jsp” var=”localURL”>
<c:param name=”catid” value=”${curCat.id}”/>

</c:url>

1141

Exercise Solutions

39_57485x appd.qxd 1/14/05 10:22 PM Page 1141

TEAM LinG - Live, Informative, Non-cost and Genuine!

${curCat.name}
</br>

</c:forEach>
</td>
<td width=”*”>

<h1></h1>
<table border=”1” width=”100%”>

<tr><th align=”left”>Item</th><th align=”left”>Price</th><th
align=”left”>Order</th></tr>

<c:set var=”selectedCat” value=”${param.catid}”/>
<c:if test=”${empty selectedCat}”>

<c:set var=”selectedCat” value=”1”/>
</c:if>
<c:forEach var=”curItem” items=”${wxshop:getItems(selectedCat)}”>

<tr>
<td>

<c:url value=”/example1/product.jsp” var=”localURL”>
<c:param name=”sku” value=”${curItem.sku}”/>

</c:url>
${curItem.name}

</td>
<td align=”right”>

<fmt:formatNumber value=”${curItem.price / 100}” type=”currency”/>
</td>
<td>
<c:url value=”/example1/shopcart2.jsp” var=”localURL”>

<c:param name=”action” value=”buy”/>
<c:param name=”sku” value=”${curItem.sku}”/>

</c:url>
BUY
</td>

</tr>
</c:forEach>

</table>
</td>

</tr>
</table>

</body>
</html>

The product.jsp page is a newly created JSP:

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<%@ taglib prefix=”fmt” uri=”http://java.sun.com/jsp/jstl/fmt” %>
<%@ taglib prefix=”wxshop” uri=”http://www.wrox.com/begjsp/eshop-functions-taglib”
%>

<%@ page session=”true” %>

<c:set var=”EXAMPLE” value=”/example1”/>
<c:set var=”SHOP_PAGE” value=”/estore2.jsp”/>
<c:set var=”CART_PAGE” value=”/shopcart2.jsp”/>

1142

Appendix D

39_57485x appd.qxd 1/14/05 10:22 PM Page 1142

TEAM LinG - Live, Informative, Non-cost and Genuine!

<html>
<head>

<title>Wrox Shopping Mall - Product Page</title>
<link rel=stylesheet type=”text/css” href=”store.css”>

</head>
<body>

<c:if test=”${!(empty param.sku)}”>
<c:set var=”prod” value=”${wxshop:getItem(param.sku)}”/>

</c:if>

<table width=”640”>
<tr><td class=”mainHead”>Wrox JSTL Web Store</td></tr>
<tr>

<td>
<h1></h1>
<table border=”1” width=”640”>

<tr>
<th>

${prod.name}
</th>

</tr>

<tr>
<td>

<p>

This is a great product, and the detailed product
description should go here. In a real e-commerce
system, this information will be retrieved from
a relational database.

</p>
</td>

</tr>

<tr>
<td><h2>Only <fmt:formatNumber value=”${prod.price / 100}”

type=”currency”/> </h2>
</td>

</tr>

<tr>
<td>

<c:url value=”${EXAMPLE}${CART_PAGE}” var=”localURL”>
<c:param name=”sku” value=”${prod.sku}”/>
<c:param name=”action” value=”buy”/>

</c:url>
<h3>Buy Now</h3>

</td>
</tr>

<tr>
<td>

<c:url value=”${EXAMPLE}${SHOP_PAGE}” var=”localURL”/>

1143

Exercise Solutions

39_57485x appd.qxd 1/14/05 10:22 PM Page 1143

TEAM LinG - Live, Informative, Non-cost and Genuine!

Return to Shopping
</td>

</tr>
</table>

</td>
</tr>

</table>
</body>
</html>

Exercise 2
The modified version of shopcart.jsp that performs tax and shipping charge calculations is shown
next, with the modifications highlighted. This JSP file is saved as shopcart2.jsp.

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<%@ taglib prefix=”fmt” uri=”http://java.sun.com/jsp/jstl/fmt” %>
<%@ taglib prefix=”wxshop” uri=”http://www.wrox.com/begjsp/eshop-functions-taglib”
%>

<%@ page session=”true” %>

<c:set var=”EXAMPLE” value=”/example1”/>
<c:set var=”SHOP_PAGE” value=”/estore2.jsp”/>
<c:set var=”CART_PAGE” value=”/shopcart2.jsp”/>

<html>
<head>

<title>Wrox Shopping Mall - Shopping Cart</title>
<link rel=stylesheet type=”text/css” href=”store.css”>

</head>
<body>

<c:if test=”${!(empty param.sku)}”>
<c:set var=”prod” value=”${wxshop:getItem(param.sku)}”/>

</c:if>

<jsp:useBean id=”lineitems” class=”java.util.ArrayList” scope=”session”/>

<c:choose>
<c:when test=”${param.action == ‘clear’}”>

${wxshop:clearList(lineitems)}
</c:when>

<c:when test=”${param.action == ‘inc’ || param.action==’buy’}”>
<c:set var=”found” value=”false”/>

<c:forEach var=”curItem” items=”${lineitems}”>

<c:if test=”${(curItem.sku) == (prod.sku)}”>
<jsp:setProperty name=”curItem” property=”quantity”

value=”${curItem.quantity + 1}”/>
<c:set var=”found” value=”true” />

</c:if>
</c:forEach>

1144

Appendix D

39_57485x appd.qxd 1/14/05 10:22 PM Page 1144

TEAM LinG - Live, Informative, Non-cost and Genuine!

<c:if test=”${!found}”>
<c:remove var=”tmpitem”/>
<jsp:useBean id=”tmpitem” class=”com.wrox.begjsp.ch03.LineItem”>

<jsp:setProperty name=”tmpitem” property=”quantity” value=”1”/>
<jsp:setProperty name=”tmpitem” property=”sku” value=”${prod.sku}”/>
<jsp:setProperty name=”tmpitem” property=”desc” value=”${prod.name}”/>
<jsp:setProperty name=”tmpitem” property=”price” value=”${prod.price}”/>

</jsp:useBean>
${wxshop:addList(lineitems, tmpitem)}

</c:if>
</c:when>

</c:choose>

<c:set var=”total” value=”0”/>
<table width=”640”>

<tr><td class=”mainHead”>Wrox JSTL Web Store</td></tr>
<tr>

<td>
<h1></h1>
<table border=”1” width=”640”>

<tr><th colspan=”5” class=”shopCart”>Your Shopping Cart</th></tr>
<tr><th align=”left”>Quantity</th><th align=”left”>Item</th><th

align=”right”>Price</th>
<th align=”right”>Extended</th>
<th align=”left”>Add</th>

</tr>
<c:forEach var=”curItem” items=”${lineitems}”>

<c:set var=”extended” value=”${curItem.quantity * curItem.price}”/>
<c:set var=”total” value=”${total + extended}”/>
<tr>

<td>${curItem.quantity}</td>
<td>${curItem.desc}</td>
<td align=”right”>

<fmt:formatNumber value=”${curItem.price / 100}” type=”currency”/>
</td>
<td align=”right”>

<fmt:formatNumber value=”${extended / 100}” type=”currency”/>
</td>
<td>

<c:url value=”${EXAMPLE}${CART_PAGE}” var=”localURL”>
<c:param name=”action” value=”inc”/>
<c:param name=”sku” value=”${curItem.sku}”/>

</c:url>
Add 1

</td>
</tr>

</c:forEach>

<c:set var=”rtax” value=”${(total * 0.07)/100}”/>
<c:set var=”ftax” value=”${(total * 0.08)/100}”/>

<tr>

1145

Exercise Solutions

39_57485x appd.qxd 1/14/05 10:22 PM Page 1145

TEAM LinG - Live, Informative, Non-cost and Genuine!

<td colspan=”3” align=”right”>Regional tax (7%):</td>
<td align=”right” >

<fmt:formatNumber value=”${rtax}” type=”currency”/>
</td>
<td> </td>

</tr>

<tr>
<td colspan=”3” align=”right”>Federal tax (8%):</td>
<td align=”right” >

<fmt:formatNumber value=”${ftax}” type=”currency”/>
</td>
<td> </td>

</tr>

<tr>
<td colspan=”5”>
</td>

</tr>
<tr>

<td colspan=”3” align=”right”>Total:</td>
<td align=”right” class=”grandTotal”>

<fmt:formatNumber value=”${total / 100 + rtax + ftax}”
type=”currency”/>

</td>
<td> </td>

</tr>

<tr>
<td colspan=”5”>

<c:url value=”${EXAMPLE}${CART_PAGE}” var=”localURL”>
<c:param name=”action” value=”clear”/>

</c:url>
Clear the cart

</td>
</tr>

<tr>
<td colspan=”5”>

<c:url value=”${EXAMPLE}${SHOP_PAGE}” var=”localURL”/>
Return to Shopping

</td>
</tr>

</table>
</td>

</tr>
</table>

</body>
</html>

1146

Appendix D

39_57485x appd.qxd 1/14/05 10:22 PM Page 1146

TEAM LinG - Live, Informative, Non-cost and Genuine!

Chapter 7 Exercises

Exercise 1
The modified xindex.jsp with an all XML syntax is listed here:

<jsp:root
xmlns:jsp=”http://java.sun.com/JSP/Page”
version=”2.0”>
<jsp:directive.page language=”java” contentType=”text/html” />
<html>

<head>
</head>
<body>

<h1> This is an HTML page. </h1>
<table border=”1”>

<tr>
<td>This is a HTML table.</td>

</tr>
</table>

</body>
</html>

</jsp:root>

Exercise 2
In web.xml, add the <include-prelude> element as shown:

<jsp-property-group>
<url-pattern>/example3/index.jsp</url-pattern>
<include-prelude>/WEB-INF/jspf/pre2.jspf</include-prelude>

</jsp-property-group>

Create the JSP fragment file in the WEB-INF/jspf directory; call it pre2.jspf:

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>

Delete the <%@ taglib %> directive from index.jsp, resulting in the following:

<html>
<head>
</head>
<body>

<c:choose>
<c:when test=”${param.pg == ‘news’}”>

<%@ include file=”news.jsp” %>
</c:when>
<c:otherwise>

<%@ include file=”data.jsp” %>

1147

Exercise Solutions

39_57485x appd.qxd 1/14/05 10:22 PM Page 1147

TEAM LinG - Live, Informative, Non-cost and Genuine!

</c:otherwise>
</c:choose>

</body>
</html>

Chapter 8 Exercises

Exercise 1
Make the following changes in index1.jsp:

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<%@page import=”com.wrox.begjsp.ch03.*” %>
<html>
<head>

<%
pageContext.setAttribute(“myCats”, EShop.getCats());

%>
</head>
<body>

<jsp:useBean id=”myProduct” class=”com.wrox.begjsp.ch03.Product”>
<jsp:setProperty name=”myProduct” property=”sku” value=”12345”/>
<jsp:setProperty name=”myProduct” property=”name” value=”DSL Modem”/>

</jsp:useBean>

<jsp:useBean id=”myCats” class=”java.util.ArrayList”/>

<table border=”1”>
<tr>

<td>Sku:</td><td><%= myProduct.getSku() %></td>
</tr>
<tr>

<td>Name:</td><td>${myProduct.name}</td>
</tr>

</table>

<jsp:useBean id=”myMap” class=”java.util.HashMap” />
<jsp:useBean id=”myMap2” class=”java.util.HashMap” type=”java.util.Map”/>

<table border=”1”>
<tr>

<th>ID</th><th>Category</th></tr>
</tr>
<c:forEach var=”curcat” items=”${myCats}”>

<tr>
<td>${curcat.id}</td><td>${curcat.name}</td>

</tr>
</c:forEach>

</table>
</body>
</html>

1148

Appendix D

39_57485x appd.qxd 1/14/05 10:22 PM Page 1148

TEAM LinG - Live, Informative, Non-cost and Genuine!

Examining the generated code at <Tomcat Installation Directory>/work/Catalina/localhost/
ch08/org/apache/example1/jsp/index1_jsp.java, you can see that the myCats Java variable gen-
erated by the <jsp:useBean> standard action is of type java.util.ArrayList. This is shown in the
following line from index1_jsp.java:

java.util.ArrayList myCats = null;

Exercise 2
Make the following modifications to index.jsp, creating index2.jsp:

<html>
<head>

<title>Product Information Entry</title>
<style>

.label { font-weight: bold; }
</style>
</head>
<body>

<h1> Enter Product Information</h1>
<form action=”procprod2.jsp” method=”post”>

<table border=”1”>
<tr>

<td class=”label”>SKU:</td>
<td><input name=”sku” type=”text” width=”40”/> </td>

</tr>

<tr>
<td class=”label”>Name:</td> <td><input name=”name” type=”text”

width=”40”/> </td>
</tr>
<tr>

<td class=”label”>Description:</td> <td><input name=”desc” type=”text”
width=”40”/> </td>

</tr>
<tr>

<td class=”label”>Price:</td> <td> <input name=”price” type=”text”
width=”40”/></td>

</tr>

<tr>
<td class=”label”>Format:</td>
<td>

<select name=”docformat”>
<option>html</option>
<option>xml</option>

</select>
</td>

</tr>

<tr>
<td colspan=”2”> <input type=”submit”/></td>

</tr>

1149

Exercise Solutions

39_57485x appd.qxd 1/14/05 10:22 PM Page 1149

TEAM LinG - Live, Informative, Non-cost and Genuine!

</table>
</form>

</body>
</html>

The replacement of procprod.jsp (procprod2.jsp) just performs the forwarding as shown:

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<c:choose>

<c:when test=”${param.docformat == ‘xml’}”>
<jsp:forward page=”prodxml.jsp”/>

</c:when>
<c:otherwise>

<jsp:forward page=”prodhtml.jsp”/>
</c:otherwise>

</c:choose>

The prodxml.jsp JSP is used to render the product information in XML format:

<%@ taglib prefix=”fmt” uri=”http://java.sun.com/jsp/jstl/fmt” %>
<%@page contentType=”text/xml” %>
<product>

<jsp:useBean id=”localProd” class=”com.wrox.begjsp.ch03.Product” />
<jsp:setProperty name=”localProd” property=”*” />
<sku>

<jsp:getProperty name=”localProd” property=”sku”/>
</sku>
<name>

<jsp:getProperty name=”localProd” property=”name”/>
</name>
<desc>

<jsp:getProperty name=”localProd” property=”desc”/>
</desc>
<price>

<fmt:formatNumber value=”${localProd.price / 100}” type=”currency”/>
</price>

</product>

Finally, prodhtml.jsp is used to render the product information in HTML format, and its code is taken
from the old procprod.jsp file:

<%@ taglib prefix=”fmt” uri=”http://java.sun.com/jsp/jstl/fmt” %>
<%@page contentType=”text/html” %>
<html>
<head>

<title>Processing Product Information</title>
<style>

.label { font-weight: bold; }
</style>

</head>

<body>
<jsp:useBean id=”localProd” class=”com.wrox.begjsp.ch03.Product” />

1150

Appendix D

39_57485x appd.qxd 1/14/05 10:22 PM Page 1150

TEAM LinG - Live, Informative, Non-cost and Genuine!

<jsp:setProperty name=”localProd” property=”*” />
<h1>Information Received</h1>
<table border=”1”>

<tr>
<td class=”label” >SKU:</td> <td><jsp:getProperty name=”localProd”

property=”sku”/> </td>
</tr>

<tr>
<td class=”label”>Name:</td> <td><jsp:getProperty name=”localProd”

property=”name”/> </td>
</tr>
<tr>

<td class=”label”>Description:</td> <td><jsp:getProperty name=”localProd”
property=”desc”/> </td>

</tr>
<tr>

<td class=”label”>Price:</td>
<td>

<fmt:formatNumber value=”${localProd.price / 100}” type=”currency”/>
</td>

</tr>
</table>

</body>
</html>

Chapter 9 Exercises

Exercise 1
Modify index.jsp to create index1.jsp. The changes are highlighted:

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<c:choose>

<c:when test=”${empty param.action}”>
<jsp:forward page=”enterbid1.jsp”/>

</c:when>
<c:when test=”${param.action eq ‘bid’}”>

<jsp:useBean id=”bidinfo” class=”com.wrox.begjsp.ch09.Bid” scope=”request”>
<jsp:setProperty name=”bidinfo” property=”*”/>

</jsp:useBean>

<c:if test=”${(param.price <= 0) || (param.price >= 999)}”>
<jsp:useBean id=”biderror” class=”com.wrox.begjsp.ch09.BidError”

scope=”request”>
<jsp:setProperty name=”biderror” property=”msg” value=”Sorry, your bid is

not in range. Please enter again.”/>
</jsp:useBean>
<jsp:forward page=”enterbid1.jsp”/>

</c:if>

1151

Exercise Solutions

39_57485x appd.qxd 1/14/05 10:22 PM Page 1151

TEAM LinG - Live, Informative, Non-cost and Genuine!

<jsp:forward page=”showbid.jsp”/>
</c:when>

</c:choose>

Modify enterbid.jsp to enterbid1.jsp:

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<html>
<head>

<link rel=stylesheet type=”text/css” href=”auction.css”>
<title>Enter Your Bid</title></head>

<body>
<table class=”mainBox” width=”400”>

<tr>
<td class=”boxTitle” colspan=”2”>

Wrox JSP Auction
</td>

</tr>
<c:if test=”${!(empty biderror)}”>
<tr>

<td class=”errorText” colspan=”2”>
${biderror.msg}

</td>
</tr>
</c:if>

<tr><td colspan=”2”> </td></tr>
<tr><td>

<form action=”index1.jsp” method=”get”>
<table>

<tr>
<td width=”200”>Item to bid on</td>
<td>

<select name=”item”>
<option

<c:if test=”${!(empty biderror)}”>
<c:if test=”${bidinfo.item eq ‘27 inch TV’}”>
selected

</c:if>
</c:if>

>27 inch TV</option>
<option

<c:if test=”${!(empty biderror)}”>
<c:if test=”${bidinfo.item eq ‘DVD Player’}”>

selected
</c:if>

</c:if>
>DVD Player</option>
<option

<c:if test=”${!(empty biderror)}”>
<c:if test=”${bidinfo.item eq ‘Digital Camera’}”>

selected
</c:if>

</c:if>

1152

Appendix D

39_57485x appd.qxd 1/14/05 10:22 PM Page 1152

TEAM LinG - Live, Informative, Non-cost and Genuine!

>Digital Camera</option>
</select>
<input type=”hidden” name=”action” value=”bid”/>

</td>
</tr>
<tr>

<td
<c:if test=”${!(empty biderror)}”>

class=”redLabel”
</c:if>
>Bid Price:</td>

<td><input name=”price” type=”text” width=”10”
<c:if test=”${!(empty biderror)}”>

value=”${bidinfo.price}”
</c:if>

/>
</td>

</tr>
<tr><td colspan=”2”> </td></tr>
<tr>

<td colspan=”2” align=”center”>
<input type=”submit” value=”Bid now!”/>

</td>
</tr>

</table>
</form>

</td></tr>
</table>

</body>
</html>

Add the following to auction.css:

.redLabel
{

font-family : Verdana, Geneva, Arial, Helvetica, sans-serif;
font-size : 18;
color : #ff0000;
background-color: #ffffff;

}

Exercise 2
Modify index.jsp to index1.jsp as shown in the highlighted changes:

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<c:choose>

<c:when test=”${empty param.action}”>
<jsp:forward page=”enterbid1.jsp”/>

</c:when>
<c:when test=”${param.action eq ‘bid’}”>

1153

Exercise Solutions

39_57485x appd.qxd 1/14/05 10:22 PM Page 1153

TEAM LinG - Live, Informative, Non-cost and Genuine!

<jsp:useBean id=”bidinfo” class=”com.wrox.begjsp.ch09.Bid” scope=”request”>
<jsp:setProperty name=”bidinfo” property=”*”/>

</jsp:useBean>
<c:if test=”${param.price > 1000}”>

<jsp:forward page=”winner.jsp”/>
</c:if>

<!-- validation code -->
<c:if test=”${param.price <= 0}”>

<jsp:useBean id=”biderror” class=”com.wrox.begjsp.ch09.BidError”
scope=”request”>

<jsp:setProperty name=”biderror” property=”msg” value=”Sorry, your bid is
not in range. Please enter again.”/>

</jsp:useBean>
<jsp:forward page=”enterbid1.jsp”/>

</c:if>
<!-- data validated -->

<!-- perform bidding -->
<jsp:useBean id=”bidder” class=”com.wrox.begjsp.ch09.Bidder” scope=”request”>

<jsp:setProperty name=”bidder” property=”item”/>
<jsp:setProperty name=”bidder” property=”price”/>

</jsp:useBean>
<c:set var=”bidresult” value=”${bidder.result}” scope=”request”/>

<jsp:forward page=”showbid.jsp”/>
</c:when>

</c:choose>

Modify enterbid.jsp to enterbid1.jsp:

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<html>
<head>

<link rel=stylesheet type=”text/css” href=”auction.css”>
<title>Enter Your Bid</title></head>

<body>
<table class=”mainBox” width=”400”>

<tr>
<td class=”boxTitle” colspan=”2”>

Wrox JSP Auction
</td>

</tr>
<c:if test=”${!(empty biderror)}”>
<tr>

<td class=”errorText” colspan=”2”>
${biderror.msg}

</td>
</tr>
</c:if>

1154

Appendix D

39_57485x appd.qxd 1/14/05 10:22 PM Page 1154

TEAM LinG - Live, Informative, Non-cost and Genuine!

<tr><td colspan=”2”> </td></tr>
<tr>

<td>
<form action=”index1.jsp” method=”get”>

<table>
<tr>

<td width=”200”>Item to bid on</td>
<td>

<select name=”item”>
<option>27 inch TV</option>
<option>DVD Player</option>
<option>Digital Camera</option>

</select>
<input type=”hidden” name=”action” value=”bid”/>

</td>
</tr>
<tr>

<td>Bid Price:</td>
<td><input name=”price” type=”text” width=”10”/>
</td>

</tr>
<tr><td colspan=”2”> </td></tr>
<tr>

<td colspan=”2” align=”center”>
<input type=”submit” value=”Bid now!”/>

</td>
</tr>

</table>
</form>

</td>
</tr>

</table>
</body>
</html>

Add the new winner.jsp:

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<html>
<head>

<link rel=stylesheet type=”text/css” href=”auction.css”>
<title>Enter Your Bid</title></head>

<body>
<table class=”mainBox” width=”400”>

<tr><td class=”boxTitle” colspan=”2”>
Wrox JSP Auction

</td></tr>
<c:if test=”${!(empty biderror)}”>

<tr>
<td class=”errorText” colspan=”2”>

${biderror.msg}
</td>

</tr>
</c:if>

1155

Exercise Solutions

39_57485x appd.qxd 1/14/05 10:22 PM Page 1155

TEAM LinG - Live, Informative, Non-cost and Genuine!

<tr><td colspan=”2”> </td></tr>
<tr>

<td>
<form action=”index1.jsp” method=”get”>

<table>
<tr>

<td width=”200”>Item to bid on</td>
<td>

<select name=”item”>
<option>27 inch TV</option>
<option>DVD Player</option>
<option>Digital Camera</option>

</select>
<input type=”hidden” name=”action” value=”bid”/>

</td>
</tr>
<tr>

<td>Bid Price:</td>
<td><input name=”price” type=”text” width=”10”/>
</td>

</tr>
<tr><td colspan=”2”> </td></tr>
<tr>

<td colspan=”2” align=”center”>
<input type=”submit” value=”Bid now!”/>

</td>
</tr>

</table>
</form>

</td>
</tr>

</table>
</body>
</html>

Chapter 10 Exercises

Exercise 1
Modify index.jsp to create index1.jsp, as shown in the highlighted changes:

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<html>
<head>

<jsp:useBean id=”errgen” class=”com.wrox.begjsp.ch10.ErrorGenerator” />

<title>Error Generating page</title>
</head>
<body>

<h1>Page to Generate Error</h1>

1156

Appendix D

39_57485x appd.qxd 1/14/05 10:22 PM Page 1156

TEAM LinG - Live, Informative, Non-cost and Genuine!

<table>
<tr>

<td><h3>
<c:catch var=”localerr”>

${errgen.divideByZero}
</c:catch>
<c:if test=”${localerr.rootCause.class eq

‘class java.lang.ArithmeticException’}”>
Do not divide by zero!

</c:if>
<c:if test=”${localerr.rootCause.class eq

‘class java.lang.ArrayIndexOutOfBoundsException’}”>
Fix array index!

</c:if>
</h3></td>

</tr>
</table>

</body>
</html>

Note that the <%@ page %> directive with the errorPage attribute has been removed.

To test for array index out of range errors, replace the line

${errgen.divideByZero}

with the line

${errgen.outOfRange}

Exercise 2
Modify index.jsp from the third Try It Out example to form index1.jsp:

<%@page language=”java” errorPage=”disperr.jsp” %>
<html>
<head>

<title>Error in JSP directives and actions</title>
</head>
<body>

<h1>Page with error in JSP directive and actions</h1>

<jsp:include page=”nosuch.jsp” />
<jsp:setProperty name=”errobj” property=”nosuch” value=”This is invalid” />

</body>
</html>

Note that the JSTL taglib directive and the <c:catch> tags have been removed.

1157

Exercise Solutions

39_57485x appd.qxd 1/14/05 10:22 PM Page 1157

TEAM LinG - Live, Informative, Non-cost and Genuine!

Create a new disperr.jsp page containing the following:

<%@page isErrorPage=”true” %>

<html>
<head>

<title>Page to Display Error Information</title>
</head>
<body>

<h1>Error Information</h1>
<table width=”600” border=”1”>

<tr valign=”top”>
<td >Error:</td>
<td>${pageContext.exception.rootCause}</td>

</tr>

<tr valign=”top”>
<td>URI:</td>
<td>${pageContext.errorData.requestURI}</td>

</tr>

<tr valign=”top”>
<td>Status code:</td>
<td>${pageContext.errorData.statusCode}</td>

</tr>
</table>

</body>
</html>

The thing to note in the preceding code is the use of ${pageContext.exception.rootCause} to print
the actual error.

Chapter 11 Exercises

Exercise 1
First, the JSP page (exercise-randomnumber.jsp) that uses the random number generator tag is
shown:

<%@ taglib prefix=”beginjsp” tagdir=”/WEB-INF/tags” %>

<beginjsp:randomnumber max=”100”/>

Random Number: ${randomNumber}

1158

Appendix D

39_57485x appd.qxd 1/14/05 10:22 PM Page 1158

TEAM LinG - Live, Informative, Non-cost and Genuine!

The implementation of the random number tag (randomnumber.tag) is listed next:

<%@ tag import=”java.util.Random” body-content=”empty” %>

<%@ attribute name=”max” type=”java.lang.Integer” required=”true” %>
<%@ variable name-given=”randomNumber” variable-class=”java.lang.Integer”
scope=”AT_BEGIN”%>

<%
Random rand = new Random();
int result = rand.nextInt(max.intValue());
jspContext.setAttribute(“randomNumber”, new Integer(result));

%>

Exercise 2
The JSP page (exercise-calformat.jsp) that uses the calendar tag is as follows:

<%@ page import=”java.util.Calendar” %>
<%@ taglib prefix=”beginjsp” tagdir=”/WEB-INF/tags” %>

<%
Calendar cal = Calendar.getInstance();
String pattern = “EEEE d MMMM yyyy G”;

pageContext.setAttribute(“cal”, cal);
pageContext.setAttribute(“pattern”, pattern);

%>

<beginjsp:calformat calendar=”${cal}”
pattern=”${pattern}”/>

The implementation of the calendar tag (calformat.tag) is as follows:

<%@ tag body-content=”empty”
import=”java.util.Calendar,java.text.SimpleDateFormat” %>

<%@ taglib prefix=”core” uri=”http://java.sun.com/jsp/jstl/core” %>
<%@ taglib prefix=”function” uri=”http://java.sun.com/jsp/jstl/functions” %>

<%@ attribute name=”calendar” required=”true” type=”java.util.Calendar” %>
<%@ attribute name=”pattern” required=”true” %>

<%
SimpleDateFormat formatter = new SimpleDateFormat(pattern);
String result = formatter.format(calendar.getTime());
out.println(result);

%>

1159

Exercise Solutions

39_57485x appd.qxd 1/14/05 10:22 PM Page 1159

TEAM LinG - Live, Informative, Non-cost and Genuine!

Chapter 12 Exercises

Exercise 1
Modify index.jsp to create index1.jsp:

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<c:choose>

<c:when test=”${empty param.action}”>
<jsp:forward page=”bidform.jsp”/>

</c:when>

<c:when test=”${param.action eq ‘bidsubmit’}”>
<jsp:forward page=”procbid.jsp”/>

</c:when>
</c:choose>

Create bidform.jsp:

<%@ taglib prefix=”my” tagdir=”/WEB-INF/tags/wroxtags” %>
<html>
<head>

<title>Auction Bidding</title>
<my:validateFunctions>

<my:checkField name=”name” type=”alphanum”/>
<my:checkField name=”item” type=”digits”/>
<my:checkField name=”bid” type=”digits”/>

</my:validateFunctions>
</head>
<body>

<h1>Enter Your Bid Information</h1>
<form name=”prodform” action=”index1.jsp” method=”post”

onsubmit=”return validateForm()”>
<table border=”0” >

<tr>
<td>Name:</td>
<td>

<input name=”name” type=”text” width=”40”/>
<my:validateErrMsg name=”name”

msg=”<-- please enter alphabet letters only”/>
</td>

</tr>

<tr>
<td>Item Number:</td>
<td>

<input name=”item” type=”text” width=”40”/>
<my:validateErrMsg name=”item”

msg=”<-- please enter numeric digits only”/>
</td>

</tr>

1160

Appendix D

39_57485x appd.qxd 1/14/05 10:22 PM Page 1160

TEAM LinG - Live, Informative, Non-cost and Genuine!

<tr>
<td>Bid Price:</td>
<td>
<input name=”bid” type=”text” width=”40”/>
<my:validateErrMsg name=”bid”

msg=”<-- please enter price in dollars only, do not enter cents”/>
</td>

</tr>

<tr>
<td colspan=”2”> <input type=”submit” value=”Bid now!” />

<input type=”hidden” name=”action” value=”bidsubmit”/>
</td>

</tr>

</table>
</form>

</body>
</html>

Create the new procbid.jsp:

<html>
<head>

<title>Processing Bid Information</title>
</head>
<body>

<h1>Bid Information Received</h1>
<table border=”1”>

<tr>
<td>Name:</td> <td>${param.name}</td>

</tr>

<tr>
<td>Item Number:</td> <td>${param.item}</td>

</tr>
<tr>

<td>Bid Price:</td> <td> ${param.bid}</td>
</tr>

</table>
</body>
</html>

After you complete this exercise, you should realize that the tag library is not yet ready for general use.
Namely, it still has two interdependencies with the source:

❑ The form must be called prodform.

❑ The onsubmit handler of the form still refers to a JavaScript method called validateForm().

1161

Exercise Solutions

39_57485x appd.qxd 1/14/05 10:22 PM Page 1161

TEAM LinG - Live, Informative, Non-cost and Genuine!

Exercise 2
Modify index1.jsp from the third Try It Out example to create index2.jsp:

<%@ taglib prefix=”fn” uri=”http://java.sun.com/jsp/jstl/functions” %>
<%@ taglib prefix=”my” tagdir=”/WEB-INF/tags/wroxtags” %>
<%@page contentType=”text/xml” %>
<?xml version=”1.0”?>
<entry>

<my:getInfo/>

<name>
${fn:escapeXml(name)}

</name>
<comment>

${fn:escapeXml(comment)}
</comment>
<code>

${fn:escapeXml(code)}
</code>

</entry>

Chapter 13 Exercises

Exercise 1
The first step in internationalizing for French is to create a GIF file for the selection of the French lan-
guage, called french.gif.

Next, modify the index.jsp file to create an index1.jsp file containing the changes highlighted:

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<html>
<head>

<title>Select a language</title>
</head>
<body>

<h1>Please select a language:</h1>
<c:url value=”en/application.jsp” var=”engURL”/>

<c:url value=”zh/application.jsp” var=”chineseURL”/>

1162

Appendix D

39_57485x appd.qxd 1/14/05 10:22 PM Page 1162

TEAM LinG - Live, Informative, Non-cost and Genuine!

<c:url value=”fr/application.jsp” var=”frenchURL”/>

</body>
</html>

Create a localized fr directory, and modify application.jsp to create fr/application.jsp:

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<html>
<head>

<meta http-equiv=”Content-Type” content=”text/html;charset=utf-8” >
<title>Formulaire de Demande</title>

</head>
<body>

<h1>Formulaire de Demande</h1>

<c:url value=”procform.jsp” var=”actionURL”/>
<form action=”${actionURL}” method=”post”>

<table>
<tr>

<td>Prénom</td>
<td><input type=”text” name=”lastname” size=”40”/></td>

</tr>

<tr>
<td>Nom</td>
<td><input type=”text” name=”firstname” size=”40”/></td>

</tr>

<tr>
<td>Code postal</td>
<td><input type=”text” name=”postcode” size=”40”/></td>

</tr>

<tr>
<td>Mot de passé</td>
<td><input type=”password” name=”pass” size=”40”/></td>

</tr>

<tr>
<td colspan=”2” align=”center”>
<input type=”submit” value=”Valider”/></td>

</tr>

</table>
</form>

</body>
</html>

1163

Exercise Solutions

39_57485x appd.qxd 1/14/05 10:22 PM Page 1163

TEAM LinG - Live, Informative, Non-cost and Genuine!

Create an en/procform.jsp file, containing the following:

<html>
<head>

<meta http-equiv=”Content-Type” content=”text/html;charset=utf-8” >
<title>L’information de demadeur</title>

</head>
<body>

<h1>L’information de demadeur</h1>

<table border=”1”>
<tr>

<td>Prénom</td>
<td>${param.lastname}</td>

</tr>

<tr>
<td>Nom</td>
<td>${param.firstname}</td>

</tr>

<tr>
<td>Code postal</td>
<td>${param.postcode}</td>

</tr>

<tr>
<td>Mot de passé</td>
<td>${param.pass}</td>

</tr>

</table>
</body>
</html>

Exercise 2
Copy the french.gif from the first Try It Out example into the solution directory.

Modify the second Try It Out example’s index.jsp to create index1.jsp:

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<html>
<head>

<title>Select Language</title>
</head>
<body>

<h1>Please select language:</h1>
<c:url value=”application.jsp” var=”engURL”>

<c:param name=”locale” value=”en_US”/>
</c:url>

1164

Appendix D

39_57485x appd.qxd 1/14/05 10:22 PM Page 1164

TEAM LinG - Live, Informative, Non-cost and Genuine!

<c:url value=”application.jsp” var=”chineseURL”>

<c:param name=”locale” value=”zh_HK”/>
</c:url>

<c:url value=”application.jsp” var=”frenchURL”>

<c:param name=”locale” value=”fr_FR”/>
</c:url>

</body>
</html>

Create an app_fr.properties file in the WEB-INF/classes directory:

newTitle=Formulaire de Demande
lastName=Pr\u00e9nom
firstName=Nom
postalCode=Code postal
password=Mot de pass\u00e9
submitForm=Valider
appInfo=L\u2019information de demadeur

Chapter 14 Exercises

Exercise 1
The answer is found in the file FilterByNdc.java in the package com.wrox.book.chapt14:

package com.wrox.book.chapt14.log4j;
public class FilterByNdc extends org.apache.log4j.spi.Filter
{

private boolean allowOnMatch = true; // blocks if false
private String match = null;

public FilterByNdc()
{
}

1165

Exercise Solutions

39_57485x appd.qxd 1/14/05 10:22 PM Page 1165

TEAM LinG - Live, Informative, Non-cost and Genuine!

public int decide(org.apache.log4j.spi.LoggingEvent loggingEvent)
{

String ndcValue = loggingEvent.getNDC();
// null matches everything
if((match == null) || (ndcValue == null))
{

return allowOnMatch ? ACCEPT : DENY;
}
if((match.equals(ndcValue)))
{

return allowOnMatch ? ACCEPT : DENY;
}
return allowOnMatch ? DENY : ACCEPT;

}

boolean getAllowOnMatch()
{

return allowOnMatch;
}

void setAllowOnMatch(boolean allow)
{

this.allowOnMatch = allow;
}

String getMatch()
{

return match;
}

void setmatch(String matchVal)
{

this.match = matchVal;
}

}

Exercise 2
The solution is found in the class com.wrox.book.chapter14.NdcIpFilter:

package com.wrox.book.chapt14;

import java.io.IOException;
import javax.servlet.*;
import org.apache.log4j.NDC;

public class NdcIpFilter implements Filter
{

private FilterConfig filterConfig = null;

public NdcIpFilter()
{

1166

Appendix D

39_57485x appd.qxd 1/14/05 10:22 PM Page 1166

TEAM LinG - Live, Informative, Non-cost and Genuine!

}

public void init(FilterConfig fc)
{

filterConfig = fc;
}

public void doFilter(
ServletRequest request,
ServletResponse response,
FilterChain chain)

throws IOException, ServletException
{

// adds the Ip Address to the NDC
String ip = request.getRemoteAddr();
NDC.push(ip);
chain.doFilter(request, response);
NDC.pop();

}

public void destroy()
{
}

}

Exercise 3
The solution is found in the file Exercise3.jsp:

<%@page contentType=”text/html”%>
<%@page pageEncoding=”UTF-8”%>
<%@page import=”org.apache.log4j.Logger” %>
<%@taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<%@taglib prefix=”log” uri=”http://jakarta.apache.org/taglibs/log-1.0” %>
<html>
<head><title>Debugger Exercise</title></head>
<body>
<%

Logger logger = Logger.getLogger(this.getClass().getName());
int dice = 0;
java.util.ArrayList imageNames = new java.util.ArrayList(5);
java.util.Random rnd = new java.util.Random();
for (int i = 0; i < 5; i++)
{

dice = rnd.nextInt(6)+1;
imageNames.add(new String(“dice128_”+dice+”.gif”));
logger.debug(imageNames.get(i));

}
pageContext.setAttribute(“dice”, imageNames);

%>
<c:set var=”logCat” value=”${pageContext.page.class.name}” scope=”page” />
<table>

1167

Exercise Solutions

39_57485x appd.qxd 1/14/05 10:22 PM Page 1167

TEAM LinG - Live, Informative, Non-cost and Genuine!

<tbody align=”center”>
<tr>
<c:forEach var=”imageName” items=”${dice}” >

<td></td>
<log:info category=”${logCat}” message=”${imageName}” />

</c:forEach>
</tr>

</tbody>
</table>

</body>
</html>

Chapter 15 Exercises

Exercise 1
Modify the deployment descriptor (web.xml) to add the servlet declaration and the servlet mappings
(new code highlighted):

<?xml version=”1.0” encoding=”ISO-8859-1”?>

<web-app xmlns=”http://java.sun.com/xml/ns/j2ee”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd”
version=”2.4”>

<description>
Wrox Beginning JavaServer Pages Examples - Chapter 15

</description>
<display-name>Chapter 15 Example (Wrox Beginning JavaServer Pages)</display-name>

<servlet>
<servlet-name>BasicServlet</servlet-name>
<servlet-class>com.wrox.begjsp.ch15.servlet.BasicServlet</servlet-class>

</servlet>

<servlet>
<servlet-name>ControllerServlet</servlet-name>
<servlet-class>com.wrox.begjsp.ch15.servlet.ControllerServlet</servlet-class>

<init-param>
<param-name>hot</param-name>
<param-value>/example2/red.jsp</param-value>

</init-param>
<init-param>

<param-name>cool</param-name>
<param-value>/example2/blue.jsp</param-value>

</init-param>
</servlet>

1168

Appendix D

39_57485x appd.qxd 1/14/05 10:22 PM Page 1168

TEAM LinG - Live, Informative, Non-cost and Genuine!

<servlet>
<servlet-name>MessageServlet</servlet-name>
<servlet-class>com.wrox.begjsp.ch15.servlet.MessageServlet</servlet-class>

<init-param>
<param-name>message</param-name>
<param-value>Hello, world!</param-value>

</init-param>
</servlet>

<servlet-mapping>
<servlet-name>BasicServlet</servlet-name>
<url-pattern>/</url-pattern>

</servlet-mapping>

<servlet-mapping>
<servlet-name>ControllerServlet</servlet-name>
<url-pattern>*.do</url-pattern>

</servlet-mapping>

<servlet-mapping>
<servlet-name>MessageServlet</servlet-name>
<url-pattern>/talktomeplease</url-pattern>

</servlet-mapping>

</web-app>

Create a MessageServlet.java file in the WEB-INF\classes\com\wrox\begjsp\ch15\servlet
directory:

package com.wrox.begjsp.ch15.servlet;
import javax.servlet.*;
import javax.servlet.http.*;

public class MessageServlet extends HttpServlet
{

private String msg;

public void init(ServletConfig config) throws
ServletException

{
super.init(config);
msg = config.getInitParameter(“message”);

}

public void destroy()
{
}

protected void processRequest(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, java.io.IOException

{
try

1169

Exercise Solutions

39_57485x appd.qxd 1/14/05 10:22 PM Page 1169

TEAM LinG - Live, Informative, Non-cost and Genuine!

{
response.setContentType(“text/html”);
java.io.PrintWriter out = response.getWriter();
out.write(“<html>\n”);
out.write(“<head>\n”);
out.write(“<title>Message Servlet</title>\n”);
out.write(“</head>\n”);
out.write(“<body>\n”);
out.write(“<h1>” + msg + “</h1>\n”);
out.write(“</body>\n”);
out.write(“</html>”);
out.close();

}
catch(Exception e)
{

throw new ServletException(e);
}

}

protected void doGet(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, java.io.IOException

{
processRequest(request, response);

}

protected void doPost(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, java.io.IOException

{
processRequest(request, response);

}
}

Compile the servlet using the compile.bat file under the WEB-INF/classes directory.

Exercise 2
Modify the deployment descriptor (web.xml) to add new initialization parameters for the
ControllerServlet. The new code is highlighted:

<?xml version=”1.0” encoding=”ISO-8859-1”?>

<web-app xmlns=”http://java.sun.com/xml/ns/j2ee”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd”
version=”2.4”>

<description>
Wrox Beginning JavaServer Pages Examples - Chapter 15

</description>
<display-name>Chapter 15 Example (Wrox Beginning JavaServer Pages)</display-name>

1170

Appendix D

39_57485x appd.qxd 1/14/05 10:22 PM Page 1170

TEAM LinG - Live, Informative, Non-cost and Genuine!

<servlet>
<servlet-name>BasicServlet</servlet-name>
<servlet-class>com.wrox.begjsp.ch15.servlet.BasicServlet</servlet-class>

</servlet>

<servlet>
<servlet-name>ControllerServlet</servlet-name>
<servlet-class>com.wrox.begjsp.ch15.servlet.ControllerServlet</servlet-class>

<init-param>
<param-name>hot</param-name>
<param-value>/example2/red.jsp</param-value>

</init-param>
<init-param>

<param-name>cool</param-name>
<param-value>/example2/blue.jsp</param-value>

</init-param>
<init-param>

<param-name>warm</param-name>
<param-value>/example2/message.jsp</param-value>

</init-param>
<init-param>

<param-name>message</param-name>
<param-value>Hello, world!</param-value>

</init-param>

</servlet>

<servlet-mapping>
<servlet-name>BasicServlet</servlet-name>
<url-pattern>/</url-pattern>

</servlet-mapping>

<servlet-mapping>
<servlet-name>ControllerServlet</servlet-name>
<url-pattern>*.do</url-pattern>

</servlet-mapping>

</web-app>

Modify the second example’s ControllerServlet.java to add the highlighted code:

package com.wrox.begjsp.ch15.servlet;
import javax.servlet.*;
import javax.servlet.http.*;

import java.util.HashMap;

public class ControllerServlet extends HttpServlet
{

private HashMap forwards;
private final static String HOT=”hot”;
private final static String COOL=”cool”;

1171

Exercise Solutions

39_57485x appd.qxd 1/14/05 10:22 PM Page 1171

TEAM LinG - Live, Informative, Non-cost and Genuine!

private final static String WARM=”warm”;
private String msg;

public void init(ServletConfig config) throws
ServletException

{
super.init(config);
forwards = new HashMap();
forwards.put(HOT, config.getInitParameter(HOT));
forwards.put(COOL, config.getInitParameter(COOL));
forwards.put(WARM, config.getInitParameter(WARM));
msg = config.getInitParameter(“message”);

}

public void destroy()
{
}

protected void processRequest(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, java.io.IOException

{
try
{

//forward request to the associated page
ServletContext context = getServletContext();
String logicalName = request.getServletPath();
String physicalURL = “/”;
logicalName= logicalName.substring(logicalName.lastIndexOf(‘/’) + 1,

logicalName.indexOf(‘.’));

if (logicalName.equals(HOT))
physicalURL= (String) forwards.get(HOT);

if (logicalName.equals(COOL))
physicalURL= (String) forwards.get(COOL);

if (logicalName.equals(WARM))
physicalURL= (String) forwards.get(WARM);

request.setAttribute(“msg”, msg);

RequestDispatcher dispatcher =
context.getRequestDispatcher(physicalURL);

dispatcher.forward(request, response);
}
catch(Exception e)
{

throw new ServletException(e);
}

}

1172

Appendix D

39_57485x appd.qxd 1/14/05 10:22 PM Page 1172

TEAM LinG - Live, Informative, Non-cost and Genuine!

protected void doGet(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, java.io.IOException

{
processRequest(request, response);

}

protected void doPost(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, java.io.IOException

{
processRequest(request, response);

}

}

Compile the preceding servlet using the compile.bat batch file in the WEB-INF/classes directory.

Add a message.jsp file to the example2 directory:

<html>
<head>

<title>Message Page</title>
</head>
<body>

<h1>${msg}</h1>
</body>
</html>

The message is attached as an attribute, named msg, to the request by the ControllerServlet. This
attribute is subsequently rendered by an EL expression within message.jsp.

Chapter 16 Exercises

Exercise 1
The goal of exercise 1 is to add header and footer elements to each JSP page served by the Web application.

Create the header and footer fragment files in the web directory as follows:

header.htmlf

<div class=”header”>
<hr/>
This is the header of all the pages
<hr/>
</div>

footer.htmlf

1173

Exercise Solutions

39_57485x appd.qxd 1/14/05 10:22 PM Page 1173

TEAM LinG - Live, Informative, Non-cost and Genuine!

<div class=”footer”>
<hr/>
This is the footer of all the pages
<hr/>
</div>

Edit the web.xml file to include the jsp-config element as follows:

<web-app version=”2.4” uri=”http://java.sun.com/xml/ns/j2ee”

<jsp-config>
<jsp-property-group>

<url-pattern>*.jsp</url-pattern>
<include-prelude>/header.htmlf</include-prelude>
<include-coda>/footer.htmlf</include-coda>

</jsp-property-group>
</jsp-config>

<security-role>
<role-name>chapter16role</role-name>

</security-role>

<security-constraint>
<web-resource-collection>

<url-pattern>/showDate.jsp</url-pattern>
</web-resource-collection>
<auth-constraint>

<role-name>chapter17role</role-name>
</auth-constraint>

</security-constraint>

<login-config>
<auth-method>BASIC</auth-method>
<realm-name>Chapter 16 Realm</realm-name>

</login-config>

</web-app>

Browse to the showDate.jsp page. Note that index.html does not have header and footer elements
added to the page.

Exercise 2
The goal of exercise 2 is to use pages with an html extension as JSP pages and add some dynamic con-
tent to the current index.html. For this exercise, implement a counter that increases each time the
index.html page is viewed since the Web application has been started.

Edit the web.xml file to include the jsp-property-group:

<?xml version=”1.0” encoding=”ISO-8859-1”?>

<web-app version=”2.4” uri=”http://java.sun.com/xml/ns/j2ee” >

1174

Appendix D

39_57485x appd.qxd 1/14/05 10:22 PM Page 1174

TEAM LinG - Live, Informative, Non-cost and Genuine!

<jsp-config>
<jsp-property-group>

<url-pattern>*.jsp</url-pattern>
<include-prelude>/header.htmlf</include-prelude>
<include-coda>/footer.htmlf</include-coda>

</jsp-property-group>

<jsp-property-group>
<url-pattern>*.html</url-pattern>

</jsp-property-group>
</jsp-config>

<security-role>
<role-name>chapter16role</role-name>

</security-role>

<security-constraint>
<web-resource-collection>

<url-pattern>/showDate.jsp</url-pattern>
</web-resource-collection>
<auth-constraint>

<role-name>chapter16role</role-name>
</auth-constraint>

</security-constraint>

<login-config>
<auth-method>BASIC</auth-method>
<realm-name>Chapter 16 Realm</realm-name>

</login-config>

</web-app>

Edit index.html as follows:

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<c:set var=”count” scope=”application” value=”${count + 1}” />
<html>

<head>
<title> Chapter 16 Exercises </title>

</head>
<body>

<h1> Chapter 16 Exercises </h1>

 Exercise 1 - Creating and deploying the simplest web application
 Exercise 2 - Adding a JSP page
 Exercise 3 - Securing the JSP page
 Exercise 4 - Adding headers and footers
 Exercise 5 - Dynamic HTML pages

<hr/>
<center>

Page Count: <c:out value=”${count}” />
</center>
<hr/>

</body>
</html>

1175

Exercise Solutions

39_57485x appd.qxd 1/14/05 10:22 PM Page 1175

TEAM LinG - Live, Informative, Non-cost and Genuine!

Exercise 3
The value of the page counter in exercise 2 will continue to be incremented until the Web application is
restarted. Modify the Web application so the page counter is linked to each user session.

Edit index.html as follows:

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<c:set var=”count” scope=”session” value=”${count + 1}” />
<html>

<head>
<title> Chapter 16 Exercises </title>

</head>
<body>
<h1> Chapter 16 Exercises </h1>

 Exercise 1 - Creating and deploying the simplest web application
 Exercise 2 - Adding a JSP page
 Exercise 3 - Securing the JSP page
 Exercise 4 - Adding headers and footers
 Exercise 5 - Dynamic HTML pages

<hr/>
<center>

Page Count: <c:out value=”${count}” />
</center>
<hr/>

</body>
</html>

Chapter 17 Exercises

Exercise 1
Following is the addition to displayCustomer.jsp:

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>

<c:set var=”customer” value=”${requestScope.customer}”/>
<html>
<head>

<title>Display Customer</title>
</head>
<body>

<table cellspacing=”3” cellpadding=”3” border=”1” width=”60%”>
<tr>

<td colspan=”2”>Customer:
${customer.firstName} ${customer.lastName}

1176

Appendix D

39_57485x appd.qxd 1/14/05 10:22 PM Page 1176

TEAM LinG - Live, Informative, Non-cost and Genuine!

</td>
</tr>
<tr>

<td>Id</td>
<td>${customer.id}</td>

</tr>
<tr>

<td>First Name</td>
<td>${customer.firstName}</td>

</tr>
<tr>

<td>Last Name</td>
<td>${customer.lastName}</td>

</tr>
<tr>

<td>Address</td>
<td>${customer.address}”</td>

</tr>
<tr>

<td colspan=”2”>

Edit This Customer

</td>
</tr>
</table>
</body>
</html>

Here is the addition to the SimpleController servlet:

else if (“displaycustomer”.equals(action))
{

String id = request.getParameter(“id”);
CustomerManager manager = new CustomerManager();
Customer customer = manager.getCustomer(id);
request.setAttribute(“customer”, customer);

jspPage = “/displayCustomer.jsp”;
}
else if (“editcustomer”.equals(action))
{

String id = request.getParameter(“id”);
CustomerManager manager = new CustomerManager();
Customer customer = manager.getCustomer(id);
request.setAttribute(“customer”, customer);

jspPage = “/editCustomer.jsp”;
}

dispatch(jspPage, request, response);
}

1177

Exercise Solutions

39_57485x appd.qxd 1/14/05 10:22 PM Page 1177

TEAM LinG - Live, Informative, Non-cost and Genuine!

Following is the new JSP page, editCustomer.jsp:

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>

<c:set var=”customer” value=”${requestScope.customer}”/>
<html>
<head>

<title>Edit Customer</title>
</head>
<body>
<form action=”controller?action=editcustomerexe”>
<table cellspacing=”3” cellpadding=”3” border=”1” width=”60%”>
<input type=”hidden” name=”id” value=”${customer.id}”>
<tr>

<td>First Name:
<td><input type=”text” name=”firstname” value=”${customer.firstName}”></td>

</tr>
<tr>

<td>Last Name:
<td><input type=”text” name=”lastname” value=”${customer.lastName}”></td>

</tr>
<tr>

<td>Address:
<td><input type=”text” size=”50” name=”lastname”

value=”${customer.address}”></td>
</tr>
<tr>

<td colspan=”2”><input type=”submit” value=”edit customer”></td>
</tr>
</table>
</form>
</body>
</html>

Chapter 18 Exercises

Exercise 1
Following are the additions to /WEB-INF/spring-servlet.xml:

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE beans PUBLIC “-//SPRING//DTD BEAN//EN”
“http://www.springframework.org/dtd/spring-beans.dtd”>

<beans>
<bean id=”testFormValidator”

class=”com.wrox.begjsp.ch18.spring.TestFormValidator”/>

<bean id=”testFormController”
class=”com.wrox.begjsp.ch18.spring.TestFormController”>

<property name=”sessionForm”><value>false</value></property>

1178

Appendix D

39_57485x appd.qxd 1/14/05 10:22 PM Page 1178

TEAM LinG - Live, Informative, Non-cost and Genuine!

<property name=”validateOnBinding”><value>true</value></property>
<property name=”bindOnNewForm”><value>false</value></property>
<property name=”commandName”><value>testForm</value></property>
<property name=”commandClass”>

<value>com.wrox.begjsp.ch18.spring.TestForm</value>
</property>
<property name=”validator”><ref bean=”testFormValidator”/></property>
<property name=”formView”><value>form</value></property>

</bean>

<bean id=”testDataListController”
class=”com.wrox.begjsp.ch18.spring.TestDataListController”/>

<bean id=”messageSource”
class=”org.springframework.context.support.ResourceBundleMessageSource”>

<property name=”basename”><value>messages</value></property>
</bean>

<bean id=”urlMapping”
class=”org.springframework.web.servlet.handler.SimpleUrlHandlerMapping”>

<property name=”mappings”>
<props>

<prop key=”/form.htm”>testFormController</prop>
<prop key=”/data.htm”>testDataListController</prop>

</props>
</property>

</bean>

<bean id=”viewResolver”
class=”org.springframework.web.servlet.view.ResourceBundleViewResolver”>

<property name=”basename”><value>views</value></property>
</bean>

</beans>

Make sure that the TestForm object implements Serializable. Change the TestForm class to appear
as follows:

public class TestForm implements Serializable
{
...

Here are the modifications to TestFormController.java:

package com.wrox.begjsp.ch18.spring;

import org.springframework.validation.BindException;

import org.springframework.web.servlet.ModelAndView;
import org.springframework.web.servlet.mvc.SimpleFormController;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

1179

Exercise Solutions

39_57485x appd.qxd 1/14/05 10:22 PM Page 1179

TEAM LinG - Live, Informative, Non-cost and Genuine!

import javax.servlet.ServletException;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpSession;

public class TestFormController extends SimpleFormController
{

public ModelAndView onSubmit(Object object)
{

TestForm form = (TestForm) object;
Map items = new HashMap();
items.put(“testForm”, form);

return new ModelAndView(“success”, items);
}

protected Map referenceData(HttpServletRequest request)
throws ServletException

{
Map refData = new HashMap();
List ages = new ArrayList();

for (int i = 0; i <= 100; i++)
{

ages.add(new Integer(i));
}

refData.put(“ages”, ages);

return refData;
}

protected void onBindAndValidate(HttpServletRequest request, Object object,
BindException errors)

throws Exception
{

if (!errors.hasErrors())
{

TestForm form = (TestForm) object;
HttpSession session = request.getSession(true);
List formList = (List) session.getAttribute(“dataList”);

if (formList == null)
{

formList = new ArrayList();
}

formList.add(form);
session.setAttribute(“dataList”, formList);

}
}

}

1180

Appendix D

39_57485x appd.qxd 1/14/05 10:22 PM Page 1180

TEAM LinG - Live, Informative, Non-cost and Genuine!

The new Controller class (TestDataListController.java) is as follows:

package com.wrox.begjsp.ch18.spring;

import org.springframework.web.servlet.ModelAndView;
import org.springframework.web.servlet.mvc.Controller;

import java.util.ArrayList;
import java.util.List;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpSession;

public class TestDataListController implements Controller
{

public ModelAndView handleRequest(HttpServletRequest request,
HttpServletResponse response)

throws Exception
{

HttpSession session = request.getSession(true);
List data = (List) session.getAttribute(“dataList”);

if (data == null)
{

data = new ArrayList();
}

request.setAttribute(“dataList”, data);

return new ModelAndView(“datalist”);
}

}

Following is the addition to views.properties:

form.class=org.springframework.web.servlet.view.JstlView
form.url=/WEB-INF/jsp/form.jsp

success.class=org.springframework.web.servlet.view.JstlView
success.url=/WEB-INF/jsp/success.jsp

datalist.class=org.springframework.web.servlet.view.JstlView
datalist.url=/WEB-INF/jsp/data.jsp

The new view (/WEB-INF/jsp/data.jsp) is as follows:

<%@ taglib prefix=”fmt” uri=”http://java.sun.com/jsp/jstl/fmt” %>
<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>

<html>
<head>

1181

Exercise Solutions

39_57485x appd.qxd 1/14/05 10:22 PM Page 1181

TEAM LinG - Live, Informative, Non-cost and Genuine!

<title><fmt:message key=”datalist.title”/></title>
</head>
<body>

<h1><fmt:message key=”datalist.title”/></h1>

Back to Form
<p>

<table cellspacing=”0” cellpadding=”0” border=”1” width=”60%”>
<tr>

<td></td>
<td><fmt:message key=”datalist.colheading.name”/></td>
<td><fmt:message key=”datalist.colheading.age”/></td>
<td><fmt:message key=”datalist.colheading.comments”/></td>

</tr>
<c:forEach items=”${requestScope.dataList}” var=”thisElement” varStatus=”status”>

<tr>
<td>${status.count}</td>
<td>${thisElement.name}</td>
<td>${thisElement.age}</td>
<td>${thisElement.comments}</td>

</tr>
</c:forEach>
</table>
</body>
</html>

Following are the additions to messages.properties:

form.title=Test Form

form.error.heading=Please fix all the errors!
form.error.name.missing=The name field is missing
form.error.comments.missing=The comments field is missing
form.error.age.value=Age cannot be less than 18
form.error.novalue=Value required

form.name.title=Name
form.comments.title=Comments
form.age.title=Age

success.title=Success Page

datalist.title = Data
datalist.colheading.name = Name
datalist.colheading.age = Age
datalist.colheading.comments = Comments

Additions to messages_fr.properties are as follows:

form.title=Examinez La Forme

form.error.heading=Veuillez fixer toutes les erreurs!
form.error.name.missing=La zone d’identification est absente

1182

Appendix D

39_57485x appd.qxd 1/14/05 10:22 PM Page 1182

TEAM LinG - Live, Informative, Non-cost and Genuine!

form.error.comments.missing=Le champ de commentaires est absent
form.error.age.value=Le champ d’âge ne peut pas être moins de 18
form.error.novalue=La valeur a exigé

form.name.title=Nom
form.comments.title=Commentaires
form.age.title=Âge

success.title=Page De Succès

datalist.title = Données
datalist.colheading.name = Nom
datalist.colheading.age = Âge
datalist.colheading.comments = Commentaires

Chapter 19 Exercises

Exercise 1
The following code shows the new field added to the testForm definition in struts-config.xml,
with changes highlighted:

...
<form-bean name=”testForm”

type=”org.apache.struts.validator.DynaValidatorForm”>
<form-property name=”name” type=”java.lang.String”/>
<form-property name=”emailAddress” type=”java.lang.String”/>
<form-property name=”age” type=”java.lang.String”/>
<form-property name=”favSport” type=”java.lang.String”/>
<form-property name=”comments” type=”java.lang.String”/>

</form-bean>
...

This code shows the new field added to form.jsp, with changes highlighted:

...
<logic:messagesPresent property=”emailAddress”>
<tr>

<td colspan=2><html:errors property=”emailAddress”/></td>
</tr>
</logic:messagesPresent>
<tr>

<td><bean:message key=”form.emailaddress.title”/></td>
<td><html:text altKey=”form.emailaddress.title” property=”emailAddress”

size=”30”/></td>
</tr>
<logic:messagesPresent property=”age”>
<tr>

<td colspan=2><html:errors property=”age”/></td>
</tr>
</logic:messagesPresent>
<tr>

1183

Exercise Solutions

39_57485x appd.qxd 1/14/05 10:22 PM Page 1183

TEAM LinG - Live, Informative, Non-cost and Genuine!

<td><bean:message key=”form.age.title”/></td>
<td><html:text altKey=”form.age.title” property=”age” size=”30”/></td>

</tr>
...

The following code shows the validation added to validation.xml for the new field, with changes
highlighted:

...
<field property=”emailAddress” depends=”required,email”>

<msg name=”required” key=”form.error.emailaddress.missing”/>
<msg name=”email” key=”form.error.emailaddress.invalid”/>

</field>
<field property=”age” depends=”required,integer,intRange”>

<msg name=”required” key=”form.error.age.missing”/>
<msg name=”intRange” key=”form.error.age.range”/>
<msg name=”integer” key=”form.error.age.invalid”/>
<arg0 name=”intRange” key=”${var:min}” resource=”false”/>
<arg1 name=”intRange” key=”${var:max}” resource=”false”/>
<var>

<var-name>min</var-name>
<var-value>0</var-value>

</var>
<var>

<var-name>max</var-name>
<var-value>100</var-value>

</var>
</field>
...

Here are the new properties added to messages.properties:

...
form.error.age.missing=You must enter your age
form.error.age.range=Age can must be a number between {0} and {1}
form.error.age.invalid=Age must be a number
form.age.title=Age
...

Exercise 2
Following is the new class for LoginAction:

package com.wrox.begjsp.ch19.struts;

import org.apache.struts.action.Action;
import org.apache.struts.action.ActionForm;
import org.apache.struts.action.ActionForward;
import org.apache.struts.action.ActionMapping;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

1184

Appendix D

39_57485x appd.qxd 1/14/05 10:22 PM Page 1184

TEAM LinG - Live, Informative, Non-cost and Genuine!

public class LoginAction extends Action
{

public ActionForward execute(ActionMapping mapping, ActionForm form,
HttpServletRequest request, HttpServletResponse response)
throws Exception

{
return mapping.findForward(“success”);

}
}

This code shows the new class for LoginExeAction:

package com.wrox.begjsp.ch19.struts;

import org.apache.struts.action.Action;
import org.apache.struts.action.ActionForm;
import org.apache.struts.action.ActionForward;
import org.apache.struts.action.ActionMapping;
import org.apache.struts.action.DynaActionForm;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpSession;

public class LoginExeAction extends Action
{

public ActionForward execute(ActionMapping mapping, ActionForm form,
HttpServletRequest request, HttpServletResponse response)
throws Exception

{
HttpSession session = request.getSession();

if (authenticated(form))
{

session.setAttribute(“loginKey”, “admin”);

return mapping.findForward(“success”);
}

return mapping.findForward(“failure”);
}

private boolean authenticated(ActionForm form)
{

DynaActionForm loginForm = (DynaActionForm) form;
String userName = (String) loginForm.get(“username”);
String password = (String) loginForm.get(“password”);

if (“admin”.equals(userName) && “password”.equals(password))
{

return true;
}

1185

Exercise Solutions

39_57485x appd.qxd 1/14/05 10:22 PM Page 1185

TEAM LinG - Live, Informative, Non-cost and Genuine!

return false;
}

}

The changes to FormAction are highlighted here:

package com.wrox.begjsp.ch19.struts;

import org.apache.struts.action.Action;
import org.apache.struts.action.ActionForm;
import org.apache.struts.action.ActionForward;
import org.apache.struts.action.ActionMapping;
import org.apache.struts.util.LabelValueBean;

import java.util.ArrayList;
import java.util.List;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpSession;

public class FormAction extends Action
{

public ActionForward execute(ActionMapping mapping, ActionForm form,
HttpServletRequest request, HttpServletResponse response)
throws Exception

{
HttpSession session = request.getSession();
String loginValue = (String) session.getAttribute(“loginKey”);

if ((loginValue == null) || !loginValue.equals(“admin”))
{

return mapping.findForward(“forcedout”);
}

request.setAttribute(“sports”, getSports());

return mapping.findForward(“success”);
}
...

}

The changes to TestAction are highlighted here:

package com.wrox.begjsp.ch19.struts;

import org.apache.struts.action.Action;
import org.apache.struts.action.ActionForm;
import org.apache.struts.action.ActionForward;
import org.apache.struts.action.ActionMapping;

1186

Appendix D

39_57485x appd.qxd 1/14/05 10:22 PM Page 1186

TEAM LinG - Live, Informative, Non-cost and Genuine!

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpSession;

public class TestAction extends Action
{

public ActionForward execute(ActionMapping mapping, ActionForm form,
HttpServletRequest request, HttpServletResponse response)
throws Exception

{
HttpSession session = request.getSession();
String loginValue = (String) session.getAttribute(“loginKey”);

if ((loginValue == null) || !loginValue.equals(“admin”))
{

return mapping.findForward(“forcedout”);
}

return mapping.findForward(“success”);
}

}

Following are the highlighted changes to index.jsp:

<%@ taglib uri=”/WEB-INF/struts-logic.tld” prefix=”logic” %>
<logic:redirect page=”/login.do”/>

Here is the code showing the new form-bean entry for loginForm in the struts-config.xml file:

...
<form-bean name=”loginForm”

type=”org.apache.struts.validator.DynaValidatorForm”>
<form-property name=”username” type=”java.lang.String”/>
<form-property name=”password” type=”java.lang.String”/>

</form-bean>
...

The new global-forward entry in the struts-config.xml file is as follows:

...
<global-forwards>

<forward name=”forcedout” path=”/login.do”/>
</global-forwards>
...

Here are the new action-mapping entries in struts-config.xml for login and loginExe:

...
<action path=”/login”

type=”com.wrox.begjsp.ch19.struts.LoginAction”
scope=”request”>
<forward name=”success” path=”/login.jsp”/>

</action>

1187

Exercise Solutions

39_57485x appd.qxd 1/14/05 10:22 PM Page 1187

TEAM LinG - Live, Informative, Non-cost and Genuine!

<action path=”/loginExe”
type=”com.wrox.begjsp.ch19.struts.LoginExeAction”
scope=”request”
name=”loginForm”
input=”/login.do”>
<forward name=”success” path=”/form.do”/>
<forward name=”failure” path=”/login.jsp”/>

</action>
...

Chapter 20 Exercises

Exercise 1
New definitions for grandparent, child, and grandchild in the tiles-defs.xml file are as follows:

<definition name=”grandparent” path=”/layout/inheritance.jsp”>
<put name=”title” value=”Grandparent Page”/>
<put name=”body” value=”/tiles/grandparentbody.jsp”/>

</definition>

<definition name=”child” extends=”grandparent”>
<put name=”title” value=”Child Page”/>

</definition>

<definition name=”grandchild” extends=”child”>
<put name=”title” value=”Grandchild Page”/>
<put name=”body” value=”/tiles/grandchildbody.jsp”/>

</definition>

Here is the new layout JSP page, inheritance.jsp:

<%@ taglib uri=”/WEB-INF/struts-tiles.tld” prefix=”tiles” %>
<%@ taglib uri=”http://java.sun.com/jsp/jstl/core” prefix=”c”%>

<html>
<head>

<title>Inheritance Example</title>
</head>

<body bgcolor=”white”>

<table border=”1” width=”100%” height=”100%” border=”1”>
<tr>

<td height=”100” bgcolor=”gray”>
<tiles:getAsString name=”title”/>

</td>
</tr>
<tr>

<td valign=”top” align=”left”>
<tiles:insert attribute=”body”/>

1188

Appendix D

39_57485x appd.qxd 1/14/05 10:22 PM Page 1188

TEAM LinG - Live, Informative, Non-cost and Genuine!

</td>
</tr>
</table>
</body>
</html>

Following are new tiles for grandparentbody.jsp and grandchildbody.jsp. There is no
childbody.jsp, as the body value is inherited from the grandparent definition:

grandparentbody.jsp:

<p>
<center><h5>grand parent body page</h5></center>

grandchildbody.jsp:

<p>
<center><h5>grand child body page</h5></center>

Exercise 2
The solution lies in the creation of a tiles-defs.xml file for each locale that the application will sup-
port. For instance, in the example solution, the following locales have been provided:

❑ Default : tiles-defs.xml

❑ Spanish [es]: tiles-defs_es.xml

❑ French [fr]: tiles-defs_fr.xml

❑ Italian [it]: tiles-defs_it.xml

All these files are placed within the /WEB-INF/ directory of the Web application and configured in the
Struts configuration file with the following plug-in:

<plug-in className=”org.apache.struts.tiles.TilesPlugin” >
<set-property property=”definitions-config” value=”/WEB-INF/tiles-defs.xml” />
<set-property property=”definitions-debug” value=”2” />
<set-property property=”definitions-parser-details” value=”2” />
<set-property property=”definitions-parser-validate” value=”true” />

</plug-in>

There is no specific reference to the locale-based configuration files. The value for the definitions-
config property determines the naming pattern for the international versions — for example,
*_<locale>.xml. If the locale of the user is not supported, the default configuration file is used.

The locale of the user is passed in the request object (specified by the browser setting) to the Struts appli-
cation and interpreted by the framework to provide the appropriate configuration file.

Each configuration file will then define the definitions in their own particular way. For instance, the
default definition is as follows:

1189

Exercise Solutions

39_57485x appd.qxd 1/14/05 10:22 PM Page 1189

TEAM LinG - Live, Informative, Non-cost and Genuine!

<definition name=”homepage” path=”/layout/homepage.jsp”>
<put name=”header” value=”/tiles/header.jsp” />
<put name=”footer” value=”/tiles/footer.jsp” />
<put name=”body” value=”/tiles/body.jsp”/>
<put name=”menu” value=”/tiles/menu.jsp”/>

</definition>

This resides in the tiles-defs.xml file. The French version is as follows:

<definition name=”homepage” path=”/layout/homepage.jsp”>
<put name=”header” value=”/tiles/fr/header.jsp” />
<put name=”footer” value=”/tiles/fr/footer.jsp” />
<put name=”body” value=”/tiles/fr/body.jsp”/>
<put name=”menu” value=”/tiles/fr/menu.jsp”/>

</definition>

It resides in the tiles-defs_fr.xml file. Note that the name of the definition is the same as the default
version. This is important, as the Struts action configuration will reference this name as its action for-
ward. In order to provide different content based on locale, the header.jsp, footer.jsp, body.jsp,
and menu.jsp JSP pages for French visitors are in the /tiles/fr/ directory.

The Struts configuration for the action to be invoked is as follows:

<action-mappings>
<action path=”/page”

type=”com.wrox.begjsp.ch20.exercises.InternationalAction”
scope=”request”>

<forward name=”success” path=”homepage”/>
</action>

</action-mappings>

The InternationalAction class is very simple; it actually does nothing specific for the locale:

package com.wrox.begjsp.ch20.exercises;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import org.apache.struts.action.Action;
import org.apache.struts.action.ActionForm;
import org.apache.struts.action.ActionForward;
import org.apache.struts.action.ActionMapping;

public class InternationalAction extends Action
{

public ActionForward execute(ActionMapping mapping,
ActionForm form,
HttpServletRequest request,
HttpServletResponse response)

throws Exception
{

return mapping.findForward(“success”);
}

}

1190

Appendix D

39_57485x appd.qxd 1/14/05 10:22 PM Page 1190

TEAM LinG - Live, Informative, Non-cost and Genuine!

In order to actually select a locale — for example, if a user elects to see the Web page in a language other
than their default value — the new locale value can be set with

setLocale(request, new Locale(“fr”));

inside the execute method of the action. This code would force the French version to be displayed,
regardless of the default value.

If you want to try out the solution in your own environment, and can’t afford the ticket to Paris to use a
French browser, then simply follow these steps for setting the default language in Microsoft Internet
Explorer 6.0:

1. Select Tools from the menu.

2. Select Internet Options.

3. Click the Languages button.

4. Click the Add button.

5. Select the desired locale and then click OK.

6. Ensure that the locale you selected now appears at the top of the Locale list. If it isn’t, select it
and then click the Move Up button on the right-hand side until it is.

7. Click OK on all the open windows.

8. Close your browser.

9. Visit the page in a new browser window.

Chapter 21 Exercises

Exercise 1
Starting with the Hello example, there are three steps to this solution:

1. You create a class that implements the javax.faces.converter.Converter interface.

2. You register the class in faces.xml.

3. You change hello.jsp to use the converter.

An example of an appropriate converter class is shown in the class TitleConverter, which follows:

package com.wrox.jsp.solutions;
import javax.faces.application.FacesMessage;
import javax.faces.component.UIComponent;
import javax.faces.context.FacesContext;
import javax.faces.convert.Converter;
import javax.faces.convert.ConverterException;

public class TitleConverter implements Converter
{

1191

Exercise Solutions

39_57485x appd.qxd 1/14/05 10:22 PM Page 1191

TEAM LinG - Live, Informative, Non-cost and Genuine!

public TitleConverter()
{
}

public Object getAsObject(FacesContext facesContext,
UIComponent uIComponent, String str)

{
return titleCase(str);

}

public String getAsString(FacesContext facesContext,
UIComponent uIComponent, Object obj)

{
return titleCase(obj.toString());

}

private String titleCase(String s)
{

if(s == null || “”.equals(s))
{

return s;
}

StringBuffer sb = new StringBuffer(s.length());
boolean isSpace = true;
for(int i = 0; i < s.length();i++)
{

char c = s.charAt(i);
if(Character.isSpaceChar(c))
{

isSpace = true;
}
else
{

if((isSpace && Character.isLowerCase(c)))
{

c = (Character.toUpperCase(c));
}
isSpace = false;

}
sb.append(c);

}
return sb.toString();

}

}

To register this class as a converter, add the following four lines to faces-config.xml immediately
after the <managed-bean> closing tag:

1192

Appendix D

39_57485x appd.qxd 1/14/05 10:22 PM Page 1192

TEAM LinG - Live, Informative, Non-cost and Genuine!

<converter>
<converter-id>TitleConverter</converter-id>
<converter-class>com.wrox.jsp.solutions.TitleConverter</converter-class>

</converter>

Finally, modify the line in hello.jsp that reads

<h:inputText id=”name” value=”#{HelloBean.name}”/>

so that it reads

<h:inputText id=”name” value=”#{HelloBean.name}” converter=”TitleConverter”/>

Exercise 2
The chapter demonstrates adding a value change listener on the amount field. This time, you want to
add the listener to the payment field. To do this, you need to simply insert the following tag into the
<h:inputText> tag for the payment field in calc.jsp:

<f:valueChangeListener type=”com.wrox.jsp.LogChange” />

This changes the code from

<h:inputText id=”payment” value=”#{LoanBean.payment}”>
<f:convertNumber type=”number” pattern=”#,##0.00”/>

</h:inputText>

to

<h:inputText id=”payment” value=”#{LoanBean.payment}”>
<f:convertNumber type=”number” pattern=”#,##0.00”/>
<f:valueChangeListener type=”com.wrox.jsp.LogChange” />

</h:inputText>

Exercise 3
The text within the chapter demonstrates how to use an ActionListener to log an event when the
Amount button is selected. To add the event to the Payment button, the simplest solution is to change
the <h:commandButton> tag for the Payment button from

<h:commandButton
action=”#{LoanBean.payment}” value=”Payment” id=”PaymentId” />

to

<h:commandButton
action=”#{LoanBean.payment}” value=”Payment” id=”PaymentId” >
<f:actionListener type=”com.wrox.jsp.LogAction” />

</h:commandButton>

1193

Exercise Solutions

39_57485x appd.qxd 1/14/05 10:22 PM Page 1193

TEAM LinG - Live, Informative, Non-cost and Genuine!

Chapter 22 Exercises

Exercise 1
The goal of this exercise is to list all the objects available to the application in the JNDI service:

<!--
<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<%@ taglib prefix=”fn” uri=”http://java.sun.com/jsp/jstl/functions” %>
-->

<jsp:useBean id=”namespace”
class=”com.wrox.begjsp.ch22.example1.JNDINamespaceHelper” />
<c:set var=”title” value=”Listing the JNDI Namespace” />

<html>
<head>

<title> <c:out value=”${title}” /></title>
</head>
<body>

<h1><c:out value=”${title}” /></h1>
<table border=”1” width=”90%”>

<tr>
<th>Context</th>
<th>Object Name</th>
<th>Object Class</th>
<th width=”50%”>Object Value</th>

</tr>
<c:forEach items=”${namespace.namespace}” var=”element” >

<tr>
<td> <c:out value=”${element.contextName}” /></td>
<td> <c:out value=”${element.name}” /></td>
<td> <c:out value=”${element.className}” /></td>
<td> <c:out value=”${fn:replace(element.object, ‘,’, ‘, ‘)}” /></td>

</tr>
</c:forEach>

</table>
</body>

</html>

package com.wrox.begjsp.ch22.example1;

import java.util.ArrayList;
import java.util.List;

import javax.naming.Binding;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingEnumeration;
import javax.naming.NamingException;

public class JNDINamespaceHelper
{

1194

Appendix D

39_57485x appd.qxd 1/14/05 10:22 PM Page 1194

TEAM LinG - Live, Informative, Non-cost and Genuine!

public List getNamespace() throws NamingException
{

Context context = new InitialContext();
return getNamespaceElements(context, “java:comp/env”);

}

private List getNamespaceElements(Context context, String contextName)
throws NamingException
{

Context newContext = (Context)context.lookup(contextName);
NamingEnumeration enum = newContext.listBindings(“”);
List results = new ArrayList();
while (enum.hasMore())
{

Binding binding = (Binding)enum.next();
if ((binding.getObject() instanceof Context))
{

String subContextName = binding.getName();
List subContextElements = getNamespaceElements(context,

contextName + “/” + subContextName);
results.addAll(subContextElements);

}
else
{

JNDIElement element = new JNDIElement(contextName, binding);
results.add(element);

}
}
return results;

}

}

package com.wrox.begjsp.ch22.example1;

import javax.naming.Binding;

public class JNDIElement
{

private String _contextName;
private Binding _binding;

public JNDIElement(String contextName, Binding binding)
{

_contextName = contextName;
_binding = binding;

}

public String getClassName()
{

return _binding.getClassName();
}

public Object getObject()

1195

Exercise Solutions

39_57485x appd.qxd 1/14/05 10:22 PM Page 1195

TEAM LinG - Live, Informative, Non-cost and Genuine!

{
return _binding.getObject();

}

public String getContextName()
{

return _contextName;
}

public String getName()
{

return _binding.getName();
}

}

Exercise 2
The goal of this exercise is to create a Web application that will enable the sending of an e-mail using the
JavaMail J2EE component. The Web application should collect the To, Subject, and Body elements for
the mail message:

<!--
<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<%@ taglib prefix=”sql” uri=”http://java.sun.com/jsp/jstl/sql” %>
-->
<jsp:useBean id=”SERVLET_PATH” class=”java.lang.String” scope=”request” />
<jsp:useBean id=”ERROR_MESSAGE” class=”java.lang.String” scope=”request” />
<jsp:useBean id=”SENT_MESSAGE” class=”java.lang.String” scope=”request” />
<c:set value=”Send an Email” var=”title” />
<html>

<head>
<title><c:out value=”${title}” /></title>

</head>
<body>
<h1><c:out value=”${title}” /></h1>
<c:if test=’${!empty ERROR_MESSAGE}’ >

<h4> ${ERROR_MESSAGE} </h4>
</c:if>
<c:if test=’${!empty SENT_MESSAGE}’ >

<h4> ${SENT_MESSAGE} </h4>
</c:if>
<table border=”1”>

<form name=”email-input” action=”${SERVLET_PATH}” method=”POST”>
<input type=”hidden” name=”ACTION” value=”MAIL_SEND” />
<tr><td>To</td><td><input name=”email_to” type=”text” size=”40”

/></td></tr>
<tr><td>Subject</td><td><input name=”email_subject” type=”text”

size=”80” /></td></tr>
<tr><td>Message</td><td><textarea name=”email_message” cols=”60”

rows=”10” ></textarea></td></tr>
<tr><td colspan=”2” align=”center” ><input name=”SEND” type=”submit”

value=”Send Email” /></td></tr>
</form>

1196

Appendix D

39_57485x appd.qxd 1/14/05 10:22 PM Page 1196

TEAM LinG - Live, Informative, Non-cost and Genuine!

</table>
<p/>

</html>

package com.wrox.begjsp.ch22.example2;

import java.io.IOException;
import java.util.Properties;

import javax.mail.Message;
import javax.mail.MessagingException;
import javax.mail.Session;
import javax.mail.Transport;
import javax.mail.internet.AddressException;
import javax.mail.internet.InternetAddress;
import javax.mail.internet.MimeMessage;
import javax.servlet.RequestDispatcher;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class MailServlet extends HttpServlet
{

private static final String DEFAULT_PAGE = “example2/mail.jsp”;

private static final String ACTION_TOKEN = “ACTION”;

private static final Object SMTP_HOST = “localhost”;
private static final String SMTP_FROM = “example2-chapter22-begjsp@wrox.com”;

public void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException

{
doPost(request, response);

}

public void doPost(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException

{
String action = findAction(request);

if (action != null)
{

String toAddress = request.getParameter(“email_to”);
String subject = request.getParameter(“email_subject”);
String emailMessage = request.getParameter(“email_message”);

boolean messageSent = false;
if (isValidString(toAddress))
{

messageSent = sendEmail(toAddress, subject, emailMessage);
if (!messageSent)
{

1197

Exercise Solutions

39_57485x appd.qxd 1/14/05 10:22 PM Page 1197

TEAM LinG - Live, Informative, Non-cost and Genuine!

request.setAttribute(“ERROR_MESSAGE”,
“Unable to send message : check logs for error messages”);

}
else
{

request.setAttribute(“SENT_MESSAGE”,
“Message sent to : “+toAddress);

}
}
else
{

request.setAttribute(“ERROR_MESSAGE”,
“An email address is mandatory”);

}
}
performRedirect(DEFAULT_PAGE, request, response);

}

private boolean sendEmail(String toAddress, String subject,
String emailMessage)

{
Properties props = new Properties();
props.put(“smtp.host”, SMTP_HOST);
Session session = Session.getDefaultInstance(props, null);

Message message = new MimeMessage(session);

InternetAddress inetToAddress = null;
InternetAddress inetFromAddress = null;
try
{

inetToAddress = new InternetAddress(toAddress);
inetFromAddress = new InternetAddress(SMTP_FROM);

}
catch (AddressException addressError)
{

log(“Cannot create email addresses : “+ addressError);
return false;

}

try
{

message.addRecipients(Message.RecipientType.TO,
new InternetAddress[] { inetToAddress });

message.setFrom(inetFromAddress);
message.setSubject(subject);
message.setContent(emailMessage, “text/plain”);

}
catch (MessagingException headerError)
{

log(“Cannot construct email message : “+ headerError);
return false;

}

1198

Appendix D

39_57485x appd.qxd 1/14/05 10:22 PM Page 1198

TEAM LinG - Live, Informative, Non-cost and Genuine!

try
{

Transport.send(message);
}
catch (MessagingException sendError)
{

log(“Cannot send email message : “+ sendError);
return false;

}

return true;
}

private boolean isValidString(String paramString)
{

return (paramString != null && (paramString.length() > 0));
}

private String findAction(HttpServletRequest request)
{

return request.getParameter(ACTION_TOKEN);
}

private void performRedirect(String path, HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException

{
if (path != null)
{

request.setAttribute(“SERVLET_PATH”, request.getContextPath()
+ request.getServletPath());

RequestDispatcher dispatch = request.getRequestDispatcher(path);
dispatch.forward(request, response);

}
}

}

Chapter 24 Exercises

Exercise 1
Confirm that the following exists in tomcat-users.xml:

<role rolename=”manager” />
<user username=”manager” password=”manager” roles=”manager” />

Modify web.xml as follows:

<?xml version=”1.0” encoding=”ISO-8859-1”?>

<web-app version=”2.4” uri=”http://java.sun.com/xml/ns/j2ee” >

1199

Exercise Solutions

39_57485x appd.qxd 1/14/05 10:22 PM Page 1199

TEAM LinG - Live, Informative, Non-cost and Genuine!

<security-constraint>
<web-resource-collection>

<web-resource-name>Everything Private</web-resource-name>
<url-pattern>/private/*</url-pattern>

</web-resource-collection>
<http-method>GET</http-method>
<http-method>POST</http-method>
<user-data-constraint>

<transport-guarantee>CONFIDENTIAL</transport-guarantee>
</user-data-constraint>

<auth-constraint>
<role-name>chapter24</role-name>

</auth-constraint>
</security-constraint>

<security-constraint>
<web-resource-collection>

<web-resource-name>Roster</web-resource-name>
<url-pattern>/roster/*</url-pattern>

</web-resource-collection>
<http-method>GET</http-method>
<http-method>POST</http-method>
<user-data-constraint>

<transport-guarantee>CONFIDENTIAL</transport-guarantee>
</user-data-constraint>

<auth-constraint>
<role-name>staff</role-name>
<role-name>manager</role-name>

</auth-constraint>
</security-constraint>

<filter>
<filter-name>SecurityFilter</filter-name>
<filter-class>com.wrox.begjsp.ch24.roster.SecurityFilter</filter-class>

</filter>

<filter-mapping>
<filter-name>SecurityFilter</filter-name>
<url-pattern>/roster/*</url-pattern>

</filter-mapping>

<login-config>
<auth-method>FORM</auth-method>
<form-login-config>

<form-login-page>/login.html</form-login-page>
<form-error-page>/login-error.html</form-error-page>

</form-login-config>
</login-config>

<security-role>
<role-name>chapter24</role-name>
<role-name>staff</role-name>

1200

Appendix D

39_57485x appd.qxd 1/14/05 10:22 PM Page 1200

TEAM LinG - Live, Informative, Non-cost and Genuine!

<role-name>manager</role-name>
</security-role>

</web-app>

Modify staff-roster.jsp as follows:

<!--
<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
-->
<c:set value=”Staff Roster” var=”title” />
<html>

<head>
<title>

<c:out value=”${title}” />
</title>

</head>
<body>

<h1>
<c:out value=”${title}” />

</h1>
<c:set var=”user” value=”${pageContext.request.remoteUser}” />
<c:set var=”workDay” value=”${staffRoster[user]}” />
Welcome ${user} <p/>
<c:choose>

<c:when test=”${isAdmin}”>
<table border=”1”>

<tr><th>Staff Member</th><th>Rostered Day</th></tr>
<c:forEach items=”${staffRoster}” var=”staff” >

<tr><td>${staff.key}</td><td>${staff.value}</td></tr>
</c:forEach>

</table>
</c:when>
<c:otherwise>

You are rostered to work on ${workDay} <p/>
</c:otherwise>

</c:choose>
Logout <p/></body>

</html>

Modify SecurityFilter.java as follows:

package com.wrox.begjsp.ch24.roster;

import java.io.IOException;
import java.util.HashMap;
import java.util.Map;

import javax.servlet.Filter;
import javax.servlet.FilterChain;
import javax.servlet.FilterConfig;
import javax.servlet.ServletException;
import javax.servlet.ServletRequest;

1201

Exercise Solutions

39_57485x appd.qxd 1/14/05 10:22 PM Page 1201

TEAM LinG - Live, Informative, Non-cost and Genuine!

import javax.servlet.ServletResponse;
import javax.servlet.http.HttpServletRequest;

public class SecurityFilter implements Filter
{

private Map _roster = new HashMap();

public void init(FilterConfig config)
{

_roster.put(“staff1”, “Monday”);
_roster.put(“staff2”, “Tuesday”);

}

public void doFilter(ServletRequest request,
ServletResponse response,
FilterChain chain)

throws IOException, ServletException
{

if (request instanceof HttpServletRequest)
{

HttpServletRequest httpRequest = (HttpServletRequest)request;

httpRequest.setAttribute(“staffRoster”, _roster);

boolean isAdmin = httpRequest.isUserInRole(“manager”);
httpRequest.setAttribute(“isAdmin”, Boolean.valueOf(isAdmin));

}

chain.doFilter(request, response);
}

public void destroy()
{

// do nothing
}

}

Exercise 2
Modify staff-roster.jsp as follows:

<!--
<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
-->
<c:set value=”Staff Roster” var=”title” />

<html>
<head>

<title>
<c:out value=”${title}” />

</title>
</head>
<body>

<h1>

1202

Appendix D

39_57485x appd.qxd 1/14/05 10:22 PM Page 1202

TEAM LinG - Live, Informative, Non-cost and Genuine!

<c:out value=”${title}” />
</h1>

<c:set var=”user” value=”${pageContext.request.remoteUser}” />
<c:set var=”workDay” value=”${staffRoster[user]}” />

Welcome ${user} <p/>

<c:choose>
<c:when test=”${isAdmin}”>

<table border=”1”>
<tr><th>Staff Member</th><th>Rostered Day</th></tr>
<c:forEach items=”${staffRoster}” var=”staff” >

<tr><td>${staff.key}</td><td>${staff.value}</td></tr>
</c:forEach>

</table>
</c:when>
<c:otherwise>

<c:choose>
<c:when test=”${isBusiness}”>

You are rostered to work on ${workDay} <p/>
</c:when>
<c:otherwise>

Outside business hours, please try again later
</c:otherwise>

</c:choose>
</c:otherwise>

</c:choose>

<p/>Logout <p/>
</body>

</html>

Modify SecurityFilter.java as follows:

package com.wrox.begjsp.ch24.roster;

import java.io.IOException;
import java.util.Calendar;
import java.util.HashMap;
import java.util.Map;

import javax.servlet.Filter;
import javax.servlet.FilterChain;
import javax.servlet.FilterConfig;
import javax.servlet.ServletException;
import javax.servlet.ServletRequest;
import javax.servlet.ServletResponse;
import javax.servlet.http.HttpServletRequest;

public class SecurityFilter implements Filter
{

private Map _roster = new HashMap();

1203

Exercise Solutions

39_57485x appd.qxd 1/14/05 10:22 PM Page 1203

TEAM LinG - Live, Informative, Non-cost and Genuine!

public void init(FilterConfig config)
{

_roster.put(“staff1”, “Monday”);
_roster.put(“staff2”, “Tuesday”);

}

public void doFilter(ServletRequest request,
ServletResponse response,
FilterChain chain)

throws IOException, ServletException
{

if (request instanceof HttpServletRequest)
{

HttpServletRequest httpRequest = (HttpServletRequest)request;

httpRequest.setAttribute(“staffRoster”, _roster);

boolean isAdmin = httpRequest.isUserInRole(“manager”);
httpRequest.setAttribute(“isAdmin”, Boolean.valueOf(isAdmin));

Calendar timeNow = Calendar.getInstance();
int hour = timeNow.get(Calendar.HOUR_OF_DAY);

boolean isBusiness = ((hour >= 9) && (hour <= 17));
httpRequest.setAttribute(“isBusiness”, Boolean.valueOf(isBusiness));

}

chain.doFilter(request, response);
}

public void destroy()
{

// do nothing
}

}

Chapter 26 Exercises

Exercise 1
The code for the test case for the Authentication service is listed here. The Authentication service, which
is covered in Chapter 27, logs in a user to the portal Web application. The following code sets up the test
case (setUp() method) with three users: one with a correct username and password, one with a correct
username but incorrect password, and finally one with both the username and password incorrect. The
test case (testLogin() method) tries each one in turn, and compares the status returned in each of the
cases with the expected status:

package com.wrox.begjsp.ch27.service;

import com.wrox.begjsp.ch27.dto.UserProfile;
import junit.framework.*;

1204

Appendix D

39_57485x appd.qxd 1/14/05 10:22 PM Page 1204

TEAM LinG - Live, Informative, Non-cost and Genuine!

public class AuthenticationServiceTest extends TestCase
{

private UsernamePassword testAccount[] = null;
private AuthenticationService authService = null;

protected void setUp ()
{

// Set up test accounts

testAccount = new UsernamePassword[3];
// A login account with correct username/password
testAccount[0] = new UsernamePassword (“test0”, “test0”);
// A login account with correct username, incorrect password
testAccount[1] = new UsernamePassword (“test1”, “invalid”);
// A login account with incorrect username
testAccount[2] = new UsernamePassword (“invalid”, “invalid”);

// Get instance of Authentication Service
try
{

authService = WroxServiceLocator.getAuthenticationService();
}
catch (WroxServiceException e)
{

e.printStackTrace();
}

}

public void testLogin()
{

UserProfile profile;
try
{

// A login account with correct username/password
profile = authService.login (testAccount[0].getUsername(),

testAccount[0].getPassword());
Assert.assertEquals (“Unable to log in user with correct credentials”,

UserProfile.STATUS_LOGGED_IN,profile.getStatus());
// A login account with correct username, incorrect password
profile = authService.login (testAccount[1].getUsername(),

testAccount[1].getPassword());
Assert.assertEquals (“Invalid password error not returned”,

UserProfile.STATUS_INVALID_PASSWORD,profile.getStatus());
// A login account with incorrect username
profile = authService.login (testAccount[2].getUsername(),

testAccount[2].getPassword());
Assert.assertEquals (“Invalid user error not returned”,

UserProfile.STATUS_INVALID_USER,profile.getStatus());
}
catch (WroxServiceException e)
{

e.printStackTrace();
}

}

1205

Exercise Solutions

39_57485x appd.qxd 1/14/05 10:22 PM Page 1205

TEAM LinG - Live, Informative, Non-cost and Genuine!

public static void main (String[] args)
{

junit.swingui.TestRunner.run (AuthenticationServiceTest.class);
}

class UsernamePassword
{

private String username;
private String password;

public UsernamePassword (String username, String password)
{

this.username = username;
this.password = password;

}

public String getUsername ()
{

return username;
}

public String getPassword ()
{

return password;
}

}
}

Chapter 27 Exercises

Exercise 1
Did you notice earlier in the chapter how we used a factory class (DBFactory.java) to return instances
of the database access classes (PublisherDBMemoryImpl.java and
UserProfileDBMemoryImpl.java)?

The rest of the code only interacted with the database using the interfaces defined for the two database
classes (PublisherDB.java and UserProfileDB.java). The following code from
SaveProfileAction.java illustrates this use:

(DBFactory.getUserProfileDB()).updateUserProfile(userProfile);

Due to this architecture, changing to an implementation that involves a real database requires only the
following:

❑ Create implementations of the PublisherDB.java and UserProfileDB.java classes that
access databases. For example, we might decide to use MySQL, and hence write MySQL-based
implementations, PublisherDBMySQL.java and UserProfileDBMySQL.java, respectively.

❑ Get the factory class (DBFactory.java) to return these new implementations.

1206

Appendix D

39_57485x appd.qxd 1/14/05 10:22 PM Page 1206

TEAM LinG - Live, Informative, Non-cost and Genuine!

That’s it. No other modification of the application code is required, and the fact that we have moved to a
relational database is transparent to the application.

The entire solution is too verbose to include here, so representative portions are listed. For example, the
PublisherDBMySQL.java implementation might look like the following:

public class PublisherDBMySQLImpl extends GenericDB implements PublisherDB
{

...
public List getPublishers() throws DatabaseException
{

ArrayList list = null;
Statement statement = null;

try
{

statement = connection.createStatement();

ResultSet resultSet = statement.executeQuery(
“select * from publishers”);

while (resultSet.next())
{

String name = resultSet.getString(“name”);
String description = resultSet.getString(“description”);
String rssurl = resultSet.getString(“rssurl”);
String category = resultSet.getString(“category”);
Publisher publisher = new Publisher(name, description, category,

rssurl);
list.add(publisher);

}
}
catch (SQLException e)
{

throw new DatabaseException(“Unable to access publisher table”, e);
}
finally
{

try
{

statement.close();
}
catch (SQLException e)
{

/* ignore */
}

}

return list;
}

}

These classes would also require a database schema to be created, as shown in the following SQL script:

1207

Exercise Solutions

39_57485x appd.qxd 1/14/05 10:22 PM Page 1207

TEAM LinG - Live, Informative, Non-cost and Genuine!

create table profile {
username varchar (10) not null,
password varchar (10) not null,
displayname varchar(50) not null,
interests varchar (100) not null,
primary key (username)

}

create table subscriptions {
username varchar (10) not null,
rssurl varchar(100) not null,
primary key (username, rssurl)

}

create table publishers {
name varchar (20) not null,
description varchar(256),
rssurl varchar(100) not null,
category varchar(100),
primary key (rssurl)

}

The change to DBFactory.java is shown next:

public static PublisherDB getPublisherDB()
{

//return PublisherDBMemoryImpl.getInstance();
return PublisherDBMySQLImpl.getInstance();

}

public static UserProfileDB getUserProfileDB()
{

//return UserProfileDBMemoryImpl.getInstance();
return UserProfileDBMySQLImpl.getInstance();

}

In fact, even this code change can be avoided if the factory class picked up the implementation from a
configuration file instead of being hard-coded.

Exercise 2
The next project explains how validation can be done in Struts. Another approach, more appropriate for
simpler types of validation, is using plain JavaScript. The following is a modified version of registra-
tion.jsp with JavaScript-based validation added:

<%@ page contentType=”text/html;charset=UTF-8” language=”java” %>
<%@ taglib uri=”http://java.sun.com/jsp/jstl/core” prefix=”c” %>
<%@ taglib uri=”/WEB-INF/app.tld” prefix=”app” %>
<%@ taglib uri=”/WEB-INF/struts-bean.tld” prefix=”bean” %>
<%@ taglib uri=”/WEB-INF/struts-html.tld” prefix=”html” %>
<%@ taglib uri=”/WEB-INF/struts-logic.tld” prefix=”logic” %>

1208

Appendix D

39_57485x appd.qxd 1/14/05 10:22 PM Page 1208

TEAM LinG - Live, Informative, Non-cost and Genuine!

<script Language=”JavaScript”>

function validRequired(formField,fieldLabel)
{

var result = true;
if (formField.value == “”)
{

alert(‘Please enter a value for the “‘ + fieldLabel +’” field.’);
formField.focus();
result = false;

}

return result;
}

function validateForm(theForm)
{

if (!validRequired(theForm.userName,”Name”))
return false;

if (!validRequired(theForm.password,”Password”))
return false;

if (!validRequired(theForm.displayName,”Display Name”))
return false;

if (!validRequired(theForm.interests,”Interests”))
return false;

if (!validRequired(theForm.subscriptions,”Subscriptions”))
return false;

return true;
}
</script>

<html:html>
<head>

<title><bean:message key=”registration.title.create”/></title>
<html:base/>
</head>
<body bgcolor=”white”>

<html:errors/>

<html:form action=”/saveRegistration” onsubmit=”return validateForm(this)”>
<html:hidden property=”action”/>
<table border=”0” width=”100%”>
...
</table>
</html:form>

</body>
</html:html>

1209

Exercise Solutions

39_57485x appd.qxd 1/14/05 10:22 PM Page 1209

TEAM LinG - Live, Informative, Non-cost and Genuine!

The code shown adds a check to prevent users from submitting forms without entering anything in the
form fields. The same check can be added to editProfile.jsp. As you learned earlier in Chapter 12,
“Dynamic Web Content Generation and Web Services,” and Chapter 19, “Struts Framework,” validation
can be done on either the client side (using JavaScript) or the server side. This exercise solution demonstrates
a very simple client-side validation approach.

Chapter 28 Exercises

Exercise 1
Following is the sales report addition to the struts-config.xml file:

<action path=”/salesreport”
type=”com.wrox.begjsp.ch28.bookstore.controller.SalesReportAction”
scope=”request”>

<forward name=”success” path=”view.salesreport”/>
</action>

Here is the SalesReportAction class:

package com.wrox.begjsp.ch28.bookstore.controller;

import com.wrox.begjsp.ch28.bookstore.persist.EntityManager;
import com.wrox.begjsp.ch28.bookstore.persist.EntityManagerFactory;

import org.apache.struts.action.ActionForm;
import org.apache.struts.action.ActionForward;
import org.apache.struts.action.ActionMapping;

import java.util.List;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class SalesReportAction extends BookstoreController
{

public ActionForward doAction(ActionMapping mapping, ActionForm form,
HttpServletRequest request, HttpServletResponse response)
throws Exception

{
EntityManager manager = EntityManagerFactory.getOrderManagerInstance();
List orders = manager.findAllOrdered(“status”, true);
request.setAttribute(“orders”, orders);

return mapping.findForward(“success”);
}

}

1210

Appendix D

39_57485x appd.qxd 1/14/05 10:22 PM Page 1210

TEAM LinG - Live, Informative, Non-cost and Genuine!

The following code shows the new method added to the EntityManager to retrieve the ordered
CustomerOrder object list:

public List findAllOrdered(String orderBy, boolean desc)
throws HibernateException

{
String direction = (desc ? “desc” : “asc”);
Session session = SessionProvider.currentSession();
String qry = “from “ + _cl.getName() + “ as e order by e.” + orderBy +

“ “ + direction;
Query q = session.createQuery(qry);
List result = q.list();

return result;
}

Here is the new Tiles definition for the report:

<definition name=”view.salesreport” extends=”view.abstract”>
<put name=”body” value=”/WEB-INF/jsp/tiles/salesreport.jsp”/>

</definition>

The following code shows the addition to the menu definition for the new menu item:

<definition name=”bookstore.menu” path=”/WEB-INF/jsp/layout/menu-layout.jsp”>
<put name=”menuTile” value=”/WEB-INF/jsp/tiles/menu.jsp”/>
<putList name=”menuItems”>

<item value=”Book Categories” link=”listcategories.do”/>
<item value=”View Cart” link=”managecart.do”/>
<item value=”Checkout” link=”checkout.do”/>

<item value=”Sales Report” link=”salesreport.do”/>
</putList>

</definition>

Here is the salesreport.jsp file to present the report:

<%@ taglib uri=”http://java.sun.com/jsp/jstl/core” prefix=”c”%>
<%@ taglib prefix=”begjsp” tagdir=”/WEB-INF/tags” %>

<table cellspacing=3 cellpadding=3 width=”100%”>
<tr>

<td><h2>Sales Report</h2></td>
</tr>
<c:forEach items=”${orders}” var=”thisOrder”>

<c:set value=”${thisOrder.orderItems}” var=”orderItems”/>
<tr bgcolor=”lightgrey”>

<td>Order Number: ${thisOrder.id}</td>
<td>Customer Name: ${thisOrder.firstName} ${thisOrder.lastName}

Address: ${thisOrder.address} ${thisOrder.zipCode}
</tr>
<tr bgcolor=”lightgrey”>

<td colspan=”2”>Decision: ${thisOrder.status.name}</td>

1211

Exercise Solutions

39_57485x appd.qxd 1/14/05 10:22 PM Page 1211

TEAM LinG - Live, Informative, Non-cost and Genuine!

</tr>
<tr>

<td colspan=”2”>
<begjsp:listitems items=”${orderItems}”/>

</td>
</tr>
</c:forEach>
</table>

Exercise 2
Following are the additions to the messages.properties file:

checkout.message.orderContent = Your order is made up of the following items
checkout.message.orderContentEmpty = There are no items in your shopping cart
checkout.message.title = Checkout and Complete your order

Direct text labels are then replaced with key references, such as the following:

<tr>
<td><bean:message key=”checkout.field.cardNumber”/></td>
<td><html:text property=”cardNumber” /></td>

</tr>

1212

Appendix D

39_57485x appd.qxd 1/14/05 10:22 PM Page 1212

TEAM LinG - Live, Informative, Non-cost and Genuine!

In
de

x

Index

SYMBOLS AND
NUMERICS
& (ampersand) EL logical operator, 153
* (asterisk)

EL multiplication operator, 1080
setProperty action value, 252, 256

*. (asterisk, period) servlet URL mapping operator,
498

|| (bars) EL logical operator, 153
{ } (braces, curly) PatternLayout object token

delimiters, 456
[] (brackets, square) EL operator, 162, 163
, (comma)

Appender list separator, 458
class name separator, 218

${ } (dollar sign, curly braces) EL expression
delimiters, 45

$ (dollar sign) JavaScript regular expression
operator, 375

== (equals signs) EL comparative operator, 45, 154
!= (exclamation mark, equals sign) EL comparative

operator, 45, 154
> (greater than sign) EL comparative operator, 45,

154
>= (greater than sign, equals sign) EL comparative

operator, 45, 154
- (hyphen) country code separator, 400
< (less than sign)

action prefix, 242
EL comparative operator, 45, 154

<= (less than sign, equals sign) EL comparative
operator, 45, 154

<%@ (less than sign, percent sign, at sign) directive
prefix, 214

<%= (less than sign, percent sign, equals sign)
scripting
element prefix, 75

<%! (less than sign, percent sign, exclamation mark)
scripting element prefix, 75

<% (less than sign, percent sign) scripting element
prefix, 78

- (minus sign) EL subtraction operator, 1080
%> (percent sign, greater than sign)

directive suffix, 214
scripting element suffix, 75, 77, 78

. (period) EL operator, 166, 250
+ (plus sign)

EL addition operator, 1080
JavaScript regular expression operator, 375

/ (slash)
EL division operator, 152
JavaScript regular expression delimiter, 375
web.xml file url-pattern element operator, 515

/* (slash, asterisk) URL mapping operator, 498, 515
/d (slash, d) JavaScript regular expression operator,

375
/> (slash, greater than sign) action suffix, 242
_ (underscore) country code separator, 400

A
a HTML tag, 95
abs

EL function, 173, 175
Java method, 175

AbstractProcessingCommand class, 795–796

40_57485x bindex.qxd 1/14/05 10:22 PM Page 1213

TEAM LinG - Live, Informative, Non-cost and Genuine!

acceptance testing, 888, 891, 930
access control. See authorization
ACID (atomicity, consistency, isolation, and durability),

775–776
action. See also specific action

body, 242
custom, 34, 358–359
described, 34
embedding object using, 242
error handling
include action, 312
setProperty action, 313, 316
syntax error, 309

expression scripting element, using in action
attribute, 77

form HTML tag action attribute, 409
JSF action event, 715, 717
mapping, 596, 619, 630, 636–637, 671–673
parameter within body of other action, specifying, 242
prefix, 242
request

output, including in action, 242
processing, action role in, 34

SimpleController servlet action parameter,
537, 538

standard, 34, 241–242, 1070
syntax, 242, 309, 1060
tag

attribute role in passing value to action, 345
file action, 242
including in action, 242
relation to action, 34, 242

Tiles framework definition, configuring as action
forward, 671–673

validation, invoking with, 595, 596
WebWork action tag, 557
XML, use of, 34–35

Action class, 597, 672
Action Servlet framework, 553
ActionErrors object, 618
ActionForm object, 595, 600
ActionListener interface, 717–718
ActionMappings object, 596
ActionMessages object, 599, 606–607, 618
adaptive development methodology, 886
Add ➪ Config Element ➪ HTTP Request Defaults

(JMeter), 872
Add ➪ Listener ➪ Aggregate Report (JMeter), 865, 871
add Tiles tag, 656
addError method, 565

AddItemAction class, 1005, 1034–1035, 1036
addItemToCart method, 1035
addition (arithmetic), 151, 1080
addList function, 205
addNewTeamToRoster method, 770
addNewVenueToRoster method, 792
addOrIncrementItem method, 1035–1036
addOrModifyObject method, 822
addOrModifyVenue method, 792
Admin ➪ Login (CVS), 905
Admin ➪ Preferences ➪ General (CVS), 905
Advanced Windowing Toolkit (AWT), 742
Agile Manifesto Web site, 887
alias variable directive attribute, 339, 1070
alien artifact, 358–359
AmazonStore class, 956–958
amount method, 710
ampersand (&) EL logical operator, 153
animation, adding to Tiles framework layout, 660, 670,

674, 676–678
Ant compiler

build file
creating, 899
property file, using with, 899
shopping cart application, 1010, 1011–1014
Spring framework, 570–571
structure, 893
Struts framework, 625–626
Web portal build script, 947–949
WebWork framework, 559

CVS, using with, 895–896, 906
downloading, 892
installing, 892–893
javac task, 878–879
JMeter support, 867
JUnit, using with, 893, 902, 914–915
manual, 897
path, 894
precompilation, configuring for, 878
project, 893–894
target, 893, 894, 899–901, 948, 1015
task, 893, 895–897
Web site, 903

Apache Jakarta Project Web site, 13–14, 184
Apache software. See also Ant compiler

Axis, 956–958
Flood, 471, 864
Process Runner, 16
Web server, 8

1214

acceptance testing

40_57485x bindex.qxd 1/14/05 10:22 PM Page 1214

TEAM LinG - Live, Informative, Non-cost and Genuine!

API (Application Programming Interface). See also
specific API

JavaBeans API 1.0 Specifications for SUN, 276
JDBC, 725, 753
J2EE API overview, 725–727
servlet API, 8, 17

append WebWork tag, 557
Appender, logging, 456, 458, 473
app_fr.properties file, 417
applet, 268–273, 722, 723
application

development methodology, 886–887
implicit object, 87, 113, 1064
JSF, 688, 693, 705–711
life span, 778, 782
scalability, 862
scope, 46, 113, 778, 1061–1062, 1086
user, involving in application design, 888–889
version control, 890
Web application

deploying, 523–527
described, 512
directory structure, 512–513, 898
e-mail, sending using, 746
footer element, adding, 530
header element, adding, 530
Hibernate, converting to, 792, 800
integration provided by Web service, 930
JSP page, adding, 526–527
MVC implementation, 534–537
Web site as, 930

Web framework, 551–552
Application Client container, 722–723
Application Programming Interface. See API
applicationContext.xml file, 567
application.jsp file, 407, 409, 411, 419–420
ApplicationResources.properties file, 959
applicationScope object, 46, 1086
app.properties file, 416, 417, 418
app_zh.properties file, 417, 418
app_zh.ucd file, 418
architectural pattern, 551
arithmetic operator, EL, 151–153, 178, 1080
Array class, 755
array member, accessing in EL, 1079
ArrayIndexOutOfBoundsException exception,

325
artifact, alien, 358–359
ASCII character format, 418

asterisk (*)
EL multiplication operator, 1080
setProperty action value, 252, 256

asterisk, period (*.) servlet URL mapping operator, 498
atomicity, consistency, isolation, and durability (ACID),

775–776
Attach dialog box (NetBeans IDE debugger), 469
attribute. See also specific attribute

action, 273
attached attribute, 86–88, 162–163, 249–252
directive, 337–338, 346, 1069
dynamic, 336, 354–355
EL

implicit object, attaching attribute to, 86–88,
162–163

value of attribute, using in, 148, 1078
fragment attribute, 338, 348, 350, 1069
insert Tiles tag attribute attribute, 653
JavaBean

property, relation to, 277
searching for JavaBean attribute when instantiating,

246–247
naming, 168
servlet context attribute, attaching to page during

initialization, 85–86
session attribute, 108, 110, 111–114, 218
tag

action, role in passing value to, 345
dynamic, 336, 354–355
fragment attribute, 338, 348, 350, 1069
tag file, 337–338, 345
XML tag, 34

attribute_name.property EL expression, 257
auction Web site application

Add Product button, 368, 369
auction.css file, 294–295
Bid JavaBean, 292–293, 297
Bid Now! button, 282, 296
Bidder JavaBean, 297–298
BidError JavaBean, 289, 290, 291, 297
CalculateShipping method, 280
CSS, formatting output using, 294–295
Customer JavaBean, 277–280
Enter Your Bid screen, 281–282
enterbid.jsp file, 285, 287–288, 289, 290–291,

302
error handling, 289–290, 291, 297, 368–369
front controller, 284–288, 299
getFirstName method, 278, 280

1215

auction Web site application

In
de

x

40_57485x bindex.qxd 1/14/05 10:22 PM Page 1215

TEAM LinG - Live, Informative, Non-cost and Genuine!

auction Web site application (continued)
getMsg method, 290
index.jsp file, 281, 286–287, 362
procprod.jsp file, 255–256, 257, 274, 370–371,

378
prodform.jsp file, 370–371, 372–374, 380–382
request forwarding, 285, 287–288, 289, 290–294,

371–372
setFirstName method, 278
showbid.jsp file

bid result display, 296, 297, 299, 300–301
request, forwarding to, 285, 287–288, 289,

290–294, 371–372
URL, hiding, 285
validation, 282–283, 393
winner.jsp file, 302

authentication
described, 24
form-based, 827, 843–847, 853, 858
HTTP

basic, 827, 828, 837–842
digest, 827
session, 826

key pair-based, 826
shopping cart application database, 1016
SSL client certificate authentication, 828, 849–855
Struts, using, 595–596, 597–599, 600–606, 641
testing authentication application, 922
Tomcat server, 24–26, 528–529
username currently authenticated, returning, 830
validating user input, 617–619, 641
Web portal, 944, 952, 959–960, 968–972
web.xml file configuration, 528, 529, 843

authorization
container-based, 855
declarative, 828, 829
described, 828
programmatic, 828, 829–830, 855–859
Realm, 828
role-based, 828, 830
time, limiting to specific, 860
Tomcat server, 15, 828
web.xml file security-constraint element

configuration, 520, 828–829, 838–839
autoFlush

out object property, 1064
page directive attribute, 1066

AWT (Advanced Windowing Toolkit), 742
Axis software, 956–958

B
BankAccount class, 909–910, 913
BankAccountTest class, 908, 910, 912
Barracuda framework, 553
bars (||) EL logical operator, 153
BaseEntity class, 990, 1032
baseline, performance comparison, 865, 867
basename attribute
bundle JSTL tag, 1106
message JSTL tag, 422
setBundle JSTL tag, 1111

BasicServlet servlet
coding, initial, 487–488
declaration entry, 497
destroy method, 488, 492
directory, 486
doGet method, 488
doPost method, 490, 491
init method, 488, 492
Servlet interface implementation, 489–490
web.xml file, 495–496

BEA Weblogic server, 552
bean WebWork tag, 557
bean-managed persistence (BMP), 744, 745
beanName attribute
insert Tiles tag, 653
put Tiles tag, 654

beanProperty attribute
insert Tiles tag, 653
put Tiles tag, 654

beanScope attribute
insert Tiles tag, 653
put Tiles tag, 654

BeanUtils Commons library, 382, 627, 646, 671, 1012
begin attribute
forEach JSTL tag, 1093, 1100
forTokens JSTL tag, 1093

beginjsptags.jar file, 357
beginjsptags.tld file, 356–357
Beginning JavaScript, 2nd Edition, 375
Beginning Web Programming with HTML, XHTML, and

CSS, 5
Beginning XML, 2nd Edition, 1098
Bid JavaBean, 292–293, 297
Bidder JavaBean, 297–298
BidError JavaBean, 289, 290, 291, 297
bind Spring tag, 569, 578, 587
Blob class, 755
blue.jsp file, 502, 505, 509

1216

auction Web site application (continued)

40_57485x bindex.qxd 1/14/05 10:22 PM Page 1216

TEAM LinG - Live, Informative, Non-cost and Genuine!

BMP (bean-managed persistence), 744, 745
body action, 273
body-content tag directive attribute, 335, 1068
Book class, 996–997
Book.hbm.xml file, 1018–1019
BookstoreConstants class, 1054
BookstoreController class, 1005–1008, 1029,

1032, 1035, 1052
boolean data type, 156, 157, 161, 279
BooleanType.tag file, 161
Borland OptimizeIt software, 865
bottleneck, identifying, 865
boxTitle class, 120, 129
braces, curly ({ }) PatternLayout object token

delimiters, 456
brackets, square ([]) EL operator, 162, 163
breakpoint, setting, 464–467
BrowseCategoryAction class, 1005, 1030–1032
BSF framework, 553
buffer

flushing, 259, 1064, 1066, 1072
out object bufferSize property, 1064
page directive buffer attribute, 1066

build.xml file
creating, 899
property file, using with, 899
shopping cart application, 1010, 1011–1014
Spring framework, 570–571
structure, 893
Struts framework, 625–626
Web portal, 947–949
WebWork framework, 559

bundle attribute
JSTL tag, 420, 421–422, 423, 1106
message JSTL tag, 422, 1108

bursty traffic, 862
business object, 81
button
commandButton JSF tag, 685, 715, 718
radio, 556, 609
text language, localizing, 405, 415

C
CA (certificate authority), 831, 850
Cactus framework, 907
calc.jsp file, 707–709, 715, 717
CalculateShipping method, 280
Calendar object, 360
call graph, 865

CallableStatement class, 754
cartstatus.tag file, 1027
Cascading Stylesheet. See CSS
catalina-ant.jar file, 625
catch

action, 314, 317, 328
JSTL tag, 185, 1090

Category

class
shopping cart application, 995–996, 1018
Web storefront application, 82, 83

logging tag attribute, 461
category-browse.jsp file, 1033
Category.hbm.xml file, 1019
category-list.jsp file, 1030
cause exception object property, 1065
certificate authority (CA), 831, 850
Certificate Information dialog box (Internet Explorer),

851
Certificates dialog box (Internet Explorer), 851
CGI (Common Gateway Interface), 5–7
cglib-full-2.0.1.jar file, 784, 1012
ch01.war file, 25–28, 29
ch02.war file, 38, 47
ch03.war file, 80
ch04.war file, 122
ch05.war file, 149
ch06.war file, 186
ch07.war file, 221
ch08obj.jar file, 271
ch08.war file, 244
ch09.war file, 281
ch10.war file, 306
ch12.war file, 366
ch13.war file, 401
ch15.war file, 485
chapter16.xml file, 525
chapter22.xml file, 739–740
chapter23.xml file, 758
chapter24.xml file, 837
char data type, 157
Character data type, 157, 1084
charAt method, 158
charEncoding import JSTL tag attribute, 1092
checkbox tag

Struts, 609
WebWork, 556

checkField tag, 382, 385–386
CheckoutAction class, 1005, 1043–1044
checkoutcompleted.jsp file, 1054

1217

checkoutcompleted.jsp file

In
de

x

40_57485x bindex.qxd 1/14/05 10:22 PM Page 1217

TEAM LinG - Live, Informative, Non-cost and Genuine!

checkout.jsp file, 1044, 1045–1047
Checkstyle software, 892
China, localizing for, 400, 403–407, 411–413,

414–415, 418
CHO (continuous hours of operation) testing, 864
choose JSTL tag
forEach loop, nesting in, 350
form processing, using in, 131, 226
if...then...else Java construct, replacing with,

204
include directive, using with, 234, 236
otherwise tag, using with, 44
param implicit object, using with, 45, 46
request, switching through front controller using, 287
switch...case Java construct, replacing with, 204
syntax, 1091, 1099
taglib directive, using with, 226, 228
when subtag, 44, 45, 287–289, 1098, 1105
XPath expression, working with using, 1099

Chopra, Vivek (Professional Apache Tomcat 5), 868
CircleApplet.java file, 269–270
class
Fixture.hbm.xml file class attribute, 820
importing, 85, 218
interface versus, 765
Java

JavaBean compared, 276
page translation to Java class, 217–218
servlet relation to, 484–485

JavaBean
compilation into class, 57
Java class compared, 276
location, 281
useBean action, referencing in, 244

logging request, retrieving class name of caller issuing,
457

name, 218
scripting element placement in class definition, 79
syntax, 79
Tiles factory class, 647, 658
useBean action class attribute, 244, 1071

.class files, 484
ClassLoader object, 743
classname attribute
initComponentDefinitions Tiles tag, 658
useAttribute Tiles tag, 657

cleanhtml.tag file, 343–344, 356
clearCartWhenApproved method, 1053–1054
Clearcase software, 890
clearList function, 205

client
Application Client container, 722–723
code execution, client-side, 118–119
fat, 723
MDB access, 745
thin, 727
validation, client-side, 364–366, 620

ClientDispatcher Webwork Dispatcher, 556
Clob class, 755
CMP (container-managed persistence), 744
Coco Base framework, 553
cocucod.htm file, 429
coding standard, enforcing, 891–892
collection

Commons Collections library, 646, 671, 682, 784,
1012

EL, accessing in, 162–167, 1079
iteration, 193

color
DHTML menu color customization, 134–137, 139–141
drop-down list selector, 271–272
search result, highlighting, 349–351
user preference color theme selector, 123–125, 129,

131–132
combobox WebWork tag, 556
comma (,)

Appender list separator, 458
class name separator, 218

commandButton JSF tag, 685, 715, 718
command-line prompt, 357
commandLink JSF tag, 715
Common Gateway Interface (CGI), 5–7
Commons libraries

BeanUtils, 382, 627, 646, 671, 1012
Collections, 646, 671, 682, 784, 1012
Digester, 627, 671, 682, 1012
JSF Commons libraries requirement, 682
Logging, 554, 671, 682, 784, 1012
Validator, 627, 1012

comparison operator, EL, 154–155, 1080–1081
compilation. See also Ant compiler

container, carried out by, 11
debugging

compile time, at, 437–441
precompiling before, 470

error generation, 304, 308, 438–439
Jasper compiler, 315, 320, 484, 557–558
JavaBean compilation into class, 57
page processing, compilation-phase, 215–216
precompilation, 470, 500, 876–879

1218

checkout.jsp file

40_57485x bindex.qxd 1/14/05 10:22 PM Page 1218

TEAM LinG - Live, Informative, Non-cost and Genuine!

scripting element, 305
servlet, 470, 484, 486–487
useBean action role, 248
Webwork application, 559

CompleteOrderAction class, 1005, 1043,
1050–1051

component Tiles insert tag attribute, 653
com.wrox.begjsp.ch03 package, 82
concurrency, 479, 774
Concurrent Versions System software. See CVS

software
conditional flow control. See flow control, conditional
conditional operator, EL, 153
confidentiality, 830–831
config

function, 449
object, 1065

ConnectionFactory object, 735
console, 442
ConsoleAppender class, 458
ConsoleHandler class, 450, 451
ConsoleOut Appender, 458
constant, declaring, 75, 201–202
container. See also Tomcat server

authorization, container-based, 855
CMP, 744
compilation carried out by, 11
concurrency considerations, 479
directive, container instruction provided by, 214
EJB, 722–723, 727, 742
error handling role, 309
Java translation role, 216, 217, 247–249
J2EE

Applet container, 722, 723
Application Client container, 722–723
deployment descriptor, 724
Enterprise Bean container, 722–723, 727, 742
JNDI, relation to, 735
lifecycle management role, 724
resource pooling role, 724
security role, 724
transaction management role, 724
Web Component container, 722, 723, 727, 728–729

JVMs, using multiple, 76
log setting, changing without restarting, 453–454,

459–460
page

communication role of page directive, 85, 217
content type, informing container of, 220, 221–222,

223

destruction, container role in, 76, 86
processing, container role in, 215–217

request handling role, 11–12, 22, 218, 248
servlet, 8–9, 12, 445–446, 453, 492
session tracking role, 218
taglib directive, container instruction provided by,

214, 223–224
web.xml file independence, 495

container-managed persistence (CMP), 744
contains JSTL function, 1118, 1119
containsIgnoreCase JSTL function, 351, 1118,

1119
Content-Type HTTP header, 425
contentType page directive attribute, 220, 223,

386, 1067
context
import JSTL tag context attribute, 1092
redirect JSTL tag context attribute, 1096
servlet, 76–77, 85–86, 87, 446, 508
Spring, 567
url JSTL tag context attribute, 1097

context-param web.xml file element, 517–518
continuous hours of operation (CHO) testing, 864
Control Center (MySQL), 752, 756
Controller servlet

action mapping, 503
initialization parameter, accessing, 506–507
initializing, 504–505, 507
request handling, 502–503, 505, 508–509, 537,

542–543
web.xml file, 504–505

controllerClass Tiles insert tag attribute, 653
ControllerServlet servlet

action mapping, 503
blue.jsp file, 502, 505, 509
cool.do action, 501–502
hot.do action, 501
init method, 505, 507
Model 2 architecture environment, 536–539
red.jsp file, 502, 505, 509
request handling, 502, 505, 508–509

controllerUrl Tiles insert tag attribute, 653
convertDateTime JSF tag, 712
Converter interface, 713
convertNumber JSF tag, 712–713
cookie

request cookie information, accessing, 46
session, managing using, 108–109

cookies object, 46, 1087
cool.do action, 501–502

1219

cool.do action

In
de

x

40_57485x bindex.qxd 1/14/05 10:22 PM Page 1219

TEAM LinG - Live, Informative, Non-cost and Genuine!

cos function, 178
counter

page access counter, 531
variable, 352, 437, 443–444

country code, 399–400
countVar highlighttableext.tag file attribute,

352
coupling, loose, 929
cppunit framework, 907
CREATE SQL command, 756
createValidator method, 703
creationTime session object property, 1064
credit card

shopping cart application credit card processing,
988, 1048, 1050, 1052

validating, 623, 1050
Criteria object, 1003
Crystal Methodologies Web site, 887
CSS (Cascading Stylesheet)

auction Web site application output, formatting using,
294–295

described, 119–120
execution, client-side, 118–119
generating CSS content, 119, 126
HTML

embedding CSS in, 120
linking to external CSS from, 120
relation to CSS, 119–120

user preference selector application, 127–129
validateError class, 376–377
Web portal, 51–52

currency
code, 399, 712, 1108
display, formatting, 85, 90, 195, 202, 709
JSF, working with in, 709, 712–715
localizing, 396, 399, 426–429, 712–715
symbol, 396, 712, 1108

Customer

JavaBean, 277–280
object, 539–540, 541, 546

CustomerManager object, 539, 541–542, 545, 546
CustomerOrder class, 989, 990–992, 1051, 1052,

1053
CustomerOrder.hbm.xml file, 1019–1020
CVS (Concurrent Versions System) software

Ant, using with, 895–896, 906
Changelog, 896
checking code in/out, 903, 905–906
commit operation, 903
comparing code change across revisions, 906

downloading, 903
installing, 903
manual, 907
module, 903, 905
repository, 903
server, connecting to, 904–905
trunk/branch code structure, 904
Web site, 903, 907
WinCVS client, 905

D
DAO (Data Access Object), 920, 934
data integrity, 830–831
data transfer object (DTO), 276, 875, 935
data type
boolean, 156, 157, 161, 279
char, 157
Character, 157, 1084
converting

automatic, 158–162, 1083
backing bean, using, 705–711
boolean value, to, 156, 161
boxing, 157–162, 1083
character, to, 158, 160, 1084
JSF, in, 705–711
number, to/from, 158, 710, 711, 712–715,

1083–1084
string, to, 157–158, 1083

Double, 157, 161
EL, 156, 157–162, 1083–1084
int, 157
Integer, 157
Java primitive type, 157
JDBC, 755
long, 157
Short, 158, 160
weak, 157

database. See also JDBC (Java Database Connection);
SQL (Structured Query Language)

adding record, 783
concurrency, 774
connection

closing, 765, 769, 770
obtaining, 749–752, 754–755
pooling, 754, 874

creating, 756
data source

JDBC DataSource object, 735, 738, 751
JNDI lookup, 741, 748, 751, 773

1220

cos function

40_57485x bindex.qxd 1/14/05 10:22 PM Page 1220

TEAM LinG - Live, Informative, Non-cost and Genuine!

specifying, 741, 751, 1116
transaction, 754, 1117

deleting
logical delete, 774
object using Hibernate, 792, 822–823

entity EJB, 744–745
Hibernate, accessing using

adding record, 783
deleting object, 792, 822–823
programmatic method, 791
query, 782–783
relationship management, 801
session management, 791, 792, 1000–1002,

1016–1018
shopping cart application, 1000–1002, 1003–1004,

1016–1019
SQL, 819

HSQLDB, 749
in-memory, 749, 981
J2EE environment, working with in, 738–741
logging to, 456
migrating, 775
MySQL platform

Control Center, 752, 756
downloading, 752
driver, 739, 752–753, 1013
installing, 752
shopping cart application configuration, 1013, 1016
starting, 753
Web site, 752

object-relational impedance mismatch, 777
ODBC, 750
ORM, 777
password

access password, 756, 1116
storing in database, 748

persistence, 782, 784–786, 802, 932–933
relational

ERD, 987
introduced, 748
many-to-one association, unidirectional, 820

resultset
cursor, 755
iteration, 755, 773
JSP, extraction of resultset data by, 770

session management, 107–114, 791, 792,
1000–1002, 1016–1018

shopping cart application
authentication, 1016
creating value, 1004

entity definition, 989–990
field list, 988–989
finding value by ID, 1004
Hibernate configuration, 1000–1002, 1003–1004,

1016–1019
listing all values in, 1003
MySQL configuration, 1013, 1016
session management, 107–114, 1000–1002
updating value, 1004

table, creating, 756–757
transaction

atomicity, 775
consistency, 775
data source, 754, 1117
durability, 775
isolation, 775, 776, 1117
JSTL transaction tag, 1116–1117
J2EE container transaction management role, 724
response time, 862

updating, 774
user preference, storing in, 748

Database Connection Pooling (DBCP), 754, 874
data.jsp file, 233–234, 235–236
data-model JSF event, 716
DataSource

class, 735, 738, 751, 754, 773
query JSTL tag attribute, 1115
setDataSource JSTL tag attribute, 1116
transaction tag attribute, 1117
update JSTL tag attribute, 1117

date
Calendar object, 360
displaying current, 526–527
formatting
formatDate tag, using, 185, 432, 1106–1107
localization, 396, 399

JSF converters, 711–712
log date information, retrieving, 457
parsing using parseDate JSTL tag, 1109–1110
SQL statement, passing date parameter to, 1114
tag file, date-display, 330–331, 336–337
validating, 622–623

Date class, 330, 755
dateParam JSTL tag, 1114
dateStyle attribute
convertDateTime JSF tag, 712
formatDate JSTL tag, 432
parseDate JSTL tag, 1110

DateTimeConverter JSF converter, 711–712
DBCP (Database Connection Pooling), 754, 874

1221

DBCP (Database Connection Pooling)

In
de

x

40_57485x bindex.qxd 1/14/05 10:22 PM Page 1221

TEAM LinG - Live, Informative, Non-cost and Genuine!

debit method, 908, 909–910
debug

Log4j tag, 461
method, 459

Debug ➪ Start Session ➪ Attach and fill (NetBeans), 469
Debug ➪ Start Session ➪ Run in Debugger (NetBeans),

467
debugging

breakpoint, setting, 464–467
compilation

compile time, debugging at, 437–441
precompiling before debugging, 470

concurrency considerations, 479
HTTP response document, commenting, 474
hypothesis phase, 436
instrumenting code, 442–445
laboratory environment, in, 470
load, under, 470–471
logging output
ConsoleHandler class, using, 450, 451
context information, adding to log file, 471–474
counter value, 443–444
FileHandler class, using, 450
JDK logger, using, 447
level of logging used, 448–449, 450, 456
Log4j framework, using, 454–460, 461, 470, 473,

479
Logger class, using, 447
LogManager class, using, 448, 450, 454
println method, using, 442–445
SDK logging framework, using, 451–453, 454
SocketHandler class, using, 450
tag library, using, 460–464

observation phase, 436
origin of term, 435
prediction phase, 436
problem, intermittent, 474–478
production environment, 441–442, 469–474
remote, 468–469
runtime bug, 437
scientific method, using, 436–437
scriptlet, 439–441
servlet, 470
snoop application, using, 475–478
stepping through code, 468
testing solution, 436
Tiles debugging output, 647
Tomcat server, configuring to listen for debugger, 469
users, simulating concurrent, 470–471
variable value, watching, 443–444, 467–468

decimal point display, 152
declaration scripting element, 35, 75–77, 79,

189–190, 1075
declare variable directive attribute,

339, 1070
default out JSTL tag attribute, 1094
DefaultAction class, 1005
define Struts tag, 614–615
definition attribute
insert Tiles tag, 653
Tiles tag, 651, 654, 658–659

definitions-config tiles-defs.xml file
attribute, 647

definitions-debug tiles-defs.xml file
attribute, 647

definitions-factory-class tiles-defs.xml

file attribute, 647
definitions.jsp file, 651, 652
definitions-parser-details tiles-defs.xml

file attribute, 647
definitions-parser-validate

tiles-defs.xml file attribute, 647
DELETE HTTP action, 490
deleteObject method, 822–823
deleteTeamFromRoster method, 770
deleteVenueFromRoster method, 792
delims forTokens JSTL tag attribute, 1093
deployment descriptor. See web.xml file
description

attribute
attribute directive, 338, 1069
tag directive, 335, 1068
variable directive, 339, 1070

web.xml file element, 496
Design a Cake form, 168–173
design pattern, 275, 920, 932, 933, 955
destdir javac task attribute, 878
Destination object, 735
destroy method
BasicServlet class, 488, 492
HttpServlet class, 490
Servlet interface, 488, 494

destroying
page, 76, 86
servlet, 488, 492–493, 494

details.jsp file, 639–640
developerWorks software, 1001
development methodology, 886–887
development web.xml file attribute, 880

1222

debit method

40_57485x bindex.qxd 1/14/05 10:22 PM Page 1222

TEAM LinG - Live, Informative, Non-cost and Genuine!

DHTML (Dynamic Hypertext Markup Language)
menu system

color customization, 134–137, 139–141
entertain.jsp file, 144
font customization, 134–137, 139–141
HTML menu compared, 132
index.jsp file, 137–139
JavaScript generation, 141–143
menu.js file, 133
news.jsp file, 141–143
showportal.jsp file, 139
Top Nav Bar script, 133
weather.jsp file, 144

dialect Hibernate keyword, 791
Digester Commons library, 627, 671, 682, 1012
Digital ID SSL certificate, 850
direct Tiles put tag attribute, 655
directive. See also specific directive

attribute, 214, 215
container, instruction provided by, 214
described, 32–33
error handling

container, caught by, 309
include, 236, 309, 311
page, 219, 220, 311–312, 321
syntax error, 309

syntax, 33, 214–215, 309, 1059
tag file, using in, 215, 335–336
XML

compatibility, 214–215
converting directive to, 231–233, 237–239

dispatch method, 542, 543
DispatcherServlet servlet, 572
disperr.jsp file, 328
displayCustomer.jsp file, 545, 547
displayform.jsp file, 566
displaylist action, 537, 538–539
displayList.jsp file, 542–544
display-name

tag directive attribute, 335, 1068
web.xml file element, 496–497

dispPrice method
currency formatting by, 85, 90
declaring, 75, 85
JSTL, replacing with, 190, 195, 202

div EL operator, 152
divide-by-zero exception, 324–325, 328
division (arithmetic), 152, 1080
doAction method, 1006, 1008, 1029, 1052
doBody action, 273, 342

doc attribute
parse JSTL tag, 1103
transform JSTL tag, 1104

docSystemId transform JSTL tag attribute, 1104
Document Type Definition (DTD) servlet support, 496
doDelete method, 490
doExecute method, 560, 561
doFilter method, 473
doGet method
BasicServlet class, 488
HttpServlet class, 490

dollar sign, curly braces (${ }) EL expression
delimiters, 45

dollar sign ($) JavaScript regular expression operator,
375

dom4j-1.4.jar file, 784, 1012
doPost method
AdminServlet servlet, 765, 800
BasicServlet class, 488
HttpServlet class, 490
SimpleController servlet, 542

doPut method, 490
DoSearchAction class, 595
Double data type, 157, 161
DoubleRangeValidator object, 697
DoubleType.tag file, 161
doValidation method, 562, 565
driver setDataSource JSTL tag attribute, 1116
DriverManager class, 754
drop-down list

color selector, 271–272
HTML/XML selector, 274
Struts, creating using, 634–639
validating drop-down list field, 634–639

DTD (Document Type Definition) servlet support, 496
DTO (data transfer object), 276, 875, 935
dump tag, 461
DynaActionForm class, 602–603, 620
Dynamic Drive Web site, 132–133
Dynamic Hypertext Markup Language menu system.

See DHTML menu system
dynamic-attributes tag directive attribute,

336, 354, 1068
DynaValidatorForm class, 620, 628

E
ECMA (European Computer Manufacturers

Association), 120
ECMAScript, 366. See also JavaScript

1223

ECMAScript

In
de

x

40_57485x bindex.qxd 1/14/05 10:22 PM Page 1223

TEAM LinG - Live, Informative, Non-cost and Genuine!

EditProfileAction class, 972–974
EditRegistrationAction class, 970
Egypt, localizing for, 398, 428, 431
ehcache-0.7.jar file, 784, 1012
EJ Technologies Profiler software, 865
EJB (Enterprise JavaBean)

advantages/disadvantages, 742–743
AWT, using for output, 742
ClassLoader object support, 743
container, 722–723, 727, 742
entity, 744–745
field, static, 742
file system access, 742
JavaBean compared, 301
J2EE, relation to, 301, 552, 723, 729, 741
lifecycle management role, 742, 744
MDB, 745
network socket support, 743
persistence, 552, 744
reusability, 742
session, 743–744
this keyword support, 743
thread management, 742
tier, 301
Timer Service feature, 745–746

EJBCA software, 831
EJBHome object, 735
EL (Expression Language)
abs function, 173, 175
array member, accessing, 1079
attribute

implicit object, attaching to, 86–88, 162–163
value, using EL in, 148, 1078

attribute_name.property expression, 257
collection, accessing, 162–167, 1079
data type, 156, 157–162, 1083–1084
error handling, 326–327
escapeXML function, 391, 393
function

calling, 1082
custom, 173–177
method call, converting to EL-accessible function,

190–193, 205–206
syntax, 1082

HTML output, 149, 152–153
ignoring EL expression, 219, 336, 515–516, 1067,

1069
index.jsp file EL coding examples, 149–151,

159–160, 164, 175
JavaBean

property value, rendering using, 257–258
using EL expression in, 247, 249–250

JSP, relation to, 146
JSTL, using with, 36, 148, 179
literal value, working with, 1079
map, accessing, 1078–1079
namespace, 173, 1082
null value, working with, 155–156, 158, 191
object, implicit

attribute, attaching, 86–88, 162–163
category, 167, 1084
described, 45
form processor, 168–173
listing of implicit objects, 45–46
scope, 112–114, 168

object property, accessing, 162–167, 1078
operator

arithmetic, 151–153, 178, 1080
comparison, 154–155, 1080–1081
conditional, 153
data type, 156
div, 152
empty, 155–156, 191, 1081
logical, 153–154, 1080
mod, 152, 1080
precedence, 1081–1082

runtime, evaluation at, 45
scripting

element alternative, as, 146
independence provided by, 36

syntax, 45
template, using inline with, 148, 1077
text, rendering EL expression as, 219
variable

dependence on generated, 258
named, 146–147, 162, 1079

element action, 273
ELException exception, 327
el-ignored web.xml file element, 515–516
else WebWork tag, 557
elseif WebWork tag, 557
e-mail

validating e-mail address, 623, 632–634
Web application, sending using, 746

embed HTML tag, 267, 272
empty EL operator, 155–156, 191, 1081
end attribute
forEach JSTL tag, 1093, 1100
forTokens JSTL tag, 1094

end user, 441

1224

EditProfileAction class

40_57485x bindex.qxd 1/14/05 10:22 PM Page 1224

TEAM LinG - Live, Informative, Non-cost and Genuine!

endsWith JSTL function, 1118, 1119
enterbid.jsp file, 285, 287–288, 289, 290–291, 302
Enterprise Bean container, 722–723, 727
Enterprise JavaBean. See EJB
entertain.jsp file, 58, 69, 72, 144
entity EJB, 744–745
entity relationship diagram (ERD), 987
EntityManager class, 1000, 1002–1003, 1004, 1029
EntityManagerFactory class, 1000, 1002,

1004–1005, 1029
env-entry web.xml file element, 521–522, 735–738
equal Struts tag, 611–612
equals signs (==) EL comparative operator, 45, 154
ERD (entity relationship diagram), 987
error handling. See also exception

action
include action, 312
setProperty action, 313, 316
syntax error, 309

auction Web site application, 289–290, 291, 297,
368–369

authentication application, Struts-based, 598–599
catching, 309, 314, 317, 328
coding syntax error, 304–305, 309
compilation, error generation during, 304, 308, 438–439
container role, 309
data-input error, 327
directive

container, caught by, 309
include, 236, 309, 311
page, 219, 220, 311–312, 321
syntax error, 309

divide-by-zero error, 324–325, 328
EL error, 326–327
forwarding error page, 321–322
HTTP error status code, 306–307, 310, 322, 326
index.jsp file error handling code, 307–308
JSTL error, 326–327
JVM trace information, retrieving, 315, 318–319
message, displaying, 289, 382, 383, 386
pagecontext.errorData object, 322, 325, 326
pagecontext.exception object, 322, 323, 325,

326, 327
remembering detected error, 376–377, 579
request-time, 236, 312–314, 315–320, 322–323
runtime error, 305, 313
scripting element error, 305–309
stack trace information, retrieving, 315, 318–319
Struts errors tag, 610
syntax error, 304–305, 309

template error, 327
Tomcat server error-reporting screen, 306
translation-time, 236, 312–313
Web portal application, 964, 965
web.xml file error-page element, 518–519

error tag, 461
ErrorGenerator JavaBean, 322–323, 324, 328
errorPage page directive attribute, 220, 1066
error-page web.xml file element, 518–519
Errors object, 587
escapeXML

EL function, 391, 393
JSTL function, 342, 344, 1118, 1120
out JSTL tag attribute, 1094, 1102

EShop class, 82, 83, 90, 205, 274
eshop-taglib.tld file, 191–193, 195, 206
estore.jsp file, 83–85, 188–190, 194–195, 211
European Computer Manufacturers Association

(ECMA), 120
event
action event, 715, 717
JavaBean event, 55, 276
JSF listener, 715–718
logging event priority, retrieving, 457
MDC, 457
MVC event-driven environment, 534
NDC, 457, 471–473

example tag directive attribute, 335, 1068
exception. See also error handling
ArrayIndexOutOfBoundsException, 325
divide-by-zero, 324–325, 328
ELException, 327
implicit object, 1065
JasperException, 315, 320
NullPointerException, 313
pagecontext.exception object, 322, 323, 325,

326, 327
report, 308
SQLException, 770
variable, expressing exception as, 219

exclamation mark, equals sign (!=) EL comparative
operator, 45, 154

execute method
Action class, 672
ActionForm parameter, 600
BookstoreController class, 1006, 1008, 1029
FormAction class, 636
VenueProcessingCommand class, 800

Expert One-on-One J2EE Design and Development
(Johnson), 741

1225

Expert One-on-One J2EE Design and Development

In
de

x

40_57485x bindex.qxd 1/14/05 10:22 PM Page 1225

TEAM LinG - Live, Informative, Non-cost and Genuine!

expression
regular expression, 375
scripting element, 35, 77, 79, 1076

Expression Language. See EL
extends attribute
definition Tiles tag, 654
page directive, 217–218, 1066

eXtensible Markup Language. See XML
Extensible Stylesheet Language Transformation (XSLT),

557, 1104
Extreme Programming Web site, 887, 888
Extreme Programming (XP), 887, 888–889, 903

F
faces-cfg.xml file, 694–695, 699, 715
faces-config.xml file, 683, 687–688, 707, 718
FacesContext object, 687, 698
FacesServlet object, 683, 687, 689–690
factory design pattern, 920, 932, 933
fallback action, 267, 268, 272, 1074
fat client, 723
fatal tag, 461
FDD (feature-driven development), 887, 890
file attribute
include directive, 231
initComponentDefinitions Tiles tag, 658

FileHandler class, 450
filter parse JSTL tag attribute, 1103
findAction method, 800
findAll method, 1003
findAttribute method, 147, 252, 443–444
findById method, 1004, 1005, 1032
find-clientinfo.jsp file, 855
fine function, 449, 450
finer function, 449
finest function, 449
Fixture class, 801–802, 805–807, 819–820, 821
Fixture.hbm.xml file, 807–808, 820
fixture.jsp file, 817–819, 821–822, 823
FixtureProcessingCommand class, 808–811, 821
Flood software, 471, 864
flow control, conditional
choose JSTL tag, using
forEach loop, nesting in, 350
form processing, using in, 131, 226
if...then...else Java construct, replacing with,

204
include directive, using with, 234, 236
otherwise tag, using with, 44

param implicit object, using with, 45, 46
request, switching through front controller using, 287
switch...case Java construct, replacing with, 204
syntax, 1091, 1099
taglib directive, using with, 226, 228
when subtag, 44, 45, 287–289, 1098, 1105
XPath expression, working with using, 1099

HTML form, 43–44
if JSTL tag, using, 153, 185, 204–205, 1091–1092,

1100–1101
Web portal, 944–945, 950

flush attribute
get Tiles tag, 656
include action, 259, 1072
insert Tiles tag, 653

flushSession method, 792
font

Chinese, 412
DHTML menu system font customization, 134–137,

139–141
installing, 412
user preference selector application, 123–125, 129,

131–132
FooBarAction class, 674, 676–677
foobar-layout.jsp file, 675
football roster management application
AbstractProcessingCommand class, 795–796
addNewTeamToRoster method, 770
addNewVenueToRoster method, 792
addOrModifyVenue method, 792
AdminServlet servlet, 757, 761–766, 773,

794–795, 800
deleteTeamFromRoster method, 770
deleteVenueFromRoster method, 792
directory structure, 757
doPost method, 765, 800
findAction method, 800
Fixture class, 801–802, 805–807, 819–820
Fixture.hbm.xml file, 807–808, 820
fixture.jsp file, 817–819, 821–822, 823
FixtureProcessingCommand class, 808–811, 821
FootyJDBCHelper class, 765, 772, 773
getAllItems method, 791
getRosterManager method, 766
getTeamsInRoster method, 769, 773
getVenuesInRoster method, 791
HibernateRosterManager class, 766, 787–791,

812–817, 822
JDBCRosterManager class, 766–769, 773
menu system, 799, 820–821

1226

expression

40_57485x bindex.qxd 1/14/05 10:22 PM Page 1226

TEAM LinG - Live, Informative, Non-cost and Genuine!

modifyTeamInRoster method, 770
modifyVenueInRoster method, 792
NullProcessingCommand method, 800
processFixtureAdd method, 821
processFixtureList method, 822
ProcessingCommand interface, 795, 800
processRosterAdd method, 765
processRosterDelete method, 765
processRosterList method, 765
processRosterModify method, 765
request handling, 773, 821
RosterManager interface, 765, 770–771, 787, 811
RosterManagerFactory object, 766, 771–772
Round class, 802–803, 820
Round.hbm.xml file, 803–804
rounds table, 778–781
safeClose method, 770
saveOrUpdate method, 792
SessionFactory object, 791
starting, 772
Team class, 804–805
Team Fixture Management window, 821
Team.hbm.xml file, 805
Venue class, 784–786
Venue.hbm.xml file, 786
venue.jsp file, 792–793, 800
VenueProcessingCommand class, 796–799, 800
web.xml file, 758–759

footer
Tiles framework, 644–645, 662
Web application, adding to, 530

FootyJDBCHelper class, 765, 772, 773
forEach JSTL tag
begin attribute, 1093, 1100
choose JSTL construct, nesting in forEach loop, 350
end attribute, 1093, 1100
items attribute, 59, 1093
JavaBean property values, iterating through using,

59–60
scripting iteration, replacing with, 193, 194–195
select attribute, 1100
step attribute, 1093, 1100
syntax, 1092–1093, 1100
var attribute, 59, 1093, 1100
varStatus attribute, 1093, 1100
XPath expression, iterating through using, 1100

form
authentication, form-based, 827, 843–847, 853, 858
choose JSTL tag, using in processing, 131, 226
flow control, conditional, 43–44

hidden element, 609
HTTP GET method, using in form submission, 37–38,

42–43, 64–66, 89
implicit object form processor, 168–173
initializing, 1039
internationalizing, 576, 579, 588–589
JavaBean, 580, 599, 600, 604–606, 617–619
language selector form, 401–407
locale-selector form, 401–407, 418–419
login form, 599, 601, 602–603
mapping applet, using with, 273
parameter

accessing parameter from form submission, 46
page, passing during submission, 67–68

POST method, submitting using, 37–38
preference selector form, 61–64, 126–127, 959–962
servlet/JSP-based processing, 730–734
setProperty action, processing using, 255–256
shopping cart application management form,

1039–1040
Spring, working with using

Controller, 572–574, 583, 590
internationalization, 576, 579, 588–589
Model, 574–575
validation, 572, 575–576, 578–579, 584–587
View, 577–579, 588–589, 590

Struts, working with using, 599–606, 608–610
timestamping submission, 734
URL request, 37–38, 39–40, 42
validating

credit card field, 623, 1050
date field, 622–623
drop-down list field, 634–639
e-mail address field, 623, 632–634
empty field, disallowing, 587, 620–621, 629, 631
generating validation JavaScript dynamically, 379–386
internationalizing validation message, 588–589
number field, 374–375, 382, 587, 641, 918
password field, 609, 620–622
remembering detected error, 376–377, 579
Spring, using, 572, 575–576, 578–579, 584–587
Struts, using, 611, 617–623, 628–629, 1022–1023
text field, 375–376, 632
Webwork, using, 554, 560, 561, 562, 565

Web browser role in processing, 37
Web portal

submission, 36–37, 38–43, 65–66
user preference selector form, 61–64, 126–127,

959–962
Webwork, working with using, 554, 560–565

1227

form

In
de

x

40_57485x bindex.qxd 1/14/05 10:22 PM Page 1227

TEAM LinG - Live, Informative, Non-cost and Genuine!

FormAction class, 635–636
formatDate JSTL tag, 185, 432, 1106–1107
formatNumber JSTL tag, 152, 185, 202, 427–429,

1107–1108
formdisplay.jsp file, 561, 565–566
form.jsp file, 577–578, 583–584, 587, 638
FormProc class, 731–732, 734
formproc.jsp file, 169
FormTest class, 560, 562, 563–564, 565
formtest.jsp file, 560, 562–563
Forrest framework, 553
forTokens JSTL tag, 185, 1093–1094
forward

action, 264–265, 274, 293, 1073
Struts tag, 612

forwarding
error page, 321–322
global forward, 598–599
request

auction Web site application, 285, 287–288, 289,
290–294, 371–372

Controller servlet, 505, 508–509, 542–543
error page forwarding, 321–322, 323
forward action, using, 264–265, 274, 293, 1073
front controller, using, 284–288, 371–372

fragment attribute, 338, 348, 350, 1069
framework. See Web framework; specific framework
France, localizing for, 398, 400, 416, 417, 431
front controller

auction Web site application, 284–288, 299
design pattern, as, 275
index.jsp file, 286–287, 370
request, forwarding using, 284–288, 371–372
validation carried out by, 275

function. See also specific function
EL

calling, 1082
custom, 173–177
method call, converting to EL-accessible function,

190–193, 205–206
syntax, 1082

JSTL, 351, 1118–1119
functional testing, 889, 891
function-taglib.tld file, 176–177

G
generation, inheritance, 660
GenericDispatcher Webwork Dispatcher, 555
GenericServlet class, 489

GET HTTP method, 37–38, 42–43, 64–66, 89, 491
get Tiles tag, 656
getAllItems method, 791
getAsObject method, 713, 715
getAsString

method, 713
Tiles tag, 656–657, 666

getAttribute method, 86, 247, 249
getBookCount method, 1030
getCategory method, 1018
getCats method, 86, 190, 191–192, 274
getClass method, 447
getConnection method, 773
getContextPath method, 98
getCurrencyInstance method, 715
getCurrentBalance method, 910
getCustomer method, 545
getCustomers method, 542
getDate method, 331
getDivideByZero method, 325
getDOM method, 916
getElementById method, 376
getFirstName method, 278, 280
getInfo XML tag, 389, 391–392
getInitParameter method, 507, 517
getInitParameterNames method, 517
getItem method, 204
getItems method, 90, 97, 195
getLocalizedText function, 415–416
getLogger method, 447
getMetaData method, 738
getMinQual method, 162
getMonth method, 331
getMovies method, 677
getMsg method, 290
getName method, 250, 447, 830
getOrCreateCart method, 1052
getOrder method, 1051–1052
getOrderItem method, 1035
getParameter method, 270
getProperty action
index.jsp file, 254–255
name attribute, 257, 1072
news.jsp file, 57–58
property attribute, 257, 1072
request handling role, 252–254
syntax, 257, 1072
variable, dependence on generated, 258

getRemoteUser method, 830
getRequestURL method, 89

1228

FormAction class

40_57485x bindex.qxd 1/14/05 10:22 PM Page 1228

TEAM LinG - Live, Informative, Non-cost and Genuine!

getRootLogger method, 455
getRosterManager method, 766
getServletConfig method, 489
getServletContext method, 76–77, 85–86
getServletInfo method
HttpServlet class, 490
Servlet interface, 489

getServletPath method, 508
getSession method, 473
getSports method, 635–636
GetTag class, 656
getTeamsInRoster method, 769, 773
getText method, 916
getThings method, 565–566
getUser method, 562
getUserPrincipal method, 830
getVenuesInRoster method, 791
getWriter method, 492
getYear method, 331
Gradecki, Joseph (Professional Hibernate), 823
GRANT SQL command, 756
graphing performance, 865
Great Britain, localizing for, 399–400, 428, 429,

431, 433
greater than sign (>) EL comparative operator, 45, 154
greater than sign, equals sign (>=) EL comparative

operator, 45, 154
groupingUsed attribute
convertNumber JSF tag, 712
formatNumber JSTL tag, 1108

GuessBean class, 693–694, 704–705

H
hasBindErrors Spring tag, 569
header

HTTP, 46, 425
object, 46, 168, 1087
Tiles framework, 644–645, 659, 662
Web application, adding to, 530

headerValues object, 46, 168, 1087
HelloBean class, 685, 686
hello.jsf file, 688, 689
hello.jsp file, 18–19, 684, 692
hello2.jsp file, 19–21
HelloWorldExample class, 10–11
Hibernate framework

Commons libraries used, 784
configuration files, 791
Criteria object, 1003

database access using
adding record, 783
deleting object, 792, 822–823
programmatic method, 791
query, 782–783
relationship management, 801
session management, 791, 792, 1000–1002,

1016–1018
shopping cart application, 1000–1002, 1003–1004,

1016–1019
SQL, 819

dialect keyword, 791
downloading, 784
installing, 784
JavaBean, using with, 777
JDBC compared, 782–783
mapping file, 783
persistence, configuring using, 782, 784–786, 802
Web application, converting to, 792, 800
Web site, 553

Hibernate Query Language (HQL), 823
hibernate.cfg.xml file, 791, 1002, 1017
hibernate.properties file, 791
HibernateRosterManager object, 766, 787–791,

812–817, 822
hibernate2.jar file, 1012
hidden Struts tag, 609
highlighttableext.tag file, 352
highlighttable.tag file, 349–350, 356
Hightower, Richard (Professional Java Tools for Extreme

Programming), 903
HMVC (Hierarchical Model View Controller), 554
HomePageAction class, 672–673
hot.do action, 501
HQL (Hibernate Query Language), 823
HSQLDB (Hyperthreaded Structured Query Language

Database), 749
HTML (Hypertext Markup Language). See also form
a tag, 95
container, informing of HTML content type,

220, 221–222, 223
CSS

embedding in HTML, 120
linking to external, 120
relation to HTML, 119–120

DELETE action, 490
described, 5
drop-down list HTML/XML selector, 274
EL HTML output, 149, 152–153
embed tag, 267, 272

1229

HTML (Hypertext Markup Language)

In
de

x

40_57485x bindex.qxd 1/14/05 10:22 PM Page 1229

TEAM LinG - Live, Informative, Non-cost and Genuine!

HTML (continued)
generation

CGI, by, 5–6
JSP, by, 33
plugin action, by, 272–273
servlet, by, 11
tag, using custom, 345–348

input element, 66
JavaScript

embedding in HTML, 120, 374
linking to external, 121

JSF HTML render kit, 685, 693
JSP

embedding, 12, 22, 28
relation to HTML, 11
separating HTML from, 53, 919

link tag, 120, 610
menu system, DHTML compared, 132
object tag, 267, 272, 273
prototyping, 53
rendering, page, 5, 54
script tag, 121, 374
Spring htmlEscape tag, 569
style tag, 120
table, generating using custom tag, 345–348
validation code, embedding in HTML page, 365–366

HTML, XHTML, and CSS Bible, Third Edition
(Pfaffenberger), 267

html_basic.tld file, 682
htmlEscape Spring tag, 569
HTTP (Hypertext Transport Protocol)

authentication
basic, 827, 828, 837–842
digest, 827
session, 826

debug HTTP response document, commenting, 474
DELETE action, 490
error status code, 306–307, 310, 322, 326
GET method, 37–38, 42–43, 64–66, 89, 491
header, 46, 425
POST method, 37–38, 490, 491
proxy server, 868
request, 490–491, 868–870, 872
servlet

decoding HTTP for, 490
request handling, 490–491

Web browser URL access role, 5
HTTPS (Hypertext Transport Protocol Secure), 837,

852–853
HttpServlet class, 488, 489–490

HttpServletRequest object, 473, 599
HttpSession interface, 87
HttpUnit framework, 907, 915–919
Hypertext Markup Language. See HTML
Hypertext Transport Protocol. See HTTP
Hypertext Transport Protocol Secure (HTTPS), 837,

852–853
Hyperthreaded Structured Query Language Database

(HSQLDB), 749
hyphen (-) country code separator, 400

I
IBM software

Clearcase, 890
developerWorks, 1001
Rational Performance Tester, 864
Websphere, 552

icon, associating with tag, 336
id

attribute
definition Tiles tag, 654
useAttribute Tiles tag, 657
useBean action, 243, 244, 1070

session object id property, 1063
IDL (Interface Definition Language), 725
i18n (internationalization). See also l10n (localization)

branch office, done by, 396–397, 398
China, 400, 403–407, 411–413, 414–415, 418
country code, 399–400
currency, 396, 399, 426–429, 712–715
date formatting, 396, 399, 430–433, 1110
described, 395
Egypt, 398, 428, 431
form, 576, 579, 588–589
France, 398, 400, 416, 417, 431
Japan, 428, 431, 433
JavaScript, using, 419–420
JSTL, using, 421–423
Korea, 428, 431
locale

described, 399
determining automatically, 426
scope, 421, 422
selector form, 401–407, 418–419
setting, 420, 421, 1112

master copy, 396–397
Mexico, 400
number formatting, 396, 428, 1111
per-request localization, 398

1230

HTML (continued)

40_57485x bindex.qxd 1/14/05 10:22 PM Page 1230

TEAM LinG - Live, Informative, Non-cost and Genuine!

properties file, 416–418
request parameter encoding, 425–426
resource bundle, using, 414–417, 420, 434, 1106,

1111
shopping cart application, 1055
Spain, 400, 428
Spring, 569, 576, 579, 588–589
Struts, 606–607, 616
Taiwan, 400
Tiles working in combination with Struts, adding using,

679
time zone, 432–433
United Kingdom, 399–400, 428, 429, 431, 433
United States, 399–400, 428, 431
Web-based application, 397–399

if tag
JSTL, 153, 185, 204–205, 1091–1092, 1100–1101
WebWork, 557

if...then...else Java construct, replacing with
choose JSTL tag, 204

ignore attribute
get Tiles tag, 656
getAsString Tiles tag, 657
importAttribute Tiles tag, 658
insert Tiles tag, 653
useAttribute Tiles tag, 657

IIS (Internet Information Server), 8
implicit object. See object, implicit
importAttribute Tiles tag, 657–658, 666
importing

class, 85, 218
CVS module, 905
debugging import operation, 441
JSTL import tag, 1092
page, 54, 335, 1069
tag directive import attribute, 335, 1069

include

action
body, 259
described, 259
error handling, 312
flush attribute, 259, 1072
include directive compared, 234–236, 262
include directive, using with, 262
index.jsp file, 261–262, 263–264
nesting, 263
news.jsp file, 261–262
page attribute, 259, 1072
param action, using with, 264, 265–266

request, triggering by incoming, 263
syntax, 259, 1072
translation time, performing at, 262

directive
choose JSTL tag, using with, 234, 236
described, 1067–1068
error handling, 236, 309, 311
explicit, 230
file attribute, 231
implicit, 230
include action compared, 234–236, 262
include action, using with, 262
index.jsp file, 231, 234, 263
news.jsp file, 55
request time, performing at, 231, 235
showportal.jsp file, 54–55
syntax, 231
tag file, 337
taglib directive, accessing using include

construct, 229–230
translation time, performing at, 231–233, 235,

262, 263
XML, converting to, 231–233, 237, 238–239

Struts include tag, 615–616
WebWork tag, 557

include-coda web.xml file element, 229–230, 517
includedresource.tagf file, 337
include-prelude web.xml file element, 229–230,

239, 516–517
index.jsp file

auction Web site application, 281, 286–287, 362
catch action, 317
EL coding examples, 149–151, 159–160, 164, 175
error handling code, 307–308
formatNumber JSTL tag, 427–428
front controller, 286–287, 370
getProperty action, 254–255
include

action, 261–262, 263–264
directive, 231, 234, 263

language-selector application, 406, 408
page directive, 222–223
plugin action, 270–271
setProperty action, 251, 252, 254–255, 316
Struts form application, 628, 634–635
taglib directive, 226, 227–228
Tiles layout configuration, 645
Tomcat server welcome page, 16
useBean action, 245–246

1231

index.jsp file

In
de

x

40_57485x bindex.qxd 1/14/05 10:22 PM Page 1231

TEAM LinG - Live, Informative, Non-cost and Genuine!

index.jsp file (continued)
validation coding, 362
Web portal, 51–52, 66, 67, 126–127, 137–139
XML, converting to, 236–238, 239

index_jsp.java file, 247, 248–250, 252, 498–500
indexOf JSTL function, 1118, 1120
index1.jsp file, 390, 393
index2.jsp file, 221, 223, 226, 229–230
info

function, 449
method, 459
page directive attribute, 219, 1066
tag, 461

inheritance
described, 660
generation, 660
logger, 448, 449, 455
Tiles framework definition, 659–665, 667–668, 679

inh-footer.jsp file, 662
inh-header.jsp file, 662
inh-layout.jsp file, 661–662, 667
inh-mother-index.jsp file, 663, 664, 667–668
inh-mother-menu.jsp file, 662–663
inh-son-index.jsp file, 663, 664, 667–668
inh-son-menu.jsp file, 662
init method
BasicServlet class, 488, 492
CircleApplet applet, 270
ControllerServlet servlet, 505, 507
HttpServlet class, 490
Servlet interface, 488, 494, 505

initialization
form, 1039
page

global resource, acquiring, 76
servlet context attribute, attaching, 85–86

servlet, 488, 492–494, 504–505, 507
Tiles framework, 648

initialize method, 1008
initializeForm method, 1039
initParam object, 46, 1087–1088
init-param web.xml file element, 505
initSession method, 792
in-memory database, 749, 981
in-process configuration, Web server, 8–9
input HTML element, 66
input.jsp file, 731, 732
inputText JSF tag, 716–717
insert Tiles tag, 649–650, 653, 670
InsertTag class, 656

instrumenting code, 442–445, 865
int data type, 157
Integer data type, 157
integerOnly attribute
convertNumber JSF tag, 712
parseNumber JSTL tag, 1111

integrity, data, 830–831
InterestItem class, 935, 942–943
interface. See also specific interface

class versus, 765
JavaBean instance interface implementation, 244

Interface Definition Language (IDL), 725
internationalization (i18n). See i18n
Internet Explorer, installing certificate in, 850–851
Internet Information Server (IIS), 8
IntRangeTag class, 701–702
IntRangeValidator class, 700–701, 704
introspection feature, Java, 252
invoke action, 273, 348, 350
IP (Internet Protocol) address, logging activity of

specific, 471
isDigitsOnly function, 374–375, 376
isELIgnored attribute
page directive, 219, 1067
tag directive, 336, 1069

isErrorPage page directive attribute, 219, 321,
1066

isolation transaction tag attribute, 1117
isSecure method, 830
isTextOnly function, 375–376
isThreadSafe page directive attribute, 1066
isUserInRole method, 830
is-xml web.xml file element, 516
ItemFeed class, 935, 941–942
items attribute
forEach JSTL tag, 59, 1093
forTokens JSTL tag, 1093

iteration
collection, 193
counter variable, 352
database resultset, 755, 773
forEach JSTL tag, using
begin attribute, 1093, 1100
choose JSTL construct, nesting in forEach loop,

350
end attribute, 1093, 1100
items attribute, 59, 1093
JavaBean property values, iterating through using,

59–60
scripting iteration, replacing with, 193, 194–195

1232

index.jsp file (continued)

40_57485x bindex.qxd 1/14/05 10:22 PM Page 1232

TEAM LinG - Live, Informative, Non-cost and Genuine!

select attribute, 1100
step attribute, 1093, 1100
syntax, 1092–1093, 1100
var attribute, 59, 1093, 1100
varStatus attribute, 1093, 1100
XPath expression, iterating through using, 1100

namespace, 746
stack trace information, 318, 319
Struts iterate tag, using, 613
WebWork iterator tag, using, 557

iterative development methodology, 886–887

J
JAAS (Java Authentication and Authorization Service)

API, 725
JACC (Java Authorization Contract for Containers), 727
JAF (JavaBeans Activation Framework) API, 726
Jakarta JMeter software, 471, 864, 866–872
Jakarta Struts framework. See Struts framework
jakarta-oro.jar file, 627
jakarta-tomcat-5.0.28 files, 14–15
Jalopy software, 892
Japan, localizing for, 428, 431, 433
JAR files, 43, 355–359
Jasper compiler, 315, 320, 484, 557–558
Java
abs method, 175
applet, 268–273, 722, 723
attribute, synchronizing Java reference with attached,

249–252
checking if installed, 12–13
class

JavaBean compared, 276
page translation to Java class, 217–218
servlet relation to, 484–485

coding convention document, 892
data type, primitive, 157
EL custom function use of, 173
embedding in JSP, 36, 75
if...then...else construct, replacing with

choose JSTL tag, 204
introspection feature, 252
Map interface, 250–251
resource bundle, Java 2, 414–417, 420, 434, 1106,

1111
round method, 175
scripting language default, as, 217
switch...case construct, replacing with choose

JSTL tag, 204

translation
class, page translation to, 217–218
container role, 216, 217, 247–249
error handling, translation-time, 236, 312–313
include operation, carrying out during, 231–233, 235,

262, 263
page processing translation phase, 215–216, 217
unit, 217
useBean action role, 247–248
variable, dependence on generated, 258

Java API for XML Processing (JAXP) API, 725
Java API for XML Registries (JAXR), 726
Java API for XML-Based RPC (JAX-RPC), 726
Java Authentication and Authorization Service (JAAS)

API, 725
Java Authorization Contract for Containers (JACC), 727
Java Blogs Web site, 826
Java Data Object (JDO), 552
Java Database Connection. See JDBC
Java IDL API, 725
Java Logging API, 875
Java Management Extensions (JMX), 727
Java Message Service (JMS), 726, 735, 745
Java Naming and Directory Interface. See JNDI
Java Secure Socket Extension (JSSE), 831
Java Transaction (JTA) API, 726, 735
Java 2 Enterprise Edition. See J2EE
Java Virtual Machine. See JVM
JavaBean. See also EJB (Enterprise JavaBean); specific

JavaBean
attribute

property, relation to, 277
searching for when instantiating, 246–247

backing bean
creating, 686
data type conversion, using in, 705–711
validation, using in, 693–694, 704–705

BMP, 744, 745
class

compilation of JavaBean into, 57
Java class compared, 276
location, 281
useBean action, referencing in, 244

Commons BeanUtils library, 382, 627, 646, 671, 1012
constructor, default, 276
described, 55, 276–277
dragging and dropping, 276
EL

expression, using in JavaBean, 247, 249–250
property value, rendering using, 257–258

1233

JavaBean

In
de

x

40_57485x bindex.qxd 1/14/05 10:22 PM Page 1233

TEAM LinG - Live, Informative, Non-cost and Genuine!

JavaBean (continued)
entertain.jsp file JavaBean usage, 58
error message display, 289
event, 55, 276
form JavaBean, 580, 599, 600, 604–606, 617–619
Hibernate framework, using with, 777
instance

attribute, searching for when instantiating, 246–247
creating, 57, 243, 245, 256
interface implementation, 244
locating, 57, 243, 252
name, 57, 243, 244
request, attaching to, 57
scope, 57, 244
variable, referencing in, 247

JSTL, retrieving JavaBean property value in, 299–300
managed, 687, 695, 707
MDB, 745
method, 55, 280–281
news.jsp file JavaBean usage, 57
property

attribute, relation to, 277
boolean property, 278
described, 55, 277
iterating through values, 59–60
JSTL, retrieving property value in, 299–300
minQual, 162
multivalue, 58–60
printing value, 257
read only, 55, 56
read/write, 55, 277–278
rendering value using EL expression, 257–258
request parameter, filling with, 292
request parameter, matching with, 256
retrieving value, 55, 57–58, 253, 257, 278
setting value, 55, 251–252, 278
write only, 55, 56

request
instance, attaching to, 57
passing request parameter to JavaBean, 253
property, filling with request parameter, 292
property, matching request parameter with, 256

reusability, 276
scripting element, using in, 249
scriptlet

accessing JavaBean from, 247
method, invoking using, 280, 281

serializing, 276
specification, 276

Struts
comparing JavaBean using, 611–612
form JavaBean, 599–600, 604–606, 611, 617–619,

959
Tiles framework, using in, 653, 654
variable, 162, 247
visual, 276
weather.jsp file JavaBean usage, 58–59

JavaBeans Activation Framework (JAF) API, 726
JavaBeans API 1.0 Specifications for SUN, 276
javac Ant compiler task, 878–879
JAVA_HOME variable, 13
JavaMail API, 726, 735, 746
JavaScript

background, historical, 120
described, 120
DHTML menu, 141–143
ECMAScript, relation to, 366
generating dynamically, 119, 141–143, 379–386
HTML

embedding JavaScript in, 120, 374
linking to external JavaScript from, 121

localization using, 419–420
onSubmit handler, 377–378
regular expression, 375
test method, 375
validation using, 366, 372–379, 382–383

javascript Struts tag, 611
JavaServer Faces. See JSF
JavaServer Pages Standard Tag Library. See JSTL
java.sql JDBC package, 753
javax.sql JDBC package, 753
JAXP (Java API for XML Processing) API, 725
JAXR (Java API for XML Registries), 726
JAX-RPC (Java API for XML-Based RPC), 726
JBOSS server, 552
JCA (J2EE Connector Architecture), 726
JDBC (Java Database Connection). See also database

API, 725, 753
Array class, 755
Blob class, 755
CallableStatement class, 754
Clob class, 755
data type, 755
database connection, role in obtaining, 749–752,

754–755
DataSource class, 735, 738, 751, 754, 773
Date class, 755
described, 725
driver, 738, 741, 749–753

1234

JavaBean (continued)

40_57485x bindex.qxd 1/14/05 10:22 PM Page 1234

TEAM LinG - Live, Informative, Non-cost and Genuine!

DriverManager class, 754
factory, 754
Hibernate compared, 782–783
interoperability provided by, 749
JNDI interaction

data source lookup, 741, 748, 751, 773
resource factory configuration, 739

JSP, using with, 778–781
J2EE support, 738
ODBC bridge, 750
PreparedStatement class, 754, 770
record, adding using, 783
ResultSet class, 755
SQL support, 749, 753–754
Statement class, 754
Time class, 755
Timestamp class, 755
web.xml file configuration, 740

jdbc.jsp file, 740–741
JDBCRosterManager class, 766–769, 773
JDK logger, 447
JDO (Java Data Object), 552
JMeter software, 471, 864, 866–872
JMS (Java Message Service), 726, 735, 745
JMX (Java Management Extensions), 727
JNDI (Java Naming and Directory Interface)

data source lookup, 741, 748, 751, 773
described, 725
J2EE container, relation to, 735
namespace provided by, 735
registry, 738
resource factory configuration, 739
resource pool, 751
web.xml file env-entry element access provided by,

735–738
JNDIHelper class, 737–738
jndi.jsp file, 736, 738
jndi-neat.jsp file, 737
Johnson, Rod (Expert One-on-One J2EE Design and

Development), 741
join JSTL function, 1118, 1120
JProbe software, 865
JProfiler software, 865
JSF (JavaServer Faces)

application, 688, 693, 705–711
backing bean, using with

creating backing bean, 686
data type conversion, 705–711
validation, 693–694, 704–705

commandButton tag, 685, 715, 718

commandLink tag, 715
Commons libraries requirement, 682
convertDateTime tag, 712
converter overview, 711
convertNumber tag, 712–713
creating JSF page, 684–685
currency data, working with, 709, 712–715
data type conversion, 705–711
DateTimeConverter converter, 711–712
directory structure, 681–682
event listening, 715–718
file access by user, preventing, 690
inputText tag, 716–717
JSF configuration, 683
lifecycle, 690–691
logging output, 716–717
method binding expression, 685
MVC implementation

Controller, 683, 690
Model, 692

navigation control, 687–688, 695, 707
numberConverter converter, 710, 711, 712–713
render kit, 685, 693
request handling, 689–691, 693
Restore view, 690, 692
security, 690
string conversion to/from JSF object, 710–715
Struts compared, 681, 718–719
tag library, 684, 685, 703–704
text

case conversion, 719
outputting, 684
string conversion to/from JSF object, 710–715
validating, 693, 697

validation
backing bean, using, 693–694, 704–705
creating custom validator, 698–703
number data, 697, 698–703
process validation, 691, 692
standard validator, 697
text data, 693, 697

value binding expression, 685
view tag, 685, 690
web.xml file configuration, 683, 690

jsf-api.jar file, 682
jsf_core.tld file, 682
jsf-impl.jar file, 682
.jsp files, 11
jsp-config web.xml file element, 514
JspContext class, 87

1235

JspContext class

In
de

x

40_57485x bindex.qxd 1/14/05 10:22 PM Page 1235

TEAM LinG - Live, Informative, Non-cost and Genuine!

jspDestroy method, 76, 85, 86, 191
jspf files, 230
jspInit method, 76, 85, 190, 191
jsp-property-group web.xml file element,

514–517
jspService method, 500
JspWriter class, 460
.jspx files, 34
JSSE (Java Secure Socket Extension), 831
JSTL (JavaServer Pages Standard Tag Library)

application, converting to, 186–195
bundle tag, 420, 421–422, 423, 1106
catch tag, 185, 1090
choose tag
forEach loop, nesting in, 350
form processing, using in, 131, 226
if...then...else Java construct, replacing with,

204
include directive, using with, 234, 236
otherwise tag, using with, 44
param implicit object, using with, 45, 46
request, switching through front controller using, 287
switch...case Java construct, replacing with, 204
syntax, 1091, 1099
taglib directive, using with, 226, 228
when subtag, 44, 45, 287–289, 1098, 1105
XPath expression, working with using, 1099

coding errors, common, 209–210
constant, declaring, 201–202
contains function, 1118, 1119
containsIgnoreCase function, 351, 1118, 1119
core tags, 185, 1089–1090
dateParam tag, 1114
described, 43
dispPrice method, replacing with, 190, 195, 202
downloading, 184
EL, using with, 36, 148, 179
endsWith function, 1118, 1119
error handling, 326–327
escapeXML function, 342, 344, 1118, 1120
forEach tag, 59–60, 193, 194–195, 350, 092–1093
formatDate tag, 185, 432, 1106–1107
formatNumber tag, 152, 185, 202, 427–429,

1107–1108
formatting tags, 185, 1105–1113
forTokens tag, 185, 1093–1094
function, 351, 1118–1119
if tag, 153, 185, 204–205, 1091–1092, 1100–1101
import tag, 1092
indexOf function, 1118, 1120

internationalization using, 421–423
JavaBean property value, retrieving, 299–300
join function, 1118, 1120
length function, 1118, 1120
localization using, 421–423
message tag, 185, 420, 421, 423, 1108–1109
method call, converting to, 190–193, 205–206
otherwise tag, 44, 1095, 1101
out tag, 185, 1094, 1101–1102
param tag, 68, 1095, 1102, 1109, 1114–1115
parse tag, 1102–1103
parseDate tag, 1109–1110
parseNumber tag, 1110–1111
query tag, 1115
redirect tag, 1095–1096
remove tag, 185, 206, 1096
replace function, 344, 1118, 1120–1121
requestEncoding tag, 424, 425, 1111
set tag

constant, declaring using, 201–202
EL-accessible function, converting static method call

to using, 190–191
JavaBean property value, retrieving using, 299
property attribute, 1097
scope attribute, 191, 1097, 1103
select attribute, 1103
syntax, 1096–1097, 1103
target attribute, 1097
useBean action compared, 258–259
value attribute, 1097
var attribute, 1097, 1103

setBundle tag, 1111–1112
setDataSource tag, 741, 1116
setLocale tag, 420, 421, 1112
setTimeZone tag, 1112–1113
shopping cart application, JSTL-based, 195–199, 203
split function, 1118, 1121
SQL tags, 185–186, 778–781, 1113–1118
startsWith function, 1119, 1121
substring function, 1119, 1121
substringAfter function, 1119, 1121
substringBefore function, 1119, 1122
taglib directive JSTL declaration, 152, 190
timeZone tag, 432, 1113
toLowerCase function, 1119, 1122
toUpperCase function, 1119, 1122
transaction tag, 1116–1117
transform tag, 1104
trim function, 1119, 1122
update tag, 1117–1118

1236

jspDestroy method

40_57485x bindex.qxd 1/14/05 10:22 PM Page 1236

TEAM LinG - Live, Informative, Non-cost and Genuine!

url tag, 185, 194–195, 407, 1097
version, 181
when tag, 44, 45, 287–289, 1098, 1105
XML tags, 185–186, 1098–1105

jstl.jar file, 184, 436, 524, 646, 682
JstlView class, 577
JTA (Java Transaction) API, 726, 735
jta.jar file, 784, 1012
J2EE Connector Architecture (JCA), 726
J2EE (Java 2 Enterprise Edition)

API overview, 725–727
container

Applet, 722, 723
Application Client, 722–723
deployment descriptor, 724
Enterprise Bean, 722–723, 727, 742
JNDI, relation to, 735
lifecycle management role, 724
resource pooling role, 724
security role, 724
transaction management role, 724
Web Component, 722, 723, 727, 728–729

database, working with in J2EE environment, 738–741
described, 722–723
directory service operation, 735
EJB, relation to, 301, 552, 723, 729, 741
JDBC support, 738
JSP-only application, using J2EE component in, 728
JSP/servlet-based application, using J2EE component

in, 728–729, 730–734
Management interface, 726–727
n-tier nature of, 722
web.xml specification, 495

JUnit framework
Ant, using with, 893, 902, 914–915
authentication application, testing using, 922
downloading, 907
fixture, 908
installing, 907
setUp method, overloading, 908
tearDown method, overloading, 908
test, creating, 909–914
TestCase class, 908, 917
test-driven development, using in, 889
TestRunner class, 908, 916
Web site, 553, 907, 915

junit.jar file, 914
JVM (Java Virtual Machine)

container use of multiple JVMs, 76
error handling, retrieving JVM trace information for, 315

log setting, changing without restarting, 453–454
plug-in JVM requirement, 266
request handling role, 7
Web server, relation to, 8

K
key message JSTL tag attribute, 422, 1108
keytool utility, 831–833
kill-session.jsp file, 848
Korea, localizing for, 428, 431

L
label WebWork tag, 556
LabelValueBean object, 636
language

localizing
Arabic, 398, 428
button text, 405, 415
Chinese, 400, 403–407, 411–413, 414–415, 418
code, 396
English, 400–401, 407, 409–410, 414, 576
form for selecting, 401–407
French, 398, 400, 416, 576, 588–589
German, 576
Spanish, 400, 407, 428
translation, working with, 396, 407–408

page directive language attribute, 217, 1066
script HTML tag language attribute, 374
tag directive language attribute, 336, 1069

large-icon tag directive attribute, 336, 1068
Layout, logging, 456
length JSTL function, 1118, 1120
LengthValidator object, 697
less than sign (<)

action prefix, 242
EL comparative operator, 45, 154

less than sign, equals sign (<=) EL comparative
operator, 45, 154

less than sign, percent sign, at sign (<%@) directive
prefix, 214

less than sign, percent sign, equals sign (<%=)
scripting
element prefix, 75

less than sign, percent sign, exclamation mark (<%!)
scripting element prefix, 75

less than sign, percent sign (<%) scripting element
prefix, 78

library, tag. See tag, library

1237

library, tag

In
de

x

40_57485x bindex.qxd 1/14/05 10:22 PM Page 1237

TEAM LinG - Live, Informative, Non-cost and Genuine!

lifecycle
EJB lifecycle management role, 742, 744
JSF, 690–691
JSP, 877
J2EE container lifecycle management role, 724
servlet, 492–494

lightweight development methodology, 886
LineItem class, 103, 110
link tag

HTML, 120
Struts, 610

list, drop-down
color selector, 271–272
HTML/XML selector, 274
Struts, creating using, 634–639
validating drop-down list field, 634–639

ListCategoriesAction class, 1005, 1028–1029
listener

event listener, 715–718
JMeter component, 867, 871
Tomcat server, configuring to listen for debugger, 469

listitems.tag file, 1045
load

debugging under, 470–471
method, 822
performance load testing, 863, 868

loadObjectById method, 822
LoadRunner software, 471, 864
loan calculator application, 705–711, 719
LoanBean class, 705–707, 719
locale attribute
convertDateTime JSF tag, 712
convertNumber JSF tag, 713

localerr object, 314–315, 318
localization (l10n). See l10n
localizedMessage exception object property,

1065
log method, 449
LogAction class, 717–718
LogChange class, 716
Log4j logging framework

debug output, logging using, 454–460, 461, 470, 473,
479

level of logging, 455–456, 458, 459
Web portal configuration, 951–953, 968

logging
Appender, 456, 458, 473
application, activity of specific, 471
Commons Logging library, 554, 671, 682, 784, 1012
ConsoleHandler class, using, 450, 451

container, changing log setting without restarting,
453–454, 459–460

context information, adding to log file, 471–474
counter value, 443–444
CVS Changelog, 896
database, to, 456
date information, retrieving, 457
described, 445
disabling output, 453
event information, retrieving, 457
FileHandler class, using, 450
filter, applying to, 474, 479
hierarchy, logger, 448, 449, 450, 455
inheritance, logger, 448, 449, 455
IP address, activity of specific, 471
JSF, 716–717
JVM, changing log setting without restarting,

453–454
Layout, 456
level

debugging, when, 448–449, 450, 456
filtering log based on, 474
inheritance, 450
JDK logger, 448–449, 450
Log4j logger, 455–456, 458, 459
performance, optimizing via choosing appropriate,

875
SDK logger, 451–452, 453, 454

Logger class, using, 447
LogManager class, using, 448, 450, 454
message, 449, 450, 456, 461, 463
performance

optimizing via minimizing logging, 875
outputting performance data to log, 865

println method, using, 442–445
production environment, 470
request information, retrieving, 457
root logger, retrieving, 455
SDK logging framework, using, 451–453, 454
servlet

container role, 445–446
filter, servlet-based, 479

session, 471–473
SocketHandler class, using, 450
tag library, using, 460–464
user, activity of specific, 471
utility overview, 891
Web portal, 951–953, 968
Webwork, 554
web.xml file setup, 461, 473

1238

lifecycle

40_57485x bindex.qxd 1/14/05 10:22 PM Page 1238

TEAM LinG - Live, Informative, Non-cost and Genuine!

logging in. See authentication
logging.properties file, 451, 452, 453, 454
logical operator, EL, 153–154, 1080
LoginAction class, 595, 596, 597–598, 602–603
login-config web.xml file element, 519–520,

528–529
login-error.html file, 844
LoginForm class, 599, 600, 601, 602–603, 617–618
login.html file, 843–844
login.jsp file, 604
LogManager class, 448, 450, 454
LogonAction class, 952
logout page, 847–849
long data type, 157
LongRangeValidator object, 697
lookup method, 738
loose coupling, 929
l10n (localization). See also i18n (internationalization)

China, for, 400, 403–407, 411–413, 414–415, 418
described, 396–397
Egypt, for, 398, 428, 431
France, for, 398, 400, 416, 417, 431
Japan, for, 428, 431, 433
Korea, for, 428, 431
language

Arabic, 398, 428
button text, 405, 415
Chinese, 400, 403–407, 411–413, 414–415, 418
code, 396
English, 400–401, 407, 409–410, 414, 576
form for selecting, 401–407
French, 398, 400, 416, 576, 588–589
German, 576
Spanish, 400, 407, 428
translation, working with, 396, 407–408

Mexico, for, 400
Spain, for, 400, 428
Taiwan, for, 400
United Kingdom, for, 399–400, 428, 429, 431, 433
United States, for, 399–400, 428, 431

Luhn Formula, 623, 1050

M
majorVersion application object property, 1064
ManageCartAction class, 1005, 1037–1039, 1042
ManageCartForm class, 1039–1040, 1042
manage-cart.jsp file, 1040, 1042
Manager interface, 782
many-to-one Fixture.hbm.xml file element, 820

Map

Java interface, 250–251
object, 345, 347, 349, 354–355, 1078–1079

mapped diagnostic context (MDC), 457
mapping applet, 273
match Struts tag, 612
math. See also number

absolute value, retrieving, 173, 175
addition, 151, 1080
comparing values, 153–154
decimal point display, 152
divide-by-zero exception, 324–325, 328
division, 152, 1080
EL arithmetic operation, 151–153, 178, 1080
modulo, 152, 1080
multiplication, 152, 178, 1080
sales tax calculation, 115, 211
subtraction, 151, 1080

max function, 178
maxFractionDigits attribute
convertNumber JSF tag, 712
formatNumber JSTL tag, 1108

maxIntegerDigits attribute
convertNumber JSF tag, 712
formatNumber JSTL tag, 1108

maxRows query JSTL tag attribute, 1115
MDB (message-driven bean), 745
MDC (mapped diagnostic context), 457
memory

buffer
flushing, 259, 1064, 1066, 1072
out object bufferSize property, 1064
page directive buffer attribute, 1066

database, in-memory, 749, 981
performance, optimizing via caching, 874

menu
drop-down, 37, 39–40
football roster management application menu system,

799, 820–821
shopping cart application menu system, 984–985,

1024, 1025–1026, 1055
Tiles framework, formatting using

definition, 650–651, 664–668, 669–670
inheritance, 660–663, 667–668
item list, 664–665, 666, 676
Struts, passing value from, 673–678
tiles-defs.xml file configuration, 665, 669,

674, 1025
title, 666, 675

1239

menu

In
de

x

40_57485x bindex.qxd 1/14/05 10:22 PM Page 1239

TEAM LinG - Live, Informative, Non-cost and Genuine!

menu.html file, 799
MenuItem object, 665
menuItems JavaBean, 666
menu.js file, 133
menu-layout.jsp file, 665
menuTile object, 666
Mercury Interactive LoadRunner software, 471, 864
message

exception object property, 1065
JSTL tag, 185, 420, 421, 423, 1108–1109
logging tag attribute, 461
Spring tag, 569
Struts tag, 616

message-driven bean (MDB), 745
message.jsp file, 510
message.properties file, 1048
messages Struts tag, 611
messages_de.properties file, 576
MessageServlet servlet, 510
messages_fr.properties file, 576, 588
messagesNotPresent Struts tag, 613–614
messagesPresent Struts tag, 613–614
messages.properties file

Spring, 570, 571, 576, 578, 581
Struts, 599, 605, 616, 621, 629

method
declaring using declaration scripting element, 75, 76
EL-accessible function, converting static method call to,

190–193, 205–206
JavaBean, 55, 280–281
JSF method binding expression, 685
JSTL, converting method call to, 190–193, 205–206
overriding, 490–491

Mexico, localizing for, 400
Microsoft Visual SourceSafe software, 890
min function, 178
minFractionDigits attribute
convertNumber JSF tag, 712
formatNumber JSTL tag, 1108

minIntegerDigits attribute
convertNumber JSF tag, 713
formatNumber JSTL tag, 1108

minorVersion application object property, 1064
minQual JavaBean property, 162
minus sign (-) EL subtraction operator, 1080
mod EL operator, 152, 1080
Model 1 architecture, 534–535
Model 2 architecture, 536–539
Model View Controller. See MVC

modification-time check, optimizing performance via
disabling, 879–880

modifyTeamInRoster method, 770
modifyVenueInRoster method, 792
movie, adding to Tiles framework layout, 660, 670,

674, 676–678
multiplication (arithmetic), 152, 178, 1080
MVC (Model View Controller)

Controller servlet
action mapping, 503
initialization parameter, accessing, 506–507
initializing, 504–505, 507
request handling, 502–503, 505, 508–509, 537,

542–543
web.xml file, 504–505

described, 534
event-driven environment, 534
HMVC, 554
JSF implementation

Controller, 683, 690
Model, 692

Model 1 architecture, 534–535
Model 2 architecture, 536–539
pattern, 550, 551
separation of application into, 534
shopping cart application Controller, 1005–1008
Spring implementation

Controller, 568, 572–574, 583, 590
Model, 574–575
View, 577–579, 588–589, 590

Struts implementation
Controller, 594–603
Model, 603
View, 604–606

Web application, 534–537
Web framework compared, 551
Web portal implementation

Controller, 966–975
View, 959–966

WebWork Dispatcher controller role, 554–556
MySQL database platform. See also database

Control Center, 752, 756
downloading, 752
driver, 739, 752–753, 1013
installing, 752
shopping cart application configuration, 1013, 1016
starting, 753
Web site, 752

1240

menu.html file

40_57485x bindex.qxd 1/14/05 10:22 PM Page 1240

TEAM LinG - Live, Informative, Non-cost and Genuine!

N
name attribute
attribute directive, 338, 346, 1069
get Tiles tag, 656
getAsString Tiles tag, 657
getProperty action, 257, 1072
importAttribute Tiles tag, 658
insert Tiles tag, 653
param JSTL tag, 1095, 1102
put Tiles tag, 655
putList Tiles tag, 656
setProperty action, 251–252, 1071
useAttribute Tiles tag, 657

name-from-attribute variable directive
attribute, 339, 352, 354, 1070

name-given variable directive attribute, 339, 1070
namespace

EL, 173, 1082
iterating through, 746
JNDI, provided by, 735
JSP tag, 22, 27, 43
tag file, 27
taglib directive, namespace information conveyed in,

22, 27, 152, 173, 183
native2ascii utility, 418
navigation-rule faces-config.xml file element,

687–688, 695, 707
NDC (nested diagnostic context), 457, 471–473
NetBeans IDE debugger

application, running in, 467
Attach dialog box, 469
Connector, 469
object browser window, 467
pageContext object, displaying, 467
port, 469
remote debugging using, 469
Toggle Breakpoint option, 464–465

network hop, effect on performance, 863
networked configuration, Web server, 8
new session object property, 1063
NewsFeed class, 56–58, 162–166, 935, 938–939
NewsItem class, 935, 939–940
news.jsp file

DHTML menu coding, 141–143
getProperty action, 57–58
include action, 261–262
include directive, 55, 233–234, 235–236
JavaBean usage, 57
personalization data, 68–69

reusing code, 72
setProperty action, 57
useBean action, 55, 57

news1.jsp file, 260–261, 262, 263
NewsServiceImpl class, 953–955
news3.jsp file, 264
news2.jsp file, 260–261, 262
notEqual Struts tag, 612
notMatch Struts tag, 612
n-tier approach to programming, 722
null value, working with in EL, 155–156, 158, 191
NullPointerException exception, 313
NullProcessingCommand method, 800
number. See also math

absolute value, retrieving, 173, 175
data type conversion to/from, 158, 710, 711,

712–715, 1083–1084
decimal point display, 152
format, localizing, 396, 428, 1111
formatting using formatNumber JSTL tag, 152, 185,

202, 427–429, 1107–1108
random number, generating, 359
rounding, 174–175
validating

form number field, 374–375, 382, 587, 641, 918
JavaScript, 374–375, 382
JSF, 697, 698–703
Spring, 587
Struts, 641

Number Guess program, 693–696
numberConverter JSF converter, 710, 711, 712–713
NumberGuess.jsp file, 695, 699, 703–704
NumberToCashConverter class, 713–714
NumericUtil class, 1032, 1035
NUnit framework, 907

O
object. See also specific object

business object, 81
HTML object tag, 267, 272, 273
implicit

attribute, attaching, 86–88, 162–163
category, 167, 1084
described, 45
form processor, 168–173
listing of implicit objects, 45–46
scope, 112–114, 168
tag file, invoking in, 334–335

model, 376

1241

object

In
de

x

40_57485x bindex.qxd 1/14/05 10:22 PM Page 1241

TEAM LinG - Live, Informative, Non-cost and Genuine!

object (continued)
property

EL, accessing in, 162–167, 1078
nesting, 163

Spring object relational mapping, 567
transfer object, 276, 874–875

object-relational impedance mismatch, 777
object-relational mapping (ORM), 777
ODBC (Open Database Connectivity), 750
odmg-3.0.jar file, 784
OneToTenValidator class, 698–699
onSubmit

JavaScript handler, 377–378
method, 580

Open Symphony Webwork framework. See Webwork
framework

OptimizeIt software, 865
options Struts tag, 609–610, 638
OracleAS TopLink framework, 552, 553
OrderItem class, 992–994, 1020, 1035, 1053
OrderItem.hbm.xml file, 1020–1021
OrderStatus class, 989, 995, 1021, 1053
OrderStatus.hbm.xml file, 1021
ORM (object-relational mapping), 777
otherpg.jsp file, 321
otherwise JSTL tag, 44, 1095, 1101
out

implicit object, 78, 334–335, 1064
JSTL tag, 185, 1094, 1101–1102

output action, 273
output.jsp file, 731, 732

P
page

directive
autoFlush attribute, 1066
buffer attribute, 1066
container communication role, 85, 217
contentType attribute, 220, 223, 386, 1067
described, 85
error handling, 219, 220, 311–312, 321
errorPage attribute, 220, 1066
extends attribute, 217–218, 1066
import attribute, 218, 1066
index.jsp file, 222–223
info attribute, 219, 1066
isELIgnored attribute, 219, 1067
isErrorPage attribute, 219, 321, 1066
isThreadSafe attribute, 1066

language attribute, 217, 1066
pageEncoding attribute, 422, 1067
session attribute, 108, 218, 1066
shopcart.jsp file, 107
syntax, 1066
translation unit, as, 217

forward action attribute, 265, 1073
implicit object, 1065
include action attribute, 259, 1072

pageContext object
accessibility, 112
described, 45, 1063
findAttribute method, 147, 252, 443–444
getAttribute method, 86, 247, 249
lifetime, 112
NetBeans IDE debugger, displaying in, 467
page property, 1063
request property, 1063
response property, 1063
scope, 112, 168
servletConfig property, 1063
servletContext property, 1063
session property, 1063
superclass, 87

pagecontext.errorData object, 322, 325, 326
pagecontext.exception object, 322, 323, 325,

326, 327
pageEncoding attribute
page directive, 422, 1067
tag directive, 336, 1069

page-encoding web.xml file element, 516
pageScope object, 45, 168, 1085
paint method, 270
param

action
applet, using with, 271
forward action, using with, 265–266
include action, using with, 264, 265–266
params action, using with, 265, 267
request parameter, passing using, 264
syntax, 265, 1073

JSTL tag, 68, 1095, 1102, 1109, 1114–1115
object, 45, 46, 168, 1086
setProperty action attribute, 252, 1072

param-name web.xml file element, 505
params action

applet, using with, 271
body, 267
param action, using with, 265, 267

1242

object (continued)

40_57485x bindex.qxd 1/14/05 10:22 PM Page 1242

TEAM LinG - Live, Informative, Non-cost and Genuine!

plug-in, using with, 267
syntax, 267, 1073

param-value web.xml file element, 505
paramValues object, 46, 168, 1086
parse JSTL tag, 1102–1103
parseDate JSTL tag, 1109–1110
parseLocale attribute
parseDate JSTL tag, 1110
parseNumber JSTL tag, 1111

parseNumber JSTL tag, 1110–1111
password

database
access password, 756, 1116
storing password in, 748

encoding, 827
setDataSource JSTL tag password attribute, 1116
SSL key, 833
Struts password tag, 609
Tomcat server, 15
validating, 609, 620–622
WebWork password tag, 556

PATH variable, 13
pattern

architectural, 551
convertDateTime JSF tag pattern attribute, 712
convertNumber JSF tag pattern attribute, 713
design pattern, 275, 920, 932, 933
formatDate JSTL tag pattern attribute, 1107
formatNumber JSTL tag pattern attribute, 1107
MVC, 550, 551
parseDate JSTL tag pattern attribute, 1110
parseNumber JSTL tag pattern attribute, 1111
URL, 515
Web framework, 550

PatternLayout object, 456–457
payment method, 710
percent sign, greater than sign (%>)

directive suffix, 214
scripting element suffix, 75, 77, 78

performance
baseline, 865, 867
bottleneck, identifying, 865
caching, optimizing via, 874
CHO testing, 864
database connection pooling, optimizing via, 874
deployment-time, optimizing during, 875–882
designing for optimal, 872
development-time, optimizing during, 872–875
graphing, 865
HTTP proxy server, 868

instrumenting code, 865
load testing, 863, 868
logging

optimizing performance via minimizing, 875
outputting performance data to log, 865

modification-time check, optimizing via disabling,
879–880

network hop, effect on, 863
precompiling JSP, via, 876–879
production environment, testing in, 880
reporting, 865, 871
request handling, 867–868, 869–870, 871–872
response time, 862
scalability, 862
scope, optimizing via assigning appropriate, 874
server proximity, effect on, 863, 868
session overhead, optimizing via reducing, 873–874
stress testing, 863
tag pooling, optimizing via, 880–881
threading, 868–869, 871
throughput, 862, 871
traffic, bursty, 862
transaction time, 862
transfer object, optimizing using, 874–875
user

perspective regarding performance, 863
simulating concurrent users when testing,

867, 868–869, 871
Web server, optimizing via deploying static content

from, 881–882
period (.) EL operator, 166, 250
persistence

BMP, 744, 745
CMP, 744
database, 782, 784–786, 802, 932–933
EJB, 552, 744
framework, 552
Hibernate framework, configuring using, 782, 784–786,

802
shopping cart application, 1000–1005
Web portal personalization, 932–935

Pfaffenberger, Bryan (HTML, XHTML, and CSS Bible,
Third Edition), 267

plug-in
described, 266
fallback action, using with, 267, 268, 272
JVM requirement, 266
location, 266
params action, using with, 267
server role, 266

1243

plug-in

In
de

x

40_57485x bindex.qxd 1/14/05 10:22 PM Page 1243

TEAM LinG - Live, Informative, Non-cost and Genuine!

plugin action
applet, using with, 268–273
described, 267
fallback action, using with, 267, 268, 272
HTML generation by, 272–273
index.jsp file, 270–271
syntax, 267, 1074
type attribute, 267, 1074

plus sign (+)
EL addition operator, 1080
JavaScript regular expression operator, 375

pop method, 473
portal application. See Web portal application
portal-advt. jsp file, 963, 965
portal-body.jsp file, 963, 964
portal.css file, 52–53, 127–128, 132
portal-header.jsp file, 963, 964
portal-layout.jsp file, 963–964
portalpage.jsp file, 963
POST HTTP method, 37–38, 490, 491
precision specifier, PatternLayout object, 456–457
predictive development methodology, 886
prefix attribute
bundle JSTL tag, 1106
message JSTL tag, 422
taglib directive, 43, 182, 225, 337, 1067

PreparedStatement class, 754, 770
prepareForBrowseCategory method, 1008, 1032
presentation-layer technology, 28, 74
Principal object, 830
println method
PrintWriter class, 11
System object, 442–445

printstring.tag file, 338
PrintWriter class, 11, 460, 492
private-page.jsp file, 839, 840, 841, 854
processAction method, 718
processFixtureAdd method, 821
processFixtureList method, 822
ProcessingCommand interface, 795, 800
processRequest method, 488, 491, 508
processRosterAdd method, 765
processRosterDelete method, 765
processRosterList method, 765
processRosterModify method, 765
processValueChange method, 717
procform.jsp file, 407, 410, 413, 423–424
procprod.jsp file, 255–256, 257, 274, 370–371, 378
prodform.jsp file, 370–371, 372–374, 380–382
prodhtml.jsp file, 274

Product

JavaBean, 379
object, 82, 83

production environment
debugging in, 441–442, 469–474
logging in, 470
performance, testing in, 880

production system, 441–442, 469–474
product.jsp file, 211
prodxml.jsp file, 274
Professional Apache Tomcat 5 (Chopra), 868
Professional Hibernate (Gradecki and Pugh), 823
Professional Java Tools for Extreme Programming

(Hightower, et al), 903
.properties files, 416–418, 451
property

attribute
getProperty action, 257, 1072
set JSTL tag, 1097
setProperty action, 252, 1071

WebWork tag, 562, 564
prototyping, HTML, 53
public-page.jsp file, 839
Publisher class, 935, 940–941
Pugh, Eric (Professional Hibernate), 823
put Tiles tag, 650, 652, 654–655
putList Tiles tag, 655–656, 665

Q
query JSTL tag, 1115
Quest Probe software, 865

R
radio tag

Struts, 609
WebWork, 556

ramp-up period, thread, 871
Random class, 440–441
random number, generating, 359
Rational Clearcase software, 890
Rational Performance Tester software, 864
Rational Unified Process (RUP), 888
Realm authentication policy, 828
redirect tag

JSTL, 1095–1096
Struts, 612–613

redirectPort server.xml file attribute, 841
red.jsp file, 502, 505, 509

1244

plugin action

40_57485x bindex.qxd 1/14/05 10:22 PM Page 1244

TEAM LinG - Live, Informative, Non-cost and Genuine!

refactoring, 887
reference data, 582, 586
registration.jsp file, 959, 961–962, 970
regression testing, 889, 891
regular expression, 375
rejectValue method, 575
releaseResources method, 765, 770, 792
reloading web.xml file attribute, 880
remaining out object property, 1064
Remote ➪ Import (CVS), 905
Remote Method Invocation-Internet Inter-ORB Protocol

(RMI-IIOP) API, 725
remove JSTL tag, 185, 206, 1096
replace JSTL function, 344, 1118, 1120–1121
replay method, 696
request

object, 87, 112, 334, 1062
pageContext object request property, 1063

request handling
action

forwarding request using, 242, 293
output of request, including in, 242
role in request handling, 34

CGI, 5–7
container role, 11–12, 22, 218, 248
cookie information available with request, accessing, 46
encoding, 425–426, 1111
error handling, request-time, 236, 312–314, 315–320,

322–323
football roster management application, 773, 821
form submission URL request, 37–38, 39–40, 42
forwarding request

action, using, 242, 293
auction Web site application, 285, 287–288, 289,

290–294, 371–372
Controller servlet, 505, 508–509, 542–543
error page forwarding, 321–322, 323
forward action, using, 264–265, 274, 293
front controller, using, 284–288, 371–372

getProperty action role, 252–254
HTTP request, 490–491, 868–870, 872
include action, triggering by incoming request, 263
internationalization request parameter encoding,

425–426
JavaBean

instance, attaching to, 57
passing request parameter to, 253
property, filling with request parameter, 292
property, matching request parameter with, 256

JSF, 689–691, 693

JVM role, 7
localization request parameter encoding, 425–426
logging request information, retrieving, 457
Model 1 architecture, 535
Model 2 architecture, 536–539
page initialization, acquiring global resource for request

handling during, 76
page processing, request-phase, 215–216
param action, passing request parameter using, 264
parameter

accessing parameter passed with request, 46
filling JavaBean property with request parameter, 292
internationalization request parameter encoding,

425–426
matching request parameter with JavaBean property,

256
passing request parameter using param action, 264
passing to JavaBean, 253

performance, testing, 867–868, 869–870, 871–872
scope, 45, 112, 300, 1061, 1085
scripting element request time expression, 77
servlet

container role, 492
Controller servlet, 502–503, 505, 508–509, 537,

542–543
HTTP, 490–491
instance, creating separate for each request, 492
passing request to servlet, 489

setProperty action role, 253, 256
shopping cart application, 97
Struts, 594, 615
transferring request to another JSP, 264–265
useBean action role, 248
Web server, 4

RequestDispatcher object, 208, 508–509, 542–543
requestEncoding JSTL tag, 424, 425, 1111
requestScope object, 45, 545, 1085
required attribute directive attribute, 338, 1069
requirement analysis, 930–931
ResetLogger.jsp file, 453, 454
resource bundle, Java 2, 414–417, 420, 434, 1106,

1111
resource-ref web.xml file element, 522, 740, 741
response

object, 333, 1062–1063
pageContext object response property, 1063

responseComplete method, 692
res-ref-name web.xml file element, 740
result transform JSTL tag attribute, 1104
ResultSet class, 755

1245

ResultSet class

In
de

x

40_57485x bindex.qxd 1/14/05 10:22 PM Page 1245

TEAM LinG - Live, Informative, Non-cost and Genuine!

returnvalue.tag file, 339, 341
Rich Site Summary (RSS), 926–929, 953
RMI-IIOP (Remote Method Invocation-Internet Inter-ORB

Protocol) API, 725
role attribute
definition Tiles tag, 654
get Tiles tag, 656
getAsString Tiles tag, 657
insert Tiles tag, 653
put Tiles tag, 655
putList Tiles tag, 656

RollDice.jsp file, 466–467, 479
Rome RSS library, 953–955
roster.jsp file, 759–760
RosterManager interface, 765, 770–771, 787, 811
RosterManagerFactory object, 766, 771–772
Round class, 802–803, 820
round Java method, 175
Round.hbm.xml file, 803–804
round-input.jsp file, 778–779
round-process.jsp file, 781
RSS (Rich Site Summary), 926–929, 953
rtexprvalue attribute
attribute directive, 338, 1069
highlighttableext.tag file, 352

runtime
bug, 437
error, 305, 313

RUP (Rational Unified Process), 888

S
SAAJ (SOAP with Attachments for Java), 726
safeClose method, 770
sales tax calculation, 115, 211
saveOrUpdate method

football roster management application, 792
shopping cart application, 1004–1005, 1019

SaveProfileAction class, 974–975
SaveRegistrationAction action, 970
scalability, 862
scope

application, 46, 113, 778, 1061–1062, 1086
dump tag scope attribute, 461
formatNumber JSTL tag scope attribute, 1108
if JSTL tag scope attribute, 1091, 1101
import JSTL tag scope attribute, 1092
invoke action scope attribute, 348
JavaBean instance, 57, 244
locale, 421, 422

message JSTL tag scope attribute, 422, 1109
object, implicit, 112–114, 168
page, 112, 168, 332, 1060–1061, 1085
pageContext object, 112, 168
parse JSTL tag scope attribute, 1103
parseDate JSTL tag scope attribute, 1110
parseNumber JSTL tag scope attribute, 1111
performance, optimizing via assigning appropriate, 874
query JSTL tag scope attribute, 1115
remove JSTL tag scope attribute, 1096
request, 45, 112, 300, 1061, 1085
session, 46, 112, 333, 1061, 1085
set JSTL tag scope attribute, 191, 1097, 1103
setBundle JSTL tag scope attribute, 1111
setDataSource JSTL tag scope attribute, 1116
setLocale JSTL tag scope attribute, 421, 1112
setTimeZone JSTL tag scope attribute, 1113
tag file, 332–335
Tiles framework, 650, 654, 657–658
transform JSTL tag scope attribute, 1104
update JSTL tag scope attribute, 1117
url JSTL tag scope attribute, 1097
useBean action scope attribute, 244, 246, 247,

1071
variable, 191, 204, 206, 209, 339–341

scopeDom parse JSTL tag attribute, 1103
scope.tag file, 333
script HTML tag, 121, 374
scripting

described, 35
EL

element alternative, as, 146
independence of scripting provided by, 36

element
class definition, placement in, 79
compilation, 305
declaration, 35, 75–77, 79, 189–190, 1075
described, 35
error handling, 305–309
expression, 35, 77, 79, 1076
JavaBean, using in, 249
scriptlet, 35, 78, 79

invalid, declaring in web.xml file, 516
JSTL, converting scripting application to, 186–195
language

default, 217
page directive, specifying in, 217
script HTML tag, specifying in, 374
tag directive, specifying in, 336

variable, 75, 191

1246

returnvalue.tag file

40_57485x bindex.qxd 1/14/05 10:22 PM Page 1246

TEAM LinG - Live, Informative, Non-cost and Genuine!

scripting-invalid web.xml file element, 516
scriptlet

avoiding, 919
debugging, 439–441
JavaBean

accessing from scriptlet, 247
method, invoking using scriptlet, 280, 281

scripting element, 35, 78, 79
syntax, 1075

SDK (Software Development Kit) logging framework,
451–453, 454

searchByKeyword method, 956
searching

counting search results, 351–354
highlighting search result, 349–351
JavaBean attribute, searching for when instantiating,

246–247
regular expression, 375
substring, 1118–1119, 1121–1122
tag text, searching and replacing, 342–344

Secure Sockets Layer. See SSL
security. See also specific security mechanism

confidentiality, 830–831
container role, 724
data integrity, 830–831
declarative, 829
JSF, 690
need, assessing, 825–826
programmatic, 829
user role, verifying, 830

security-constraint web.xml file element
auth-constraint subelement, 520, 829
described, 519
file access, restricting using, 690
URL mapping, 828
user-data-constraint subelement, 520
web-resource-collection subelement, 520, 838,

840
SecurityFilter class, 857–858, 859
security-role web.xml file element, 521, 528
Segue Silk Performer software, 864
select

attribute
forEach JSTL tag, 1100
if JSTL tag, 1101
out JSTL tag, 1102
set JSTL tag, 1103

tag
Struts, 609–610, 638
WebWork, 556

separation of concerns application design, 331–332
Seraph framework, 827
serializing JavaBean, 276
The Server Side Web site, 550
serverInfo application object property, 1064
server.xml file, 833–834, 841–842, 852–853
service method, 489, 494, 500, 734
service (software component)

described, 929
locator design pattern, 955
Web service, 929–930, 956

servlet
API, 8, 17
compiling, 470, 484, 486–487
concurrency considerations, 479
configuration object, retrieving, 489
container, 8–9, 12, 445–446, 453, 492
context, 76–77, 85–86, 87, 446, 508
Controller servlet

action mapping, 503
initialization parameter, accessing, 506–507
initializing, 504–505, 507
request handling, 502–503, 505, 508–509, 537,

542–543
web.xml file, 504–505

debugging, 470
declaring, 497–500
destroying, 488, 492–493, 494
DTD support, 496
form processing, servlet/JSP-based, 730–734
generic, 489
HTML, generation by, 11
HTTP

decoding, 490
request handling, 490–491

information about, retrieving, 489, 490
initialization parameter, accessing, 506–507
initializing, 488, 492–494, 504–505, 507
Java class, relation to, 484–485
JSP as, 484–485
J2EE component, using in JSP/servlet-based

application, 728–729, 730–734
lifecycle, 492–494
logging

container role, 445–446
filter, servlet-based, 479

method, overriding for, 490–491
need for, 503
path, 208

1247

servlet

In
de

x

40_57485x bindex.qxd 1/14/05 10:22 PM Page 1247

TEAM LinG - Live, Informative, Non-cost and Genuine!

servlet (continued)
request handling

container role, 492
Controller servlet, 502–503, 505, 508–509, 537,

542–543
forwarding incoming request, 505, 508–509
HTTP, 490–491
instance, creating separate for each request, 492
passing request to servlet, 489

snoop application, 475–478
specification, 496, 512, 827
steps in servlet development, 9–10
Struts servlet, 593, 594
threading, 494
timestamp, creating using, 734
URL mapping, 494, 498–500
Webwork servlet Dispatcher, 555
web.xml file
BasicServlet class, 495–496
Controller servlet, 504–505
form-processing servlet, 733, 735–736
servlet element, 496, 505, 522
servlet-mapping element, 498–500, 502, 505,

522, 572
Servlet interface
BasicServlet class implementation, 489–490
destroy method, 488, 494
getServletConfig method, 489
getServletContext method, 76–77, 85–86
getServletInfo method, 489
HttpServlet class implementation, 489–490
init method, 488, 494, 505
service method, 489, 494, 500

servlet web.xml file element, 505, 522
servlet-api.jar file, 486
ServletConfig object, 489, 507
servletConfig pageContext object property, 1063
servletContext

interface, 87, 446, 508
pageContext object property, 1063

servletContextName application object
property, 1064

ServletDispatcher Webwork Dispatcher, 555
servlet-mapping web.xml file element, 498–500,

502, 505, 522, 572
servletName config object property, 1065
ServletRequest interface, 87, 830
ServletResponse interface, 492

session
attribute, 108, 110, 111–114, 218
container role in session tracking, 218
cookie, managing using, 108–109
creating, 473
database session management, 107–114, 791, 792,

1000–1002, 1016–1018
described, 107
EJB, session, 743–744
factory, 791
HTTP session authentication, 826
implicit object, 87, 112, 334, 1063–1064
JavaMail Session object, 735
killing, 848
logging, 471–473
NDC stack, pushing session ID onto, 473
page access counter, session-specific, 531
page directive session attribute, 108, 218, 1066
pageContext object session property, 1063
performance, optimizing via reducing session overhead,

873–874
scope, 46, 112, 333, 1061, 1085
size of session object, reducing, 873
timeout, 873–874

SessionFactory object
football roster management application, 791
shopping cart application, 1000–1001

session.jsp file, 847–848
SessionProvider class, 1000–1002
sessionScope object, 46, 1085
set JSTL tag

constant, declaring using, 201–202
EL-accessible function, converting static method call to

using, 190–191
JavaBean property value, retrieving using, 299
property attribute, 1097
scope attribute, 191, 1097, 1103
select attribute, 1103
syntax, 1096–1097, 1103
target attribute, 1097
useBean action compared, 258–259
value attribute, 1097
var attribute, 1097, 1103

setAttribute method, 86, 599
setBundle JSTL tag, 1111–1112
setCreditDecision method, 1052
setDataSource JSTL tag, 741, 1116
setFirstName method, 278

1248

servlet (continued)

40_57485x bindex.qxd 1/14/05 10:22 PM Page 1248

TEAM LinG - Live, Informative, Non-cost and Genuine!

setLevel JSP, 448
setLocale JSTL tag, 420, 421, 1112
setProperty action

* (asterisk) value, 252, 256
body, 251
described, 243
error handling, 313, 316
form processing using, 255–256
index.jsp file, 251, 252, 254–255, 316
name attribute, 251–252, 1071
news.jsp file, 57
param attribute, 252, 1072
property attribute, 252, 1071
request handling role, 253, 256
syntax, 1071
value attribute, 252, 1072
variable, dependence on generated, 258

setTimeZone JSTL tag, 1112–1113
setUp method, 908, 911, 916
severe function, 449
shopcart.jsp file, 107, 199–201, 202–203,

205–206, 211
shopping cart application. See also Web storefront

application
AddItemAction class, 1005, 1034–1035, 1036
addItemToCart method, 1035
addOrIncrementItem method, 1035–1036
Ant build script, 1010, 1011–1014
BaseEntity class, 990, 1032
Book class, 996–997
Book.hbm.xml file, 1018–1019
BookstoreConstants class, 1054
BookstoreController class, 1005–1008, 1029,

1032, 1035, 1052
BrowseCategoryAction class, 1005, 1030–1032
build.xml file, 1010, 1011–1014
Buy hyperlink, 90–92, 95, 97, 110, 203
cartstatus.tag file, 1027
Category class, 995–996, 1018
category-browse.jsp file, 1033
Category.hbm.xml file, 1019
category-list.jsp file, 1030
Checkout link, 985, 1042
CheckoutAction class, 1005, 1043–1044
checkoutcompleted.jsp file, 1054
checkout.jsp file, 1044, 1045–1047
Clear the Cart hyperlink

JSTL-based, 198, 203
script-based, 101, 102, 110

clearCartWhenApproved method, 1053–1054
CompleteOrderAction class, 1005, 1043,

1050–1051
Controller, 1005–1008
credit card processing, 988, 1048, 1050, 1052
CustomerOrder class, 989, 990–992, 1051, 1052,

1053
CustomerOrder.hbm.xml file, 1019–1020
database

authentication, 1016
creating value, 1004
entity definition, 989–990
field list, 988–989
finding value by ID, 1004
Hibernate configuration, 1000–1002, 1003–1004,

1016–1019
listing all values in, 1003
MySQL configuration, 1013, 1016
session management, 107–114, 1000–1002
updating value, 1004

DefaultAction class, 1005
directory structure, 1009–1010
doAction method, 1006, 1008, 1029, 1052
EntityManager class, 1000, 1002–1003, 1004,

1029
EntityManagerFactory class, 1000, 1002,

1004–1005, 1029
findAll method, 1003
findById method, 1004, 1005, 1032
getBookCount method, 1030
getCategory method, 1018
getOrCreateCart method, 1052
getOrder method, 1051–1052
getOrderItem method, 1035
home page, 90, 95
initialize method, 1008
initializeForm method, 1039
internationalizing, 1055
JSTL-based, 195–199, 203
layout using Tiles, 1022–1023, 1024–1026, 1029,

1040, 1054
ListCategoriesAction class, 1005, 1028–1029
listitems.tag file, 1045
Manage Your Shopping Cart screen, 984, 1036–1042
ManageCartAction class, 1005, 1037–1039, 1042
ManageCartForm class, 1039–1040, 1042
manage-cart.jsp file, 1040, 1042
menu system, 984–985, 1024, 1025–1026, 1055
message.properties file, 1048

1249

shopping cart application

In
de

x

40_57485x bindex.qxd 1/14/05 10:22 PM Page 1249

TEAM LinG - Live, Informative, Non-cost and Genuine!

shopping cart application (continued)
NumericUtil class, 1032, 1035
OrderItem class, 992–994, 1020, 1035, 1053
OrderItem.hbm.xml file, 1020–1021
OrderStatus class, 989, 995, 1021, 1053
OrderStatus.hbm.xml file, 1021
persistence, 1000–1005
prepareForBrowseCategory method, 1008, 1032
price display, 92, 98, 101–102, 197
quantity display, 92
request handling, 97
Return to Shopping hyperlink, 98, 99, 197
sales report, 1055
sales tax calculation, 115, 211
saveOrUpdate method, 1004–1005, 1019
SessionFactory object, 1000–1001
SessionProvider class, 1000–1002
setCreditDecision method, 1052
ShoppingCart class, 990, 998–1000, 1026,

1035–1036, 1040–1041
standard-layout.jsp file, 1024–1025
status, 989, 995, 1021, 1026–1028
Struts action hierarchy, 1005
Tomcat configuration, 1010
updateCart method, 1042
use case analysis, 984–985
validation, 1022–1023, 1048–1050
web.xml file, 1023

ShoppingCart class, 990, 998–1000, 1026,
1035–1036, 1040–1041

Short data type, 158, 160
showbid.jsp file

bid result display, 296, 297, 299, 300–301
request, forwarding to, 285, 287–288, 292, 293–294

showDate.jsp file, 526–527, 528–529
showerr.jsp file, 321, 322, 323, 325–326
showglob.jsp file, 114
showportal.jsp file

address, 37
content, independence from, 46–47, 50–51
DHTML menu coding, 139
form submission role, 42
include directive, 54–55
portal.css, embedding in, 132
user preference selection coding, 129–131
username parameter, 67–68

showToolBar function, 143
shutdown.sh file, 16
Silk Performer software, 864
Simple Object Access Protocol (SOAP), 929, 956

simple-body.jsp file, 649
SimpleController servlet
action parameter, 537, 538
coding, initial, 538–539
Customer object, 539–540, 541, 546
CustomerManager object, 539, 541–542, 545, 546
dispatch method, 542, 543
displayCustomer.jsp file, 545, 547
displaylist action, 537, 538–539
displayList.jsp file, 542–544
doPost method, 542
getCustomer method, 545
getCustomers method, 542

SimpleDateFormat class, 360
simple-footer.jsp file, 649
SimpleFormatter class, 451–452
SimpleFormController object, 573–574, 582
simple-header.jsp file, 649
simple-incdef-index.jsp file, 651–652
simple-insert-index.jsp file, 648, 649
SimpleLayout class, 456
simplelayout.jsp file, 648–649
simplelayout-title.jsp file, 659
SimpleMenuItem object, 676
simple-menu.jsp file, 649
simpletable.tag file, 345–348, 356
simple-xmldef-index.jsp file, 652
sin function, 178
slash (/)

EL division operator, 152
JavaScript regular expression delimiter, 375
web.xml file url-pattern element operator, 515

slash, asterisk (/*) URL mapping operator, 498, 515
slash, d (/d) JavaScript regular expression operator,

375
slash, greater than sign (/>) action suffix, 242
Slashdot Web site, 826, 926–927
small-icon tag directive attribute, 336, 1068
Smalltalk programming language, 534
SMP (Symmetric MultiProcessor), 76
snoop application, 475–478
SOAP (Simple Object Access Protocol), 929, 956
SOAP with Attachments for Java (SAAJ), 726
SocketHandler class, 450
Software Development Kit (SDK) logging framework,

451–453, 454
sort WebWork tag, 557
Spain, localizing for, 400, 428
span tag, 376–377

1250

shopping cart application (continued)

40_57485x bindex.qxd 1/14/05 10:22 PM Page 1250

TEAM LinG - Live, Informative, Non-cost and Genuine!

specification
JavaBean, 276
JSP, 17, 18
servlet, 496, 512, 827
web.xml, 495

split JSTL function, 1118, 1121
Spring framework
bind tag, 569, 578, 587
build.xml file, 570–571
Command, 568
context, 567
directory structure, 570
Dispatcher, 572
downloading, 570
form, processing

Controller, 572–574, 583, 590
i18n, 576, 579, 588–589
Model, 574–575
validation, 572, 575–576, 578–579, 584–587
View, 577–579, 588–589, 590

hasBindErrors tag, 569
htmlEscape tag, 569
i18n, 569, 576, 579, 588–589
installing, 570–572
message tag, 569
messages.properties file, 570, 571, 576, 578,

581
MVC implementation

Controller, 568, 572–574, 583, 590
Model, 574–575
View, 577–579, 588–589, 590

object relational mapping, 567
theme tag, 569
transform tag, 569
Validator, 568, 572, 575–576, 578–579, 584–587
Web site, 554, 570

spring-servlet.xml file, 572–573, 576, 577
SQL (Structured Query Language). See also database
CREATE command, 756
date parameter, passing to SQL statement, 1114
GRANT command, 756
Hibernate, SQL functionality provided by, 819
JDBC support, 749, 753–754
JSTL SQL tags, 185–186, 778–781, 1113–1118
statement

callable, 754
prepared, 754, 770
static, 754

update JSTL tag sql attribute, 1117

SQLException exception, 770
sqrt function, 178
SSL (Secure Sockets Layer)

certificate
authentication, client certificate, 828, 849–855
CA, obtaining from, 831, 850
creating, 831–833
Digital ID, 850
displaying in Web browser, 736, 851, 852
installing in Web browser, 850–851
personal certificate, 850

JSSE requirement, 831
key

creating, 831–833
password, 833
private, 852

Tomcat configuration, 833–837, 852–853
stackTrace property
localerr object, 315, 318
pageContext.exception object, 326

staff-roster.jsp file, 858
Standard Tag Library, 36, 43
standard.jar file, 184, 436, 524, 646, 682
standard-layout.jsp file, 1024–1025
startRow query JSTL tag attribute, 1115
startsWith JSTL function, 1119, 1121
startup.sh file, 16
Statement class, 754
stderr.log file, 452
stdout.log file, 443
step forEach JSTL tag attribute, 1093, 1100
stepping through code, 468
storefront application. See Web storefront application
stress testing, 863
string. See text
String

data type, 157–158
object, 345

Structured Query Language. See SQL
Struts framework

action, 593, 594–599, 671–673, 1005
authentication using, 595–596, 597–599, 600–606,

641
build.xml file, 625–626
checkbox tag, 609
community, 592
define tag, 614–615
documentation, 592
downloading, 592

1251

Struts framework

In
de

x

40_57485x bindex.qxd 1/14/05 10:22 PM Page 1251

TEAM LinG - Live, Informative, Non-cost and Genuine!

Struts framework (continued)
drop-down list, creating using, 634–639
equal tag, 611–612
errors tag, 610
form, working with in
index.jsp file, 628, 634–635
JavaBean, 599–600, 604–606, 611, 617–619, 959
submission, 606, 610
translation from HTML, 600
validation, 611, 617–623, 628–629

forward tag, 612
hidden tag, 609
i18n, 606–607, 616
include tag, 615–616
iterate tag, 613
JavaBean

comparing JavaBeans using Struts, 611–612
defining using Struts, 614–615
form JavaBean, 599–600, 604–606, 611, 617–619,

959
request response, setting to JavaBean value using

Struts, 615
writing JavaBean value using Struts, 615

javascript tag, 611
JSF compared, 681, 718–719
link tag, 610
match tag, 612
message tag, 616
messages tag, 611
messagesNotPresent tag, 613–614
messagesPresent tag, 613–614
messages.properties file, 599, 605, 616, 621, 629
MVC implementation

Controller, 594–603
Model, 603
View, 604–606

notEqual tag, 612
notMatch tag, 612
options tag, 609–610, 638
password tag, 609
popularity, 592
radio tag, 609
redirect tag, 612–613
request handling, 594, 615
select tag, 609–610, 638
servlet, 593, 594
shopping cart application, 1005
submit tag, 610
tag library, 607

text tag, 608
textarea tag, 609
Tiles, using with

configuring tile using Struts, 671
definition, configuring as action forward, 671–673
localization, 679
passing value from Struts to Tiles, 673
struts-config.xml file configuration, 671, 676
tiles-defs.xml file configuration, 671, 674

validation, 611, 617–623, 628–629, 1022–1023,
1048–1050

Web portal configuration, 949–950, 959, 966–967
Web site, 553, 592
write tag, 615

struts-base application, 625–630
struts-config.xml file
action-mapping element, 596, 619, 630, 636–637,

671–673
BrowseCategoryAction class configuration, 1031
directory, 594
DynaValidatorForm class configuration, 628
global-forwards element, 598–599
ListCategoriesAction class configuration, 1028
ManageCartForm class configuration, 1039
message-resources element, 607, 629
TestAction class configuration, 630
testForm JavaBean configuration, 632
Tiles configuration, 671, 676
Validator plug-in configuration, 620, 628–629

struts-tiles.tld file, 646
style HTML tag, 120
submit Struts tag, 610
substring JSTL function, 1119, 1121
substringAfter JSTL function, 1119, 1121
substringBefore JSTL function, 1119, 1122
subtraction (arithmetic), 151, 1080
success.jsp file, 577, 580–581, 585
Sun Microsystems Web site, 831, 892
supports method, 575
switch...case Java construct, replacing with

choose JSTL tag, 204
Symmetric MultiProcessor (SMP), 76
synchronization

concurrency considerations when debugging, 479
Java attribute, synchronizing Java reference with

attached, 249–252
System object println method, 442–445
system testing, 891
systemId parse JSTL tag attribute, 1103

1252

Struts framework (continued)

40_57485x bindex.qxd 1/14/05 10:22 PM Page 1252

TEAM LinG - Live, Informative, Non-cost and Genuine!

T
tabbedpane WebWork tag, 556
table WebWork tag, 557
tag. See also JSTL (JavaServer Pages Standard Tag

Library)
action

attribute role in passing value to action, 345
including tag in, 242
relation to tag, 34, 242
tag file action, 242

alias, 357
attribute

action, role in passing value to, 345
dynamic, 336, 354–355
fragment attribute, 338, 348, 350, 1069
tag file, 337–338, 345
XML tag, 34

body, 34, 341–344
Calendar object display, formatting using, 360
custom, 342–344, 345–348, 359–360
directive, 335–336, 354, 1068–1069
directory, 224, 225
empty, 22, 34
file

action, tag file, 242
attribute, 337–338, 345
date-display tag file, 330–331, 336–337
described, 329–330
directive, using, 215, 335–336
directory, 184, 224, 225, 330
implicit object, invoking, 334–335
include directive, 337
JAR file, packaging in, 355–359
modularity, role in creating, 331
namespace, 27
packaging flexibility, 332
reusing, 331
scope, 332–335
separation of concerns application design, 331–332
simplicity, 332
variable directive, 339–341

HTML, embedding in, 28
icon, associating with, 336
language, specifying, 336
library
choose JSTL tag, using with, 226, 228
container instruction provided by, 214, 223–224
include construct, accessing using, 229–230
index.jsp file, 226, 227–228

JSF, 684, 685, 703–704
JSTL declaration, 152, 190
logging using, 460–464
namespace information conveyed in, 22, 27, 152,

173, 183
path, 22, 224, 330
prefix, 43, 182, 225, 337, 1067
Struts tag library, 607
thread-safe, 494
URI, 357
validation, using in client-side, 382–386
version, 357
Webwork Custom Tag Library, 556–557

location, 224, 225
name, 34, 357
namespace, 22, 27, 43
number, generating random using, 359
pooling custom tags, optimizing performance via,

880–881
prefix, 43, 182, 225, 337, 1067
table, generating using custom, 345–348
template, placement within, 22
text, searching and replacing, 342–344
XML, 34

.tag files, 28, 224
Tag Library Descriptors (TLD), 173–174, 182–183,

355–356
tagdir taglib directive attribute, 225, 1067
taglib directive
choose JSTL tag, using with, 226, 228
container instruction provided by, 214, 223–224
described, 21–22
function-taglib.tld file, 176–177
include construct, accessing using, 229–230
index.jsp file, 226, 227–228
JSTL declaration, 152, 190
logging setup, 461
namespace information conveyed in, 22, 27, 152, 173,

183
path, 22, 224, 330
prefix attribute, 43, 182, 225, 337, 1067
syntax, 33, 1067
tagdir attribute, 225, 1067
uri attribute, 43, 176, 183, 191, 224–225
web.xml file taglib element, 176, 183, 514
XML, converting to, 238–239

taglib-uri web.xml file element, 514
taglibuser.tag file, 337
Taiwan, localizing for, 400
Tapestry framework, 553

1253

Tapestry framework

In
de

x

40_57485x bindex.qxd 1/14/05 10:22 PM Page 1253

TEAM LinG - Live, Informative, Non-cost and Genuine!

target set JSTL tag attribute, 1097
TDD (test-driven development), 889
Team class, 804–805
Team Fixture Management window (football roster

management application), 821
Team.hbm.xml file, 805
tearDown method, 908, 911, 916
TeaServlet framework, 553
template. See also Tiles framework, layout
definition Tiles tag template attribute, 654
EL, inline, 148, 1077
error handling, 327
log message template, 456
static nature of, 33–34
tag placement within, 22
Velocity templating engine, 557
Web framework, using in templating, 552

test

if JSTL tag attribute, 1091
method, 375
when JSTL tag attribute, 1098

TestAction class, 625, 629–630
TestCase class, 908, 917
testCorrectAge method, 918
testCredit method, 911
testDebit method, 911
test-driven development (TDD), 889
TestForm

class, 574–575, 578–579, 581–582, 586–587, 590
JavaBean, 580, 632–633
method, 917

TestFormController object, 572–574, 580, 583
TestFormValidator class, 572, 575–576, 585–586,

587
testIncorrectAge method, 918
testing. See also specific testing framework

acceptance testing, 888, 891, 930
authentication application, 922
CHO, 864
debugging solution, 436
functional testing, 889, 891
load testing, 863, 868
Model 1 architecture application, 536
production environment, testing performance in, 880
regression testing, 889, 891
request handling when testing performance, 867–868,

869–870, 871–872
stress testing, 863
system testing, 891
threading, 868–869, 871

unit testing, 891
user

acceptance testing, 888, 891, 930
simulating concurrent users when testing perfor-

mance, 867, 868–869, 871
utility overview, 891
white box testing, 891

TestRunner class, 908, 916
text. See also language

case, converting, 719, 1119, 1122
concatenating, 1118, 1120
data type, converting to string, 157–158, 1083
EL expression, rendering as, 219
encoding

ASCII, 418
Unicode, 412
UTF-8, 412, 425
web.xml file, declaring in, 516

escaping
ASCII, 418
Spring htmlEscape tag, 569
XML character, reserved, 342, 344, 390–391, 393,

1094
expression scripting element conversion to string, 77
index position of string, retrieving, 1118, 1120
JSF

case conversion, 719
outputting text from, 684
string conversion to/from JSF object, 710–715
validating text in, 693, 697

length of string, returning, 1118, 1120
request parameter encoding, 425–426
resource bundle, retrieving from, 414–417, 420, 434,

1106, 1111
searching and replacing tag text, 342–344
searching substring, 1118–1119, 1121–1122
splitting string, 1118, 1121
Struts text tag, 608
Tiles framework value, retrieving as string, 656–657,

666
translation, working with, 396, 407–408
validating text data, 375–376, 632, 693, 697
WebWork text tag, 557
white space, trimming, 1119, 1122

text action, 273
textarea Struts tag, 609
textarea WebWork tag, 557
Thawte CA, 831
theme Spring tag, 569
thin client application, 727

1254

target set JSTL tag attribute

40_57485x bindex.qxd 1/14/05 10:22 PM Page 1254

TEAM LinG - Live, Informative, Non-cost and Genuine!

this keyword, 743
thread

EJB thread management, 742
log event, retrieving generating thread, 457
page directive isThreadSafe attribute, 1066
performance, testing, 868–869, 871
ramp-up period, 871
servlet threading, 494
tag library, thread-safe, 494

throughput, 862, 871
Throwable object, 314
Tiles framework
add tag, 656
body tile, 645
configuration file, validating, 647
creating tile, 649
debugging output, 647
definition

action forward, configuring as, 671–673
configuration file, 647, 652, 653, 654
described, 646
inheritance, 659–665, 667–668, 679
initializing, 648
instance of usage, relation to, 645, 646
JSP file, storing in, 51
menu, 650–651, 664–668, 669–670

described, 644–645, 646
downloading, 646
duplication, 650
factory class, 647, 658
footer tile, 644–645, 662
get tag, 656
getAsString tag, 656–657, 666
header tile, 644–645, 659, 662
importAttribute tag, 657–658, 666
initComponentDefinitions tag, 658
insert tag, 649–650, 653, 670
installing, 646–648
instance of usage, 645, 646
JavaBean, using, 653, 654
layout

animation, adding to, 660, 670, 674, 676–678
described, 645
index.jsp file configuration, 645
passing tile to, 645
path, 661

menu tile
definition, 650–651, 664–668, 669–670
inheritance, 660–663, 667–668
item list, 664–665, 666, 676

Struts, passing value from, 673–678
tiles-defs.xml file configuration, 665, 669,

674, 1025
title, 666, 675

nesting tile, 664
parameter, passing to tile, 654–656, 658–659,

669–670
put tag, 650, 652, 654–655
putList tag, 655–656, 665
scope, 650, 654, 657–658
shopping cart application layout using, 1022–1023,

1024–1026, 1029, 1040, 1054
string, retrieving value as, 656–657, 666
Struts, using with

configuring tile using Struts, 671
definition, configuring as action forward, 671–673
localization, 679
passing value from Struts to Tiles, 673
struts-config.xml file configuration, 671, 676
tiles-defs.xml file configuration, 671, 674

useAttribute tag, 657
Web portal configuration, 950–951
Web site, 646
web.xml file configuration, 646–647, 950–951

tiles-config.dtd file, 646
tiles-defs.xml file
definitions-config tiles-defs.xml attribute,

647
definitions-debug tiles-defs.xml attribute,

647
definitions-factory-class tiles-defs.xml

attribute, 647
definitions-parser-details tiles-

defs.xml attribute, 647
definitions-parser-validate tiles-

defs.xml attribute, 647
directory, 648
inheritance configuration, 660–661, 667–668
menu configuration, 665, 669, 674, 1025
shopping cart application configuration, 1025, 1029,

1040
Struts configuration, 671, 674
syntax, 652

tiles.defs.xml file, 647
tiles.jar file, 646
time

authorization, limiting by, 860
displaying current, 527
form submission, timestamping, 734
formatting using formatDate JSTL tag, 1107

1255

time

In
de

x

40_57485x bindex.qxd 1/14/05 10:22 PM Page 1255

TEAM LinG - Live, Informative, Non-cost and Genuine!

time (continued)
JSF DateTimeConverter converter, 711–712
modification-time check, optimizing performance via

disabling, 879–880
zone, 432–433, 712, 1107, 1110, 1112–1113

Time class, 755
TimedObject interface, 745
Timer interface, 745
Timer Service feature (EJB), 745–746
Timestamp class, 755
timeStyle attribute
convertDateTime JSF tag, 712
formatDate JSTL tag, 432
parseDate JSTL tag, 1110

TLD (Tag Library Descriptors), 173–174, 182–183,
355–356

todaysdate.tag file, 330, 336
token, PatternLayout object, 456–458
toLowerCase JSTL function, 1119, 1122
Tomcat server

access control list, 15
administrative user, 15
authentication, 24–26, 528–529
authorization, 15, 828
console, 442
debugger, configuring to listen for, 469
directory, default, 468
disabling, 468
downloading, 13–14
error-reporting screen, 306
HTTPS, activating, 837, 852–853
installing, 14–15
Jasper compiler, 484
Manager utility, 24–26, 497
password, 15
reference implementation, as, 17
shopping cart application configuration, 1010
shutting down, 16
snoop application, 475
SSL configuration, 833–837, 852–853
standalone mode, 18
starting, 16, 468–469
WAR file deployment, 25–26
Web application, deploying for, 524–527
Web browser, accessing in, 16
welcome page, 16

tomcat-users.xml file, 528, 838, 853–854, 856–858
tools.jar file, 20
Top Nav Bar script, 133
TopLink framework, 552, 553

toString method, 656
toUpperCase JSTL function, 1119, 1122
tps (transactions per second), 862
traffic, bursty, 862
transaction

atomicity, 775
consistency, 775
data source, 754, 1117
durability, 775
isolation, 775, 776, 1117
JSTL transaction tag, 1116–1117
J2EE container transaction management role, 724
response time, 862

transactions per second (tps), 862
transfer object, 276, 874–875
transferFrom method, 910
transform tag

JSTL, 1104
Spring, 569

translation (data)
class, page translation to, 217–218
container role, 216, 217, 247–249
error handling, translation-time, 236, 312–313
include operation, carrying out during, 231–233, 235,

262, 263
page processing translation phase, 215–216, 217
unit, 217
useBean action role, 247–248
variable, dependence on generated, 258

translation (text), 396, 407–408
trim JSTL function, 1119, 1122
Turbine framework, 554
type attribute
attribute directive, 338, 1069
convertDateTime JSF tag, 712
convertNumber JSF tag, 713
dateParam JSTL tag, 1114
formatDate JSTL tag, 432, 1107
formatNumber JSTL tag, 1107
inputText JSF tag, 717
parseDate JSTL tag, 1110
parseNumber JSTL tag, 1110
plugin action, 267, 1074
put Tiles tag, 655
useBean action, 244, 246, 250–251, 1071

U
UIComponent object, 698
UIViewRoot class, 690, 692

1256

time (continued)

40_57485x bindex.qxd 1/14/05 10:22 PM Page 1256

TEAM LinG - Live, Informative, Non-cost and Genuine!

underscore (_) country code separator, 400
Unicode character format, 412, 418. See also UTF-8

character format
Uniform Resource Locator. See URL
unit testing, 891
United Kingdom, localizing for, 399–400, 428, 429,

431, 433
United States, localizing for, 399–400, 428, 431
update JSTL tag, 1117–1118
updateCart method, 1042
uri taglib directive attribute, 43, 176, 183, 191,

224–225
URL (Uniform Resource Locator)

hiding, 285
HTTP GET method encoding, 64–65
import JSTL tag url attribute, 1092
JSTL url tag, 185, 194–195, 407, 1097
language selector form URL generation, 407, 410
pattern, matching, 515
redirect JSTL tag url attribute, 1096
servlet mapping, 494, 498–500
setDataSource JSTL tag url attribute, 1116
Web browser access process, 4–5
web.xml file security-constraint element

mapping, 828
url-pattern web.xml file element, 230, 473, 515
use case analysis, 931–932, 984–985
useAttribute Tiles tag, 657
useBean action

body, 246
class attribute, 244, 1071
compilation role, 248
described, 243
id attribute, 243, 244, 1070
index.jsp file, 245–246
news.jsp file, 55, 57
request handling role, 248
scope attribute, 244, 246, 247, 1071
set JSTL tag compared, 258–259
syntax, 243, 244, 1070
translation role, 247–248
type attribute, 244, 246, 250–251, 1071

user
acceptance testing, 888, 891, 930
application design, involving in, 888–889
debugging, simulating concurrent users when,

470–471
end user, 441
logging activity of specific, 471

name
encoding, 827
greeting, using in personalized, 60–64
returning, 830
tomcat-users.xml file username attribute, 854

performance
perspective of user, 863
simulating concurrent users when testing,

867, 868–869, 871
preference selector application
boxTitle class, 120, 129
color theme, 123–125, 129, 131–132
CSS content, generating, 127–129
font, 123–125, 129, 131–132
form, 61–64, 126–127, 959–962
index.jsp file, 126–127
showportal.jsp file, 129–131

preference, storing in database, 748
Principal object for, returning, 830
profile

transfer object, retrieving in, 874
Web portal personalization, using in, 931, 933–934,

935–937, 972–975
registering in Web portal application, 959, 961–962,

967, 970–974, 977
role, verifying, 830
XP user story technique, 888

UserProfile class, 935–937
UserProfileDB object, 934
UserProfileDBMemoryImpl object, 934
UserTransaction object, 735
UTF-8 character format, 412, 425. See also Unicode

character format
utility framework, 553–554

V
validate method, 575, 617–618
validateErrMsg tag, 382, 383, 386
validateError CSS class, 376–377
validateForm function, 376, 378
validateFunctions tag, 382, 383–384
validation

action, invoking with, 595, 596
auction Web site application, 282–283, 393
authentication information, 617–619, 641
bandwidth considerations, 363, 364
client-side, 364–366, 620
Commons Validator library, 627, 1012

1257

validation

In
de

x

40_57485x bindex.qxd 1/14/05 10:22 PM Page 1257

TEAM LinG - Live, Informative, Non-cost and Genuine!

validation (continued)
credit card data, 623, 1050
date, 622–623
described, 327
drop-down list field, 634–639
e-mail address, 623, 632–634
empty field, disallowing, 587, 620–621, 629, 631
error message, 382, 383, 386
front controller, carried out by, 275
index.jsp file validation coding, 362
internationalizing validation message, 588–589
JavaScript, using, 366, 372–379, 382–383
JSF

backing bean, using, 693–694, 704–705
creating custom validator, 698–703
number data, 697, 698–703
process validation, 691, 692
standard validator, 697
text data, 693, 697

need for, 364–365
number data

form number field, 374–375, 382, 587, 641, 918
JavaScript, 374–375, 382
JSF, 697, 698–703
Spring, 587
Struts, 641

password, 609, 620–622
remembering detected error, 376–377, 579
server-side, 363, 364–365, 620
shopping cart application, 1022–1023, 1048–1050
span tag, using, 376–377
Spring, using, 572, 575–576, 578–579, 584–587
Struts, using, 611, 617–623, 628–629, 1022–1023,

1048–1050
text data, 375–376, 632, 693, 697
Tiles configuration file, 647
VBScript, using, 366
Web browser role, 363
Webwork, using, 554, 560, 561, 562, 565
Zip code, 1048, 1049

validation.xml file, 619–621, 629, 633, 637, 1048
Validator interface, 698
validator-rules.xml file, 621, 622
ValidatorTag class, 701
value attribute
dateParam JSTL tag, 1114
formatDate JSTL tag, 432, 1107
formatNumber JSTL tag, 1107
out JSTL tag, 1094
param JSTL tag, 1095, 1102, 1109, 1114

parseDate JSTL tag, 1110
parseNumber JSTL tag, 1110
put Tiles tag, 655
requestEncoding JSTL tag, 1111
set JSTL tag, 1097
setLocale JSTL tag, 421, 1112
setProperty action, 252, 1072
setTimeZone JSTL tag, 1112
TimeZone JSTL tag, 1113
url JSTL tag, 1097

value binding expression, 685
value-change JSF event, 716
ValueChangeListener interface, 716, 717
valueOf method, 158, 161
var

attribute
doBody action, 342
forEach JSTL tag, 59, 1093, 1100
formatNumber JSTL tag, 1108
forTokens JSTL tag, 1094
if JSTL tag, 1101
import JSTL tag, 1092
invoke action, 348
message JSTL tag, 422, 1109
parse JSTL tag, 1103
parseDate JSTL tag, 1110
parseNumber JSTL tag, 1111
query JSTL tag, 1115
remove JSTL tag, 1096
set JSTL tag, 1097, 1103
setBundle JSTL tag, 1111
setDataSource JSTL tag, 1116
setTimeZone JSTL tag, 1112
transform JSTL tag, 1104
update JSTL tag, 1117
url JSTL tag, 1097

catch action attribute, 314, 317
varDom parse JSTL tag attribute, 1103
variable

counter, 352, 437, 443–444
debugging, watching value during, 443–444, 467–468
declaring using declaration scripting element, 75
directive, 339–341, 352, 354, 1069–1070
EL

dependence on generated, 258
named variable, 146–147, 162, 1079

exception, expressing as, 219
getProperty action dependence on generated

variable, 258
JavaBean, 162, 247

1258

validation (continued)

40_57485x bindex.qxd 1/14/05 10:22 PM Page 1258

TEAM LinG - Live, Informative, Non-cost and Genuine!

scope, 191, 204, 206, 209, 339–341
scripting variable, 75, 191
setProperty action dependence on generated vari-

able, 258
variant setLocale JSTL tag attribute, 421, 1112
varReader attribute
doBody action, 342
import JSTL tag, 1092
invoke action, 348

varStatus attribute
forEach JSTL tag, 1093, 1100
forTokens JSTL tag, 1094

VBScript
described, 121
execution, client-side, 118–119
generating dynamically, 119
validation using, 366
Web browser support, 121

Velocity templating engine, 557
Venue class, 784–786
Venue.hbm.xml file, 786
venue.jsp file, 792–793, 800
VenueProcessingCommand class, 796–799, 800
VeriSign CA, 831, 850
version control, 890
video applet, 273
view JSF tag, 685, 690
view technology, 556
viewResolver JavaBean, 577
views.properties file, 561, 562, 577
Visual SourceSafe software, 890

W
WAR (Web archive) files, 23, 25–26, 523
warm.do file, 510
warn tag, 461
warning function, 449
watchpoint, 467–468
waterfall development methodology, 886–887
weather.jsp file

DHTML menu system, 144
JavaBean usage, 58–59
personalization data, 69–70
reusing code, 72

Web application. See also specific component and
functionality

deploying, 523–527
described, 512
directory structure, 512–513, 898

e-mail, sending using, 746
footer element, adding, 530
header element, adding, 530
Hibernate, converting to, 792, 800
integration provided by Web service, 930
JSP page, adding, 526–527
MVC implementation, 534–537
Web site as, 930

Web archive (WAR) files, 23, 25–26, 523
Web browser

applet alternative, providing for non-supporting browser,
272

form processing, Web browser role, 37
SSL certificate

displaying, 736, 851, 852
installing, 850–851

Tomcat server, accessing, 16
Unicode support, 412
URL access process, 4–5
validation role, 363, 364
VBScript support, 121

Web Component container, 722, 723, 727, 728–729
Web framework. See also specific framework

application, 551–552
described, 549–550
MVC compared, 551
pattern, 550
persistence framework, 552
templating, using in, 552
utility framework, 553–554
validation mechanism, 552–553, 554, 562

Web portal application
AmazonStore class, 956–958
Ant build script, 947–949
ApplicationResources.properties file, 959
authentication, 944, 952, 959–960, 968–972
Axis configuration, 956–958
CSS stylesheet, 51–52
DHTML menu system

color customization, 134–137, 139–141
entertain.jsp file, 144
font customization, 134–137, 139–141
HTML menu compared, 132
index.jsp file, 137–139
JavaScript generation, 141–143
menu.js file, 133
news.jsp file, 141–143
showportal.jsp file, 139
Top Nav Bar script, 133
weather.jsp file, 144

1259

Web portal application

In
de

x

40_57485x bindex.qxd 1/14/05 10:22 PM Page 1259

TEAM LinG - Live, Informative, Non-cost and Genuine!

Web portal application (continued)
directory structure, 946–947
domain model, 931–932
EditProfileAction class, 972–974
EditRegistrationAction class, 970
entertain.jsp file, 58, 69, 72, 144
error handling, 964, 965
flow control, 944–945, 950
form submission, 36–37, 38–43, 65–66
home page, 46–47
index.jsp file, 51–52, 66, 67, 126–127, 137–139
InterestItem class, 935, 942–943
ItemFeed class, 935, 941–942
logging, 951–953, 968
LogonAction class, 952
MVC implementation

Controller, 966–975
View, 959–966

NewsFeed class, 56–58, 162–166, 935, 938–939
NewsItem class, 935, 939–940
news.jsp file

DHTML menu coding, 141–143
getProperty action, 57–58
include action, 261–262
include directive, 55, 233–234, 235–236
JavaBean usage, 57
reusing code, 72
setProperty action, 57
useBean action, 55, 57

news1.jsp file, 260–261, 262, 263
NewsServiceImpl class, 953–955
news3.jsp file, 264
news2.jsp file, 260–261, 262
personalizing

domain model, 931–932
factory design pattern, using in, 932, 933
persistence, 932–935
requirement analysis, 930–931
RSS, using, 926–929, 953
use case analysis, 931–932
user profile, using in, 931, 933–934, 935–937,

972–975
portal-advt. jsp file, 963, 965
portal-body.jsp file, 963, 964
portal.css file, 52–53, 127–128, 132
portal-header.jsp file, 963, 964
portal-layout.jsp file, 963–964
portalpage.jsp file, 963
Publisher class, 935, 940–941
registration.jsp file, 959, 961–962, 970

rendering, 54–55
Rome configuration, 953–955
SaveProfileAction class, 974–975
SaveRegistrationAction action, 970
service locator, 955
showportal.jsp file

address, 37
content, independence from, 46–47, 50–51
DHTML menu coding, 139
form submission role, 42
include directive, 54–55
portal.css embedding in, 132
username parameter, 67–68

Struts configuration, 949–950, 959, 966–967
Tiles configuration, 950–951
user preference selector
boxTitle class, 120, 129
color theme, 123–125, 129, 131–132
CSS content, generating, 127–129
font, 123–125, 129, 131–132
form, 61–64, 126–127, 959–962
index.jsp file, 126–127
showportal.jsp file, 129–131

user profile, using in personalizing, 931, 933–934,
935–937, 972–975

user registration, 959, 961–962, 967, 970–974, 977
UserProfile class, 935–937
UserProfileDB object, 934
UserProfileDBMemoryImpl object, 934
weather.jsp file

DHTML menu system, 144
JavaBean usage, 58–59
personalization data, 69–70
reusing code, 72

Web service call, 956
WroxServiceLocator class, 955

Web server. See also specific Web server
in-process configuration, 8–9
JVM, relation to, 8
legacy support, 882
limitation inherent to, 5
networked configuration, 8
performance, optimizing via deploying static content

from, 881–882
request handling, 4
stability, 882
standalone configuration, 8–9
Web browser URL access role, 4

Web service, 929–930, 956
Web Service Definition Language (WSDL), 929

1260

Web portal application (continued)

40_57485x bindex.qxd 1/14/05 10:22 PM Page 1260

TEAM LinG - Live, Informative, Non-cost and Genuine!

Web storefront application. See also shopping cart
application

addList function, 205
Category class, 82, 83
clearList function, 205
dispPrice method

currency formatting by, 85, 90
declaring, 75, 85
JSTL, replacing with, 190, 195, 202

EShop class, 82, 83, 90, 205, 274
eshop-taglib.tld file, 191–193, 195, 206
estore.jsp file, 83–85, 188–190, 194–195, 211
getCats method, 86, 190, 191–192, 274
getItem method, 204
getItems method, 90, 97, 195
isDigitsOnly function, 374–375, 376
isTextOnly function, 375–376
JSTL, converting to, 186–195
LineItem class, 103, 110
price display

catalog, 81, 83, 85, 88, 190
currency formatting, 85, 90, 195, 202

product.jsp file, 211
WebConversation class, 916
web-facesconfig_1_1.dtd file, 682
WebLOAD software, 864
Weblogic server, 552
WebResponse class, 916
Websphere server, 552
Webwork framework
append tag, 557
bean tag, 557
build.xml file, 559
checkbox tag, 556
combobox tag, 556
compiling Webwork application, 559
Custom Tag Library, 556–557
directory structure, 558
Dispatcher, 554–556, 561
downloading, 558
else tag, 557
elseif tag, 557
form, working with in, 554, 560–565
HMVC architecture, 554
include tag, 557
installing, 558
Jasper Reports feature, 557–558
label tag, 556
logging, 554
property tag, 562, 564

radio tag, 556
select tag, 556
sort tag, 557
tabbedpane tag, 556
table tag, 557
textarea tag, 557
validation, 554, 560, 561, 562, 565
Velocity templating engine, 557
view, 556
Web site, 554
XSLT support, 557

webwork-examples.war file, 558
webwork.properties file, 561
webwork-skeleton.zip file, 559
webwork.war file, 558
web.xml file

authentication configuration, 528, 529, 843
BasicServlet class, 495–496
character encoding, declaring in, 516
container independence, 495
context-param element, 517–518
Controller servlet, 504–505
description element, 496
development attribute, 880
display-name element, 496–497
el-ignored element, 515–516
env-entry element, 521–522, 735–738
error-page element, 518–519
extension, server-specific, 495
football roster management application, 758–759
form-processing servlet, 733, 735–736
include-coda element, 229–230, 517
include-prelude element, 229–230, 239,

516–517
init-param element, 505
is-xml element, 516
JDBC configuration, 740
JSF configuration, 683, 690
jsp-config element, 514
jsp-property-group element, 514–517
logging setup, 461, 473
login-config element, 519–520, 528–529
NDC filter setup, 473
page-encoding element, 516
param-name element, 505
param-value element, 505
reloading attribute, 880
resource-ref element, 522, 740, 741
res-ref-name element, 740
scripting-invalid element, 516

1261

web.xml file

In
de

x

40_57485x bindex.qxd 1/14/05 10:22 PM Page 1261

TEAM LinG - Live, Informative, Non-cost and Genuine!

web.xml file (continued)
security-constraint element

authorization configuration, 520, 828–829, 838–839
described, 519
file access, restricting using, 690
URL mapping, 828
user-data-constraint subelement, 520
web-resource-collection subelement,

520, 838, 840
security-role element, 521, 528
servlet element, 496, 505, 522
servlet-mapping element, 498–500, 502, 505,

522, 572
shopping cart application, 1023
specification, 495
taglib element, 176, 183, 514
taglib-uri element, 514
text encoding, declaring in, 516
Tiles configuration, 646–647, 950–951
url-pattern element, 230, 473, 515
Web application deployment, creating skeleton

web.xml file for, 524
Webwork Dispatcher, 561
welcome-file-list element, 518
XML, declaring in, 516

when JSTL tag, 44, 45, 287–289, 1098, 1105
white box testing, 891
white space, trimming, 1119, 1122
winner.jsp file, 302
write Struts tag, 615
Wrox Web site, 23
WroxServiceLocator class, 955
WSDL (Web Service Definition Language), 929
WSDL2Java class, 956, 958

X
xindex.jsp file, 232, 233
xindex.xml file, 236–238

XML (eXtensible Markup Language)
action use of, 34–35
directive

compatibility, 214–215
converting directive to, 231–233, 237–239

drop-down list HTML/XML selector, 274
DTD, servlet support, 496
escaping reserved character

EL function, using, 391, 393
JSTL function, using, 342, 344, 1118, 1120
out JSTL tag escapeXML attribute, 1094, 1102

generating dynamically, 386–392
getInfo tag, 389, 391–392
include directive, converting to, 231–233, 237,

238–239
index.jsp file, converting to, 236–238, 239
JSTL XML tags, 185–186, 1098–1105
syntax compatibility with JSP, 33, 34–35, 214
tag, 34
taglib directive, converting to, 238–239
validity, 155
web.xml file, declaring in, 516

XMLFormater class, 452
XP (Extreme Programming), 887, 888–889, 903
XPath expression

conditional processing using choose JSTL tag, 1099
iterating through using forEach JSTL tag, 1100

XProgramming.com Web site, 887
XSLT (Extensible Stylesheet Language Transformation),

557, 1104
xUnit framework, 889

Y
YouWin.jsp file, 695–696

Z
Zip code, validating, 1048, 1049

1262

web.xml file (continued)

40_57485x bindex.qxd 1/14/05 10:22 PM Page 1262

TEAM LinG - Live, Informative, Non-cost and Genuine!

	About the Authors
	Credits
	Acknowledgments
	Contents
	Introduction
	The Right Way to Do Web Development
	Approach
	How This Book Is Structured
	Conventions
	Source Code
	Errata
	p2p. wrox. com

	Part I: JSP Fundamentals
	Chapter 1: Getting Started with JavaServer Pages
	Chapter 2: JSP Basics 1: Dynamic Page Creation for Data Presentation
	Chapter 3: JSP Basics 2: Generalized Templating and Server Scripting
	Chapter 4: CSS, JavaScript, VBScript, and JSP
	Chapter 5: JSP and EL
	Chapter 6: JSP Tag Libraries and JSTL
	Chapter 7: JSP Directives
	Chapter 8: JSP Standard Actions
	Chapter 9: JSP and JavaBeans
	Chapter 10: Error Handling
	Chapter 11: Building Your Own Custom JSP Tag Library
	Chapter 12: Advanced Dynamic Web Content Generation
	Chapter 13: Internationalization and Localized Content
	Chapter 14: JSP Debugging Techniques

	Part II: JSP and Modern Web Server Software Development
	Chapter 15: JSPs and Servlets
	Chapter 16: The Role of JSP in the Wider Context: Web Applications
	Chapter 17: Model View Controller
	Chapter 18: Web Frameworks
	Chapter 19: Struts Framework
	Chapter 20: Layout Management with Tiles
	Chapter 21: JavaServer Faces
	Chapter 22: JSP in J2EE
	Chapter 23: Access to Databases
	Chapter 24: Security
	Chapter 25: Performance
	Chapter 26: Best Practices and Tools

	Part III: Spreading Your New Wings: Applying JSP in the Real World
	Chapter 27: JSP Project I: Personalized Portal
	Chapter 28: JSP Project II: Shopping Cart Application

	Part IV: Appendixes
	Appendix A: JSP Syntax Reference
	Appendix B: JSP Expression Language Reference
	Appendix C: JSTL Reference
	Appendix D: Exercise Solutions

	Index

